Testing distributional assumptions

using a continuum of moments*

Dante Amengual Marine Carrasco
CEMFI Université de Montréal
<amengualQcemfi.es> <marine.carrascoQumontreal.ca>

Enrique Sentana
CEMFI
<sentana@cemfi.es>

March 2017
Revised: June 2019

Abstract

We propose specification tests for parametric distributions that compare the potentially
complex theoretical and empirical characteristic functions using the continuum of moment
conditions analogue to an overidentifying restrictions test, which takes into account the cor-
relation between influence functions for different argument values. We derive its asymptotic
distribution for fixed regularization parameter and when this vanishes with the sample size.
We show its consistency against any deviation from the null, study its local power and com-
pare it with existing tests. An extensive Monte Carlo exercise confirms that our proposed
tests display good power in finite samples against a variety of alternatives.

Keywords: Characteristic function, Complex Gaussian process, Consistent tests, Con-

tinuum of moment conditions, Goodness-of-fit, GMM, Tikhonov regularization.

JEL: C01, C12, C52.

*We are grateful to conference and seminar participants at the CIREQ conference in honor of Jean-Marie
Dufour (Montréal), the 2017 Uruguayan Economics Society Meetings (Montevideo), the 2018 European Meeting of
the Econometric Society (Cologne), Toulouse School of Economics and Ohio State University for helpful comments,
discussions and suggestions. We also thank David Benatia, Alex Heinemann, Ran Liu and Siqi Wei for their able
research assistance at various stages of this project. A co-editor and two anonymous referees have also helped us
greatly improve the paper. We gratefully acknowledge financial support from the Spanish Ministry of Economy
and Competitiveness through grant ECO 2014-59262 (Amengual and Sentana) as well as from the Canadian
Social Sciences and Humanities Research Council (Carrasco). Of course, the usual caveat applies.



1 Introduction

Goodness-of-fit tests are important to assess whether a parametric distribution provides
an appropriate representation of the data. These tests can be divided in two main categories:
(i) directional tests, which are designed to have power against specific alternatives, such as
Neyman smooth test (see Neyman, 1937 and Rayner and Best, 1989), Jarque and Bera’s (1980)
test of normality, as well as those proposed by Sefton (1992), Fiorentini, Sentana and Calzolari
(2003), Bontemps and Meddahi (2005, 2012), Mencia and Sentana (2012) and Tuvaandorj and
Zinde-Walsh (2014) among many others; (ii) omnibus tests, which are consistent against any
alternative to the null hypothesis, for instance the integrated conditional moment test of Bierens
(1982) and Bierens and Ploberger (1997), the conditional Kolmogorov test of Andrews (1997),
and the copula goodness-of-fit test of Genest, Huang and Dufour (2013). Our proposed tests
fall in this second category.

In particular, our testing procedure is based on the difference between the empirical and
theoretical characteristic functions (CF) for all possible values of their argument. This gives rise
to a continuum of moments in a L? space. Our aim is to construct a J test for overidentifying
restrictions based on these moments, as in Hansen (1982). However, what plays the role of the
covariance matrix in his test becomes now a covariance operator, whose inverse is unbounded.
Therefore, some regularization is needed to stabilize the inverse. We propose to use Tikhonov
regularization (see Kress, 1999) and consider two types of tests. The first one uses a fixed value
of the regularization parameter . Given that o can be regarded as a bandwidth, this approach
is analogous to the fixed b asymptotics used in Kiefer and Vogelsang (2002). The second type
of tests allows a to converge to zero at an appropriate rate, in which case our proposed test
is closer in spirit to Hansen (1982)’s J test. In this second instance, however, the statistics
would tend to a diverging x? with infinite degrees of freedom. For that reason, we center and
rescale it following the procedure put forward by Carrasco and Florens (2000), who presented
this type of test for the first time. Note that Carrasco and Florens (2000) assume that the
moment conditions are real whereas here we work with complex moment conditions.

We will consider various versions of our proposed tests depending on whether the parameter
vector € is known in advance or replaced by a consistent estimator, and whether we make
use of the analytical expression for the covariance operator or estimate it. We will derive the
asymptotic distribution of our tests under the null hypothesis and under local alternatives. We
will also characterize the alternatives for which our tests have maximum power.

The advantages of using the CF are multiple: (a) in some important examples, the distri-

bution function is only known in integral form whereas the CF has a closed form expression,



as in the cases of stable distributions and affine diffusions (see Singleton (2001) and Carrasco,
Chernov, Florens, and Ghysels (2007)); (b) handling multivariate random variables can be done
just as easily as the scalar case; (c) our tests have the same form and are computed in the
same manner for any CF tested; (d) our tests are consistent against any alternative to the null
hypothesis.

The CF raises specific challenges as the CF-based moment condition converges to a complex
Gaussian process but some results valid for real processes are not directly applicable to complex
processes. To derive the asymptotic distributions of our tests, we adapt some results recently
developed by Ducharme, de Micheaux, and Marchina (2016) for complex random vectors to
complex processes. For results on the weak convergence of the empirical CF, see Csorgo (1981)
and Wells (1992). Various tests based on the empirical CF have been previously proposed:
Feuerverger and Mureika (1977), Epps and Pulley (1983), Hall and Welsh (1983), Baringhaus
and Henze (1988), Ghosh and Ruymgaart (1992), Fan (1997), Hong (1999), Su and White
(2007), Chen and Hong (2010), and Leucht (2012) among others. The most closely related
paper is that of Bierens and Wang (2012), which focuses on tests for parametric conditional
distributions. Recently, Bierens and Wang (2017) extended their tests to time-series. The main
difference with ours is that we “weight” the continuum of moment conditions by the inverse of
their covariance operator. Our work is also related to Dufour and Valery (2016), who propose a
regularized Wald test to deal with the singularity of the covariance matrix.

The remainder of the paper is organized as follows. We introduce our tests in Section 2 and
derive the asymptotic properties of the J test with fixed regularization parameter o and known
(unknown) € in Section 3 (4). Next, we study the J test with vanishing « in Section 5. Finally,
Section 6 presents the results of our Monte Carlo simulations while Section 7 concludes. All the
proofs are collected in the appendix and computational aspects as well as additional figures are

included in the online Supplemental Appendix.

2 Presentation of the tests and overview

Assume we observe a sample of random variables X1, Xo, ..., X}, independent and identically
distributed (7id) taking their values on R? with ¢ > 1. The X; have probability density function
(pdf) f (x;0) indexed by a finite dimensional parameter #, which may be known or unknown,
and CF v (t;0) = E[e"X], where ¢t € RY is its argument. As is well known, f (z;6) and v (t;6)

are intimately related because the former is the Fourier transform of the latter, i.e.

Y (t;0) = /emf (x;0) dzx. (1)



Figure B1 in the Supplemental Appendix presents the CFs for the univariate distributions
that we consider in our Monte Carlo study, namely, a standard normal, as well as standardized
(zero mean - unit variance) versions of the uniform and x?(2) distributions, and a Cauchy
distribution with location and scale 0 and 1, respectively. Given that the first two examples and
the Cauchy are symmetrically distributed around 0, the CF is real and symmetric around 0. In
contrast, it contains an (odd) imaginary component in the case of the asymmetric chi-square.

We are interested in testing Hy : 1) = 1y (.;60), where 1y is a known CF and 6y is some
element of ©® C RP. Our testing procedures are based on the difference between the empirical

and theoretical CFs. Specifically, the relevant influence functions are

b = L3 n ). )
j=1

hj(£:0) = "% — 1 (1:0). (3)

This gives rise to a continuum of moments since under the null E[h; (t;600)] = 0 for all ¢t € RY.

Let 7 be a probability density function with support R?. Then, the function h; (¢;6) is a
random element of L? (), the space of complex-valued functions which are square integrable
with respect to the density . The inner product on this space is defined for any functions f and
g of L2 (m) as (f,g) = [ f(t) g (t)7 (t) dt, where the bar denotes the complex conjugate. L? (1)
is a Hilbert space and we will work on this space to derive the asymptotic distribution of our
test statistics.

By the central limit theorem of iid random elements of a separable Hilbert space (see e.g.
proof of Theorem 9 in Rackauskas and Suquet, 2006), we have that under Hy, as n goes to
infinity

Vnh (;00) = CN (0, K, R)

in L? (), where CN (0, K, R) denotes a complex Gaussian process of L2 (r). This process is
characterized by its mean, its covariance operator K, which is an integral operator from L? ()

to L2 (7) such that
(KD)(s) = [0 7 @) @)at (4)

with kernel

k(s,t) = Elh;j (s;00) hj (t;60)] = o (s — £;60) — 1o (s;00) 1o (=13 00) , ()
and its relation operator R, which is an integral operator from L? (7) to L? (7) with kernel

7 (s:t) = Elhj (s;00) hj (£;60)] = K (s, —t) - (6)



In the sequel, we denote by A; and ¢; the eigenvalues and orthonormal eigenfunctions of K,
respectively, which are solutions to the functional equation (K¢;)(t) = A\j$;(t). The ¢; are not
uniquely defined because one can multiply a complex function by a complex number on the unit
circle without altering its norm. However, our test statistic is invariant to this. Figures B2a
and B2c in the Supplemental Appendix present the eigenfunctions associated with the largest
two eigenvalues for the covariance operator K for the standard normal when the weighting
function 7 is itself a normal with zero mean and scale parameter w for two values of w. In turn,
Figures B2b and B2d show the corresponding operator of the standardized uniform distribution
on (—v/3,v/3) for the same Gaussian weighting function. As can be seen in these figures, if
we arrange the eigenvalues in decreasing order, the eigenfunctions associated with even (odd)
eigenvalues are even (odd) functions in these two examples. We also report in Figures B2e and
B2f the largest five eigenvalues for those distributions. As we shall see below, the main effect
of changing w will be to change the relative weights given to small and large values of the CF
argument ¢.

We are interested in applying Hansen (1982)’s J test of overidentifying restrictions to our
continuum of moments. To illustrate the difficulties that may arise, assume for a moment
that h (0) is a finite dimensional m-vector obtained from a rough discretization of RY, so that
NOACN 4N (0,K) and K is a nonsingular m x m matrix. Assuming for simplicity that both

IC and 6 are known, the usual J test for overidentifying restrictions is

J = nh (0)K'1(O), (7)
where * denotes the complex conjugate transpose of a vector/matrix. Now if we let m grow by
taking a denser and denser grid, then the matrix /C becomes increasingly ill-conditioned, in the
sense that the ratio of its largest eigenvalue to its smallest one increases dramatically, so X!
may be numerically unreliable for large m.

In our setting, the covariance matrix /C is replaced by the aforementioned covariance operator
K (see Supplemental Appendix A.1), which has a countable infinite number of positive eigen-
values \j, j = 1,2,... (arranged in decreasing order) and associated eigenfunctions ¢;. As we
will see later, this operator is compact, meaning that its inverse is not bounded. Consequently,
its smallest eigenvalues will converge to zero as j goes to infinity, so taking the inverse of K
is problematic. In terms of the spectral decomposition of K, the direct analogue to the J test

statistic in (7) would be written as

() = ) g

J



where the dependence on € is omitted for simplicity and |.| denotes the modulus of complex
numbers. This expression will blow up because of the division by the small eigenvalues A; for
large j. This is related to the problem of solving an integral equation K f = g where ¢ is known
and f is the object of interest. This problem is said to be ill-posed because f is not continuous in
g. Indeed, a small perturbation in g will result in a large change in f. To stabilize the solution,
one needs to use some regularization scheme (see Kress (1999) and Carrasco, Florens, and
Renault (2007) for various possibilities). As in Carrasco and Florens (2000), we use Tikhonov
regularization, which consists in replacing K ~'g by the regularized solution (K 2ral )71 Kg

where o > 0 is a regularization parameter. We use the notation (K®)' for (K% + a[)fl K,

which is the operator with eigenvalues )\;‘ er - and corresponding eigenfunctions ¢,;, and (K a)_l/ 2
j
. VoY . .
for the operator with eigenvalues ——— and the same eigenfunctions.
+a

j
Thus, the regularized version of the J test is

=X (e[ ©

Jereeye v ~ N +a

Comparing the expressions (8) and (9), we observe that /\% has been replaced by )\;‘ﬁ, which is
: j
bounded.

