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Abstract

We derive computationally simple and intuitive expressions for score tests of Gaussian
copulas against Generalized Hyperbolic alternatives, including symmetric and asymmetric
Student t, and many other examples. We decompose our tests into third and fourth moment
components, and obtain one-sided Likelihood Ratio analogues, whose standard asymptotic
distribution we provide. Our Monte Carlo exercises confirm the reliable size of parametric
bootstrap versions of our tests, and their substantial power gains over alternative procedures.
In an empirical application to CRSP stocks, we find that short-term reversals and momen-
tum effects are better captured by non-Gaussian copulas, whose parameters we estimate by
indirect inference.
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1 Introduction

Nowadays copulas are extensively used in many economic and finance applications, with the

Gaussian copula being very popular despite ruling out non-linear dependence, particularly in the

lower tail. Nevertheless, the validity of this copula in finance has been the subject of considerable

public debate, to the extent that the media declared it “the formula that felled Wall Street”

(see the provocative article by Salmon (2009), the more nuanced analysis by MacKenzie and

Spears (2012), and the academic response by Donnelly and Embrechts (2010)). To be fair, the

statistics and econometric literatures were well aware of the possibility of misspecification of

the assumed copula, and several more or less formal diagnostics had already been proposed (see

e.g. Malevergne and Sornette (2003), Panchenko (2005), Berg and Quessy (2009) and Genest,

Rémillard and Beaudoin (2009)).

The first objective of our paper is precisely to derive simple to implement and interpret

score-based specification tests that can detect the non-normality of a copula. As a flexible

nesting alternative, we consider the family of copulas associated to the Generalized Hyper-

bolic distribution, which includes the symmetric and asymmetric Student t, normal-gamma

mixtures, hyperbolic, normal inverse Gaussian and symmetric and asymmetric Laplace distrib-

utions. Aside from computational considerations, the advantage of score tests is that rejections

provide a clear indication of the specific directions along which modelling efforts should focus.

In addition, they often coincide with tests of easy to understand moment conditions (see Newey

(1985) and Tauchen (1985)). In our case, in particular, we decompose our tests into third and

fourth moment analogues for the Gaussian ranks, which will continue to have non-trivial power

even in situations for which they are not optimal. Further, we obtain more powerful one-sided

Kuhn-Tucker versions that are asymptotically equivalent to the Likelihood Ratio test under the

null and sequences of local alternatives, and therefore share its optimality properties. In all

cases, we derive closed-form expressions for the asymptotic covariance matrices of the influence

functions we use for testing, which should improve the finite sample reliability of our tests.

For pedagogical reasons, we initially assume known margins, but since this rarely happens

in practice, we also consider popular two-step estimation procedures in which the marginal

distributions are either replaced by their (re-scaled) empirical cumulative distribution function

(cdf) counterparts or estimated by maximum likelihood. In the first case, we show that it

is possible to capture the variance modification in the scores of the shape parameters of the
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distributions that we consider as alternatives by adding linear combinations of third and fourth

Hermite polynomials in the Gaussian ranks. In the second case, on the other hand, we exploit

Joe (2005)’s results to obtain the asymptotic variance of the influence functions that account

for parameter uncertainty in the margins.

We also study the finite sample properties of parametric bootstrap versions of our proposed

tests with an extensive Monte Carlo exercise. The rejection rates of our proposals are by and

large close to being perfect for all samples sizes. In addition, their finite sample power agrees

with what an asymptotic local power analysis suggests, showing substantial gains over alternative

non-parametric procedures.

Finally, we employ our proposed tests to assess the suitability of the Gaussian copula for cap-

turing the short-term reversals and momentum effects observed in the cross-section of individual

stock returns in the CRSP data base. In both cases, we reject the null hypothesis of a Gaussian

copula by a long margin, the source of the rejection being not only the “cokurtosis” between

the Gaussian ranks, but also their “coskewness”, especially for momentum strategies. For that

reason, we estimate the parameters of some non-Gaussian copulas by means of a constrained

indirect inference approach that uses the Gaussian rank correlation coeffi cients and our score

tests as sample statistics to match, as suggested by Calzolari, Fiorentini and Sentana (2004).

The rest of the paper is divided as follows. In Section 2, we discuss the relevant theoretical

background to the problem, and develop our proposed tests in Section 3. Next, we report the

results from an extensive Monte Carlo exercise in Section 4. We then analyze the cross-sectional

dependence between monthly returns on individual U.S. stocks in the CRSP database and some

of their observable characteristics in Section 5, followed by our conclusions. Proofs and additional

results are relegated to appendices.

2 Theoretical background

2.1 The model under the null

Let x denote a vector of K observed continuous random variables. The traditional way of

modelling the dependence between the elements of x is through the joint distribution function

FK(x) or the associated density function fK(x) when it is well defined. These functions are often

recursively factorized for a predetermined ordering as the sequence of conditional distributions

of xk given xk−1, xk−2, . . . x1 (k = 2, . . . ,K) times the marginal distribution of x1. In contrast,
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the standard copula approach first instantaneously transforms each of the elements of x into a

uniform random variable by means of the probability integral transform uk = G1k(xk), where

G1k(.) is the marginal cumulative distribution function of xk, which we assume known until

Section 3.5.2, and then models the dependence of the random vector u = (u1, . . . , uK)′ through

a joint distribution function C(u) with uniform marginals defined over the unit hypercube in

RK . This distribution function is known as the copula distribution function, and the associated

density as the copula density function.

Although there are many well known examples of bivariate copulas, some of them are popular

simply because they are mathematically convenient, as opposed to being motivated by empirical

observations on real life phenomena. More importantly, they are diffi cult to generalize to multiple

dimensions. On the other hand, the Gaussian copula is a popular choice both in bivariate and

multivariate contexts since it is easily scalable. Moreover, as its name suggests, it is the copula

function that corresponds to the multivariate Gaussian distribution, which remains dominant in

multivariate statistical analysis.

More formally, define y = (y1, . . . , yK)′ as the vector of Gaussian ranks of the observed vari-

ables x, so that yk = Φ−11 (uk), Φ1(.) denotes the univariate standard normal cdf and Φ−11 (.) the

corresponding quantile function. The Gaussian copula with correlation matrix P(ρ) is derived

from the cumulative distribution function of a multivariate random vector y ∼ N [0,P(ρ)]. In

what follows, we assume that:

Assumption 1 P(ρ) is a positive definite matrix which contains K(K − 1)/2 possibly distinct,

twice continuously differentiable functions of the p× 1 vector of correlation parameters ρ, such

that P(0) = IK .

It should be noticed that, in the unrestricted case, P(ρ) is trivially twice differentiable and

the same is true for many popular restricted parametrizations, such as an equicorrelated single

factor structure. In turn, the requirement that ρ = 0 yields the independent copula is just a

convenient normalization.

Under this assumption, the Gaussian copula density function will be given by

c(u;ρ) = |P(ρ)|−1/2 exp

{
−1

2
y′[P−1(ρ)− IK ]y

}
.

Figure 1a-b displays a bivariate Gaussian copula density with Spearman correlation of .115

(ρ = .12) with Gaussian margins.
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In principle, we could consider more complex models by conditioning on past values of x

or present and past values of some exogenous variables z (see e.g. Patton (2012) and Fan and

Patton (2014) for detailed reviews), but for the sake of clarity we will only explicitly cover

unconditional contexts without conditioning variables.

2.2 Some parametric models that nest the Gaussian copula

As we mentioned in the introduction, the Gaussian copula rules out any type of non-linear

dependence between the elements of y. For that reason, empirical researchers have considered

more flexible copulas that nest the normal copula as a special case, which are often generated

from a multivariate distribution that in turn nests the multivariate normal distribution. Some

important examples are the symmetric and asymmetric versions of the Student t, and the more

flexible Generalized Hyperbolic family.

2.2.1 Student t copulas

The Student t distribution generalizes the multivariate normal distribution through a single

additional parameter, usually known as the degrees of freedom. To construct the Student t

copula, we use the log density of a standardized multivariate Student t distribution with mean

0, correlation matrix P(ρ) and ν > 2 degrees of freedom. This distribution is such that its

marginal components are also univariate Student t’s with mean 0, unit variance and ν de-

grees of freedom. Let η = 1/ν denote the reciprocal of the degrees of freedom parameter and

ε(η) = [F−11 (u1; η), ..., F−11 (uK ; η)]′ the vector of Student t ranks of the observed variables x,

where F−11 (uk; η) denotes the common quantile function of a univariate standardized Student

t. Importantly, the standardized version that we use differs from the textbook multivariate

Student t distribution in that the kernel is ln[1 + η(1− 2η)−1ε′P−1ε] instead of ln[1 + ηε′P−1ε]

to guarantee that P coincides with the correlation matrix (see Fiorentini, Sentana and Cal-

zolari (2003)). Nevertheless, the difference is inconsequential in the neighborhood of the null

hypothesis H0 : η = 0.

Therefore, the Student t copula will be given by the expression

c(u;ρ, η) = |P(ρ)|−1/2 exp[hK(η)−Kh1(η)]

[
1 + ηε′(η)P−1(ρ)ε(η)/(1− 2η)

](Kη+1)/(2η){
ΠK
k=1

[
1 + ηε2k(η)/(1− 2η)

]}(η+1)/(2η) ,

where

hk(η) = ln

[
Γ

(
kη + 1

2η

)]
− ln

[
Γ

(
1

2η

)]
− k

2
ln

(
1− 2η

η

)
− k

2
lnπ.
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As expected, this copula converges to the Gaussian one as η → 0+ but otherwise it induces

tail dependence even when ρ = 0. Figures 1c-d display a bivariate Student t copula density with

the same Spearman correlation as in Figure 1a-b (ρ = .122) and with Gaussian margins.

2.2.2 Generalized hyperbolic copulas

Barndorff-Nielsen (1977) introduced a rather flexible family of multivariate densities that

he called Generalized Hyperbolic (GH ), which nests not only the normal and Student t but

also many other examples such as the asymmetric Student t, the hyperbolic and normal inverse

Gaussian distributions, as well as symmetric and asymmetric versions of the normal-gamma

mixture and Laplace (see also Blæsild (1981)).

