
Appendix 2: Finite Sample Performance

In this appendix, we assess the small sample properties of the methodology proposed in Äıt-Sahalia

et al. (2014) through an extensive Monte Carlo design. Due to the analytical, fully closed-form, prop-

erties of the method, Monte Carlo simulations can be conducted at a relatively low computational

cost. We analyze three different scenarios: The first one considers sample properties under different

combinations of sample frequencies and sample sizes. The second is concerned with the accuracy of

the estimations when the speed of mean reversion is relatively high and relatively low, to assess the

performance of the method in finite samples when volatility has a near unit-root behavior (a feature

documented in Aı̈t-Sahalia (1996) for interest rates and Bollerslev et al. (2012) for volatility, among

others). Finally, in the third one, we present results on efficiency gains when additional variance swap

rates are used in the estimation relative to the exactly identified scenarios.

We expect the performance of the parameters to depend on how and where they appear in drift and

diffusion functions, respectively. Notice that we can split the vector of parameters into three different

blocks: parameters entering only the drift function, such as market prices of risk, coefficients entering

the diffusion matrix and the  -drifts, as the parameters characterizing the correlation structure of the

different sources of uncertainty (0 ), and parameters such as the long run mean (̄), and the speeds

of mean reversion (0), that are involved in the drift functions under both measures as well as in the

diffusion matrix. The parameter  is poorly identified; for that reason, we follow the standard approach

in the option pricing literature square-root specification whereby  remains fixed to 1. In any event,

different values of  have a relatively small effect in the estimation of the remaining parameters with

the exception of ’s which only adjust to correct the change of scale  .

We run Monte Carlo simulations for the 1-VS model presented in Section 2.4.1 since most of the

relevant intuition can be extracted from this simple setup. We run simulations for a CEV specification

of the diffusion function, which is a special case of the consistent 1-VS family of models. The CEV

specification is a natural choice since it nests GARCH and Heston type stochastic volatility models that

have been extensively studied in the empirical option pricing literature.

For each batch of simulations, we generate 1 000 sample paths using an Euler discretization of the

process, with 25 sub-intervals per sampling interval; 24 out of 25 observations are then discarded. Each

simulated data series is initialized with the volatility state variable at its unconditional mean. The first

100 generated observations are discarded, while the first of the  remaining observations is taken as

the starting point for the simulated data series. Our bechmark sample has  = 1 500 observations at

the daily frequency (∆ = 1252), which roughly corresponds to 6 years of daily data, on both the spot

and the 2 months time-to-maturity variance swap rate. The speed of mean reversion is set to 3 and the

unconditional level of volatility at 32% per year. As for the diffusion parameters and market prices of

risk we fix them to standard values in the literature (see Table 6).

Results for different sampling frequencies and periods are reported in Table 6. We sample lengths of

 = 500 and 4 000 transitions at the daily frequency (∆ = 1252) and  = 250 at the weekly frequency

(∆ = 152). These sample sizes correspond to 2, 16 and 5 years of data, respectively. The use of

similar batches of simulations with differing numbers of observations in each simulated series provides
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some insight into how fast the small-sample distribution of the estimated parameters approaches the

asymptotic distribution. For a given sampling frequency, as the number of observations in each simulated

data series increases, we would expect the standard errors of the parameter estimates to decrease at a

rate inversely proportional to the square root of the number of observations. Indeed, the standard errors

for all parameters decrease roughly by a factor of
√
3 when increasing the sample size from 500 to 1,500

observations. Throughout, the more precise estimates are obtained for the 1, 11 and  parameters.

These patterns for ’s and  are the same irrespective of the exercise we perform as can be also seen

in Tables 7 and 8. The only exception corresponds to the case of weekly data, which is also in line

with predictions from asymptotic theory for discretely sampled diffusions. By contrast, regardless of the

sampling frequency and the sample length, both the biases and standard errors of the market prices of

risks estimates are relatively large. As for 1 and ̄ they are estimated with less accuracy than the other

coefficients entering into the diffusion matrix. Still, the bias in these estimates decreases substantially

with the length of the sample, which is possibly indicative that the source of the bias identified in Li

et al. (2004) could be relevant for sample sizes of 500 daily observations.

