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This appendix contains detailed proofs for results stated in Amengual and Watson
(2005). To make this document self-contained it begins with a description of the model

and assumptions before stating the results and proofs.

Model:
X, =AF, +e, (1.1)
fort=1, ..., T, where X;and ¢; are Nx 1, F,isr x 1,and A is N x r. F;evolves as a
VAR:
p
F=)®F_ +¢, (1.2)

where & = Gn, where G is r x g with full column rank and 7, is sequence of shocks with

mean zero and covariance matrix X, =/ . Combining the equations yields
Y =Tn, +e, (1.3)

where ¥, = X, - Z; A®D,F,, and I'= AG. Transposing (1.1) and stacking the T’

equations yields
X=FA+e, (1.4)

where Xis Tx N, Fis T xr, Ais N x r, and e is T x N. The ¢'th rows of X, F and e are X/,
F/, and ¢/; the i’th row of A is A/; the i’th element of X, is denoted X}, and similarly for

ei, sothat X, =A'F +e, .



!

Let F, =(F,,..F.,) , ®=(®,,®,...,®,), and [T=A®. The VAR for F and

t=p

the definition for Y are then
F, =®F + G,

and

Y =X, -IIF,.

Finally, letting 7" denote the i’th row of IT and ' denote the i’th row of I, then
X,=ny,+Fr +e,.

Assumptions:

Rates: N,T — o jointly (equivalently that N = N(T) with lim,__ N(T)=).

T—ow

Let 5., =min(N,T).

(A1) E(FE)=1,.

(A2) E(4A))=X,,,where Zax is a diagonal matrix with elements o, >, >0 for

i< j. (When A is deterministic, X5, is interpreted as the limiting empirical average.)

T p
(A3) T'>. FF—I,.

t=1

N p
(Ad) N AA->%,,.

i=1

N T

A5 W'Y Y e 50250,

i=l t=1



(A.6) For some integer m > 2 and for all integers j < m,
Etrace[(ee')j} = O(NT X [max {N,T}]H) )
t=1 s=l1

(A.7) EZT:ZT:(Z/iF j = O(NT?).

(A.8) EZZMe =O(NT).

t=1 i=1

T 2
2 Fe,

t=1

(A.9) Ei

i=1

= O(NT).

(A10) Let F, =(F,,... F., ) , then

(1) the stochastic process {F

t} is stationary and ergodic;

(ii) E(FF) is non-singular; and

(111) vec(Ftnt' ) is a martingale difference sequence with finite second moments.

(A.11) EZ = O(NT).

i=1

Sre|

t=1

Additional Notation:

V(F.A)= () XX, A
A™ (F) = argmin; V(ﬁ,/i).
With FF/T =1, V(F,A™(F))=(NT)"' 3.3 X; —(T’N) trace| FXXF |.

R(F)= (TzN)’ltrace[F'XX']:“] )



F: Maximizing R(F“ ) yields F with columns given by the normalized eigenvectors of

XX' corresponding the largest eigenvalues; these maximize R (ﬁ ) and minimize V.

A=XF/T
A*=XF*/T and 2 = F¥ X, /T , where X, is the i’th column of X",

F*denotes a T x k matrix and A, 2{15" | FYF* /Tzlk}
R(F*) = T_ZN_ltrace[ﬁk'XX'ﬁkJ .
R'(F*)= Tletrace[Fk'FA'AF'ﬁkJ .

F* denotes the set of ordered eigenvectors of XX’, normalized as F*'F* /T =1 f -

g(N,T) is a deterministic sequence that satisfies g(N,T) — 0and s3,g(N,T) — o for &

= (m—1)/m, where m is given in assumption (A.5).

The (largest-to-smallest) ordered eigenvalues of (NT)"' XX’ are @y, @, ... .
6y =(NT)"'Y > X,

Rk, X)=R(F")=Y" .

PC(k,X)=6% —R(k,X)+kg(N,T).

