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This paper remews the exzstzng approaches to deal wzth panel data binary choz­
ce models wzth indwidual effects. Thezr relative strengths and weaknesses are
dzscussed. Much theoretzcal and empzf2cal research zs needed in this area, and
the paper poznts to several aspects that deserve further investzgatwn. In par­
tzcular, I zllustrate the usefulness of asymptotzc arguments in providzng both
approxzmately unbzased moment condztwns, and approximatwns to samphng
dzstrzbutwns for panels of dzfferent sample szzes.
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(JEL C23)

1. Introduction

The use of fixed effects is a simple and well understood way of dealing
with endogenous explanatory variables in linear panel data models.
In such a context, least squares or instrumental variable methods for
errors in differences provide consistent estimates that control for unob­
served heterogeneity in short panels of large cross-sections (small T,
large N). However, the situation is fundamentally different in models
with nonlinear errors; for example, when one intends to use fixed effects
to deal with an endogenous explanatory variable in a probit model. In
those cases, estimates of the parameters of interest, jointly estimated
with the effects, are typically inconsistent if T is fixed (incidental pa­
rameter problem). Moreover, fixed effects estimates in a spirit similar
to differencing in the linear case· are not available for many models of
practical importance.
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at the XXV Simposio de Análisis Económico, Universitat Autónoma de Barcelona,
Bellaterra, 19-21 December 2000. 1wish to thank Pedro Albarrán, Samuel Bentolila,
Olympia Bover, Raquel Carrasco, Jesús Carro, Enrique Sentana, and two anony­
mous referees for helpful comments and discussions. 1 am also grateful to Pedro
Albarrán and Jesús Carro for very able research assistance.
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There are also random effect methods that achieve fixed T consistency
subject to a particular specification of the form of the dependence
between the explanatory variables and the effects, but they rely on
strong and untestable auxiliary assumptions, and even these methods
are often out of reach. Without auxiliary assumptions, the common
parameters of certain nonlinear fixed effects models are simply uni­
dentifiable in a fixed T setting, so that fixed-T consistent estimation is
not possible at all. In other cases, although identifiable, fixed-T con­
sistent estimation at the standard root-N rate is impossible.

An alternative reaction to the fact that micro panels are short is to
ask for estimators with small biases as opposed to no bias at all; spe­
cifically, estimators with biases of order 1/T2 instead of the standard
magnitude of l/T. This alternative approach has the potential of over­
coming sorne of the fixed-T identification difficulties and the advantage
of generality.

The purpose of this lecture is twofold. First I review the incidental
parameter problem (Sections 2 and 3), fixed-T solutions (Section 4),
and identification problems (Section 5), all in the context of the sta­
tic binary choice model with explanatory variables that are correlated
with an individual effect. Second, I discuss the modified concentrated
likelihood of Cox and Reid (1987), its role in achieving consistency up
to a certain order of magnitude in T (Section 6), and a double asymp­
totic formulation which provides an effective discrimination between
estimators with and without bias reduction (Section 7).

I focus on the static binary case for simplicity and because many results
are only available for this case. Thus, dynamic models, multinomial
choice, and models with random effects that are uncorrelated with the
explanatory variables are allleft out (see Arellano and Honoré (2001)
for a fuller survey of the fixed-T panel data discrete choice literatu­
re). My intention is to exhibit the strengths and weaknesses of fixed-T
approaches, and to illustrate the usefulness of double asymptotic argu­
ments in providing both approximately unbiased moment conditions,
and approximations to sampling distributions even for fairly short pa­
neIs, which is the main theme of the paper.

2. Model and parameters of interest

1 begin by considering the following static binary choice model

Y2t = 1 {x~tf30 +r¡2 +v2t:2:: O} (t = 1, ... ,T;i = 1, ... ,N) [1]
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where the errors Vit are independently distributed with cdf F condi­

tional on r¡~ and x~ = (X~l' ''', x~T)" so that

[2]

The linear model as a Benchmark. In a linear model of the form

[3]

130 is identifiable from the regression in first differences or deviations
from means in a cross-sectional population for fixed T, regardless of
the form of the distribution of rh I Xi. That is, we have

which is uniquely satisfied by the true value 130 provided

[5]

"is non-singular. So, the value 13 that solves

(the "within-group" estimator) is a consistent estimator of 130 for large
N, no matter how small is T as long as T 2:: 2 (see, for example,
Arellano, 2003, or Hsiao, 2003).

This is of economic interest if one hopes that by conditioning on r¡~,

130 measures a more relevant (causal or structural) effect of X on y.
The consistency result matters because one wants to make sure that
gets the right answer when calculating ~ fram a large cross-sectional
panel with a small time series dimension, which is a typical situation
in microeconometrics.

The motivation and aim in a binary choice fixed effects model is to
get similar results as in the linear case when the form of the model is
given by [1]. In our context, the term "fixed effects" has nothing to
do with the nature of sampling. It just refers to a model for the effect
of x on y given x and r¡, in which we observe y and x but not r¡, and
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the distribution of rJ I X is left unrestricted. Following the usage in the
econometric literature, the term "random effects" will be reserved for
models in which some knowledge about the form of the distribution of
rJ I x is assumed.

Parameters of interest. The micropanel data literature has emphasized
the large-N-short-T identification of (30 with an unspecified distribu­
tion of rJ2 I x2. However, a natural parameter of interest is the mean
effect on the probability of Y2t = 1 of changing Xht fram Za to Zb, sayo
A consistent estimator of this is:

N

~LJ[F (Za(3Q1 +X;2t(302 +rJ) - F (Zb(301 +X;2t(302 + rJ) ] dG(rJ IX22t)
2=1

[7]
where G(. I X22t) is the cdf of rJ2 conditional on X22t, and Xht denotes
the first component of X2t. Thus, measuring this effect would require us
to specify G, which is not in the nature of the fixed effects approacho1

The direct information we can get from the (3 coefficients only concerns
the relative impacts of explanatory variables on the probabilities. If Xht
and X22t are continuous variables we have:

(302 = oProb(Y2t = 11 X2,rJ2) /oProb(Y2t = 11 X2,rJ2). [8]
~l fu~ fuw

3. The problem

The log-likelihood function from [1] assuming that the Y2t are indepen­
dent conditional on X2 and rJ 2 is given by

[9]

where

T

e2((3, rJ2) = L {Y2t log F2t + (1 - Y2t) log (1 - F2t )} [10]
t=l

1An alternative is to obtain the difference in probabilities for specific values of r¡
and X2t (eogo their means), but this may only be relevant for a small part of the
population (see Chamberlain, 1984).
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[11]

[12]

where f~t denotes the pdf corresponding to F~t.