Mencía and Sentana (2012) derive a standardized version of the GH distribution with zero

mean and identity covariance matrix, which depends exclusively on three shape parameters

that we can set to zero under normality: β, which introduces asymmetries, and η and ψ,

whose product τ = ηψ effectively controls excess kurtosis in the vicinity of the Gaussian null.

Then, one can easily obtain a correlated GH by means of the linear transformation given by

the matrix P
1
2
′(ρ), where P1/2(ρ) denotes some particular “square root” matrix such that

P1/2(ρ)P1/2′(ρ) = P(ρ). They also parametrize β as a function of a new vector of parameters

b in the following way:

β(ρ,b) = P
1
2
′(ρ)b, (1)

so that the resulting distribution does not depend on the choice of square root matrix.

A rather useful property of the GH distributions is that the marginal distributions of linear

combinations (including the individual components) also follow univariate GH distributions (see

Blæsild (1981)). As a result, we can once again construct the GH copula by combining the joint

distribution and its marginals.

Figures 1e-f display a bivariate asymmetric Student t copula density with negative tail de-

pendence but the same Spearman correlation as in Figure 1a-b (ρ = .186) and with Gaussian

margins. The evidence in Mencía and Sentana (2009) shows that this member of the GH family

is empirically very relevant.
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3 Score tests

3.1 Test against Student t copulas

Under the null hypothesis, y′P−1(ρ0)y will be distributed as a χ
2 random variable with K

degrees of freedom (see Malevergne and Sornette (2003)). Let

L2
[
y′P−1(ρ)y

]
=

1

4
[y′P−1(ρ)y]2 − K + 2

2
y′P−1(ρ)y +

K(K + 2)

4

denote the second-order Laguerre polynomial associated to this particular example of a gamma

random variable. Further, let y′(k) = (y1, . . . , yk−1, yk+1, . . . , yK), P(kj)(ρ) the (K−1)× (K−1)

matrix obtained from P(ρ) after erasing row k and column j, and p(k)(ρ) the coeffi cients in the

theoretical least squares projection of yk on to (the linear span of) y(k).

Proposition 1 Let Hj(.) denote the (standardized) jth-order Hermite polynomial. The score

of the Student t copula with respect to the reciprocal of the degrees of freedom parameter η when

η = 0 is given by

sη (ρ) =

√
K(K + 2)

2
L2
[
y′P−1(ρ)y

]
−
√

3

2

K∑
k=1

H4 (yk)

+
1

2

√
3

2

K∑
k=1

[
p′(k)(ρ)P−1(kk)(ρ)[y(k) − p(k)(ρ)yk]

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)

]
H3(yk). (2)

Therefore, the LM test will simply be given byN times the square of the sample average of (2)

evaluated at some consistent estimator of ρ divided by the variance of this score. [Supplemental

Appendix E.4 contains the detailed expression for the asymptotic variance of (2) in the bivariate

case; see Amengual and Sentana (2015) for the trivariate case]

The fact that η = 0 lies at the boundary of the admissible parameter space invalidates the

usual distribution of the LR and Wald tests, which under the null will be a 50:50 mixture of

χ20 (=0 with probability 1) and χ
2
1. Although the distribution of the LM test statistic remains

valid, intuition suggests that the one-sided nature of the alternative hypothesis should be taken

into account to obtain a more powerful test. For that reason, we follow Fiorentini, Sentana and

Calzolari (2003) in using the Kuhn-Tucker (KT) multiplier test introduced by Gouriéroux, Holly

and Monfort (1980) instead, which is equivalent in large samples to the LR and Wald tests, and

therefore, implicitly one-sided. Thus, we will reject H0 at the 100κ% significance level if the

average score with respect to η evaluated under the Gaussian null is strictly positive and the

LM statistic exceeds the 100(1− 2κ) percentile of a χ21 distribution. In this regard, the KT test
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is entirely analogous to the Wald test, which coincides with the one-sided t-test based on the

ML estimator of η, except that it is based on the average score in (2). Further, it is important

to remember that when there is a single restriction, such as in our case, those one-sided tests

would be asymptotically locally more powerful (see e.g. Andrews (2001)).

Finally, given that (2) is computed in terms of Gaussian ranks, copula tests are invariant to

strictly increasing univariate transformations of the observed series but not to affi ne multivariate

transformations. Intuitively, the reason is that in the case of a copula the original variables are

of direct interest.

3.2 Tests against asymmetric Student t copulas

As we mentioned before, the asymmetric Student t distribution is an important special

case of the GH distribution. The derivation of the LM test for a multivariate normal copula

versus an asymmetric one is complicated by the fact that b drops out from both the joint and

marginal distributions when η → 0 (see Mencía and Sentana (2012)). One standard solution

in the literature to deal with testing situations with underidentified parameters under the null

involves fixing those parameters to some arbitrary values, and then computing the appropriate

test statistic for the chosen values.

Proposition 2 The score of the asymmetric Student t copula with respect to the reciprocal of

the degrees of freedom parameter η when η = 0 for fixed values of the skewness parameters b is

given by

sη (ρ,b) = sη (ρ) + b′y
[
y′P−1(ρ)y − (K + 2)

]
−
√

6
K∑
k=1

[ßk(ρ,b)H3(yk)]

+
√

2

K∑
k=1

p′(k)(ρ)P−1(kk)(ρ)[y(k) − p(k)(ρ)yk]

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
ßk(ρ,b)H2(yk). (3)

where ß(ρ,b) = P(ρ)b.

On this basis, it would be straightforward to develop the associated test statistic, LMN (b).

Unfortunately, it is not generally clear a priori what values of b are likely to prevail under the

alternative of GH innovations. For that reason, we consider instead a second approach, which

consists in computing the LM test for all possible values of b, and then take the supremum over

those parameter values.

It turns out that we can maximize LMN (b) with respect to b in closed form, and also obtain

the asymptotic distribution of the resulting test statistic:
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Proposition 3 The supremum with respect to b of the LM tests based on (3) is equal to the

sum of two asymptotically independent components: the symmetric Student t LM test based on

(2), and a moment test based on the following K influence functions

mbk (ρ) = yk [ς(ρ)− (K + 2)]−
√

6

K∑
j=1

Pkj(ρ)H3(yj)

+
√

2
K∑
j=1

p′(j)(ρ)P−1(jj)(ρ)[y(j) − p(j)(ρ)yj ]

1− p′(j)(ρ)P−1(jj)(ρ)p(j)(ρ)
Pkj(ρ)H2(yj). (4)

This second moment test is asymptotically distributed as a χ2 distribution with K degrees of

freedom when the true copula is Gaussian.

Given that sη (ρ) is orthogonal to theK moment conditions in (4), we can conduct a partially

one-sided test by combining the KT one-sided version of the Student t test and the moment

test based on mbk (ρ). This one-sided version should be equivalent in large samples to the

corresponding LR test. The asymptotic distribution of the joint test under the null will be a

50:50 mixture of χ2K and χ2K+1, whose p-values are the equally weighted average of those χ
2

p-values.

Interestingly, the K moment conditions E[mbk (ρ)] = 0 can also be used to consistently test

a symmetric Student copula against an asymmetric one because we can show that the expected

values of those influence functions would remain zero under this new null. But the test will

be incorrectly sized if we used the covariance matrix of (4) under Gaussianity. To avoid size

distortions, we can either compute the correct covariance expression by numerical quadrature

or Monte Carlo integration for a given value of η, or else run the univariate regression of 1

on mb1(ρ̂T ), . . . ,mbK (ρ̂T ). We use a heteroskedasticity and autocorrelation consistent (HAC)

version of this second approach in the empirical application.

3.3 Tests against Generalized Hyperbolic copulas

As discussed by Mencía and Sentana (2012), there are three different paths along which

a symmetric GH distribution converges to a Gaussian distribution. Specifically, the normal

distribution can be achieved when (i) η → 0− or (ii) η → 0+, regardless of the value of ψ; and

(iii) ψ → 0 irrespective of the value of η. In addition, one of the shape parameters becomes

increasingly underidentified when the other one is on a normality path. Nevertheless, we can

show that the score of the remaining identified parameter evaluated under the null of normality
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is (proportional to) (2) along those three paths. As a result, the LM/KT tests of Gaussian

copula against a “symmetric”GH copula are numerically identical to the LM/KT tests against

symmetric Student t that use the score in Proposition 1. In other words, all the symmetric

versions of the GH copulas are asymptotically locally equivalent hypotheses (see Godfrey (1988)),

to the extent that if a researcher decided to consider a normal-gamma mixture copula as the

alternative to the normal copula, or indeed any other special case of the GH copula, she would

end up with exactly the same statistic as in the case of the Student t.

The non-linear Arch(1) model yt = (1 + γy2t−1)
1/2e

1
2
δy2t−1
√
ωε∗t , ε

∗
t |It−1 ∼ iid N(0, 1), which

nests several popular specifications, provides a useful analogy. Conditionally homoskedasticity

will happen if and only if both γ = 0 and δ = 0. Under suitable conditions related to the mag-

nitudes of those parameters, this model has a bounded full rank information matrix under the

alternative. Under the null, though, its score contains two identical elements, so its information

matrix is singular. As a result, the score test will asymptotically follow a χ21 despite the fact that

the null hypothesis H0 : γ = δ = 0 involves two parametric restrictions. As expected, the LM

statistic for homoskedasticity against heteroskedasticity in this combined additive-multiplicative

model also coincides with both Engle’s (1982) test for additive heteroskedasticity and a test

against multiplicative heteroskedasticity (see Godfrey (1988)). Therefore, it would be inappro-

priate to regard it as a test of only a single one of those alternatives.

In Supplemental Appendix C, we provide some further intuition for this result by introducing

an alternative parametrization in terms of τ1 = ηψ and a second parameter τ2. We show that

when τ1 → 0, τ2 drops out of the log-likelihood function along the aforementioned three paths

to normality. As a result, the flexibility that the GH copula adds over and above the Student t

copula provides no extra power to detect local deviations from normality. Obviously, the same

would happen with Wald and LR tests because they are asymptotically equivalent to the KT

tests both under the null and sequences of local alternatives.