ICP(k, X)=1n| 6% —R(k, X) | +kg(N.T).

BN (X)=argmin . PC(k,X),

0<k<rm™™

—~ ICP
BN (X)=arg minogmm ICP(k,X).

For conformable matrices 4 and B, 3 ,, =m ™' A'B , where m is the number of rows of 4.



Lemmas and Theorem in Amengual and Watson (2005):

e~ P —~ P
Lemma 1 (Bai-Ng): Under assumptions (A1)-(A9), BN (X)—> rand BN (X)—>r.
Proof: Follows from R30, R32, R34, and R36 below.

Lemma 2: Suppose (A1)-(A9) are satisfied and X =X+ b where

—~~PC .~ P —IC. ~ P
TN S B =0, (syh) then BN (X)—>r and BN (X)—>r.

t=1 1
Proof: Follows from R41 below.

Theorem: Consider the model (1.1)-(1.3). Suppose that (1.1) satisfies (A.1)-(A.9), that
the analogous assumptions are satisfied for (1.3), and that (A.10) is satisfied. Then

——~PC A P —~IPC A p
(@) BN (YY)—>gand BN (Y*)—>gq.

e~ A p e~ A P
(b) In addition, suppose that (A.11) is satisfied. Then BN a (Y")—> g and BN " Y")—q.

Proof: (a) Follows from R48 and R55 below; (b) follows from R54 and R55.



Detailed Results:

R1  Forj<m, (IN)”’ trace[(ee')'j] =0, (s

Proof:
The result follows from (A.6) and the definition of sy7.

r T N 2
R2 T‘ZZZ(N“Z&.'F@SJ =0,(N 7).

t=1 s=1 i=1
Proof:
The result follows from (A.7).

“—o,(N).

R3 T—'ZT:\\N-lA'e,
t=1
Proof:

I N
= T'N?Y Y AlAe; =0,(N™") where the rate follows from (A.8).

t=1 i=1

T’IZT:HN’IA’e,
t=1

R4 (NT)-liﬁ:eg =0,(1).

t=1 i=1
Proof:
The result follows immediately from (R1) with j = 1.

N[ T 2
R5  Forallj, T*N*Z(Z“then] =0,(1).
i= t

=1

Proof:
The result follows immediately from (A.9).

R6 SupﬁvkEAk (TZN)*l tVaCe[ﬁkfeeyﬁkJ — Op (S;V(Tm—l)/m) )

Proof:



sup_, (T ’N)™! tmce[ﬁ’ Yee'F k} is equal to sum of the k largest eigenvalues of (NT) 'ee’
which is less than or equal to kx, where u denotes the largest eigenvalue of (NT) 'ee’.

But 4" is the largest eigenvalue of (NT')™ [(ee')’”] , the largest eigenvalue is bounded

above by the trace, so that #" <(NT)™ trace[(ee')’"] =0, (s, where the last

equality follows from R1, and the result follows directly.

R7 Sup ., (T*N)™ trace[ﬁk'FA'e’ﬁk}

=0,(N""?).

Proof:

Let /¥ denote the m’th column of F*and f* denote the 7'th element of f*. Then

(TN =Ny

trace[ﬁ'k'FA'e'ﬁ'k J

but 723 3 (7474 =( 727 17)

t=1 s=1

2

, and for all F* €A, (F'krﬁk /T):Ik. Thus,

1/2

< k{TzzT:ZT:(leN:E%ieB] ] =0, (N,

t=1 s=1 i=1

sup._, (T°N)" trace[ﬁk'FA’e’ﬁk}

where the last equality follows from R2.

R8  sup, , [R(F)-R'(F)|=0,(sy").
Proof:
R(F)-R'(F,)=(T*N)" trace[ﬁ,!ee'lzﬁk } +2(T°N)™ trace[lzﬁk'FA'e'ﬁk}

and



SUP ca, ‘R(F;c) - R*(;\k)‘ <(T°N)” SUPZ ca,

trace [F;C'ee'ﬁk J

+2(T°N)™ SUp; _,

trace [ﬁk'F Ae'F, }

2

where the two terms on the rhs of the inequality are O, (s,y?) and O,(N %) by R6 and

NT

R7, respectively.

