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On the testing of correlated effects 
with panel data 

Manuel Arellano* 
CEMFI, 28014 Madrid, Spain 

Using orthogonal deviations of the variables, correlated effects biases are regarded as misspecifica- 
tion biases due to the exclusion of relevant variables in a standard regression model. Following this 
approach, Hausman- and Chamberlain-type tests of correlated effects are obtained as Wald tests in 
an extended model estimated by OLS, and robust generalisations are suggested. Alternative 
estimators which introduce restrictions in the regression of th$,effects on the explanatory variables 
are proposed. Finally, the paper extends the results to dynamic models. 

1. Introduction 

Testing for the correlation of unobservable individual effects with the right- 
hand-side variables in panel data regressions is a widespread practice. In static 
models, the standard procedure is to use a Hausman test [Hausman (1978)] 
based on the comparison between the within-groups (WG) and the GLS 
estimators. In this article we regard correlated effects biases as misspecification 
biases due to the exclusion of relevant variables in a standard regression model. 
In doing this we follow the work of Mundlak (1978) and Chamberlain (1982) 
while exploiting a transformation suggested by Arellano and Bover (1990). 

Following this approach, in section 2, the Hausman test of correlated effects is 
obtained as a Wald test in an extended model estimated by OLS. This approach 
is useful for several reasons. Firstly, it suggests a straightforward generalised test 
which is robust to heteroskedasticity and autocorrelation of arbitrary forms. 
Notice that if the errors are heteroskedastic and/or autocorrelated, the standard 
formulae for the large sample variances of the WG and GLS estimators are 
not valid. Moreover, WG and GLS cannot be ranked in terms of efficiency so 
that the variance of the difference between the two does not coincide with 
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the difference of variances. Secondly, it clarifies the relationship between the 
Hausman test and the tests of correlated effects based on the reduced form 
(‘n matrix’) approach of Chamberlain (1982): the Hausman test is a Wald test 
based on a less general specification of the model under the alternative hypothe- 
sis than the Chamberlain-type test. The latter can also be easily calculated as 
a Wald test in a closely related extended model estimated by OLS. Thirdly, it 
suggests alternative estimators which introduce restrictions in the regression of 
the effects on the explanatory variables. These estimators exploit the fact that 
some partial correlations between the effects and explanatory variables may be 
zero. This is in contrast with the assumptions of lack of correlation between 
some of the regressors and the effects used in models of the Hausman-Taylor 
type [cf. Hausman and Taylor (1981)]. Fourthly, the same procedures can be 
used in dynamic models, provided the extended model is estimated by instru- 
mental variables instead of least squares. The alternative tests for static models 
are discussed in section 3, while section 4 discusses the estimators with restricted 
partial correlations. Finally, section 5 contains the results for dynamic models 
and section 6 concludes. 

2. The model and the Hausman test 

The model is given by 

E(yi, I xi, Vi) = &P + Vii, t=l,..., T, i=l,..., N, (1) 

where xi, is a k x 1 vector of explanatory variables, fi is the k x 1 vector of coefficients 
to be estimated, vi is an unobservable individual effect, and Xi = (xji, . . . , xi,)‘. The 
number of time periods T is small, the number of individuals N is large, and the 
observations are independently distributed over the cross-section. 

If we take conditional expectations given Xi alone we have 

E(Yi, I Xi) = XLP + E(Ui I Xi). 

The null hypothesis under test is the mean independence of vi given xi,i 

H,: E(qi) Xi) = 0. 

1 Notice that since the conditional expectation in (1) is linear, it coincides with the best linear 
predictor 

E*(yi,lxi,ili) = x;,P + vi. 

hence also 

E*(yi,Ixi) = x;,D + E*(rtilxi), 

so that E*(Q ( xi) = 0 is a sufficient condition for the consistency for p of the least squares regression 
of yit on xi*, given standard regularity conditions. 
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Let us write the system of T equations for individual i as 

E(Yi I xi, rti) = XiB + Vii 9 

where yi = (yil,. . . , YiT)‘, Xi = (Xily. . . , Xi=)’ is a TX k matrix, and 1 is a TX 1 
vector of ones. Next, we can perform a decomposition between the within- 
groups and the between-groups variation, transforming the system by means of 
the nonsingular T x T transformation matrix 

H= 
A 

[ 1 
T-II’ ’ 

where A is the (T - 1) x T forward orthogonal deviations operator described in 
Arellano and Bover (1990). Specifically, the elements of the (T - 1) x 1 trans- 
formed vector y) = Ayi are 

t = 1,. . . , T-l. 