For the logit model F is the logistic cdf A(r) = eT
/ (1 +eT

) and we
have

f~t = 1
F~t (1 - F~t)

so that in this case the scores are simply dr¡~ (/3, r¡~) = ¿f=l (Y~t - F~t)

and d(3~ (/3, r¡~) = ¿f=l X~t (Y~t - F~t).

Let the MLE of r¡~ for given /3 be

[13]

so that 7]i (/3) solves
[14]

Therefore, the MLE of /3 is given by the maximizer of the concentrated
(or profile) log-likelihood

N

~ = arg maxL e~ (/3, 7]~ (/3))
(3 ~=1

[15]

which solves the first order conditions

N

ln'N (/3) = T~~ { dp, (13, í), (13)) +d,¡, (¡3, í), (¡J)) m;¡t)}
1 N

T N L d(3~ (/3, 7]~ (/3)) [16]
~=1

The problem is that bTN(/3) evaluated at /3 = /30 does not converge to
zero in probability when N -+ (X) for T fixed (although it does con­
verge to zero when T -+ (X)). This situation is known as the incidental
parameters problem since Neyman and Scott (1948). A discussion of
this problem for discrete choice models is in Heckman (1981).
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An example. As a classic illustration let us consider a model in
which T = 2, f is symmetric, ;3 is scalar, and X~t is a time dummy
such that Xi! = O and Xi2 = 1 (Andersen, 1973; Heckman, 1981).
For observations with (Yil, Yi2) = (O, O) we have r¡~ (;3) ---t -00 and
f~ (;3, r¡~ (;3)) = log F (-r¡~ (;3)) + log F (-r¡~ (;3) - ;3) ---t O. For observa­
tions with (Y~l,Y~2) = (1,1) we have r¡~(;3) ---t 00 and f~(;3,r¡~(;3)) =

log F (r¡~ (;3)) + log F (r¡~ (;3) +;3) ---t O. Finally, for (O, 1) or (1, O) ob­
servations we have, respectively,

f~ (;3, r¡) = log F (-r¡) + log F (r¡ + ;3)

or
fi (;3, r¡) = log F (r¡) + log F (-r¡ -;3) ,

which in both cases are maximized at

[17]

The implication is that the contributions of observations (O, O) and
(1,1) to the concentrated log-likelihood are equal to zero, a (0,1) ob­
servation contributes a term of the form 2log F(;3 /2), and a (1, O)
observation contributes with 2log [1- F(;3/2)]. So the concentrated
log-likelihood is given by

N

2L {dlO~log [1- F(;3/2)] + dOlilogF(;3/2)} [18]
~=l

where dlOi = l(Y21 = 1, Y~2 = O) and dOli = l(Y21 = O, Y~2 = 1).

Moreover, the MLE of p = F(;3/2) is

[19]

SO that
~ = 2F-1 (ji) . [20]

Note that p lS the sample counterpar~ of Po Pr
(Y21 = O, Y~2 = 1 I Y21 + Y~2 = 1). Thus the MLE ;3 satisfies

plim ~ = 2F-1 (po) . [21]
N~oo
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Moreover, we have

429

Po =JPr (Yü = 0, Yi2 = 11 Yü +Y22 = 1, r¡) dG (r¡ IYü +Yi2 = 1).

For the logit model Pr (Yü = 0, Y22 = 1 IYü + Yi2 = 1, r¡) does not de­
pend on r¡ and it turns out that Po = A((30) where (30 is the true value.
Therefore, in such a case plimN-+oo ~ = 2A-1 [A ((30)] = 2(30' so that
ML would be estimating a relative log odds ratio that is twice as large
as its true value.

More generally, using Bayes formula

or

so that

Er¡ [Pr (Yü = 0, Yi2 = 1 I r¡)]
Po = ,

Er¡ [Pr (Yü +Y22 = 1 1 r¡)]
[22]

plim ~ = 2F-1 { Er¡ [F (-r¡) F ((3 + r¡)] } .
N-+oo Er¡ [F (-r¡) F ((3 + r¡)] + Er¡ [F (r¡) F (-(3 - r¡)]

[23]
Thus, in general the form of the asymptotic bias of ~ depends on the
distribution of the individual effects. .

For probit, under r¡ rv N (O, ()~) an explicit expression is available. Let­

ting (3* = (3/ (1 + (}~)1/2 and p = ()~/ (1 + ()~) we have Er¡ [<1> (r¡)] =

<1>(0) = 0,5, Er¡[<1>((3+r¡)] = <1>((3*), and Er¡[<1>(r¡)<1>((3+r¡)]
<1>2 (O,(3*;p), so that

