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Abstract

We propose specification tests for parametric distributions that compare the potentially

complex theoretical and empirical characteristic functions using the continuum of moment

conditions analogue to an overidentifying restrictions test, which takes into account the cor-

relation between influence functions for different argument values. We derive its asymptotic

distribution for fixed regularization parameter and when this vanishes with the sample size.

We show its consistency against any deviation from the null, study its local power and com-

pare it with existing tests. An extensive Monte Carlo exercise confirms that our proposed

tests display good power in finite samples against a variety of alternatives.
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1 Introduction

Goodness-of-fit tests are important to assess whether a parametric distribution provides

an appropriate representation of the data. These tests can be divided in two main categories:

(i) directional tests, which are designed to have power against specific alternatives, such as

Neyman smooth test (see Neyman, 1937 and Rayner and Best, 1989), Jarque and Bera’s (1980)

test of normality, as well as those proposed by Sefton (1992), Fiorentini, Sentana and Calzolari

(2003), Bontemps and Meddahi (2005, 2012), Mencía and Sentana (2012) and Tuvaandorj and

Zinde-Walsh (2014) among many others; (ii) omnibus tests, which are consistent against any

alternative to the null hypothesis, for instance the integrated conditional moment test of Bierens

(1982) and Bierens and Ploberger (1997), the conditional Kolmogorov test of Andrews (1997),

and the copula goodness-of-fit test of Genest, Huang and Dufour (2013). Our proposed tests

fall in this second category.

In particular, our testing procedure is based on the difference between the empirical and

theoretical characteristic functions (CF) for all possible values of their argument. This gives rise

to a continuum of moments in a L2 space. Our aim is to construct a J test for overidentifying

restrictions based on these moments, as in Hansen (1982). However, what plays the role of the

covariance matrix in his test becomes now a covariance operator, whose inverse is unbounded.

Therefore, some regularization is needed to stabilize the inverse. We propose to use Tikhonov

regularization (see Kress, 1999) and consider two types of tests. The first one uses a fixed value

of the regularization parameter α. Given that α can be regarded as a bandwidth, this approach

is analogous to the fixed b asymptotics used in Kiefer and Vogelsang (2002). The second type

of tests allows α to converge to zero at an appropriate rate, in which case our proposed test

is closer in spirit to Hansen (1982)’s J test. In this second instance, however, the statistics

would tend to a diverging χ2 with infinite degrees of freedom. For that reason, we center and

rescale it following the procedure put forward by Carrasco and Florens (2000), who presented

this type of test for the first time. Note that Carrasco and Florens (2000) assume that the

moment conditions are real whereas here we work with complex moment conditions.

We will consider various versions of our proposed tests depending on whether the parameter

vector θ is known in advance or replaced by a consistent estimator, and whether we make

use of the analytical expression for the covariance operator or estimate it. We will derive the

asymptotic distribution of our tests under the null hypothesis and under local alternatives. We

will also characterize the alternatives for which our tests have maximum power.

The advantages of using the CF are multiple: (a) in some important examples, the distri-

bution function is only known in integral form whereas the CF has a closed form expression,
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as in the cases of stable distributions and affi ne diffusions (see Singleton (2001) and Carrasco,

Chernov, Florens, and Ghysels (2007)); (b) handling multivariate random variables can be done

just as easily as the scalar case; (c) our tests have the same form and are computed in the

same manner for any CF tested; (d) our tests are consistent against any alternative to the null

hypothesis.

The CF raises specific challenges as the CF-based moment condition converges to a complex

Gaussian process but some results valid for real processes are not directly applicable to complex

processes. To derive the asymptotic distributions of our tests, we adapt some results recently

developed by Ducharme, de Micheaux, and Marchina (2016) for complex random vectors to

complex processes. For results on the weak convergence of the empirical CF, see Csörgö (1981)

and Wells (1992). Various tests based on the empirical CF have been previously proposed:

Feuerverger and Mureika (1977), Epps and Pulley (1983), Hall and Welsh (1983), Baringhaus

and Henze (1988), Ghosh and Ruymgaart (1992), Fan (1997), Hong (1999), Su and White

(2007), Chen and Hong (2010), and Leucht (2012) among others. The most closely related

paper is that of Bierens and Wang (2012), which focuses on tests for parametric conditional

distributions. Recently, Bierens and Wang (2017) extended their tests to time-series. The main

difference with ours is that we “weight”the continuum of moment conditions by the inverse of

their covariance operator. Our work is also related to Dufour and Valery (2016), who propose a

regularized Wald test to deal with the singularity of the covariance matrix.

The remainder of the paper is organized as follows. We introduce our tests in Section 2 and

derive the asymptotic properties of the J test with fixed regularization parameter α and known

(unknown) θ in Section 3 (4). Next, we study the J test with vanishing α in Section 5. Finally,

Section 6 presents the results of our Monte Carlo simulations while Section 7 concludes. All the

proofs are collected in the appendix and computational aspects as well as additional figures are

included in the online Supplemental Appendix.

2 Presentation of the tests and overview

Assume we observe a sample of random variables X1, X2, ..., Xn independent and identically

distributed (iid) taking their values on Rq with q ≥ 1. The Xj have probability density function

(pdf) f (x; θ) indexed by a finite dimensional parameter θ, which may be known or unknown,

and CF ψ (t; θ) = E[eitX ], where t ∈ Rq is its argument. As is well known, f (x; θ) and ψ (t; θ)

are intimately related because the former is the Fourier transform of the latter, i.e.

ψ (t; θ) =

∫
eitxf (x; θ) dx. (1)
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Figure B1 in the Supplemental Appendix presents the CFs for the univariate distributions

that we consider in our Monte Carlo study, namely, a standard normal, as well as standardized

(zero mean - unit variance) versions of the uniform and χ2(2) distributions, and a Cauchy

distribution with location and scale 0 and 1, respectively. Given that the first two examples and

the Cauchy are symmetrically distributed around 0, the CF is real and symmetric around 0. In

contrast, it contains an (odd) imaginary component in the case of the asymmetric chi-square.

We are interested in testing H0 : ψ = ψ0 (.; θ0), where ψ0 is a known CF and θ0 is some

element of Θ ⊂ Rp. Our testing procedures are based on the difference between the empirical

and theoretical CFs. Specifically, the relevant influence functions are

ĥ (t; θ) =
1

n

n∑
j=1

hj (t; θ) , (2)

hj (t; θ) = eitXj − ψ0 (t; θ) . (3)

This gives rise to a continuum of moments since under the null E[hj (t; θ0)] = 0 for all t ∈ Rq.

Let π be a probability density function with support Rq. Then, the function hj (t; θ) is a

random element of L2 (π), the space of complex-valued functions which are square integrable

with respect to the density π. The inner product on this space is defined for any functions f and

g of L2 (π) as 〈f, g〉 =
∫
f (t) g (t)π (t) dt, where the bar denotes the complex conjugate. L2 (π)

is a Hilbert space and we will work on this space to derive the asymptotic distribution of our

test statistics.

By the central limit theorem of iid random elements of a separable Hilbert space (see e.g.

proof of Theorem 9 in Rackauskas and Suquet, 2006), we have that under H0, as n goes to

infinity
√
nĥ (.; θ0)⇒ CN (0,K,R)

in L2 (π), where CN (0,K,R) denotes a complex Gaussian process of L2 (π). This process is

characterized by its mean, its covariance operator K, which is an integral operator from L2 (π)

to L2 (π) such that

(Kf) (s) =

∫
k (s, t) f (t)π (t) dt, (4)

with kernel

k (s, t) = E[hj (s; θ0)hj (t; θ0)] = ψ0 (s− t; θ0)− ψ0 (s; θ0)ψ0 (−t; θ0) , (5)

and its relation operator R, which is an integral operator from L2 (π) to L2 (π) with kernel

r (s, t) = E[hj (s; θ0)hj (t; θ0)] = k (s,−t) . (6)
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In the sequel, we denote by λj and φj the eigenvalues and orthonormal eigenfunctions of K,

respectively, which are solutions to the functional equation (Kφj)(t) = λjφj(t). The φj are not

uniquely defined because one can multiply a complex function by a complex number on the unit

circle without altering its norm. However, our test statistic is invariant to this. Figures B2a

and B2c in the Supplemental Appendix present the eigenfunctions associated with the largest

two eigenvalues for the covariance operator K for the standard normal when the weighting

function π is itself a normal with zero mean and scale parameter ω for two values of ω. In turn,

Figures B2b and B2d show the corresponding operator of the standardized uniform distribution

on (−
√

3,
√

3) for the same Gaussian weighting function. As can be seen in these figures, if

we arrange the eigenvalues in decreasing order, the eigenfunctions associated with even (odd)

eigenvalues are even (odd) functions in these two examples. We also report in Figures B2e and

B2f the largest five eigenvalues for those distributions. As we shall see below, the main effect

of changing ω will be to change the relative weights given to small and large values of the CF

argument t.

We are interested in applying Hansen (1982)’s J test of overidentifying restrictions to our

continuum of moments. To illustrate the diffi culties that may arise, assume for a moment

that ĥ (θ) is a finite dimensional m-vector obtained from a rough discretization of Rq, so that
√
nĥ (θ0)

d→ N (0,K) and K is a nonsingular m×m matrix. Assuming for simplicity that both

K and θ are known, the usual J test for overidentifying restrictions is

J = nĥ
?
(θ)K−1ĥ(θ), (7)

where ? denotes the complex conjugate transpose of a vector/matrix. Now if we let m grow by

taking a denser and denser grid, then the matrix K becomes increasingly ill-conditioned, in the

sense that the ratio of its largest eigenvalue to its smallest one increases dramatically, so K−1

may be numerically unreliable for large m.

In our setting, the covariance matrix K is replaced by the aforementioned covariance operator

K (see Supplemental Appendix A.1), which has a countable infinite number of positive eigen-

values λj , j = 1, 2, . . . (arranged in decreasing order) and associated eigenfunctions φj . As we

will see later, this operator is compact, meaning that its inverse is not bounded. Consequently,

its smallest eigenvalues will converge to zero as j goes to infinity, so taking the inverse of K

is problematic. In terms of the spectral decomposition of K, the direct analogue to the J test

statistic in (7) would be written as

〈√
nĥ,K−1√nĥ

〉
=
∑
j

1

λj

∣∣∣〈√nĥ, φj〉∣∣∣2 (8)
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where the dependence on θ is omitted for simplicity and |.| denotes the modulus of complex

numbers. This expression will blow up because of the division by the small eigenvalues λj for

large j. This is related to the problem of solving an integral equation Kf = g where g is known

and f is the object of interest. This problem is said to be ill-posed because f is not continuous in

g. Indeed, a small perturbation in g will result in a large change in f . To stabilize the solution,

one needs to use some regularization scheme (see Kress (1999) and Carrasco, Florens, and

Renault (2007) for various possibilities). As in Carrasco and Florens (2000), we use Tikhonov

regularization, which consists in replacing K−1g by the regularized solution
(
K2 + αI

)−1
Kg

where α ≥ 0 is a regularization parameter. We use the notation (Kα)−1 for
(
K2 + αI

)−1
K,

which is the operator with eigenvalues λj
λ2j+α

and corresponding eigenfunctions φj , and (Kα)−1/2

for the operator with eigenvalues
√
λj√

λ2j+α
and the same eigenfunctions.

Thus, the regularized version of the J test is

∥∥∥(Kα)−1/2√nĥ
∥∥∥2

=
∑
j

λj

λ2
j + α

∣∣∣〈√nĥ, φj〉∣∣∣2 . (9)

Comparing the expressions (8) and (9), we observe that 1
λj
has been replaced by λj

λ2j+α
, which is

bounded.

We will consider various versions of this test depending on whether:

• θ0 is known or estimated,

• K is known or estimated,

• α is fixed or goes to zero.

Consider the case where α is fixed; if we are willing to assume that θ0 is known, so that the

distribution under the null hypothesis is completely specified and the operator K is known, then

the first test we should consider is

J(θ0,K) =
∑
j

λj

λ2
j + α

∣∣∣〈√nĥ, φj〉∣∣∣2 . (10)

As we explain in Appendix A.1, the test statistic (10) can be arbitrarily well approximated

from a numerical point of view by a regularized version of the matrix expression (7). Specifically,

if we evaluated the CF at a very fine but discrete grid of m points over a finite range of values

of the argument t, then

J(θ0,K) = nĥ (θ0)?
(
K
m

)1/2
[(
K
m

)2

+ αI

]−1(
K
m

)1/2

ĥ (θ0) . (11)
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Several issues related to the practical implementation of this test (in particular the compu-

tation of the eigenelements of K) are discussed in the Supplemental Appendix A.1.

When θ is unknown, however, the operator K is only known up to θ. Let θ̃ be a consistent

estimator of θ obtained for instance from

θ̃ = arg min
θ∈Θ

∥∥∥ĥ (.; θ)
∥∥∥2
.

In this context, the integral operator Kθ̃ can be defined as in (4) but with kernel

k(s, t) = ψ0(s− t; θ̃)− ψ0(s; θ̃)ψ0(−t; θ̃).

Let {λjθ̃, φjθ̃} j = 1, ...,m be the eigenvalues and eigenfunctions of the operator Kθ̃. Then the

second test we consider is

J(θ̂, K
θ̃
) =

∑
j

λjθ̃

λ2
jθ̃

+ α

∣∣∣〈√nĥ(.; θ̂), φjθ̃

〉∣∣∣2 = min
θ∈Θ

∑
j

λjθ̃

λ2
jθ̃

+ α

∣∣∣〈√nĥ (.; θ) , φjθ̃

〉∣∣∣2
where θ̂ corresponds to the argument of the minimization.

Alternatively, we may prefer to estimate K using a sample covariance operator. In fact, there

are two obvious possibilities. The first one is to use the integral estimator K̂ with uncentered

kernel

k̂(s, t) =
1

n

n∑
i=1

hi(s; θ̃)hi(−t; θ̃),

where θ̃ is a consistent first step estimator of θ. On the other hand, the second possibility is the

integral operator K̊ with centered kernel

k̊ (s, t) =
1

n

n∑
i=1

hi (s)hi (−t) ,

where

hi (s) = hi (s; θ)− ĥ (s; θ) = eisXi − 1

n

n∑
l=1

eisXl .

The advantage of the second estimator is that it does not require a first step estimator of θ and

thereby it may be more robust to misspecification.