The operator A has the properties Al = 0, AA’ = ZcT_ I), and A’A = Q 
= IT - d/T, where Q is the within-groups operator. The transformed system is 

E(Y~* IXi, Vi) = XT/J, E(ji I Xi, vi) = $B + vi 3 

so that also 

E(Y? I xi) = X?P 9 E(_Fi I Xi) = $p + E(qi 1 xi) 3 

in which the variables with bars denote time means and the starred variables 
denote forward orthogonal deviations, that is, X: = AXi, Zi = Xiz/T, etc. 

With homoskedasticity and absence of serial correlation, that is, if. 

var(yilxi,qi) = c2Zr and var(qijxi) = 0: 

in which case 

var(yilxi) = War(yilxi,~i)lxi) + var(E(yiIxi,Vi)lXi) 

= a2z, + 0,” 11’) 
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it can be readily shown that the conditional variance matrix of the transformed 
vector y+ = Hyi is given by 

var(y’ 1Xi) = 0’ ICT-1) 0 
0 1 1/02T ’ 

with e2 = a2/(a2 + TO:). 

We turn to consider the specification of the alternative hypothesis. In the first 
place, we define the ‘Hausman alternative hypothesis’ to be 

Hi: E(rliIxi)=E(9i)xi)=x:y, 

so that under the null hypothesis we have y = 0 and the transformed system 
under Hi is 

E(Y? Ixi) = XTfl, E(jilXi) = Xi(p + 7) = $b. (3) 

In this setting, OLS applied to the first (T - 1) equations gives the WG 
estimator, OLS applied to the last equation gives the between-groups (BG) 
estimator, and weighted least squares applied to the complete system under the 
null gives the GLS estimator: 

two = (x*‘x*)-‘x*‘y*, 

LBG = (R’k) - 1 x ‘j ) 

fiGLs = (X*‘X* + 62Td’X)-1(X*‘y* + e2Tx’j), 

(44 

where & is a consistent estimator of e2, X* = (XT’, . . . , X;l;‘)‘, y* = 

(Y?‘, * . . , yg’)‘, I? = (XI,. . . , XN)‘, and jj = (jr,. . . , jN)‘. Moreover, the large 
sample variances of WG, BG, and GLS are respectively given by 

V WG = oZ(x*‘x*)- l ) 

VfjG = a2(e2 TPX) - l ) WI 

VGLS = 02(x*‘x* + e2Tx'x)-'. 

Provided (2) holds, under Hl fiwo and &o are the best linear unbiased 
estimators of j and b, respectively, and under Ho fioLs is asymptotically equiv- 
alent to the (unfeasible) GLS estimator of /I. 

The Hausman test statistic is given by 

h = (Bo,, - BWo)IVwo - I?GLs)-Vol.s - Bwo), (5) 
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where the hats on the variances denote consistent estimators. Hausman and 
Taylor (1981) showed that an alternative expression for h can be given in terms 
of the difference between the BG and the WG estimators:2 

h = (&lG - /%vG)I(%vG + &30)%30 -Ad. (6) 

The statistic h can also be obtained as a Wald statistic of the restriction y = 0 
from OLS estimates of model (3). That is, we consider the regression 

(7) 

or in an obvious notation, 

y+ = wg + tl; . 

Clearly, the OLS estimator of p in (7) is the WG ejtimator /&o, while the OLS 
estimator of y is the difference between bgo and pwo: 

Therefore the Wald test of the restriction y = 0 coincides with (6), and so 
it is numerically identical to the Hausman statistic. Notice that this test can 
be regarded as an application of the Chow test under heteroskedasticity, so that 
the approximations to its finite sample distribution available in the literature 

apply. 

3. Alternative tests for static models 

Chamberlain (1982) considered a linear regression of vi on Xi in order to 
specify the dependence between the effects and the explanatory variables. We 
define the ‘Chamberlain alternative hypothesis’ to be 

HI : E(qi 1 Xi) = Xi/I 9 (8) 

2 The fact that the two expressions for the Hausman test are identical is easily verified using 

V& = V& + V&, /&Ls = voLS v&/%‘,o + vGLS vicd &G I 

which are well-known results due to Maddala (1971). Notice that these results can be immediately 
obtained from the equations in (4a) and (4b). 
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where x:A = CT= 1 x:,jl, and I is a Tk x 1 vector of coefficients. With this speci- 
fication, the transformed model under the alternative becomes: 

E(.$lXi)=X~P, E(ji 1 Xi) = Xifl + XI A. 

Thus, we consider the OLS regression 

(9) 

The OLS estimator of p in this model is still the WG estimator. In addition, 
notice that in this model and also in model (7), the OLS and the weighted least 
squares estimators coincide. Here the standard Wald test of A = 0 based on OLS 
estimates of (9) provides an alternative Tk degrees of freedom chi-square test 
statistic. 