. -" -1 [ <1>((3*)-<1>2(0,(3*;p) ]
~~~ (3 = 2<1> <1> ((3*) +0,5 - 2<1>dO, (3*; p) [24]

where <1>2 (., .; p)is the cdf of the standardized bivariate normal density
with correlation coefficient p. As noted by Heckman (1981), we get
Po --7 F ((3) as (}r¡ --70, in which case we get a similar bias result as for
the logistic in a limiting situation. Numerical calculations of [24] are
reported below in Section 6.
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A sufficient statistic for r¡p S~ say, is a function of the data such that
the distribution of the data given S~ does not depend on r¡~. The idea
is to use the likelihood conditioned on S~ to make inference about
f30 (Andersen, 1970). This works as long as f30 is identified from the
conditional likelihood of the data, which obviously requires that the
conditional likelihood depends on 130 , Unfortunately, this is not the
case except for the logit model.

In the logit model rX=l Y~t is a sufficient statistic for r¡~. Indeed, we
have

(
T) exp (¿X=l Y~tX~tf3o)

Pr Yü,"" Y~T I L Y~t, x~ = ----"----(~----'----,-)
t=1 2::(dl" .,dT)EB, exp 2::f=1 dtx~tf3o

[25]
where B~ is the set of all 0-1 sequences such that 2::f=l dt = 2::f=1 Y~t.
This result was first obtained by Rasch (1960, 1961) (for surveys see
Chamberlain, 1984, or Arellano and Honoré, 2001). For example, with
T = 2 we have

= (O, O) or (1,1)
if (Yü, Y~2) = (1, O)
if (Yü, Y~2) = (0,1).

[26]

Therefore, the log-likelihood conditioned on Yü +Y~2 is given by2

N

Le (f3) = L {dlO~ log [1 - A (LlX~2f3)] +dOli log A (LlX~2f3) } [27]
~=1

and the score takes the form

N

f)L~Jf3) = L LlXi2 {dOli - A (LlX~2f3) l(yü +Y~2 = 1)}. [28]
~=1

4.2. Maxzmum score estimation

The previous technique crucially relied on the logit assumption. Mans­
ki (1987) considered a more general model of the form [1] in which the

2The contributions of (O, O) or (1,1) observations is zero.
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cdf of -V~t I X~, r¡~ was non-parametric and could depend on X~ and r¡~

in a time-invariant way. Namely, for all t and s

so that F (r I X~, r¡~) does not change with t but is otherwise unrestric­
ted.

This assumption imposes stationarity and strict exogeneity, but
allows for serial dependence in the errors V~t. It also allows for a cer­
tain kind of conditional heteroskedasticity, though not a very plausible
one, since Var (v~t I X~, r¡~) may depend on X~ but V~t is not allowed to
be more sensitive to X~t than to other x's. Similarly if the expecta­
tions E (v~t I X~, r¡~) exist, they may depend on Xi but not their first­
differences E (~V~t I X~, r¡i) = O.

The time-invariance of F implies that for T = 2:3

To see this note that, given Yü + Y~2 = 1, the difference Y~2 - Yü can
only equal 1 or -1. So the median will be one or the other depending
on whether Pr (Y~2 = 1, Yü = O I x~) ~ Pr (Y~2 = O, Yü = 1 I x~). Thus4

med (Y~2 - Yil I X~, Yü + Y~2 = 1)
sgn[Pr (Y~2 = 1, Yü = OI x~) - Pr (Y~2 = O, Yil = 1 I x~)]

sgn [Pr(Y~2 = 11 x~) - Pr (Yü = 11 x~)].

Moreover, from the model's specification, i.e.

Pr (Yü = 1 I X~, r¡~)

Pr (Y~2 = 1 I X~, r¡i)

3 The slgn function is defined as

F (X~1,60 + r¡~ I X~, r¡~)

F (X~2,60 + r¡~ I X~, r¡~) ,

sgn (u) = 1 (u> O) -1 (u < O),

i.e. sgn (u) = -1 if u < O, sgn (u) = Oif u = Oand sgn (u) = 1 if u > O.
4 The second equality follows from

Pr (Y'2 = 1 Ix,) Pr (Y'2 = 1, Yd = O Ix,) +Pr (Y'2 = 1, Yd = 1 Ix,)

Pr (y,¡ = 1 Ix,) = Pr (Y'2 = O, Yd = 11 xt ) +Pr (Yt2 = 1, Yd = 11 xt) .
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and the monotonicity of F, we have that for any r¡~ (the constancy of
F over time becomes crucial at this point):

Pr (Yi2 = 1 1 Xi, r¡i) ~ Pr (Yü = 1 I X~, r¡~) {:} X~2¡30 ~ X~l¡30'

Therefore, the implication also holds unconditionally relative to r¡~:

Pr (Y~2 = 1 I Xi) ~ Pr (Yü = 1 1 X~) {:} X~2¡30 ~ X~l¡30'

or

Manski showed that the true value of 130 uniquely maximizes (up to
scale) the expected agreement between the sign of ~x~2¡3 and that of
~Y~2 conditioned on Yü +Yi2 = 1. This identification result required an
unbounded support for at least one of the explanatory variables with a
non-zero coefficient. That is, letting X~t = (z~t, W~t) and ¡3~ = (¡o, a~),
the minimal requirement for identification is that Z~t has unbounded
support and 'Yo =1 O. Identification fails at 'Yo = O, so that 'Yo = Ois
not a testable hypothesis. Manski's identification result implies that
we can learn about the relative eifects of the variables W~t under the
maintained assumption that 'Yo =1 O.

Manski then proposed to estimate 130 by selecting the value that mat­
ches the sign of ~x~2¡3 with that of ~Y~2 for as many observations as
possible in the subsample with Yü +Y~2 = 1. The suggested estimator
is

N

~ = argmax ¿sgn (~X~2¡3) (Y~2 - Yü) [31]
{3 i=l

subject to the normalization 1I 13 11= 1.5 This is the maximum score
estimator applied to the observations with Yil + Y~2 = 1 (notice that
the estimation criterion is unaifected by removing observations having
Yü = Y~2)' It is consistent under the assumption that there is at least
one unbounded continuous regressor, but it is not root-N consistent,
and not asymptotically normal.

An alternative form of the score objective function is

N

SN(¡3) = ¿ {dlOi1 (~X~2¡3 < O) +dOh1 (~X~2¡3 ~ O)} . [32]
~=1

5In the logit case the scale normalization is imposed through the variance of the
logistic distribution. More generally, if F is a known distribution a priori, the sca­
le normalization is determined by the form of F. Comparisons can be made by
considering ratios of coefficients.
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[33]

The score SN((3) gives the number of correct predictions we would
make if we predicted (Yü, Y~2) to be (0,1) whenever fi.x~2(3 2: O. In
contrast, ¿~1 sgn (fi.x~2(3) fi.Y~2 gives the number of successes minus
the number of failures. Yet another form of the estimator suggested by
the median regression interpretation is as the minimizer of the number
of failures, which is given by

1 N
2L 1 (Yü =1- Y~2) Ifi.Yi2 - sgn (fi.x~2(3) l·

~=1

Smoothed maximum score. It is possible to consider a smoothed version
of the maximum score estimator along the lines of Horowitz (1992),
which does have an asymptotic normal distribution, although the rate
of convergence remains slower than root-N (Charlier, Melenberg and
van Soest, 1995, and Kyriazidou, 1997).6 The idea is to replace SN((3)
with a smooth function SÑ((3) whose limit a.s. as N --+ 00 is the same
as SN((3). This is of the form

N

SÑ((3) = L {dlO~ [1- K (fi.x~2(3hN)] +dOhK (fi.x~2(3hN)} [34]
~=1

where K(.) is analogous to a cdf and IN is a sequence of positive
numbers such that limN--+oo IN = O.

4.3. Random effects

In general

Pr(Yü'''',Y~T I x~) =JPr(Yü'''',Y~T I x~,r¡~)dG(r¡i I Xi) [35]

where G (r¡~ I x~) is the cdf of r¡~ I x~. The substantive model specifies
Pr (Yil, oo., YiT I x~, r¡i), but only Pr (Yü, oo., Y~T Ix~) has an empirical
counterpart. For example, we may have specified

T T

Pr (y~l, oo., Y~T I x~, r¡~) = rr Pr (Y~t I Xi, r¡i) = rr F~~'t (1 - F~dl-y,t> .
t=l t=l

In a fixed effects model we seek to make inferences about parameters in
Pr (Yü, oo., Y~T I x~, r¡~) without restricting the form of G. In a random

6Chamberlain (1986) showed that there is no root-N consistent estimator of {3 under
the assumptions oí Manski for his maximum score method.
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effects model G is typically parametric or semiparametric, and the pa­
rameters of interest may or may not be identified with G unrestricted.
Thus a fixed effects model can be regarded as a random effects model
that leaves the distribution of the effects unrestricted.

The choice between fixed and random effects models often invol­
ves a trade-off between robustness in the specification of
Pr (Y21, ... , Y2T 1 x2,r]2) and robustness in G, in the sense that achie­
