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1 Introduction

Rao’s (1948) score test and Silvey’s (1959) numerically equivalent Lagrange multiplier (LM)
version completed the classic triad of classical hypothesis tests (see Bera and Bilias (2001) for
a survey). Under standard regularity conditions, Likelihood ratio (LR), Wald and LM tests are
asymptotically equivalent under the null and sequences of local alternatives, and thus they share
their optimality properties.

A standard regularity condition is a full rank information matrix of the unrestricted model
parameters evaluated under the null. Nevertheless, there are situations in which this condition
does not hold despite the fact that the model parameters are locally identified. In non-linear
instrumental variable models, Sargan (1983) referred to those situations in which the expected
Jacobian of the influence functions is singular but the expected Jacobian of their derivatives
has full rank as second-order identified but first-order underidentified. In a likelihood context,
a singular information matrix implies that there is a linear combination of the average scores
which is identically 0, at least asymptotically. In their seminal paper, Lee and Chesher (1986)
provided several examples of this situation: i) univariate type II Tobit models with selectivity,
ii) stochastic production frontier models, and iii) mixture models. In all their examples, in fact,
the average score with respect to one of the parameters of the alternative evaluated under the
null is identically 0 in finite samples.

Lee and Chesher (1986) proposed to replace the LM test by what they called an “extremum
test”. Their suggestion is to study the restrictions that the null imposes on higher-order opti-
mality conditions. Often, the second derivative will suffice, but sometimes it might be necessary
to study the third or even higher-order ones. Lee and Chesher (1986) proved the asymptotic
equivalence between their extremum tests and the corresponding LR tests under the null and
sequences of local alternatives in unrestricted contexts. Using earlier results by Cox and Hinkley
(1974), this equivalence intuitively follows from the fact that their extremum tests can often be
re-interpreted as standard LM tests of a suitable transformation of the parameter whose first
derivative is 0 on average such that the new score is no longer so. In contrast, Wald tests are
extremely sensitive to reparametrization under these circumstances. Bera et al (1998) provide
some additional insights. In turn, Rotnitzky el al (2000) rigorously study the asymptotic distrib-
ution of the maximum likelihood (ML) estimators in those contexts. Finally, Bottai (2003) looks
at the validity of confidence intervals obtained by inverting the three classical test statistics in
this setup.

However, in the existing literature the nullity of the information matrix is assumed to be 1.

When the information matrix is repeatedly singular, in the sense that its nullity is two or more,



the number of second-order derivatives exceeds the number of parameters effectively affected by
the singularity by an order of magnitude. The unbalance gets worse when it becomes necessary
to look at higher-order derivatives. Unfortunately, in general there is no reparametrization
that leads to a regular information matrix. In particular, transforming each of the parameters
individually along the lines suggested by Lee and Chesher (1986) does not usually give rise to
a test asymptotically equivalent to the LR. On the contrary, different reparametrizations will
typically give rise to different test statistics.

The purpose of our paper is precisely to propose a generalization of the Lee and Chesher
(1986) approach which leads to extremum-type tests asymptotically equivalent to the corre-
sponding LR test.

To illustrate our proposal, consider the estimation of the parameter vector p characterizing
the probability density function (pdf) of the i.i.d. random vector y, f(y;p).! To keep the
notation to a minimum, we begin by considering the simplest possible case. Let us partition p
into two blocks: 1) ¢, which contains the p x 1 vector of parameters estimated under Hp; and
2) 6, which is the ¢ x 1 vector of parameters such that the null hypothesis can be written in

explicit form as Hy : @ = 0. In what follows,

L Oli(p)  Olog f(yi;p)
Spjl(p) - 8,0] - 803

denotes the contribution of observation 7 to the score with respect to p;, 1 < j <p+q. We

maintain throughout the assumption that the first p scores, sg;(¢,0), are linearly independent
under the null. In contrast, we initially assume that the remaining ones are zero.

Assuming that the variance of {sg;(¢,0),vech[0%;(¢,0)/0000']} has full rank under the
null, the number of different elements of §%1;/0000’ is (qgl)z q(g+1)/2 > q for ¢ > 1 even if
the Clairaut-Schwartz-Young theorem holds.

Let Vgg denote the asymptotic residual variance of vec(9%l;/0008’) after orthogonalizing
these influence functions with respect to sg;. In this context, we can define the extremum

statistic for a given value of 0 as

ET,(6) = 1[0'(9°L,/0006')6]°1(0'(0*L,,/0006")6 > 0]
o (0®0)Vee(0 2 0) ;
where n denotes the sample size, L, = >i';l; and 1[A] the usual indicator function that

takes the value 1 if the event A happens, and 0 otherwise. Importantly, the expected value
of 6'(0%L,,/06880")8, which is proportional to the second-order term in the expansion of the
log-likelihood function, is zero under the null rather than negative, as it happens in the regular

case.

! Although we could easily generalize our results to explicitly deal with dependent data by using standard
factorizations of the log-likelihood function, we maintain independence to simplify the expressions.



By analogy to the LR test, our proposed test statistic is simply the supremum of ET,(0)
over 0. In fact, under suitable regularity conditions, we show in Theorem 1 below that
LRy = 2[Ln(p) — Ln(p)] = sup ET,(0) + Op(n~1),
610
where p denotes the unrestricted ML estimator (UMLE) and p the restricted one (RMLE). In
what follows, we shall refer to the sup statistic above as the generalized extremum test (GET).

In the case of a single parameter, Theorem 1 collapses to the results obtained by Lee and
Chesher (1986) and Rotnitzky et al (2000). However, when the information matrix is repeat-
edly singular, our result provides an asymptotically equivalent but computationally convenient
alternative to the LR test, which requires the estimation under the alternative of a model whose
log-likelihood function is extremely flat under the null. In addition, the maximization of ET,,(0)
over @ takes place on a space of dimension ¢ — 1 because we can alter the norm of @ without
changing the value of this statistic, while the maximization of the unrestricted log-likelihood
function of the sample L, (p) is over a space of dimension p + ¢, which is usually much larger.?
Importantly, although the common asymptotic distribution of the GET and LR test is often non-
standard, there are examples, such as the multiplicative seasonal ARMA model in Supplemental
Appendix D.1, in which it will be y?-like.?

The structure of the paper is as follows. In section 2 we obtain our theoretical results
first in the baseline case in which all the underidentified parameters have the same degree of
underidentification r > 1, and then when the degree of underidentification may be different for
different parameters. Then, in section 3 we illustrate our testing procedure in detail through
three examples of interest in econometrics: 1) a bivariate generalization of the Tobit II model

with selectivity in Lee and Chesher (1986), 2)

, and 3) testing for predictability in a purely non-linear regression model. We assess the
finite sample performance of our proposals in those examples through an extensive Monte Carlo
analysis in section 4. Finally, we conclude in section 5, relegating proofs and additional results

to the appendices.

2 Theoretical results

2.1 Notation and regularity conditions

Consider the estimation of the parameter vector p characterizing the distribution of an

i.i.d. random vector y, where p = (¢',0’)’, where p = dim(¢) and ¢ = dim(@). This parameter

2Obviously, both procedures require the estimation of the model under the null, but the RMLE p is often
available in closed form.
3 A standard asymptotic distribution is usually associated to the existence of some regular reparametrization.



vector is such that ¢ contains those parameters estimated under the null hypothesis Hy : 8 = 0,
so that @ only appears under the alternative. We assume ¢ is always first-order identified.
Further, we assume that some elements of @ concentrate the singularity of the information
matrix. More specifically, we denote the log-likelihood function contribution from observation
i, li(p) = log f(yi; p) —which sometimes we denote as l;(¢, ) or simply /;— so that the log-
likelihood function of a sample of size n is L, = Y " ;.

As we mentioned in the introduction, we denote by p* the true value of the parameter vector,
while p denotes the unrestricted ML estimator (UMLE) and p, sometimes (a),, 0’)’, the restricted
one (RMLE). As usual, let |.| and ||.|| denote absolute value and Euclidean norm, respectively.
Finally, we denote by emin(A) and epax(A) the smallest and largest eigenvalues, respectively, of
a square matrix A.

In what follows, we assume:

Assumption 1 (Regularity conditions)

(1.1) p takes its value in a compact subset P of RPT that contains an open ball N of the true
value p* which generates the observations.

(1.2) Distinct values of p in P correspond to distinct probability distributions.

(1.3) Elsuppep i(p)]] < oo.
(1.4) E[0l;(¢,0)/0¢-0l;(¢,0)/0¢'] has full rank under the null.

The compactness of P in Assumption 1.1 together with the continuity of [;(p) and As-
sumptions 1.2 and 1.3 guarantee the existence, uniqueness with probability tending to 1, and
consistency of the UMLE of pg, p (Newey and McFadden 1994, Theorem 2.5). The “open ball”
part of Assumption 1.1 is just used to simplify the expressions and their derivation. Extensions
to situations in which the parameters lie at the boundary of the parameter space are feasible,
but at the expense of complicating the notation and blurring the message of the paper. Finally,

Assumption 1.4 guarantees convergence of the RMLE at the usual n"3? rate.
2.2 Repeated singularity of the same order

We first consider the case in which ¢; elements 6, 61 say, are first-order identified, while
the remaining ¢, elements 6, are r*"-order identified, a definition that will become precise after
we introduce Assumption 3 below. Hence, 8 = (6}, 8".)’, where ¢; = dim(0;) and ¢, = dim(8,.),
so that ¢ = ¢1 + ¢r, and the information matrix under Hy is such that its top (p+q1) X (p+ q1)
block is regular and the rest contains zeros, so that its nullity is precisely g¢,.*

Let j € NP4 denote a (p + q) x 1 vector of indices, j! = [[?47 5!,

1 §v+all; : LI
i=1

bl
L (p) 5! dp3

4One often needs to reparametrize the model to make sure it satisfies these conditions, an issue mentioned in
the introduction that we discuss in detail in Supplemental Appendix B.1
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where ¢, is a vector of m ones,

s61(0) = “5 ). s0,i(p) = o). 840() = 3 s0i(p) and Saya(p) = 3 sl
=1 =1

Throughout this subsection, we assume the following conditions hold:

Assumption 2 (Regularity conditions on the derivatives of the log-likelihood function)
(2.1) With probability 1, the derivatives lzm (p) exist for all p in N and v, j < 2r and satisfy
E[suppepr ]ll[fi] (p)|] < co. Furthermore, with probability 1, f(y:,p) > 0 for all p € N.

(2.2) Forr <, j <?2r E{[lgj}(po)]z} < 00.
(2.3) When v}, j = 2r there is some function g(y) satisfying E[g*(y)] < oo such that with

probability 1, |L (p) — L (p)| < |lp — p/|| i 9(y:) for all p and p' in N
(2.4) For all j1,j2 € {(e,04,), (0p1q,,0,) |th g€ = 1,t) Jo, = 7,6 € RPTO g € R™ }, we have

o B S6.0]-10,0)] 9.0 <
We borrow Assumptions 2.1-2.3 from Rotnitzky et al. (2000) with some modifications. The
main difference is that they require (2r + 1) differentiability for the Taylor expansions they
use to analyze the distribution of the MLE, while we only need 2r*" differentiability to study
the asymptotic distribution of our tests.
Assumptions 2.1 and 2.3 guarantee the existence of derivatives and the stochastic equiconti-

nuity of the sample mean of lgj](p) with ¢/, j < 2r. In turn, Assumption 2.2 allows us to apply

P+a
a central limit theorem to lz[-ﬂ (pg), while we use Assumption 2.4 to prove that the estimated co-
variance matrix of the influence functions under the null converges to the true value at the usual
n~3 rate. This last assumption is not in Rotnitzky et al (2000) because they were interested in

estimation, not testing.

k times

and define

Let 0??]“ =0,®60,®..Q 0, denote the k" order Kronecker power of the ¢ x 1 vector 6,,
*Ln(p) { 9
= vec

/
ak—an(p)
aa?k 00, 80§(k_1) .

Moreover, let I denote the asymptotic covariance matrix of the relevant influence functions,

which may be understood as a generalized information matrix. Specifically,

I(#) = | 19:¢(¢) lo16,(®) Ipie.(¢) | = lim Var NG So,n(¢,0) $,0 5,
Ig.¢(®) lo.0,(9P) Io,0,.(¢) 9" Ly (¢, 0)/00%"

so that

_ | Ve,0.(@) Voi0.(P) | _ | lo160,(®) T610.(®) | | lo1p(®) | -
Voo(9)= Vo.0,(®) Vemr(¢)}_{f¢9r01(¢) ferar(éb)] [Ierzb(ﬁb)}l"&é((ﬁ)[jwl(@ Ioe,(¢)

coincides with the asymptotic residual variance of Sg,, (¢, 0) and 0" L,,(¢,0)/00%" after orthog-

onalizing these influence functions with respect to sg.



Assumption 3 (Rank conditions for ¢, > 1)
(3.1) With probability 1
irio.1,(.0)
06
for all v jo, <7 —1 such that jg, = (j1, .-, Jg,.)"-
(8.2) For all 8, € R : 0, # 0, the asymptotic covariance matrixz of the (scaled by \/n) sample
averages of

=0

{S¢i(¢a O)a Sel’i(¢’ ) 0®r,8laé§;)}

has full rank.

Intuitively, the rationale for looking at

P 3;@ .S L’ (ﬁ sz) 0"li(¢,0)
96" o, =ar Jo.t iy’ 06,
is that it coincides with the r*-order term in the expansion of the log-likelihood function. In
that regard, note that although the higher order derivatives 8"1; /002" will usually contain many
repeated elements because of Clairaut’s theorem, the rank deficiency condition in Assumption
3.2 applies to the inner product of 8" with those influence functions, so the requirement is that
those linear combinations of the elements in 8"1;/06%" be linearly independent of sg;(¢,0) and
sg,i(¢,0).
Finally, let

65" D, () Dl ()65

n ara = — . ) 1
OO @) = Gy o (8) — Voo, (Vi b, (6)Vor0, (D]6Z" W
where
0" L, (o,
Drn(¢) = 80(;&0) - V9r91(¢)V0191 (d))SOln(d)? )

is the residual in the least squares projection of 8" L, (¢, 0)/00%" on Sg,, (¢,0).°
Theorem 1 If Assumptions 1, 2 and 8 hold, then:
LR, =2[L(p) — La(p)] = GET, + Op(n~ %),

where

{ Qn(0 r,q}) if r is odd,

GETn = Seln((ﬁ, 0 9191(¢)591n(¢7 0+ sup Qn(0r,)1[0°" Dy () > 0] if 7 is even.