RO |sup, ., R(F)-sup, , R'(F)

= Op (S;/;/z °
Proof:

‘supﬁk%k R(I:“k)—supﬁkeAk R'(F))

<sup, , [R(F)—R(F)|=0,(s;i),

where the first inequality follows by the definition of the sup and the convergence

follows from RS.

.~ P min(k,r)
R10  sup._, R(F)— >, o

i=l1

Proof:
Let F'F/T =(F'F/T)"*(F'F/T)"* denote the Choleski factorization of F'F /T . Let Fk

be represented as F, = F(F'F/T)">5+V where V'F =0. Note:
E'FE /T=86+V'V/T,sothatforall F, €A 56 <I, . Thus, we can write
sup;. . R'(F)=Sup, s, T‘ztrace[&(F'F/T)”z'(A’A/N)(F’F/T)”ﬂ.

A direct calculation shows that the solution is

min(k,r)
SUP . g15<, T‘szce[a'(F'F/T)”’(A'A/N)(F'F/T)“zé}= Y. 6,,where &, is the i’th

i=1

largest eigenvalue of (F'F/T)"* (A'A/ N)(F'F/T)"*. (Note, to derive this, first note that

without loss of generality we can assume that 60 is diagonal, because postmultiplying &
by an orthonormal matrix does not change the value of the Trace. Optimization can then
be carried out on each column of & sequentially, and this yields the standard eigenvalue

result.)



p
But (MA/N)—>E,, and F'F/T->1 (by A3 and A.4), so that

p p
(F'FIT)"*(A'N/NYF'F/T)"> >%,,, and (by continuity of eigenvalues) &, — o, .

AN

~ p min(k,r)
R11  sup._, R(F)—> D 0.

i=1
Proof:
This follows from R9 and R10.

A p min(k,r)
R12 R(F)—> D o

i *
i=1
Proof:

F, =argsup Fea, R(F,), so the result follows from R8 and R11.

RI3 7Y

t=1

A 2
(NT)'FeAF|| =0,(N7).

Proof:

2

(NT)'F'eAF| <

T T N 2
T_ZZZ(N_IZ&'EQSJ =0,(N),

t=1 s=1 i=1

T
Ty
t=1

where the inequality follows from CS (applied to the sum over ¢ implicit in F'e) and the

rate follows from R2.

T

A 2
R14 T (NT)'Flee| =0, (sy;)-
t=1
Proof:
1 c 17 2 ﬁ"FA’ 2 -\ 1 S ’ 1
T Y INNT) ' Flee|| < — T DIUINDee, | =0,(s0),
t=1 t=1 s=1 i=1

where the inequality follows from CS (applied to the sum over ¢ implicit in F'e) and the

rate follows from R1 with j = 2.



R15 Let fl denote the first column of £ and let S, = sign( fl' )
(meaning S, =1 if/}l'f1 >0and S, =-1 ifj}l'f1 <0).

n p
Then (S, f, F/T)— ¢, where ¢, =(1,0,...,0)".

Proof:
For particular values of 5 and V , we can write J}l =F(FF/TY"?5+V where VF =0

and 6’5 <1. (Note that § is rx1.) Let C,, =(F'F/T)"*(A'A/N)(F'F/T)"* and note
that R*(f,)=6'Cy,6 . Thus
R*(fAl) 0y = 5,(CNT - ZAA )5‘ + SZAAS — Oy

=5'(Cyp 2,0 +(82 =)o, + Z(i?aﬁ.
i=2

P A
Since C,;, =»X,, and o is bounded, the first term on the right hand side of this

expression is 0,(1). This result together with R12 when £ = 1 implies

& roa P . . . .
0/ —Doy, +., 60, —0.Since 6, >0, i=1,..,r (assumption A.2), this implies that
& P a P -~ . .
6. —1 and 67 —0 fori> 1. Notice, that this result, together with f, f /T =1 impies

AA p P
that J'7'/ N —0. The result then follows from the assumption that F'F'/T — 1,

(assumption A.3).