ving fixed-T identification with unrestricted G usually requires a more
restrictive specification of Pr (Yil, ... ,Y2T 1 x2,r]2)'

Chamberlain (1980, 1984) considered a random effects model in which
the effects are of the form

[36]

and C2 is independent of x2 • He also made the normality assumptions

which imply that

c21 x2I'-JN(0,0"~),

[37]

[38]

where O"F = O"~ +Wtt and <p (.) is the standard normal cd! In this model
the V2t may be serially dependent and heteroskedastic over time.

Chamberlain assumed a linear specification J-l (x2 ) = Ao + x~A, and
Newey (1994) generalized the model to a non-parametric J-l (x2 ). In
the linear case, (30' AO' A, and the O"F can be estimated subject to
the normalization d = 1 by combining the period-by-period probit
likelihood functions (see Bover and Arellano, 1997, for a discussion of
alternative estimators). In the semi-parametric case, Newey used the
fact that

O"t<p-1[Pr(Y2t = 11 x2)] - O"t_l<P-1 [Pr (Y2(t-l) = 11 x2)] = Llx~t(3o
[40]

together with non-parametric estimates of the probabilities
Pr (Y2t = 1 1 x2) to obtain an estimator of (30 and the relative scales. A
further generalization of the model i8 to drop the normality assump­
tions and allow the distribution of the errors C2 +v2t I X2 to be unknown.
This case has been considered by Chen (1998).
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Another semi-parametric approach has been followed by Lee (1999).
Under certain assumptions on the joint distribution of Xi and r¡p Lee
proposed a maximum rank correlation-type estimator which is JN­
consistent and asymptotically normal.

5. Identification problems with fixed T

It would be useful to know which models for Pr (Yü, oo., y~T IXi, r¡~) are
identified without placing restrictions in the form of G (r¡~ I x~) (Le.
fixed-effects ídentíficatíon wíth fixed T) and which are noto

A model is given by a 2T x 1 vector p (x~, r¡~, {3o) with elements that
specify the probabilities

where dJ is a 0-1 sequence of order T. Let the true cdf of r¡~ 1 x~ be
Co (r¡ Ix). Identification will fail at {3o if for aH X in the support of x~

there is a cdf G* (r¡ Ix) and {3* f. {3o in the parameter space, such that

Jp (x, r¡, {3o) dGo (r¡ Ix) = Jp (x, r¡, {3*) dC* (r¡ I x). [42]

If this is so, ({3o, Go) and ({3*, G*) give the same conditional distri­
bution for (Yü, ... ,y~T) given X~. Therefore, they are observationally
equivalent relative to such distribution.

Chamberlain (1992) studied the identification of a fixed effects binary
choice model with T = 2. He considered the model

y~t = 1 (x~t{3o + r¡~ + V~t :::: O) (t = 1,2)

together with the assumption that the -V~t are independent of x~,

r¡~ and are i.i.d. over time with a known cdf F. The distribution F
is strictly increasing on the whole line, with a bounded, continuous
derivative. Moreover, we have the partitions X~t = (dt, Z~t) and {3~ =
(ao, r~), where dt is a time dummy such that dI = Oand d2 = 1, and
Z~ is a continuous random vector with bounded support.

With these assumptions Chamberlain showed that if F is not logis­
tic, then there is a value of a such that identification fails for all {3o
in a neighborhood of (a, O). This seems puzzling since Manski (1987)
proved identification under less restrictive assumptions. He required,
however, the presence of an explanatory variable with unbounded sup­
port. Indeed, the difference between the identification result of Manski
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and the underidentification result of Chamberlain is due to the boun­
ded support for the explanatory variables.

The Hne between identification and underidentification in this context
is very subtle. Under Manski's assumptions identification will fail at
,8~ = (ao, O) even if Z~t has unbounded support, but there will be iden­
tification as long as a component of la is different from zero. Cham­
berlain shows that if Zit is bounded ,80 is underidentified not only when
,8~ = (ao, O), but also for aH ,80 in a neighborhood of (ao, O) for a cer­
tain value of ao. So it seems to be a case of local underidentification at
zero versus local underidentification in a neighborhood around zero.

The lesson from these findings is the fragility of fixed-T identification
results and the special role of the logistic assumption. Chamberlain
(1992) also showed that when the support of Z~t is unbounded (so that
identification holds to the exclusion of la = O from the parameter
space) the information bound for ,80 is zero unless F is logistic. Thus,
root-N consistent estimation is possible only for the logit model.

Chamberlain's proof can be sketched as foHows. In his case p (x, r¡, ,80)
is

(

(1 - Ft) (1 - F2) )
(1- Fl) F2

p (x, r¡, ,80) = F¡(l - F
2

)

FtF2

where F1 = F (zbo +r¡) and F2 = F (ao +Z~,O +r¡).

Let ,8* = (a, O) and define the 4 x 4 matrix

H (x, r¡l, oo., r¡4, ,8*) = [p (x, r¡l, ,8*), ... ,p (x, r¡4, ,8*)] .

which does not vary with x when evaluated at ,8*.

The proof proceeds by showing that unless H (x, r¡l, oo., r¡4, ,8*) is singu­
lar for every a and r¡l, ... , r¡4, there will be lack of identification for aH ,80
in a neighborhood of some ,8*. Next it is shown that H (x, r¡l, oo., r¡4, ,8*)
can only be singular if F is logistic.

Let us choose a pmf 1r* = (1ri, oo., 1r¡)' , 1rj > 0, ¿~=l1rj = 1. If for
some other pmf 1ro (x) we have

H (x, r¡l, oo., r¡4, ,80) 1ro (x) = H (x, r¡l, oo., r¡4, ,8*) 1r*,

then the models characterized by (,8o,1ro (x)) and (,8*,1r*) give the sa­
me unconditional choice probabilities, hence creating an identificatidn
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problem. To rule this out we have to rule out that H is invertible.
To see this, suppose that H (x, r¡1, oo., r¡4, (3*) is nonsingular for some a
and T/1' ... ,r¡4' Since x is bounded, for (30 =1= (3* in a neighborhood of (3* ,
H (x, r¡1, oo., r¡4, (30) will also be nonsingular for all admissible values of
x. We can now define

such that 71"oJ (x) > O for aH admissible x. Moreover, since 1/H = ¿'

where ¿ is a 4 x 1 vector of ones, we also have ¿'H-1 = ¿' and ¿'71"0 (x) =

1. Therefore,

4 4

LP (x, r¡J' (30) 71"oJ (x) = LP (x, r¡J' (3*) 71";
J=l J=l

which implies that (30 cannot be distinguished from (3*.

The singularity of H (x, r¡1, .oo, r¡4, (3*) requires that

~1 [1 - F (r¡)] [1 - F (a + r¡)] + ~2 [1 - F (r¡)] F (a + r¡)

+~3F (r¡) [1 - F (a + r¡)] + ~4F (r¡) F (a + r¡) = O

for aH r¡ and some scalars ~1' oo., ~4 that are not aH zero. Taking limits
as r¡ tends to ±oo gives ~1 = 'l/J4 = O. Thus we are left with

~2Q (a + r¡) + 'l/J3Q (r¡) = O

where Q == F/ (1- F). For r¡ = Owe obtain 'l/J3/~2 = -Q (a) /Q(O).
Therefore the singularity of H requires that for aH a and r¡ we have

q (a + r¡) = q (a) +q (r¡) - q (O).

This can only happen if the log odd ratios q == log Q are linear or
equivalently if F is logistic.

6. Adjusting the concentrated likelihood

Cox and Reid (1987) considered the general problem of doing infe­
rence for a parameter of interest in the absence of knowledge about
nuisance parameters. They proposed a first-order adjustment to the
concentrated likelihood to take account of the estimation of the nui­
sanee parameters (the mod2fied profile likelihood). Their formulation
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required information orthogonality between the two types of parame­
terso That is, that the expected information matrix be block diagonal
between the parameters of interest and the nuisance parameters; so­
mething that may be achieved by transformation of the latter (Cox
and Reid explained how to construct orthogonal parameters). A dis­
cussion of orthogonality in the context of panel data models and a
Bayesian perspective have been given by Lancaster (2000, 2002). The
nature of the adjustment in a fixed effects model and some examples
are also discussed in Cox and Reid (1992).

6.1. Orthogónahzation

Let R~ ((3, rh) be the log-likelihood for unit i (conditional on x~ and r¡J