We will consider various versions of this test depending on whether:

e 0 is known or estimated,
e K is known or estimated,

e « is fixed or goes to zero.

Consider the case where « is fixed; if we are willing to assume that 6 is known, so that the
distribution under the null hypothesis is completely specified and the operator K is known, then

the first test we should consider is

J(00,K) =" Azﬁ - ‘<\/ﬁh, ¢j>(2. (10)
PR

As we explain in Appendix A.1, the test statistic (10) can be arbitrarily well approximated
from a numerical point of view by a regularized version of the matrix expression (7). Specifically,
if we evaluated the CF at a very fine but discrete grid of m points over a finite range of values

of the argument ¢, then

J(Qo,K) =N

|
>
=
SN—
*
N
3=
\/
—
~
Do




Several issues related to the practical implementation of this test (in particular the compu-
tation of the eigenelements of K) are discussed in the Supplemental Appendix A.1.
When 6 is unknown, however, the operator K is only known up to 6. Let 0 be a consistent

estimator of 0 obtained for instance from

~ 2
h(.;e)H .

f = arg min
0cO

In this context, the integral operator Kj can be defined as in (4) but with kernel

k(s,t) = 1ho(s — t;0) — g (s;0)0(—t; 6).

Let {)\jé, d)jé} J = 1,...,m be the eigenvalues and eigenfunctions of the operator K. Then the

second test we consider is

A )\j@ o 2 ' )‘jé 2
T0.Kg) = 30 52— | (Vih(:0). 65)| " = min 3" T [(Vih (:0).655)
J 8 VL
where 0 corresponds to the argument of the minimization.
Alternatively, we may prefer to estimate K using a sample covariance operator. In fact, there
are two obvious possibilities. The first one is to use the integral estimator K with uncentered

kernel

5.0) = -3 (s,
=1

where 0 is a consistent first step estimator of . On the other hand, the second possibility is the

integral operator K with centered kernel

o

Fs,t) = =5 hi(s) b (),

n -

where
hi (s) = h; (5:0) — h(s:0 :eisxi—l e Xt
() = hi (5:0) = b (5:0) P
The advantage of the second estimator is that it does not require a first step estimator of  and
thereby it may be more robust to misspecification.
For computational reasons, it is convenient to rewrite the test statistics (9), which use as
eigenvalues and eigenfunctions those of K and K , in terms of certain matrices and vectors (see

Carrasco et al (2007) for analogous expressions for K under time series dependence). Specifically,

we obtain the following two expressions:



i) The test based on K , which can be computed as

A "~ — . * 2 —1
J(0, K5) {ol’élély(G) [l + C?]

v () (12)

where v () is a n x 1 vector with [-th element v; (§) = [ h(t;0)h (t;0) 7w (t)dt, C is an n x n
matrix with (¢,1) element ¢;;/n with ¢; = <hl(t;é),hi(t;é) (see Supplemental Appendix A.2
for analytical expressions for these integrals).

ii) The test based on K , whose matrix expression is

A~

J(0,K) = min (6)" [l + C% 14 (0) (13)

where v (0) is a n x 1 vector with [-th element v; (6) = fmﬁ (t:0) 7 (t) dt, C is an n X n matrix
with (4,1) element é;/n with é&; = (hy (t),h; (t)), and 6 is the argument of the minimization.
Note that C' = (I — &' /n)C(I — €¢'/n), where { is a vector of n ones.

In Sections 3 and 4, we will study the asymptotic distribution of the test statistics J(6g, K),
J(, Kp), J (6, Ké) and J(0, K) and show that they converge under Hy to a weighted sum of y2’s
whose weights depend on 6. Given the eigenvalues, those weights and hence their asymptotic
distributions are known, so we can compute the p-value of these quadratic forms in normal
variables using the approach in Imhof (1961). Nevertheless, we rely on the parametric bootstrap
in the simulations to improve the small sample properties of our proposed procedures.

For all the tests presented so far, « is fixed, so that our regularized inverse (K O‘)_1 is a biased
approximation of K 1. It is possible to approach K ! by letting a go to zero at a suitable rate.
However, a test based on (9) with « going to zero would tend to a chi-square with infinite
degrees of freedom, and hence diverge. For that reason, we explain next how to center and
rescale it following Carrasco and Florens (2000). Let h;(t;6p) denote the influence function (3)
evaluated at the true 0y (here 6 is assumed to be known to simplify). Similarly, let 5\j denote

the eigenvalues of K , the sample covariance operator of h;(t;6p),

5\2 n n
aj= 52—, Pn= d; and G, =2 al. (14)
At j=1 j=1

After appropriate centering and rescaling, we obtain:

~

2
H — DPn

| (&emy=12 (s 00)
Vin

In Section 5, we show that J,, converges to a standard normal distribution under the null.

Ja,, = (15)



3 J test when « is fixed and the parameter is known
3.1 Distribution under local alternatives

The J(0p, K) statistic in (10) with « fixed is part of a larger class of tests based on weighted
L? statistics that we will denote by Tz in the sequel. Let B be a nonrandom bounded linear
operator from L2 () to L?(7) and B, a sequence of random bounded linear operators from
L?(7) to L?(r) such that ||B, — B|| Zoasn goes to infinity, where ||.|| is the sup-norm.
Assume moreover that the null space of B equals {0}; otherwise the test would lack power
against certain alternatives. Popular choices of B satisfying our assumptions include B = I as
in Epps and Pulley (1983), Bierens and Wang (2012) and Leucht (2012), as well as B = (K*)~1/2
with a > 0 fixed. Note that B is not necessarily real.

In this section and the next one we focus on tests based on weighted L? statistics
~ 112 ~12
Ty = HBn\/ﬁhH - / ‘Bn\/ﬁh‘ ()7 (t) dt, (16)

where h (£) = S0 [e5 — g (£)] and 16y (£) = o (1 00).

First we express the null and alternative hypotheses in terms of the density function. Specif-
ically, let fp be a density with respect to Lebesgue measure (the extension to the case of another
measure for discrete or mixed random variables is straightforward and will not be treated to
avoid cumbersome notation), then:

Ho: f(x) = fo(x),

Hin (6) s fu () = fo (@) [1 + 2]

where ¢ is a scalar and u is such that [ (z) fo (x) dz = 0 so that f, integrates to 1.

Given that there is a one-to-one mapping between the density and the CF through the
Fourier inversion theorem (see (1)), we can reformulate Hy and Hy, in terms of the CF instead.
Thus, we obtain

Ho =9 =1y,

Hin () : ¥y = g +
where 7 (t) = [ e®u(z) fo (x) dx.

To guarantee the uniqueness of the representation, 1 needs to be normalized. Many nor-
malizations could be used. For convenience, we impose the normalization condition ||u|| L2(fo) =
E[u?(X)] = 1. Remark that by construction, 1 (0) = 0 and 7 (t) = n(—t). Moreover given
|| <1, nis bounded. In this context, n represents the direction of the alternative, while ¢

represents the distance from the null.

First, we establish some results on the operator K of form (4) with kernel (5), suppressing



the dependence on 6y for simplicity.

Lemma 1 K is a self-adjoint positive definite Hilbert-Schmidt operator from L? (1) to L? ()

and the sum of its eigenvalues is bounded by 1.

Lemma 1 implies two things: that K has a countable spectrum and that the sum of its
eigenvalues is less than 1.
Example Consider the CF of a univariate normal with mean p and variance o2; it turns out
that when using a normal weighting function with zero mean and scale parameter w, we can

obtain analytical solutions for the sums of both \’s and \?’s. Specifically, the expressions are

1
=] — -
Zj: / V1 20202

and

4;42w2 4u2w2

67 1+2a2w2 ei 1-‘—4«:;'24,.;2 2

1
; T w4+ 20%w3 \ V1420202 V1440202 V1 + 402w? + 30wt

As can be seen from the above expressions, the sums of both X’s and A\?’s depend on the scale
w of the weighting function.

Assumption 1 X;, i =1,2, ... are iid.
Proposition 2 Assume that Assumption 1 holds. Under Hi,, as n goes to infinity
Vnh = CN (en, K, R)

in L? (1) where the covariance operator K is the integral operator with kernel (5) and the relation

operator R is the integral operator with kernel (6).

NP
To establish the asymptotic distribution of HBn\/ﬁhH , it is useful to relate the complex
process Bn\/ﬁﬁ to a real process following an approach similar to that of Ducharme, Lafaye de

Micheaux and Marchina (2016). Let

By,/nh By,\/nh 11
7, = Buy/nh y, - | Re Vnh Cand M = = .
Bp\/nh Im B,,\/nh 2\ —i 4
Before stating the general results, note that Z,, and Y,, are elements of (L2 (71'))2 , the space

of 2 x 1 vectors of complex valued functions with inner product denoted (f, g), and defined as:

()= [ " h () g O (6) de + / " () s O (1) dt



for f = (f1, f2)' and g = (g1, g2)" . On this space, the norm is denoted as | f|l, = \/{f, f)s-

Note that h is not an arbitrary element of L?(x). By definition, h involves a Fourier

transform of a real valued process and hence satisfies the property h (£) = h (—t). Its covariances
satisty B (y (s) 1y (1)) = w (s = 1) = () Yo (~1) = ki (s,0), E (b () by (1)) = v (s +1) -
o (5) o (1) = k(s,~t) =7 (5,8), B (hy (3)h; (1)) =K (5,0) = k (=5, 1), and B (I (s) By (1)) =

r(s,t) = k(s,—t). There is one-to-one mapping between the complex process Z,, and the real

12
process Y, through Z,, = M~1Y,,. Moreover, Bn\/ﬁhH = ||Yall3. As Y;, converges to a bivariate

real Gaussian process, then ||Y,,[|3 converges to a weighted sum of chi-square distributions.

.
M= ") =ome
1=

where M* is the adjoint of M on (L2 (77))2. Let I" be the covariance operator of (

We have the relationship

B\/nh
By/nh

under Ho. It is an integral operator from (L? (77))2 to (L (7[‘))2 such that

(o) e == (5 55 )
where K and R are the integral operators with kernels k (s, t) = k (—s, —t) and r (s, t) = k (s, —t),
respectively. The covariance operator of Y, is MI'M*.

Let bj, ¢;, for j = 1,2...; be the nonzero eigenvalues (arranged in decreasing order and
repeated according to their order of multiplicity) and 2x1 eigenfunctions of MT'M*. Let ¢; be
the eigenfunctions of MT'M* associated with the 0 eigenvalue of MI'M* when I is singular. As
MT M* is real, so are bj, (;, and (;. Lemma 13 in Appendix gives a complete characterization of
¢;j and ¢;. In particular, it shows that when B = I, then one can associates to each eigenfunction
¢; of K (corresponding to the eigenvalue \;), a pair of 2x 1 functions ¢; (t) = M (gbj (t), ¢, (—t))l
and ¢, (t) = M (¢, (t), —¢; (—t))" (with [ = j) which are the eigenfunctions of MTM* associated
with the eigenvalues A\; and 0 respectively. As these eigenfunctions are orthogonal, they form
a complete orthonormal basis of (L2 (7r))2. Then, the asymptotic distribution of T follows

from Karhunen-Loeve theorem (see Lemmas 12-14 in Appendix for more details). Further, let

i = (Re (Bn) ,Im (Bn))"

Proposition 3 Assume that Assumption 1 holds.

(a) Under Hy,, we have

[e'¢] 0 c{n . 2
TB i ijX? (175j) —{—CZ <7~77Cl>§ = ij <€j + <:7;;]>2) + CZ <7~]aCl>3
J

j=1 l j=1



where X? (1,605), j = 1,2, ... denote independent noncentral chi-square random variables with 1
degree of freedom and non centrality parameter 6; = c? <7~7, §j>2 /bj while e;, j =1,2,... are the
underlying independent standard normal variables.

(b) If moreover 7 is symmetric around 0 and B is either the identity operator or B =

(K“)_l/z, a simplification yields the following distribution under Hyy,:

SR SIS «(Bn.6;)\
BHZ“JX]'(,J)—Z% e + NG
7=1 7j=1 J
where X? (1,65), j = 1,2, ... denote independent noncentral chi-square random variables with 1
degree of freedom and non centrality parameter 0; = c? <B17, gbj>2 /aj where aj, ¢;, j =1,2,... are

the eigenvalues (arranged in decreasing order) and eigenfunctions of BK B*, while ej, j = 1,2, ...

are itd N (0,1).