R16  Suppose that the 7T xr matrix £ is formed as the r ordered eigenvectors of XX’

normalized as F'F /T =1 (with the first column corresponding the largest eigenvalue,
A A p
etc.) Let S = diag [Sign (FF)J _Then SE'F/T 1.

Proof:

The result for the first column of SF'F /T is given in R15. The results for the other

columns mimic the argument in R15 but using R12 when k£ = j and k = j—1 to show

. A P
R (f)=0,-0.

10



AA

R17 5 . =([\'[\/N)—p>z

N~ z R( f )—) o ,;» where the convergence follows from R11.

i=

—_

N
N> A,A, =0, forj # k by construction.
i=1

Proof:
The result follows from R16, R17, A.4, and Slutsky’s theorem.

p
R19 J,—>J".
Proof:
The result follows from R16 (i.e. S is full rank), A.2 (i.e. Z£,, is full rank) and Slutsky’s

theorem.

R0 F=F%,5 5 +(FA’e’F/NT)Z +N'eAS 37 +(ee’F/NT)

FFTAA FE™AA

Proof:

Because F' are the eigenvectors of (NT)™ XX’ and (A'A/N) is a diagonal matrix with

the corresponding eigenvalues on the diagonal, [(NT ) XX ']F =F (A'A/ N), so that
F= [(NT)”XX’] F(A'A/N)™". The result follows from

XX'=FANAF'+ FAN'e' +eAF'+ee' .

A A

R21 Let I:: denote the transpose of the #’th row of £ and Jyy =213 3 . Then,

AT EF

F=J, F+S L (NT) FeAF,+3 8 N"'A'e, + 57 (NT) ' Fee,.

AT EF

Proof:

It follows from direct calculation from R20.

11



Rz 1Y

t=1

R 2
F=JuF, :Op(SZIIIT)'

Proof:

The result follows from R16 and R17 (which show that = P —P>S and i:A —P>Z;1A ), R13
(for the term (NT)™ F'eAF,), R3 (for the term N~'A'e, ), and R14 (for the term
(NT)’II:“’eet).

T

2
R23  Let a, = 4'Jy, (F—J,F,), then TZZZT:[N‘ia”amJ =0,(572).

t=1 s=1 i=1

2

Fz _JNTF;

2
F=JF| (N ‘liﬂ,«'mm;’&j
i=1

2 N , :
J(NE&-’JN;JN; &-]
i=1

ToT N 2 ToT
T_ZZZ(N_IZ%%} <73y
i=1 t=l1 1

7 T‘iA 2 T
(le F;_JNTF; j[le
t=1 s=1

-2
Op (Syr)s

FAL _JNTF;

where the inequality uses CS, the equality is a rearrangement, and the rate follows from

P A p
R22 (applied to each of the first terms), J,, —J ' (fromR19)and X,, >Z,, (A4).

R24 Letadenote a 7x N matrix with ¢,/ element a;;, where a;; is defined in R23. Then
SUp 1 _, (TZN)’ltrace[Fk'aa'ﬁk} =0, (Svr) -

Proof:

12



2

A .~ B - -

but T‘ZZZ(f,,’;]g;)2=( ok f,j;/T) , and forall F* e A, (F"EF*/T)=1,. Thus,
T T
=1 s=1

N P 1/2
SUP iy, (TZN)_ltrace[Fk'aa’Fk} < k[T_ZZZ(N_]Zan%j } =0,(syr)

1 s i=l1

where the last equality follows from R23.

