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1 Introduction

Arguably, modern macroeconometrics de�nitely broke up with the large linear simultane-

ous equations models that were the workhorse of central banks and economic a¤airs ministries�

research departments in the 1960s and 70s after the introduction of Structural Vector Autore-

gressions (Svars) in Sims�(1980) seminal paper. As is well known, he suggested an empirically

credible and �exible framework for modelling interconnected macroeconomic and �nancial time

series that allow researchers to uncover theoretically motivated structural shocks and study their

contemporaneous and dynamic impacts on the observed variables. Nevertheless, Svar analysis

hinges critically on the identi�cation of those shocks, which typically involves imposing a set

of economic or statistical restrictions. The most popular identi�cation schemes are short- and

long-run homogeneity restrictions based on economic theory (see Kilian and Lütkepohl (2017)

for a textbook treatment), although more recently, alternative approaches have been entertained,

including sign restrictions (Faust (1998) and Uhlig (2005)), time-varying heteroskedasticity (Sen-

tana and Fiorentini (2001) and Rigobon (2003)), external instruments (Mertens and Ravn (2012)

and Stock and Watson (2018)), independent non-Gaussian shocks (Lanne, Meitz and Saikkonen

(2017) and Gouriéroux, Monfort and Renne (2017)) or narrative event constraints (Antolín-Díaz

and Rubio-Ramírez (2018) and Ludvigson, Ma and Ng (2021)). Montiel-Olea et al (2022) and

Lewis (2025) provide lucid critical reviews of some of these approaches.

A crucial challenge in the empirical application of Svars is whether the identi�cation re-

strictions chosen are compatible with the observed data, for model misspeci�cation can lead to

biased inference and misleading policy conclusions. While testing exactly identi�ed models is far

from straightforward (see Arellano, Hansen and Sentana (2012)), some of the above identi�ca-

tion schemes imply overidentifying restrictions. Speci�cally, several recent papers have proposed

speci�cation tests that assess the validity of identi�cation based on independent non-Gaussian

shocks. For example, Amengual, Fiorentini, and Sentana (2022) (AFS22) develop moment tests

that check that all the coskewness and cokurtosis coe¢ cients of the non-Gaussian structural

shocks are zero. More recently, Amengual, Fiorentini, and Sentana (2024) (AFS24) propose

further speci�cation tests that directly examine whether the joint distribution of the shocks

coincides with the product of their marginal ones, thereby enabling researchers to verify the

appropriateness of their models before interpreting their outputs.

However, a framework for testing the validity of alternative identi�cation schemes in Svars

estimated by Gaussian pseudo maximum likelihood (PML) is lacking. Our paper aims to �ll

this gap by proposing novel speci�cation tests that carefully adapt the procedures in AFS22 and

AFS24 to check the indedepence of the shocks in those models. Although in a Gaussian context,
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lack of correlation between the structural shocks is tantamount to their independence, empirical

researchers that estimate those models do not usually take the Gaussianity assumption literally,

which they often make because of its computational simplicity and robustness properties of

the resulting estimators to distributional misspeci�cation. And yet, the theoretical dynamic

macroeconomic models that justify Svars in the �rst place maintain the assumption that the

di¤erent structural shocks are stochastically independent. For example, in a standard new-

Keynesian model, the monetary policy shock entering through the Taylor rule is not related

in any way to the aggregate supply shock a¤ecting the Phillips curve or the demand shock

appearing in the IS curve. Therefore, it seems appropriate to tests the independence of the

identi�ed shocks in Svars estimated by Gaussian PML as a way of checking that they adequately

re�ect a fundamental property of the shocks in the underlying theoretical model, as they should

if the chosen identi�cation scheme were valid. Given their preeminence in empirical work, we

focus on models identi�ed through short- and long-run restrictions.

In many empirical �nance applications of Svars, the number of observations is su¢ ciently

large for asymptotic approximations to be reliable. In contrast, the limiting distributions of our

tests may be a poor guide for the smaller samples typically used in macroeconomic applications.

For that reason, we thoroughly study the �nite sample size of our tests in several Monte Carlo

exercises and discuss resampling procedures that seem to improve their reliability.

Finally, we illustrate our proposed procedures by applying them to two in�uential studies:

Kilian (2009) with short-run restrictions in oil markets, and Blanchard and Quah (1989) with

long-run ones for the aggregate economy.