Remark 1 While part (a) of Proposition 8 holds for general moment conditions and arbitrary
m, the proof of part (b) heavily relies on the fact that the complex conjugate of iz(t) equals il(—t)
and the symmetry of m. We observe that, in this case, the asymptotic distribution under Hy is

a weighted sum of chi-squares as we would obtain if the moment conditions were real.

Remark 2 The previous proposition will not apply if B = K~Y/2. In that case, B is not
bounded, which violates one of the assumptions. Moreover, N (0,1) is not a Gaussian process
because the trace of its covariance operator (the identity operator) is infinite. We will discuss

the case B = (Ka)_1/2 when « goes to zero in Section 5.

Remark 3 Now we comment on the cases B = I and B = (K"‘)fl/Q. Recall that the case
B = I corresponds to Bierens and Wang (2012) test whereas B = (Ko‘)fl/2 corresponds to
a J-test where the weighting operator is a biased estimator of K~'. We see that as soon as
<Bn, (Z>J> # 0 for some j, the test statistic Tp will have non trivial power. But because {@,}
forms an orthonormal basis of L?(r), then Bn = Zj <B?7, d)j>q§j and by Parseval’s identity,
|Bn||* = > (Bn, ¢j>2 > 0. It follows that (Bn,¢;), j = 1,2,... cannot all be zero simultane-
ously. Therefore, T'g has indeed non trivial power against all local alternatives of the form Hy,,
and against all fized alternatives a fortiori. However, if <BT], ¢j>2 is small (as will be the case
for most j since the sequence <B?7, ¢j>2 is summable), the power against local alternatives in the

jth direction may be poor.

Remark 4 Now, we consider the power of Ts against a fized alternative of the form Hy : 1), =

Yo+ 1. We have
Tp

= _ /(Bnhn)2 (t)m (t)dt 2 || By||?.

11



Hence,

T
L2 = S (n6;)°,

J
T eon—1/2 2 ¥
LPHKaflﬂ I = =2 e
— ||(K) n §j:)\?+a<n7¢3> .

n

As \j < 1, we can always find an o sufficiently small so that > 1 for all j, and hence

/\2+

T

T C!
(Keo)=1/2 has better power than T in the sense that plim (K# > plim % against any fized

alternative.t
In the next subsection, we will study the power properties of these tests in more detail.

3.2 Alternatives with maximum power

It is well-known that there is no uniformly most powerful test for assessing Hy and that
goodness-of-fit tests have good power only against certain local alternatives (see Neuhaus (1976),
Janssen (2000), Escanciano (2009), and Lehmann and Romano (2005, Section 14.6)). In this
subsection, we will characterize the alternative with maximum power.

Let L?(fo) < oo denote the L? space of real functions ¢ (X) such that we can define
el 220y = [ €2 (@) fo (x) da.

In this section, we focus on the case where B = I or (K“)_l/2

, so we will assume that the
following assumption holds.

Assumption 1’ X;, i = 1,2, ... are iid, 7 is symmetric around 0 and B = I or (K“)_1/2.
In this set up, we define the asymptotic local power function Ilg (a,c,u) as

g (a,c,u) = im P[Tp > cq|Hin (¢)],

n—oo

where ¢, is the critical value such that T achieves a level a, i.e. lim, .o P (T > c4|Hoy) = a.

To analyze the power of these statistics, it is useful to rewrite K as T*T, where T is an
operator from L? (m) to L? (fo) and T* is the adjoint operator from L2 (fg) to L? (7). Such a
decomposition has been used to study the power of Cramer von Mises type tests by Neuhaus
(1976, equation (1.9)) and Escanciano (2009, p.168).

The operators T' and T™ are as follows:

T2 <7r> — L2 (fo),

(T9) (X) = [h(X;)o () (t) dt,

T* :LQ(fU) — L% (m), and

'"We thank a referee for suggesting this remark.
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(T°6) (t) = [ 1 (2:) ¢ (2) fo () da.

Moreover, T'B* is compact and admits a singular system {\/ch, qu,goj}, where T'B*¢; =
Va;p; and BT"¢; = | /a;jp;. Therefore, ¢, are the eigenfunctions of BT*T'B* = BK B* and ¢,
those of B*I"I™B. Thus, ¢; can be interpreted as principal components.

Observe that 7 = T*u. Indeed, if we use the property of Fourier transforms and the fact

that [u(z) fo (x)dz = 0, we will have that
(T*u) (t) = / (€% — by (8)]u (2) fo (z) da
= [ fo@)de = v (o) [ule) fole)dz = o).

Hence, the relation n = T™u implies that

(Bn:¢;) _ (BT"w,¢;) (u,TB*¢;)

= =(u,p;). (17)
Vaj Vaj Vaj (-23)
From (17) and Proposition 2, it follows that under Hi, (c),
d oo
Tg — Zaj(ej + c(u, gpj>)2. (18)

Jj=1

Note that the sequence {¢;}, for j = 1,2, ..., forms a complete orthonormal basis of R (T'B*) =
L2 (fo) N {u: E(u) = 0}. Hence, the alternatives of interest are linear combinations of the
eigenfunctions ¢,’s. In this context, the analysis of the limiting distribution in (18) and the

orthogonality of the ¢;’s allow us to establish the following result:

Proposition 4 Assume that Assumption 1’ holds. The limiting power Ilg(«a,c,u) has the
following properties.

(a) max,{Ig(a,c,u) : u € L?(fo), E(u) = 0, lull2(gy) = 1} = HB(a, ¢, ¢1),

(b) g(a,c,p;) <Up(a,c,¢;) for 1 <i<j,

(c) limj—ollp(a,c,¢;) = a.

Proposition 4 says that (a) the maximum power is achieved for the local alternative u = ¢,
corresponding to the first principal component, (b) the power decreases when considering higher-
order principal components, (c) finally, the power goes down to the level of the test, a, for the
highest frequency (case j — 00).

As we saw before, in general ; depends on B, so that the alternative with maximum power
will be different for different tests T'z.

~1/2

But if we consider more specifically the cases B = I and B = (K¢) , the ¢, are the same

because they correspond to the eigenfunctions of 7T*. Hence, the alternative for which the tests
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Tp for B=1and B = (K a)_l/ 2 are the most powerful coincides, and corresponds to n = ©1-
When B = I, then a; = Aj, i.e. the eigenvalues of K decline quickly towards 0. So the test

Tp with B = I concentrates its power on the first principal component. On the other hand, when
2

_ A2
B = (K%) 1 2, a; = —2— instead will decline slower towards 0 for smaller a. Consequently,
J )\j +a
power will be more evenly spread among the first few directions when B = (K 0‘)_1/ % than when

B = I. This point is illustrated graphically in the case of the normal distribution. Figure 1
shows the decline of \; and a; while Figure 2 reports the first three alternatives with maximum
power. In turn, Figure 3 plots the asymptotic powers of 77 and T, (Ka)~1/2 for different values of
a. In the extreme case where o = 0, we would have a; = 1, which means that power would be
evenly spread among all alternatives. However, in this case the null distribution is a Chi-square
with infinite degrees of freedom and the resulting test has power equal to size for any local
alternative; see Lemma 14.3.1 of Lehmann and Romano (2005). We will consider the case where

a — 0 in greater detail in Section 5.

4 J test when « is fixed and the parameter is unknown
4.1 Distribution under local alternatives

Let ©® C R? be the parameter space of 8. Let 6g € © be the true value of 8 under Hy.

Consider

Ho : f(x) = fo(x;60),

Hip (€) : fu (&) = fo (:60) [1 + 22|
where ¢ is a scalar and u is such that [ (z) fo (z) dz = 0. Equivalently, the hypotheses can be
written as

Ho : ¢ =4 (:;60),

Hu (0) £ 1, = o (:00) + <2
where 1 (t) = [ "u (x) fo (x;00) dz.

Assumption 2 Under Hi,, ||B, — B|| £0. Under Hy, |Bn, — Bi| %0 where both B and
B are bounded linear operators and By may differ from B. The null spaces of B and B; equal
{0}.

In the sequel, we denote by Py the law of X; under Hy, P, the law of X; under Hy,, and P,
the law of X; under H;.

Assumption 3 P, is contiguous to Fj.

This condition is standard in the goodness-of-fit literature and imposes some mild restrictions
on the density. Sufficient conditions for this assumption to be true are given in Lehmann and

Romano (2005). They also provide a variety of examples.
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Assumption 4 The parameter space © is a compact subset of RP. The true parameter 6,
is contained in the interior of ©. 1, (7;0) is continuously differentiable with respect to 6.

Assumption 5 (identification) 1, (7;60) = ¥ (7;00) for all 7 < 6 = 0.

Let

f = argmin HBniL (,H)H
0O
and define
My (5 0)

Dy = 220\ 7)
0 00

6=0¢
Note that the result in Proposition 2 remains valid here. Namely, v/nh (6g) = N (¢, K) un-
der Hy,, where K is an integral operator with kernel k (s,t) = ¢ (s — t;00) — ¥ (s;60) ¥ (—t; 0p) .

Proposition 5 Suppose Assumptions 1-5 hold. Under Hy, 0 is a consistent estimator of 0y and
V(0 = 6o) = N (0,(BDy, BDy) ™" (BDy, (BK B") BDo) (BDy, BDo) ).

Moreover, under Hy,

050, = arg min HBlEP1 (h; (50))]]-
0co

Let L be the operator from L? (7) to L? (7) such that for all ¢ € L? ()
(Lg) (1) = ¢ (1) = Do (1) (BDo, BDy) ™" (B*BDy, ¢) -
Let K be the integral operator from L? () to L? (r) with kernel

k(s,t) = k(s,t)— Dg(s)(BDy, BDy) ' (KB*BDy) (t)
—Dy (t) (BDy, BDy) ™' (K B*BDy) (s)
+Dy (s) (BDy, BDo) ™ (BDy, (BK B*) BDy) (BDy, BDy) ' Dy (£)
In addition, let a;, g?)j, for j = 1,2..., J, denote the eigenvalues (arranged in decreasing order)

. - S\ 2
and eigenvectors of BK B*. Finally, define §; = ¢ <BL77, ¢j> /a;.

Proposition 6 Suppose Assumptions 1°, 2-5 hold. Under Hi,, we have
(i) \/ﬁfl(é) converges to a complex Gaussian process with mean cLn and covariance operator
K in L? (m).
(it)
o0 o0 ¢ < BLn, ¢ >
d ~ % ~ »r
Tp 5 apxG(1,0) =Y a; | ej+ ——=—F
j=1 J=1
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where X?(l, Sj), j =1,2,.. denote independent noncentral chi-square r.v. with 1 degree of freedom
and non centrality parameter Sj and e;, 7 = 1,2,... are the underlying independent standard

normal variables.

Proposition 6 implies that T has non trivial power against all local alternatives ) for which
Ln # 0, i.e. those n such that n # v’ Dy, where v is some p x 1 vector of constants. The following

example illustrates this condition:
Lemma 7 Assume Hy : ¢ = 1), where 1, is the CF of the N'(u,0?). Let fo be the pdf of the
N(u,0?). The test T has only trivial power against local alternatives of the form

aiT br?

Vi 2yn

for some constants a and b. Moreover the density corresponding to 1, is

— z—p)?—o?
fn<x>={1+“(”” 2‘% b [( 1) ”fom. (19)

Hi st (1) = (14 )

N 2v/n 204

It follows from Lemma 7 that when ;o and o2 are estimated, the test T has trivial power
against alternatives of the form (19), which correspond to a second order Hermite expansion of
the Gaussian density. The two additive terms in (19) contain the first two Hermite polynomials,
which will be close to zero once p and o2 are estimated. This is similar to what is found in
other tests. For example, Bontemps and Meddahi (2005)’s moment test of normality cannot
make use of the first two Hermite polynomials evaluated at the estimated parameters because
their sample means will converge to 0 in probability even after scaling them by /n.