For computational reasons, it is convenient to rewrite the test statistics (9), which use as

eigenvalues and eigenfunctions those of K̂ and K̊, in terms of certain matrices and vectors (see

Carrasco et al (2007) for analogous expressions for K̂ under time series dependence). Specifically,

we obtain the following two expressions:
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i) The test based on K̂, which can be computed as

J(θ̂, K̂θ̃) = min
θ∈Θ

v (θ)?
[
αI + C2

]−1
v (θ) (12)

where v (θ) is a n × 1 vector with l-th element vl (θ) =
∫
hl(t; θ̃)ĥ (t; θ)π (t) dt, C is an n × n

matrix with (i, l) element cil/n with cil =
〈
hl(t; θ̃), hi(t; θ̃)

〉
(see Supplemental Appendix A.2

for analytical expressions for these integrals).

ii) The test based on K̊, whose matrix expression is

J(θ̂, K̊) = min
θ∈Θ

v̊ (θ)? [αI + C̊2]−1v̊ (θ) (13)

where v̊ (θ) is a n×1 vector with l-th element v̊l (θ) =
∫
hl (t)ĥ (t; θ)π (t) dt, C̊ is an n×n matrix

with (i, l) element c̊il/n with c̊il = 〈hl (t) , hi (t)〉, and θ̂ is the argument of the minimization.

Note that C̊ = (I − ``′/n)C(I − ``′/n), where ` is a vector of n ones.

In Sections 3 and 4, we will study the asymptotic distribution of the test statistics J(θ0,K),

J(θ̂, Kθ̂), J(θ̂, K̂θ̃) and J(θ̂, K̊) and show that they converge under H0 to a weighted sum of χ2’s

whose weights depend on θ. Given the eigenvalues, those weights and hence their asymptotic

distributions are known, so we can compute the p-value of these quadratic forms in normal

variables using the approach in Imhof (1961). Nevertheless, we rely on the parametric bootstrap

in the simulations to improve the small sample properties of our proposed procedures.

For all the tests presented so far, α is fixed, so that our regularized inverse (Kα)−1 is a biased

approximation of K−1. It is possible to approach K−1 by letting α go to zero at a suitable rate.

However, a test based on (9) with α going to zero would tend to a chi-square with infinite

degrees of freedom, and hence diverge. For that reason, we explain next how to center and

rescale it following Carrasco and Florens (2000). Let hj(t; θ0) denote the influence function (3)

evaluated at the true θ0 (here θ0 is assumed to be known to simplify). Similarly, let λ̂j denote

the eigenvalues of K̂, the sample covariance operator of hj(t; θ0),

âj =
λ̂

2

j

λ̂
2

j + α
, p̂n =

n∑
j=1

âj , and q̂n = 2
n∑
j=1

â2
j . (14)

After appropriate centering and rescaling, we obtain:

Jαn =

∥∥∥(K̂αn)−1/2√nĥ(.; θ0)
∥∥∥2
− p̂n

√
q̂n

. (15)

In Section 5, we show that Jαn converges to a standard normal distribution under the null.
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3 J test when α is fixed and the parameter is known

3.1 Distribution under local alternatives

The J(θ0,K) statistic in (10) with α fixed is part of a larger class of tests based on weighted

L2 statistics that we will denote by TB in the sequel. Let B be a nonrandom bounded linear

operator from L2 (π) to L2 (π) and Bn a sequence of random bounded linear operators from

L2 (π) to L2 (π) such that ‖Bn −B‖
P→ 0 as n goes to infinity, where ‖.‖ is the sup-norm.

Assume moreover that the null space of B equals {0}; otherwise the test would lack power

against certain alternatives. Popular choices of B satisfying our assumptions include B = I as

in Epps and Pulley (1983), Bierens and Wang (2012) and Leucht (2012), as well as B = (Kα)−1/2

with α > 0 fixed. Note that B is not necessarily real.

In this section and the next one we focus on tests based on weighted L2 statistics

TB =
∥∥∥Bn√nĥ∥∥∥2

=

∫ ∣∣∣Bn√nĥ∣∣∣2 (t)π (t) dt, (16)

where ĥ (t) =
∑n

j=1[eitXj − ψ0 (t)] and ψ0 (t) = ψ0 (t; θ0).

First we express the null and alternative hypotheses in terms of the density function. Specif-

ically, let f0 be a density with respect to Lebesgue measure (the extension to the case of another

measure for discrete or mixed random variables is straightforward and will not be treated to

avoid cumbersome notation), then:

H0 : f (x) = f0 (x) ,

H1n (c) : fn (x) = f0 (x)
[
1 + cu(x)√

n

]
where c is a scalar and u is such that

∫
u (x) f0 (x) dx = 0 so that fn integrates to 1.

Given that there is a one-to-one mapping between the density and the CF through the

Fourier inversion theorem (see (1)), we can reformulate H0 and H1n in terms of the CF instead.

Thus, we obtain

H0 : ψ = ψ0,

H1n (c) : ψn = ψ0 + cη√
n

where η (t) =
∫
eitxu (x) f0 (x) dx.

To guarantee the uniqueness of the representation, η needs to be normalized. Many nor-

malizations could be used. For convenience, we impose the normalization condition ‖u‖L2(f0) =

E[u2(X)] = 1. Remark that by construction, η (0) = 0 and η (t) = η (−t). Moreover given

|ψn| ≤ 1, η is bounded. In this context, η represents the direction of the alternative, while c

represents the distance from the null.

First, we establish some results on the operator K of form (4) with kernel (5), suppressing
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the dependence on θ0 for simplicity.

Lemma 1 K is a self-adjoint positive definite Hilbert-Schmidt operator from L2 (π) to L2 (π)

and the sum of its eigenvalues is bounded by 1.

Lemma 1 implies two things: that K has a countable spectrum and that the sum of its

eigenvalues is less than 1.

Example Consider the CF of a univariate normal with mean µ and variance σ2; it turns out

that when using a normal weighting function with zero mean and scale parameter ω, we can

obtain analytical solutions for the sums of both λ’s and λ2’s. Specifically, the expressions are

∑
j

λj = 1− 1√
1 + 2σ2ω2

and ∑
j

λ2
j =

1

ω + 2σ2ω3

 e
− 4µ2ω2

1+2σ2ω2

√
1 + 2σ2ω2

+
e
− 4µ2ω2

1+4σ2ω2

√
1 + 4σ2ω2

− 2√
1 + 4σ2ω2 + 3σ4ω4

 .

As can be seen from the above expressions, the sums of both λ’s and λ2’s depend on the scale

ω of the weighting function.

Assumption 1 Xi, i = 1, 2, ... are iid.

Proposition 2 Assume that Assumption 1 holds. Under H1n, as n goes to infinity

√
nĥ⇒ CN (cη,K,R)

in L2 (π) where the covariance operator K is the integral operator with kernel (5) and the relation

operator R is the integral operator with kernel (6).

To establish the asymptotic distribution of
∥∥∥Bn√nĥ∥∥∥2

, it is useful to relate the complex

process Bn
√
nĥ to a real process following an approach similar to that of Ducharme, Lafaye de

Micheaux and Marchina (2016). Let

Zn =

(
Bn
√
nĥ

Bn
√
nĥ

)
, Yn =

(
ReBn

√
nĥ

ImBn
√
nĥ

)
, and M =

1

2

(
1 1

−i i

)
.

Before stating the general results, note that Zn and Yn are elements of
(
L2 (π)

)2
, the space

of 2× 1 vectors of complex valued functions with inner product denoted 〈f, g〉2 and defined as:

〈f, g〉2 =

∫ ∞
−∞

f1 (t) g1 (t)π (t) dt+

∫ ∞
−∞

f2 (t) g2 (t)π (t) dt

9



for f = (f1, f2)′ and g = (g1, g2)′ . On this space, the norm is denoted as ‖f‖2 =
√
〈f, f〉2.

Note that ĥ is not an arbitrary element of L2 (π). By definition, ĥ involves a Fourier

transform of a real valued process and hence satisfies the property ĥ (t) = ĥ (−t). Its covariances

satisfy E
(
hj (s)hj (t)

)
= ψ0 (s− t) − ψ0 (s)ψ0 (−t) ≡ k (s, t), E (hj (s)hj (t)) = ψ0 (s+ t) −

ψ0 (s)ψ0 (t) = k(s,−t) ≡ r (s, t) , E
(
hj (s)hj (t)

)
= k (s, t) = k (−s,−t), and E

(
hj (s)hj (t)

)
=

r (s, t) = k (s,−t). There is one-to-one mapping between the complex process Zn and the real

process Yn through Zn = M−1Yn.Moreover,
∥∥∥Bn√nĥ∥∥∥2

= ‖Yn‖22. As Yn converges to a bivariate

real Gaussian process, then ‖Yn‖22 converges to a weighted sum of chi-square distributions.

We have the relationship

M−1 =

(
1 i

1 −i

)
= 2M∗

where M∗ is the adjoint of M on
(
L2 (π)

)2. Let Γ be the covariance operator of

(
B
√
nĥ

B
√
nĥ

)
under H0. It is an integral operator from

(
L2 (π)

)2 to (L2 (π)
)2 such that

g =

(
g1

g2

)
∈
(
L2 (π)

)2 → Γg =

(
BKB∗ BRB

∗

B̄RB∗ B̄K̄B
∗

)
g

whereK and R are the integral operators with kernels k (s, t) = k (−s,−t) and r (s, t) = k (s,−t),

respectively. The covariance operator of Yn is MΓM∗.

Let bj , ζj , for j = 1, 2..., be the nonzero eigenvalues (arranged in decreasing order and

repeated according to their order of multiplicity) and 2×1 eigenfunctions of MΓM∗. Let ζ l be

the eigenfunctions of MΓM∗ associated with the 0 eigenvalue of MΓM∗ when Γ is singular. As

MΓM∗ is real, so are bj , ζj , and ζ l. Lemma 13 in Appendix gives a complete characterization of

ζj and ζ l. In particular, it shows that when B = I, then one can associates to each eigenfunction

φj ofK (corresponding to the eigenvalue λj), a pair of 2×1 functions ζj (t) = M
(
φj (t) , φj (−t)

)′
and ζ l (t) = M (φl (t) ,−φl (−t))′ (with l = j) which are the eigenfunctions of MΓM∗ associated

with the eigenvalues λj and 0 respectively. As these eigenfunctions are orthogonal, they form

a complete orthonormal basis of
(
L2 (π)

)2. Then, the asymptotic distribution of TB follows

from Karhunen-Loeve theorem (see Lemmas 12-14 in Appendix for more details). Further, let

η̃ = (Re (Bη) , Im (Bη))′.

Proposition 3 Assume that Assumption 1 holds.

(a) Under H1n, we have

TB
d→
∞∑
j=1

bjχ
2
j (1, δj) + c

∑
l

〈η̃, ζ l〉22 =
∞∑
j=1

bj

(
ej +

c
〈
η̃, ζj

〉
2√

bj

)2

+ c
∑
l

〈η̃, ζ l〉22

10



where χ2
j (1, δj), j = 1, 2, ... denote independent noncentral chi-square random variables with 1

degree of freedom and non centrality parameter δj = c2
〈
η̃, ζj

〉2
/bj while ej, j = 1, 2, ... are the

underlying independent standard normal variables.

(b) If moreover π is symmetric around 0 and B is either the identity operator or B =

(Kα)−1/2, a simplification yields the following distribution under H1n:

TB
d→
∞∑
j=1

ajχ
2
j (1, δj) =

∞∑
j=1

aj

(
ej +

c
〈
Bη, φj

〉
√
aj

)2

where χ2
j (1, δj), j = 1, 2, ... denote independent noncentral chi-square random variables with 1

degree of freedom and non centrality parameter δj = c2
〈
Bη, φj

〉2
/aj where aj, φj, j = 1, 2, ... are

the eigenvalues (arranged in decreasing order) and eigenfunctions of BKB∗, while ej, j = 1, 2, ...

are iid N (0, 1).

Remark 1 While part (a) of Proposition 3 holds for general moment conditions and arbitrary

π, the proof of part (b) heavily relies on the fact that the complex conjugate of ĥ(t) equals ĥ(−t)

and the symmetry of π. We observe that, in this case, the asymptotic distribution under H0 is

a weighted sum of chi-squares as we would obtain if the moment conditions were real.

Remark 2 The previous proposition will not apply if B = K−1/2. In that case, B is not

bounded, which violates one of the assumptions. Moreover, N (0, I) is not a Gaussian process

because the trace of its covariance operator (the identity operator) is infinite. We will discuss

the case B = (Kα)−1/2 when α goes to zero in Section 5.

Remark 3 Now we comment on the cases B = I and B = (Kα)−1/2. Recall that the case

B = I corresponds to Bierens and Wang (2012) test whereas B = (Kα)−1/2 corresponds to

a J-test where the weighting operator is a biased estimator of K−1. We see that as soon as〈
Bη, φj

〉
6= 0 for some j, the test statistic TB will have non trivial power. But because {φj}

forms an orthonormal basis of L2 (π), then Bη =
∑

j

〈
Bη, φj

〉
φj and by Parseval’s identity,

‖Bη‖2 =
∑

j

〈
Bη, φj

〉2
> 0. It follows that

〈
Bη, φj

〉
, j = 1, 2, ... cannot all be zero simultane-

ously. Therefore, TB has indeed non trivial power against all local alternatives of the form H1n,

and against all fixed alternatives a fortiori. However, if
〈
Bη, φj

〉2 is small (as will be the case

for most j since the sequence
〈
Bη, φj

〉2 is summable), the power against local alternatives in the

jth direction may be poor.

Remark 4 Now, we consider the power of TB against a fixed alternative of the form H1 : ψn =

ψ0 + η. We have
TB
n

=

∫
(Bnhn)2 (t)π (t) dt

P→ ‖Bη‖2 .

11



Hence,

TI
n

P→ ‖η‖2 =
∑
j

〈
η, φj

〉2
,

T
(Kα

n )−1/2

n

P→
∥∥∥(Kα)−1/2 η

∥∥∥2
=

∑
j

λj

λ2
j + α

〈
η, φj

〉2
.

As λj < 1, we can always find an α suffi ciently small so that λj
λ2j+α

> 1 for all j, and hence

T
(Kα

n )−1/2
has better power than TI in the sense that p lim

T
(Kαn )

−1/2

n > p lim TI
n against any fixed

alternative.1

In the next subsection, we will study the power properties of these tests in more detail.

3.2 Alternatives with maximum power

It is well-known that there is no uniformly most powerful test for assessing H0 and that

goodness-of-fit tests have good power only against certain local alternatives (see Neuhaus (1976),

Janssen (2000), Escanciano (2009), and Lehmann and Romano (2005, Section 14.6)). In this

subsection, we will characterize the alternative with maximum power.

Let L2 (f0) < ∞ denote the L2 space of real functions ϕ (X) such that we can define

‖ϕ‖2L2(f0) =
∫
ϕ2 (x) f0 (x) dx.