T T
R25  Suppose T W' =0, (1), then T’IZ(Ft —JNTE)VK' =0, (sy?).

t=1 t=1
T .. ) T
< (T“ >|F-0F j(T‘l D
t=1 t=1

where the inequality is CS, and the rate follows from R22 and the assumption of the

Proof:
2

ww,

HT-IZT:(ﬁ — T F )W,
t NT* ¢t t

t=l1

j=0p(s;v;> :

result.
N T, 2

R26 N_lz T_IZ(E_JNTE)eit Op(S;JIT)
i=1 t=1

Proof:

13



where the inequality follows from CS, the first equality is a rearrangement and the rate

follows from R22 and R4.

Ny . R
R27 N-le,l,,—J;v; ziH =0, (s).
i-1

Proof:

From A=XF/T and X = FA'+e,we have 4 =T'F'FA +T"'F'e, where ¢; is the i’th

column of e. Write F = F —FJ,\' + FJ;}' anduse T™'F'F = I to obtain

j’i _Jf_vlrl/ii :JNTT_lzT:F;eit +T_1ZT:ﬁ;(F; _J;/lrﬁ;)’ 4 +T_1ZT:(ﬁ; _JNTF;)eit .
t=1 t=1 =1

Hence,
A 2 T 2 T A N 2 T n 2
V=4 <0l0aT Y Fe| +9IT S5 (F =T B} 4 +9|77 X (F=JrF)e,
t=1 t=1 t=1
2| ’ = A A’_lrz 2
S9||JNT|| r ZEeit +9||T ZE(JNTF;_F;) I nr ”/1;”
t=1 t=1
2
+9

T_li(ﬁ; _JNTF;)eit
p

where the first inequality uses ||a +b+ c||2 < 9||a||2 + 9||b||2 + 9||c ? , and the second

inequality uses CS. Thus

2 2
N‘iHi— —JMHZ <9[J [ NlﬁHTliF,e,-, +9 [ N*ﬁllz,ﬂ;
i1 i=1 t=1 i=l

Tliﬁ‘(J F—ﬁ)'
o t NT* ¢t t

2

T_IZT:(IE; _JNTFt)eit

t=1

N
+ONTH
i=1

The first term in O,(T" " by R19 and R5; the second term is O,(syy ) by R25 and A.4; the

final term is O,( sy} ) by R26.

14



~ ~ 1 _1 !
R28  Fork>r,write F* =[F" H"|;let P, = H* (H" H") H", and

k T
u,=e,~ Ay (F, —J\ F,). Then R(F)=R(F")= Y @, =(NT)" Y u/Pu, .
i=r+l t=1

Proof:

R (}3‘ ") is the sum of squares from the projection of X; onto F* and similarly for E'.
But P(Xt | ﬁk) = P(X, \ ﬁ")+P(Xt —P(Xt ] ﬁ) ] Hk), where the two terms on the rhs
are orthogonal. Write

Xt =AF; +e =AJ1:/1T]3; te _AJX/IT (ﬁ; _JNTE)zAJ}:/]T}%t Tu,.

The result then follows directly.

k T
R29 > & =(NT)" D u/Bu,=0,(s;y" """+ 0, (syr) .-
t=1

i=r+l

Proof:

T T
(NTY"' D uiBu, <3(NT)" ) eRe,
t=1

t=1
+3(NT)IZTI:[AJN1T (ﬁ; _JNTF; )}' Pk |:AJ]:/;" (ﬁ; _JNTF; )}
P

<3sup (N°T )_ltrace[ﬁ el e HJ

Frren,

+3sup Fhra

_(NzT)_ltrace[ﬁk_r'a'aﬁk_r}
=0, (sy" "™ +0, (syp)s
where the first inequality uses (¢ + d)* < 3¢ + 3d%, the next inequality relaxes the

constraint that H* is orthogonal to F", and the rate uses R6 and R24.