The following result establishes that T has power against all fixed alternatives (including

those such that Ln = 0).
Proposition 8 Suppose Assumptions 1°, 2-5 hold. The test Tp is consistent.
In the next subsection, we analyze the power of our test in more detail.

4.2 Alternative with maximum power

We can follow the same steps as in Section 3.2 to characterize the alternatives for which the
tests T have maximum power. Let L2 (fy) and assume the same normalization of u and the
same power function Ilg (a,c,u) as before. Following Neuhaus (1976) and Escanciano (2009),

we can determine for which local alternative the test T has maximum power.
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Let h (z;t) = e —1)4 (.;0). To analyze power, it is useful to rewrite the covariance operator
K as T*T, where T is an operator from L? () to L? (fy) and T* is the operator from L? (fy) to
L? (n), T* being the adjoint of T'. The operators T and T* are as follows;

T:1%(r > - I? (fo)
(T) (X) = J (R (X;2) — Do (&) (BDo, BDo) ™ (B*BDo, h (X; ) (t) 7 (1),
T Z(fo)—>L2( ), and

(T76) (8) = J I (wst) = Do (£) (BDo, BDo) ™" (B*BDo, h (:.))]6 (@) fo () da
Moreover, BT*TB* = BKB* is compact and TB* admits a singular system {aj,&bj,@j}
such that TB*(}]- = \/a;p; and BT*COJ» = w/dj;ﬁj. g~bj are the eigenfunctions of BT*T B* and
@; are the eigenfunctions of TB*BT*. The functions ¢; can again be interpreted as principal
components.
Observe that Ly = T*u. Hence,
<BLn,§sj> <BT*u,g~bj> <u,TB*g75j>

_ _ w5 20
3 = = (u, @) (20)

From (17) and Proposition 6, it follows that under H,y, (c),

p 3 (ot efu ) (21)

For those u such that T*u = 0, the tests Tp have power equal to size. Therefore, we will
focus on alternatives such that T*u # 0, alternatives which belong to the orthogonal space to
the null space of T* (denoted N (T™*)) — these are the alternatives corresponding to 1 such that
Ln # 0. For any compact operator T' we have the relation, N (T*)J‘ = R(T), where R (T)
is the closure of the range of T". Note that the sequence @;, for j = 1,2,... form a complete
orthonormal basis of R (T'). Hence, the alternatives of interest are linear combinations of the

©;. The analysis of the limiting distribution in (21) and the orthogonality of the @; allow us to

establish an analogous result to Proposition 4:

Proposition 9 Suppose Assumptions 1°, 2-5 hold. The limiting power g (c,c,u) has the
following properties.

(a) max, {11 (a, ¢, u) - u € R(T), [[ull gy = 1} = g (a,0, 1)

(b) 15 (a,c, Co]) <Ip(a,c, @;) for 1 <i <y,

(c) limj—sollp (a,c, {0]) =a.

As before, we observe that the maximum power is reached for the first principal component,

and that power declines toward size a for subsequent directions.
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5 J test when a goes to zero
5.1 Distribution under local alternatives

As we discussed at the end of Section 2, the continuum of moments analogue to the overi-
dentification restrictions test diverges when « goes to zero, so we need to center and re-scale this
statistic appropriately as in (15). But because ¢, in the denominator of this expression diverges
as n goes to infinity, the rescaled test does not have power against contiguous alternatives.
Therefore, we need to consider alternatives that converges to Hy slower than the usual n~1/2
rate. For that reason, in what follows we study the properties of J,, under local alternatives of
the form

Hap 2 %y, (t) = g (t) + bun (2)

where n € L2 (), n(0) =0, n(t) = n(—t), |n(t)| < € for some constant ¢, and b, is a sequence
of numbers going to zero at a rate slower than /n. The precise rate will be specified later on.
In this section, we assume for simplicity that the CF, 1), is completely specified under the null
and the dependence in a known parameter, 6y, is omitted. The case where 0y is unknown is
discussed in Remark 1 below. In the sequel, P, denotes the law of X; under Ho,.

Under H,,, we have

Vilh() = B2 R()]} = CN (0, K., R)

in L2 (7) where K and R are integral operators from L? (1) to L? () with kernels defined in (5)
and (6).

. . . . A2
Let {)\j,gbj} i = 1,2,... be the eigenvalues and eigenfunctions of K and a; = ﬁ Let
J
Pn = 25105, Gn = D1 a?. Moreover, let Hx be the reproducing kernel Hilbert space

(RKHS) associated with K, defined as

2
HKZ{f€L2(7T):|f||§<=Z<ﬁ;?><OO}- (22)

Assumption 6 p,/(g,na) — 0 and p2/(g,n) — 0 as n goes to infinity and « goes to zero.

2 00, and also

Assumption 6 is very mild given that in Proposition 10 we will require nao
from Lemma 9 in Carrasco and Florens (2000), it is known that if there exist 0 < v < 1 and
some positive constant ¢ such that p, ~ ca™7, then ¢, ~ ea™" for some positive constant e (see

also remark 2 below).

Proposition 10 Suppose Assumptions 1°, /-6 hold. Assume that n € Hi and

2
nb;,

N

— d for some constant d. (23)
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Under Hs,, we have
d
Jan - N(d HTIH%( ’ 1)

2 — o0, nbpa®* — 00, and b2a~! — 0, where ||| denotes the norm in

the RKHS defined in (22).

asn — o0, a — 0, na

Remark 1 Under Hy, J,, converges to a standard normal distribution, therefore critical val-
ues from normal tables can be readily used. Moreover, when g is unknown and replaced by a
consistent estimator, J,, converges again to a standard normal distribution under Hy (the proof

is similar to that of Proposition 10 and is omitted).

Remark 2 The condition (23) indicates the rate of by, which is related to the rate of the eigen-
values \; through q,. Let us consider an example where \;j = 5. Then g, ~ a~1/@2m) (see
Carrasco and Florens (2000, Example 2) for the case m =1 and Wahba (1975) for the general
case). So condition (23) can be rewritten as b, ~ n=1/2a=1/ ™) We observe that, in this case,

2

the condition na® — oo implies nb,a/* — oo and b2 Jo — 0.

Remark 3 The test J,, has nontrivial power against local alternatives 1y + cbyn for any 7.

Remark 4 The fact that Jo,, has trivial power against 1/+/n alternatives is linked to the rescal-
ing of the statistic. In fact, all tests involving centering and rescaling exhibit the same lack of
power against contiguous alternatives. This includes Neyman’s smooth test with an increasing
number of polynomials (see Lehmann and Romano), the chi-square type test for conditional mo-
ments (De Jong and Bierens, 1994), the goodness-of-fit tests considered by Eubank and LaRiccia
(1992), Hirdle and Mammen (1993) and the one considered by Ait-Sahalia, Bickel, and Stocker
(2001), among others.

Remark 5 Carrasco and Florens (2000) derived the asymptotic null distribution of J,, under
a stronger assumption (Assumption 15: qn\/0, — 00). This assumption requires that the eigen-
values go to zero very slowly, which is not realistic here. On the contrary, the eigenvalues of K
are likely to go to zero very fast, as illustrated in Figures 2e and 2f. For that reason, we propose

a new proof which relaxes this assumption.

Remark 6 The lack of power of J,, against contiguous alternatives may speak in favor of tests
such that T's, which have power against contiguous alternatives. However, the test J,, may
have higher power than Tp for higher frequency alternatives (case j — oo in Proposition 8);
see Theorem 3 in Eubank and LaRiccia (1992). The next remark considers this issue from a

different angle.
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Remark 7 Proposition 10 establishes the asymptotic distribution of J,, forn such that Hn”%( <
oo. However, this condition is not necessarily satisfied, so it is of special interest to look at what
happens when it does not hold. Specifically, consider the case where

T

LS
77 2 i - o (24)

The proof of Proposition 10 implies that the right rate for the alternatives Ho, is such that
1 a

ﬁzg [(m, $)? — d
"=

nb?

for some constant d. It follows from (24) that nb?> — 0. Hence the test J,, has power against
local alternatives which approach the null hypothesis at a faster rate than n=2. For these
alternatives, the power of the tests Ty presented earlier remain n=Y/2. So the test Ja,, s able to
detect certain alternatives which are closer to the null than the tests based on a fized . This
result is similar to what was observed by Fan and Li (2000) in the context of specification tests
for nonparametric regression. In particular, they show that monparametric specification tests
such as that of Hirdle and Mammen (1993) with a fixed bandwidth has analogous properties as
the integrated conditional tests of Bierens (1982) and Bierens and Ploberger (1997). Further,
they show that kernel based tests with bandwidth going to zero can detect specific alternatives at

1/2

a faster rate than n~ As we mentioned before, we can interpret o as a bandwidth in our

tests.

5.2 Numerical invariance to moment transformations

As is well known, the traditional J test corresponding to the continuously updated estimator
(CUE) is invariant to parameter-dependent linear transformations of the moments (see Hansen,
Heaton and Yaron (1995)). To illustrate this fact, let A () be the sample average of a vector of
moments and My be a (possibly complex-valued) square invertible matrix. Then, it is easy to

check that the J-test based on h (0) is the same as the J-test based on Myh (@) because

~

J = nh (0)* My(MgKeMg) *Mph () = nh (0)* K, h (9).

When one uses regularization to invert the covariance matrix, this result is not true in

general. Indeed, we have that

nh (0)* MF(MpKoMj)Y2[(MKgMg)? + al] ™ (MpKg M) 2 Myh (0)
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is not usually equal to

nh (0)* Ky > (K3 + o) 'Ky 1 (0)

unless Mpy is unitary, that is MyMyj = My My = I, in which case the two expressions coincide.
When there is a continuum of moment conditions, an analogous result turns out to be true
for unitary transformations of h.
Define Uy as a nonrandom linear operator from L? () into L? (7). Let U; be the adjoint of

Up. By the Riesz representation theorem, there is a unique gy (., s) such that

(Usg) (5) = (g0 ()0 ()) = / 0o (1, 5) 0 () 7 (£) .

Let Ky be the covariance operator of h; (.;6) and Ky be the covariance operator of Uph; (.;0) .
The kernel of Kj is such that

ko (s1,52) = E[(Uphi(;;0)) (s1) (Ughi(:;0)) (s2)"]
= FE [/ 9o (t,81) hi (t;0)  (t) dt/gg (u, s2) hi (u; 0)m (u) du]

/gg (t,s1) {/ E[h; (t;0) h; (u;0)]ge (u, s2)7 (u) du} 7w (t) dt
= (90 (.,51), Kogo (-, 52)) -

Then, we can characterize Kjy:

(fcw) (r) = //gg (t,7 {/E (t: 0) Toz (@ 0)|gg (w, 8) (u)du}w(t)dtgo(s)ﬂ(s)ds

= (UpKogUyp) (T

Proposition 11 Let Uy be an unitary operator from L? () to L? () i.e. UjUy = UgUy = 1.

Then, the following equality holds:

HUQE (e)H — ||n (e)] (25)

(vaU3)”

Ky
regardless of the sample size n.

This means that the CUE versions of tests T with B = (K*)™'/2 (« fixed) and J., (0, K)
are numerically invariant to unitary transformations of h. For non unitary transformations, the

result is no longer true because of the regularization. In contrast, T with B = I for instance is

not even invariant to unitary transformations.
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6 Monte Carlo experiments

In this section, we assess the finite sample performance of our proposed tests by means
of several extensive Monte Carlo exercises. In addition, we compare them to several popular
nonparametric tests based on the empirical distribution function, as well as to directional tests

that target specific parametric alternatives to the null. In all cases, our sample size is n = 100.

6.1 Testing univariate normality

The first design we consider is a univariate normal distribution, which is by far the most
common null hypothesis in distributional tests. In order to make our tests numerically invariant
to affine transformations of the observations, we systematically centre and standardize them us-
ing the sample mean and standard deviation (with denominator n), which are the ML estimators
under the null. As proved by Carrasco and Florens (2014), an asymptotically equivalent proce-
dure would estimate the mean and variance by minimizing the continuum of moment conditions
criterion function, but this would result in an increase of the computational costs. Either way,
we can set the true mean and variance to 0 and 1, respectively, without loss of generality.