1 6,#£0

*Importantly, Assumption 3.2 guarantees that the denominator of @, (8., ¢) is pOblthG for all 8, # 0 because
Voo is the variance of the residuals from the least squares projection of sg, (¢,0) and a®79 (¢,0) on sg(¢,0)
while Vo, 0, — Vo 91Ve_191V919 is the residual variance of the projection of the second resuiual on the first one,

which by the Frisch-Waugh theorem coincides with the residual in the projection of (¢, 0) onto the linear

Spa‘n Of Sd’(d)v ) and 8‘91 (¢7 )

6®T9



An important implication of Theorem 1 is that the rate of convergence of the difference
between the LR and GET tests is inversely proportional to the order of identification.

Expression (1), which can be understood as a generalized Rayleigh quotient evaluated at the
restricted ¢~ x 1 vector 82", does not effectively depend on 6, when the nullity of the information
matrix is 1, so Theorem 1 generalizes the results in Lee and Chesher (1986) and Rotnitzky et al.
(2000) by allowing for the presence of the “nuisance” parameters ¢ and 0; that can be estimated
at standard rates.

Since ||@,|| is irrelevant, we can without loss of generality set 6, to lie on the unit circle.
This allows us to intuitively link Theorem 1 to those earlier results when ¢. > 1. Specifically,
consider the reparametrization 8, = n\, with A € R% ||A|| = 1 and n > 0, so that n and A
represent the magnitude and direction of the parameter vector 6,., respectively. Given that

sup L,(¢,01,An) = sup L,(¢,601,6,),
¢,01,|A[|=1,n>0 $,01,0-
we could rewrite the null hypothesis as Hg : 1 = 0,7 = 0, where X is a nuisance parameter that
only appears under the alternative. If we considered the r*" derivative of I;(p) along a specific
direction A, which would effectively coincide with the 7" derivative with respect to 7, then we
could directly apply the Lee and Chesher (1986) approach to obtain the relationship between
the LR and ET tests along that direction. Next, we could look at the suprema of those tests
over all possible directions, as suggested by Davies (1987), which would effectively yield GET,,.

Nevertheless, this intuitive explanation in terms of 7 and A has some limitations. First, Lee
and Chesher (1986) would yield a pointwise result for a given A, while Theorem 1 relies on
uniform convergence. More importantly, Davies (1987) method is designed for models in which
the log-likelihood function is absolutely flat for some parameters under the null, so regardless
of its analytic nature, no higher order derivatives will provide moments to test. In contrast, we
consider situations in which the log-likelihood function written in terms of 8 only has a finite
number of zero derivatives, so a test statistic can be based on the first round of non-zero ones.
In this regard, the underidentification of A is an artifact of the 8, = nA reparametrization that
would persist even if the information matrix had full rank, in which case the supremum over A
of the test of Hy : 81 = 0,n = 0 will yield the usual LM test. In any event, in the next section we

shall derive GET,, in a more general context without resorting to any such reparametrization.

2.3 Repeated singularity of different orders

Theorem 1 provides a substantive generalization over existing results. Specifically, it covers
situations in which all the partial (cross) derivatives up to a given order are identically 0. It

also says that tests will be one-sided for even ordered derivatives and two-sided for odd ordered



ones. However, there are situations in which the degree of underidentification of the different
elements of 6 is heterogeneous.

In this section we present the most general case, which is characterized in terms of less
primitive conditions than the ones presented in Assumptions 2 and 3. To do so, we need to give
a more general interpretation to some of the objects defined in section 2.2.

Specifically, letting cpi(¢) and cgi(¢) be p x 1 and m x 1 (with m > ¢)° sequences of
measurable stochastic processes —not necessarily the score—, respectively, define

0= [ 18] S0 wan st0-[ 28]

Also let

[ (@) +2(0)
Aoo=| 750 |

where Ay (6) € RP and Ag(6#) € R™ are non-random vector functions, and

| Zpp(@) Zge(d)
1(¢) = [ Zop(P) Zoo(9) ]

denote a non-random symmetric (p + m) x (p + m) matrix (with Zge being a p x p matrix).
Finally, in what follows, if we do not specify the argument of either S,, S and Z, the default
argument is ¢*.

With these notational conventions, we state the following high-level assumption:

Assumption 4 (Quadratic approzimation) Let

Ln(¢,0) — L(¢",0) = Sp(¢")' A (¢, 0) — %nx (0,0)Z(")A (¢, 0) + Ry (¢, 0)

where Ry, (¢, 0) is a remainder term. Then, assume:
(4.1) X (¢, 0) is continuous in p, and such that (i) A (¢*,0) =0 and (ii) for all € > 0,

inf A(P,0)|| = 6¢ for some d. > 0.
I(¢,0)—(¢",0)||>¢ [x(¢.0)l J

(4.2) nféSn(q')*) 4, S(@*) for some zero-mean R -valued Gaussian distribution that satisfying

E[S(¢")S'(¢")] = E [i(¢7)si(¢")] = Z(9").

(4.3) I(¢*) satisfies 0 < emin[Z(¢")] < emax|Z(@*)] < 0.
(4.4) The remainder term R, (¢, 0) satisfies

R, (¢,0)]
sup 7 = Op(l)
(¢.0)€P:[|(¢,0)—(¢",0) | <7, L + 1 [|[A (&, 0)]]

for all sequences of (non-random) positive scalars {7, : n > 1} for which ~y,, — 0 as n — co.
(4.5) If nz\ (¢, 0n) = O(1), then Ry, (¢p,0) = Op(n=?) for some a such that 3 > a > 0.

SWe explicitly do not consider cases in which m < ¢ since they may cause underidentification, but not just of
finite order.
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Theorem 2 Under the null, Assumptions 1 and 4.1-4, there exist compact sets ® and © such
that
(*,0) € int(PxO) CPxOCN, (2)

and then, o _
LR =2[L,(¢,,0,) — Lp(¢,,,0)] = GET,, + op(1),

where
GET, = sup{2So.n(e) — Tos(9")Tph(d")Spn(¢)) Ao (6)

0cO
—nXg (8) [Zoo(¢") — Zog (#") L5 (0" ) Zpo(¢")] A (6)}-
If, in addition, Assumption 4.5 holds, then
LR =2[L,(b,,0,) — Ln(b,,0)] = GET, + O,(n~%).

bla,bla

3 Examples

Given that LM tests only require estimation of the model parameters under the null, in
the late 1970’s and early 1980’s they became the preferred choice for many specification tests,
as reflected in the surveys by Breusch and Pagan (1980), Engle (1983), and Godfrey (1988).
In addition to computational considerations, an important advantage of LM tests is that they
are often easy to interpret as moment tests, so that rejections provide a clear indication of
the specific directions along which modelling efforts should focus. As we mentioned in the
introduction, though, standard LM tests cannot be computed when the information matrix is
singular. In what follows, we discuss the application of our proposed tests as specification tests
of two models of empirical interest, namely, a bivariate generalization of the Tobit IT model with
selectivity in Lee and Chesher (1986), and THE SNP. In addition, we consider a third example in
which the objective is to detect non-linear predictability. Moreover, in Supplemental Appendix
D we consider testing for multiplicative seasonal serial correlation in univariate time series as

well as testing a multivariate normal copula against a Hermite expansion copula.

3.1 Testing for selectivity in a bivariate type II Tobit

Consider the following bivariate generalization of the type II Tobit model in Lee and Chesher
(1986):

y1 = 1[y; > 0]
y2 = y51[y7 > 0]
ys =y31ly; > 0]
where
Yl =X +ul U1 1 V1/P4 2/ @5
ys = xhpy +ug  with ug | ~N |0, | Y1,/ 4 ©6/PaPs
ys = x4p5 + u3 u3 V2/P5  Per/PaP5 P5



(see Amemiya (1984) for a taxonomy of Tobit models). Under Hy : 91 = ¥9 = 0, there is
no selection bias, and one can jointly estimate ¢,, ¢35, ¢4, @5 and g by Seemingly Unrelated
Regression Equations (SURE) using the non-zero observed values of y3 and y3, while ¢, can be
obtained from a univariate probit for yj.

Observation 4’s log likelihood contribution is

(1 = y15) log ®(—x)¢01)

x); v’ “p)u
+yu{—;1og[<1—so%>so4w5}—éu;«o)r—l(so)ui(sowlog@ it v )L i)

V1—v'(0) Y p)v(0)

where

, _ | Y2 — X5 _( V1P _ P4 Pev/P4aPs
uile) = < Y3i —X§i<P3 > - vle) = < 192\/S05 and Y(p) = Pe+/PaPs Ps '

Consider the case when x1; = 1 and both x9; and x3; contain a constant term. Straightfor-

ward algebra shows that if we evaluate all the scores at ¥ = 92 = 0, then

S91 — \/904M1 (901)58021 =0,
899 = W/ 905M1(901)$<P31 =0,

where ¢, and ¢3; are the constants in the conditional means of y5; and y3;, respectively and
M (py) = @1 (z10)0(2101). Such a singularity also arises when x is a set of dummy variables
and X9 and x3 contain the same set of dummy variables. Intuitively, the problem occurs when
Heckman’s (1976) selectivity correction is perfectly collinear with the regressors that appear in
the conditional means of y]; and y3,.

In this case, the three elements of the Hessian corresponding to 1; and 99 are all 0 too, so we
need to do a second reparametrization to get the desired results. We can show that a suitable

combined reparametrization would be

01 = ¢

a1 = b1 — VD4 Mi(1)031
P22 = P22

P31 = G351 — /05 M1(61)032
P32 = P32

p1 = b4+ 04 Mi(61)[Mi(¢1) + ¢1]0%

o5 = 5 + b5 M1 (1) [Mi(dy) + 61163

Q5 = b6 — BIM1(d)) + ¢1]M1(d1) (d6031 + P03 — 2031032)
% =03

o = O39.
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Then, we can show that

ot

i J
003,005, _y

=0, i=0,1,2, j=0,1,2, and 1<i+j<2.

In addition, we can also show that the asymptotic variance of

oL ol a1 ol ol o 03 31 31 231

and

0P, Oy’ Opy’ 0py’ O¢s’ g’ 003, 963,003 0031003, 8603,
has full rank.

3.2 Gallant and Nychka’s semi-nonparametric MLE

In this note, I use HC for the high level conditions and A for primitive assumptions. The

pdf is
oo {r[(uz)})
flyie)=In(y—p10) | e+ [{P [u; 9]} QS\[/ZO%‘PQ] du

where

P(U; 19) =1+ 191H1(’U,) + 192H2(’U,)

and ¢ is a known small number to bound the density below from 0 (as a proof tool only,
see Gallant and Nychka (1987) for details).” In what follows, to ease the presentation we
ignore £. Assuming that the paremeter space for g is [—@;, ;] X [£2,¢2] x [—19,9)%, after
some reparameterization from (¢, ) to (¢, 0) as shown in Appendix B, we can show that at

(¢,0) € ® x 0, and letting u = (y — ¢1)/+/Pa, we will have that the score with respect to ¢,
ol 1 ol 1

— = ——H(u), =— = ——Hoa(u),
¢y /P2 by V2
while for those in 8, the relevant quantities are
162 9% 19 V6
s = —V6H o = —2V3H. d ——2 =-—Hy(u)®

Letting @ = (y — ¢1)1/ ¢ and Hj(u) = 321", H;(u), we can easily show that the LR test is
asymptotically equivalent to the usual Jarque-Bera test, i.e.

_ 1Hs(a) n 1 Hy(a)

+ 0p(1)

To prove this, we first verify the high level assumptions.

"In practice, we can ignore e for the purpose of our testing procedure. To get the GET, we will ignore ¢ to
simplify the notation and calculation, but the same method applies with € > 0.
8Since clearly

o ol 2l 9%

06, 90> 967 967
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*HC 1: It’s trivial.
*HC 2: Let (¢, 0) = Ep- [I(¢,0)]. We first prove a uniform convergence result:

sup
e

%Ln(a) — 50(9)‘ 20 (3)

Recall that the paremeter space for g is [y, 91 X [, @] X [—9,9])%. Then, we have

1o fr((ne))

JAP [w; 91y 6 [u; 02, o] du

I(¢,0) =log s fn (y —@1,09) | €+

> log {fn (y — ¢1,02) €}

s (I +20)”
2£2

+ Co

where C’s are known constants that does not depend on g and y, and where the first inequality
follows from the monotonicity of the logarithm, while the last one from the parameter space.

Also,

0oy

f {P[u & [u; 02, o] du

I(¢,0) =log < fn (y — ©1,92)

u—@{1+mﬂﬂ@ﬁ)+mﬂx

1+ 92 + 93

@ »

<log{fn(y— 1. 92)} +e+

1 (y — ¢1)? { y— y— 901
= ——log(py) — 4 11+ 9 Hy + Do Ha
2 8 =, By ) e

2

_ 2
5 )

+ 2 (e +C
V2 \ /7,

where the first inequality follows from log(x) < z — 1, and letting

+ 91
V¥

L 5|y
—3 log(g,) + 41+

_ 2 2
_ 3 _
y+o LY Y+ el
VP | V2 \ V&,

where C is another constant, it is then straightforward to notice that |[(0)| < d(z) and E||d(z)|] <

+<{149
292

00. Thus, by Lemma 2.4 in Newey and McFadden (1994),

1
sup| 1, (0) - fe)] 2 0 (@
o |1
as desired. Moreover, for all € > 0,
lo(¢*,0)>  sup  lo(o) (5)

lo—o*||>€,0€P

12



(i.e. well seperated maximum), which follows from the fact that @* is the unique maximizer,

lo(o) is continuous and the parameter space is compact. Since g and p are one-to-one continuous
. A P

mapping, we have p,, — p*.