R30 For k<r, PC(k)-PC(k-1)>—o,.
Proof:
PC(k)-PC(k—=1)=-R(F*)+ R(F*")+ g(N,T),

A A p
where R(F*)-R(F*")—o,, (fromR11)and g(N,T)—> 0 by assumption.

15



R31L  For k>r, R(FY)=R(E")=0 (s32)+0,(sy;).
Proof:
The result follows from R28, R29 and the definition of &.

R32 For k>r, Pr[PC(r)—PC(k)<0]—>1.

Proof:
PC(r)= PC(k) _ sy [RUF)—R(UE")] (k=r).
g(N,T) svr&(N,T)
Thus
) -k _ o
Pr[PC(r) - PC(k) < 0] = Pr SNT[Rﬁ(F VZREDN ey | 51,
SNTg(N9 T)
o ok _ o
because AT [R(FT)— R(FT)] —p>0. Where the final result follows because

S]l?/Tg(NaT)

SO [R(I:“k) —R(ﬁ’)} =0,(1) (R31)and s3,g(N,T)—> o by assumption.

p r
R33 6; —o +Zaﬁ

i=l1

Proof:

N T
5= ST X;

i=1 t=1
T
t=

= (NT)*ﬁiei + (NT)‘lﬁi(ﬂ,-E)z + 2(NT)*§Z&F,e”

i=l t=l i=l t=I i=1 1

N T N T r
(NT)'S S e 567 (from A.5), (NT)'S Y (4F) Y o, (from A3 and A 4), and

i=l t=1 i=l t=1 i=1

N T
(NTY'Y. Y 4 Fe, -0 (from R2).

i=l t=1

P 0824-21 (o
R34 For k<r, IC,(k—1)-IC, (k)—>In| ——==t " |

2
o, i=k+1 O

16



Proof:

&2 —R(F*™)

6y —R(F")
s _py] e [ 24X o

ln{—o-f2 ( Ak) —In - Z‘:"k
Ox —R(F) o, +Zi=k+lo-ii

(continuous mapping theorem and R11 and R33), and the result follows from g(V,7) — 0.

IC, (k1) IC, (k) = h{ } g(N,T) and

A2 for
R3S For k>r, sipln| 2RI o .
Ox —R(F")

Proof:

52 _R(ETY ] S| RED)—=R(F") _ . .
o1 f); R(i) - NT[ _ },whereR is between R(F*) and R(F").
6y —R(F") oy — R

— P A A
62 —R—>0>>0byR11,R33and A.5, and s°, [R(F")—R(F’)] =0,(1) by R31.

R36 For k>r, Pr[IC,(r)-IC,(k)<0]|—>1.

Proof:
5 1| Gy —R(F")
Syr 1N ~2 k
ICp(r)—ICp(k): 6y —R(F") —(k—r)
g(N.T) svr&(N,T)
Thus,

Sé' 11'1 UA)Z( _R(ﬁ"’)

MU 82 —R(FY) (k1)
- —-r
sorg&(N,T)

Pr[ IC,(r)~IC,(k)<0]=Pr 1,

17



~2 o
; oy —R(F")
S h{&;{ —R(ﬁ")}
X
surg&(N,T)

i)O. Where the final result follows because

because

A2 o
5%, In %—R(lfk) =0,(1) (R35) and 5%,8(N,T) —> o by assumption.
Gy —R(F")

For the following results, let X, = X, +b,, or X = X +b. Let @, denote the k’th largest
~ o~ ~ k ~ ~
eigenvalue of (NT)"' XX . Let R(k,X) = Z&)k , PC(k,X)=R(k,X)—kg(N,T), and
i=1

ICP(k, X)=In| R(k, X) |~ kg(N,T).