In this section, we focus on the case where B = I or (Kα)−1/2, so we will assume that the

following assumption holds.

Assumption 1’ Xi, i = 1, 2, ... are iid, π is symmetric around 0 and B = I or (Kα)−1/2.

In this set up, we define the asymptotic local power function ΠB (a, c, u) as

ΠB (a, c, u) = lim
n→∞

P [TB ≥ ca|H1n (c)],

where ca is the critical value such that TB achieves a level a, i.e. limn→∞ P (TB ≥ ca|H0) = a.

To analyze the power of these statistics, it is useful to rewrite K as T ∗T , where T is an

operator from L2 (π) to L2 (f0) and T ∗ is the adjoint operator from L2 (f0) to L2 (π). Such a

decomposition has been used to study the power of Cramer von Mises type tests by Neuhaus

(1976, equation (1.9)) and Escanciano (2009, p.168).

The operators T and T ∗ are as follows:

T : L2 (π)→ L2 (f0) ,

(Tφ) (X) =
∫
h (X; t)φ (t)π (t) dt,

T ∗ : L2 (f0)→ L2 (π) , and

1We thank a referee for suggesting this remark.
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(T ∗ϕ) (t) =
∫
h (x; t)ϕ (x) f0 (x) dx.

Moreover, TB∗ is compact and admits a singular system {√aj , φj , ϕj}, where TB∗φj =

√
ajϕj and BT

∗ϕj =
√
ajφj . Therefore, φj are the eigenfunctions of BT

∗TB∗ = BKB∗ and ϕj

those of B∗TT ∗B. Thus, ϕj can be interpreted as principal components.

Observe that η = T ∗u. Indeed, if we use the property of Fourier transforms and the fact

that
∫
u (x) f0 (x) dx = 0, we will have that

(T ∗u) (t) =

∫
[eitx − ψ0 (t)]u (x) f0 (x) dx

=

∫
eitxu (x) f0 (x) dx− ψ0 (t)

∫
u (x) f0 (x) dx = η (t) .

Hence, the relation η = T ∗u implies that〈
Bη, φj

〉
√
aj

=

〈
BT ∗u, φj

〉
√
aj

=

〈
u, TB∗φj

〉
√
aj

=
〈
u, ϕj

〉
. (17)

From (17) and Proposition 2, it follows that under H1n (c),

TB
d→
∞∑
j=1

aj(ej + c
〈
u, ϕj

〉
)2. (18)

Note that the sequence {ϕj}, for j = 1, 2, ..., forms a complete orthonormal basis of R (TB∗) =

L2 (f0) ∩ {u : E (u) = 0}. Hence, the alternatives of interest are linear combinations of the

eigenfunctions ϕj’s. In this context, the analysis of the limiting distribution in (18) and the

orthogonality of the ϕj’s allow us to establish the following result:

Proposition 4 Assume that Assumption 1’ holds. The limiting power ΠB(α, c, u) has the

following properties.

(a) maxu{ΠB(a, c, u) : u ∈ L2(f0), E(u) = 0, ‖u‖L2(f0) = 1} = ΠB(a, c, ϕ1),

(b) ΠB(a, c, ϕj) ≤ ΠB(a, c, ϕi) for 1 ≤ i ≤ j,

(c) limj→∞ΠB(a, c, ϕj) = a.

Proposition 4 says that (a) the maximum power is achieved for the local alternative u = ϕ1

corresponding to the first principal component, (b) the power decreases when considering higher-

order principal components, (c) finally, the power goes down to the level of the test, a, for the

highest frequency (case j →∞).

As we saw before, in general ϕj depends on B, so that the alternative with maximum power

will be different for different tests TB.

But if we consider more specifically the cases B = I and B = (Kα)−1/2, the ϕj are the same

because they correspond to the eigenfunctions of TT ∗. Hence, the alternative for which the tests

13



TB for B = I and B = (Kα)−1/2 are the most powerful coincides, and corresponds to η = ϕ1.

When B = I, then aj = λj , i.e. the eigenvalues of K decline quickly towards 0. So the test

TB with B = I concentrates its power on the first principal component. On the other hand, when

B = (Kα)−1/2, aj =
λ2j

λ2j+α
instead will decline slower towards 0 for smaller α. Consequently,

power will be more evenly spread among the first few directions when B = (Kα)−1/2 than when

B = I. This point is illustrated graphically in the case of the normal distribution. Figure 1

shows the decline of λj and aj while Figure 2 reports the first three alternatives with maximum

power. In turn, Figure 3 plots the asymptotic powers of TI and T(Kα
n )−1/2

for different values of

α. In the extreme case where α = 0, we would have aj = 1, which means that power would be

evenly spread among all alternatives. However, in this case the null distribution is a Chi-square

with infinite degrees of freedom and the resulting test has power equal to size for any local

alternative; see Lemma 14.3.1 of Lehmann and Romano (2005). We will consider the case where

α→ 0 in greater detail in Section 5.

4 J test when α is fixed and the parameter is unknown

4.1 Distribution under local alternatives

Let Θ ⊂ Rp be the parameter space of θ. Let θ0 ∈ Θ be the true value of θ under H0.

Consider

H0 : f (x) = f0 (x; θ0) ,

H1n (c) : fn (x) = f0 (x; θ0)
[
1 + cu(x)√

n

]
where c is a scalar and u is such that

∫
u (x) f0 (x) dx = 0. Equivalently, the hypotheses can be

written as

H0 : ψ = ψ0 (.; θ0),

H1n (c) : ψn = ψ0 (.; θ0) + cη√
n

where η (t) =
∫
eitxu (x) f0 (x; θ0) dx.

Assumption 2 Under H1n, ‖Bn −B‖
P→ 0. Under H1, ‖Bn −B1‖

P→ 0 where both B and

B1 are bounded linear operators and B1 may differ from B. The null spaces of B and B1 equal

{0} .

In the sequel, we denote by P0 the law of Xi under H0, Pn the law of Xi under H1n, and P1

the law of Xi under H1.

Assumption 3 Pn is contiguous to P0.

This condition is standard in the goodness-of-fit literature and imposes some mild restrictions

on the density. Suffi cient conditions for this assumption to be true are given in Lehmann and

Romano (2005). They also provide a variety of examples.
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Assumption 4 The parameter space Θ is a compact subset of Rp. The true parameter θ0

is contained in the interior of Θ. ψ0 (τ ; θ) is continuously differentiable with respect to θ.

Assumption 5 (identification) ψ0 (τ ; θ) = ψ0 (τ ; θ0) for all τ ⇔ θ = θ0.

Let

θ̂ = arg min
θ∈Θ

∥∥∥Bnĥ (.; θ)
∥∥∥

and define

D0 =
∂ψ0 (.; θ)

∂θ

∣∣∣∣
θ=θ0

.

Note that the result in Proposition 2 remains valid here. Namely,
√
nĥ (θ0)⇒ N (cη,K) un-

der H1n, where K is an integral operator with kernel k (s, t) = ψ (s− t; θ0)−ψ (s; θ0)ψ (−t; θ0) .

Proposition 5 Suppose Assumptions 1-5 hold. Under H0, θ̂ is a consistent estimator of θ0 and

√
n(θ̂ − θ0)

d→ N (0, 〈BD0, BD0〉−1 〈BD0, (BKB
∗)BD0〉 〈BD0, BD0〉−1).

Moreover, under H1,

θ̂
P1→ θ1 = arg min

θ∈Θ

∥∥B1E
P1 (hj (.; θ))

∥∥ .
Let L be the operator from L2 (π) to L2 (π) such that for all ϕ ∈ L2 (π)

(Lϕ) (τ) = ϕ (τ)−D0 (τ) 〈BD0, BD0〉−1 〈B∗BD0, ϕ〉 .

Let K̃ be the integral operator from L2 (π) to L2 (π) with kernel

k̃ (s, t) = k (s, t)−D0 (s) 〈BD0, BD0〉−1 (KB∗BD0) (t)

−D0 (t) 〈BD0, BD0〉−1 (KB∗BD0) (s)

+D0 (s) 〈BD0, BD0〉−1 〈BD0, (BKB
∗)BD0〉 〈BD0, BD0〉−1D0 (t)

′

In addition, let ãj , φ̃j , for j = 1, 2..., J , denote the eigenvalues (arranged in decreasing order)

and eigenvectors of BK̃B∗. Finally, define δ̃j = c2
〈
BLη, φ̃j

〉2
/ãj .

Proposition 6 Suppose Assumptions 1’, 2-5 hold. Under H1n, we have

(i)
√
nĥ(θ̂) converges to a complex Gaussian process with mean cLη and covariance operator

K̃ in L2 (π) .

(ii)

TB
d→
∞∑
j=1

ãjχ
2
j (1, δ̃j) =

∞∑
j=1

ãj

ej +
c
〈
BLη, φ̃j

〉
√
ãj

2
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where χ2
j (1, δ̃j), j = 1, 2, .. denote independent noncentral chi-square r.v. with 1 degree of freedom

and non centrality parameter δ̃j and ej, j = 1, 2, ... are the underlying independent standard

normal variables.

Proposition 6 implies that TB has non trivial power against all local alternatives η for which

Lη 6= 0, i.e. those η such that η 6= v′D0, where v is some p×1 vector of constants. The following

example illustrates this condition:

Lemma 7 Assume H0 : ψ = ψ0 where ψ0 is the CF of the N (µ, σ2). Let f0 be the pdf of the

N (µ, σ2). The test TB has only trivial power against local alternatives of the form

H1n : ψn (τ) =

(
1 +

aiτ√
n
− bτ2

2
√
n

)
ψ0 (τ)

for some constants a and b. Moreover the density corresponding to ψn is

fn (x) =

{
1 +

a√
n

(x− µ)

σ2
+

b

2
√
n

[
(x− µ)2 − σ2

2σ4

]}
f0 (x) . (19)

It follows from Lemma 7 that when µ and σ2 are estimated, the test TB has trivial power

against alternatives of the form (19), which correspond to a second order Hermite expansion of

the Gaussian density. The two additive terms in (19) contain the first two Hermite polynomials,

which will be close to zero once µ and σ2 are estimated. This is similar to what is found in

other tests. For example, Bontemps and Meddahi (2005)’s moment test of normality cannot

make use of the first two Hermite polynomials evaluated at the estimated parameters because

their sample means will converge to 0 in probability even after scaling them by
√
n.

The following result establishes that TB has power against all fixed alternatives (including

those such that Lη = 0).

Proposition 8 Suppose Assumptions 1’, 2-5 hold. The test TB is consistent.

In the next subsection, we analyze the power of our test in more detail.

4.2 Alternative with maximum power

We can follow the same steps as in Section 3.2 to characterize the alternatives for which the

tests TB have maximum power. Let L2 (f0) and assume the same normalization of u and the

same power function ΠB (a, c, u) as before. Following Neuhaus (1976) and Escanciano (2009),

we can determine for which local alternative the test TB has maximum power.
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Let h (x; t) = eitx−ψ0 (.; θ0). To analyze power, it is useful to rewrite the covariance operator

K̃ as T̃ ∗T̃ , where T̃ is an operator from L2 (π) to L2 (f0) and T̃ ∗ is the operator from L2 (f0) to

L2 (π), T̃ ∗ being the adjoint of T̃ . The operators T̃ and T̃ ∗ are as follows;

T̃ : L2 (π)→ L2 (f0) ,(
T̃ϕ
)

(X) =
∫

[h (X; t)−D0 (t) 〈BD0, BD0〉−1 〈B∗BD0, h (X; .)〉]ϕ (t)π (t) dt,

T̃ ∗ : L2 (f0)→ L2 (π) , and(
T̃ ∗φ

)
(t) =

∫
[h (x; t)−D0 (t) 〈BD0, BD0〉−1 〈B∗BD0, h (x; .)〉]φ (x) f0 (x) dx.

Moreover, BT̃ ∗T̃B∗ = BK̃B∗ is compact and T̃B∗ admits a singular system {ãj , φ̃j , ϕ̃j}

such that T̃B∗φ̃j =
√
ãjϕ̃j and BT̃

∗ϕ̃j =
√
ãjφ̃j . φ̃j are the eigenfunctions of BT̃

∗T̃B∗ and

ϕ̃j are the eigenfunctions of T̃B
∗BT̃ ∗. The functions ϕ̃j can again be interpreted as principal

components.

Observe that Lη = T̃ ∗u. Hence,〈
BLη, φ̃j

〉
√
ãj

=

〈
BT̃ ∗u, φ̃j

〉
√
ãj

=

〈
u, T̃B∗φ̃j

〉
√
ãj

=
〈
u, ϕ̃j

〉
. (20)

From (17) and Proposition 6, it follows that under H̃un (c) ,

TB
d→
∞∑
j=1

ãj
(
ej + c

〈
u, ϕ̃j

〉)2
. (21)

For those u such that T ∗u = 0, the tests TB have power equal to size. Therefore, we will

focus on alternatives such that T ∗u 6= 0, alternatives which belong to the orthogonal space to

the null space of T ∗ (denoted N (T ∗)) —these are the alternatives corresponding to η such that

Lη 6= 0. For any compact operator T we have the relation, N (T ∗)⊥ = R (T ), where R (T )

is the closure of the range of T . Note that the sequence ϕ̃j , for j = 1, 2, ... form a complete

orthonormal basis of R (T ). Hence, the alternatives of interest are linear combinations of the

ϕ̃j . The analysis of the limiting distribution in (21) and the orthogonality of the ϕ̃j allow us to

establish an analogous result to Proposition 4:

Proposition 9 Suppose Assumptions 1’, 2-5 hold. The limiting power ΠB (α, c, u) has the

following properties.

(a) maxu{ΠB (a, c, u) : u ∈ R(T ), ‖u‖L2(f0) = 1} = ΠB (a, c, ϕ̃1) ,

(b) ΠB

(
a, c, ϕ̃j

)
≤ ΠB (a, c, ϕ̃i) for 1 ≤ i ≤ j,

(c) limj→∞ΠB

(
a, c, ϕ̃j

)
= a.

As before, we observe that the maximum power is reached for the first principal component,

and that power declines toward size a for subsequent directions.
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5 J test when α goes to zero

5.1 Distribution under local alternatives

As we discussed at the end of Section 2, the continuum of moments analogue to the overi-

dentification restrictions test diverges when α goes to zero, so we need to center and re-scale this

statistic appropriately as in (15). But because q̂n in the denominator of this expression diverges

as n goes to infinity, the rescaled test does not have power against contiguous alternatives.

Therefore, we need to consider alternatives that converges to H0 slower than the usual n−1/2

rate. For that reason, in what follows we study the properties of Jαn under local alternatives of

the form

H2n : ψn (t) = ψ0 (t) + bnη (t)

where η ∈ L2 (π), η (0) = 0, η (t) = η (−t), |η (t)| < C for some constant C, and bn is a sequence

of numbers going to zero at a rate slower than
√
n. The precise rate will be specified later on.