The comparison between Hausman and Chamberlain alternatives reveals 
that the former is a special case of the latter in which 1, = ‘.e = AT = y/T. In 
effect, the Hausman test is testing the k-moment restrictions 

E[Zi(ji 1 Xifl)] = 0 3 

while the Chamberlain-type test is testing the kT-moment restrictions 

E[Xi(yi - Xi@)] = 0 3 

which amounts to testing E(Ziqi) = 0 and E(Xiqi) = 0, respectively, having 
assumed that (1) holds for all t. If some x’s are known to be uncorrelated or only 
weakly correlated with the effects given the other x’s, the power of the test can be 
improved by excluding those x’s from the second block of columns in the 
extended model. This case is taken up in the next section. 

If (2) does not hold because of heteroskedasticity and/or serial correlation, 
neither of the previous estimators are optimal under H, or H1. However, 
consistent estimators of the variances of the OLS estimators in models (7) and (9) 
can be obtained using White’s formulae [cf. White (1984)]. For example, for the 
OLS estimator of 6 in model (7) we have 

f&$ = (W/W)_’ 
[ 

2 w:qa”Iq (W’W)_’ = 
i=l 1 

[ 2: 211, 
where W=(W;,. . . , Wh,’ and li: are OLS residuals. Hence, the generalised 
test that is robust to heteroskedasticity and autocorrelation is given by 
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h* has a large sample chi-square distribution with k degrees of freedom under 
the null hypothesis y = 0. A similar expression can be written down for the kT 
degrees of freedom test based on the OLS estimator of 1 in model (9). Notice that 
both test statistics can be easily calculated using a standard package. 

4. Alternative models with information in levels 

Suppose that xit can be partitioned into two subvectors xlit and xzit of dimen- 
sions kl and k2, respectively, such that for a Hausman alternative hypothesis, 

E(t~i Ixi) = X;iyl + Xiiy2 3 

y1 is known to be zero, that is, the partial correlations between vi and Xl{ vanish 
relative to the set of variables in xi (a parallel discussion could be conducted for 
a Chamberlain alternative in terms of xii and xi). 

This knowledge may be the result of theoretical considerations or due to 
previous empirical evidence. An example of this situation would be a I-constant 
labour supply equation [see MaCurdy (1981)], in which yi, is labour supply, 
xzif is the real wage, xiit is a vector of observed characteristics which result from 
allowing variation in some utility parameter, and vi is a function of the marginal 
utility of wealth A, which itself depends on initial assets, future wages, interest 
rates, and the form of preferences. The variables xiit will also typically be 
determinants of wages but depending of the specification of preferences may not 
enter the expression for 1. They would still be correlated with vi through wages 
but the partial correlations, once wages have been accounted for, may vanish. 

In this case, the transformed model under the alternative can be written as 

Notice that in this model, OLS and weighted LS estimators do not coincide and 
none of these two estimators of /I coincide with the WG estimator. Consistent 
estimates of the model can be used to obtain a Wald test of lack of correlation of 
X2i with the effects (i.e., a test of y2 = 0) given that X,i is uncorrelated. This model 
is an intermediate situation between the conventional ‘fixed effects’ and uncor- 
related random effects models. 

Hausman and Taylor (198 1) also considered a class of intermediate models in 
which E(%riqi) = 0. This is in contrast to our assumption of y1 = 0. The 
difference between the two models is best seen comparing the form of the 
resulting estimators. The Hausman-Taylor estimator is 

fiHT = (X*‘X* + ~2Ti&14,~)-‘(X*‘y* + e^2T8’Mlj), (12) 
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with Mi = 81(8’id,)-‘~; [see Arellano and Bover (1990)], whereas the 
weighted LS estimator of /I in model (11) is given by 

Bpc = (x*‘x* + @I-d&X)_‘(x*‘y* + 82TX’P2& (13) 

with 

P2 = IN - X’,(X;X,)-‘X 2’ 

Moreover, provided (2) holds, the large sample variance of the partially corre- 
lated estimator &c is given by 

V,, = oZ(x*‘x* + PTX’P,X)-’ ) 

and note the inequality (in the matrix sense): 

Hausman and Taylor (1981) empha.sized the identifiability of observed com- 
ponents Of li relying on the variables Xii as instrumental variables in a dual role. 
Here we emphasize the efficiency gains that could be obtained moving from WG 
estimators to estimators that introduce constraints in the regression of the 
effects on the explanatory variables. In this regard, it is useful to view the 
problem of correlated effects biases as a problem of omission of relevant 
explanatory variables in a linear regression model, so that the specification 
searches are similar to those of finding the relevant set of explanatory variables 
using standard tests of individual and joint significance in regression analysis. 