R37  Let u denote the largest eigenvalue of (NT) 'bb’, then

, +,u—2(a),“u)l/2 <o, <o +,u+2(a),“u)l/2

Proof:
From Horn and Johnson 3.3.16 (1991) o, (4+B)<0,(A)+0c;(B), where 4 and B are

two matrices and o; denotes the i 'th largest singular value. Thus,
@ =0, [(NT)*(X +b) |<0, [ (NT)"* X |+ 0, [(NT) b = 0> + ',
and
/2 _ -1/21 v -1/2 v -1/2 _ ~1/2 1/2
0> =0, [(NTY"’[X +(-b)] | <o, [(NT)"* X |+ 0, [ -(NTY b =@} + u'”,

which together yield the result.

N T
R38  Suppose T'N'Y > b7 =0,(sy;), then p1=0,(s,;) .

i=1 t=1
Proof:

L is the largest eigenvalue of (NT)'b'b, thus

N T
< (NT) ' trace(b'b) =T"'N™'>> b =0, (sy;) , and the result follows immediately.

i=l t=1

18



R39  Suppose u=o0,(1), then @&, — ax =op,(1) fork=1, ...,r

Proof:

p
For k <r,o, o, (R11), and the result follows directly from R37

R40  Suppose #=0,(sy;),then &, — @, =0, (sy;) fork>r.
Proof:
w, =0, (syo) from R28; from R37 @&, —w, = O (SNT) +0,(sy %) | and the result

follows directly.

R41 Results R30-R36 continue to hold in the model with X replacing X.
Proof:
This follows from R39 and R40.

p
R42 LetJ,, =1 ®J,, then J,, >(I®J)=J.

Proof:

The result follows immediately from R19.

E-3,.F

NT" ¢

R43 Z

t=p+1

=0, (syr

Proof:

ZT

NT' j NTF

=0, (syr)

where the inequality follows from adding positive terms and the rate follows from R22.

R44 SupposeTIZT: ww, =0, (1), then T—li(F ~3uF )W =0,(7).

t=1
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Proof:
The proof mimics R25 (using R43 in place of R22).

T’ZT:IEIE: T ZFF,’J'NT

t=p+1 t=p+1

+T! ZT: (F -3, F )F9,,

t=p+1

+T! ZJNT F(F - JNTF,)

t=p+1

+T! ZT: (F-3F)(F-3.F)

t=p+l1
The first term converges in probability to JE(FF')J’ by R42 and A.10, and the final

three terms converge in probability to zero by R44 and R43.

R46 T ZFm O,(syr’).

t=p+l1

Proof:

7! ZT: IE,?];:‘JNTT_I ZT: Ftnt’+T‘ z (F ‘JNTFt)nt'

t=p+1 t=p+1 t=p+1

where the first term is O,(T™""?) by R42 and A.10, and the second term is O, (sy; ) by

R44 and A.10.

R47  ®-J,,@J;, =0,(s,/").
Proof:

T T -
=Ty FF||T") FF'| , and (using F =®F +Gn,),
tt tt g t t 77t
t=p+1

t=p+l1

= J g @3 F + 0, G+ (B =T o F )= g @33 (F, =3, F )., so that

NT 't
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) B T A
-, @33 =| J,GT Y. pF +T" z( B Bl = @I T Z(F 3,,F)F

t=p+1 t=p+1 t=p+1

x| T ZFF

t=p+l1

_0 ( —1/2

p P
where the rate follows from R19 and R42 (which imply that J,, —J and J,, —J),

R46, R25, and R44 which show that the terms 7' Z nE LTy (ﬁt ~J\, F, ) F’, and

1=p+l t=p+l
T_l i (IA:z _‘JNTFz)

which is nonsingular by A.10.

A r . p
F' are Oy(sy ")), and R45 which shows T ZF — E(F F’)J'
=1

R48 Let 7, =®'4 and 7, = ®'A,,

_ -1
T, JNT”,H —OP(SNT
i=1

Proof:

Write 4 =J3,' 4 + (4 —Jy;'4) and & = J,, @3 +(d-J,, @Iy, ), so that
721‘ - ‘J1_vlTl7Z'i = ‘Jl_\'lT'q)JNT' (jﬁ - J}IIIT'/II‘)
2 a0\ g
+((D _JNT(DJNT) JNT 2’1
2 -1 "3 —1!
+(d-J,,037) (/1,. —J zi)

and the result follows from R19, R27, R42, and R47.
RO N 7z 50's, 0.