We consider three versions of our test, which differ in the way the covariance operator is
estimated. The first one uses the theoretical covariance operator for a standard normal, which we
presented in Section 2. In turn, the second and third versions rely on the centred and uncentered
sample estimators using expressions (12) and (13), respectively, with the matrices C' and C
computed using the analytical integrals in Appendix A.2. Given that these two sample versions
produce very similar results, we only report the centred one in what follows. Importantly, the
test that uses the theoretical covariance operator offers two notable computational advantages:
i) the calculation of its eigenvalues and eigenfunctions depends on the number of grid points M,
which we set to 1,000, but not on the sample size, so it can be used with very large datasets;
and ii) we only need to compute those eigenelements once regardless of the number of Monte
Carlo simulations.

In view of the discussion in Section 2, we look at two values of the Tikhonov regularization
parameter o (.1 and .01) and two values for the scale parameter of the A/(0, w?) density defining
inner products (1 and v/10). As we have previously discussed, increasing w not only changes
the eigenvalues and eigenfunctions, but more intuitively, it pays relative more attention to the
characteristic function for large (in absolute terms) values of its argument t.

In this univariate context, it is straightforward to compute the Cramer von Mises (CvM),
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) statistics on the basis of the probability

integral transforms (PIT) of the standardized observations obtained through the standard nor-
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mal cdf (see Appendix A.3 for details). Their usual asymptotic distributions are invalid, though,
because those PITs make use of the sample mean and variance.

Further, we also compute two moment-based tests: one focusing on the fourth Hermite
polynomial (z* — 322 +1)/1/24 and another one that simultaneously looks at the third Hermite
polynomial (2% —32)/v/6 too. The advantage of working with Hermite polynomials is that they
are asymptotically invariant to parameter estimation under the null (see e.g. Bontemps and
Meddahi (2005)). As is well known, these two statistics can be derived as Lagrange multiplier
tests against a variety of non-normal distributions (see e.g. Jarque and Bera (1980) or Mencia
and Sentana (2012)). Finally, we also compute the Bierens and Wang (2012) test described in
Appendix A.3 using a MATLAB translation of their C+ code.

The first thing we do is to compute all the aforementioned tests for 10,000 simulated sam-
ples generated under the null, whence we obtain finite sample critical values. This parametric
bootstrap procedure automatically generates size-adjusted rejection rates, as forcefully argued
by Horowitz and Savin (2000); see also Dufour (2006) for a discussion of Monte Carlo tests.

Panels A-F of Table 1 contain those rejection rates for six different alternatives: a symmetric
Student ¢ with 12 degrees of freedom; an asymmetric Student ¢ with the same number of degrees
of freedom but skewness parameter § = —.75; a scale mixture of two normals with the same
kurtosis as the symmetric ¢, 3.75, and mixture probability A = .1 (outlier case); another scale
mixture with the same kurtosis but A = .75 (inlier case); a location-scale mixture constructed in
such a way that it has same skewness and kurtosis as the normal and E(z°) = —1, E(2%) = 18;
and finally, the second order Hermite expansion of the normal density mentioned in Lemma 7
with parameters a = .4 and b = .5. Details on how we simulate those distributions can be found
in Supplemental Appendix A.4. Figure B3 in the Supplemental Appendix presents the densities
of all the alternative distributions once they have been standardized so that they all have 0
means and unit standard deviations in the population.

The first four columns of each panel in Table 1 report the results for the test that is based
on the theoretical covariance operator, J (9,Ké), for the different values of a and w that we
consider. In turn, the next four columns contain the same figures for the test J (9,K ) which
uses the centred sample estimator of the covariance operator instead. As can be seen across the
different panels, in all cases the results seem robust to the choice of the regularization parameter
«. For the majority of the DGPs, J(é, K,) has more power when w = 1 while the performance
of J (9, K ) is better with w = v/10. In addition, they generally outperform the other consistent
tests that we consider, with AD being the most powerful of them. Somewhat surprisingly, this

is also true when the DGP is the second order Hermite expansion of the normal mentioned
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in Lemma 7 (Panel F). Nevertheless, it is important to remember that this lemma refers to
local alternatives, while our test is consistent versus fixed alternatives. Not surprisingly, the
LM tests are the most powerful testing procedures when the distribution under the alternative
is the one they are designed to detect. Specifically, this applies to S—t, the LM test against
symmetric Student ¢ alternatives, in Panel A, and A—t, the LM test against asymmetric Student
t alternatives, in Panel B.

In summary, our proposed tests display good power against a variety of alternatives.

6.2 Testing uniformity

The second design we consider is a uniform distribution. Although this distribution does
not often arise as a model for natural phenomena, it plays a fundamental role in statistics for two
reasons: most computer-based pseudo-random number generators aim to draw uniform variates,
and the PITs of any continuous random variables are uniform. To facilitate the comparison with
the normal distribution, we transform the standard uniform random numbers by subtracting
from them their population mean (.5) and scaling them up by their population standard deviation
(v/12), so that the resulting distribution will become standardized.

We consider exactly the same versions of our tests as in Section 6.1, but with the expressions
for the population kernel and the centred and uncentered sample versions modified accordingly,
as explained in Appendix A.2. We also compute the three non-parametric tests based on the
CDF, as well as the Bierens and Wang (2012) test. As for directional tests, we consider two
possibilities. The first one is the LM test of uniform vs beta proposed by Sefton (1992), which
exploits the fact that a beta distribution with shape parameters ¢ = b = 1 becomes uniform.
This test is based on the average scores with respect to the beta parameters evaluated under
the null, which are 1 + In(u) and 1 + In(1 — u), respectively.? The second directional test is a
moment test based on the first two Jacobi polynomials evaluated again under the null, namely
V3(2u — 1) and v/3(6u? — 6u + 1), which was proposed by Bontemps and Meddahi (2012). As
is well known, those polynomials constitute an orthonormal basis for the beta random variable.

The three panels of Table 2 contain the parametric bootstrap rejection rates for three different
alternatives. The first one is a symmetric, unimodal beta distribution with parameters a = b =
1.1. The second one is an asymmetric unimodal concave beta distribution with parameters
a = 1.1 and b = 1. Finally, the last distribution is generated as the standard Gaussian PITs of

observations drawn from the same asymmetric Student ¢ distribution with 12 degrees of freedom

>The asymptotic variance for the scores reported by Sefton (1992) seems to be incorrect. For that reason, we
use instead 1 for the two asymptotic variances and (6 — 72)/6 for the covariance. Therefore, the LM test is 7/2
times the square of the difference between the two scores divided by 7r2/6 plus the square of their sum divided by
(12 — 72/6).
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and asymmetric parameter as in Section 6.1. The motivation for including this alternative is that
we can use it to compare the direct application of our proposed tests to the original observations
and to a monotonic transformation of them. Figure B4 in the Supplemental Appendix presents
the densities of these alternative distributions.

The first four columns of each panel report the results for the test that based on the the-
oretical covariance operator, J(0p, K), for the same values of o and the scale parameter w of
the N'(0,w?) density defining inner products as in the previous subsection, while the next four
columns focus on J(#g, K). As in Section 6.1, the rejection rates of our tests seem robust to
the choice of the regularization parameter «. But in this case they are also less sensitive to
the choice of w. As before, the test based on K outperforms the one that uses centred sample
estimator of the covariance operator K. Interestingly, both of them outperform the competitors
when the DGP is either a symmetric beta or the Gaussian PITs of observations drawn from an
asymmetric Student ¢. In contrast, CvM and AD are slightly more powerful when the alternative

is the asymmetric beta. Somewhat surprisingly, the LM test is not particularly powerful.

6.3 Testing bivariate normality

Our next design is a bivariate normal distribution, which is by far the most common null
hypothesis in multivariate distributional tests. Once again, we make our tests numerically invari-
ant to affine transformations of the observations by systematically centring and standardizing
them using the sample mean and the Cholesky decomposition of the sample covariance matrix
(with denominator n), which are the ML estimators under the null.®> Thus, we can set the
true means and standard deviations to 0 and 1, respectively, and the correlation coefficient to 0
without loss of generality.

We consider exactly the same versions of our tests as in the Section 6.1, but with the
expressions for the population kernel and the centred and uncentered sample versions modified
accordingly (see Appendix A.2). However, we do not compute any classical non-parametric tests
because there is no consensus on distribution-free multivariate generalization of the CvM, KS
and AD statistics based on the joint distribution function. Nevertheless, we continue to apply
the Bierens and Wang (2012) test. By analogy with the univariate normal case in section 6.1, we
also consider two directional tests: the LM test of a multivariate normal against a multivariate
Student ¢ in Fiorentini, Sentana and Calzolari (2003) (denoted S—t), which effectively focuses on

Mardia’s (1970) coefficient of multivariate excess kurtosis, and the LM test against a generalized

3 As we mentioned before, an asymptotically equivalent procedure would estimate the two means and variances
as well as the covariance by minimizing the continuum of moment conditions criterion function, but this would
result in a huge increase of the computational cost.
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hyperbolic distribution in Mencia and Sentana (2012) (denoted A-t), which also looks at third
moments in order to capture asymmetries in the multivariate distribution. By construction,
both tests are asymptotically invariant to parameter estimation under the null.

The three panels of Table 3 contain the parametric bootstrap rejection rates for three different
alternatives. The first one is a multivariate Student ¢ with 12 degrees of freedom. The second
one is an asymmetric Student ¢ with the same degrees of freedom and vector of asymmetric
parameters (—.75,—.75). Finally, the third alternative is a spherically symmetric bivariate
version of the outlier distribution considered in Section 6.1. Figure B5 in the Supplemental
Appendix presents the densities of these alternative distributions.

As in Table 1, the first four columns of each panel in Table 3 report the results for the test
JO,K ») again for the same values of o and the scale parameter w of the A'(0,w?) density defining
inner products as in subsection 6.1 and the next four columns correspond to same figures for
the test J (@, K ). As can be seen in Table 3, in all cases the results seem robust to the choice of
the regularization parameter c. Moreover, for the DGPs we consider J (é, K é) has more power
when w = 1 while the performance of J (@, K ) is better with w = V10, as in the univariate case.
Interestingly, J (@, K) beats the S—t LM test when the DGPs is asymmetric Student ¢ and there
is a tie between J (@, K ) and St LM test when the alternative is a discrete-scale mixture of

normals.

6.4 Testing chi-square

Another design we consider is a chi-square distribution with two degrees of freedom. Like
the uniform, the chi-square distribution does not often arise as a model for natural phenomena.
But it also plays a fundamental role in statistics because it is the distribution of the (square)
Mahalanobis distance of a multivariate normal random variable from its mean. In other words,
it corresponds to the distribution of (y; — )X~ (y; — ) when y; ~ N (i, 2).

We consider exactly the same versions of our tests as in Sections 6.1 and 6.2, but with
the expressions for the population kernel and the centred and uncentered sample versions in
Appendix A.2 suitably modified. In that regard, the main difference is that we define inner
products using a uniform density over [~w,w], for values of w equal to 1 and v/10. Although
we standardize again the random draws by subtracting their population mean (=2) and scaling
them down by their population standard deviation (=2), their distribution remains asymmetric,
which implies that both the CF and the eigenfunctions of the associated covariance operator are
complex, as explained in Section 2. This creates a normalization problem because any complex

vector of unit length remains so after scaling its elements by any complex scalar on the unit
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circle, e, where v € [0,27). Nevertheless, our proposed tests are numerically invariant to any
chosen normalization.

We also compute the three non-parametric tests, as well as the Bierens and Wang (2012)
test. As for directional tests, we consider two possibilities. The first one is the LM test of chi
square with IV degrees of freedom versus F' with the same number of degrees of freedom in the
numerator but v degrees of freedom in the denominator proposed by Fiorentini, Sentana and
Calzolari (2003). This test is based on the average score with respect to the reciprocal of v
evaluated under the null, which coincides with the second order Laguerre polynomial

12
~¢% — 2 +2
4§ S+ 2

whose asymptotic variance for NV = 2 is 4 under the null. The second directional test is the LM
test against a gamma distribution with mean N but shape parameter o # N/2 developed in

Amengual and Sentana (2012). In this case, the score is proportional to

G-1)-() -],

whose asymptotic variance is 1'(1) — 1, where 9(.) and 1'(.) are the digamma and trigamma
functions, respectively.