!/
To verify HC 3, let S¢ = <\/1%H1<u*)’ @Hﬂu*)) , Sg = (Hz(u*), Hy(u*)) and Ag(8) = 0

and Xo(6) = (~2v/301605, (01 — V503)).
7= [Ig‘f’ Ige ] :diag( T 5 12,23,I4>
where 7, = Var (Hy). Note that (¢, 0) is the unique minimizer of A(p), thus HC3(a) holds.
*HC3(a): Since A (¢, 0) is a continuous function and {p € P : || (¢,0) — (¢*,0) || > €} is
a compact set, it sufficies to check that (¢*,0) is the unique solution to || (¢,8)|| = 0. First
notice that ||\ (¢, 0) || = 0 is equivalent to A (¢p,0) = 0. Thus we need

¢ — ¢* = 0; —2v/30,0, = 0; —/603 +£94—0

By the last two equation we have 1 = 03 = 0 and then by the first equality ¢ = ¢*. Thus, we
have the unique solution is (¢*,0).
HC (b) (c) hold trivially. To verify HC 3(d), first note that by a 8-th order Taylor expansion,

we have

sup | Rn (¢, 0)] — o,(1)
(¢,9)€PIH(¢70)*(¢*70)||§’Yn ma'X{17 n‘ ’d) - d)*‘ ‘27 TLH%’ n0%9§7 ne%} !

we can also verify that

max{1, n|l¢ — ¢*||* nb}, n6163, nb3} _

max 1 o(1)
(0.0)EP:[|(#,0)—(¢",0)[| <, (14 ||n2X(0,0)]])?
thus HC3(d) holds.
*HC 3(d): We want to show that
R, (¢,0
. LACTI I
(6.0)€P:(|(6,0)—(¢7,0)l|<7,, (1 + [[n2 X (¢, 0) |])?
We first show that for all v,, — 0,
R, (9,0
sup [n (9,6)] = 0p(1) (6)

(6,0)€P:]|(6,0)—(¢*,0)]| <, (&, 0)

where h(¢, 8) = max{1,n||¢ — ¢*||?, nb},nb26%,n03}. Doing a eigth order Taylor expansion, we

get 9 15
Ln(p) — Ln(9",0) = Z Ai + Z B;
=1 =1
where
M= 5209 A= Y B[00 nlo—61)7 (63— 65" = (6~ 8) Taol s~ ")

J1+j2=2

13



Ay = L2008, A, = B[1059] g = L1 [(1[02:4’0})2] no®:
2
2
As = L0292 Ao = E |:l[03,4]} noi = 1p [(1[03,2}) ] nbi;
2
Ay = L02119,0, A= E [ﬂo%ml} n626% = —%E [(1[0271’11) } n6262;
Ay=E [ﬂ“%‘*ﬁl} nt0% = —E {5[02,47015[0372}] @402
1 . . o N N
B, = Zﬁ <nL£€1,J270] - E [Z[Jldzao}]) n(p; — @31 (g — ¢3)72

8
By = Z {nLgl’Jz’O}} n(¢1 — 61)" (92 — 63)”
J1+j2=3
7

_ 1 02,8,0 02,8,0 8 _ 1 0, 0 _ 1 03,3 3
Bg_<nL,g2 = p [0 oty 5= 30 { Soaa L vl p = { rl | v

Jj=5

8
1 1 A 4
Bg = <L,[$3’4] _E {l[osA}}) n@é, B; = E :{LL?&J]} nQJQ
n n

J=5
3

By — (i 1027 _ [ﬂ“%mlD n9363, By=Y {\}ﬁwm} !

=2
5

8
1 , .
Z L[Oz, ,J]} nf165, By = {ngu,ﬂ} Vnb,0s

Jj=4

8 8
1 . .
Blg = E {nLLO%l’]]} neleé;Blg =
j=6

Z {iL[r?z,ijz} _ 1(472)E [l[027472]} } ngjil@%ﬁ

J1+72=5
J1,J222

8
1 i i a1
Bu= Y (S0t - 67 0 - ap)Popel
lil=2
min(j1+j2,j3+ja) >1

e
with p between p and (¢*,0). Note that S| A; = $LM,(0) following from Faa di Bruno’s
formula, and thus by defnition, R,(0)= 2221 B,. Note that in B; terms, the caligraphic
brackets implies O, (1) and round brackets implies o0,(1), thus it’s easy to see that (6) holds.

Then we verify that

max hgd)’ 9) = h$¢n7 0n) =0(1) (7)
(GO)P:(6.0)-(@" 0| (1 + |03 A (,0) )2 (L+ |03\ (.0, [])?

where (¢,,,0,) is the maximizer. If h(¢,,,60,) = O(1), (7) holds trivially. If h(¢,,,0,) = O(1),

we can find a subsequence {u,} of {n} such that one of the follows five equations hold
h(¢un un) - unal un92 Un — (8)

14



Wby, 0u,) = tn ||y, — &%, || — o0 (9)

h(¢,, ,60u.,) = un01 00 (10)
Wy, Ou,) = unbs,, — 0 (11)
If (8) holds, then
W, 0u 003 0,050
h(¢7 0) - (¢un7 n) < Unby n "’ 2,Un — O(l)

max —
(#.0)€P:[(6.0)—(6",0)|<7,,, 1 + n[|A(D,0)]2 14 un|| Ay, 0u,)|1* — 1+ 1206263

Similarly, if (9) holds, then

12
h 0 h 70u Un Up u
max (¢7 ) 5 — (¢un n) 2 S H¢1, n ¢11 nH 5 O(l)
(@0)€P:|(98)=(#" 0I<7u, 1+ 0 A (¢, 0)[F 1+ unl|AM(Dus Ou)l* 7 1 4wy, ||y, — D%, ||
If (10) holds, then
v u ‘91u U, 05 i
Unel uneg Up . D) . < ungiun = eg,un < 9 01 Up 201 A
1,un
Thus 3N s.t. ¥n > N, we have 63, < 0%, and thus (—\/693 + @91“ > Y844 Then
h(¢, 0. un0s unb¥
(¢un n) 5 < 1, n 5 S 1 n 5 — O(l)
1+“nH/\(¢uanUn)H 1+ uy (—\/693—1—@9‘11) 14 uy (1—\/5;9‘11)
If (11) holds, (if 61, =0, then (12) holds trivially; if 61, # 0 ) then
\ /unel A un92 .
u'flel un92 Un 9 < une%,un = 9%, < 01 un62 Up — 92 JUn,
1Lun
Thus 9N s.t. Yn > N, we have 9‘117% < 037% and thus }\/603 — %0‘%‘ > Ssﬁ%M. Then
h ,Ou Un9 U u?’LH ,U

<
7 > 2
Lt ][ A (b, 00l ~ ) <_\/69§+§0‘11) L (3563,

Thus by Theorem 2 and Z;5 = 0, we have

LR, = sup {255 .20 (8) — g (8) TogAe (6)} + op(1)
€
with Sp = (Hz(u*), Hy(u*)) and \g(0) = (—2\/39102, —/603 + @9%). First, it’s easy to see
that

sup {259 A0 (8) —nXo (8)' Too o (6)} < S Tgq So.n
€

Second, solving for

—2\/39192 = n_ng(u*) + Op(l)
i+ it = T o),
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one feasible solution is

1
1 (9 _1Huw*)\1 _ 1 ([ g Hy(u*)\1 : .
T n8<76n2 Y =n"1 (= if Hy(u*) >0
Q! = o — 5 Ha(®) _Hg(u")
1 _1 n _1
n 4 1V3 T =N 2 V3 I lf H4(u*) <O
1 —LHy w2 —1Hg(w*)\2
2\/5(—671 2 4V4 ) 2\/§(\/6 V2 >
and
5 -3 H3(W®) 3 Hg(u™)
n_s - r=n"1 Y3 rif Hy(u*) >0
9 —2Huw*)\4 9 Hy(w*)\14
0} = 2V3( g 2 G 2 2V3( 5 Vi
_1 -1 _1H4(u*) 5_ _1 _1H4(u*) 2 . *
ot () = () <

and 28} , A2 (87) — nXs (81) Toos (87) = 83,75, S, + 0p(1). Thus, we have

- Hj(u*)? ol Hy(u*)?

LRy, = Sp . ToaSon+o0,(1) =
0.n*66 X0, (1) Ts 7

+ 0p(1)

Finally, noticing that n~'Hsz(u*)? = n~'Hs(@)? + 0p(1) and n~tHy(u*)? = n~ Hy(@)? + o0p(1),
we end up with
1 Hy(@) Hy(a)

LRn:TL T3+R_IT4+OP(1).

3.3 Purely non-linear predictive regression

Consider the following extension of the nonlinear regression model in Bottai (2003), in which
the data consist of n observations y = (y1, y2,y3) drawn from a joint distribution characterized
by

f(y:0) = fyslyr, y2; ) f(y1,92),

where f(y1,y2) is fixed and known, while

1
F(ysly1,y2;0) = ¢ |ys — exp (01y1 + O2y2) + O1y1 + O2y2 + 5933/% ; (13)

with @ = (61,02)" unknown. This model has an interesting interpretation in the context of
predictive regressions. Specifically, a Taylor expansion of the exponential function immediately
shows that the mean predictability of y3 does not come from the terms that also enter outside
the exponent (viz y1, yo and y3) but rather, from higher order powers of the two regressors
as well as their cross-products. Therefore, model (13) provides an interesting functional form
for predictive regressions of variables such as financial returns when a researcher believes in
predictability but not through standard linear terms (see for example Spiegel (2008) and the
references therein for a discussion of return predictability).

In the case of a single regressor, Bottai (2003) showed that the nullity of the information
matrix is one when the regressand is unpredictable. Not surprisingly, the information matrix

has several rank deficiencies under the null hypothesis Hy : @ = 0 in the multiple regressor case.
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The relevant derivatives of log-likelihood function with respect to 61 and 0, evaluated at the

null hypothesis are

0l 0l
001 0, 90y 0,
2 2l 021
£ ~1), — = —1), ——==0
oF yi(ys — 1) 96,00, y1y2(ys — 1) 02
and
Bl
= = —1).
263 Ys(ys — 1)

Therefore, we have a situation in which the degree of underidentification is different for the
two regression coefficients. But since Assumption 4 is satisfied with C' = {(2,0), (1,1),(0,3)}, a

straightforward application of Theorem 2 implies that

LR, = GET,, + Op(n"5)

L Ly Lo Itz 01
= sup 2(62,0102,03) | LY | —n(62,0100,03) | Iy Iy Is || 6162 | +0,(n75), (14)
e 03] Is1 Iz Is3 03
where
Iy Lo I3 1120
121 122 123 = lim Var \/ﬁ l[l’l]
I3y I3z I33 S 1[0,3]

Unlike in the two previous examples, in this case we would need to obtain the maximum with
respect to 61 and 05 over the entire Euclidean space of dimension 2 rather than over the unit
circle. Nevertheless, we can provide a much simpler but asymptotically equivalent statistic. Let

p1 = Vn(0FT)2, po = /nbFTOLT and ps = /n(0FT)3. Tt is then straightforward to show that
13 2
nepips = pa-

As a result, we must have that either p; or ps are negligible when n is large because p is Op(1)

from Lemma ?? in Appendix A. If p; is negligible, then (14) is asymptotically equivalent to

(1,1]
_ 3y [ Ln _ 3\ [ I22 I3 0102
supETy, = 0511’19;; 2(60162,05) ( ng] ) n(0162,05) Iy Iss 9%

-1
L oony sy [ L2 12 A
- (Ln ’ Ln ) [0,3] :
n I3y 33 Ly
If instead p3 is negligible, then (14) becomes asymptotically equivalent to

Lo I I 62
ET5, = sup 2(62,60,0 " —n(62,0,0 ( 1 12)( 1 )
suplitin = pup 201 12)(112’” N O

_1 { (L2 @ - nart o)

1[L20 — 1ot s op b
Iy Iy — Lol Ln 12722 Tm ]

n
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Consequently, we could obtain an asymptotically equivalent statistic up to a term of order o,(1)
by simply retaining GET,, = max {supET1,, supETs, }.
In addition to computational advantages, it turns out that the asymptotic distribution of

our test is easy to obtain. Specifically, let

[2,0] —17[1,1] [1,1] [0,3] —17[1,1]
Zln _ ni% Ln 112-[22 Ln , Z2n _ nié LT} and Zgn _ ni% Ln _[32_[22 Ln 7
\/111 — 2155 I V122 \/133 — I3l g
where
Zn ; A 0 1 0 73
Zon - Zy ~ N 0 ; 0 1 0
Z3n Z3 0 713 0 1
and
, N3 — Lialy' Io

13 = .
\/111 — T2 155 I \/133 — I3ol55' Ing

Then supETy, = Z3, + Z3, and supETy, = Z3, + Z3,1[Z1, > 0]. As a consequence,
GET, % max{Z21{7, > 0}, 72} + Z2.

In other words, the asymptotic distribution of GET,, will be a x2 50% of the time (when Z; < 0)

and the sum of a x? with the largest of two other possibly dependent x?'s (when Z; > 0).

4 Simulation evidence

In this section we study the finite sample size and power properties of the testing procedures
we introduced in section 2 by means of several extensive Monte Carlo exercises. We do so in
the context of the three different examples discussed in the previous section. For each distribu-
tional assumption, we generate 10,000 samples of size n and compute the parameter estimators

10 When no nuisance parameters are involved, we compute the exact finite sample

and tests.
distribution using 10,000 simulated samples. Otherwise, we employ a parametric bootstrap pro-
cedure based on the same number of simulated samples, so that we can automatically compute

size-adjusted rejection rates, as forcefully argued by Horowitz and Savin (2000).

4.1 Bivariate type II Tobit

9Tf we further assume that the regressors y; anf y» are two independent normals with 0 means and variances
o? and o3, respectively, then Z;, Zo and Zs will be three independent N(0,1) random variables.