In this section, we assume for simplicity that the CF, ψ0, is completely specified under the null

and the dependence in a known parameter, θ0, is omitted. The case where θ0 is unknown is

discussed in Remark 1 below. In the sequel, P2n denotes the law of Xi under H2n.

Under H2n, we have
√
n{ĥ(.)− EP2n [ĥ(.)]} ⇒ CN (0,K,R)

in L2 (π) where K and R are integral operators from L2 (π) to L2 (π) with kernels defined in (5)

and (6).

Let {λj , φj} i = 1, 2, ... be the eigenvalues and eigenfunctions of K and aj =
λ2j

λ2j+α
. Let

pn =
∑n

j=1 aj , qn =
∑n

j=1 a
2
j . Moreover, let HK be the reproducing kernel Hilbert space

(RKHS) associated with K, defined as

HK =

{
f ∈ L2 (π) : ‖f‖2K =

∑〈
f, φj

〉2

λj
<∞

}
. (22)

Assumption 6 pn/ (qnnα)→ 0 and p2
n/(qnn)→ 0 as n goes to infinity and α goes to zero.

Assumption 6 is very mild given that in Proposition 10 we will require nα2 → ∞, and also

from Lemma 9 in Carrasco and Florens (2000), it is known that if there exist 0 < γ < 1 and

some positive constant c such that pn ∼ cα−γ , then qn ∼ eα−γ for some positive constant e (see

also remark 2 below).

Proposition 10 Suppose Assumptions 1’, 4-6 hold. Assume that η ∈ HK and

nb2n√
qn
→ d for some constant d. (23)
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Under H2n, we have

Jαn
d→ N (d ‖η‖2K , 1)

as n→∞, α → 0, nα2 →∞, nbnα3/4 →∞, and b2nα−1 → 0, where ‖.‖K denotes the norm in

the RKHS defined in (22).

Remark 1 Under H0, Jαn converges to a standard normal distribution, therefore critical val-

ues from normal tables can be readily used. Moreover, when θ0 is unknown and replaced by a

consistent estimator, Jαn converges again to a standard normal distribution under H0 (the proof

is similar to that of Proposition 10 and is omitted).

Remark 2 The condition (23) indicates the rate of bn, which is related to the rate of the eigen-

values λj through qn. Let us consider an example where λj = j−m. Then qn ∼ α−1/(2m) (see

Carrasco and Florens (2000, Example 2) for the case m = 1 and Wahba (1975) for the general

case). So condition (23) can be rewritten as bn ∼ n−1/2α−1/(8m). We observe that, in this case,

the condition nα2 →∞ implies nbnα3/4 →∞ and b2n/α→ 0.

Remark 3 The test Jαn has nontrivial power against local alternatives ψ0 + cbnη for any η.

Remark 4 The fact that Jαn has trivial power against 1/
√
n alternatives is linked to the rescal-

ing of the statistic. In fact, all tests involving centering and rescaling exhibit the same lack of

power against contiguous alternatives. This includes Neyman’s smooth test with an increasing

number of polynomials (see Lehmann and Romano), the chi-square type test for conditional mo-

ments (De Jong and Bierens, 1994), the goodness-of-fit tests considered by Eubank and LaRiccia

(1992), Härdle and Mammen (1993) and the one considered by Aït-Sahalia, Bickel, and Stocker

(2001), among others.

Remark 5 Carrasco and Florens (2000) derived the asymptotic null distribution of Jαn under

a stronger assumption (Assumption 15: qn
√
αn →∞). This assumption requires that the eigen-

values go to zero very slowly, which is not realistic here. On the contrary, the eigenvalues of K

are likely to go to zero very fast, as illustrated in Figures 2e and 2f. For that reason, we propose

a new proof which relaxes this assumption.

Remark 6 The lack of power of Jαn against contiguous alternatives may speak in favor of tests

such that TB, which have power against contiguous alternatives. However, the test Jαn may

have higher power than TB for higher frequency alternatives (case j → ∞ in Proposition 8);

see Theorem 3 in Eubank and LaRiccia (1992). The next remark considers this issue from a

different angle.
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Remark 7 Proposition 10 establishes the asymptotic distribution of Jαn for η such that ‖η‖2K <

∞. However, this condition is not necessarily satisfied, so it is of special interest to look at what

happens when it does not hold. Specifically, consider the case where

1
√
qn

n∑
l=1

a2
l

λl
|〈η, φl〉|2 →∞. (24)

The proof of Proposition 10 implies that the right rate for the alternatives H2n is such that

nb2n
1
√
qn

n∑
l=1

a2
l

λl
|〈η, φl〉|2 → d

for some constant d. It follows from (24) that nb2n → 0. Hence the test Jαn has power against

local alternatives which approach the null hypothesis at a faster rate than n−1/2. For these

alternatives, the power of the tests TB presented earlier remain n−1/2. So the test Jαn is able to

detect certain alternatives which are closer to the null than the tests based on a fixed α. This

result is similar to what was observed by Fan and Li (2000) in the context of specification tests

for nonparametric regression. In particular, they show that nonparametric specification tests

such as that of Härdle and Mammen (1993) with a fixed bandwidth has analogous properties as

the integrated conditional tests of Bierens (1982) and Bierens and Ploberger (1997). Further,

they show that kernel based tests with bandwidth going to zero can detect specific alternatives at

a faster rate than n−1/2. As we mentioned before, we can interpret α as a bandwidth in our

tests.

5.2 Numerical invariance to moment transformations

As is well known, the traditional J test corresponding to the continuously updated estimator

(CUE) is invariant to parameter-dependent linear transformations of the moments (see Hansen,

Heaton and Yaron (1995)). To illustrate this fact, let ĥ (θ) be the sample average of a vector of

moments and Mθ be a (possibly complex-valued) square invertible matrix. Then, it is easy to

check that the J-test based on ĥ (θ) is the same as the J-test based on Mθĥ (θ) because

J = nĥ (θ)?M?
θ (MθK̂θM?

θ )−1Mθĥ (θ) = nĥ (θ)? K̂−1
θ ĥ (θ) .

When one uses regularization to invert the covariance matrix, this result is not true in

general. Indeed, we have that

nĥ (θ)?M?
θ (MθK̂θM?

θ )1/2[(MθK̂θM?
θ )2 + αI]−1(MθK̂θM?

θ )1/2Mθĥ (θ)
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is not usually equal to

nĥ (θ)? K̂1/2
θ (K̂2

θ + αI)−1K̂1/2
θ ĥ (θ)

unless Mθ is unitary, that is MθM
?
θ = M?

θMθ = I, in which case the two expressions coincide.

When there is a continuum of moment conditions, an analogous result turns out to be true

for unitary transformations of h.

Define Uθ as a nonrandom linear operator from L2 (π) into L2 (π) . Let U∗θ be the adjoint of

Uθ. By the Riesz representation theorem, there is a unique gθ (., s) such that

(Uθϕ) (s) = 〈gθ (., s) , ϕ (.)〉 =

∫
gθ (t, s)ϕ (t)π (t) dt.

Let Kθ be the covariance operator of hi (.; θ) and K̃θ be the covariance operator of Uθhi (.; θ) .

The kernel of K̃θ is such that

k̃θ (s1, s2) = E [(Uθhi (.; θ)) (s1) (Uθhi (.; θ)) (s2)?]

= E

[∫
gθ (t, s1)hi (t; θ)π (t) dt

∫
gθ (u, s2)hi (u; θ)π (u) du

]
=

∫
gθ (t, s1)

{∫
E[hi (t; θ)hi (u; θ)]gθ (u, s2)π (u) du

}
π (t) dt

= 〈gθ (., s1) ,Kθgθ (., s2)〉 .

Then, we can characterize K̃θ:(
K̃θϕ

)
(τ) =

∫ ∫
gθ (t, τ)

{∫
E[hi (t; θ)hi (u; θ)]gθ (u, s)π (u) du

}
π (t) dtϕ (s)π (s) ds

= (UθKθU
∗
θϕ) (τ) .

Proposition 11 Let Uθ be an unitary operator from L2 (π) to L2 (π) i.e. U∗θUθ = UθU
∗
θ = I.

Then, the following equality holds:

∥∥∥Uθĥ (θ)
∥∥∥

(UθKθU∗θ )
α =

∥∥∥ĥ (θ)
∥∥∥
Kα
θ

(25)

regardless of the sample size n.

This means that the CUE versions of tests TB with B = (Kα)−1/2 (α fixed) and Jαn(θ̂, K̂)

are numerically invariant to unitary transformations of h. For non unitary transformations, the

result is no longer true because of the regularization. In contrast, TB with B = I for instance is

not even invariant to unitary transformations.
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6 Monte Carlo experiments

In this section, we assess the finite sample performance of our proposed tests by means

of several extensive Monte Carlo exercises. In addition, we compare them to several popular

nonparametric tests based on the empirical distribution function, as well as to directional tests

that target specific parametric alternatives to the null. In all cases, our sample size is n = 100.

6.1 Testing univariate normality

The first design we consider is a univariate normal distribution, which is by far the most

common null hypothesis in distributional tests. In order to make our tests numerically invariant

to affi ne transformations of the observations, we systematically centre and standardize them us-

ing the sample mean and standard deviation (with denominator n), which are the ML estimators

under the null. As proved by Carrasco and Florens (2014), an asymptotically equivalent proce-

dure would estimate the mean and variance by minimizing the continuum of moment conditions

criterion function, but this would result in an increase of the computational costs. Either way,

we can set the true mean and variance to 0 and 1, respectively, without loss of generality.

We consider three versions of our test, which differ in the way the covariance operator is

estimated. The first one uses the theoretical covariance operator for a standard normal, which we

presented in Section 2. In turn, the second and third versions rely on the centred and uncentered

sample estimators using expressions (12) and (13), respectively, with the matrices C and C̊

computed using the analytical integrals in Appendix A.2. Given that these two sample versions

produce very similar results, we only report the centred one in what follows. Importantly, the

test that uses the theoretical covariance operator offers two notable computational advantages:

i) the calculation of its eigenvalues and eigenfunctions depends on the number of grid points M ,

which we set to 1,000, but not on the sample size, so it can be used with very large datasets;

and ii) we only need to compute those eigenelements once regardless of the number of Monte

Carlo simulations.

In view of the discussion in Section 2, we look at two values of the Tikhonov regularization

parameter α (.1 and .01) and two values for the scale parameter of the N (0, ω2) density defining

inner products (1 and
√

10). As we have previously discussed, increasing ω not only changes

the eigenvalues and eigenfunctions, but more intuitively, it pays relative more attention to the

characteristic function for large (in absolute terms) values of its argument t.

In this univariate context, it is straightforward to compute the Cramer von Mises (CvM),

Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) statistics on the basis of the probability

integral transforms (PIT) of the standardized observations obtained through the standard nor-
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mal cdf (see Appendix A.3 for details). Their usual asymptotic distributions are invalid, though,

because those PITs make use of the sample mean and variance.

Further, we also compute two moment-based tests: one focusing on the fourth Hermite

polynomial (z4 − 3z2 + 1)/
√

24 and another one that simultaneously looks at the third Hermite

polynomial (z3− 3z)/
√

6 too. The advantage of working with Hermite polynomials is that they

are asymptotically invariant to parameter estimation under the null (see e.g. Bontemps and

Meddahi (2005)). As is well known, these two statistics can be derived as Lagrange multiplier

tests against a variety of non-normal distributions (see e.g. Jarque and Bera (1980) or Mencía

and Sentana (2012)). Finally, we also compute the Bierens and Wang (2012) test described in

Appendix A.3 using a Matlab translation of their C+ code.

The first thing we do is to compute all the aforementioned tests for 10,000 simulated sam-

ples generated under the null, whence we obtain finite sample critical values. This parametric

bootstrap procedure automatically generates size-adjusted rejection rates, as forcefully argued

by Horowitz and Savin (2000); see also Dufour (2006) for a discussion of Monte Carlo tests.

Panels A-F of Table 1 contain those rejection rates for six different alternatives: a symmetric

Student t with 12 degrees of freedom; an asymmetric Student t with the same number of degrees

of freedom but skewness parameter β = −.75; a scale mixture of two normals with the same

kurtosis as the symmetric t, 3.75, and mixture probability λ = .1 (outlier case); another scale

mixture with the same kurtosis but λ = .75 (inlier case); a location-scale mixture constructed in

such a way that it has same skewness and kurtosis as the normal and E(x5) = −1, E(x6) = 18;

and finally, the second order Hermite expansion of the normal density mentioned in Lemma 7

with parameters a = .4 and b = .5. Details on how we simulate those distributions can be found

in Supplemental Appendix A.4. Figure B3 in the Supplemental Appendix presents the densities

of all the alternative distributions once they have been standardized so that they all have 0

means and unit standard deviations in the population.

The first four columns of each panel in Table 1 report the results for the test that is based

on the theoretical covariance operator, J(θ̂, Kθ̂), for the different values of α and ω that we

consider. In turn, the next four columns contain the same figures for the test J(θ̂, K̊) which

uses the centred sample estimator of the covariance operator instead. As can be seen across the

different panels, in all cases the results seem robust to the choice of the regularization parameter

α. For the majority of the DGPs, J(θ̂, Kθ̂) has more power when ω = 1 while the performance

of J(θ̂, K̊) is better with ω =
√

10. In addition, they generally outperform the other consistent

tests that we consider, with AD being the most powerful of them. Somewhat surprisingly, this

is also true when the DGP is the second order Hermite expansion of the normal mentioned
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in Lemma 7 (Panel F). Nevertheless, it is important to remember that this lemma refers to

local alternatives, while our test is consistent versus fixed alternatives. Not surprisingly, the

LM tests are the most powerful testing procedures when the distribution under the alternative

is the one they are designed to detect. Specifically, this applies to S—t, the LM test against

symmetric Student t alternatives, in Panel A, and A—t, the LM test against asymmetric Student

t alternatives, in Panel B.

In summary, our proposed tests display good power against a variety of alternatives.

6.2 Testing uniformity

The second design we consider is a uniform distribution. Although this distribution does

not often arise as a model for natural phenomena, it plays a fundamental role in statistics for two

reasons: most computer-based pseudo-random number generators aim to draw uniform variates,

and the PITs of any continuous random variables are uniform. To facilitate the comparison with

the normal distribution, we transform the standard uniform random numbers by subtracting

from them their population mean (.5) and scaling them up by their population standard deviation

(
√

12), so that the resulting distribution will become standardized.