Since the same is true for asymmetric GH alternatives, the LM/KT tests of Gaussian copula

against an “asymmetric” GH copula will also be numerically identical to the LM/KT tests

against asymmetric Student t in Propositions 2 and 3.

3.4 Comparison with distributional tests

It is interesting to compare our score test of the Student t copula to the corresponding test

of the multivariate Student t distribution. Following Fiorentini, Sentana and Calzolari (2003),
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the score for η under the null is proportional to L2
[
y′P−1(ρ)y

]
. Therefore, in the bivariate case

with ρ = 0 their test becomes a moment test of

E
(
y41 − 6y21 + 3

)
+ E

(
y42 − 6y22 + 3

)
+ 2E[

(
y21 − 1

)
(y22 − 1)] = 0,

while our proposed copula score test reduces to

E[
(
y21 − 1

)
(y22 − 1)] = 0. (5)

Given that the Gaussian ranks satisfy E
(
y41 − 6y21 + 3

)
= E

(
y42 − 6y22 + 3

)
= 0 by construction

irrespective of the copula being Gaussian, and that
(
y21 − 1

)
(y22 − 1) is orthogonal to those

marginal fourth-order polynomials under the null, including them necessarily reduces (local)

power.

In turn, the moments checked by the asymmetric component of the Mencía and Sentana

(2012) test in exactly the same set up are

E
(
y31 − 3y1

)
+ E[y1(y

2
2 − 1)] = 0,

E
(
y32 − 3y2

)
+ E[(y21 − 1)y2] = 0,

while our proposed copula test reduces to a moment test based on

E[y1(y
2
2 − 1)] = 0, E[(y21 − 1)y2] = 0. (6)

Given that the Gaussian ranks satisfy E(y31 − 3y1) = E(y32 − 3y2) = 0 by construction

irrespective of the copula being Gaussian, and that y1(y22 − 1) and (y21 − 1)y2 are orthogonal

to those marginal third-order polynomials under the null, including them necessarily reduces

(local) power, as in the symmetric component case.

Similar derivations in Supplemental Appendix D.4 for the case of ρ 6= 0 lead to analogous but

longer expressions involving additional third and fourth cross-moments (of Hermite polynomials)

of the Gaussian ranks involved.

3.5 Estimation uncertainty

So far we have assumed that the marginal distributions are known and the correlation

matrix of the Gaussian copula is also known. Next, we study the implications of the fact that

they will often have to be replaced by estimated counterparts.
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3.5.1 Gaussian rank correlations

It turns out that under the Gaussian null, the information matrix is block diagonal between

the correlation and shape parameters ρ and ϕ:

Proposition 4 The scores sρ(ρ,ϕ) and sϕ(ρ,ϕ) evaluated at ϕ = 0 are orthogonal when the

true copula is Gaussian.

This result, which is the analogue for copulas of Proposition 3 in Fiorentini and Sentana

(2007), is particularly convenient for our purposes because it will allow us to evaluate our score

tests at any root-N consistent estimator of ρ without having to adjust the asymptotic variance

of sϕ(φ) for parameter uncertainty, where φ = (ρ′,ϕ′)′.

3.5.2 Replacing margins with empirical cdf’s

The most common solution to the fact that the marginal distributions of the K variables in

the observed vector x are rarely known in practice is a two-step estimation procedure, whereby

the margins G1k(xk) are replaced by their (re-scaled) empirical cdf counterparts Ĝ1k(xk), where

the scaling factor N/(N + 1) is only introduced to avoid potential problems with the copula

density blowing up at the boundary of [0, 1]K . In this manner, the proposed tests can be viewed

as functions of the Gaussian ranks obtained from the (uniform) sample ranks. Smoothed versions

of the empirical cdf can also be used, but the effects should be the same (up to first-order).

The use of sample ranks has two implications. First, the exact discrete uniform nature of

their distribution simplifies some of the previous expressions. Specifically, the sample averages

of all the odd-order Hermite polynomials of the Gaussian ranks will be identically zero, while the

sample averages of the even-order ones will converge to zero at faster than square root N rates.

Second, it effectively transforms the Gaussian ML estimation procedure we have considered so far

into a sequential semiparametric procedure, which requires us to take into account the sample

uncertainty resulting from its non-parametric first-stage (see Newey and McFadden (1994)).

Otherwise, our test statistics will have size distortions even in large samples.

Following Chen and Fan (2006a), for the GH copulas that we consider as alternatives,

we show that it is possible to capture the variance modification in the scores of their shape

parameters, sϕ(ρ,0), by adding linear combinations of third and fourth Hermite polynomials in

those variables. The following result provides the expressions for the corrections of the influence

functions in Propositions 1, 2 and 3:

11



Proposition 5 The correction of sη (ρ) is given by

nη (ρ) = −1

4

√
3

2

K∑
k=1

p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
H4(yk)

+
1

4

√
3

2

K∑
k=1

∑
h6=k

p′(h)(ρ)P−1(h)(ρ)

1− p′(h)(ρ)P−1(hh)(ρ)p(h)(ρ)
P3
kh(ρ)H4(yk),

the correction of mbk (ρ) by

nbk (ρ) = −
√

2

3

p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
H3(yk)

+

√
2

3

∑
j 6=k

p′(j)(ρ)P−1(jj)(ρ)

1− p′(j)(ρ)P−1(jj)(ρ)p(j)(ρ)
P2
kj(ρ)H3(yk)

−
√

2

3

∑
j 6=k

p′(j)(ρ)P−1(jj)(ρ)p(j)(ρ)

1− p′(j)(ρ)P−1(jj)(ρ)p(j)(ρ)
Pkj(ρ)H3(yj)

+

√
2

3

∑
j 6=k

∑
h6=j

p′(h)(ρ)P−1(hh)(ρ)

1− p′(h)(ρ)P−1(hh)(ρ)p(h)(ρ)
Pkh(ρ)P2

jh(ρ)H3(yj),

and the correction of sη (ρ,b) by nη (ρ) +
∑K

k=1 bknbk (ρ) .

For example, for the bivariate asymmetric Student t, the score corrections will be

nη (ρ) = −1

4

√
3

2
ρ2 [H4(y1) +H4(y2)] ,

nb1 (ρ) =

√
2

3
ρ2
[
(6− ρ2)H3(y1) + 5ρH3(y2)

]
and

nb2 (ρ) =

√
2

3
ρ2
[
(6− ρ2)H3(y2) + 5ρH3(y1)

]
.

Importantly, given that Amengual and Sentana (2017) show that the adjustment to the scores

of the correlation coeffi cients resulting from the nonparametric estimation of the margins only

involves linear combinations of second-order polynomials in each of the variables, the orthog-

onality between the original scores for correlation and shape parameters stated in Proposition

4 is preserved in the modified scores because Hermite polynomials form an orthonormal basis

under Gaussianity. For the same reason, the modified scores for η and the elements of b remain

uncorrelated, as in Proposition 3.

3.5.3 Replacing margins with parametric cdf’s

Sometimes, researchers prefer to specify parametric marginal distributions, estimating their

parameters by univariate ML. Let λ = (λ′1, . . . ,λ
′
K)′ denote the parameters of the K marginal
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distributions and L1(λ1), . . . , LK(λK) the corresponding log-likelihood functions. Similarly, let

mλ(λ,ρ) = [∂L1(λ1)/∂λ
′
1, . . . , ∂LK(λK)/∂λ′K ]′ denote the associated scores, with mρ(λ,ρ) =

[∂L(ρ,0)/∂ρ′]′. On the basis of the results in Joe (2005), we can prove the following result:

Proposition 6 When the Gaussian ranks are obtained after estimating the parametric marginal

distributions by ML, the asymptotic variance of the influence functions

mϕ(λ,ρ) = [sη (ρ) , sb1 (ρ) , . . . , sbK (ρ)]′

under the null is given by

V = Vϕ +AD−1MD′−1A′,

where

Vϕ = V [mϕ(λ,ρ)],

A = E

(
∂mϕ(λ0,ρ0)

∂λ′
,
∂mϕ(λ0,ρ0)

∂ρ′

)
=

[
E

(
∂mϕ(λ0,ρ0)

∂λ′

)
,0

]
,

M = V

[(
mλ(λ0,ρ0)
mρ(λ0,ρ0)

)]
= E


∂L1(λ1)
∂λ1

∂L1(λ1)
∂λ′1

· · · ∂L1(λ1)
∂λ1

∂LK(λK)
∂λ′K

0

...
. . .

...
...

∂LK(λK)
∂λK

∂L1(λ1)
∂λ′1

· · · ∂LK(λK)
∂λK

∂LK(λK)
∂λ′K

0

0 · · · 0 ∂L(ρ,0)
∂ρ

∂L(ρ,0)
∂ρ′

 ,

and

D = E

(
∂mλ(λ0,ρ0)/∂λ

′ ∂mλ(λ0,ρ0)/∂ρ
′

∂mρ(λ0,ρ0)/∂λ
′ ∂mρ(λ0,ρ0)/∂ρ

′

)
= E


∂2L1(λ1)
∂λ1∂λ

′
1
· · · 0 0

...
. . .

...
...

0 · · · ∂2LK(λK)
∂λK∂λ

′
K

0
∂2L(ρ,0)
∂ρ∂λ′1

· · · ∂2L(ρ,0)
∂ρ∂λ′K

∂2L(ρ,0)
∂ρ∂ρ′

 .

One can then modify our proposed tests by simply replacing Vϕ by the adjusted asymptotic

covariance matrix V, as we illustrate in the Monte Carlo section below.

3.6 Constrained indirect estimation

If a researcher who uses our proposed tests does not reject the null hypothesis, she can rely

on the Gaussian copula evaluated at the Gaussian rank correlation coeffi cients. However, if she

rejects, she might be interested in estimating the parameters of the alternative distributions that

we have considered.