A strong form of orthogonality arises when for some parameterization
of r¡~ we have

Ri ((3, r¡i) = Rh (13) +R2~ (r¡~) , [43]

for in this case the MLE of r¡~ for given 13 does not depend on 13, r¡~ (13) =
r¡~. The implication is that the MLE of (3 is unaffected by lack of kno­
wledge ofr¡~. In this case ej2R~ (13, r¡~) /8j38r¡i = Ofor aH i. Unfortunately,
such factorization does not hold for binary choice models. In contrast,
information orthogonality just requires the cross derivatives to be zero
on average.

Suppose that a reparameterization is made from (13, r¡~) to ((3, A~) cho­
sen so that 13 and A~ are information orthogonal. Thus r¡~ = r¡ (13, Ai) is
chosen such that the reparameterized log likelihood

satisfies (at true values):

E (ePR: (¡Jo, \) I ) = O
8j38A~ X~, r¡~ .

[44]

[45]

Since we have

[46]

[47]

7Note that there is a term that vanishes: (EPr¡./a(3a)".)E (EJe./ar¡. Ix., r¡.) = o.
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following COX and Reid (1987) and Lancaster (2002), the function
rJ((3, At) must satisfy the partial differential equations

[48]

Orthogonal effects in binary choice. Let us now consider the form of
information orthogonal fixed effects for model [1]-[2]. These have been
obtained by Lancaster (1998, 2000). For binary choice we have

T

-L h (x~t(3o + rJt) Xtt
t=l

T

-L h (x~t(3o + rJt)
t=l

[49]

[50]

where
f (r)2

h(r)= F(r)[l-F(r)]' [51]

8ince in general [49] is different from zero, (3 and rJi are not information
orthogonal. In view of [48], an orthogonal transformation of the effects
will satisfy

[52]

where htt = h (x~t(3 +rJt).

Moreover, letting cP (r) = h' (r) and cPtt = cP (x~t(3 +rJt), since

and

it turns out that
1

[53]

[54]
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Hence, Lancaster's orthogonal reparameterization is

T r:t(3+r¡,
\ = ~ J-oo h(r) dr. [55]

[56]

When F(r) is the logistic distribution h(r) coincides with the logistic
density, so that an orthogonal effect for the logit model is

T

\ = LA (x~tf3 +1]2)'
t=l

6.2. Modified profile likelihood

The modified profile log likelihood function of Cox and Reid (1987)
can be written as

and

eMt (13) = e: (13, X2 (13)) - ~ log [-dh2 (13, X2 (13))] , [57]

where Xt (13) is the MLE of '\ for given 13, and dht (13, '\2) = [Pe: /8,\;.
Intuitively, the role of the second term is to penalize values of 13 for
which the information about the effects is relatively large.

An individual's modified score is of the form

dh(3t (13, Xdf3)) + dhA2 (13, X2 (13)) [8X2 (13) /813]
dMi (13) = dCi (13) - ('" )

2dh2 13''\2 (13)
[58]

where dCi (13) is the standard score from the concentrated likelihood
function, dh(3t (13, \) = 83e: /8,\;813 and dhA2 (13, '\2) = 83e: /8'\~.

The function [57] was derived by Cox and Reid as an approximation to
the conditional likelihood given Xt (13). Their approach was motivated
by the fact that in an exponential family model, it is optimal to condi­
tion on sufficient statistics for the nuisance parameters, and these can
be regarded as the MLE of nuisance parameters chosen in a form to be
orthogonal to the parameters of interest. For more general problems
the idea was to derive a concentrated likelihood for 13 conditioned on
the MLE X2 (13), having ensured via orthogonality that X2 (13) changes
slowly with 13.



M. ARELLANO: DISCRETE CROICES WITR PANEL DATA 441

[59]

Another motivation for using [57] is that the corresponding expected
score has a bias of a smaller order of magnitude than the standard ML
score (d. Liang, 1987, McCullagh and Tibshirani, 1990, and Ferguson,
Reid, and Cox, 1991). Seen in this way, the objective of the adjustment
is to center the concentrated score function to achieve consistency up
to a certain order of magnitude in r. Specifically, while the difference
between the score with known \ and the concentrated score is in
general of order Op (1), the corresponding difference with the modified
concentrated score is of order Op (r- 1/ 2) (see Appendix). This leads
to a bias of order O (r- 1) in the expected modified score, as opposed
to O (1) in the concentrated score without modification.

The adJustment in terms of the original parameterization. Cox and
Reid's motivation for modifying the concentrated likelihood relied on
the orthogonality between common and nuisance parameters. Nevert­
heless, the mpl function [57] can be expressed in terms of the original
parameterization. Firstly, note that because of the invariance of MLE
r¡~ ({3) = r¡({3,~d{3)) and

e: ({3, ~~ ({3)) = e~ ({3, r¡~ ({3)) .

Next, the term d~A~ ({3, ~~ ({3)) can be calculated as the product of the

Fisher information in the ({3, r¡~) parameterization and the square of
the Jacobian of the transformation from ({3, r¡~) to ({3, )..~) (Cox and
Reid, 1987, p. 10). That is, since the second derivatives of e: and e~

are related by the expression

{Pe: _ {j2e~ ({jr¡~)2 + {je~ ({j2r¡~)
{j)..; - {jr¡; {j\ {jr¡~ {j)..; ,

and fJe~/{jr¡~ vanishes at r¡~ ({3), letting dr¡r¡~ ({3, r¡~) = {j2e~/{jr¡; we have

Thus, the mpl can be written as

eM~ ({3) = e~ ({3, r¡~ ({3)) - ~ log [-dr¡r¡~ ({3, r¡~ ({3))] +log (~~: k=T¡,(¡3)) .
[61]
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where htt (13) = h (x~tj3 +Tlt (13)),

Finally, in view of [48] and [53], the derivative with respect to 13 of
the Jacobian term (the required term for the modified score) can be
expressed as

[62]

K,f3r¡t (130' TJi) = E [~df3r¡t (130' TJt) I Xi, TJt] [63]

K,r¡r¡i (130' TJt) E [~dr¡r¡t (130' TJi) IXi, TJt] . [64]

Modified pmfile likelihood jor binary choice. Replacing [54] in [61] we
have

RM, (/3) = R, ([3, í), ([3)) - ~ log [-d"", ([3, í), ([3))1 + log (th,,([3))

[65]

T

Rt (13, TJi) = ¿ {Yit log Ftt + (1 - Yit) log (1 - Ftt )}
t=l

and
T

dr¡r¡t (13, TJi) = - ¿ [hit - Ptt (Ytt - Ftt )] [66]
t=l

( ) _ J' (r) - h (r) [1 - 2F (r)]
P r - F (r) [1 - F (r)] .

For logit, the MLE :\t (13) for given 13 solves

[67]

T T

:\t (13) = ¿ A (x~tj3 +Tlt (13)) = ¿ Ytt [68]
t=l t=l

so that it does not vary with 13. Therefore, the likelihood conditioned on
:\t (13) coincides with the conditional logit likelihood given a sufficient
statistic for the fixed effect discussed in Section 4.1.
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For the Iogistic distribution p (r) = O. The modified profiIe likelihood
(mpl) for Iogit is therefore

eM, ((3) = ei ((3, fj¡((3)) + ~ lag (t fA (x:,(3 +fj, ((3)) ) [69]

where fA (r) = A (r) [1 - A (r)] is the Iogistic density and eMt ((3) is
defined for observations such that -¿;=1 Yzt is not zero or T.8

6.3. Numerical comparisons for Logit and Probit

Comparisons for the two-period logit modelo The mpl for Iogit [69] dif­
fers from Andersen's conditionallikelihood, and the estimator ~MML

that maximizes the mpl is inconsistent for fixed T. Pursuing the exam­
pIe in Section 3, we compare the Iarge-N biases of ML and MML for
T = 2 and .6.xi2 = 1. Thus we are assessing the vaIue of the Iarge-T
adjustment in [69] when T = 2.

When T = 2, for individuals who change state 'iJi ((3) = -(3/2 so that
the second term in [69] becomes

12log [fA (-(3/2) + fA ((3/2)] . [70]

Collecting terms and ignoring constants, the modified profiIe
log-likelihood takes the form

1 N
N L{2dlOt log [1 - A((3/2)] +2doh log A((3/2)

z=l

1+(dlOz +dOlz) 2(logA((3/2) + log [1- A((3/2)])}

1 N
ex: N L {(5d lOt +do lz ) log [1 - A((3/2)]

z=l

+(5dorz +dlOz) log A((3/2)}

ex: (5 - 4p) log [1- A((3/2)] + (4p + 1) logA((3/2)[71]

8Ifry,(/1) ~ ±oo, then log (-¿i=lfA (X:t/1+ry, (/1))) tends to -00 for any /1. So

observations for indivlduals that never change state are uninformative about /1.
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where dlOi = l(Ytl = 1, Yt2 = O), dOh = 1(Yi1 = 0, Yt2 = 1) and pis as
defined in [19]. This is maximized at

fJ~ = 2A-1 (4P+1) = 21 (4P+1)MML 6 og 5 - 4p . [72]

Therefore,

. ~ (4PO+1) (4A (fJo) +1)
~~~fJMML=210g 5-4po =210g 5-4A(fJo) . [73]