We consider exactly the same versions of our tests as in Section 6.1, but with the expressions

for the population kernel and the centred and uncentered sample versions modified accordingly,

as explained in Appendix A.2. We also compute the three non-parametric tests based on the

CDF, as well as the Bierens and Wang (2012) test. As for directional tests, we consider two

possibilities. The first one is the LM test of uniform vs beta proposed by Sefton (1992), which

exploits the fact that a beta distribution with shape parameters a = b = 1 becomes uniform.

This test is based on the average scores with respect to the beta parameters evaluated under

the null, which are 1 + ln(u) and 1 + ln(1 − u), respectively.2 The second directional test is a

moment test based on the first two Jacobi polynomials evaluated again under the null, namely
√

3(2u − 1) and
√

3(6u2 − 6u + 1), which was proposed by Bontemps and Meddahi (2012). As

is well known, those polynomials constitute an orthonormal basis for the beta random variable.

The three panels of Table 2 contain the parametric bootstrap rejection rates for three different

alternatives. The first one is a symmetric, unimodal beta distribution with parameters a = b =

1.1. The second one is an asymmetric unimodal concave beta distribution with parameters

a = 1.1 and b = 1. Finally, the last distribution is generated as the standard Gaussian PITs of

observations drawn from the same asymmetric Student t distribution with 12 degrees of freedom

2The asymptotic variance for the scores reported by Sefton (1992) seems to be incorrect. For that reason, we
use instead 1 for the two asymptotic variances and (6− π2)/6 for the covariance. Therefore, the LM test is T/2
times the square of the difference between the two scores divided by π2/6 plus the square of their sum divided by
(12− π2/6).
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and asymmetric parameter as in Section 6.1. The motivation for including this alternative is that

we can use it to compare the direct application of our proposed tests to the original observations

and to a monotonic transformation of them. Figure B4 in the Supplemental Appendix presents

the densities of these alternative distributions.

The first four columns of each panel report the results for the test that based on the the-

oretical covariance operator, J(θ0,K), for the same values of α and the scale parameter ω of

the N (0, ω2) density defining inner products as in the previous subsection, while the next four

columns focus on J(θ0, K̊). As in Section 6.1, the rejection rates of our tests seem robust to

the choice of the regularization parameter α. But in this case they are also less sensitive to

the choice of ω. As before, the test based on K outperforms the one that uses centred sample

estimator of the covariance operator K̊. Interestingly, both of them outperform the competitors

when the DGP is either a symmetric beta or the Gaussian PITs of observations drawn from an

asymmetric Student t. In contrast, CvM and AD are slightly more powerful when the alternative

is the asymmetric beta. Somewhat surprisingly, the LM test is not particularly powerful.

6.3 Testing bivariate normality

Our next design is a bivariate normal distribution, which is by far the most common null

hypothesis in multivariate distributional tests. Once again, we make our tests numerically invari-

ant to affi ne transformations of the observations by systematically centring and standardizing

them using the sample mean and the Cholesky decomposition of the sample covariance matrix

(with denominator n), which are the ML estimators under the null.3 Thus, we can set the

true means and standard deviations to 0 and 1, respectively, and the correlation coeffi cient to 0

without loss of generality.

We consider exactly the same versions of our tests as in the Section 6.1, but with the

expressions for the population kernel and the centred and uncentered sample versions modified

accordingly (see Appendix A.2). However, we do not compute any classical non-parametric tests

because there is no consensus on distribution-free multivariate generalization of the CvM, KS

and AD statistics based on the joint distribution function. Nevertheless, we continue to apply

the Bierens and Wang (2012) test. By analogy with the univariate normal case in section 6.1, we

also consider two directional tests: the LM test of a multivariate normal against a multivariate

Student t in Fiorentini, Sentana and Calzolari (2003) (denoted S—t), which effectively focuses on

Mardia’s (1970) coeffi cient of multivariate excess kurtosis, and the LM test against a generalized

3As we mentioned before, an asymptotically equivalent procedure would estimate the two means and variances
as well as the covariance by minimizing the continuum of moment conditions criterion function, but this would
result in a huge increase of the computational cost.
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hyperbolic distribution in Mencía and Sentana (2012) (denoted A—t), which also looks at third

moments in order to capture asymmetries in the multivariate distribution. By construction,

both tests are asymptotically invariant to parameter estimation under the null.

The three panels of Table 3 contain the parametric bootstrap rejection rates for three different

alternatives. The first one is a multivariate Student t with 12 degrees of freedom. The second

one is an asymmetric Student t with the same degrees of freedom and vector of asymmetric

parameters (−.75,−.75). Finally, the third alternative is a spherically symmetric bivariate

version of the outlier distribution considered in Section 6.1. Figure B5 in the Supplemental

Appendix presents the densities of these alternative distributions.

As in Table 1, the first four columns of each panel in Table 3 report the results for the test

J(θ̂, Kθ̂) again for the same values of α and the scale parameter ω of theN (0, ω2) density defining

inner products as in subsection 6.1 and the next four columns correspond to same figures for

the test J(θ̂, K̊). As can be seen in Table 3, in all cases the results seem robust to the choice of

the regularization parameter α. Moreover, for the DGPs we consider J(θ̂, Kθ̂) has more power

when ω = 1 while the performance of J(θ̂, K̊) is better with ω =
√

10, as in the univariate case.

Interestingly, J(θ̂, Kθ̂) beats the S—t LM test when the DGPs is asymmetric Student t and there

is a tie between J(θ̂, K̊) and S—t LM test when the alternative is a discrete-scale mixture of

normals.

6.4 Testing chi-square

Another design we consider is a chi-square distribution with two degrees of freedom. Like

the uniform, the chi-square distribution does not often arise as a model for natural phenomena.

But it also plays a fundamental role in statistics because it is the distribution of the (square)

Mahalanobis distance of a multivariate normal random variable from its mean. In other words,

it corresponds to the distribution of (yi − µ)′Σ−1(yi − µ) when yi ∼ N (µ,Σ).

We consider exactly the same versions of our tests as in Sections 6.1 and 6.2, but with

the expressions for the population kernel and the centred and uncentered sample versions in

Appendix A.2 suitably modified. In that regard, the main difference is that we define inner

products using a uniform density over [−ω, ω], for values of ω equal to 1 and
√

10. Although

we standardize again the random draws by subtracting their population mean (=2) and scaling

them down by their population standard deviation (=2), their distribution remains asymmetric,

which implies that both the CF and the eigenfunctions of the associated covariance operator are

complex, as explained in Section 2. This creates a normalization problem because any complex

vector of unit length remains so after scaling its elements by any complex scalar on the unit
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circle, eiυ, where υ ∈ [0, 2π). Nevertheless, our proposed tests are numerically invariant to any

chosen normalization.

We also compute the three non-parametric tests, as well as the Bierens and Wang (2012)

test. As for directional tests, we consider two possibilities. The first one is the LM test of chi

square with N degrees of freedom versus F with the same number of degrees of freedom in the

numerator but ν degrees of freedom in the denominator proposed by Fiorentini, Sentana and

Calzolari (2003). This test is based on the average score with respect to the reciprocal of ν

evaluated under the null, which coincides with the second order Laguerre polynomial

1

4
ς2 − 2ς + 2,

whose asymptotic variance for N = 2 is 4 under the null. The second directional test is the LM

test against a gamma distribution with mean N but shape parameter α 6= N/2 developed in

Amengual and Sentana (2012). In this case, the score is proportional to

( ς
2
− 1
)
−
[
ln
( ς

2

)
− ψ (1)

]
,

whose asymptotic variance is ψ′(1) − 1, where ψ(.) and ψ′(.) are the digamma and trigamma

functions, respectively.

The three panels of Table 4 contain the parametric bootstrap rejection rates for three different

alternatives. The first one is an F distribution with 12 degrees of freedom in the denominator,

while the second one is a gamma distribution with shape parameter α = 2/3 and scale parameter

β = 3. Finally, the last distribution is generated as the square norm of observations drawn from

a bivariate asymmetric Student t distribution with 12 degrees of freedom. Once again, the

motivation for including this alternative is that we can use it to compare the direct application

of our proposed bivariate Gaussian tests to the original observations or to a transformation of

them which implicitly imposes spherical symmetry. In that regard, the F distribution would

correspond to a bivariate Student t while the gamma to a Kotz distribution. The densities of

these alternative distributions are reported in Figure B6 in the Supplemental Appendix.

As in Table 2, the first four columns of each panel of Table 4 report the results for the

test J(θ0,K), for the different values of α and ω that we consider, while the next four columns

contain the same figures for J(θ0, K̊). Once again, the results seem robust to the choice of

the regularization parameter α, but at the same time they are less sensitive to the choice of ω.

Still, for J(θ0,K) the value ω = 1 delivers higher rejection rates. As before, the test based on

the theoretical covariance operator outperforms the one using centred sample estimator of the

covariance operator. Interestingly, J(θ0,K) has more power than its competitors, except when
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the DGP is Gamma.

6.5 Testing Cauchy

The last design we consider is a Cauchy distribution with location and scale parameters 0

and 1, respectively. In order to make our tests numerically invariant to affi ne transformations

of the observations, we systematically centre and standardize them using the ML estimators of

location and scale under the null.

We consider exactly the same versions of our tests as in Section 6.1, but with the expressions

for the population kernel and the centred and uncentered sample versions modified accordingly,

as explained in Appendix A.2. We also compute the three non-parametric tests based on the

CDF, as well as the Bierens and Wang (2012) test.

The three panels of Table 4 contain the parametric bootstrap rejection rates for three different

alternatives. The first one is a Student t with 2 degrees of freedom, while in Panel B we draw

from an asymmetric Student t with 6 degrees of freedom and skewness parameter β = −.25.

Finally, the last distribution we consider is a Laplace with location and scale parameters 0 and

1/
√

2, respectively. Details on how we simulate those distributions can be found in Appendix A.4.

Figure B7 in the Supplemental Appendix presents the densities of these alternative distributions.

The first four columns of each panel in Table 1 report the results for the test that is based

on the theoretical covariance operator, J(θ̂, Kθ̂), once again for the different values of α and ω

that we consider. In turn, the next four columns contain the same figures for the test J(θ̂, K̊)

which uses the centred sample estimator of the covariance operator. As can be seen across the

different panels, in all cases the results seem robust to the choice of the regularization parameter

α. For the majority of the DGPs, both J(θ̂, Kθ̂) and J(θ̂, K̊) have more power when ω =
√

10.

In addition, they generally outperform the other consistent tests that we consider, with BW

being the most powerful among them.

Once again, our proposed tests display good power against a variety of alternatives.

7 Conclusion

In this paper we propose goodness-of-fit tests based on comparing the empirical and theo-

retical characteristic functions. Our proposals are based on the continuum of moment conditions

analogue to the usual overidentifying restrictions test, and therefore take into account the cor-

relation between the influence functions for different argument values.

We consider different versions depending on whether the parameter vector θ is known in

advance or replaced by a consistent estimator, and whether we make use of the analytical
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expression for the covariance operator or estimate it. Relying on the theoretical covariance

operator offers substantial computational gains because the calculation of its eigenvalues and

eigenvectors does not depend on the sample size, which allows its use with very large datasets.

We derive the asymptotic distribution of our proposed tests for fixed regularization parameter

and when this vanishes with the sample size. Both types of tests have very different asymptotic

properties. The fixed α J test has a nonstandard asymptotic distribution which depends on

nuisance parameters but has power against 1/
√
n alternatives. In contrast, the vanishing α

J test has a standard normal asymptotic distribution but generally fails to reject local 1/
√
n

alternatives, except for some specific alternatives which it can detect at a faster rate.

Our theoretical study of power sheds some light on the alternatives for which each test is

more powerful. While there is no test whose power dominates overall, it seems that fixing α at

a small positive value is a good compromise. An extensive Monte Carlo exercise confirms this

point by showing that our proposed tests display good power in finite samples against a variety

of alternatives.

Although we have focused on a random sample framework for pedagogical reasons, versions

of our tests robust to serial or cross-sectional dependence in the observations should be relatively

straightforward. The analysis of conditional distributions would also constitute a very valuable

but non-trivial addition with many potentially interesting empirical applications.
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Appendix

A Proofs and auxiliary results

Proof of Lemma 1. K is self-adjoint positive definite because it is a covariance operator

(k (s, t) = k (t, s)) and its null space is reduced to 0, i.e. Kf = 0 ⇒ f = 0 (see the proof of

Proposition A.1, condition A.5(i) in Carrasco et al (2007). K is a Hilbert-Schmidt operator

because its kernel is square integrable, indeed∫ ∫
|k (s, t)|2 π (s) dsπ (t) dt <∞.

Consequently, K admits an infinite spectrum of positive eigenvalues. Let {λj , ϕj} be the eigenval-

ues arranged in decreasing order and eigenfunctions (the eigenfunctions are taken orthonormal

in L2 (π)) of K. By Mercer’s formula (see Carrasco, Florens, and Renault, 2007, Theorem 2.42),

k (t, s) =
∑
j

λjϕj (t)ϕj (s) .

By setting s = t, we have ∑
λj =

∫
k (t, t)π (t) dt.

Here k (t, s) = ψ (t− s)−ψ (t)ψ (−s) . Hence k (t, t) = 1−|ψ (t)|2 ≤ 1. It follows that
∑
λj ≤ 1,

which in turn implies that 0 ≤ λj ≤ 1 because the operator is self-adjoint positive definite.

Therefore λ2
j ≤ λj and hence

∑
λ2
j ≤ 1. So the Hilbert-Schmidt norm of K is also bounded by

1:

‖K‖2HS =

∫ ∫
|k (t, s)|2 π (s) dsπ (t) dt =

∑
λ2
j ≤ 1,

as desired. �
Proof of Proposition 2. We check the conditions (a) to (c) of Lemma 3.1 of Chen and

White (1998)4 on

Wnj =
1√
n

(
hj −

cη√
n

)
.

Checking (a): We need to check that for all ϕ ∈ L2 (π),
∑n

j=1 〈Wnj , ϕ〉
d→ CN

(
0, σ2 (ϕ) , δ (ϕ)

)
where σ2 (ϕ) = 〈ϕ,Kϕ〉 > 0 and δ (ϕ) = 〈ϕ,Rϕ〉. To do so, first notice that under H1n,

Wnj = 1√
n

[eitXj − ψn (t)]. We have E [〈Wnj , ϕ〉] = 0 and 〈Wnj , ϕ〉, j = 1, 2, ..., n are indepen-

4The results of Chen and White (1998) are stated for real random variables, but we adapt them here to complex
variables.
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dent. Moreover,

E[|〈Wnj , ϕ〉|2] = E[〈Wnj , ϕ〉 〈Wnj , ϕ〉]

= E

∫ ∫
Wnj (s)ϕ (s)Wnj (t)ϕ (t)π (s) dsπ (t) dt

=

∫ ∫
E[Wnj (s)Wnj (t)]ϕ (s)ϕ (t)π (s) dsπ (t) dt

=
1

n
〈ϕ,Knϕ〉

where Kn is the integral operator with kernel

kn (s, t)

= ψn (s− t)− ψn (s)ψn (−t)

= ψ0 (s− t)− ψ0 (s)ψ0 (−t) +
cη (s− t)√

n
− cη (s)√

n
ψ0 (−t)− cψ0 (s)

η (−t)√
n

+ c2 η (s) η (−t)
n

.