Next, we pay attention to the precision of the estimates of the parameters 1 and ̄ under DGPs

in which we allow for different speed of mean reversion for the reference variance swap rate. Table 7

contains biases and standard deviations when 1 takes the values −13, −1, −3 and −9. The first two
columns refer to the DGP with 1 = −13. In this case, both the speed of mean reversion 1 and the

unconditional level ̄ are overestimated (i.e. the bias on the 1 parameter is positive) and the standard

deviation of the empirical distribution of those parameter estimates is large. A potential explanation

for the biases can be found in the fact that given the parametrization, we are only using six years of

data to estimate a model in which the mean life of shocks to volatility is higher than two years. We

also overestimate in small-samples the speed of mean reversion when it is either −1 or −3, but with
a lower bias than in the first case. Similarly, the bias of ̄ decreases monotonically as the speed of

mean reversion of the process increases. Finally, for the fast mean-reverting configuration (1 = −9)
the estimates tend to underestimate 1.

We finally analyze how increasing the information set used for inference affects the estimator’s effi-

ciency; we do so by including additional variance swap rates subject to pricing errors into the likelihood

function. We first include the 6-month time-to-maturity rate to the benchmark case, then the 3-month,

6-month and 1-year rates, and finally also include 1-month and 2-year swap rates. We generate addi-

tional variance swap rates using the pricing relationships implied by Proposition 2 and we add i.i.d.

multiplicative pricing errors with standard deviation equal to 01. Biases and standard deviations are in

Table 8. Not surprisingly, efficiency gains are more noticeable for parameters that enter into the forward

variance curve; but also these gains in precision help to reduce the standard deviations of the remaining

parameters of the model, specially the market prices of risks ´s. More generally, it is interesting to

note that the inclusion of additional variance swap rates helps to better estimate the parameters, but

once these gains have been achieved with a few additional rates, there is no big difference between using

a larger set of rates: there are only minor diferences in biases and standard deviations when using five

instead of three additional swap rates with different time-to-maturities.
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Daily observations

(∆ = 1252)

Benchmark Case

 = 1 500  = 500

True value Bias Std. dev. Bias Std. dev.

Market-based model parameters

̄ 01 −0002 0012 −0012 0069

1 −3 0081 0643 0390 1305

0 005 0003 0595 0067 1563

1 −01 0027 1204 0153 2891

1 −05 0001 0018 −0001 0032

11 0625 0008 0070 0017 0135

 15 0015 0090 0044 0171

Daily observations Weekly observations

(∆ = 1252) (∆ = 152)

 = 4 000  = 250

True value Bias Std. dev. Bias Std. dev.

Market-based model parameters

̄ 01 −0001 0032 −0029 0180

1 −3 −0048 0398 −0317 1036

0 005 0076 0715 0195 1434

1 −01 0072 1170 0253 2467

1 −05 −0000 0011 −0002 0044

11 0625 −0001 0040 0048 0161

 15 0001 0050 0100 0219

Table 6. Monte Carlo Smulations: 1-VS CEV-type Model with Different Sample Sizes and

Sampling Frequencies.

Notes: This table shows the results of 1 000 Monte Carlo simulations, with different sample sizes and sampling

frequencies, for the CEV model of the 2-months time-to-maturity variance swap rate using an Euler discretization

of the process of 25 sub-intervals per sampling interval. The benchmark consists in 6 years of data, that is

 = 1 500 observations, sampled at the daily frequency (∆ = 1252), while the remaining columns include

sample lengths of  = 500 and 4 000 transitions at the daily frequency that correspond to 2 and 16 years of

data. The last two columns correspond to 5 years of weekly data i.e.  = 250 transitions with ∆ = 152. The

second column shows the true value 0 of the parameters used to generate the simulated sample paths. The

“Bias” column shows the mean bias of the estimated parameter vector, i.e., the difference between the estimated

parameters and the true values. The “Std. dev.” column shows the standard deviation of the parameter estimates.