The structure of the remainder of this paper is as follows. Section 2 introduces Svars and the

identi�cation schemes that we consider. Section 3 then describes the di¤erent testing procedures

that we propose. Next, section 4 presents the results of our extensive simulation studies that

evaluate the performance of our proposed tests in �nite samples in terms of both size under

correct speci�cation and power under various realistic forms of misspeci�cation. Finally, section

5 revisits the two aforementioned empirical applications, followed by our conclusions in section

6. We also include three appendices with additional computational details.

2 Structural vector autoregressions

Consider the following N -variate Svar process of order p:

yt = � +
Pp
j=1Ajyt�j +C"

�
t ; "�t jIt�1 � i:i:d:(0; IN ); (1)

where It�1 is the information set available at time t� 1, C the matrix of impact multipliers and

"�t the structural shocks, which we have normalised to have zero means, unit variances and zero
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covariances.

Let "t = C"�t denote the reduced form innovations, so that "tjIt�1 � i:i:d: (0;�) with

� = CC0. In addition, let a0 = (a01; : : : ;a
0
p) = [vec0(A1); : : : ; vec0(Ap)], c = vec(C) and

� = vech(�). As is well known, the Gaussian PML estimators advocated by Bollerslev and

Wooldridge (1992) among many others remain root-T consistent for the reduced form parame-

ters �0 = (� 0;a0;�0) characterising the �rst two conditional moments of yt irrespective of the

degree of asymmetry and kurtosis of the conditional distribution of "t, so long as those �rst two

moments are correctly speci�ed and the third and fourth moments of "t are bounded. Neverthe-

less, a Gaussian likelihood function is only able to identify �, which means the structural shocks

"�t and their loadings in C are only identi�ed up to an orthogonal transformation. Speci�cally,

we can use the QR matrix decomposition of C0 to relate this matrix to the Cholesky decom-

position of � = �L�
0
L as C = �LQ, where Q is an N � N orthogonal matrix, which we can

model as a function of N(N � 1)=2 parameters ! by assuming that jQj = 1 (see e.g. Golub and

van Loan (2013)). While �L is identi�ed from the Gaussian log-likelihood, ! is not.1 For that

reason, empirical researchers need to impose additional restrictions to identify C.

The two most popular identi�cation schemes are the following:

Short-run restrictions: In his empirical application to US money and income, Sims (1980)

reordered the elements of yt so that he could identify C with �L. These so-called short-run

restrictions on the impact multipliers impose a recursive causal mechanism regularly used in

numerous subsequent empirical applications.

Long-run restrictions: In their application to US aggregate output and unemployment, Blan-

chard and Quah (1989) assumed that while supply shocks would a¤ect the �rst variable in the

long run, demand shocks would not. E¤ectively, their restrictions imply that the matrix of long

run multipliers (IN �
Pp
j=1Aj)

�1C is lower triangular.

Part of the popularity of these identi�cation schemes is that parameter estimation remains

straightforward. In both cases, researchers �rst estimate the reduced form parameters by

Gaussian PML. Speci�cally, the equation by equation OLS regression of each variable on a

constant and p lags of yt yields the PMLEs of the intercept and slope parameters � and a,

respectively. As for the elements of �, one simply estimates the covariance matrix of the N OLS

residuals with denominator T .

Under standard regularity conditions, the asymptotic distribution of these Gaussian PMLEs

will be given by
p
T (~�T � �0)

d! N [0; C(�0)];
1 In fact, the underidenti�cation of ! would persist even if we assumed for estimation purposes that "�t followed

an elliptical distribution or a location-scale mixture of normals.
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where

C(�0) = A�1(�0)B(�0)A�1(�0); (2)

A(�0) is the expected value of the Gaussian Hessian and B(�0) the variance of the Gaussian

score. In Appendix A, we provide detailed expressions for these matrices for model (1) under

the maintained assumption that the true structural shocks are cross-sectionally independent but

not necessarily Gaussian.