FIGURE 1
Probability limits for a logit model with T =2
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Figure 1 shows the probability limits of MML for positive values of
fJo, together with those of ML (the 2fJo line) and conditional ML (the
45° line) for comparisons.9 In this example the adjustment produces
a surprisingly good improvement given that we are relying on a large
T argument with T = 2. For example, for Po = 0,65, we have fJo =
0,62, fJML = 1,24 and fJMML = 0,81. 8ince the MML biases are oí
order O (1 /T2), the result suggests that, although the biases are not
negligible for T = 2, they may be so for values oí T as small as 5 or 6.

9See McCullagh and Tibshirani (1990, pp. 337-8) for a similar exercise using diffe­
rent adjusted likelihood functions.
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Comparisons for the two-period probit modelo If f (r) is the standard
normal pdf we have h (-r) = h (r) and p(-r) = -p (r). Thus, in
the two-period case, hú = h[17d,6)] = h(-,6/2) = h(,6/2) and hi2 =

h[,6 +17t (,6)] = h(,6/2). Also Fú = F(-,6/2) and Fi2 = F(,6/2).
Finally, Pú = p(-,6/2) = -p(,6/2) and Pt2 = p(,6/2).

Therefore, for observations with Yil + Yi2 = 1 we have:

fMt ((3) = ft (,6, 17t (,6))

-~ log [htl - Pú (Yú - Fú) + ht2 - Pt2 (Yt2 - Ft2 )]

+ log (hú (,6) + ht 2 (,6)) [74]

and

fMd,6) oc 2 [dlOt log F( -,6/2) + dOh log F(,6 /2)]
1

-"2dlOtlog [2h (,6/2) + 2p (,6/2) F (,6/2)] [75]

1
-"2dOh log [2h (,6/2) + 2p (-,6/2) F (-,6/2)] + log h (,6/2) .

Next, collecting terms, ignoring constants, averaging over observations
with Yú + Yt2 = 1, and using the notation

q(r)=l+ p(r)F(r) = <P(r) _r<p(r)
h(r) l-<P(r) ep(r) ,

we have

1 NI

NI ¿fMt (,6)
t=1

= (1- p) [2l0g F( -,6/2) + ~ log h (,6/2) - ~ log q ((3/2)]

+p [2l0g F(,6 /2) + ~ log h (,6/2) - ~ log q (-,6/2)] . [76]
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---Thus, the probability limit of (3MML for probit maximizes the limiting
modified log likelihood as follows

""-

plim (3MML
N-+oo

arg m/x {PO [210g F((3/2) +~ log h ((3/2) - ~ log q (-(3/2)]

+(1 - po) [210g F (- (3/2) + ~ log h ((3/2) - ~ log q((3/2)] } .