The three panels of Table 4 contain the parametric bootstrap rejection rates for three different
alternatives. The first one is an I’ distribution with 12 degrees of freedom in the denominator,
while the second one is a gamma distribution with shape parameter & = 2/3 and scale parameter
£ = 3. Finally, the last distribution is generated as the square norm of observations drawn from
a bivariate asymmetric Student t distribution with 12 degrees of freedom. Once again, the
motivation for including this alternative is that we can use it to compare the direct application
of our proposed bivariate Gaussian tests to the original observations or to a transformation of
them which implicitly imposes spherical symmetry. In that regard, the F' distribution would
correspond to a bivariate Student ¢ while the gamma to a Kotz distribution. The densities of
these alternative distributions are reported in Figure B6 in the Supplemental Appendix.

As in Table 2, the first four columns of each panel of Table 4 report the results for the
test J(0p, K), for the different values of o and w that we consider, while the next four columns
contain the same figures for J (HO,I% ). Once again, the results seem robust to the choice of
the regularization parameter «, but at the same time they are less sensitive to the choice of w.
Still, for J(6p, K) the value w = 1 delivers higher rejection rates. As before, the test based on
the theoretical covariance operator outperforms the one using centred sample estimator of the

covariance operator. Interestingly, J (6o, K) has more power than its competitors, except when
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the DGP is Gamma.

6.5 Testing Cauchy

The last design we consider is a Cauchy distribution with location and scale parameters 0
and 1, respectively. In order to make our tests numerically invariant to affine transformations
of the observations, we systematically centre and standardize them using the ML estimators of
location and scale under the null.

We consider exactly the same versions of our tests as in Section 6.1, but with the expressions
for the population kernel and the centred and uncentered sample versions modified accordingly,
as explained in Appendix A.2. We also compute the three non-parametric tests based on the
CDF, as well as the Bierens and Wang (2012) test.

The three panels of Table 4 contain the parametric bootstrap rejection rates for three different
alternatives. The first one is a Student ¢ with 2 degrees of freedom, while in Panel B we draw
from an asymmetric Student ¢ with 6 degrees of freedom and skewness parameter § = —.25.
Finally, the last distribution we consider is a Laplace with location and scale parameters 0 and
1/v/2, respectively. Details on how we simulate those distributions can be found in Appendix A.4.
Figure B7 in the Supplemental Appendix presents the densities of these alternative distributions.

The first four columns of each panel in Table 1 report the results for the test that is based
on the theoretical covariance operator, .J (9, K}), once again for the different values of v and w
that we consider. In turn, the next four columns contain the same figures for the test J(6, K)
which uses the centred sample estimator of the covariance operator. As can be seen across the
different panels, in all cases the results seem robust to the choice of the regularization parameter
a. For the majority of the DGPs, both J (6, K;) and J(0, K) have more power when w = v/10.
In addition, they generally outperform the other consistent tests that we consider, with BW
being the most powerful among them.

Once again, our proposed tests display good power against a variety of alternatives.

7 Conclusion

In this paper we propose goodness-of-fit tests based on comparing the empirical and theo-
retical characteristic functions. Our proposals are based on the continuum of moment conditions
analogue to the usual overidentifying restrictions test, and therefore take into account the cor-
relation between the influence functions for different argument values.

We consider different versions depending on whether the parameter vector 6 is known in

advance or replaced by a consistent estimator, and whether we make use of the analytical
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expression for the covariance operator or estimate it. Relying on the theoretical covariance
operator offers substantial computational gains because the calculation of its eigenvalues and
eigenvectors does not depend on the sample size, which allows its use with very large datasets.

We derive the asymptotic distribution of our proposed tests for fixed regularization parameter
and when this vanishes with the sample size. Both types of tests have very different asymptotic
properties. The fixed « J test has a nonstandard asymptotic distribution which depends on
nuisance parameters but has power against 1/4/n alternatives. In contrast, the vanishing «
J test has a standard normal asymptotic distribution but generally fails to reject local 1/y/n
alternatives, except for some specific alternatives which it can detect at a faster rate.

Our theoretical study of power sheds some light on the alternatives for which each test is
more powerful. While there is no test whose power dominates overall, it seems that fixing o at
a small positive value is a good compromise. An extensive Monte Carlo exercise confirms this
point by showing that our proposed tests display good power in finite samples against a variety
of alternatives.

Although we have focused on a random sample framework for pedagogical reasons, versions
of our tests robust to serial or cross-sectional dependence in the observations should be relatively
straightforward. The analysis of conditional distributions would also constitute a very valuable

but non-trivial addition with many potentially interesting empirical applications.
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Appendix
A Proofs and auxiliary results

Proof of Lemma 1. K is self-adjoint positive definite because it is a covariance operator

(k(s,t) = k(t,s)) and its null space is reduced to 0, i.e. Kf =0 = f = 0 (see the proof of
Proposition A.1, condition A.5(i) in Carrasco et al (2007). K is a Hilbert-Schmidt operator

because its kernel is square integrable, indeed

//|k(5,t)|27r(s) ds (t) dt < oo.

Consequently, K admits an infinite spectrum of positive eigenvalues. Let {\;, cpj} be the eigenval-
ues arranged in decreasing order and eigenfunctions (the eigenfunctions are taken orthonormal

in L2 (7)) of K. By Mercer’s formula (see Carrasco, Florens, and Renault, 2007, Theorem 2.42),
k(t,s)= Z Ajpj (t)wj(s).
J

By setting s =, we have

>N :/k(t,t)ﬂ(t)dt.

Here k (t,5) = 1 (t — s) — 1) (t) ¥ (—s) . Hence k (t,t) = 1—|¢ (£)|* < 1. It follows that 3 A <1,
which in turn implies that 0 < A; < 1 because the operator is self-adjoint positive definite.
Therefore )\5 < A; and hence ) )\2 < 1. So the Hilbert-Schmidt norm of K is also bounded by
1:

K2, = // e (1, )2 (s) dsm () dt = SO A2 < 1,

as desired. ]
Proof of Proposition 2. We check the conditions (a) to (¢) of Lemma 3.1 of Chen and
White (1998)* on

Checking (a): We need to check that for all ¢ € L? (1), > =1 (Wajs ) 4N (0,02 (), 6 ()
where o2 (¢) = (¢, Kp) > 0 and §(¢) = (¢, Rp). To do so, first notice that under Hy,,

Whj = ﬁ[e“xﬁ — 1, (t)]. We have E [(Wpj, )] = 0 and (Wy;,¢), j = 1,2,...,n are indepen-

4The results of Chen and White (1998) are stated for real random variables, but we adapt them here to complex
variables.
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dent. Moreover,
El|(Was, )] = EI
= E [ [ Wy ()06 @ (07 () dom (1)
= [ [ EW ) W @I Gl (07 () ds (1)
1

= — (o, Knyp)

n

anv 90> <an’ 90>]
J

where K, is the integral operator with kernel

kyn (s,t)
= Q;Z)n (5 - t) - wn (5) sz)n (77&)

= o= 8) = v (o) v () + L= - By () — ey ) L 4 22D,

Interchanging the order of integration is justified by the fact that % (p, Knp) < 0o. Now, we

check the conditions of Lindeberg-Feller central limit theorem (van der Vaart (1998), Proposition
2.27) to establish >%_; (Wnj, ¢) < eN (0,02 (¢),0(p)) . Let Yy; = (Whpj, ). Here Yy, are
independent scalar random variables with zero mean and finite variance. The three conditions

for the CLT are

n
(i) Y ElYn; I{|Ynj| > €}] — 0 for every £ > 0,
j=1

(i) Y E(YnYn;) — 0*(p), and
j=1

(i) Y EY) — §(p).
j=1
Note that

Yosl* = (W)l

)

2
2
el

IN

e
N
C
= Jl?

IN
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for some fixed constant C. Hence,

n

S BV IVl > ) < SIS by s

=1 "=
2 2
o CliAl® g Bl
- noo= g2
C? 4
< =
< el

by Markov inequality. So condition (i) is satisfied. For (ii), we use the results above which give

n

> E(YniYai) =Y Ell{(Waj, 0] = (@, Knip) — (0, K¢p)
i=1 j=1

and hence, (ii) is also satisfied. Finally,
Y EYZ) = E[(Wnj,0)?] = (¢, Bup) — (0, Re)
j=1 j=1

where R,, is the integral operator with kernel r, (s,t) = ky, (s, —t), hence (iii) follows.
Checking (b) and (c): By Remark 3.3 (ii) of Chen and White (1998), conditions (b) and (c)
can be replaced by the following condition:

W is strictly stationary and

2

lim E |3 W, <C< oo (A1)
j=1
We have
n 2 n
E ZWn]‘ = E<2Wn372nl>
Jj=1 j=1 =1
= ZE<W”J7WW>
j=1
= Zk;n (s,8)
j=1
_ 2 2
= 1= O = Ty () -y 5) T S

which is bounded because |1, (s)|> < 1 by the property of CFs and 7 (s) is also bounded.
Therefore, (A1) is satisfied and Y 7_; Wy is tight.
It follows that v/nh = Y7, Wy + e = CN (en, K, R). O
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The two lemmas below will be used in the proof of Proposition 3.

Lemma 12 Let U be a complex Gaussian process in L* (m) such that
U~CN (en, K, R)

where K and R are arbitrary covariance and relation operators.

(a) Let B be a bounded operator, then Z = BU ~ CN (cBn, BK B*, BRE*) where B® = B*
is the adjoint of the complex conjugate of B (or equivalently the complex conjugate of the adjoint
of B).

(b) Let Z = (Z, 7)/. Then, Z is a complex bivariate Gaussian process with mean c (Bn,Bi77) ’
and covariance operator I' defined as the operator from (L? (7r))2 to (L? (7r))2 such that

a0 2 BKB* BRB"
9= e(L*m) —=Tg=| _—_. . |g
9 BRB* BKB

(c) Let Y = (Re(Z),Im(Z)). Then Y is a real bivariate Gaussian process with mean

c(Re (Bn),Im (Bn)) = cn and covariance operator MTM*. Moreover,
oo
IBUIP = Y13 ~ Y bix; (1,6) + ¢ (7.3
Jj=1 l

where b;, C; are the nonzero eigenvalues and eigenfunctions of MU'M™, (; are the eigenfunctions

of MT'M* associated with the zero eigenvalue and §; = c? <?7, §]>§ /bj.

Proof of Lemma 12. (a) and (b) can be proved by direct algebra. As for (c), we first show
that | BU||> = ||Z||* = |Y|3 . Indeed, we have

1z1* = (2,2)
- /(Re (Z (4)) +ilm (Z (1)) Re (Z () — iIm (Z (£))) 7 (¢) dt
= (Re(Z),Re(2)) + (Im (Z),Im (Z))

2
= ”Y||2

Note that Y is a real process which satisfies Y = M Z, so its mean is cM (B, Fn)’ =c(Re(Bn),Im (Bn)) =
cn and its variance is MT'M*. Let V denote a bivariate Gaussian process N (0, MTM*). We

have

IVI5 e+ VI3 = D (e Gidy + (Vi o))

i=7,l
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where the equality uses the Karhunen-Loeve theorem of Gaussian processes and the fact that

the 2 x 1 eigenfunctions ¢; (i = j, [) form an orthonormal basis of (L? (7r))2. Moreover,

V=2 (ViGiy G =D Vb2
i=1 j=1 Vi
where (V, Cj>2/\/b>j are iid N (0,1) and (V,(;), = 0 because its mean=0 and its variance=0.
So the result follows. O

Lemma 13 Consider the case where K and R have kernels defined in (5) and (6) respectively.
When 7 is symmetric around 0 and B = I or B = (Ko‘)flm, then the distribution of ||V ||*
in Lemma 12 simplifies to Z;’;l an; (1,65) where §; = c? <B77, ¢j>2 /aj, aj and ¢; are the

eigenvalues and eigenfunctions of BK B*.

Proof of Lemma 13. First consider the case B = I. Let us compute the spectrum of I'.
Let ¢, be the orthonormal eigenfunctions of K associated with the eigenvalues A;. Let ij (s) =
¢; (=s). It turns out that for every ¢, of K, there are two 2 x 1 eigenfunctions of I, namely
Zj (s) = (¢j (s) ,<~bj (s))l associated with the eigenvalues 2); and ¢ (s) = ((bl (s),—a (s)), (with
[ = j) associated with the eigenvalue 0. Moreover, the eigenfunctions are orthogonal, so that
we get a complete eigenvalue-eigenfunctions decomposition for the Gaussian process considered.