Conceptually, the most straightforward procedure for estimating the parameters of those

non-Gaussian copulas would be ML using the analytical expressions for the scores that we have

13



derived. Unfortunately, this is easier said than done because the scores in (B2) are computa-

tionally involved under the alternative (see the Supplemental Appendix to Mencía and Sentana

(2012) for some of the required expressions), especially taking into account that the evalua-

tion of those scores also requires the derivatives of the quantile function of the univariate GH

distribution with respect to its shape parameters.

Nevertheless, it is possible to come up with much simpler consistent estimators of ρ and ϕ

along the lines of Calzolari, Fiorentini and Sentana (2004). Specifically, we can estimate those

coeffi cients for a specific parametric copula by generating data from this copula and matching

in the simulated data the values in the original data of both the Gaussian rank correlation co-

effi cients and the test statistics we have proposed. The fact that the scores of the two shape

parameters of the GH copula are proportional under the Gaussian null implies that researchers

have to decide which non-Gaussian copula within the GH family (asymmetric t, normal-gamma

mixture, hyperbolic, normal inverse Gaussian or Laplace) they would like to estimate. Propo-

sition 4 in Calzolari, Fiorentini and Sentana (2004) guarantees the consistency and asymptotic

normality of these constrained indirect estimators. Similarly, their Proposition 7 characterizes

their effi ciency loss relative to MLE.

4 Monte Carlo evidence

In this section, we assess the finite sample size and power properties of the testing procedures

discussed above by means of several extensive Monte Carlo exercises.

4.1 Design and estimation details

As in our empirical application, we look at the case K = 2, but we also consider K = 10

to assess the performance of our testing procedures in moderately large dimensions. To simplify

the bootstrap procedure, though, we impose an equicorrelated structure on P(ρ). We consider

three different sample sizes: 200, 800 and 3,200, and two different values of the correlation

parameter ρ: .25 and .75 (the latter relegated to the Supplemental Appendix). Regarding the

marginal distributions, we consider both the benchmark case in which they are known and when

they are replaced by the empirical CDFs. In the bivariate case, we also consider parametrically

estimated margins. Specifically, we assume exponential margins, whose parameters we estimate
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individually by ML. As for the relevant quantities involved in Proposition 6, they reduce to:

−E
[
∂2Lk(λk)

∂λ2k

]
= E

{[
∂Lk(λk)

∂λk

]2}
=

1

λ2k
for k = 1, 2, and

−E
[
∂2L(ρ,0)

∂ρ2

]
= E

{[
∂L(ρ,0)

∂ρ

]2}
=

1 + ρ2

(1− ρ2)2 ,

while then non-zero elements in A, together with E(∂L1/∂λ1 × ∂L2/∂λ2) and E[∂2L/(∂ρ∂λk)]

for k = 1, 2, can be easily computed by numerical integration. Details on how we simulate those

multivariate distributions and their parametrizations can be found in Supplemental Appendix

E.1.

Given that the asymptotic distributions that we have derived in Section 3 turn out to be

unreliable in small samples (see Amengual and Sentana (2015)), we compute bootstrap critical

values. Specifically, we employ a parametric bootstrap procedure with 10,000 simulated samples

for all tests. In this way, we can automatically compute size-adjusted rejection rates, as force-

fully argued by Horowitz and Savin (2000). Despite the asymptotic orthogonality of the scores

corresponding to the correlation and shape parameters, our bootstrap procedure takes into ac-

count the sensitivity of the critical values to the values of ρ to avoid ruling out higher-order

refinements. We achieve this by computing simulated critical values for a fine grid of values of

ρ between −1 and 1 (see Supplemental Appendix E.2 for further details).

Importantly, we compare our proposed score tests to the Kolmogorov—Smirnov (KS) and

Cramér—von Mises (CvM) tests for copula models, which are often reported in empirical work

(see Rémillard (2017) for details), as well as to the recent consistent tests proposed by Panchenko

(2005) and Genest et al. (2009). Since the asymptotic distributions of these tests in copula

models with non-parametric margins are unknown, we rely on their bootstrap values.

4.2 Size properties

Table 1 shows that the parametric bootstrap rejection rates are close to being perfect for

all the different samples sizes and significance levels we consider. Specifically, Panel A contains

rejection rates under the null at the 1%, 5% and 10% levels for the bivariate case while Panel B

does the same for K = 10. The row labels LM—t and LM—At correspond to the Lagrange multi-

plier tests based on the score of the symmetric and asymmetric Student t copulas, respectively,

while KT—t and KT—At are the corresponding Kuhn-Tucker versions. In turn, Skew denotes

the Lagrange multiplier test based on the K moment conditions mbk (ρ) in Proposition 4. As
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for the non-parametric tests, S(C) and S(B) refer to procedures based on Rosenblatt’s transform

proposed by Genest et al. (2009), Q denotes the test statistic of Panchenko (2005), while KS and

CvM correspond to the Kolmogorov—Smirnov and Cramér—von Mises tests for copula models.

4.3 Power properties

For our first alternative, we draw from (symmetric) Student t copulas with 20 (100) degrees

of freedom when K = 2 (K = 10) but the same correlation matrices as in the Gaussian case.

Table 2 reports the Monte Carlo rejection rates at the 1%, 5% and 10% significance levels. By

and large, the behavior of the different test statistics is in accordance with expectations. In

particular, the Student t tests are the most powerful, with the Kuhn-Tucker versions being more

powerful than the Lagrange multiplier’s ones. In contrast, all the non-parametric competitors

have close to trivial power in samples of 200 observations. In line with the evidence on local

power in Supplemental Appendix D (see Figures D1 and D2), the rejection rates are higher

the higher the correlation. Not surprisingly, power is lower when the margins are estimated

non-parametrically than when they are known, with the parametric case usually in between.

Next, we generate observations from Asymmetric Student t copulas with 20 (100) degrees

of freedom K = 2 (K = 10) and identical correlation matrices but negative tail dependence

characterized by bk = −.75 (bk = −.15). As can be seen from Table 3, in this case the asymmetric

Student t tests are the most powerful, with the Kuhn-Tucker version being more powerful than

the Lagrange multiplier’s one.

Therefore, our Monte Carlo results confirm the local power analysis in Supplemental Appen-

dix D, so that our proposed tests provide a very strong indication of the directions along which

the efforts to improve the specification of the model should focus.

Arguably, though, this conclusion is not entirely surprising. For that reason, we also assess

the power of our tests against certain nonnormal alternatives outside the GH family by consid-

ering the Skew t copula, which is obtained from the Skew t distribution proposed by Azzalini

and Capitanio (2003) (see also Kotz and Nadarajah (2004)). The results reported in Table 4

clearly show that our proposed tests continue to have good power in situations in which the true

copula does not correspond with the alternative they are designed for. Moreover, they beat the

competition by a long margin.
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5 Momentum and reversals in stock returns

In this section we apply our Gaussian copula tests to formally analyze the cross-sectional

dependence between monthly returns on individual U.S. stocks in the CRSP database and some

of their observable characteristics. Given their prominence in the empirical finance literature,

we focus on (i) short term reversals, in which the observable characteristic are the individual

stock returns over the previous month; and (ii) momentum, where the relevant variable are the

individual stock returns from month t − 2 to month t − 12. In line with most previous studies

(see e.g. Asness, Moskowitz and Pedersen (2013)), we only consider common equities (CRSP

sharecodes 10 and 11) and exclude those stocks with share prices less than $1 at the beginning

of the holding period. We also restrict our analysis to those firms with at least 60 months of

return history, so that we focus on liquid stocks with low transaction costs and high tradability.

An important advantage of working with either uniform or Gaussian ranks is that we obtain

exactly the same numerical results whether we work with the original returns or with their

deviations from the returns on an aggregate stock market index or the level of the risk free rate.

Nevertheless, the presence of other time-varying effects that may potentially affect different

firms differently could alter the cross-sectional dependence. For that reason, we carry out our

analysis both at the aggregate level, i.e. using all individual stocks, and at the industry level

(see Supplemental Appendix G.1 for the latter).

Our dataset spans the period from January 1997 to December 2012. For each and every

month, we first transform the observed variables for each individual stock into their cross-

sectional (uniform) ranks and then into their Gaussian ranks. Importantly, though, the empir-

ical cdfs used to transform the original observations into Gaussian ranks are re-estimated for

every single month so as to allow for complete flexibility in the time-variation of the marginal

distributions. Thus, we end up with a cross-section of the form Yt = {(yt11, yt21), ..., (yt1Nt , y
t
2Nt

)},

where Nt is the number of individual stocks for which we have data on both their return and

the relevant observable characteristic for month t. Although we could apply our tests on a

monthly basis, from the point of view of devising trading strategies, a period by period cross-

sectional analysis is of little interest. For that reason, we pool all
∑T

t=1Nt bivariate observations

Y = {Y1, ..., YT } and exploit the moment-based interpretation of our tests as follows. First, for

each t we compute the cross-sectional average of the log-likelihood scores with respect to all the

parameters φ, say s̄φt(Yt; ρ) = N−1t
∑Nt

n=1 sφ(yt1n, y
t
2n; ρ). Then, we time-average those scores,
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thereby creating a pooled average score s̄φ(Yt; ρ) = T−1
∑T

t=1 s̄φt(Yt; ρ), on the basis of which

we can estimate the correlation coeffi cient ρ and construct our tests. The only complication is

that our pooled procedure requires the computation of robust standard errors to capture the

potential time-series dependence in s̄φt(Yt; ρ) for different t’s (see Supplemental Appendix E.3

for details).

Before characterizing dependence through the copula, though, it is convenient to look at

correlations. Panel A of Table 5 presents the parameter estimates and their corresponding

asymptotically robust standard errors for the Pearson, Spearman and Gaussian rank correlation

coeffi cients (again, for a detailed description see Supplemental Appendix E.3). All correlation

parameters have the expected sign with the exception of the Pearson correlation estimate for

short term reversals. In addition, the Pearson correlation coeffi cient for momentum has the right

sign but it is statistically insignificant, in sharp contrast to the Spearman and Gaussian rank

correlations. This confirms the sensitivity of the estimators of the Pearson coeffi cient and the

associated slopes to the presence of outliers.