Interchanging the order of integration is justified by the fact that 1
n 〈ϕ,Knϕ〉 < ∞. Now, we

check the conditions of Lindeberg-Feller central limit theorem (van der Vaart (1998), Proposition

2.27) to establish
∑n

j=1 〈Wnj , ϕ〉
d→ CN

(
0, σ2 (ϕ) , δ (ϕ)

)
. Let Ynj = 〈Wnj , ϕ〉. Here Ynj are

independent scalar random variables with zero mean and finite variance. The three conditions

for the CLT are

(i)
n∑
j=1

E[|Ynj |2 I {|Ynj | > ε}] → 0 for every ε > 0,

(ii)
n∑
j=1

E(YnjYnj) → σ2 (ϕ) , and

(iii)
n∑
j=1

E(Y 2
nj) → δ (ϕ) .

Note that

|Ynj |2 = |〈Wnj , ϕ〉|2

≤
∥∥∥∥ 1√

n
[eitxj − ψn (t)]

∥∥∥∥2

‖ϕ‖2

≤ C

n
‖ϕ‖2
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for some fixed constant C. Hence,

n∑
j=1

E[|Ynj |2 I {|Ynj | > ε}] ≤ C ‖ϕ‖2

n

n∑
j=1

P [|Ynj | > ε]

≤ C ‖ϕ‖2

n

n∑
j=1

E[|Ynj |2]

ε2

≤ C2

nε2
‖ϕ‖4

by Markov inequality. So condition (i) is satisfied. For (ii), we use the results above which give

n∑
j=1

E(YnjYnj) =
n∑
j=1

E[|〈Wnj , ϕ〉|2] = 〈ϕ,Knϕ〉 → 〈ϕ,Kϕ〉 ,

and hence, (ii) is also satisfied. Finally,

n∑
j=1

E(Y 2
nj) =

n∑
j=1

E[〈Wnj , ϕ〉2] = 〈ϕ,Rnϕ〉 → 〈ϕ,Rϕ〉

where Rn is the integral operator with kernel rn (s, t) = kn (s,−t) , hence (iii) follows.

Checking (b) and (c): By Remark 3.3 (ii) of Chen and White (1998), conditions (b) and (c)

can be replaced by the following condition:

Wnj is strictly stationary and

lim
n→∞

E

∣∣∣∣∣∣
n∑
j=1

Wnj

∣∣∣∣∣∣
2

≤ C <∞. (A1)

We have

E

∣∣∣∣∣∣
n∑
j=1

Wnj

∣∣∣∣∣∣
2

= E

〈
n∑
j=1

Wnj ,

n∑
l=1

Wnl

〉

=
n∑
j=1

E
〈
Wnj ,Wnj

〉
=

n∑
j=1

kn (s, s)

= 1− |ψ0 (s)|2 − cη (s)√
n
ψ0 (−s)− ψ0 (s)

cη (−s)√
n

+
c2 |η (s)|2

n

which is bounded because |ψ0 (s)|2 ≤ 1 by the property of CFs and η (s) is also bounded.

Therefore, (A1) is satisfied and
∑n

j=1Wnj is tight.

It follows that
√
nĥ =

∑n
j=1Wnj + cη ⇒ CN (cη,K,R) . �

32



The two lemmas below will be used in the proof of Proposition 3.

Lemma 12 Let U be a complex Gaussian process in L2 (π) such that

U ∼ CN (cη,K,R)

where K and R are arbitrary covariance and relation operators.

(a) Let B be a bounded operator, then Z ≡ BU ∼ CN
(
cBη,BKB∗, BRB

∗
)
where B

∗
= B∗

is the adjoint of the complex conjugate of B (or equivalently the complex conjugate of the adjoint

of B).

(b) Let Z =
(
Z,Z

)′
.Then, Z is a complex bivariate Gaussian process with mean c

(
Bη,Bη

)
’

and covariance operator Γ defined as the operator from
(
L2 (π)

)2 to (L2 (π)
)2 such that

g =

(
g1

g2

)
∈
(
L2 (π)

)2 → Γg =

(
BKB∗ BRB

∗

B̄RB∗ B̄K̄B
∗

)
g.

(c) Let Y = (Re (Z) , Im (Z)) . Then Y is a real bivariate Gaussian process with mean

c (Re (Bη) , Im (Bη))′ ≡ cη̃ and covariance operator MΓM∗. Moreover,

‖BU‖2 = ‖Y ‖22 ∼
∞∑
j=1

bjχ
2
j (1, δj) + c

∑
l

〈η̃, ζ l〉22

where bj, ζj are the nonzero eigenvalues and eigenfunctions of MΓM∗, ζ l are the eigenfunctions

of MΓM∗ associated with the zero eigenvalue and δj = c2
〈
η̃, ζj

〉2

2
/bj.

Proof of Lemma 12. (a) and (b) can be proved by direct algebra. As for (c), we first show

that ‖BU‖2 = ‖Z‖2 = ‖Y ‖22 . Indeed, we have

‖Z‖2 = 〈Z,Z〉

=

∫
(Re (Z (t)) + iIm (Z (t))) (Re (Z (t))− iIm (Z (t)))π (t) dt

= 〈Re (Z) ,Re (Z)〉+ 〈Im (Z) , Im (Z)〉

= ‖Y ‖22 .

Note that Y is a real process which satisfies Y = MZ, so its mean is cM
(
Bη,Bη

)′
= c (Re (Bη) , Im (Bη))′ ≡

cη̃ and its variance is MΓM∗. Let V denote a bivariate Gaussian process N (0,MΓM∗) . We

have

‖Y ‖22
d∼ ‖cη̃ + V ‖22 =

∑
i=j,l

(c 〈η̃, ζi〉2 + 〈V, ζi〉2)2
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where the equality uses the Karhunen-Loeve theorem of Gaussian processes and the fact that

the 2× 1 eigenfunctions ζi (i = j, l) form an orthonormal basis of
(
L2 (π)

)2. Moreover,
V =

∞∑
i=1

〈
V, ζj

〉
2
ζj =

∞∑
j=1

√
bj

〈
V, ζj

〉
2√

bj
ζj

where
〈
V, ζj

〉
2
/
√
bj are iid N (0, 1) and 〈V, ζ l〉2 = 0 because its mean=0 and its variance=0.

So the result follows. �

Lemma 13 Consider the case where K and R have kernels defined in (5) and (6) respectively.

When π is symmetric around 0 and B = I or B = (Kα)−1/2 , then the distribution of ‖Y ‖2

in Lemma 12 simplifies to
∑∞

j=1 ajχ
2
j (1, δj) where δj = c2

〈
Bη, φj

〉2
/aj, aj and φj are the

eigenvalues and eigenfunctions of BKB∗.

Proof of Lemma 13. First consider the case B = I. Let us compute the spectrum of Γ.

Let φj be the orthonormal eigenfunctions of K associated with the eigenvalues λj . Let φ̃j (s) =

φj (−s) . It turns out that for every φj of K, there are two 2 × 1 eigenfunctions of Γ, namely

ζ̃j (s) =
(
φj (s) , φ̃j (s)

)′
associated with the eigenvalues 2λj and ζ̃ l (s) =

(
φl (s) ,−φ̃l (s)

)′
(with

l = j) associated with the eigenvalue 0. Moreover, the eigenfunctions are orthogonal, so that

we get a complete eigenvalue-eigenfunctions decomposition for the Gaussian process considered.

Indeed

(
Γζ̃j

)
(s) =

( ∫
k (s, t)φj (t)π (t) dt+

∫
k (s,−t)φj (−t)π (t) dt∫

k (−s, t)φj (t)π (t) dt+
∫
k (−s,−t)φj (−t)π (t) dt

)

=

( ∫
k (s, t)φj (t)π (t) dt+

∫
k (s, u)φj (u)π (u) du∫

k (−s, t)φj (t)π (t) dt+
∫
k (−s, u)φj (u)π (u) du

)

=

(
2λjφj (s)

2λjφj (−s)

)
= 2λj ζ̃j (s)

by the change of variable u = −t and using the fact that π (−u) = π (u). Moreover,
(

Γζ̃ l

)
(s) =

0. We see that Γ is singular. The eigenfunctions of MΓM∗ are ζj = Mζ̃j (associated with the

eigenvalues aj = λj) and ζ l = Mζ̃ l (associated with the 0 eigenvalue). Indeed, using the fact

that M∗M = 1
2I,

MΓM∗Mζ̃j =
1

2
MΓζ̃j

= λjMζ̃j .

34



Because MΓM∗ is a real matrix, its eigenfunctions ζj have to be real. The φj are not defined

uniquely because we can multiply complex eigenfunctions by a complex number on the unit

circle without altering their norm. We select φj so that ζj is real. The fact that it is possible to

transform φj into e
idφj (for some constant d) so that ζj is real, is proved in Lemma 14 below.

Now, we compute 〈η̃, ζi〉:

〈η̃, ζi〉 =
〈
η̃,Mζ̃j

〉
=

〈
M∗η̃, ζ̃j

〉
=

1

2

{〈
η, φj

〉
+
〈
η̄, φ̃j

〉}
=

〈
η, φj

〉
using the fact that η̄ (t) = η (−t) and π is symmetric around 0. Moreover,

〈η̃, ζ l〉 =
〈
M∗η̃, ζ̃ l

〉
=

1

2

{
〈η, φl〉 −

〈
η̄, φ̃l

〉}
= 0.

When B = (Kα)−1/2, the proof is similar as above because B has the same eigenfunctions

as K. Details are omitted. �

Lemma 14 Let ϕj be an orthonormal eigenfunction of K, then there exists a constant d so that

φj (t) = eidϕj (t), φ̃j (t) = φj (−t), ζ̃j (t) =
(
φj (t) , φ̃j (t)

)′
and ζ̃ l (t) =

(
φl (t) ,−φ̃l (t)

)′
are

such that ζj = Mζ̃j and ζ l = Mζ̃ l are real. Moreover, φj is such that < ĥ, φj > is real for all

j = 1, 2, ....

Proof of Lemma 14. Let us denote Re
(
ϕj (t)

)
= at and Im

(
ϕj (t)

)
= bt. Here, we treat

the case at 6= 0 and bt 6= 0 (the cases where either at or bt is null can be treated similarly). We

have

φj = eidϕj = (cos d+ i sin d) (at + ibt)

= at cos d− bt sin d+ i (at sin d+ bt cos d)

and

ζj = Mζ̃j =
1

2

(
φj + φ̃j

i(φ̃j − φj)

)
.
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Hence, ζj is real if and only if Im(φj + φ̃j) = 0 and Re(φ̃j − φj) = 0, which is equivalent to

(at + a−t) sin d+ (bt + b−t) cos d = 0, (A2)

(a−t − at) cos d− (b−t − bt) sin d = 0 (A3)

or equivalently

tan d =
− (bt + b−t)

at + a−t
=

(at − a−t)
(bt − b−t)

.

For this to be possible, we need a2
t + b2t = a2

−t + b2−t which is equivalent to

∣∣ϕj (t)
∣∣2 =

∣∣ϕj (−t)
∣∣2 . (A4)

Now we show that (A4) holds for any eigenfunction ϕj of the covariance operator K. As K is

a compact self-adjoint operator, we have

k (s, s) =
∑
j

λj
∣∣ϕj (s)

∣∣2 ,
k (s, s) = k (−s,−s) =

∑
j

λj
∣∣ϕj (−s)

∣∣2 .
It follows that

∑
j λj [

∣∣ϕj (s)
∣∣2− ∣∣ϕj (−s)

∣∣2] = 0 for all s. Hence
∣∣ϕj (s)

∣∣2 =
∣∣ϕj (−s)

∣∣2. The case
of ζ̃ l associated with 0 can be treated in the same manner and we get the same condition (A4).

Using (A2) and (A3), one can check that φj satisfies the relation φj (t) = φj (−t). Conse-

quently,
〈
ĥ, φj

〉
is real for all j = 1, 2, ... because

〈
ĥ, φj

〉
=

∫
ĥ (t)φj (t)π (t) dt

=

∫
ĥ (t)φj (−t)π (t) dt

=

∫
ĥ (−s)φj (s)π (s) ds

=

∫
ĥ (s)φj (s)π (s) ds

=
〈
ĥ, φj

〉
using a change of variable, s = −t, and the property that ĥ (s) = ĥ (−s). �

Proof of Proposition 3. Adapting the results of Chen and White (1992, working paper)

to complex processes and taking into account that B is bounded, we have

Bn
√
nĥ⇒ CN

(
cBη,BKB∗, BRB

∗
)
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where B∗ is the adjoint of B. Then the results follow from Lemma 12 and Lemma 13. �
Proof of Proposition 4. The proof is similar to those of Neuhaus (1976, Theorem 2.2.)

and Escanciano (2009, Theorem 1) and is not repeated here for brevity. �
Proof of Proposition 5. Under our assumptions,

∥∥∥Bnĥ (.; θ)
∥∥∥ P0→

∥∥BEP0 [hj (.; θ)]
∥∥

uniformly in θ. (The uniformity part comes from the fact that ĥ (.; θ)−E[hj (.; θ)] = 1
n

∑n
j=1 e

itXj−

ψ0 (t; θ0) does not depend on θ.) Moreover, E[hj (.; θ)] = ψ0 (.; θ0)− ψ0 (.; θ). By the identifica-

tion assumption, the objective function reaches its minimum at θ = θ0. Hence, θ̂ is consistent

under H0.