[77]

FIGURE 2
Probability limits for a probit model with T =2
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Figure 2 shows the probability limits of probit ML and MML for nor­
mally distributed individual efIects with variances 0,1, 1, and 10, as
well as for Cauchy distributed efIects. The range of values of (3 has
been chosen for comparability with Figure 1, in the sense that both
figures cover similar intervals of Po values. The impact of changing the
distribution of the efIects is noticeably small for both ML and MML.
The adjustment for probit also produces a good improvement given
that T is only two, a1though less so than in the logit case. For exam-
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pIe, for (30 = 0,60, the relevant ranges of values are [1,21,1,30] for (3ML,

[0,90,0,96] for (3MML, and [0,73,0,74] for Po.

7. N and T asymptotics

The panel data literature has probably overemphasized the quest for
fixed-T large-N consistent estimation of non-linear models with fixed
effects. We have already seen the difficulties that arise in trying to
obtain a root-N consistent estimator for a simple static fixed effects
probit model. Not surprisingly, the difficulties become even more se­
rious for dynamic binary choice models. In a sense, insisting on fixed
T consistency has similarities with (and may be as restrictive as) re­
quiring exactly unbiased estimation in non-linear models. Panels with
T = 2 are more common in theoretical discussions than in econome­
tric practice. For a micro panel with 7 or 8 time series observations,
whether estimation biases are of order O (liT) or O (1/T2) may ma­
ke all the difference. So 'it seems useful to consider a wider class of
estimation methods than those providing fixed-T consistency, and as­
sess their merits with regard to alternative N and T asymptotic plans.
There are multiple possible asymptotic formulations, and it is a matter
of judgement to decide which one provides the best approximation for
the sample sizes involved in a given application.

Here we consider the asymptotic properties of the estimators that ma­
ximize the concentrated likelihood (ML) and the modified concentra­
ted likelihood (MML) when TIN tends to a constant (related results
for autoregressive models are in Alvarez and Arellano, 2003, and Hahn
and Kuersteiner, 2002).10

Consistency. The ML estimator of (3 can be shown to be consistent as
T -7 00 regardless of N using the arguments and the consistency theo­
rem in Amemiya (1985, pp. 270-72). The consistency of MML follows
from noting that the concentrated likelihood and the mpl converge to
the same objective function uniformly in probability as T -7 oo.

I08ince this lecture was first written 1 have become aware of recent work on double
asymptotic formulations for nonlinear fixed effect models by Woutersen (2001) and
Ll, Lindsay, and Waterman (2002). Moreover, a modified ML estimator for dyna­
mic binary choice models has been developed in Carro (2003) and its properties
investigated in simulations and empirical calculations.
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Letting P2t (~) = p (X~t~ +172 (~)) and F2t (~) = F (x~t~ +~ (~)), from
(65) we have

. 1
p 11m TfM2 (m [78]

T-+oo

p Tli.".:o ~P, ((3, fí, ((3)) +PTli.moo ~ log ( ~ t.h" ((3))

-PT~~ log ( ~ t. [h" ((3) - p" ((3) (y" - P" ((3))] ) 1/2,

where the convergence is uniform in ~ in a neighborhood of ~o, and
the last two terms vanish.

Asymptotíc normalíty. When TIN -+ c, O < c < 00, both ML and
MML are asymptotically normal but, unlike MML, the ML estima­
tor has a bias in the asymptotic distribution. An informal calculation
of the terms arising in the asymptotic distributions is given in the
Appendix. The results are as follows:

[79]

[80]

where

~~>">"2 = E [T-1d~>">"i (~o, ).20) I X2, ).2]'

~h2 = E [T-1dh2 (~o, \0) I X2,\],

bN = ..!-t (~~:A2) , [81]
N 2=1 2~>"A2

N

VNT = ~T L d~2 (~o, \0) d~i (~o, \0)' , [82]
2=1

1 N 8 "
HNT = NT L 8~,d~2 (~o, ).d~o)) , [83]

2=1

and

1 N 8
H~T = NT L 8~,dM2 (~o)' [84]

2=1
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Thus, the asymptotic distribution of the ML estimator will contain a
bias term unless /'i,~>'>'t = O.

8. Conc1uding remarks

In this paper we have considered ML and modified ML estimators, but
the estimation problem can be put more generally in terms of moment
conditions in a GMM framework. Fixed-T consistent estimators rely on
exaetly unbiased moment conditions. When T /N tends to a constant,
a GMM estimator from moment conditions with a O (l/T) bias will
typically exhibit a bias in the asymptotic distribution, but not if the
estimator is based on moment conditions with a O (1/T2) bias. Thus,
in the context of binary choice and other non-linear microeconometric
models, a search for optimal orthogonality conditions that are unbiased
to order O (1/T2) or greater seems a useful research agenda.

But do these biases really matter? Heckman (1981) reported a Monte
Carlo experiment for ML estimation of a probit model with strictly
exogenous variables and fixed eifects, T = 8 and N = 100. Using a
random eifects estimator as a benchmark, he concluded that the MLE
of the common parameters (jointly estimated with the eifects) perfor­
med well. According to this, it would seem that even for fairly small
panels there is not much to be gained from the use of fixed-T unbiased
or approximately unbiased orthogonality conditions. For models with
only strictly exogenous explanatory variables this may well be the ca­
se. But these are models that are found to be too restrictive in many
applications.

When modelling panel data, state dependence, predetermined regres­
sors, and serial correlation often matter. Heckman (1981) found that
when a lagged dependent variable was included the ML probit esti­
mator performed badly. This is not surprising since similar problems
occur with linear autoregressive models. The diiference is that while
standard tools are available in the literature that ensure fixed T con­
sistency for linear dynamic models, very little is known for dynamic
binary choice.ll This is therefore a promising area of application of
asymptotic arguments to both the construction of estimating equa­
tions and useful approximations to sampling distributions.

llSee Keane (1994), Hyslop (1999), Honoré and Kyriazidou (2000), Magnac (2000),
Honoré and Lewbel (2002), Arellano and Carrasco (2003), and Arellano and Honoré
(2001) for a survey and more references.
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Expanswn for the score of the concentrated likelihood. Let us consider
a second order expansion of the score of the concentrated likelihood
around the true value of the orthogonal effect.