0 Given the number of Monte Carlo replications, the 95% asymptotic confidence intervals for the Monte Carlo
rejection probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels.
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4.2 Gallant and Nychka’s semi-nonparametric MLE

4.3 Non-linear predictive regression

As alternative hypotheses, we consider 6; = 0.3, 02 = 0 (H,1) and 61 = 0, 2 = 0.5 (Hgyz) in
specification (13). And like in the skew normal example, we can compute exact critical values for
any sample size to any degree of accuracy by repeatedly drawing i.i.d. spherical normal vectors
(y1, Y2, y3), which effectively imposes the null hypothesis.

In Table ZZZ we compare the results of the two versions of our tests discussed in section 3.3
with the GMM test mentioned at the end of section 2.3 and two simple alternative procedures.
First, a standard LM test based on pseudo-Gaussian ML that checks the joint significance of
y%t and y1,y2¢ in the OLS regression of y3; on a constant and these two variables, which are the
transformations of the predictors missing from the part outside the exponent in the conditional
mean specification. And second, a closely related LM test based on pseudo-Gaussian ML which
augments the previous regression with the following four cubic terms y3,, y3,yo:, y1:y5, and y3,.
We refer to these tests as OLS; and OLSs, respectively.

As in previous examples, the first three columns of Table ZZZ report rejection rates under
the null at the 1%, 5% and 10% levels for n = 400 (top) and n = 1,600 (bottom). The
results make clear that our simulated critical values are reliable for both sample sizes. In turn,
the last six columns present the rejection rates at the 1%, 5% and 10% levels for the two
previously mentioned alternatives. Once again, the behavior of the different test statistics is in
accordance with expectations. In particular, our proposed statistics are the most powerful in
both cases. Part of the reason has to do with the fact that the linear regressions only provide
an approximation to the true non-linear conditional expectation. However, the fraction of the
theoretical variance of y3; explained by v2,, y1iy2t, Y3, Y1¥2t, Y1:ya and y3, is essentially the
same as the fraction explained by the true conditional mean in H,s. As a result, the superior
power of our tests relative to OLSy comes from the reduction in degrees of freedom.

Given that in this case our test has a relatively standard asymptotic distribution —namely,
a 50:50 mixture of x3 and the sum of x? with the larger of two other independent y¥s— we can
also compute Davidson and MacKinnon (1998)’s p-value discrepancy plots to assess the finite
sample reliability of this large sample approximation for every possible significance level. Figure
1, which displays those plots for the two sample sizes we consider, confirms the high quality of
the asymptotic approximation.

Finally, our results indicate a .94-.95 Gaussian rank correlation between our proposed test
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statistic and the LR across Monte Carlo simulations generated under the null, which is in
line with our asymptotic equivalence results in Theorem 2. At the same time, they con-
firm that the LR test typically takes about 200 times as much CPU time to compute as the

max {supETy,, supETs,} version of our test.

5 Conclusions

We propose a generalization of the extremum-type tests in Lee and Chesher (1986) to models
in which the nullity of the information matrix under the null hypothesis is larger than one. In the
case of a single singularity, our results are consistent with theirs, as well as those in Rotnitzky et
al. (2000). However, when the information matrix is repeatedly singular, our procedures provide
a computationally convenient alternative to the LR test. Our proposed test statistic is a sup
type test over a space whose dimension is the nullity of the information matrix minus one when
all parameters show the same degree of underidentification, and the nullity otherwise, while
the maximization of the original log-likelihood function is over a space of the same dimension
as the vector of parameters, which is usually much larger. In addition, the fact that several
log-likelihood derivatives are 0 under the null implies that the LR requires the estimation of all
the parameters that appear under the alternative in a model whose log-likelihood function is
extremely flat. Intuitively, the substantial computational gains that we find arise because GET
is a LR-type test that compares the log-likelihood function under the null to the maximum of
its 2rt"-order expansion under the alternative.

Interestingly, the asymptotic distribution of our test statistic is similar to the asymptotic
distribution of the usual overidentification test statistic in a GMM model in which the expected
Jacobian of the moment conditions is of reduced rank but the parameters are second-order
identified (see Supplemental Appendix E for a formal link to the results in Dovonon and Renault
(2013)). An application of our approach to GMM contexts in which not only the expected
Jacobian matrix is singular but some higher order Jacobian matrices are singular too would

constitute a very valuable extension.

20



References

Adcock, C., Eling, M. and Loperfido, N. (2015): “Skewed distributions in finance and actuarial

science: a review”, The European Journal of Finance 21, 1253-1281.

Amengual, D. and Sentana, E. (2015): “Is a normal copula the right copula?”’, CEMFI Working
Paper 1504.

Amengual, D. and Sentana, E. (2020): “Is a normal copula the right copula?”, forthcoming in

the Journal of Business and Economic and Statistics.

Amengual, D. Sentana, E. and Tian, Z. (2019): “Gaussian rank correlation and regression”,

forthcoming in Advances in Econometrics.

Amsler, C., Prokhorov, A. and Schmidt, P. (2016): “Endogeneity in stochastic frontier models”,
Journal of Econometrics 190, 280-288.

Arellano-Valle, R.B. and Azzalini, A. (2008): “The centred parametrization for the multivariate
skew-normal distribution”, Journal of Multivariate Analysis 99, 1362—-1382.

Azzalini, A. and Dalla Valle, A. (1996): “The multivariate skew-normal distribution”, Bio-
metrika 83, 715-726.

Bera, A.K. and Bilias, Y. (2001): “Rao’s Score, Neyman’s C(«) and Silvey’s LM tests: an
essay on historical developments and some new results”, Journal of Statistical Planning and

Inference 97, 9-44.

Bera, A., Ra, S. and Sarkar, N. (1998): “Hypothesis testing for some nonregular cases in econo-
metrics”, Econometrics: theory and practice, Chakravarty, Coondoo and Mukherjee (eds.),

319-351, Allied Publishers.

Bottai, M. (2003): “Confidence regions when the Fisher information is zero”, Biometrika 90,

73-84.

Breusch, T.S. and Pagan, A.R. (1980): “The Lagrange multiplier test and its applications to

model specification in econometrics”, Review of Economic Studies 47, 239-253.
Cox, D. and Hinkley, D. (1974): Theoretical statistics, Chapman and Hall.

Constantine, G.M. and Savits, T.H. (1996): “A multivariate Faa di Bruno formula with appli-

cations”, Transactions of the American Mathematical Society 348, 503-520.

21



Davidson, J. (1994): Stochastic limit theory: an introduction for econometricians, Oxford

University Press.

Davidson, R., and MacKinnon, J. G. (1998): “Graphical methods for investigating the size and
power of hypothesis tests”, The Manchester School 66, 1-26.

Davies, R.B. (1987): “Hypothesis testing when a nuisance parameter is present only under the

alternatives”, Biometrika 74, 33-43.

Dovonon, P. and Renault, E. (2013): “Testing for common conditionally heteroskedastic fac-

tors”, Econometrica 81, 2561-2586.

Engle, R.F. (1983): “Wald, likelihood ratio, and Lagrange multiplier tests in econometrics”, in
Intriligator, M. D.; Griliches, Z., eds., Handbook of Econometrics, 796-801, Elsevier.

Faa di Bruno, F. (1859): The théorie générale de l’élimination. De Leiber & Faraquet.

Fan, Y. and Patton, A. J. (2014): “Copulas in econometrics”, Annual Review of Economics 6,

179-200.

Gallant, A.R. and Nychka, D.W. (1987): “Semi-nonparametric maximum likelihood estima-
tion”, Econometrica 55, 363-390

Godfrey, L.G. (1988): Misspecification tests in econometrics. Cambridge University Press.

Horowitz, J. and Savin, N.E. (2000): “Empirically relevant critical values for hypothesis tests:
a bootstrap approach”, Journal of Econometrics 95, 375-389.

Lee, L. F. and A. Chesher (1986): “Specification testing when score test statistics are identically

zero”, Journal of Econometrics 31, 121-149.

Newey, W. and McFadden, D. (1994): “Large sample estimation and hypothesis testing”, in
Engle, R. and McFadden, D., eds., Handbook of Econometrics, 2111-2245, Elsevier.

O’Hagan, A. and Leonard, T. (1976): “Bayes estimation subject to uncertainty about parame-
ter constraints”, Biometrika 63, 201-203.

Rémillard, B. (2017): “Goodness-of-fit tests for copulas of multivariate time series”, Econo-

metrics 5.

Rao, C.R. (1948): “Large sample tests of statistical hypotheses concerning several parame-
ters with applications to problems of estimation”, Mathematical Proceedings of the Cambridge

Philosophical Society 44, 50-57.

22



Rotnitzky, A., Cox, D.R., Bottai, M. and Robins, J. (2000): “Likelihood-based inference with

singular information matrix”, Bernoulli 6, 243-284.
Sargan, J.D. (1983): “Identification and lack of identification”, Econometrica 51, 1605-1633.

Silvey, S. D. (1959): “The Lagrangian multiplier test”, Annals of Mathematical Statistics 30,
389-407.

Spiegel, M. (2008): “Forecasting the equity premium: where we stand today”, Review of
Financial Studies 24, 1453-1454.

23



Appendices
A Proofs

We first state and prove several lemmas that we will use in the proofs of our main theorems.
But before doing so, let us introduce some definitions. Let

LMy (p) = 25,(¢")A (¢,0) — nX (¢,0) I(¢") (¢, 0)
and define ptM = (LM 9LM) such that

LM, (¢pEM gLM) — sggLMn(p).
p

Lemmata
Lemma 1 If Assumptions 1 and 4.1-4 hold, then (i) p™ 2 0 and (ii) n%/\(pﬁM) = 0p(1).

Proof. Let us start by Lemma 1.(¢3). By Assumption 4.2, we have that naS, = Op(1); that
is, there exists M, such that for all n > N,

Pr(||n 28, > My) < (A1)

N

Next, let M = (2M; +1)/emin(Z), which is bounded because of Assumption 4.3. Then, noticing
that if [[n2X (p) || > M and ||n"28,|| < M;, we will have

2(n"28,) [n2 A (p)] — 2 (P)'Z[n2 A (p)] <2|[n~2S,l] - |12 A (p) || — exmin(T) |02 A (p) |2
<[[n2X(p) || - [2M1 — emin (T) |In2 X (p) []
<-M
=LM, (6%,0) — M

which implies that
Pr ({l[n=3Sull < M} 01 [[n3 A (pEM) || > M) = o(1). (A2)
Then,
Pr(ln2 A (pEM) [ = M) =Pr ({032 (p5™) || = M} N {lIn~ 38, < M1}
+Pr ({lIn2A (p5Y) Il = MY {lln~380ll > M1}
<Pr({[[n®A (o) || = M} {[[n 73S0 < M})  (A3)
+Pr (lIn~38al > 1)
<5 +o(1), (A4)

where from (A3) to (A4) we have used (Al) and (A2). Therefore, (A4) trivially implies that
Lemma 1.(i7) holds.
As for Lemma 1.(7), for all € > 0, there exists d > 0 such that

Pr ([|pEM — (¢*,0)|| > €) < Pr(|[N2X (pEM) || > N24.) — 0,

where the inequality follows from Assumption 4.1, while the convergence follows from Lemma
1.(4i), as desired. O
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Lemma 2 If Assumptions 1 and 4.1—4 hold, then n%)\(ﬁn) = Op(1).

Proof. Assumptions 1 and 4.4 imply that

L+n A (@)

Thus, for given € > 0 there exists N such that for all n > N,

= o0p(1).

Pr(4,) >1- 7 (A5)
with R
Rn(py)
L+ n A ()]

1
< éemin(z—)-

n:‘

In turn, given that Tf%Sn is Op(1), there exists M; such that for all n,

Pr(|[n 28, > M) < 7. (A6)
Letting M = (6M7 + 3)/emin(Z) and noticing that when
R, 1
INEA ()12 0, 38,0l <0 and [0 < L),
L+n|A(p)?] ~ 6
we have that
_1 1 1 1
LR(p) = 2(n"28,) [n2 A (p)] — [n2 A (p)/ T2 A (p)] + 2Ry, (p)
1 6rnin(:z-)
< 200X (p) || = eunin(Dnl|A () P + =52 (1 4+l A (p) )
1 1 €min 7 1 1
NI [2M1 ~cuin@lndA(p) | + 2 ( L nEa) ||>]
In2 X (p) |
1 1 26Inin A 1
< 1A ()11 (20— cun@nEA () 1+ 22 P ia o) )
1 €min 7 1
~ lnta o | (20— 22 tx o)1)
< -M
— LR(¢",0) — M
As a consequence,
Pr({lIn# A (B,) [| > M} {|ln" 38,/ < M1} 1 Ay ) = o(1) (A7)
and, therefore,
Pr(|[n2 A (p,) || > M) <Pr({[[n2 X (p,) | > M} N {|ln~28,]| < M} N Ay)
+ Pr(AS) + Pr(|[n"2S,|| > M)
gg +o(1),
where the inequalities follow from (A5), (A6) and (AT7). O

Lemma 3 If Assumptions 1 and 4.1-4 hold, then LR, (p,,) = supLM,(p) + op(1).
peP
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Proof. We will show Ve; > 0,Ves > 0, AN s.t. Vn > N
Pr (|LRy(p,) — LMy (pi)| < e1) >1—e

We know that max{n%)\(f)n) RDY (pEM)} = O,(1), so that for e; > 0, there exists M such
that for all n,

Pr(max{nz A (p,),n2 A (pEM)} < M) > 1 — %2 (AS)
Letting A, = {p € P : nz IA(#,0)]] < M}, by Assumption 4.1 we can choose a seqence of
Yn — 0 with 6, > 2M//n for all but finite n satisfying

oM
inf A 70 25 >7’
”(‘1”9)_@*70)”27”{” (¢,0)] > 05} NG

which implies that A, C {p € P : ||p— (¢*,0)| <+, }. But then,

sup |LR,(p) — LMn(p)| =2 sup |R,(p)|
pEA, pEAn,
<2 (1 + M>2 sup ‘Rn (¢’ 0)‘ 5
peP:A(p)|< 2t 1 +1[[A (9, 0)]]
- pePllp—(6"0)|<v, L+ 1 [|A (¢, 0)]?
:Op(1)7

where the last equality follows from 7, — 0 and Assumption 4.4. Thus, there exists N such
that for all n > N,