We turn our attention toward the asymptotic normality. To simplify the notation, we write

ψ0 (θ) for ψ0 (.; θ) and ĥ (θ) for ĥ (.; θ), and
∂ψ0(θ̂)
∂θ for ∂ψ0(θ)

∂θ

∣∣∣
θ=θ̂
. The first order condition of

the minimization problem gives〈
Bn

∂ψ0(θ̂)

∂θ
,Bnĥ(θ̂)

〉

= 0 =

〈
Bn

∂ψ0(θ̂)

∂θ
,Bnĥ (θ0)

〉
−
〈
Bn

∂ψ0(θ̂)

∂θ
,Bn

∂ψ0(θ̃)

∂θ
(θ̂ − θ0)

〉

where θ̃ is between θ0 and θ̂. It follows that

√
n(θ̂ − θ0) =

〈
Bn

∂ψ0(θ̂)

∂θ
,Bn

∂ψ0(θ̃)

∂θ

〉−1〈
Bn

∂ψ0(θ̂)

∂θ
,Bn
√
nĥ (θ0)

〉

By the continuity of ∂ψ0∂θ and the consistency of θ̂, we have

√
n(θ̂ − θ0) = 〈BD0, BD0〉−1

〈
B∗BD0,

√
nĥ (.; θ0)

〉
+ oP0 (1) . (A5)

The asymptotic normality follows from Proposition 1.

For the convergence of θ̂ to θ1 under H1, we use the same arguments as for the consistency

under H0. The existence of the minimum comes from the fact that ψ0(.; θ) is continuous in θ

and Θ is compact. �
Proof of Proposition 6.
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(i) The mean value theorem gives

√
nĥ(θ̂) =

√
nĥ(θ0)− ∂ψ0(θ̃)

∂θ

√
n(θ̂ − θ0)

=
√
nĥ (θ0)−D0

√
n(θ̂ − θ0) + oP0 (1)

=
√
nĥ (θ0)−D0 〈BD0, BD0〉−1

〈
B∗BD0,

√
nĥ (θ0)

〉
+ oP0 (1)

by equation (A5). In turn, the contiguity of Pn to P0 implies that

√
nĥ(θ̂)−

√
nĥ (θ0) +D0 〈BD0, BD0〉−1

〈
B∗BD0,

√
nĥ (θ0)

〉
Pn→ 0. (A6)

By Proposition 2, we have under H1n

√
nĥ (θ0)−D0 〈BD0, BD0〉−1

〈
B∗BD0,

√
nĥ (θ0)

〉
⇒ CN (Lη, K̃, R̃) (A7)

where R̃ is the relation operator whose explicit expression is not given because it is not needed.

Combining Equations (A6) and (A7) yields
√
nĥ(θ̂)⇒ CN (Lη, K̃, R̃) under H1n. The kernel of

K̃ can be computed explicitly as follows:

k̃ (s, t)

= E
[
(
√
nĥ (s)−D0 (s) 〈BD0, BD0〉−1

〈
B∗BD0,

√
nĥ
〉

)

×(
√
nĥ (t)−D0 (t) 〈BD0, BD0〉−1

〈
B∗BD0,

√
nĥ
〉

)

]
.

The detailed calculation for one of the four terms gives

E
[
D0 (s) 〈BD0, BD0〉−1

〈
B∗BD0,

√
nĥ
〉√

nĥ (t)
]

= D0 (s) 〈BD0, BD0〉−1E

[∫
B∗BD0 (u)

√
nĥ (u)π (u) du

√
nĥ (t)

]
= D0 (s) 〈BD0, BD0〉−1

∫
B∗BD0 (u)E[hj (u)hj (t)]π (u) du

= D0 (s) 〈BD0, BD0〉−1 (KB∗BD0) (t) .

The other terms can be computed similarly.

(ii) The proof of (ii) is similar to that of Proposition 3 and hence omitted. �
Proof of Lemma 7. The CF of a N (µ, σ2) is ψ0 (t) = eiµt−

σ2t2

2 . Let θ =
(
µ, σ2

)′, then
D0 =

∂ψ0

∂θ
=

(
itψ0 (t)

− t2

2 ψ0 (t)

)
.

Let v = (a, b) and η (t) = v′D0 =
(
ait− bt2

2

)
ψ0 (t). Now consider ψn (t) =

(
1 + ait√

n
− bt2

2
√
n

)
ψ0 (t).
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Observe that ψn (0) = 1, ψn (t) = ψn (−t). We need |ψn (t)| < 1 which will be satisfied if b > 0

(and possibly for b < 0 and n large enough). So ψn satisfies the necessary conditions to be a CF,

however these conditions are not suffi cient. Necessary and suffi cient conditions for a function

ψn to be CF are that (a) ψn (0) = 1, and (b) ψn is non-negative definite (see Theorem 4.2.2 of

Lukacs (1960)). It can be shown that, given ψ0 is a CF, ψn will satisfy (b) for n large enough.

So ψn is a CF.

Moreover, ψn (t) is absolutely integrable so the density (fn) corresponding to ψn satisfies:

fn (x) =
1

2π

∫
e−itxψn (t) dt

=
1

2π

∫
e−itx

(
1 +

ait√
n
− bt2

2
√
n

)
ψ0 (t) dt

=
1

2π

∫
e−itxψ (t) dt+

ai√
n

1

2π

∫
te−itxψ0 (t) dt− b

2
√
n

1

2π

∫
e−itxt2ψ0 (t) dt.

Note that
i

2π

∫
te−itxψ0 (t) dt =

∂ 1
2π

∫
e−itxψ0 (t) dt

∂µ
,

1

2π

∫
e−itxt2ψ0 (t) dt = −2

∂ 1
2π

∫
e−itxψ0 (t) dt

∂σ2
.

At the same time,

1

2π

∫
e−itxψ (t) dt =

1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
≡ f0 (x) ,

∂f0 (x)

∂σ2
= −1

2

1√
2πσ3

exp

[
−(x− µ)2

2σ2

]

+
(x− µ)2

2σ4

1√
2πσ2

exp

[
−(x− µ)2

2σ2

]

=

[
(x− µ)2

2σ4
− 1

2σ2

]
f0 (x) ,

∂f0 (x)

∂µ
=

(x− µ)

σ2
f0 (x) .

It then follows that fn (x) =
{

1 + a√
n

(x−µ)
σ2

+ b
2
√
n

[
(x−µ)2−σ2

2σ4

]}
f0 (x). �

Proof of Proposition 8. Under H1, ĥ(.; θ̂)
P1→ EP1hj (.; θ1) = ψ (.) − ψ0 (.; θ1) 6= 0, where

ψ (.) is the CF of Xj under H1, and then the result follows. �
Preliminary results to the proof of Proposition 10.

The following lemmas will be used in the proof of Proposition 10.
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Let Yin (s) be the process defined as

Yin (s) = eisXi − ψn (s) .

Under H2n, Yin i = 1, 2, ... are iid with mean 0 and covariance E[Yin (s)Yin (t)] = ψn (s− t) −

ψn (s)ψn (−t) ≡ kn (s, t). Let Kn be the integral operator with kernel kn and
(
λl,n, φl,n

)
be the

eigenvalues and eigenfunctions of Kn. Note that Kn converges to K when n goes to infinity.

Lemma 15 Under H2n,

(
〈Yin,φl,n〉√

λl,n

)
, l = 1, 2, ... are uncorrelated across l with zero mean and

variance equal to 1.

Proof of Lemma 15. We have

E
[〈
Yin, φl,n

〉 〈
Yin, φl′,n

〉]
= E

∫
Yin (s)φl,n (s)π (s) ds

∫
Yin (t)φl′,n (t)π (t) dt

=

∫
φl,n (s)

∫
E
[
Yin (s)Yin (t)

]
φl′,n (t)π (t) dtπ (s) ds

=
〈
φl,n,Knφl′,n

〉
=

{
λl,n if l = l′,

0 otherwise,

as desired. �
The following lemma is taken from Eubank and LaRiccia (1992) and is reproduced here for

convenience. Note that in our setting, Yin is complex but we can still apply this lemma because

wijn is real.

Lemma 16 (Lemma 2 of Eubank and LaRiccia (1992)) Let {Yin}ni=1, n = 1, 2, ... be a triangular

array of random variables that are iid within rows. Set wijn = wijn (Yin, Yjn) + wijn (Yjn, Yin)

for some function wijn (., .) and assume that E [wijn|Yin] = 0 for all i, j ≤ n. Define

w (n) =
∑

1≤i<j≤n
wijn,

σ (n)2 = V ar (w (n)) =
∑

1≤i<j≤n
E
(
w2
ijn

)
,

GI =
∑

1≤i<j≤n
E
(
w4
ijn

)
,

GII =
∑

1≤i<j<k≤n

[
E
(
w2
ijnw

2
ikn

)
+ E

(
w2
jinw

2
jkn

)
+ E

(
w2
kinw

2
kjn

)]
,
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and

GIV =
∑

1≤i<j<k<m≤n
[E (wijnwiknwmjnwmkn) + E (wijnwimnwkjnwkmn)

+E (wimnwiknwjknwjmn)] .

Then, if GI , GII , and GIV are all of smaller order than σ (n)4 ,

w (n)

σ (n)

d→ N (0, 1) .

Lemma 17 Let al,n =
λ2l,n

λ2l,n+α
, pn,n =

∑n
j=1 al,n, qn,n = 2

∑n
j=1 a

2
l,n. Under H2n :

∑n
l=1

al,n
λl,n
|
〈√

nĥ, φl,n

〉
|2 − pn,n

√
qn,n

d→ N
(
c ‖η‖2K , 1

)
as n→∞, α→ 0, p2

n,n/(qn,nn)→ 0, and pn,n/(qn,nnα)→ 0.

Proof of Lemma 17. Our proof draws from the proof of Theorem 1 in Eubank and LaRiccia

(1992). Here and in the subsequent proofs of results for Proposition 10, all the expectations are

computed under H2n. Dropping the subscript n from al,n, λl,n, φl,n, pn,n, and qn,n, we obtain

∑n
l=1

al
λl

∣∣∣〈√nĥ, φl〉∣∣∣2 − pn
√
qn

=

∑n
l=1

al
λl

∣∣∣〈√n{ĥ− E(ĥ) + E(ĥ)}, φl
〉∣∣∣2 − pn

√
qn

=

∑n
l=1

al
λl

∣∣∣〈√n{ĥ− E(ĥ)}, φl
〉∣∣∣2 − pn

√
qn

+Rn

where

Rn =
2 Re

∑n
l=1

al
λl

〈√
n{ĥ− E(ĥ)}, φl

〉〈√
nE(ĥ), φl

〉
√
qn

+

∑n
l=1

al
λl

∣∣∣〈√nE(ĥ), φl

〉∣∣∣2
√
qn

.

In a first step, we will show that Rn converges to d ‖η‖2K in probability under H2n as n goes to

infinity and α goes to zero. In a second step, we will show that, under H2n,

∑n
l=1

al
λl

∣∣∣〈√n{ĥ− E(ĥ), φl

〉∣∣∣2 − pn
√
qn

d→ N (0, 1) .
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First step. We have E(ĥ) = ψn − ψ0 = bnη and

E (Rn) =
nb2n√
qn

n∑
l=1

al
λl
〈η, φl〉2 .

Moreover,
∑n

l=1
al
λl
|〈η, φl〉|2 →

∑∞
l=1

1
λl
|〈η, φl〉|2 = ‖η‖2K and nb2n√

qn
→ d as n goes to infinity and

α goes to zero. Therefore, E (Rn)→ d ‖η‖2K .

Now we show that the variance of Rn goes to zero. Using the notation Yi = Yin, we have

V (Rn) = V

2 Re
∑n

l=1
al
λl

〈∑n
i=1 Yi√
n

, φl

〉
〈
√
nbnη, φl〉

√
qn

 .
Using the fact that V (Re (Z)) ≤ V (Z) for any complex random variable Z, we have

V (Rn) ≤ 4nb2n
qn

V

[∑n
i=1√
n

n∑
l=1

al
λl
〈Yi, φl〉 〈η, φl〉

]

=
4nb2n
qn

V

[
n∑
l=1

al
λl
〈Yi, φl〉 〈η, φl〉

]

because Yi, i = 1, 2, ..., n are iid. As 〈Yi, φl〉, l = 1, 2... are uncorrelated by Lemma 15, we obtain

V (Rn) ≤ 4nb2n
qn

n∑
l=1

a2
l

λl
|〈η, φl〉|2

≤ 4nb2n
qn
‖η‖2K → 0.

It follows that Rn converges to d ‖η‖2K in probability under H2n.

Second step. We have

∑n
l=1

al
λl

∣∣∣〈√n{ĥ− E (ĥ)}, φl〉∣∣∣2 − pn
√
qn

=

∑n
l=1

al
λl

∣∣∣〈 1√
n

∑n
i=1 Yi, φl

〉∣∣∣2 − pn
√
qn

=
w1 (n) + w (n)

√
qn

where

w1(n) =
1

n

n∑
l=1

n∑
i=1

al
λl
|〈Yi, φl〉|2 − pn,

w(n) =
2

n

n∑
l=1

al
λl

∑
1≤i<j≤n

Re 〈Yi, φl〉 〈Yj , φl〉 =
∑

1≤i<j≤n
wijn,

with

wijn =
2

n

n∑
l=1

al
λl

Re 〈Yi, φl〉 〈Yj , φl〉.
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First, we show that w1(n)/
√
qn

P2n→ 0. We have

E[w1(n)] =
1

n

n∑
l=1

n∑
i=1

al
λl
E[|〈Yi, φl〉|2]− pn

=
n∑
l=1

al − pn = 0.

As 〈Yi, φl〉2 are independent across i, we have

V [w1(n)]

=
1

n
V

[
n∑
l=1

al

(
|〈Yi, φl〉|2

λl
− 1

)]

=

n∑
l=1

a2
l

n
E

( |〈Yi, φl〉|2
λl

− 1

)2
+

∑
l 6=l′

alal′

n
E

[(
|〈Yi, φl〉|2

λl
− 1

)(
|〈Yi, φl′〉|2

λl′
− 1

)]
.(A8)

Using Lemma 15, we have

∑
l 6=l′

alal′

n
E

[(
|〈Yi, φl〉|2

λl
− 1

)(
|〈Yi, φl′〉|2

λl′
− 1

)]

=
∑
l 6=l′

alal′

n
E

(
|〈Yi, φl〉|2

λl

|〈Yi, φl′〉|2

λl′

)
(A9)

−
∑
l 6=l′

alal′

n
. (A10)

Consider (A10): We have
1

qn

∑
l 6=l′

alal′

n
≤ p2

n

qnn
,

which goes to zero by assumption. To deal with the term (A9), we exploit the fact that for n

large enough, |Yi| =
∣∣eitXi − ψn (t)

∣∣ ≤ ∣∣eitXi∣∣ + |ψn (t)| = 2, hence ‖Yi‖2 ≤ 4 and |〈Yi, φl〉|2 ≤ 4

by Cauchy-Schwarz and ‖φl‖ = 1. Therefore, by Lemma 15,

E

(
|〈Yi, φl〉|2

λl

|〈Yi, φl′〉|2

λl′

)
≤ 4

λlλl′
E
(
|〈Yi, φl′〉|2

)
=

4

λl
.