5. Results for dynamic models 

Now consider the model 

E(Yit - XitPlzi, Vi) = Vi 9 (14) 

where xit = (Yi(,- I), zi,)‘, the sample starts at t = 0, zit is a (k - 1) x 1 vector and 
Zi=(Z:o,.,., &)‘. We wish to test for the mean independence of the individual 
effects vi given Zi, 

E(qilZi) = 0. 

The relevant model under a Hausman alternative in this case is 

where y is now a (k - 1) x 1 parameter vector. 
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The parameters p and y in model (15) can still be consistently estimated 
by instrumental variables using zi as the instruments. Letting Zi = IT @ zj, 
2 = (z;, . . . ) z;,)I, y+ = (y:‘, . . . , y$‘)‘, and redefining Wi and W as appro- 
priate in model (15), a GMM estimator of 6 is given by 

s^ = (wlzBZ’W)-’ w'zBz'y+ . 

A one-step estimator can be calculated with B = (Z’Z)- ‘, while a two-step 
estimator uses B = (CT= i Zjliz tjf ‘Zi)- i, where tip are one-step residuals. The 
large sample variance of the two-step estimator can be consistently estimated 

by 

v&j = W’Z $ z\ti,? ii+‘& Z’W . ( ( 
-1 

> > 
-1 

i=l 

Finally, we can calculate a (k r 1) degrees of freedom Wald test of y = 0, similar 
to (lo), but which uses jJ and VYy as redefined in this section. If in model (15) Zi is 
replaced by zi and y by I, we obtain a dynamic version of (9) from which we can 
calculate a Chamberlain-type Wald test based on GMM estimators under the 
alternative hypothesis. Notice that now A is a (k - l)(T + 1) x 1 parameter 
vector. Moreover, intermediate cases of the type discussed in section 4 can also 
be considered here. 

An alternative procedure is to use a Sargan-difference test (or likelihood- 
ratio-like test) which would test the additional overidentifying restrictions 
implied by the model in levels relative to the model in deviations [see Sargan 
(1988)]. The Sargan-difference test would be testing the same moment restric- 
tions as the Chamberlain-type Wald test, That is, we wish to test the (k - 1) 
x (T + 1) restrictions 

E[Zi($i - XilJ)] = 0. 

To obtain a Sargan-difference test let us consider the criteria 

s(p) = u’ZBZ’U and s,(@ = u*‘Z,B,Z~u* , 

where u = (u;, . . . , I&)‘, U* = (Uf’, . . . 7 u?), U: = AUi, Ui = yi - XiB, the ith 
row block of Z, is IcT_ 1) @ z:, and B and B, are optimal weighing matrices. 
Moreover, let $ and & be the minimized criteria with respect to j3. Then the 
Sargan difference statistic is given by 
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One advantage of the Wald procedures is that a large sample chi-square 
statistic can still be obtained on the basis of estimators that do not use the 
optimal weighing matrices. 

A Sargan-difference test has been proposed by Holtz-Eakin (1988) in order to 
test for the existence of individual effects in an autoregressive model. In that 
case, the instruments are further lags of the dependent variable. Since lagged 
dependent variables are correlated with the effects by construction, a test of the 
lack of orthogonality between the errors in levels and lagged dependent vari- 
ables amounts to a test of the existence of the effects. A Wald test can also be 
devised for this case on the previous lines. The only difference is that since under 
the null hypothesis there are different instruments valid for different equations in 
levels, the between-groups equation needs to be replaced by the complete set of 
equations in levels in addition to those in orthogonal deviations. 

6. Conclusions 

This paper exploits the orthogonal deviations transformation of Arellano and 
Bover (1990) to decompose the Tequations of a linear regression with individual 
effects into two different regressions with uncorrelated errors: a within-groups 
regression comprising the first (T - 1) equations and a between-groups regres- 
sion consisting of the last equation. In this setting, testing for uncorrelated 
effects amounts to a ‘stability’ test of equality of the two regressions. Thus, the 
Hausman test is obtained as a Wald test based on a particular specification of 
the alternative hypothesis. 

The same strategy is shown to be useful in order to obtain other tests of 
correlated effects based on different specifications of the alternative hypothesis 
and for different models. These include Chamberlain alternatives, partially 
correlated alternatives which introduce restrictions in the regression of the effects on 
the explanatory variables, and dynamic models. Robust versions of the test statistics 
in the presence of heteroskedasticity and serial correlation are also presented. 

The approach taken in this paper is also useful in order to suggest appropriate 
estimators for each model under both the null and the alternative hypotheses. In 
particular, enforcing zero restrictions in the regression of the effects on the 
independent variables, gives rise to a new estimator which is compared to the 
model and the estimator studied by Hausman and Taylor (1981). 
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