The log likelihood is e: ((3, \); its vector of partial derivatives with res­
pect to (3 is d~~ ((3, A~) = 8e: ((3, Ai) /8(3; the concentrated likelihood is

e: ((3, ~~ ((3)) and its score is given by d~~ ((3, ~~ ((3)). An approxima­

tion at (30 around the true value A~O is

d~~ ((30' ~~ ((30)) = d~~ ((30' AiO) +d~Ai ((30' \0) (~~ ((30) - \0)lA1.1]

+~d~AAi ((30' A~o) (~i ((30) - A~O) 2+Op (T- 1
/
2

)

where d~A~ ((3, \) = 82e: ((3, Ai) /8(38A~ and d~AA~ ((30' \0) =

83e: ((3, \) /8(38AT. In general, the first three terms are Op (T1/ 2) ,

Op (T1/ 2) , and Op (1), but because of orthogonality d~A~ ((30' A~O) is

Op (JT) as opposed to Op (T).1 2

Expansion for ~~ ((30) - \0, Letting d~~ ((3, \) = m: ((3, \) /8A~, the

estimator ~~ ((30) solves d~i ((30' ~i ((30)) = O. Let us also introduce

notation for the terms:

K;h~ K;h ((30' A~O) = E [~dh~ ((30' \0) I x~, Ai]

K;~AA~ K;~AA ((30' \0) = E [~d~AA~ ((30' AiO) I Xi, \]

Note that K;h~ and K;~AA~ are individual specific because they depend

on A~O' but they do not depend on the y's.13 Moreover, from the infor­
mation matrix identity

12Since /T [~d~A' ((30' A,O) - O] = Op (1), we have d~A' ((30' A,O) = Op ( /T).
13 Also ~d~A' ((30' A,O) = Kh ((30' A,O) + Op ( Jr), which holds as

/T (~db ((30' A,O) - Kh ((30' A,O)) = Op (1) .
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Expanding T-l/2d~i (¡JO, Xi (¡JO)) in the usual way we obtain

o = Jrd~~ (¡Jo, X~ (¡Jo))

= Jrd~~ (¡Jo, 1\0)

+~dh~ (¡Jo, 1\0) vT (X~ (¡Jo) - \0) +Op (Jr )
or

Hence, also

451

and

Combining [A1.l], [A1.2] and [A1.3]:

[AlA]
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where we have made use of the facts that due to the orthogonality

between \ and /3 we have d~)..i (/30' AtO) = Op (JT) and14

Finally, given the zero-mean property of the score

the bias of the concentrated score is 0(1) and can be written as

The remainder is O (T- 1) since the Op (T- 1/ 2) terms in the concen­
trated score have zero mean (d. Ferguson et al., 1991, p. 290).

Expansion for the score of the modified concentrated hkelihood. The
mpf is given by

and the mpf score

14Let f = f (x; {3, >.) and write information orthogonality as

JéPlogf
0{30>' fdx = O.

Taking derivatives with respect to >. we obtain:

J03log f fd J02
log f olog f fd = O

0{30>.2 X + 0{30>' o>. x .

Thus,

E (0
2

log f olog f) = _ E (0
3

lag f) .
0{38A o>' 0{30>.2
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Let us consider the form of the difference between the modified and
ordinary concentrated scores at /30:

dMi (/30) - d~t (/30' Xt (/30))
-1

Since Xt (/30) = \0 +Op (T- 1
/
2

) we have

dMt (/30) - d~t (/30' Xt (/30))

1 (* * 8Xi (/30)) ( 1 )
- 2K;ht K;(3AAt +K;AAAi 8/3 +Op VT

where K;hAt = E [T-1dhAt (/30' Ato) I X t , At].

Now, differentiating d~t (/3, Xt (/3)) = Owe obtain

* (" ) * (" ) 8Xt (/3)d(3At /3, At (/3) + d AAi /3, At (/3) 8/3 = O

or

BXt (/3) _ d~Ai (/3, Xt (/3) )

8/3 - - dht (/3)i (/3)) .

Therefore,

Finally, combining this result with [AlA] we obtain

dMi (/30) = d~t (/30' Ato) +Op ( .Jr). [A1.5]
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Thus, the difference between the concentrated likelihood and the mo­
dified concentrated likelihood depends primarily on the value of ""~>">"2'

If ""~)..)..2 = Othe scores from both functions will have biases of the same
order of magnitude (Cox and Reid, 1992).

Asymptotic normality 01 the ML estimator. Let us begin by assuming
that, as T /N -+ c, O< c < 00, a standard centrallimit theorem applies
to the true score d~2 ((3, A2) = m: ((3, A2) /0(3, so that we have

N

VN~/2 ~L d~d(3o, A20) ~ N (O, 1) [A1.6]
vNT 2=1

where VNT = (NTr
1
2:~1 d~2 ((30' \0) d~2 ((30' A20)'.

Using [A1.4] we can write

1 N '" 1 N (N {N
VNT ~d~2 ((30,A2((30)) = VNT ~d~2 ((30' AiQ)+Y TbN+Y 7j2aN

where bN = N- 1 2:{:1 [""~)..)..2/ (2""h2)]' aN = N- 1 2:~1 a2 , and a2 is

an Op (1) termo Therefore,

Next, from a first order expansion of the concentrated score around
the true value, we obtain

HNTv'NT (73 - (30) = - v'~T t, di" ((30,);' ((30)) +o. (..;~T )

[Al.8]
where

1 Na '"
HNT = NT L f)(3,d~2 ((30, A2((30)) .

i=1

Combining [A1.7] and [A1.8] we can write

-1/2 r:;;:;:;:;:, ('" 1 -1 )VNT HNTV NT (3 - (30 + THNTbN =
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and final1y,

455

Asymptotic normality of the MML estimator. We now turn to consider
the asymptotic distribution of the modified ML estimator as T /N --+ c,
O< c < oo. In view of [A1.5], given [A1.6] we have

N
-1/2 1 '" dVNT rr::Trñ LJ dM~ (130 ) --+N (0,1) .

yNT ~=1
[A1.9]

Next, from a first order expansion of the modified score around the
true value, we obtain

N

H~TVNT (~MML - (30) = - ~LdM~ (130) +Op ( ~)
yNT i=l yNT

[A1.10]
where

N
Ht __1 '" 8dM~ (,80)

NT - NT LJ 8,8' .
~=1

Final1y, combining [A1.9] and [A1.l0] we can write

-1/2 t r;;;;:;; (~ )VNT HNTy NT 13MML -,80

N

-1/2 1 '" ( 1 )-VNT VNT ~dM~ (,80) +Op vNT

and
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Resumen

Este trabajo examma los métodos exzstentes para el análiszs con datos de panel
de modelos de elecczón bmarza con efectos mdividuales, valorando sus venta­
Jas e mconvenientes. En esta área se necesita más investzgación tanto teórzca
como empírica y el artículo señala varios aspectos que requzeren atenczón.
En especzal, se ilustra la uttlzdad de los argumentos asintótzcos para obtener
condzcwnes de momentos aproxzmadamente insesgadas y aproximacwnes a
las distrzbucwnes muestrales de los estimadores para paneles de distmtos ta­
maños.

Palabras clave: elección binaria, datos de panel, efectos fiJos, verosimzlztud
modificada, correccwnes asmtótzcas.
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