The models and parameterizations are given in Section 3.
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 = −13  = −1
True value Bias Std. dev. Bias Std. dev.

Market-based model parameters

̄ 01 −0098 0547 −0030 0160

1 0101 0305 0115 0488

0 005 0023 0530 0065 0730

1 −01 0086 1241 0069 1094

1 −05 −0000 0019 0000 0018

11 0625 0009 0045 0008 0056

 15 0012 0053 0012 0066

Benchmark Case

 = −3  = −9
True value Bias Std. dev. Bias Std. dev.

Market-based model parameters

̄ 01 −0002 0012 −0001 0004

1 0081 0643 −0557 0873

0 005 0003 0595 0123 1038

1 −01 0027 1204 0095 1555

1 −05 0001 0018 −0000 0019

11 0625 0008 0070 −0013 0082

 15 0015 0090 −0008 0102

Table 7. Monte Carlo Smulations: 1-VS CEV-type Model with Different Speed of Mean

Reversion.

Notes: This table shows the results of 1 000 Monte Carlo simulations, with different speed of mean reversion

, for the CEV model of the 2-months time-to-maturity variance swap rate using an Euler discretization of the

process of 25 sub-intervals per sampling interval. The benchmark case employed consists of 6 years of daily data,

that is  = 1 500 observations sampled at the daily (∆ = 1252) frequency, while the remaining columns include,

for the same sample characteristics, different values of the mean reversion parameter  of the variance swap rate.

The second column shows the true value 0 of the parameters used to generate the simulated sample paths. The

“Bias” column shows the mean bias of the estimated parameter vector, i.e., the difference between the estimated

parameters and the true values. The “Std. dev.” column shows the standard deviation of the parameter estimates.

The models and parameterizations are given in Section 3.
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Additional VS rates

Benchmark Case 6 months

True value Bias Std. dev. Bias Std. dev.

Market-based model parameters

̄ 01 −0002 0012 0000 0001

1 −3 0081 0643 0004 0096

0 005 0003 0595 0003 0089

1 −01 0027 1204 0017 0208

1 −05 0001 0018 0000 0017

11 0625 0008 0070 0004 0048

 15 0015 0090 0007 0060

Pricing errors for addtional variance swap rates

6 01 −00001 00018

Additional VS rates

1, 6 & 12 m. 1,3, 6, 12 & 24 m.

True value Bias Std. dev. Bias Std. dev.

Market-based model parameters

̄ 01 0000 0000 0000 0000

1 −3 0000 0054 0004 0046

0 005 −0003 0025 −0004 0020

1 −01 0009 0083 0002 0030

1 −05 −0001 0018 0000 0017

11 0625 0003 0044 0004 0042

 15 0006 0055 0008 0053

Pricing errors for addtional variance swap rates

1 01 −00001 00018 00000 00019

3 01 −00000 00019

6 01 −00000 00019 −00000 00018

1 01 −00000 00019 −00001 00019

2 01 00001 00018

Table 8. Monte Carlo Smulations: 1-VS CEV-type Model with Observation of Additional

Variance Swap Rates.

Notes: This table shows the results of 1 000 Monte Carlo simulations, with observation of additional variance

swap rates, for the CEV model with 2-months time-to-maturity variance swap rate using an Euler discretization

of the process of 25 sub-intervals per sampling interval. The benchmark case employed consists in 6 years of

daily data, that is  = 1 500 observations sampled at the daily (∆ = 1252) frequency, while the remaining

columns include summary statistics for parameter estimates when additional variance swap rates are observed:

different columns report results for alternative configurations including subsets of 1, 3, 6, 12 and 24 months

time-to-maturity. The second column shows the true value 0 of the parameters used to generate the simulated

sample paths. The “Bias” column shows the mean bias of the estimated parameter vector, i.e., the difference

between the estimated parameters and the true values. The “Std. dev.” column shows the standard deviation of

the parameter estimates. The models and parameterizations are given in Section 3.
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