Proof:
7, = ®'4, then the result follows directly from A.4.
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2

RS0 N').

=0,(T™).

N
i=1

T i Fn,'y,
1=1

Proof:

2

N
N
i=1

where the equality uses % = 4,G, and the rate follows from (A.4) (which implies that

2
S Eny, =N1i||w,fc||HT1iF,n; _0.(,
t=1 i=1 t=1

N P T
N>'||G'2,4G|—>G's,,G and (A.10) (which implies that 7Y F/ = O,(1)).
i=1

t=1

2

R51 N‘li T

i=l1

(ﬁt _‘]NTFz)ﬂtlyi

1

=0, (syr) -

T
=

Proof:

2 2

N T
DY X MY
i=1 t=1

=0, (s

TlZT:(lA:t _JNTFt)ntlj/i

where the equality uses y = A4,G, and the rate follows from (A.4) (which implies that

N P
N"'||G"4,4/G|—>G's,,G and R44 (with 7, = ;).
i=1

N 2

R52 N7'Y

i=1

= Op (s;,lr .

T
Ty Fn7,
t=1

Proof:

T A / _ T ’ _ T fa ’
T_IZF,U, Vi=IwT 12577: 7, +T 1Z(Fz _‘JNTFt)ﬂt Vi
=1

t=l1 t=l1

and the result follows from R50 and R51.

N 2

R53 N,

i=1

T A
-1
') Fe,
t=1

= Op (s;,lT .

Proof:
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so that

2

2 N
+3NY T

i=1

‘ZT:(F ~3.uF e,

t=1

N T
- T Z Fe,
= 1=1

= Op(T"l)JrOp(s;,lT

where the inequality uses (a+b)* < 3a” + 3b7, and the rate follows from A.11 and R26

(using F in place of F)

T ! T
R54  Let #7%° [TIZ FtFt} [TIZ FtXl.,},then

i NT i

2
~oLS 41! _ -1
2088 _ 3 zH =0, (53

Proof:
X, =Frm +njy +e, = IA:z"];vlT! (F ‘]NTFt) ‘]NT Lty te,
so that
s _31 e 71y FF _ F(F-J Iy
T; Nr T = z Z ( NT z)
t=p+l t=p+l1

T T ! T
+(T‘1 > FFJ [ Z Fn, 7/,) ( 'y FtFt’j (T‘l > Fte”]
t=p+l1 t=p+l1 t=p+l1 t=p+l1
p p
and the result follows from R19 and R42 (which imply that J,, —J and J,;, —J), R49,

T
R44, R52, R53, and R45 which shows T’ Z F F FF)J" which is nonsingular by
t=1

A.10.

A

R55 Let 7,denote an estimator of 7; and b, = F'z, —F/z,. If

N
N
i=1

Proof:

2 T N
£ —J,;T’ﬂ,.H 0, (s then T"N"'Y 357 = O, (s70).

t=1 i=1
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Write F, =J,,F +(F -J,,F ) and %z, =J,, 7z, +(# —J,, 7. |, so that
t NT" ¢ NT" ¢ i NT “%i i NT “%i

b —Ft'J;VT(A ~Ix ) (B-3,F) 337, +(F - JNTF,)(i J;V;’yz,.),

and
I N
ADREID Y| }MJWM{ |
t=1 i=1
: [T }umu [lenmnﬂ

TSl -a.6f v Sl-six]

where the first term in O,( sy, ) from A.10, R42 and the assumption of the result; the

NT" ¢t

second term in O,( sy, ) from R42, R43, and R49; the final term is O,( s, ) from R43 and

the assumption of the result.
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