Pr | sup |LRn(p) — LMy (p)| <1 | >1— 2. (A9)
pEA, 2

As a consequence, for n > N we have that

Pr (|LR,(p,) — LMy (pEM)| < 1)
>Pr ({|LRn(p,) — LMy (pE™)| < e1} 0 {p, € A} {pt™ € A,})

>Pr ({ sup |LRy(p) — LMy(p)| < el} N{p, € A} n{pM € An}) (A10)
pPEA,
> Pr ( sup |LRn(p) — LMy (p)| < el> +P ({p, € A} 0 {piM € An}) -1 (A11)
pPEA,
€ €
21—§+1—§2—1:1—62, (A12)
where from (A10) to (A11), we have used Pr(FE; N E3) > Pr(E;) + Pr(Es) — 1, while from (A11)
to (A12), we used (A8) and (A9). O

Lemma 4 If Assumptions 1 and 4.1-5 hold, then LRy,(p,) = LM, (pEM) + O,(n=2).
Proof. We want to show that for all € > 0 there exists a constant K, such that Vn

Pr (\LRn(ﬁn) — LM, (piM)] < Ken—%) >1-e
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The proof is almost the same as the one of Lemma 3 (XB: shall we just skip this part?).
Let A,, be as the one in Lemma 3, but with € instead of €. Then, by Assumption 4.5,

sup |LRn(p) — LMn(p)| = 2 sup |Rn(p)| = Op(n™*)
pGAn PEA'IL

or, equivalently, there exists K. such that for all n,
Pr (félfn \LR,(p) — LMy (p)| < Ken_“> >1- % (A13)
Thus for n > N,
Pr (|LR.(p,) — LM, (pEM)| < Kon™)
>Pr ({|LRu(p,) — LMy (pEM)| < Ken™*} n{p, € A} n{piM € 4,})

>Pr ({ sup |LR,(p) — LM,(p)| < Kﬁn—a} N{p, € A} N {piM € An}> (A14)
pEAR
>Pr <sup |LR,(p) — LM, (p)| < Ken_a> +Pr({p, € A} {ptM € 4,}) -1  (A15)
PEAR
>1-S41- S 121 (A16)
=72 2 ¢
as desired. 0
Lemma 5 If Assumptions 1 and 4.1-4 hold, then LR,(¢,,0) = sup LM,($,0) + oy(1).
(¢,0)eP
Moreover, if in addition Assumption 4.5 holds, then LRn(QEn, 0) = sup LM,(¢,0)+0,(n").
(¢,0)eP

Proof. The proof is analogous to the ones of Lemmas 3 and 4, but fixing @ = 0 and changing
P to {¢: (¢,0) €P}. O

Proof of Theorem 2

By Assumption 1, we have that (¢, ,8,) € ® x © and ¢, € ® with probability approaching
1 (wpa 1), with © and ® defined in (2). It is then easy to verify that

sup 2(n"28,) [n2 A (¢,0)] — [n2A (¢, 0)'Z[n2 A (¢, 0)]
(¢,0)eP

—sup2(n™38,0) 0} (6 — 67)] ~ [n (&~ ) Tyl

N[

(¢ — ¢")] wpa 1
:nflS('f,’nI;éSdm wpa 1,
where the first equality follows from g?bn € ® wpa 1, and the second one follows from n_%I(;qleqm S
1
{nz(¢p — @) : ¢ € ®} wpa 1. Similarly, we have

iglgzw%sn)'[n%x (6,0)] — [n2 A (¢,0)/'Z[n2 A (¢, 0)]

=sup sup {213 S5,0)n3 (6 — " + Ag(0)] — nl — " + A (0)] Zpg [ — 6" + Ag(6)
0cO ¢pcd

—2m3 [ — ¢ + Ag(6)] Tyo [ X (0)] +2(n"50,.) [ A (8)] — [0 X (6)] Too[n3 A (6)]} wpa 1
=sup {2(S0,0 ~ TosT 556, X (8) =1y (6) (Too — Too T, Ts0) A (0)

S

+ n’lS(’b’nI;;Sd)’n wpa 1
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¢*7 0)] - Q[Ln(&nv 0) - Ln(¢*7 0)]
—sup {2(n"35,)/ (13X (,0)] — 032 (6, 0)/ T[n* A (¢,6)] |

peP
— sup {2(n775,)[n? A (¢,0)] - [3 A (6, )/ Z[n? A (¢,0)] | +0,(1)
ped
:21618 {2(8@7,1 — Ig(bz.;;)s(b,n)/)\@ (0) —nXg (9), (Zog — Igd)I(;éI(bg))\g (9)} + Op(l)

And by the same argument, when Assumption 4.5 also holds, we will have

LR = sup {2(59,,1 — TosT 5 5S0.)o A (8) —1XG (8) (Too — TogT 55T s0) Ao (0)} +0,(n"%
S
as desired.

Proof of Theorem 1

28



Table 1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for white
noise versus a purely nonlinear regression

Null Alternative hypotheses
hypothesis H,, H,,
1% 5%  10% 1% 5%  10% 1% 5%  10%

n = 400
GET 1.0 51 10.1 9.3 244 36.7 33.0 56.3 68.9
GET, 1.1 53 10.1 8.0 21.8 324 31.5  54.7 66.2
OLS; 1.0 4.9 10.0 5.3 16.7 25.6 1.7 7.8 14.0
OLS, 1.1 51 10.0 3.6 12.1 19.8 20.1 404 53.1
GMM 1.0 5.2 104 6.9 19.8 30.1 27.9 51.6 64.0
n = 1,600
GET 1.1 5.3 9.5 70.3 88.0 92.8 82.7 939 96.6
GET, 1.0 5.3 9.7 68.8 86.5 91.7 81.8 93.1 96.2
OLS; 0.9 4.9 9.9 489 724 81.9 0.8 5.1 10.2
OLS, 1.1 4.9 9.9 33.7 57.6 69.4 66.1 84.0 90.3
GMM 1.2 5.0 10.0 66.5 84.3 90.5 79.8 919 953

Notes: Results based on 10,000 samples. GET and GET; are defined in section 3.3. OLS; denotes a
standard LM test that checks the joint significance of y#, and y1;42; in the OLS regression of ys; on
a constant and these two variables while OLSs is the LM test which augments the previous regression
with the following four cubic terms 43, y2,y2:, y1:y5, and y3,. GMM refers to the J-test based on the
influence functions underlying GET. Finite sample critical values are computed by simulation. DGPs:
(y1y2) ~ i.i.d. N(0,I5) under both the null and alternative hypotheses. In turn, ys|ys, y1 is .i.d. standard
normal under the null but under the alternative we consider 61 = 0.3,05 = 0 (H,1) and 6; = 0,65 = 0.5
(Ha).
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Figure 1: p-value discrepancy plot for the white noise versus nonlinear predictability test
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Notes: Results based on 10,000 simulated samples of size n of (y1,y2,y3) ~ i.i.d. N(0,I3). GET is
computed as defined in section 3.3. To compute the exact distribution for each sample size, we simulate
(Z1,Z2,7Z3) ~ N(0,13) 107 times, calculate T = max{Z71{Z; > 0}, Z2} + Z3 each time, and obtain the
ot quantile of T, Qr 4.
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B Reparametrization
B.1 Notation and a simple example

DA: This is taken from the introduction of Singular2001
Consider the estimation of the p x 1 parameter vector g characterizing the probability
density function (pdf) of the original model characterized by the i.i.d. random vector y, f(y; o).

In what follows,

o Oli(e) _ Olog f(yi; @)
SQjZ(Q) - aQ] - 8@3

denotes the contribution of observation ¢ to the score with respect to g;, 1 < j <. To keep
the notation to a minimum,by considering the simplest possible case, let us partition @ into
two blocks: 1) ¢, which contains the (p — ¢q) x 1 vector of parameters estimated under Hp; and
2) ¥, which is the ¢ x 1 vector of parameters such that the null hypothesis can be written in
explicit form as Hy : ¥ = 0. We maintain throughout the assumption that the first p — ¢ scores,
s4i(,0), are linearly independent under the null. In contrast, we initially assume that the

remaining scores are a linear combination of those, so that

M(p)syi(p,0) + sgi(9,0) =0 (B1)

for some ¢ x (p — ¢) matrix M, whose elements may be functions of ¢. In this context, the rank
of the information matrix E[sg; (¢, O)s’gi(cp, 0)|(¢,0)] is p — ¢ and its nullity g.

The first thing we do is to reparametrize the model so that the singularity is confined to
the last elements of a new parameter vector. Specifically, we can reparametrize from g to
p=(¢0) as

p=¢+M ()0, and V=0, (B2)
so that ¢ = ¢ under the null. Defining 1;(@) = l;(p) and assuming that this transformation is a

continuous second-order diffeomorphism (which needs to be verified for each example), we can

easily use the chain rule for first and second derivatives to show that evaluated under the null

ol ol

ol; oy Al -

% = M((l))% + 67’19 = M(SD)S‘PZ +8g9; = 07 (B4)
L 0% M/ (¢)

B.2 Sequential reparametrization method

In this subsection, we show how to obtain the reparametrization described above but in

more general context, using a sequential approach, provided:

Assumption 5 1) The asymptotic variance of the sample averages of (S, 89,) evaluated at
(¢,0) scaled by \/n has full rank.



garor] =0, for all index vectors such that L;Tng <r—1.

jo,
99" l(,0) _
3) There exists a set of coefficients {mjkgr }b{”je,.=T—1,k=l,~~-,p—qr which may be functions of ¢ such
that Yy, jo, =1 — 1
Hrarder]

o, —
1501, + - 7 s9y, + oo 0,

jer jer .ar
My Sp + e My TS, AT

where the default argument is (¢, 0).

In this context, a convenient way of reparametrizing the model from (¢, ) to (¢, 0) is

Jo Jjo,
maer s m, 5
_ 1 ple: _ P—q ple.
o1 =¢1+ Z 7,03" v Ppogq = Ppq T Z i o7,
Lgrjer:r_l a Lgl'r-je'r:T_l JGT
jer jBT
m ; m ;
p—q+1 ple, P—ar ple,
7911 = (911 + Z 7'% 7--'7191q1 = 01q1 + Z 7'7”9?" )
U, jor=r—1 1o, v jo,=r—1 J6. -
ﬂrl = 97”1’ () ﬁrqr = 6)1”qr-
Then, if we use the chain rule we can show that
oM Jo Jo Jo Jjeo 9" arior]
W;?r =My Sy o T Se My Sy e E T se,, + YT =0
Viy, jo, = — 1 as desired, where the default argument is again (¢, 0).
. jo, gr .. .
Finally, we need to check whether Zszr jg=r ?erl agi éT evaluated at (¢,0) is linearly inde-

pendent of (s, sg,) for all Af + .- + )\gr = 1. If so, Theorem 1 applies.

If not, we should check whether either:

1) there is a new set of coefficients {mLJBT }L/q jo,=rk=1,...p—g. Which may be functions of ¢ such

that

m]i.ier,- Sp 4 ...+ mT.i97- fie,

tio, _
1 P S6pq T M i1 S0n o F T sg, =0 (B5)

when evaluated under the null, in which case we can do further reparametrization from (¢, @)
to (d)T, OT) that sets all the 7" partial derivatives with respect to 8 to zero, or

2) we can use Theorem 2, which covers far more general cases.

B.3 Invariance to reparametrization

Let us now prove that the GET statistic that we proposed in Theorem 1 is invariant to
reparametrization, exactly like the LR test or the usual LM tests that rely on the information
matrix rather than the sample average of the Hessian. For simplicity of notation, we will do
so in a simple case in which r = 2 and 8 = 65, so that we can omit the subscript 2 from 6
henceforth. Additionally, we drop the subscript ¢ from the contribution of to the log-likelihood

of observation 1.



Define o = (¢, ) as the original parameter vector of dimension p, where ¢ is (p — ¢) x 1
and ¥ a ¢ x 1 vector. In what follows, (¢,0) are the omitted arguments for all the relevant
quantities that depend on (¢, ).

We maintain that Assumption 3 holds with » = 2 for the original parameters g, so that 1)
the asymptotic variance of the sample average of s, has full rank, 2) there is a ¢ x (p — ¢) matrix

M(¢p) of possible functions of ¢ such that (B1) holds, and 3) the asymptotic variance of the

M/ " 921 M/
X — A
[SW ( I ) olifed ( I > ]
has full rank under the null for all A such that ||A|| # 0.

As usual, if we reparametrize from g to p as in (B2), then, we can easily check that (B3)

and (B4) hold when evaluated under the null, with

021 M\ 921 1Y 4
! RV
)‘aeae’)‘_)‘ < I, ) 8989’< I, )A

sample average of

linearly independent of 91/0¢, which implies that Assumption 3 is satisfied with r = 2 for the
transformed parameters p = (¢, 0) too. Consequently, we can apply Theorem 1, which yields
GETﬁ = supHAH#O ET#(A), where

ETP(A) = NE(@A]"1 [NE(@)A > 0]

V(A @)
_( M(e) ) Ple) M(p)’
Hip) = ( I, > 9000 | (4,0 < I, >’ (B6)

and
V(A ) = VINH()A] = CovNH(p) X, 56(0)]V ™ [36(0)] Cov[se (), N H(p) A

is the adjusted variance of N'H(p)A.
Consider now an alternative reparametrization from g to p' characterized by
d(HT OF
o= (5) =[5 | o

where g(+) is some second-order continuously differentiable vector of functions which represent
a one-to-one mapping, at least locally around the null. Such an alternative reparametrization
must also ensure that: (i) syi has full rank, (ii) sy is identically 0 at Ho : 6" = 0, and (iii)
2\

89?7(29[0”)‘ is linearly independent of s V|[A[| # 0.

Given that the first order derivative of ¢ under the null is given by
oL og?  og” og” _ og”
Pyt T 90t ¥

o9t ¢ o) o' 0¢

where we have used the chain rule in the first equality and (B1) in the second one, we need to

assume that

Ho?! o o/
det< & g

9t 9! M) 70 (B7)

3



for 81/d¢ to have full rank. Similarly, given that (B1) and the chain rule imply that
oL o9g?  og” og” _ og”
7:75¢+7T519: T - T S<p7
00t 06 00 00t 00

we must also assume that
5g¢’ 8g9/
00t o6t

to ensure that 9/ 00" = 0 under the null irrespective of ¢! because s, has full rank.