Indeed

(FZ) (5) — JE(s,t)g; (t)m(t)dt + [k (s, —t) ¢; (=t) 7 (t) dt
! Jk(=s,t)¢; (t)m (@t)dt+ [k (—s,— ) ¢j (—t) (t)dt
fk: s,t ¢j(t)w(t>dt+fk(s,u) ¢, (u) () du )

k(—s,t)¢; (t) 7 (t)dt + [k (—s,u) ¢; (u) 7 (u)du

by the change of variable u = —t and using the fact that = (—u) = 7 (u). Moreover, (le) (s) =
0. We see that I' is singular. The eigenfunctions of MI'M* are (; = sz (associated with the

eigenvalues a; = \;) and (; = M(, (associated with the 0 eigenvalue). Indeed, using the fact
that M*M = 1,

MTM*M(; = %MFZJ
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Because MT'M* is a real matrix, its eigenfunctions (; have to be real. The ¢; are not defined
uniquely because we can multiply complex eigenfunctions by a complex number on the unit
circle without altering their norm. We select ¢; so that ¢; is real. The fact that it is possible to
transform ¢; into eidqﬁj (for some constant d) so that ¢ ; is real, is proved in Lemma 14 below.

Now, we compute (7, (;):

using the fact that 7 (t) = n (—t) and 7 is symmetric around 0. Moreover,
<777 Cl> = <M*777 <l>

= % {<77’¢1> - <"_7a§$l>}

= 0.

When B = (K “)71/ 2, the proof is similar as above because B has the same eigenfunctions

as K. Details are omitted. OJ

Lemma 14 Let ; be an orthonormal eigenfunction of K, then there exists a constant d so that
. ~ ~ ~ !/ ~ ~ !/

<Z5j (t) = eld%‘ (t), ¢j (t) = ¢j (=), Cj (t) = <¢j (t) 7¢j (t)> and (; (t) = (¢l (t), —oy (t)) are

such that (; = ng and ¢; = M&l are real. Moreover, ¢; is such that < fz, ¢; > is real for all

i=12, ..

Proof of Lemma 14. Let us denote Re (¢, (t)) = a; and Im (p; (¢)) = b;. Here, we treat
the case a; # 0 and b; # 0 (the cases where either a; or b; is null can be treated similarly). We

have

¢; = eidcpj = (cosd + isind) (a; + ib;)

= agcosd — bysind + i (a;sind + b cos d)

Y- Y R
Cﬂ_MCﬂ_?(z’(&ﬁj—@))'

and
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Hence, (; is real if and only if Im(¢; + q~§J) =0 and Re(g?ﬁj — ¢;) = 0, which is equivalent to

(at +a—y)sind + (by + b_¢)cosd = 0, (A2)

(a—y —ag)cosd — (b—y — by)sind = 0 (A3)

or equivalently ( - )
(b t+by)  (ar—a—y
tand = ar+a—y (b —b_y)’

For this to be possible, we need a? + b? = a2, + b%, which is equivalent to

lo; O = | (1) (A4)

Now we show that (A4) holds for any eigenfunction ¢, of the covariance operator K. As K is

a compact self-adjoint operator, we have

k(s,8) = 3 Aile; ()]
J
k(s,s) = k(—s,—s)zzx\j‘gpj(—s)F.
J

2 2 2 2
It follows that }, Ajlle; ()" = |ej (—s)|7] = 0 for all s. Hence |¢; (s)|” = |¢; (=s)|”. The case
of Zl associated with 0 can be treated in the same manner and we get the same condition (A4).
Using (A2) and (A3), one can check that ¢, satisfies the relation ¢; (t) = ¢, (—t). Conse-
quently, <fz, <z5j> is real for all j = 1,2, ... because

(00

h(t) ¢, () (t)dt

I
—

using a change of variable, s = —¢, and the property that h (s) = h (—s). O
Proof of Proposition 3. Adapting the results of Chen and White (1992, working paper)

to complex processes and taking into account that B is bounded, we have

Bo/1th = CN <cBn, BK B, BR§*>
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where B* is the adjoint of B. Then the results follow from Lemma 12 and Lemma 13. O
Proof of Proposition 4. The proof is similar to those of Neuhaus (1976, Theorem 2.2.)
and Escanciano (2009, Theorem 1) and is not repeated here for brevity. O

Proof of Proposition 5. Under our assumptions,
- P,
HBnh(.;H)H B |\ BEP b, (50)])|

uniformly in 6. (The uniformity part comes from the fact that i (.; 0)—E[h; (.;0)] = 1 > i1 et Xi —
g (t;00) does not depend on 6.) Moreover, E[h; (.;0)] = 1q (:;60) — 1 (;6). By the identifica-
tion assumption, the objective function reaches its minimum at 6 = 6y. Hence, 0 is consistent
under Hy.

We turn our attention toward the asymptotic normality. To simplify the notation, we write

Yo (0) for ¥ (.;0) and h(0) for h(.;6), and 611;80(59) for awa%(a) i The first order condition of

the minimization problem gives

SR <Bn8¢0<9>,3nﬁ<eo>> - <Bna¢gf>,3nawgf) (0 - eo>>

where 6 is between 6y and 0. Tt follows that

V(0 — o) = <Bn 2o(0) ) old) > <Bn 240(0)

By the continuity of % and the consistency of 6, we have

V0 — 0o) = (BDo, BDo) ™ ( B*BDo, vnh (:60) ) + o, (1). (A5)

The asymptotic normality follows from Proposition 1.

For the convergence of 0 to 61 under H 1, we use the same arguments as for the consistency
under Hy. The existence of the minimum comes from the fact that 1(.;0) is continuous in 6
and © is compact. O

Proof of Proposition 6.
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(i) The mean value theorem gives

V(@) = (o) - 2209 s — gy)
= /nh (o) — Dov/n(0 — 6) + op, (1)

= /nh(0y) — Do (BDy, BDg) ™" <B*BD0, Jnh (90)> +op, (1)
by equation (A5). In turn, the contiguity of P, to Py implies that
Vnh(B) — v/nh (60) + Do (BDo, BDg) ™" <B*BD0, Vnh (90)> ) (A6)
By Proposition 2, we have under Hi,
Vih (60) — Do (BDy, BDg) ™ <B*BD0, Jnh (90)> = CN(Ln, K, R) (A7)

where R is the relation operator whose explicit expression is not given because it is not needed.
Combining Equations (A6) and (A7) yields /nh(0) = CN'(Ln, K, R) under Hi,. The kernel of

K can be computed explicitly as follows:

k(s,t)
— E|(vnh(s) = Dy (s) (BDy, BDo) ™" ( B*BDy, \/nh ))

x(vnh (t) = Do (&) (BDo, BDo)~* ( B*BDy, \/ﬁh>>] .

The detailed calculation for one of the four terms gives

E [DO (s) (BDy, BDg) ™" <B*BD0, \/ﬁﬁ> \/ﬁm
— Do()(BD6,BDY B | [ BBDo () i (u) 7 () du/h 1)

= DO (S) <BDO, BDO)il /B*BDO (’LL) E[h] (u) h]' (t)]ﬂ' (u) du
= Dy(s)(BDg, BDy) * (KB*BDy) (t).
The other terms can be computed similarly.

(ii) The proof of (ii) is similar to that of Proposition 3 and hence omitted. O
022
Proof of Lemma 7. The CF of a N'(y,0?%) is ¢ (t) = e~ 2. Let 0 = (u, 02)/, then

Do — Oy _ [ it (2)
T\ Su) )

Let v = (a,b) and n (t) = v' Dy = (ait - %) g (t). Now consider 9, (t) = (1 + “—Zfl - 2%) o ().
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Observe that 1, (0) = 1, 1, (t) = ¥, (—t). We need |¢,, (t)| < 1 which will be satisfied if b > 0
(and possibly for b < 0 and n large enough). So 1),, satisfies the necessary conditions to be a CF,
however these conditions are not sufficient. Necessary and sufficient conditions for a function
¥,, to be CF are that (a) ¢, (0) = 1, and (b) %,, is non-negative definite (see Theorem 4.2.2 of
Lukacs (1960)). It can be shown that, given v is a CF, 1, will satisfy (b) for n large enough.
So 1, is a CF.

Moreover, 1,, (t) is absolutely integrable so the density (f,) corresponding to 1, satisfies:

1

fo(z) = 5 e~ (£) dt
= g e (1 - ) w
= o [ervoar g [t nwa- g [ertuwa
Note that
/t”w fff;t:w t)dt ’
% / e "t (t) dt = ) 6;:;% (t) dt

At the same time,

1 [ 1
— [ ety () dt =
27T/€ v V2mo?

dfo (z) 11 [_ (z — uf]

Oo? - _5 \/27mo3 &P 202
N2 N2
Lle-w 1 exp (z—p)
20'4 \/27‘(0’2 20'2
(@—p)? 1
- 201 37| 0@
9fo(x) _ (z—p)
o o2 fo(z).
€T xr— 2—0'2
It then follows that f, (z) = {1 + \/ﬁ( 02“) + \bf [%} } fo (). O
Proof of Proposition 8. Under H, h(.;é) = EPth; (501) = () — g (1;601) # 0, where
¥ (.) is the CF of X; under Hy, and then the result follows. O

Preliminary results to the proof of Proposition 10.

The following lemmas will be used in the proof of Proposition 10.
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Let Y;y, (s) be the process defined as
Yin (8) = eiSXi - wn (S) .

Under Hay,, Yin @ = 1,2, ... are 4id with mean 0 and covariance E[Yj, (s) Yi, (t)] = ¢, (s — t) —
U, (8) ¥, (—t) = kn (s,t). Let K, be the integral operator with kernel k, and (A, ¢;,,) be the

eigenvalues and eigenfunctions of K,,. Note that K, converges to K when n goes to infinity.
Lemma 15 Under Ho,, <<Ym>\\/¢7l”>>, [ =1,2,... are uncorrelated across | with zero mean and
l,n

variance equal to 1.

Proof of Lemma 15. We have

B [(Yins01) Wins6,)] = B [ Yo 990, G (s)ds [ Voo ()7 6) e

- / PN / B [Yin (5) Vin (0)] 6, (6 (1) e () i
— (b1 Kby )

B N if 0 =10,
B 0 otherwise,

as desired. (]

The following lemma is taken from Eubank and LaRiccia (1992) and is reproduced here for
convenience. Note that in our setting, Y, is complex but we can still apply this lemma because

Wijn is real.

Lemma 16 (Lemma 2 of Eubank and LaRiccia (1992)) Let {Yin}: 1, n = 1,2, ... be a triangular
array of random variables that are #d within rows. Set wij, = wijn (Ym,an) + Wijn (an,YW)

for some function w;jy (.,.) and assume that E [wijn|Yin] = 0 for all 1,5 < n. Define

w(n) = Z Wijn,

1<i<j<n
o (n)2 = Var(w(n)) = Z FE (wfjn) ,
1<i<j<n
Gr = Z b (w?jn) )
1<i<j<n
G = Z [E (wizjnwlzkn) +E (w?mwjz'kn) +E (wimwijn)} )
1<i<j<k<n
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and

Gy = Z [E (wi]‘nwiknwm]‘nwmkn) +FE (wijnwimnwkjnwkmn)
1<i<j<k<m<n
+E (wimnwiknwjknwjmn)} .

Then, if Gr, Grr, and Gy are all of smaller order than o (n)4,

S

() 4 vr01).

o (n)

Ao n n 2
Lemma 17 Let a;, = praws +a » Pnn = ijl A, G = 22]-:1 - Under Ho, :

St izl (V) P = (Il 1)

dn,n

asn — oo, a — 0, p%m/(qnmn) — 0, and ppn/(gnnna) — 0.