In Panel B of Table 5 we report the Gaussian copula test statistics, with KT—t and KT—At

denoting the KT versions of the tests against Student t and asymmetric Student t copulas (LM

versions are numerically identical in our data), and Skew the LM test based on the two moment

conditions mbk (ρ) in Proposition 4. As can be seen, in all cases we reject the null hypothesis of

a Gaussian copula for both short term reversals and momentum by a long margin. Importantly,

the source of the rejection is not only the “cokurtosis”between the Gaussian ranks, but also their

“coskewness”, specially for momentum strategies. In this regard, it is worth emphasizing that

the use of the HAC procedure ensures that the asymmetric component of the test is correctly

sized under the null of a symmetric Student t copula too, as argued at the end of section 3.2.

We discuss the trading implications of these empirical results in Supplemental Appendix G.2.

Given those rejections, the natural next step is to gauge the parameters of the alternative

distributions that we have considered. As explained in Section 3.6, we can consistently do so

by means of an equality constrained indirect estimation procedure which matches the observed

tests statistics and the estimated Gaussian rank correlations. In Panel C of Table 5 we report

the resulting pooled estimates of the correlation and shape parameters of both symmetric and

asymmetric Student t copulas based on simulated sample paths of size 100,000. We find mod-

erate negative tail dependence but quite substantive “leptokurtosis”, with estimated degrees of
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freedom in the neighborhood of 5. Importantly, Supplemental Appendix G.1 shows that our

empirical results are robust to estimating the model at the industry level.

6 Conclusions

We derive computationally simple and intuitive expressions for score tests of Gaussian copu-

las against GH alternatives. In this regard, we show that all the GH copulas are asymptotically

locally equivalent hypothesis to the Gaussian null, so that if a researcher decided to consider

a normal-gamma mixture copula, or indeed any other special case of the GH copula as the

alternative, she would end up with exactly the same statistic as in the case of the Student t.

Asymptotically, the same is true of the Likelihood Ratio and Wald tests.

We decompose our score tests into simple moment tests based on linear combinations of

cross products of Hermite polynomials of the Gaussian ranks up to order four. By taking into

account the partial one-sided nature of some of the alternative hypotheses, we also obtain more

powerful one-sided Kuhn-Tucker versions that are equivalent to the Likelihood Ratio test, whose

standard asymptotic distribution under the null we derive. This equivalence implies that our

approach has a likelihood interpretation, which provides a formal justification for focusing on

the specific moments that we test. In turn, this likelihood interpretation confirms that we can

learn from our tests in which directions the model is really worth extending because the score

vector gives the direction of steepest ascent. Finally, the expression of our score tests as moment

tests also allows us to show that they are more powerful than multivariate distributional tests

applied to the Gaussian ranks because they do not waste power in checking the normality of the

marginal distributions, which are Gaussian by construction.

We conduct detailed Monte Carlo exercises with a range of correlation matrices to study our

proposed tests in finite samples. We find that the parametric bootstrap rejection rates are almost

perfect for all samples sizes. Moreover, the finite sample power of the different test statistics

agrees with what the asymptotic results would suggest. Importantly, our findings indicate that

our parametric tests have substantially more power than the existing non-parametric ones even

for departures for which our procedures are not optimal.

In an empirical application to CRSP data, we assess the widely held view that stocks that

underperformed in the past month (short term reversals) and those that outperformed in previ-

ous months (momentum) show superior performance. Our tests indicate that those effects are
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better captured by non-Gaussian copulas, whose parameters we estimate by an indirect inference

procedure that matches our test statistics in the simulated and real data.

As a valuable extension, we could explicitly consider more complex models by conditioning

on past values of x or present and past values of some exogenous variables z (see e.g. Patton

(2006) or Chen and Fan (2006a) for some interesting examples of dynamic copula models).

Another interesting extension would be to develop testing procedures that direct power over

the third quadrant, say, instead of the entire distribution. One possible approach would be to

use a GH-based test in which we fix both asymmetric parameters to be big and negative.

It would also be interesting to compare our score tests to information criteria approaches

(see e.g. Chen and Fan (2005 and 2006b)), as well as to tests based on non-parametric estimates

of the copula density (see Fermanian (2005) and Scaillet (2007)). In addition, we could develop

tests that take as their null hypothesis other special cases of the GH copula, such as the popular

(symmetric) Student t, which is nested in the GH family when η > 0 and ψ = 1. This poses

two technical complications relative to the Gaussian tests. First, the information matrix will no

longer be block diagonal between the correlation and shape parameters. Second, the score with

respect to ψ will be identically 0 under the null, which means that we will have to rely on what

Lee and Chesher (1986) called an extremum test. All these extensions constitute promising

avenues for further research.
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A Proofs
Henceforth, we maintain Assumption 1 in the text, and Assumptions 2-3 in Supplemental

Appendix B.

A.1 Proposition 1

We can easily compute the first two terms of (B2) in Supplemental Appendix B, whose

limits are

lim
η→0

∂ ln fK (y1, ..., yK ; ρ, η)

∂η
=

√
K(K + 2)

2
× L2(ς),

lim
η→0

∑K

k=1

∂ ln f1k (yk; η)

∂η
=

√
3

2
×

K∑
k=1

H4(yk),

where Lj(·) and Hj(·) are the normalized Laguerre and Hermite polynomials of order j, respec-

tively. As for the remaining terms in (B2), we can use the fact that for a generic copula density

such as the one in (B1),

lim
ϕ→0

∂ ln fK (y1, ..., yK ;ρ,ϕ)

∂ς
= −1

2
and lim

ϕ→0

∂ ln f1k (yk;ϕ)

∂yk
= −yk,

so that

lim
ϕ→0

[
∂ ln fK (ς;ρ,ϕ)

∂ς

∂ς

∂yk
− ∂ ln f1k (yk;ϕ)

∂yk

]
=

p′(k)(ρ)P−1(kk)(ρ)[y − p(k)(ρ)yi]

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
, (A1)

where y−p(k)yk are residuals of univariate simple regressions of y−k onto yk because p(k) are the

corresponding OLS coeffi cients, while the denominator is the residual variance in a regression

of yk onto the remaining components of y. As for ∂εk(η)/∂η = ∂F−11k (uk; η)/∂η, differentiating∫ F−11k (uk,η)
−∞ f1k(yk; η)dyk = uk with respect to η yields

∂F−11k (uk; η)

∂η
=

−1

f1k[F
−1
1k (uk; η); η]

∫ F−11k (uk,η)

−∞

∂f1k(yk; η)

∂η
dyk.

But then, noticing that limη→0 f1k[F
−1
1k (uk; η); η] = φ[Φ−1(uk)] and that

lim
η→0

∂f1k(yk; η)

∂η
= φ(yk)×

√
3

2
×H4(yk),

we obtain

lim
η→0

∂F−11k (uk; η)

∂η
=

1

2

√
3

2
×H3(yk).

Collecting terms finally yields (2). �
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A.2 Proposition 2

For fixed b, the LM test is based on the average score with respect to η evaluated at the

limit of η → 0. In this regard, we first obtain the parameters of the corresponding marginal

distributions appearing in (B1). Specifically, if y ∼ At(0,P(ρ), η,b) with β = P1/2′(ρ)b, then

yk ∼ At(0, 1, η,ßk(η,b)) where

ßk(η,b) =
c(b′P(ρ)b, η)ı′kP(ρ)b

1 + [c(b′P(ρ)b, η)− 1]ı′kP(ρ)bb′P(ρ)ık/b′P(ρ)b
,

with ık denoting a K × 1 vector with 1 in its k’th position and 0’s otherwise, and

c(b′P(ρ)b, η) =
−(1− 4η) +

√
(1− 4η)2 + 8η(1− 4η)b′P(ρ)b

4ηb′P(ρ)b
.

In this context, we can write sη (ρ,b) as

∂ ln fK (y1, ..., yK ;ρ, η,b)

∂η
−

K∑
k=1

∂ ln f1k [yk; η,ßk(η,b)]

∂η
−

K∑
k=1

∂ ln f1k [yk; η,ßk(η,b)]

∂ßk

∂ßk(η,b)

∂η

+

K∑
k=1

{
∂ ln fK (y1, ..., yK ;ρ, η,b)

∂yk
− ∂ ln f1k [yk; η,ßk(η,b)]

∂yk

}
∂F−11k [uk; η,ßk(η,b)]

∂η
. (A2)

As for the first two terms of (A2), Mencía and Sentana (2012) provide the corresponding ex-

pressions, which reduce to

lim
η→0

∂ ln fK(y1, ..., yK ,ρ, η,b)

∂η
=

√
K(K + 2)

2
× L2(ς) + b′y [ς − (K + 2)] ,

lim
η→0

∂ ln f1k [yk; η,ßk(η,b)]

∂η
=

√
3

2
H4(yk) + P[k](ρ)bH3(yk),

where P[k](ρ) denotes the k’th row of P(ρ). Regarding the third term of (A2), they show that

lim
η→0

∂ ln f1k [yk; η,ßk(η,b)]

∂ßk
= 0.

As for ∂F−11k [uk; η,ßk(η,b)]/∂η, differentiating
∫ F−11k (uk,η,ßk(η,b))
−∞ f1k[yk; η,ßk(η,b)]dyk = uk with

respect to η yields

∂F−11k [uk; η,ßk(η,b)]

∂η
=

−1

f1k(F
−1
1k [uk; η,ßk(η,b)]; η)

∫ F−11k (uk,η,ßk(η,b))

−∞

∂f1k[yk; η,ßk(η,b)]

∂η
dyk.