Then, researchers numerically compute a simple Cholesky decomposition of either the vari-

ance of the reduced form innovations � in the case of short-run restrictions, or the spectral

density matrix at frequency 0


 = (IN �
Pp
j=1Aj)

�1�(IN �
Pp
j=1Aj)

�1

in the case of long-run restrictions. As a result, the estimates of C satisfy either

C = �L (3)

or

C = (IN �
Pp
j=1Aj)
L: (4)

Given that both these mappings are di¤eomorphisms, it is straightforward to apply the delta

method to obtain the asymptotic distribution of the structural parameters #0 = (� 0;a0;�c0), where

�c are the N(N+1)=2 elements of c that are e¤ectively estimated as free parameters, whose exact

nature depends on whether we rely on (3) or (4) for identi�cation purposes. We provide further

details in Appendix B.

The distribution of the Gaussian PMLEs of # is important for our purposes because our

misspeci�cation test statistics are based on shocks recovered from the observed variables using

the expression

"�t (#) = C
�1(yt � � �

Pp
j=1Ajyt�j); (5)

so we need to rely on the theory of moments tests in Newey (1985) and Tauchen (1985) to

explicitly account for the fact that we work with estimated shocks in deriving the asymptotic

covariance matrices of the average in�uence functions underlying the tests that we describe next.

3 Testing independence

3.1 Independence tests based on integer moments

As is well known, stochastic independence between the elements of a random vector implies

lack of correlation between not only the levels but also any set of single-variable measurable
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transformations of those elements. Thus, a rather intuitive way of testing for independence of

the structural shocks "�t without considering any speci�c parametric alternative can be based

on in�uence functions of the form

ch("
�
t ) =

NY
i=1

"�hiit �
NY
i=1

E("�hiit ); (6)

where h =fh1; :::; hNg, with hi 2 Z0+, denotes the index vector characterising a speci�c product

moment. This is precisely the approach followed in AFS22, where particular attention is paid

to third and fourth cross-moments. The derivations in that paper, though, extensively exploit

the fact that all the elements of the matrix C can be identi�ed if one exploits the fact that

at least N � 1 structural shocks are non-Gaussian for estimation purposes. Consequently, we

need to adapt the expressions not only to re�ect that the asymptotic covariance matrix of the

estimators in (2) will be di¤erent when the shocks are possibly wrongly assumed Gaussian,

but, more importantly, also to recognise that e¤ectively, the dimension of�c is smaller than the

dimension of c.

3.2 Independence tests based on the distribution function

Unfortunately, tests based on coskewness and cokurtosis su¤er from two limitations. First,

standard asymptotic theory provides poor �nite sample approximations for procedures based on

higher-order moments, whose estimates are quite sensitive to outliers. Second, for any choice of

h, one can �nd joint distributions of the shocks for which (6) is zero on average even though the

shocks are cross-sectionally dependent, as illustrated by AFS24 in several examples.

To avoid these criticisms, we follow AFS24 and also assess the potential cross-sectional

dependence among two or more shocks by directly comparing their joint empirical cumulative

distribution function (cdf) to the product of the marginal empirical cdfs. We do so not only

for a discrete grid of values of the arguments of the joint cdf, which provides the intuition for

our approach, but also for a continuous grid of values using an extension of the continuum of

moments inference procedures in Carrasco and Florens (2000), which provides a consistent test,

as we brie�y discuss in the next two subsections.

3.2.1 Discrete grid tests

The starting point is a test based on the joint probability of events that involve two or more

elements of "�t , which should coincide with the product of the marginal probabilities under the

null of independence. Speci�cally, we begin by de�ning H points, k1 < � � � < kh < � � � < kH ,

so that we can then form a partition of the support of "�it into H + 1 segments, namely kh�1 �
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"�it � kh for h = 1; :::;H + 1 after suitably de�ning k0 = �1 and kH+1 = 1.2 We then collect

the indices of the shocks involved in the set M = fi1; :::; img, where m denotes the cardinality

of the set M , so that we can test for pairwise independence (m=2), joint independence of the

entire vector of structural innovations (m=N), and any other intermediate situation.

As in AFS24, let us partition the support of "�it into the H + 1 segments discussed above by

the sequence of overlapping increments "�it � kh for h = 1; :::;H + 1. For practical purposes, let

us de�ne P iht = 1(�1;kh)("
�
it) and

ph("
�
it) = P

i
ht � uih; (7)

with uih = E(P
i
ht) = Pr("

�
it � kh) � Fi(kh), as a set of dummy variables and marginal in�uence

functions, respectively, which trivially give rise to the empirical cdf estimator

ûih =
1

T

TX
t=1

P iht: (8)

Let us also de�ne the joint in�uence function

p("�t ;k;u) =
Y
i2M

P ihit �
Y
i2M

uihi � �(k;u); (9)

where k = (khi1 ; : : : ; khim )
0 and u = (ui1 ; : : : ; uim)

0, so that �(k;u) = 0 under the independence

null.