(B8)

Let us now turn to condition (iii), for which we first need to compute the corresponding
second order derivatives. Applying the chain rule once again, we obtain
*L o 0’g? N og? 921 og? N ag? 9% og?
o0fo0t 0¥’ a0lo0t o0l dpde’ ap! o0l 990¢" po!
ol 9%g? og? 041 og? og? 9% og?

09" 99l 00! i 00t 0999 ! i 00" dpdd gl

In this context, (B8) and (B1) imply that
?r o 0%g® N 8g9’M 0?1 ,0g?  og? 9% ,0g?
oofoot  “oelogt oot 0pde’ T ool agl 9009 op]
oM a2g9 agel 521 8g9 N 8g9’ 921 age
“ oolool o0l 0009 g0] o0l 0pdY" op]

_ 32g¢ Y 82g0 N agel ( M’ >’ 921 ( M > a;ge
#\ o000 oolo0t ) o0t \ 1o ) 000" \ 14 ) 06}

when evaluated at the null, so

821 , 82g¢> 82g0 8g01 8g9
= Y + %8 gl
061061 {S"’ (aej o6} odfoel ) [ T 06T o6f

Hence, (B6) implies that

0?1 '
N——X=s_a+A"HA, forall X+#0
061007 ® 7
when evaluated at the null, where a = (a1, ...,aq)" with
2 5P 2,0
ai:A, agz _Ml agz A,
001007 061007
and 0
Al = ai)\'
0"
In this context, if we further assume that
og?

then it is easy to see that X’ 89226[0T)‘ will be linearly dependent of St \4 H)\TH # 0 because (a)

AVHAT s linearly independent of s, and (b) s ot 1S @ linear combination of s.

4



In sum, once we guarantee that (B7), (B8) and (B9) hold, the parametrization from g to p
satisfies the rank deficiency condition in Assumption 3 with r = 2.

Finally, let us define the adjusted asymptotic variance of \’ A as

aaTaeT
2] 2 2
T -i- o / 8 / 8 l —1 / 8 l
VnT()"d) )=V <)\ 56700 T)‘> Cov ()\ 50700 NSt |V (s41)Cov (841, A 786”86”)\
=V(s,a+ Al HAT) — Cov(s,a + AVHAT, a 's,)V 1 (a's,)Cov(a’s,,, Spa -+ )\TIHAT)
= VA'HAT) = Cov(ATHAT, 5,)V " (s,)Cov(s,, ATHAT)

Then, we will have that

N 3981‘23[91‘ (pT))\} i 1 [)‘/ 3981‘2[9T (bT))‘ > 0}
V(A 81)
Si(@)a -+ AVH(2)AT?1 |5, (2)a + AH(2)AT > 0]
Vy(AT, )
ATH(@)ATP1 | AH(2)AT > 0f
Vy(AT, 9)
— ETP(A),

ET?' (\) =

where the third equality follows from the fact that s, (¢) = 0. Given that the mapping from A
to AT is bijective, taking the sup will finally imply that

t t
GETL = supya 20 ETY (A) = sup)at) o ETE(AT) = GETZ,
as desired.

B.4 Examples
B.4.1 Example 1: Testing for selectivity in a bivariate type II Tobit

B.4.2 Example 2: Gallant and Nychka’s semi-nonparametric MLE

C Implementation details

C.1 Hermite expansion of the Gaussian copula

C.1.1 Influence functions

Tedious but straightforward algebra implies that

ol

9% =(0,1,0) - Ha(z1, x2; ),



ol
- HSl(xla x2; ¢)7

011

ol

o = Hao (21,225 ¢),

ol

ng = H13($15$2;¢)5
02l
— = (0,6¢,0) - Hy(z1, 22; ¢)
905,

+ (0,18¢, 36¢°,18¢°,0) - Ha(z1, z2; @)
+(0,9¢, 36¢%, 54¢°, 364*, 9¢°, 0) - Hg(z1, 22; @)
+ (0, ¢,60%, 15¢°, 209, 15¢°, 64°, ¢7,0) - Hg(x1, 22; ¢),

021 )
P50y, — ~(0,60°,0) - Ha(a1, 23, ¢)

— [0,18¢%,18 (¢* + ¢°) , 18¢%,0] - Hy(w1, 72; )

—[0,9¢°,18 (¢* + 6°) ,9 (¢° + 4¢° + ¢) , 18 (¢* + ¢7) ,9¢%,0] - Hg (21, 72; )
— [0,8%,3 (¢* + ¢%) ,3(6° + 36° + ¢) , ¢° + 9¢*

+9¢° +1,3 (¢° + 3¢ + ¢) .3 (¢* + ¢°) , ¢°,0] - Hs(w1, 725 §)

and

ol
—5 = (0,69,0) - Hay(z1, x2; ¢)+
0055
(0,18¢°,369%,18¢,0) - Hy(z1, z2; )
+(0,9¢°,36¢",54¢°,36¢°, 99, 0) - Hg(x1, 22; ¢)
+(0,07,6¢°,15¢°, 200", 15¢°, 667, ¢,0) - Hs (1, 22; ),
where the bivariate 4'"-order Hermite polynomials Hzy (1, x2; ¢), Hoa(x1, 22; ¢) and Hys(x1, 22; @)
are defined in (D21) and the H’s in Supplemental Appendix C.1.

C.1.2 Positivity of the Hermite expansion of the Gaussian copula

In the original parametrization, P(z1,z2; ¢, ) is equal to
L+ 91 Hyo(21, 225 ) + V2 Hz1 (21, T2 ) + U3 Haz (21, 225 ) + VaH13(21, 725 ) + U5 Hoa(71, 725 ).

But as described in section D.2, after reparametrization the marginal distributions only depend
on A1 or 6. For that reason, it is convenient to consider two groups of parameters, namely
01 = (611, 6012,013) and O3 = (021, 622). In addition, the positivity constraint depends mainly on
05 because 0y1 and 099 are Op(nfi) under the null while 611, 615 and 03 are Op(nfé). Therefore,

01 is dominated, at least asymptotically. For that reason, we first discuss the positivity constraint



on 05 when 0; = 0, and then explain how to simplify the asymptotic positivity constraint and
the extremum test statistic.
Let 2o = tx1, 020 = kb1, kK > 0 so that the polynomial that multiplies the Gaussian pdf

simplifies to

P(x17¢ak7t5921) = P[ﬁl,tl’l;gb, (021)07070ak621)/]

3021

0
= 1+ 302100(k‘) + 1— (r/>2 02(k37t7 qb):n% + z

1—¢?

04(kat7¢)1'111’
where
Co(k) = k+1, Co(k,t,¢) =k (¢* — 2) 2+ (k + 1) pt+¢*—2 and Cu(k,t, ¢) = kt* —kot> — gt +1.

It is easy to see that the minimum of P(xz, ¢, k, t,021) is finite if and only if (i) Cy(k,t, ¢) > 0
or (ii) Cy(k,t,¢) = 0 and Ca(k,t,¢) > 0. In addition, when 6; is very small under either (i) or
(i), we have min, P(z, ¢, k, t,01) is greater than 0. Thus, we need to find a set K (¢) such that
forall ¢ # 0, for all k € K(¢) C [0,400) and for all t € R, we have either (1) Cy(k,t, ¢) > 0 or (2)
Cy(k,t,¢) =0 and Co(k,t,¢) > 0. In other words, we need Cy(k,t, ¢) = kt* — k¢t — ot +1 >0
for all ¢.

To guarantee the positivity of this expression, we need k > 0. If the discriminant of C4(k, t, ¢)
is positive, then Cy(+,t,-) = 0 has either only real or only complex roots, while if the discriminant
is negative, then Cy(-,t,-) = 0 will have both two real and two complex roots. Finally, if the
discriminant is zero, then at least two roots must be equal. Therefore, we want the discriminant
of C4(k,t,®) to be non-negative. Indeed, we can find two functions, [b(¢) and ub(¢) such that
Ib(¢) < k < ub(¢) if and only if the discriminant is positive while k € {Ib(¢), ub(¢)} if and only
if the discriminant is zero. Moreover, lb(¢) € (0,1), ub(¢) € (1,400), and Ib(¢)ub(¢) = 1. The
proof of these statements is as follows.

We can easily show that
Discy[Ca(k,t, ¢)] = —K*[2Tk*¢" + 2k (2¢° + 3¢ + 96¢° — 128) + 279",

so that the solution to
Disci[Cy(k,t, )] =0

is

2¢° + 3¢* + 96¢% + 2(\/(¢2 —4)° (¢* — 1) (¢* +8)* — 64)

Ih(6) = .
26° + 39" + 9692 — 2(1/ (¢7 — 4)° (62 — 1) (¢? +8)” + 64)
Ub(¢) = 27¢4

Thus, when k € [Ib(¢), ub(¢)], the discriminant is positive and we simply need to check whether
Cy(k,t,¢) > 0. First, consider ¢ > 0 and Cy(k,t,¢) = kt3(t — ¢) — ¢t + 1. When t > ¢,
Cy(k,t, ¢) is increasing in k. In this context, we can prove that min>4Cy[lb(¢),t,¢] = 0. In



contrast, when t € [0, ¢), Cy4(k,t,¢) is decreasing in k, and we have min>4Cylub(¢),t, ] = 0.
Finally, when ¢ < 0, it is obvious that Cy(k,t,¢) > 0. To summarize, k € [Ib(¢), ub(p)] is
sufficient for Cy(k,t, ») > 0 and the same is true for ¢ < 0.

However, when either k = [b(¢) or k = ub(¢), we have t;,t, defined by C4[lb(¢),t;,¢] =0
and Cy[ub(¢),ty, ¢] = 0, respectively, so that

Callb(¢), 11, ¢] <0 and Calub(¢),ty, ¢] <0 for all ¢,

which in turn implies that k£ € {lb(¢), ub(¢)} does not hold.
In sum, we have shown that when 6; = 0, the asymptotes of the feasible set near 0 are
922 = lb(¢)921 and 022 = ub(¢)921

Next, we know from Theorem 1 that

LR = ET(0PT) + Op(n"2), (C10)
where

1 1 ~ 1 1
n20: n=25g, (¢> 0) n260q n26;

1 _1 ~ 1 1

ET(0) =2 ?29%1 n_iH‘921921 (?7 0) . ?2931 Veo(;b) ?29%1 ’
n20121922 n 3H921922 (?7 0) n29121922 7129121922
n?egg n~ 2 Hg,,0,, (¢,0) n2 9%2 7150%2
oFT = argmaxgcoET(0),

and © is the set of parameters that satisfies the positivity constraint. Unfortunately, ET(BET)
is not very easy to calculate because © is difficult to characterize explicitly. For that reason, we
will show that

ET(0FT) = GET + 0,(1),

where

1oy ooy~ - D2($, M1[D(¢,A) > 0]
GET, = =Sy (6,0)V;7'(4)Se,(¢,0 S - = _
n 6, (¢ ) 11 (¢) ] (¢ ) + we?:}llj)wu)n V22(¢7 A) . V21(¢, A)‘Gzl((ﬁ)VIQ((p? A)

with A} = sin(w) and Ag = cos(w) so that ||A|| =1, and

w; = arctan([lb(¢)], w, = arctan[ub(®)]. (C11)

Let 621 = A1m and 029 = Aa7), then

04 )( Se,(¢,0) ) < 60, >[ Vii(¢)  Via(, A) ]( 61 >
ET,(01,n,N)=2 12 — ~ L , (C12
(61,7 4) ( 2 )\ Sa,0.00 )7\ 2 ) vaon) vman) [\ g2 ) (12
with ,
)\1 ) |:H9 0 (QS,O) HG 0 (¢a0) :| < )\1 )
S ’O’A — 21U21 21022 .
o2 ((b ) ( A2 H921922 (¢7 0) H922922 (¢v 0) A2
Similarly, let 7 = max{n®T, n=*} with i <k< % Then it is easy to see that

ET (07T, 7, XFT) = £T (07T, nPT AFT) + 0,(1). (C13)



Next, consider (07, n*, A*) =argmax cA{n>n_k}5T”(01’ n, A), where pc={(01,m\1,n\2) € O}.
It is easy to see that with probability approaching 1,

ET (07T 0" XY > £T,(07, 0", X*) = ET (677, 7, A1) (C14)

because (OFT, nPT AFT)
(OFT 7, AET) € pe and {77 > n*k} happens with probability approaching 1. Combining (C13)

and (C14), we have

= argmax,.£7,(01,7,A) has a larger feasible set, and the event

ET (07,0, X*) = ET (077, 0T, AFT) + 0,(1), (C15)

so we only need to calculate (07, 7%, A*).

In this context, note that there exists a &’ € (k, 1) such that

lim, P(|0F]| < n™* <n™*F <p*)=1. (C16)

Therefore, this confirms that 07 is asymptotically irrelevant for the positivity constraints because
it is effectively unrestricted. Consequently, (C16) implies that the only relevant restriction will
affect the direction of .

In view of (C12), the first order condition for 87 for given n* and A* implies that

n283(", %) = Vi (9)[n "2 S,(9,0) = Via(6, X ().
Hence, if we substitute 67 (n*, A*) in the expression for £7 (01,71, ), we end up with
ETn (07,17 X") = fSéh(qB, 0)Vi1" ()6, (¢, 0)
— 022 [Vaa (6, A*) — Var (6, N)WViT (9) Via (6, A2y
20202 28,(9,0,A%) — Var(6,A)Vir (9)n 25, (6,0)).  (C17)

Given that (C17) is quadratic in *2, if take into account the restriction n* > n=*, we obtain

n*(A*)zmax{n‘MVm(&s, ) Vi1 (6. A)Vii (@) Vaald A)In~$D(6, A%)1[D (3, A*>20],n—k},

where D(¢, X) = Sp, (6, 0,A*) — Vo1(¢, \) V7' (6)Se, (¢, 0).