Then, noticing that limη→0 f1k(F
−1
1k [uk; η,ßk(η,b)]; η) = φ[Φ−1(uk)] and that

lim
η→0

∂f1k[yk; η,ßk(η,b)]

∂η
= φ(yk)

[√
3

2
H4(yk) +ßk(η,b)

√
6H3(yk)

]
,

we obtain

lim
η→0

∂F−11k [uk; η,ßk(η,b)]

∂η
= ßk(η,b)

√
2H2(yk) +

1

2

√
3

2
H3(yk).

Collecting terms and using (A1) yields (3). �
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A.3 Proposition 3

Under normality, the score with respect to b is 0, while the score with respect to η for fixed

values of b is given in Proposition 2. Now consider a reparametrization in terms of η‡ and b‡,

where η‡ = η and b‡ = bη. This reparametrization is such that under normality, both η‡ and

b‡ will be zero, while under local alternatives of the form η‡T = T−1/2η̄‡ and b‡T = T−1/2b̄‡, we

will have an asymmetric Student t distribution with parameters ηT = T−1/2η̄ and bT = b̄. As

for the score test, we start by defining

c‡(u;ρ, η‡,b‡) = c

(
u;ρ, η,

b‡

η‡

)
.

We can then expand ln c (u;ρ, η,b) around η = 0 as follows

ln c (u;ρ, η,b) = ln c (u;ρ, 0,b) + sη (ρ,b) η +O(η2),

and similarly, we can also expand ln c‡
(
u;ρ, η‡,b‡

)
as

ln c‡(u;ρ, η‡,b‡) = ln c‡ (u;ρ, 0,0) + s‡η (ρ,0) η + s‡
b‡

(ρ,0) b‡ +O(η2) +O(b‡′b‡) +O(b‡η‡).

Since ln c (u;ρ, 0,b) does not depend on b and

sη (ρ,b) η = J0 (ρ) η +

K∑
k=1

Jk (ρ) biη

in light of Proposition 2, we can identify J0 (ρ) with s‡η (ρ,0) and Jk (ρ) with s‡
b‡

(ρ,0) for

k = 1, ...,K because b‡ = bη. �

A.4 Proposition 4

We can use the generalized information matrix equality (see e.g. Newey and McFadden

(1994)) to show that

E
{

sρ(ρ,0)s′ϕ(ρ,ϕ)
∣∣ρ,ϕ} = −E

{[
∂sρ(ρ,0)

∂ϕ′

]∣∣∣∣ρ,ϕ} = 0,

irrespective of the assumed copula, where we have used the fact that sρ(ρ,0) does not vary with

ϕ when regarded as the influence function for the Gaussian rank correlation. �

A.5 Proposition 5

Following Chen and Fan (2006a), to obtain the correction for non-parametric estimation of

the marginals for a generic score sφ, we need to compute

nφ =

K∑
j=1

∫ 1

0
[1{Uj ≤ uj} − uj ]W j

φk
duj
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with

W j
φ =

∫
...

∫
∂sφ
∂uj

c(u1, ..., uK ;φ)du1...duk−1duk+1...duK .

To do so, we can exploit the fact that zk= y(k) − p(k)(ρ)yk ∼ N(0,Υk) with Υk = P(kk)(ρ) −

p(k)(ρ)p′(k)(ρ), and that

ς(ρ) = y2k + z′k[P(kk)(ρ)− p(k)(ρ)p′(k)(ρ)]−1zk, (A3)

yk − p′(k)(ρ)P−1(kk)(ρ)y(k) = [1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)]yk + p′(k)(ρ)P−1(kk)(ρ)zk. (A4)

We can also make use of the fact that

c(u(k);φ)du(k) = c(u1, ..., uK ;φ)du1...duk−1duk+1...duK

involves integrating with respect to

f(zk;φ) =
(2π)−(K−1)/2

|Υk|1/2
× exp

(
−1

2
z′kΥ

−1
k zk

)
.

Specifically, for the first term of (2), using the fact that

∂

∂ς

[√
K(K + 2)

2
L2 (ς)

]
=
ς − (K + 2)

2
and

∂ς(ρ)

∂yk
= 2×

yk − p′(k)(ρ)P−1(kk)(ρ)y(k)

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
,

and substituting (A3) and (A4), we obtain∫
∂

∂yk

[√
K(K + 2)

2
L2 (ς)

]
c(u(k);φ)du(k) =

√
6H3(yk), (A5)

where the last equality follows from∫
zkz
′
kΥ
−1
k zkf(zk;φ)dzk = 0 and

∫
z′kΥ

−1
k zkf(zk;φ)dzk = K − 1.

Similarly, for the second term of (2), using ∂Hj(y)/∂y =
√
jHj−1(y) we notice that∫

∂

∂yk

[√
3

2

K∑
h=1

H4 (yh)

]
f(zk;φ)dzk =

√
6H3(yk),

which cancels with (A5). Regarding the final term of (2), given that
∫

zkf(zk;φ)dzk = 0 and∫
H3(yj)f(zk;φ)dzk =

∫
H3(yj)

1√
1− ρ2jk

φ

yj − ρjkyk√
1− ρ2jk

 f(zk;φ)dyj = ρ3jkH3(yk),

we can show that∫
∂

∂yk

{√
3

8

K∑
h=1

[
p′(h)(ρ)P−1(h)(ρ)zh

1− p′(h)(ρ)P−1(hh)(ρ)p(h)(ρ)

]
H3(yh)

}
f(zk;φ)dzk

= −
√

3

8

p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
H3(yk) +

√
3

8

∑
h6=k

p′(h)(ρ)P−1(h)(ρ)

1− p′(h)(ρ)P−1(hh)(ρ)p(h)(ρ)
P3
kj(ρ)H3(yk).
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As for mbk (ρ), we can use (A3) to rewrite its first term as

∂ {yk [ς(ρ)− (K + 2)]}
∂yk

= 3y2k + z′kΥ
−1
k zk − (K + 2)− 2×

p′(k)(ρ)P−1(kk)(ρ)zk

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
,

so that ∫
∂ {yk [ς(ρ)− (K + 2)]}

∂yk
f(zk;φ)dzk = 3(y2k − 1) = 3

√
2H2(yk),

where we have used the fact that
∫

z′kΥ
−1
k zkf(zk;φ)dzk = K − 1 and

∫
zkf(zk;φ)dzk = 0,

which again cancels with the correction corresponding to the second term because

∫
∂

∂yk

√6
K∑
j=1

Pkj(ρ)H3(yj)

 f(zk;φ)dzk = 3
√

2H2(yk)

in view of Pkk(ρ) = 1 and
∫
f(zk;φ)dzk = 1. Finally, to find

∂

∂yk

√2

K∑
j=1

p′(k)(ρ)P−1(kk)(ρ)[y(k) − p(k)(ρ)yk]

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
Pkj(ρ)H2(yj)

 ,

we have to deal with the following two terms:

−
√

2
p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
H2(yk) +

√
2
∑
j 6=k

p′(j)(ρ)P−1(jj)(ρ)

1− p′(j)(ρ)P−1(jj)(ρ)p(j)(ρ)
Pkj(ρ)H2(yj)

and

2
p′(k)(ρ)P−1(kk)(ρ)zk

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
Pkk(ρ)H1(yk).

The integral of the last term is zero since
∫

zkf(zk;φ)dzk = 0. As for the first one, given

∫
H2(yj)f(zk;φ)dzk =

∫
H2(yj)

1√
1− ρ2jk

φ

yj − ρjkyk√
1− ρ2jk

 f(zk;φ)dyj = ρ2jkH2(yk),

we obtain that

−
∫ √

2
K∑
j=1

p′(j)(ρ)P−1(jj)(ρ)p(j)(ρ)

1− p′(j)(ρ)P−1(jj)(ρ)p(j)(ρ)
Pkj(ρ)H2(yj)f(zk;φ)dzk

= −
√

2

 p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1(kk)(ρ)p(k)(ρ)
+
∑
j 6=k

p′(j)(ρ)P−1(jj)(ρ)

1− p′(j)(ρ)P−1(jj)(ρ)p(j)(ρ)
P2
kj(ρ)

H2(yk).
Analogous calculations allow us to obtain the relevant quantities for ∂mbk (ρ) /∂yj . Finally, the

results stated in the proposition are obtained by collecting terms and integrating yk out using

the fact that∫ y

−∞
H3(x)Φ(x)dx =

H3(y)

4

1√
2π

exp

(
−y

2

2

)
+

1

4
H4(y)

[
1 + erfc

(
y√
2

)]
,
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∫ ∞
y

H3(x)[1− Φ(x)]dx =
H3(y)

4

1√
2π

exp

(
−y

2

2

)
− 1

4
H4(y) erf

(
y√
2

)
,

so that ∫ y

−∞
H3(x)Φ(x)dx−

∫ ∞
y

H3(x)[1− Φ(x)]dx =
1

2
H4(y),

and ∫ y

−∞
H2(x)Φ(x)dx =

H2(y)

3

1√
2π

exp

(
−y

2

2

)
+

1

2
√

3
H3(y)

[
1 + erfc

(
y√
2

)]
,∫ ∞

y
H3(x)[1− Φ(x)]dx =

H2(y)

3

1√
2π

exp

(
−y

2

2

)
− 1

2
√

3
H3(y) erf

(
y√
2

)
,

so that ∫ y

−∞
H2(x)Φ(x)dx−

∫ ∞
y

H2(x)[1− Φ(x)]dx =
1√
3
H3(y).

�

A.6 Proposition 6

We start by simplifying the expressions for A,M, and D. Regarding A, the fact that

E

(
∂mϕ(λ0,ρ0)

∂ρ′

)
= 0,

follows directly from Proposition 4. As forM, Joe (2005) proves in the appendix that

cov [mλk(λ0,ρ0),mρ(λ0,ρ0)] = 0, for k = 1, ...,K.