Proof of Lemma 17. Our proof draws from the proof of Theorem 1 in Eubank and LaRiccia
(1992). Here and in the subsequent proofs of results for Proposition 10, all the expectations are

computed under Hy,. Dropping the subscript n from a;p, Ain, @145 Pnns and gnpn, we obtain

S g | (vah o)~
Vin

~ ~ ~ 2
i | (vVath — By + B}, 60)| —ps
Van
Zl 1al <\/ﬁ{ﬁ_E(ﬁ)}>¢)l>‘2_pn

Van

where

~

2Re Y, & (Vilh — B}, ) (VaB(h). o)
r

\/

In a first step, we will show that R,, converges to d ||77||%{ in probability under Hs, as n goes to

infinity and « goes to zero. In a second step, we will show that, under Ho,,

(Vath - E(), )| - n
Vo 4 N(0,1).

ll)\
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First step. We have E(h) = 1, — 1y = bpn and

nb? = a 2

Moreover, Y1 S [(n, @) — 222, 5 [(n, @) |* = [Inll% and 3’;1 — d as n goes to infinity and
a goes to zero. Therefore, E(Ry) — d||nl%.

Now we show that the variance of R, goes to zero. Using the notation Y; = Y;,,, we have

n a 7Yti T o o\
2Re Sy 4 (Z510 ) (b, &)

V(R =V N

Using the fact that V (Re (Z)) < V (Z) for any complex random variable Z, we have
Ziciya gy

EZ: )\ za(z)l 77 ¢l>]
Z Yi. 1) (n, ¢l>]

4nb2
dn

V(Ry)

IN

4nb2

because Y;, i = 1,2, ...,n are iid. As (Y, ¢;), [ = 1,2... are uncorrelated by Lemma 15, we obtain

Anb2 A a?
V(R,) < TZT“@%(ZWF
o=

4Anb?

n

< Inll% — 0.

n

It follows that R,, converges to d||n||3 in probability under Hay,.
Second step. We have

S [(vath-E (W) -m S e [(E S|
Vn - Van
_ wi(n)+w(n)
Van
where
wn) = 2303 Y0
=1 =1
w(n) = %Zal Z Re (Y3, ¢p) ( j7¢l>: Z Wign,s
1<i<j<n 1<i<j<n
with

Wijn = Z Re Yvwgbl 7¢l>'
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First, we show that wi(n)/\/qn P20 0. We have

*ZZ

=1 =1

n
= Zal_pnzo-
=1

Elwi(n)] = (1Y, &)%) = pn

As (Y3, ¢l>2 are independent across ¢, we have

Using Lemma 15, we have

ajay
>
n

[y
_ Zalal’E ’<}{La¢l>|2 ’<}/:ia¢l’>‘2
n Al Ay
[y
y
_—
12

Consider (A10): We have

= Z ajay < p%
an7

Ay

(A9)

(A10)

which goes to zero by assumption. To deal with the term (A9), we exploit the fact that for n

)| <]e

— }eitX wn

by Cauchy-Schwarz and ||¢;|| = 1. Therefore, by Lemma 15,

Vi, 80 (Y, o) 4 N
E( Y Ay > = A,AZ,E(W’@’H ) N

large enough, |Y;|

Hence,
S~ <|<n,¢l>| [(Yi. )| ) <y G _ Py
= n Al Ay = n n =\
Note that
aj /\l 1
— = <= N
8-Sy
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So, we obtain:

o

Al ana

which goes to zero by assumption.
The first term in (A8) can be treated in the same manner. Thus, V{w; (n)]/¢, — 0 under
our assumptions and hence wy (n) /\/qn B

Second, we show that under Ho,

4 N(0,1).

To establish this result, we check all the conditions of Lemma 16.

o) =V(w)= ) Ew,)

1<i<j<n

where, using the fact that |[Re Z| < |Z| for all complex Z, we have

IN

n 2
Bf,) < oF (Zjﬁuw»um,w)
= 5> ST 6V,

- n2zalE |(¥;, @) PLEL(Y, ) )

because the (Y;, ¢;) are uncorrelated across [ and independent across i. Hence,
2
o (n)” ~ qn.
Consider now the term Gj:

> B(uwl,).

1<i<j<n
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We have

ign

4
16
< al Xl mm)
=1
16 <~ a
- Agluwm RS
16
+— “gjl (Ve &) (Y5, 6) 2 [ (Vs b0} 1Y, )]
z;éz')‘
16 :
16 200 Gy a2 1Y, 6 P Ve 0 P (Y )
l#,)\ )\

(Alla)

(A11b)

(Allc)

Consider (Alla): Using |(Y;, ¢;)|*> < 4 as before, we get E |[(Y;, ¢)|* < 4E |[(Yi, ¢,)]* = 4.

2 ap

Therefore,
EZ A4 ‘(YZ,(Zsl
1=1 "1
and
PR
2
=1 Al
n
= (
Hence,

Y i<icj<n(Alla) - C

4
WY, o]t <16Z*§2

2

— M4 )t

n

AL

Al A

X+ ) (N +a)?

)\
/\2.
)\Z+Oé _a2z

— 0

%
by the assumption p,/ (gnna) — 0.
Consider (Allb):

16 (ll alr

N3
l#,)\ A

E(A11b) =

By Cauchy-Schwarz,

E[(Y;, )1 (Y3, ép) ]

[14Yz, 60 [V, o) 1 B¢

S Wi

Y. e’ |{

VEI:, 60 FIENY:, 60) )
/BN, 60 PIE( (Y, 60) ]
VINVIYS
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Hence,

C af’ Pn a?
1Al l 1 l

Moreover,
3
2L

a A 1 n
= ——t < <
Zl: Y Zl: (A + )3 2 M+a) ~ «

l

IN

It follows that
Zl§i<j§n(A11b) <C Pn

0.
q2 = @na
Now, consider (Allc):
16 — af aj; 2 2 2 2
E(Alle) = I p)\gEH(Yi,@H (Y, o) 71 E[(YG, &) (Y5, o) 7]
12 LAY
C al2 alQ,
< — — M\
>~ n4 gl:/ )\l2 )\12/ 1N
<

C a? ?
il ol
(i)

Moreover,
2 3
(Ll . )\l o )\l )\l
zl:Az zl:(/\?+a)2 zl:(/\?+a) (A} + o)
> < 2
5 < .
) Q@

Therefore,

Yi<icj<n(Allc) C

=0
2 = 2n242 )
an, an g

It follows that G = o(o (n)*).

Now consider Gjy:

16 /
E(w},wh,) < —E (Z % (Y5, &) (Y5, ¢z>\> ( % |(Yi, ¢r) <Yk7¢l’>‘>
=1

n4
=1
16 — afaj
= 1 2 e BlIYe e P 165, 60 1Y, 60l (Ve é0) ]
LA

L

because the cross products equal zero. We have

E[{Y:, o) " (Y5, 00" (Y ) * [(Yis )] < 4B[Y;, 80 PIEIYG, 60) "] B (Ya, )]

= 4N\
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Hence,

C 12 CQn Z Al
E(wwn zkn < n; z )\7 nt o’
Di<i<j<n E[ngnwgkn] C
< = — 0.
q2 n2aqn,

The other terms of Gy; have the same form. Therefore, Gy = o(o (n)?).

Consider Gyy:

E (WijnWikn WinjnWimkn)

16 " I an I
< AP |30 o) 5,000 (3250 (Y 60) W, ]
=1 I'=1
z % (Y ) Vi.o0| | A (Yins bg) (Yie, 60y
g= 1 g'=1
16 —
= 1 x* E(Y:, o) * (Y7, ) * [V, 80) |2 1Y, 61) 1]
=1

because (Y;, ¢;), l = 1,2...

E (wijnwiknwmjnwmkn)

It follows that

z X

n 1<i<j<k<m<n

are uncorrelated across . As Y;, i =

1,2, ..., are iid, we have

16 G/ 2
- AZE[I<Y al)*
_ 4
- Zaz

=1

16gn,

< .
16

E ('wijnwiknwmjnwmkn) < — =0

an

As the other terms in Gy have the same form, we can conclude that Gy = o(o (n)?).

Therefore, all the conditions of Lemma 16 are satisfied and the result follows.

Lemma 18 We have under Ho, :

Jr.
oz ()

Proof of Lemma 18. We have ‘

O
‘ = Op,, (max (n71/2,bi)) , (A12)
‘ = Op,, | ( —3/4 max (n_1/2, bi)) . (A13)

K, —IA(H < HKn —I?HHS where ||.|| ;¢ denotes the
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Hilbert-Schmidt norm. Moreover
| = R|, <K~ Kl gs + |BK. - EE|| +|ER-R|
The kernel of EK, is o, (s — t) — 1, (s) ¥, () and the kernel of ER is
E[(e"% = 9o () (7" = ¢ (-1))]
= (s —=t) =, (8) Yo (1) — g (8) ¥y (—1) + o (8) Y (1)

Hence

EK, - EK = [, (s) = (s)] [ (—t) — v, (=1)]
= —bin(s)n(-t).

Therefore HEKn — EK HHS =0 (bi) . Using a proof similar to that of Theorem 4 in Carrasco
and Florens (2000), we have

1
HKn - EKnHHS = Op2n <\/ﬁ> s
~ ~ 1
EK—KH - 0, (—).
H HS ban <\/ﬁ>

Hence, the result of (A12) follows. The result of (A13) can be established using a proof similar
to that of Lemma B.2 in Carrasco et al (2007).

Proof of Proposition 10. As in Carrasco and Florens (2000, proof of Theorem 10), the
proof proceeds in three steps.

Step 1. Let P, denote the projection which associates to an operator K the operator Ko

defined by the first n eigenvalues and eigenfunctions of K. We show that

J e

) (K2) /2 th} Lo (A14)

under Ho,.

First note that
1 X
Vnh = NG D (€ =y (1))
1
n

i=1
D (€ =y (1) + V(9 (1) = 2o (1))
= Opy, (1) + Vnbpn (1) .
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Hence H\/ﬁiLH = Op,,, (v/nb,). We have

L] )
< ke = ey v
< Pl ey oy v
_ 0 (max(bn,\/ﬁb%)>

P2n Ma3/4

because || P, || < 1, \/ﬁiLH = Op,, (v/nb,) and ”(Ka)_l/Q — (K,?)_I/QH = Op,, (a™3/*max(n=1/2,12))
by Lemma 18. Therefore (A14) is satisfied.
Step 2. Show that

~ P N P
Pn — Pnn — 0 and ¢, — gnn — 0

)

2

under Ha, as na? — oo and b2 /n — 0.

Using the proofs of Theorems 4 and 10 in Carrasco and Florens (2000), we can show that
. K-Kp . K—-Kn
pn_pn,n:Op<| Py ||> andQn_Qn,n:Op(H @ H)

Step 3. By Lemma 17, we have under Hs,

2

‘ P, (Kg)_lﬂ \/ﬁilH — Pnn Z?:l ()l\ii:: <\/ﬁib, ¢l,n> — Pnn d 9
= = N(elnlx 1)
dn,n dn,n
Using steps 1 and 2, we obtain the desired result. O

Proof of Proposition 11. Let {¢;,\;} be the eigenfunctions and eigenvalues of Ky. Let
¢, such that ¢; = Ugtp; and consequently Upp; = UpUyvp; = ¢p;. We have

UpKoUgtp; = UpKyd;
= AUpo;
= A
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Therefore, {1);, \;} are the eigenfunctions and eigenvalues of K. Tt follows that

"Ueiz(Q)“teKgUg)a - zj:)\;\—ia <U9ﬁ(9)a¢j>‘2

-y A;i —|(h o). U;zpj>)2

- Yynlkos)

as desired.
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Figure 1: Eigenvalues ();’s) and weights (a;’s) of the covariance K for the standard Normal

distribution
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Notes: Eigenvalues are computed following the procedure described in Appendix A.1 with a grid of 1,000
points.

Figure 2: Alternatives with maximum power (goj, for j = 1,2,3) for the standard Normal
distribution

15 T T T T T

Notes: Eigenvalues are computed following the procedure described in Appendix A.1 with a grid of 1,000
points.
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Figure 3: Asymptotic power at the 5% level of the Tg tests based on B = I (\;’s) and

B= K;l/z(aj’s) under local alternatives
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Notes: Eigenvalues are computed following the procedure described in Appendix A.1 with a grid of 1,000

points. Power is computed using rejection rates obtained from simulated samples of size 100,000 under
both the null and the alternatives.
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