Thus, if we replace the previous expression for n*(A*) into (C17), we end up with

1 - - -
ETn (01, A") = —5,(9,0)V1,'(9)Sa, (¢, 0)

1 _D@XNDOA 20 0y (g
1 Vaa(d, X*) — Va1 (6, X)WV (9)Via (6, A%) 7
part 2

But since part 2 in (C18) is a function of A*, which by definition is a maximizer of £7, we will

finally end up with

ETA 0171 X) = 55,(5,0)V77'(5)S0,(5,0)

1 D*($, V1[D($, ) > 0] 1
+we?:dlzl,)wu)n Vaa (6, A) — Va1 (¢, M) V7M@) Vi2 (6, A) + op(1),

9



which confirms that

ET.(OFT 1" APT) = 55, (5,0)V17(9)S0,(,0)
wp L DAONIDOGN) 20
we(wiwa) ™ Va2 (9, A) = Var (&, M)Vi7 (9)Via(6, A)

+ +0p(1)

in view of (C15).

D Additional examples
D.1 Testing white noise versus multiplicative seasonal AR

Box and Jenkins (1970) introduced the popular multiplicative seasonal ARIMA model to
capture the autocorrelation of series with strong seasonal patterns, such as their famous airline
passenger example. Suppose that after taking regular and seasonal differences of an observed
time series, a researcher would like to formally assess the need for a more complicated dependence
structure. Assuming the data is observed at the quarterly frequency, one of the alternatives that

she might consider is the following AR(2)-SAR(2) process:
(1= 91L)(1 = P2L)(1 = 93L*)(1 = 94 L*)(ye — 1) = €1, (D19)

with E(g;) = 0 and V(e) = ¢y, where y; = AAyx; and x4 is the original data. In this context,
Hy:t =v=93=1094=0.
As usual, non-linear least squares estimation coincides with Gaussian ML, so that the crite-

rion function will be

T
T T [y — (01, 9))?
——In(27) — = lnp, — E ,

where the conditional mean under the alternative is

pe(01,9) =01 + (V1 +2) (Yyi—1 — 1) — V192 (Yr—2 — 1) + (93 +V4) (y1—a4 — 1)
— (V1 +Y2) (V3 + V4) (y1—5 — 1) + 9192 (93 + Y4) (yi—6 — 1)
— U304 (Yr—8 — 1) + (V1 + V2) 9394 (y1—9 — 1) — V1929304 (Y4—10 — 1) -

Hence, the scores evaluated under the null will be

2
e (yt — @ ) —
5501(90,0) = 5 17 5902(9070) — 2;% 27
59, (,0) = 59,(p,0) = (e — (pl);Zt—l - 4,01),
Yo — Yt—a —
5193(9070) = 8194(90,0) — ( t 901);; Lpl)‘

As a result:

S9; (‘Pv O) — S, (‘Pa 0) =0, S93 (‘Pa 0) - 5194(90’ 0) =0,

10



which shows that the nullity of the information matrix is 2.
Consider the reparametrization from @ = (1, @9, V1, ..., %1)" to p = (¢, P9, 011, 012, 021, 022)’
defined by

P1 = G1, Yo = P9, V1 =011 — 21, Vo =021, U3 =012 — 0 and V4 = O29.

The corresponding derivatives under the equivalent hypothesis Hy : 011 = 021 = 015 = 025 = 0

are

Ol (ye — 1) (Ye—1 — &1) Ol

- ) - 07
0011 o5 0021
ol _ (e — &1) (Yt—a — ¢1) Ol —0
0012 o " 0022 ’
02l _ 2 (Yt — 1) (Ye—2 — ¢1) %, _ 9%l _ 2 (Yt — 1) (Yye—8 — 1)
003, o3 T 00910022 7 063, o '

Let 621 = A1n and 029 = Aon with )\% + )\3 = 1 and consider the simplified null hypothesis

Hy: 011 =012 =0, 7 =0. In this context, the only relevant quantity associated to 7 is

62lt 2 (Yt — 1) (Ye—2 — ©1) 2 (yt — 1) (Y-8 — 801)
87’)72 = 2)\1 0_2 + 2)\2 02

Moreover, given that under the null

ol, ol, oy ., ({ 0
FEl— = E —
<8¢ aog) 0 and [acp ch (69280’2 0,

we can ignore the parameter uncertainty in estimating ¢, and ¢,, at least asymptotically.

In view of the discussion in section 2, the GET statistic will be given by

GETr = Hiﬂng—l[S@(&,om(&s, 0, )V (@, X)[S9, (¢, 0), Hy (6,0, A)),

where

Se, (p> = [5911( ) S912 (P)]/,

¢’ ? Za lt )

t=1

V(g A) = Var{T*”[S;(sb, 0), M, (6,0, \)]'|$, 0}

Interestingly, in this example GET7 can be computed analytically. Specifically, straightforward
algebra shows that

)\27:2 -+ )\27:8)2
GETr =T P22 (A1 2
T sup {7"1 T4 )\ +)\4

L[\ + A37g > 0]} :
[|A][#0

where

~ 1 (yt — <~ﬁ1)(3/t—j - &51)
Zt b,

11



is the jt"-order sample autocorrelation of y;. In addition, when 75 > 0 or 7g > 0, we can show

that the value of A that maximizes the above expression will be proportional to the vector

(\/’Fgl [7:2 > 0], \/7781 [fg > 0]), if 7’:2 > 0 or ’Fg > 0
(1,1), otherwise.

As a result, GETp will be
T(72 + 72 + 721[Fy > 0] + 721[g > 0]), (D20)

Therefore, the GET statistic is simply focusing on the first two regular sample autocorre-
lations and the first two seasonal ones, which is very intuitive in view of (D19). The partially
one-sided nature of the test arises from the multiplicative nature of the alternative, which forces
the roots to be always real. Additive alternatives, which allow for complex roots too, give rise
to two-sided tests. Given that these estimated autocorrelations are asymptotically independent

under the null, the asymptotic distribution of (D20) will be a mixture of x3, x3 and x? with

11

7> 3 and %, respectively. Not surprisingly, we would obtain exactly the same test statistic

weights
if we consider multiplicative M A alternatives instead.

Furthermore, we can show that a test of white noise against multiplicative AR(k)-SAR(ks)
for k > 3 or ks > 3 will numerically coincide with the statistic in (D20). The intuition is as
follows. We can show that when the null is true, the MLE of an additive AR(3) is such that all
three roots of the lag polynomial are real with probability tending to 0, unless one of the roots
is forced to be 0. Consequently, the LR for multiplicative AR(3) is asymptotically equivalent to
the LR for ArR(2), and the same applies to the corresponding GETs.

Finally, it is important to mention that our proposed test, which is based on sample autocor-
relations, is numerically invariant to affine transformations of the observed series y;. Effectively,
this means that the finite sample distribution of our test is pivotal with respect to (¢;, @s).
Therefore, we can estimate the sample mean and variance of y;, and apply our test directly to

the standardized series as if they were the observed variables.

D.1.1 Monte Carlo simulations

Without loss of generality, we set the unconditional mean and variance of the innovations
g; to 0 and 1, respectively, both under the null and alternative hypotheses. We also estimate the
mean and variance parameters ¢, and ¢y with the sample mean and variance, respectively, which
effectively impose the null. As alternative hypotheses we consider the covariance stationary
models (1 — .1L — .1L? — 1L3 — 1LYy = & (Ha) and (1 — AL)(1 + 4L)(1 — AL*)(1 +
4L%y; = € (H,,). Note that two of the roots of the first process are complex conjugates,
so our tests is not ideally designed for it. We approximate the exact finite sample distribution
using 10,000 simulated samples under the maintained hypothesis that the innovations are normal.
Alternatively, one could consider a non-parametric bootstrap procedure that randomly draws

with replacement from the observations, which would eliminate any time series dependence while

12



allowing for any marginal distribution. As in section 77, either way we do not need to take into
account the sensitivity of the critical values to { because the test statistics are numerically
invariant to the values of this estimator.

In Table D.1 we compare the results of our tests with three alternative procedures: LM-
AR(1) and LM-SAR(4), which denote standard LM tests based on the score of an AR(1) and
a Wallis (1972)-style seasonal AR(4), respectively, and the GMM test described at the end of
section 2.3.

Following the same structure by columns as in the previous tables, we report the results we
have obtained for n = 100 (top) and n = 400 (bottom). The first three columns make clear
that the our simulated finite sample distribution works remarkably well for both sample sizes.
In turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels for the
two AR alternatives. Once again, the behavior of the different test statistics is in accordance
with expectations. In particular, our proposal is the most powerful for H,,, which is not very
surprising given that it is designed to direct power against such multiplicative alternatives with
real roots. But it is also the top performer for H,, even though the process has two complex
roots.

Given that in this case our test has a relatively standard asymptotic distribution, we can
also compute p-value discrepancy plots to assess the finite sample reliability of this large sample
approximation for every possible significance level. The results displayed in Figure D.1 confirm

that the asymptotic distribution is also reliable in this context.

D.2 Testing Gaussian vs Hermite copulas

The validity of the Gaussian copula in finance has been the subject of considerable debate.
As a result, it is not surprising that several authors have considered more flexible copulas. For
example, Amengual and Sentana (2018) consider the Generalized Hyperbolic copula, a location-
scale Gaussian mixture which nests the popular Student ¢ copula discussed by Fan and Patton
(2014), which in turn nests the Gaussian one. In this section, we consider Hermite copulas,
which provide a rather flexible alternative.
As is well known, Hermite polynomial expansions of the multivariate normal pdf can be
understood as Edgeworth-like expansions of its characteristic function. They are based on mul-
tivariate Hermite polynomials of order p*, which are defined as differentials of the multivariate

normal density:

Hy(x,¢) = fnr(x;R)7! (55) fyvr(x;R), t5v = p with v € N¥, (D21)

where ¢ = vecl(R) and R is a positive definite correlation matrix.
To keep the expressions manageable, we only consider explicitly pure fourth-order expansions
in the bivariate case. We could also include third-order Hermite polynomials, but at a consider-

able cost in terms of notation. Similarly, extensions to higher dimensions would be tedious but

13



straightforward.
We say that (z1,z2) follow a pure fourth-order Hermite expansion of the Gaussian distribu-

tion when their joint density function is given by

fr(@1,32;0,9) = fn2 [( . > ; ( Lo ﬂ P(z1,29;9,9), (D22)

T2 p 1
where
4
P(x1,w250,9) = 14+ Y D1 Hajj(1, 3 0),
§=0
@ is the correlation between x; and xa, which we assume is different from 0, and 94,...,05

the coefficients of the expansion. The leading term in (D22) is the normal pdf and the remain-
ing terms represent departures from normality. Indeed, fry(x1,x2; ¢, ) reduces to a Gaussian
distribution when 9 = 0.

We can easily show that the corresponding marginal distributions are given by

fu(z1;91) = ¢(21)[1 + V1 Ha(z1)] }
fr(z2;05) = ¢(22)[1 + IsHa(z2)] |~

where Hy(z) = x* — 622 + 3 is the fourth-order univariate Hermite polynomial and ¢(.) the

(D23)

standard normal pdf.
Hermite expansion copulas are based on Hermite expansion distributions. Specifically, if
y = (y1,y2) denotes the original data, we can define u = (u1,u2) = [Fi(y1), Fa(y2)] as the
uniform ranks of y, and finally x = (x1,22) = [F*(u1;91), Fy* (u2;95)], where Fi'(.;9;) are
the inverse cdfs (or quantile functions) of the univariate fourth-order Hermite expansions with
parameter ¢; in (D23). When the copula is Gaussian, x; coincides with the Gaussian rank
O 1(u).
The pdf of the pure fourth-order Hermite expansion copula is
fr(x1,z2; 0) _ Ga(m1, e 0)[L + Z?:o Vjr1Ha—j5 (@1, 225 )]
fr(z1;91) fu (225 05)  ¢y(21)[1 + I1Ha(21)]y (22)[1 + s Ha(z2)]

Straightforward calculations show that in this case

59, (0,0) 4 3059, (10, 0) + 3959, (¢, 0) + ©*s9,(1p, 0)
$95(0,0) + 3059, (10, 0) + 3959, (¢, 0) + 9’59, (10, 0)

)

0
0.

Our proposed reparametrization, namely

©=¢, U1=0, VU3=~011+3p02 + >0,
V3 = 012 + 3¢%091 + 302002, U4 = 013 + 30z + 3021, U5 = 0o,

confines the singularity to the scores of 627 and 625. Therefore, we need to obtain the second
order derivatives with respect to 627 and 692. In this case, we can prove that the asymptotic

covariance matrix of

o o o o oo P
8¢’ (99117 89127 (9(9137 69%17 89%2 00210022
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scaled by y/n has full rank. Although the algebra is a bit messy, after orthogonalizing those
second derivatives with respect to the score of ¢ to eliminate the effect of the sampling un-
certainty in estimating this correlation coefficient under the null, we can express those three
second derivatives as linear combinations of all the even-order multivariate Hermite polynomials
of (z1,72) up to the 8" order, with coefficients that depend on the correlation coefficient (see
Supplemental Appendix C.2.1 for details).
Let 051 = A\imp and 025 = Ao with )\% + )\g =1, and consider the simplified null hypothesis
Hy : 011 = 012 = 013 = n = 0. Then it is easy to see that the GET statistic will be
E 1 Vi Sin + 1 sup Dl (Vg — Vin Vi; Vi) 1 D1 (D), > 0],
T All=1
where

Dn(d)a m, )‘) = Hnn((pi)u m, )‘) - Vn1(¢v m, A)‘/1;1 (¢)Sln(¢7 0)7

" Ro21021,i(P)  102104,,i(P) } < A1 >
Han(d:m,X) = ) (A da) | 020 i ’
n (d) gl ) ;( ' 2) |: h921922,i(p) h9229227i(p) A2

Sln(¢; 0) = [5911 (¢> 0)7 8012 (¢7 0)7 5913 (¢a 0)]/7

and the omitted arguments are (¢,0,A) for D,,, (¢, A) for Vs Vg1 and Vi, (¢,0) for S1n and
(~ﬁ for ‘/11.11

D.2.1 Positivity

The foregoing derivations, though, ignore that the positivity of the Hermite copula density
for all values of y imposes highly nonlinear inequality constraints on the elements of 8 = (6, 65)’
with @1 = (011,012, 013)" and O3 = (021, 022).'? Fortunately, given that under the null hypoth-
esis of a Gaussian copula the UMLE estimators of 81 and 05 converge at rates n~3 and n_i,
respectively, the elements of the sequence 681, are negligible, in which case we simply need to find
the asymptotes of the feasible set for (621, f22). Let 621 = nA; = nsin(w) and G20 = A2 = ncos(w)
with w € [0,27) to ensure a unit norm for A = (A1, A2)’. As we show in Supplemental Appen-
dix C.1.2, these parameters lead to a positive density when 7 is small enough if and only if
w € (wy,wy), with w; and w,, defined in (C11).
Therefore, an asymptotically equivalent GET statistic that imposes positivity of the Hermite
expansion copula under admissible alternatives local to the null will be given by
S 1 Vi Sin + : sup Dy, (Vi — anvljlvm)‘l D,1[D, > 0]. (D24)
WE(wi,wu)
This test is asymptotically equivalent to the LR test, which implicitly imposes positivity

because a zero density gives rise to an infinitely penalized log-likelihood. Nevertheless, our

"1n view of equation (??), in this case the asymptotic distribution of GET,, is bounded above by a X% distri-
bution because of the six influence functions. In addition, it is bounded below by a 50:50 mixture of X§ and 2
because 011, 012 and 613 are first-order identified parameters and an even-order derivative of 7 is involved.