Hence, ∑
l 6=l′

alal′

n
E

(
|〈Yi, φl〉|2

λl

|〈Yi, φl′〉|2

λl′

)
≤
∑
l 6=l′

alal′

nλl
=
pn
n

∑
l

al
λl
.

Note that ∑
l

al
λl

=
∑
l

λl

λ2
l + α

≤ 1

α

∑
l

λl.
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So, we obtain:
pn
qnn

∑
l

al
λl
≤ pn
qnnα

which goes to zero by assumption.

The first term in (A8) can be treated in the same manner. Thus, V [w1 (n)]/qn → 0 under

our assumptions and hence w1 (n) /
√
qn

P2n→ 0.

Second, we show that under H2n

w (n)
√
qn

d→ N (0, 1) .

To establish this result, we check all the conditions of Lemma 16.

σ (n)2 = V (wn) =
∑

1≤i<j≤n
E(w2

ijn),

where, using the fact that |ReZ| ≤ |Z| for all complex Z, we have

E(w2
ijn) ≤ 4

n2
E

( n∑
l=1

al
λl
|〈Yi, φl〉| |〈Yj , φl〉|

)2


=
4

n2

n∑
l=1

a2
l

λ2
l

E[|〈Yi, φl〉|2 |〈Yj , φl〉|2]

=
4

n2

n∑
l=1

a2
l

λ2
l

E[|〈Yi, φl〉|2]E[|〈Yj , φl〉|2]

=
4

n2

n∑
l=1

a2
l =

2qn
n2

because the 〈Yi, φl〉 are uncorrelated across l and independent across i. Hence,

σ (n)2 ∼ qn.

Consider now the term GI :

GI =
∑

1≤i<j≤n
E(w4

ijn).
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We have

w4
ijn =

16

n4

(
n∑
l=1

al
λl

Re 〈Yi, φl〉 〈Yj , φl〉
)4

≤ 16

n4

(
n∑
l=1

al
λl
|〈Yi, φl〉 〈Yj , φl〉|

)4

=
16

n4

n∑
l=1

a4
l

λ4
l

|〈Yi, φl〉|4 |〈Yj , φl〉|4 (A11a)

+
16

n4

∑
l 6=l′

a3
l

λ3
l

al′

λl′
|〈Yi, φl〉|3 |〈Yj , φl〉|3 |〈Yi, φl′〉| |〈Yj , φl′〉| (A11b)

+
16

n4

∑
l 6=l′

a2
l

λ2
l

a2
l′

λ2
l′
|〈Yi, φl〉|2 |〈Yj , φl〉|2 |〈Yi, φl′〉|2 |〈Yj , φl′〉|2 . (A11c)

Consider (A11a): Using |〈Yi, φl〉|2 ≤ 4 as before, we get E |〈Yi, φl〉|4 ≤ 4E |〈Yi, φl〉|2 = 4λl.

Therefore,

E

n∑
l=1

a4
l

λ4
l

|〈Yi, φl〉|4 |〈Yj , φl〉|4 ≤ 16

n∑
l=1

a4
l

λ2
l

and

n∑
l=1

a4
l

λ2
l

=
n∑
l=1

λ6
l

(λ2
l + α)4

=
n∑
l=1

λ4
l

(λ2
l + α)2

λ2
l

(λ2
l + α)2

≤
n∑
l=1

λ2
l

(λ2
l + α)2

≤ 1

α2

n∑
l=1

λ2
l .

Hence, ∑
1≤i<j≤n(A11a)

q2
n

≤ C

α2n2q2
n

→ 0

by the assumption pn/ (qnnα)→ 0.

Consider (A11b):

E(A11b) =
16

n4

∑
l 6=l′

a3
l

λ3
l

al′

λl′
E[|〈Yi, φl〉|3 |〈Yi, φl′〉|]E[|〈Yj , φl〉|3 |〈Yj , φl′〉|].

By Cauchy-Schwarz,

E[|〈Yi, φl〉|3 |〈Yi, φl′〉|] ≤
√
E[|〈Yi, φl〉|6]E[|〈Yi, φl′〉|2]

≤ 4

√
E[|〈Yi, φl〉|2]E[|〈Yi, φl′〉|2]

= 4
√
λl
√
λl′ .
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Hence,

E(A11b) ≤ C

n4

∑
l 6=l′

a3
l

λ2
l

al′ ≤ C
pn
n4

∑
l

a3
l

λ2
l

.

Moreover, ∑
l

a3
l

λ2
l

=
∑
l

λ4
l

(λ2
l + α)3

≤
∑
l

1

(λ2
l + α)

≤ n

α
.

It follows that ∑
1≤i<j≤n(A11b)

q2
n

≤ C pn
q2
nnα

→ 0.

Now, consider (A11c):

E (A11c) =
16

n4

∑
l 6=l′

a2
l

λ2
l

a2
l′

λ2
l′
E[|〈Yi, φl〉|2 |〈Yi, φl′〉|2]E[|〈Yj , φl〉|2 |〈Yj , φl′〉|2]

≤ C

n4

∑
l 6=l′

a2
l

λ2
l

a2
l′

λ2
l′
λlλl′

≤ C

n4

(∑
l

a2
l

λl

)2

.

Moreover,

∑
l

a2
l

λl
=

∑
l

λ3
l

(λ2
l + α)2

=
∑
l

λ2
l

(λ2
l + α)

λl

(λ2
l + α)

≤
∑
l

λl

(λ2
l + α)

≤
∑

l λl
α

.

Therefore, ∑
1≤i<j≤n(A11c)

q2
n

≤ C

α2n2q2
n

→ 0.

It follows that GI = o(σ (n)4).

Now consider GII :

E(w2
ijnw

2
ikn) ≤ 16

n4
E

( n∑
l=1

al
λl
|〈Yi, φl〉 〈Yj , φl〉|

)2( n∑
l′=1

al′

λl′
|〈Yi, φl′〉 〈Yk, φl′〉|

)2


=
16

n4

∑
l,l′

a2
l a

2
l′

λ2
l λ

2
l′
E[|〈Yi, φl〉|2 |〈Yj , φl〉|2 |〈Yi, φl′〉|2 |〈Yk, φl′〉|2]

because the cross products equal zero. We have

E[|〈Yi, φl〉|2 |〈Yj , φl〉|2 |〈Yi, φl′〉|2 |〈Yk, φl′〉|2] ≤ 4E[|〈Yi, φl〉|2]E[|〈Yj , φl〉|2]E[|〈Yk, φl′〉|2]

= 4λ2
l λl′ .
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Hence,

E
(
w2
ijnw

2
ikn

)
≤ C

n4

∑
l

a2
l

∑
l′

a2
l′

λl′
≤ Cqn

n4

∑
λl
α

,

∑
1≤i<j≤nE[w2

ijnw
2
ikn]

q2
n

≤ C

n2αqn
→ 0.

The other terms of GII have the same form. Therefore, GII = o(σ (n)4).

Consider GIV :

E (wijnwiknwmjnwmkn)

≤ 16

n4
E

[∣∣∣∣∣
n∑
l=1

al
λl
〈Yi, φl〉 〈Yj , φl〉

∣∣∣∣∣
∣∣∣∣∣
n∑
l′=1

al′

λl′
〈Yi, φl′〉 〈Yk, φl′〉

∣∣∣∣∣∣∣∣∣∣∣
n∑
g=1

ag
λg

〈
Ym, φg

〉 〈
Yj , φg

〉∣∣∣∣∣∣
∣∣∣∣∣∣
n∑

g′=1

ag′

λg′

〈
Ym, φg′

〉 〈
Yk, φg′

〉∣∣∣∣∣∣


=
16

n4

n∑
l=1

a4
l

λ4
l

E[|〈Yi, φl〉|2 |〈Yj , φl〉|2 |〈Ym, φl〉|2 |〈Yk, φl〉|2]

because 〈Yi, φl〉, l = 1, 2... are uncorrelated across l. As Yi, i = 1, 2, ..., are iid, we have

E (wijnwiknwmjnwmkn) =
16

n4

n∑
l=1

a4
l

λ4
l

E[|〈Yi, φl〉|2]4

=
16

n4

n∑
l=1

a4
l

≤ 16qn
n4

.

It follows that
1

q2
n

∑
1≤i<j<k<m≤n

E (wijnwiknwmjnwmkn) ≤ 16

qn
→ 0.

As the other terms in GIV have the same form, we can conclude that GIV = o(σ (n)4).

Therefore, all the conditions of Lemma 16 are satisfied and the result follows. �

Lemma 18 We have under H2n :

∥∥∥Kn − K̂
∥∥∥ = Op2n

(
max

(
n−1/2, b2n

))
, (A12)∥∥∥∥(Kα

n )−1/2 −
(
K̂α
)−1/2

∥∥∥∥ = Op2n

(
α−3/4 max

(
n−1/2, b2n

))
. (A13)

Proof of Lemma 18. We have
∥∥∥Kn − K̂

∥∥∥ ≤ ∥∥∥Kn − K̂
∥∥∥
HS

where ‖.‖HS denotes the
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Hilbert-Schmidt norm. Moreover

∥∥∥Kn − K̂
∥∥∥
HS
≤ ‖Kn − EKn‖HS +

∥∥∥EKn − EK̂
∥∥∥
HS

+
∥∥∥EK̂ − K̂∥∥∥

HS
.

The kernel of EKn is ψn (s− t)− ψn (s)ψn (−t) and the kernel of EK̂ is

E
[(
eisXi − ψ0 (s)

) (
e−itXi − ψ0 (−t)

)]
= ψn (s− t)− ψn (s)ψ0 (−t)− ψ0 (s)ψn (−t) + ψ0 (s)ψ0 (−t) .

Hence

EKn − EK̂ = [ψn (s)− ψ0 (s)] [ψ0 (−t)− ψn (−t)]

= −b2nη (s) η (−t) .

Therefore
∥∥∥EKn − EK̂

∥∥∥
HS

= O
(
b2n
)
. Using a proof similar to that of Theorem 4 in Carrasco

and Florens (2000), we have

‖Kn − EKn‖HS = Op2n

(
1√
n

)
,∥∥∥EK̂ − K̂∥∥∥

HS
= Op2n

(
1√
n

)
.

Hence, the result of (A12) follows. The result of (A13) can be established using a proof similar

to that of Lemma B.2 in Carrasco et al (2007).

Proof of Proposition 10. As in Carrasco and Florens (2000, proof of Theorem 10), the

proof proceeds in three steps.

Step 1. Let Pn denote the projection which associates to an operator K the operator K2

defined by the first n eigenvalues and eigenfunctions of K. We show that

1
√
qn

{∥∥∥(K̂α)−1/2√nĥ
∥∥∥− ∥∥∥Pn (Kα

n )−1/2√nĥ
∥∥∥} P→ 0 (A14)

under H2n.

First note that

√
nĥ =

1√
n

n∑
i=1

(
eitXi − ψ0 (t)

)
=

1√
n

n∑
i=1

(
eitXi − ψn (t)

)
+
√
n (ψn (t)− ψ0 (t))

= Op2n (1) +
√
nbnη (t) .
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Hence
∥∥∥√nĥ∥∥∥ = Op2n (

√
nbn). We have

1
√
qn

{∥∥∥(K̂α)−1/2√nĥ
∥∥∥− ∥∥∥Pn (Kα

n )−1/2√nĥ
∥∥∥}

≤ 1
√
qn

∥∥∥[(K̂α)−1/2 − Pn (Kα
n )−1/2]

√
nĥ
∥∥∥

≤ 1
√
qn
‖Pn‖

∥∥∥(K̂α)−1/2 − (Kα
n )−1/2

∥∥∥∥∥∥√nĥ∥∥∥
= Op2n

(
max

(
bn,
√
nb3n
)

√
qnα3/4

)

because ‖Pn‖ ≤ 1,
∥∥∥√nĥ∥∥∥ = Op2n (

√
nbn) and

∥∥∥(K̂α)−1/2 − (Kα
n )−1/2

∥∥∥ = Op2n
(
α−3/4 max(n−1/2, b2n)

)
by Lemma 18. Therefore (A14) is satisfied.

Step 2. Show that

p̂n − pn,n
P→ 0 and q̂n − qn,n

P→ 0

under H2n as nα2 →∞ and b2n/n→ 0.

Using the proofs of Theorems 4 and 10 in Carrasco and Florens (2000), we can show that

p̂n − pn,n = Op

(
‖K̂−Kn‖

α

)
and q̂n − qn,n = Op

(
‖K̂−Kn‖

α

)
.

Step 3. By Lemma 17, we have under H2n∥∥∥Pn (Kα
n )−1/2√nĥ

∥∥∥− pn,n
√
qn,n

=

∑n
l=1

al,n
λl,n

∣∣∣〈√nĥ, φl,n〉∣∣∣2 − pn,n
√
qn,n

d→ N (c ‖η‖2K , 1).

Using steps 1 and 2, we obtain the desired result. �
Proof of Proposition 11. Let {φj , λj} be the eigenfunctions and eigenvalues of Kθ. Let

ψj such that φj = U∗θψj and consequently Uθφj = UθU
∗
θψj = ψj . We have

UθKθU
∗
θψj = UθKθφj

= λjUθφj

= λjψj .

49



Therefore, {ψj , λj} are the eigenfunctions and eigenvalues of K̃. It follows that∥∥∥Uθĥ (θ)
∥∥∥2

(UθKθU∗θ )
α =

∑
j

λj

λ2
j + α

∣∣∣〈Uθĥ (θ) , ψj

〉∣∣∣2
=

∑
j

λj

λ2
j + α

∣∣∣〈ĥ (θ) , U∗θψj

〉∣∣∣2
=

∑
j

λj

λ2
j + α

∣∣∣〈ĥ (θ) , φj

〉∣∣∣2
=

∥∥∥ĥ (θ)
∥∥∥2

Kα
θ

,

as desired. �
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Figure 1: Eigenvalues (λj’s) and weights (aj’s) of the covariance K for the standard Normal

distribution
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Notes: Eigenvalues are computed following the procedure described in Appendix A.1 with a grid of 1,000
points.

Figure 2: Alternatives with maximum power (ϕj , for j = 1, 2, 3) for the standard Normal
distribution
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Notes: Eigenvalues are computed following the procedure described in Appendix A.1 with a grid of 1,000
points.
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Figure 3: Asymptotic power at the 5% level of the TB tests based on B = I (λj’s) and

B = K
−1/2
α (aj’s) under local alternatives
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Notes: Eigenvalues are computed following the procedure described in Appendix A.1 with a grid of 1,000
points. Power is computed using rejection rates obtained from simulated samples of size 100,000 under
both the null and the alternatives.

63