In regards to D,

E

(
∂2Lk(λk)

∂λk∂λ
′
h

)
= 0, whenever h 6= k and E

(
∂2Lk(λk)

∂λk∂ρ′

)
= 0 for k = 1, ...,K

follows trivially from the fact that Lk(λk) does not depend on λh or ρ. Next, to keep the

notation simple, we group the correlation parameters ρ with those characterizing the marginals,

λ, into θ = (λ′,ρ′)′ and the associated score vectors as mθ(θ) = [m′λ(λ,ρ),m′ρ(λ,ρ)]′. Then,

it is easy to see that the first-order expansion

0 =
1√
N

N∑
n=1

mθn(θ̂) =
1√
N

N∑
n=1

mθn(θ0) +
1

N

N∑
n=1

∂mθn(θ0)

∂θ′
√
N(θ̂ − θ0) + op(1)

yields
√
N(θ̂ − θ0) → N(0,D−1MD′−1) (see e.g. Newey and McFadden, 1994). If we then

exploit the fact that

cov[mθ(θ0),mϕ(θ0)] = 0,

which is again proved in the appendix of Joe (2005), we can write

1√
N

N∑
n=1

mϕn(θ̂,0) =
1√
N

N∑
n=1

mϕn(θ0,0) +
1

N

N∑
n=1

∂mϕn(θ0,0)

∂θ′
√
N(θ̂ − θ0) + op(1),

whence the result follows. �
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Table 1: Rejection rates under the null at 1%, 5%, and 10% significance levels
N = 200 N = 800 N = 3, 200

Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K = 2 and ρ = 0.25

LM-t 10.3 5.2 1.0 10.2 5.4 1.1 9.8 4.9 1.0
LM-At 10.3 5.2 1.0 10.2 5.2 0.9 9.7 5.0 1.0

Known Skew 10.0 4.9 1.2 9.8 4.9 1.0 10.2 4.7 1.1
KT-t 10.4 5.1 0.9 10.2 5.3 1.2 9.7 4.9 0.9
KT-At 10.1 5.1 0.9 10.1 5.2 0.9 9.6 4.9 1.0

LM-t 10.3 5.2 0.9 10.2 5.5 1.1 9.8 4.9 1.0
LM-At 10.2 5.0 0.9 10.4 5.2 0.9 9.8 4.9 1.0

Parametric Skew 10.0 4.9 1.1 9.9 4.9 1.0 10.2 4.7 1.1
KT-t 10.4 5.1 1.0 10.3 5.2 1.2 9.7 4.9 0.9
KT-At 10.1 5.0 0.9 10.1 5.2 0.9 9.6 4.9 1.0

LM-t 10.2 4.9 0.9 10.3 5.3 1.2 9.7 4.8 1.0
LM-At 10.0 5.0 0.8 10.0 4.8 1.0 9.6 4.9 0.9
Skew 9.6 4.8 1.0 9.8 4.6 1.0 9.9 4.7 1.0
KT-t 10.4 5.2 0.9 10.2 5.3 1.2 9.9 5.0 0.8
KT-At 10.1 5.1 0.8 10.0 4.9 1.0 9.6 5.0 1.0

Emp. CDF
S(C) 9.9 4.7 0.9 9.9 5.2 1.1
S(B) 9.4 4.5 0.9 9.9 5.2 1.1
Q 10.1 4.9 0.9 10.1 5.1 1.0
KS 10.7 5.2 1.3 10.2 5.2 1.0
CvM 9.0 4.4 0.7 8.9 4.4 0.9

Panel B: K = 10 and ρkj = 0.25

LM-t 10.0 4.9 1.0 10.2 5.1 1.1 10.1 5.1 1.2
LM-At 10.3 5.3 1.1 9.7 4.7 0.9 9.6 4.9 1.0

Known Skew 10.2 5.2 1.2 9.8 4.9 0.9 9.6 4.9 1.0
KT-t 10.1 5.0 1.1 9.5 5.0 1.0 10.3 4.9 1.1
KT-At 10.4 5.3 1.1 9.7 4.5 0.8 9.7 4.9 1.0

LM-t 10.2 4.9 0.9 9.8 5.0 1.1 10.3 5.1 1.2
LM-At 10.1 5.3 0.9 9.8 4.8 1.1 9.7 4.9 1.1

Emp. CDF Skew 10.3 5.0 0.9 10.1 4.8 1.0 9.7 4.7 1.0
KT-t 9.9 4.8 0.9 9.4 4.8 1.2 10.4 5.2 1.1
KT-At 10.1 5.4 0.9 9.7 4.8 1.0 9.7 4.7 1.1

Notes: Critical values are computed using parametric bootstrap. LM—t and LM—At are the Lagrange
multiplier tests based on the score of the symmetric and asymmetric Student t copula, respectively;
while KT—t and KT—At are the corresponding Kuhn-Tucker versions (see Section 3 for details). Skew
corresponds to the Lagrange multiplier test based on the moment conditions mbk (ρ) of Proposition 3.
S(C) and S(B) refer to procedures based on Rosenblatt’s transform proposed by Genest et al. (2009), Q
denotes the test statistic of Panchenko (2005), while KS and CvM denote the Kolmogorov—Smirnov and
the Cramér—von Mises tests for copula models (see Rémillard (2017) for details). Parametric correspond
to a DGP with exponential marginals whose parameters are estimated by maximum likelihood.
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Table 2: Mote Carlo rejection rates at 1%, 5%, and 10% significance levels under the Student t
alternative

N = 200 N = 800 N = 3, 200
Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: K = 2 and ρ = 0.25

LM-t 20.2 14.2 5.8 41.8 32.2 16.7 86.7 80.7 63.2
LM-At 20.6 13.3 5.0 35.4 25.9 12.4 77.4 69.0 49.0

Known Skew 15.1 8.5 2.6 15.0 8.5 2.5 15.0 8.3 2.2
KT-t 29.2 18.0 6.2 53.5 39.8 19.0 92.3 86.5 67.6
KT-At 22.6 14.2 5.0 39.2 28.1 12.7 81.0 72.3 51.0

LM-t 20.2 13.9 5.6 41.6 32.1 16.5 86.7 80.8 63.2
LM-At 20.6 13.3 4.8 35.7 25.8 12.3 77.5 69.1 48.8

Parametric Skew 14.9 8.5 2.6 15.0 8.5 2.5 14.9 8.4 2.2
KT-t 28.7 18.0 5.9 53.3 39.9 18.8 92.3 86.4 67.6
KT-At 22.3 14.2 4.9 38.9 28.3 12.6 81.1 72.2 51.2

LM-t 20.2 13.8 5.1 41.3 32.2 16.5 87.0 80.5 63.2
LM-At 19.6 12.0 4.1 34.7 25.3 11.2 77.8 68.8 48.2
Skew 13.9 7.7 2.1 14.5 7.8 2.1 14.6 8.1 2.1
KT-t 27.0 16.8 5.3 52.6 38.8 18.4 92.3 86.2 67.3
KT-At 20.9 12.5 4.2 38.0 27.3 11.5 81.0 71.9 50.7

Emp. CDF
S(C) 10.77 5.4 1.1 12.4 6.5 1.4
S(B) 10.66 5.3 1.1 12.0 6.3 1.3
Q 10.62 5.2 1.2 10.7 5.5 1.1
KS 11.86 6.0 1.4 12.4 6.7 1.4
CvM 9.12 4.5 0.7 11.1 5.4 1.1

Panel B: K = 10 and ρkj = 0.25

LM-t 26.7 18.5 7.6 58.4 47.3 26.9 97.7 95.4 87.3
LM-At 22.0 14.1 4.9 37.6 26.8 11.8 83.0 74.6 54.3

Known Skew 16.2 9.3 2.3 17.2 9.8 2.5 16.7 8.9 2.2
KT-t 37.1 24.8 9.3 71.0 57.2 31.3 99.0 97.7 91.4
KT-At 23.1 14.7 5.0 39.6 28.5 12.2 84.7 76.5 55.8

LM-t 28.6 19.2 7.3 60.9 49.0 27.4 97.8 95.7 87.9
LM-At 21.1 12.7 4.0 37.7 26.6 11.2 83.2 75.0 54.5

Emp. CDF Skew 15.3 8.3 1.8 16.9 9.3 2.3 16.4 8.9 2.4
KT-t 33.5 22.0 7.5 68.7 55.3 30.3 98.8 97.5 90.7
KT-At 21.3 12.9 4.0 39.1 27.6 11.5 84.6 76.4 55.8

Notes: DGP: Student t copula with 20 (100) degrees of freedom in Panel A (B). Critical values are
computed using parametric bootstrap. LM—t and LM—At are the Lagrange multiplier tests based on
the score of the symmetric and asymmetric Student t copula, respectively; while KT—t and KT—At are
the corresponding Kuhn-Tucker versions (see Section 3 for details). Skew corresponds to the Lagrange
multiplier test based on the moment conditions mbk (ρ) of Proposition 3. S(C) and S(B) refer to proce-
dures based on Rosenblatt’s transform proposed by Genest et al. (2009), Q denotes the test statistic of
Panchenko (2005), while KS and CvM denote the Kolmogorov—Smirnov and the Cramér—von Mises tests
for copula models (see Rémillard (2017) for details). Parametric correspond to a DGP with exponential
marginals whose parameters are estimated by maximum likelihood.
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Table 3: Rejection rates at 1%, 5%, and 10% significance levels under the Asymmetric t alter-
native

N = 200 N = 800 N = 3, 200
Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: K = 2 and ρ = 0.25

LM-t 20.6 14.1 5.9 43.5 33.8 17.9 88.1 82.2 65.6
LM-At 28.3 19.9 7.7 66.2 55.5 32.7 99.5 99.0 96.1

Known Skew 26.6 17.4 6.3 59.4 47.0 25.6 98.4 96.5 89.6
KT-t 28.4 18.4 6.2 56.4 42.0 20.1 93.5 87.8 70.0
KT-At 30.9 20.7 7.8 70.1 58.3 33.5 99.7 99.3 96.6

LM-t 20.4 14.2 5.9 43.5 33.9 17.7 88.1 82.1 65.6
LM-At 28.3 19.6 7.6 66.3 55.7 32.8 99.5 99.0 96.2

Parametric Skew 26.4 17.2 6.2 59.5 47.1 25.5 98.4 96.6 89.7
KT-t 28.4 18.3 6.1 56.3 41.9 20.0 93.2 87.7 69.9
KT-At 30.6 20.4 7.7 69.8 58.4 33.5 99.7 99.3 96.6