12This is an example in which Assumption 2.1 fails because po lies at the boundary of the admissible parameter
space, and yet we can still derive a LR-equivalent test.
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test is far more computationally convenient than the LR test because the positivity constraints

effectively become linear under local alternatives.

D.2.2 Testing Gaussian vs Hermite copulas

For simplicity, we assume the marginal distributions are known, so that we can directly
work with the uniform ranks, which we immediately convert into Gaussian ranks (see Amengual
and Sentana (2018) for further discussion of this topic). We estimate the correlation parame-
ter, whose true value we set to 0.5 under both the null and alternative hypotheses, using the
Gaussian rank correlation in Amengual, Sentana and Tian (2019), which effectively imposes
the null. As alternative hypotheses, we consider two Hermite expansion copulas: one with
9 = (0.04,0,0,0,0) (H,,) and another with ¥ = (0.02,0,0,0,0.02) (H,2). While the second
one generates a copula density which is symmetric around the 45° line, the first one does not.
In any event, both departures from the Gaussian copula are rather mild, as they only involve
one or two parameters different from 0.

If the correlation coefficient were known, we could again compute exact critical values under
the null for any sample size to any degree of accuracy by repeatedly simulating samples of i.i.d.
bivariate normals with correlation ¢. In practice, though, we fix the correlation coefficient to
its estimated value in each sample in what is effectively a parametric bootstrap procedure (see
Appendix D.1 in Amengual and Sentana (2015) for details).

In Table 2 we compare the results of our tests with three alternative procedures: KS, which
denotes the non-parametric Kolmogorov-Smirnov test for copula models (see Rémillard (2017)),
KT-AS, which is the Kuhn-Tucker test based on the score of a symmetric Student ¢ copula
evaluated under Gaussianity (see Amengual and Sentana (2018)), and GMM, which refers to
the moment test based on the underlying influence functions in GET.

Following the same structure as in Table 1, the first three columns of Table 2 report rejection
rates under the null at the 1%, 5% and 10% levels for n = 400 (top) and n = 1,600 (bottom).
The results make clear that the parametric bootstrap works remarkably well for both sample
sizes. In turn, the last six columns present the rejection rates at the same levels for the two
Hermite expansion copula alternatives. By and large, the behavior of the different test statistics
is in accordance with expectations. In particular, when the sample size is large our proposal is
the most powerful given that it is designed to direct power against Hermite expansion copula
alternatives. In contrast, its non-parametric competitor has close to trivial power in samples
of 400 observations, a situation that improves marginally when n = 1,600. Interestingly, the
Kuhn-Tucker version of the Gaussian versus Student ¢ copula test in Amengual and Sentana
(2018) performs quite well when n is large in spite of not being designed for the alternatives
we consider. Importantly, GET does a better job than the moment test based on the influence
functions L, implied by the higher-order expansion of the log-likelihood on which it is based,
which is partly due to the fact that it takes into account the partially one-sided nature of the
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alternatives.

Finally, it is important to mention that in this example the log-likelihood function under the
alternative is particularly difficult to maximize over the five parameters involved. In fact, we
systematically encounter multiple local maxima in samples of up to 100,000 observations even
if we fix the correlation parameter to its true value and use global optimization methods, which
forced us to repeat the calculations over a huge grid of initial values. For that reason, we have
only computed the Gaussian rank correlation coefficient between the LR test and GET across

ten such simulated samples, obtaining a high value of .96.

E Relationship to Dovonon and Renault (2013)

As we mentioned in the concluding section, the results of our paper can be extended to
other extremum estimators, such as GMM. In that regard, the purpose of this appendix is to
compare the results in Dovonon and Renault (2013) with the implications of our Theorem 1 for
the particular case of r = 2. To simplify the notation, in what follows we will omit the nuisance
parameters ¢ from p = (¢',0’)’.

Let Q be the normalized objective function of some extremum estimator 6 € arg maxgee Q).
Specifically, QEMM (0) = —nap' (0)W,,4p(0) in GMM, where () denotes a vector of H influ-
ence functions and W,, & W, while QM~(8) = 2L(8) in a likelihood context. For brevity of
exposition, we assume that either our Assumptions 1 and 2 hold (likelihood), or Assumptions
1-5 in Dovonon and Renault (2013) hold (GMM).

Let us start by comparison of the rank deficiency conditions. Regarding first-order under-
identification (Condition E1 henceforth), we have that 8?9,E[1/)(00)] = 0 [see Proposition 2.1
in Dovonon and Renault (2013)]. In turn, our Assumption 2.1 implies that 81 ‘9 = 0. As

for second-order identification (Condition E2 hereinafter), Lemma 2.3 in Dovonon and Renault

(2013) implies that <X Oy,

0000’ | o

ag;lgl 0, A 7é 0 for all [|A]| # 0 whenever Assumption 2.2 holds.

Using a fourth-order Taylor expansion of the normalized objective function ) around the

. !/
instead, we have X\

true value of the parameter vector, we can show that

; 1 CR2Q
Q(0) — Qo) = 39/( )*5(9*90) W(O*HO) (E25)
1 Q- ;1 0*Q -
*5 2 3W( ~6y) +4!,,j:480"(9_00) s

where ¢,, is a remainder term, which is zero in the Dovonon and Renault (2013) setup because
) is a second order polynomial in 8, while we have shown it to be 0p(1) in the likelihood context
of our paper.

Next, we look a each of the other terms of the RHS of (E25) in detail.
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Regarding the linear term in (E25), we have = —2(\/np, )W (\/ﬁg—g’,) in the GMM

context, which is Op(1) by virtue of Condition E1, Whlle the analogous condition in the likelihood
Q

context implies that = 0. Moreover, 8 — 0y = 0p(1) due to the usual regularity conditions,

which implies that the ﬁrst—order conditions are negligible in both cases.

As for the quadratic term in (E25), we can show that \IFX a%a%,)\ converges in distribution
to a non-degenerate normal distribution with zero mean. In Dovonon and Renault (2013),
specifically, this fact follows from the form of the GMM criterion function, which implies that
1, 0%Q op! o ,0vec (0v,,/06") _
—X A=-2X—""W A —2XN h I W A
Jn' 9006 96 ViV og g L@ (VW)

while it is a consequence of the information matrix equality in our setup.

In turn, the third-order term in (E25) is dominated by the quadratic one in both cases.
Specifically, %%g = Op(1) holds in MLE by virtue of Lemma ?7?, while it holds in GMM
thanks to Condition E1. This, together with the fact that & — 6y = 0,(1), allows us to neglect
the third-order term.

Finally, regarding the fourth-order term of the expansion (E25), which is the one character-
izing the asymptotic variance of the tests, we have that in the GMM context

i Z 84@ (Baarn — 00) = —ivec( ") [G'WG + 0,(1)] vec(¥¥)

J
52 08

. 15 8%y 0% 2 !
where v = n1(0gy —60o) and G = [vec (W) , vec (607862’> N e (8980’)] (see Dovonon
and Renault (2013, p. 2,576)).
Similarly, if we denote (éML — 00)’%(@]\4[, — 00) = ZU@C[(@ML — 00>(éML — 00)'], we will
have that in the likelihood context

8"/qu ,, j P 1 YN, Y
] Z Oz — 60)! = —Zvec(vv ) Var (Z)vec(¥¥")

o 007

by virtue of Lemma ?77.

As a consequence,

R 1
QMM (Banrar) — QMM (8y) = vec(¥V) | G'WX = G'WGuec(v¥) | +0,(1),  (E26)

Ay As
where X ~ N[0,3(6p)] and X(8y) is the asymptotic variance of \/nap,, (o).
In turn,
A 1
QMEOnr) — QME(80) = vec(3¥) | Z =V (Z)vec(¥¥') | + 0,(1) (E27)
\B/ 4~
1 Bs

where Z ~ N[0,V (Z)]. Importantly, the term As in (E26) is the variance of A; only if one
chooses the optimal GMM weighting matrix W = X71(g). In contrast, Bs in (E27) is al-

ways the variance of By because of Lemma ?77. Therefore, the asymptotic distribution of

QMM (Gnrnr) — QMM (9y) and QME(Byrr) — QME(By) will be the same when W = £1(6y).
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While the rank deficiency condition and the asymptotic distribution of Q(é) — Q(0g) look
quite similar for a likelihood function and an optimal GMM criterion, there are some differences.
First, the expected Jacobian is zero with rank deficiency ¢ in GMM, while ¢ linear combinations of
the score vector are numerically zero in the likelihood context. An additional difference between
GMM and MLE is that in the latter 8 is the parameter we want to test, while in the former the
objective is to test some H > ¢ overidentified moment conditions, with 8 being the parameter

vector estimated from those conditions.
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F Additional tables and figures

Table D.1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
white noise versus multiplicative seasonal AR test.

Null Alternative hypotheses
hypothesis H,, H,,
1% 5%  10% 1% 5%  10% 1% 5%  10%

n = 100
GET 1.0 4.7 9.4 26.7 437 54.1 246 472 604
LM-AR(1) 1.2 5.7 10.7 14.6  28.8 38.3 3.2 9.9 164
LM-SAR(4) 0.9 4.8 9.9 12.8 273 38.2 2.8 9.5 16.0
GMM 1.0 5.2 10.1 244 404 494 20.8 40.0 51.5
n = 400
GET 1.0 4.8 9.9 88.1 95.1 97.0 92.0 98.0 99.1
LM-AR(1) 1.2 4.4 9.7 60.2 764 84.1 3.3 9.9 168
LM-SAR(4) 1.1 5.4 9.8 09.2 T78.6 86.4 5.6 15.0 22.6
GMM 0.9 5.0 9.9 86.1 93.7 96.1 89.0 96.5 98.5

Notes: Results based on 10,000 samples. The mean and variance parameters ¢; and ¢, are estimated
under the null using the sample mean and sample variance. LM-AR(1) and LM-SAR(4) denote the
Lagrange multiplier tests based on the score of an AR(1) and a seasonal AR(4), respectively. GMM
refers to the J-test based on the influence functions underlying GET. Finite sample critical values are
computed by simulation. DGPs: the true unconditional mean and the variance of the innovations are set
to 0 and 1, respectively, under both the null and alternative hypotheses. As for the alternative hypotheses,
Hy :(1—.1L— .1L% — 1L — 1L*)y; = &y and H,, : (1 — 4L)(1 + 4L)(1 — AL*)(1 + 4L*)y; = &;.
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Table D.2: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
Gaussian versus Hermite expansion copula test.

Null Alternative hypotheses
hypothesis H,, H,,
1% 5%  10% 1% 5%  10% 1% 5%  10%

n = 400
GET 1.1 5.0 10.2 22.6 55.8 69.7 23.9 55.8 69.8
KS 0.8 4.6 9.4 1.1 54 10.8 1.1 5.6 10.7
KT-AS 1.0 5.0 9.7 27.7 50.8 63.5 30.0 536 66.0
GMM 1.0 52 10.1 5.6 43.0 62.0 5.2  45.0 62.7
n = 1,600
GET 1.0 4.8 9.6 95.3 99.5 99.8 94.6 99.2 99.8
KS 1.1 51 10.4 2.0 7.7 14.5 2.4 94 17.0
KT-AS 1.1 4.9 10.0 79.8 934 96.5 83.8 95.1 97.6
GMM 1.1 5.0 9.8 55.9 97.9 99.6 57.1  97.8 99.3

Notes: Results based on 10,000 samples. Margins are assumed to be known. The correlation parameter
¢ is estimated under the null using the Gaussian rank correlation estimator described in Amengual,
Sentana and Tian (2019). KS denotes the Kolmogorov—Smirnov test for copula models (see Rémillard
(2017) for details) while KT—AS is the Kuhn-Tucker test based on the score of the symmetric Student ¢
copula (see Amengual and Sentana (2018) for details). GMM refers to the J-test based on the influence
functions underlying GET. Critical values are computed using the parametric bootstrap. DGPs: The
correlation parameter ¢ is set to 0.5 under both the null and alternative hypotheses. As for the alternative
hypotheses, H,, and H,, correspond to Hermite expansion copulas with 9" = (0.04,0,0,0,0) and ¥’ =
(0.02,0,0,0,0.02), respectively.
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Figure D.1: p-value discrepancy plot for the white noise versus multiplicative seasonal AR

test
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Notes: Results based on 10,000 simulated samples of size n of y ~ i.i.d. N (0,1). GET is computed

as defined in section D.1. Given that the asymptotic distribution of the GET statistic is a mixture of x3,
1

4>
three random variables with the same weights.

X3 and x? with weights i, %, we compute the p-values as a linear combination of the p-values of those