LM-t 20.2 13.2 4.5 43.2 33.2 16.0 88.5 81.9 65.1
LM-At 27.7 17.7 5.3 66.1 54.5 31.6 99.5 99.0 95.8
Skew 24.5 14.7 4.3 57.6 44.8 23.4 98.0 96.3 88.6
KT-t 26.8 16.7 4.7 54.6 40.6 18.3 93.3 87.8 69.6
KT-At 29.1 18.3 5.3 69.1 57.4 32.1 99.7 99.2 96.4

Emp. CDF
S(C) 11.0 5.5 1.0 23.4 13.9 3.9
S(B) 11.6 5.7 1.2 24.0 14.5 4.1
Q 12.0 6.4 1.2 19.9 11.2 2.4
KS 13.6 7.1 1.7 32.6 22.1 8.0
CvM 10.0 5.1 1.0 13.8 7.3 1.9

Panel B: K = 10 and ρkj = 0.25

LM-t 26.6 18.4 7.3 58.2 46.7 26.8 97.2 95.1 86.3
LM-At 22.5 14.5 5.4 40.9 30.0 13.1 88.6 82.3 64.0

Known Skew 17.1 9.9 2.9 21.1 12.6 3.5 35.9 23.5 8.7
KT-t 36.4 25.1 9.0 70.0 57.0 31.1 99.0 97.3 90.5
KT-At 23.5 14.8 5.6 43.0 31.5 13.6 89.9 83.7 65.3

LM-t 28.3 19.6 7.1 59.6 48.5 27.0 97.6 95.4 86.6
LM-At 21.7 13.8 4.3 40.4 29.2 12.5 88.1 81.7 63.1

Emp. CDF Skew 15.9 9.2 2.4 20.0 11.4 3.5 33.5 22.2 8.0
KT-t 33.3 22.1 7.4 68.1 54.7 29.7 98.9 97.3 89.8
KT-At 22.1 14.1 4.3 41.8 30.2 12.9 89.3 82.7 64.5

Notes: DGP: Asymmetric Student t copula with 20 (100) degrees of freedom and skewness vector b =

−.75` (b = −.15`) in Panel A (B). Critical values are computed using parametric bootstrap. LM—
t and LM—At are the Lagrange multiplier tests based on the score of the symmetric and asymmetric
Student t copula, respectively; while KT—t and KT—At are the corresponding Kuhn-Tucker versions (see
Section 3 for details). Skew corresponds to the Lagrange multiplier test based on the moment conditions
mbk (ρ) of Proposition 3. S(C) and S(B) refer to procedures based on Rosenblatt’s transform proposed
by Genest et al. (2009), Q denotes the test statistic of Panchenko (2005), while KS and CvM denote
the Kolmogorov—Smirnov and the Cramér—von Mises tests for copula models (see Rémillard (2017) for
details). Parametric correspond to a DGP with exponential marginals whose parameters are estimated
by maximum likelihood.
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Table 4: Rejection rates at 1%, 5%, and 10% significance levels under the Skew t alternative
N = 200 N = 800 N = 3, 200

Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K = 2 and ρ = 0.25

LM-t 19.9 13.9 5.7 41.9 32.4 16.7 86.0 79.6 62.0
LM-At 20.0 13.1 4.8 37.2 27.5 13.1 79.7 71.4 52.3

Known Skew 14.7 8.1 2.1 17.1 9.8 2.9 23.6 14.3 4.6
KT-t 27.3 17.6 6.0 54.2 40.1 19.0 92.1 85.6 66.8
KT-At 21.9 13.9 4.9 40.8 30.0 13.6 82.7 74.5 54.3

LM-t 19.7 13.7 5.9 41.6 32.4 16.6 85.8 79.6 62.1
LM-At 20.0 13.1 4.7 37.2 27.5 13.0 79.7 71.3 52.1

Parametric Skew 14.7 8.4 2.3 17.0 10.0 2.9 23.5 14.5 4.6
KT-t 27.4 17.5 6.1 54.3 39.9 18.9 92.0 85.4 66.8
KT-At 21.7 13.8 4.8 40.7 30.1 13.5 82.8 74.5 54.6

LM-t 19.0 12.7 5.0 42.0 32.1 16.3 86.5 79.9 62.2
LM-At 18.8 11.8 3.9 36.2 26.5 11.8 79.6 71.4 51.5
Skew 13.4 7.4 1.7 16.4 9.2 2.5 23.0 13.8 4.2
KT-t 25.5 15.7 5.2 53.5 39.6 18.4 92.3 85.8 66.6
KT-At 20.0 12.2 3.9 39.6 28.3 12.2 82.5 74.2 53.7

Emp. CDF
S(C) 10.2 4.9 0.9 12.7 6.6 1.6
S(B) 9.7 4.9 0.8 12.7 6.6 1.5
Q 10.8 5.6 1.1 11.3 6.2 1.4
KS 11.5 5.6 1.1 13.3 7.2 1.4
CvM 9.1 4.5 0.8 10.8 5.4 1.0

Panel B: K = 10 and ρkj = 0.25

LM-t 25.6 17.6 6.9 58.7 47.5 26.2 97.9 95.9 87.7
LM-At 22.0 14.3 4.8 37.5 26.6 10.9 83.4 74.9 54.8

Known Skew 16.4 9.3 2.6 16.7 9.6 2.5 17.2 9.7 2.6
KT-t 35.7 24.2 8.3 71.2 57.7 31.8 99.1 97.9 91.6
KT-At 23.1 14.6 4.8 39.5 28.0 11.3 85.2 76.9 57.3

LM-t 19.5 11.7 3.9 37.0 25.9 10.7 83.5 75.2 54.7
LM-At 28.4 18.4 5.8 60.7 48.3 26.9 98.0 96.3 87.8

Emp. CDF Skew 14.4 7.8 2.0 16.6 9.8 2.5 16.8 9.7 2.5
KT-t 32.5 21.1 6.1 69.2 55.7 30.6 99.2 97.9 91.1
KT-At 19.8 11.9 3.9 38.5 27.1 10.9 84.9 76.8 56.5

Notes: DGP: Skew t copula with 20 (100) degrees of freedom and skew parameter α = −.25 (α = −.05) in
Panel A (B) (see Azzalini and Capitanio (2003) for details). Critical values are computed using parametric
bootstrap. LM—t and LM—At are the Lagrange multiplier tests based on the score of the symmetric and
asymmetric Student t copula, respectively; while KT—t and KT—At are the corresponding Kuhn-Tucker
versions (see Section 3 for details). Skew corresponds to the Lagrange multiplier test based on the moment
conditions mbk (ρ) of Proposition 3. S(C) and S(B) refer to procedures based on Rosenblatt’s transform
proposed by Genest et al. (2009), Q denotes the test statistic of Panchenko (2005), while KS and CvM
denote the Kolmogorov—Smirnov and the Cramér—von Mises tests for copula models (see Rémillard (2017)
for details). Parametric correspond to a DGP with exponential marginals whose parameters are estimated
by maximum likelihood.
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Table 5: Momentum and reversals in stock returns

Panel A: Correlation parameter estimates
Correlation parameter

Strategy Beta OLS Pearson Spearman Copula
Short-term reversals .008 .009 -.025 -.022

(.003) (.003) (.001) (.002)
Momentum 2.94×10−4 .002 .037 .035

(4.21×10−4) (.003) (.001) (.002)

Panel B: Test statistics and p-values
Strategy KT-t Skew KT-At
Short-term reversals 24,333.7 1,086.0 25,419.7

(.000) (.000) (.000)
Momentum 32,408.0 4,258.7 36,666.7

(.000) (.000) (.000)

Panel C: Constrained indirect estimates of the shape parameters
Student t

Strategy ρ̂ η̂
Short-term reversals -.025 .187
Momentum .034 .213

Asymmetric Student t
Strategy ρ̂ η̂ b̂1 b̂2
Short-term reversals -.018 .187 -.112 -.069
Momentum .074 .212 -.124 -.190

Notes: The data is collected from CRSP and contains monthly series from January 1997 to December
2012. Total number of observations is 607,054. Panel A: Beta OLS denotes the slope coeffi cient in a
simple linear regression. Pearson and Spearman denote the Pearson linear correlation coeffi cient and
Spearman rank correlation, respectively; while Copula denotes the Gaussian rank correlation (linear
correlation coeffi cient of the Gaussian ranks). Numbers in parenthesis correspond to Newey and West
(1987) standard errors; variances of ρ are corrected for heteroskedasticity and autocorrelation using 5 lags.
Panel B: Numbers in parenthesis correspond to asymptotic p-values. Both, variances of the test moment
functions are corrected for heteroskedasticity and autocorrelation using 5 lags. KT—t and KT—At are the
Kuhn-Tucker tests based on the score of the symmetric and asymmetric Student t copula, respectively
(see Section 3 for details). Skew corresponds to the Lagrange multiplier test based on the 2 moment
conditions mbk (ρ) for k = 1, 2 of Proposition 3. Panel C: Estimates are obtained by generating sample
paths of size 100,000 from this copula and matching in the simulated data the values in the original data
of both the Gaussian rank correlation coeffi cients and the corresponding test statistics.
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Figure 1a: Bivariate Gaussian copula Figure 1b: Contours of a bivariate
with Gaussian margins Gaussian copula with Gaussian margins
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Figure 1c: Bivariate Student t copula Figure 1d: Contours of a bivariate
density with Gaussian margins Student t copula with Gaussian margins
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Figure 1e: Bivariate asymmetric Student t Figure 1f: Contours of a bivariate asymmetric
copula density with Gaussian margins Student t copula with Gaussian margins
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Notes: Panels a-b: Gaussian copula with correlation coeffi cient ρ = .120 (Spearman correlation ρS =

.115). Panels c-d: Student t copula with 10 degrees of freedom and correlation coeffi cient ρ = .122

(Spearman correlation ρS = .115). Panels e-f: Asymmetric Student t copula with 10 degrees of freedom,
skewness parameters bi =-.5 and correlation coeffi cient ρ = .186 (Spearman correlation ρS = .115). In all
panels the marginals are standard normal.
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