Importantly, the fact that the estimating moment conditions (7) exactly identify the relevant

uih�s implies that there is no e¢ ciency loss in sequentially estimating the �(k;u)�s from (9) by

replacing the marginal cdfs by their sample counterparts relative to estimating them jointly

from (7) and (9), which in turn implies that the non-centrality parameters of corresponding

moment tests that impose �(k;u) = 0 will coincide (see Propositions 2 and 3 in AFS24 for

further details).

This convenient re-interpretation of the usual Pearson test for independence will allow us

to extend our tests to a continuous grid in section 3.2.2. At the same time, the choice of

the k�s will crucially a¤ect power even though it does not a¤ect the (�rst-order) asymptotic

distribution of the test under the null. Absent any prior knowledge about the true marginal

distribution of the shocks, it seems sensible to adapt the grid to their empirical counterpart.

AFS24 use the following simple way of choosing the partition, which achieves precisely that

goal: instead of �xing arbitrarily the grid points at which one evaluate the cdfs of each of the

"�i �s, one chose them so that they correspond to speci�c quantiles of the marginal distributions.

2For notational simplicity, we maintain the assumption that the number of intervals and their limits are
common across shocks. Although this assumption is plausible when a researcher has no prior views on the
marginal distributions of the di¤erent standardised shocks, it would be straightforward to relax it.
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Speci�cally, let kih = {i(uh) for each i 2 M be the uh-quantile of "�it for h = 1; :::;H, with

0 = u0 < u1 < � � � < uH < uH+1 = 1, {i(0) = �1 and {i(1) = 1. We can compute an

alternative independence test for the shocks using the same in�uence function p("�t ) in (9),

but now estimating the marginal quantiles kih for given u
i
h from the exactly identi�ed moment

conditions (7) rather than each marginal cdf uih for �xed k
i
h. Intuitively, a moment test based on

a collection of such in�uence functions will e¤ectively assess that the copula linking the di¤erent

marginal distributions is �at, which corresponds to the independent one.

As in the case of the tests based on higher-order cross-moments of the shocks discussed in

section 3.1, we need again to adapt the expressions in AFS24 to re�ect the fact that we can only

estimate�c rather than c by Gaussian PML.

The choice of H, though, is crucial for both small sample performance and power consider-

ations even though the asymptotic distribution under the null is always a �2 with Hm degrees

of freedom. Intuitively, too �ne a partition relative to the sample size may introduce size dis-

tortions because the joint probability of some individual cells will be poorly estimated. Even in

large samples, a �ne partition will generate substantial correlation between the in�uence func-

tions, potentially causing numerical instability. Finally, there is also a power trade-o¤ between

the size of the non-centrality parameter and the number of degrees of freedom of the limiting

distribution. Partly for these reasons, next we discuss tests which do not depend on H.

3.2.2 Independence tests based on a continuous grid

A di¤erent problem with the tests discussed in the previous subsection is that they are not

consistent for any speci�c �nite partition of the domain of the shocks because one could always

�nd joint distributions such that the probability of each joint interval is exactly the product

of the marginal probabilities even though the shocks are stochastically dependent (see again

AFS24 for some examples). Consistent tests of independence based on comparing the joint cdf

to the product of the marginal cdfs for all possible values of the arguments go back at least to

Hoe¤ding (1948), who considered a Cramér-von Misses type-test based on the integral of the

square di¤erences between the joint cdf and the product of the marginal cdfs, and Blum, Kiefer

and Rosenblatt (1961), who considered Kolmogorov-Smirnov-type tests based on the maximum

absolute discrepancy. However, those tests rely on speci�c functionals of the di¤erence, while

the discrete grid tests that we studied in the previous section also take into account not only

the asymptotic variance of the in�uence functions for each value of the arguments, like an

Anderson-Darling (1952) test would do, but more importantly, the covariance between those

in�uence functions for di¤erent values of the arguments.

In principle, we could try to �nd the limiting distribution of our discrete grid tests in a double
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asymptotic framework in which the partitions get �ner and �ner as the sample size increases.

However, this is really unnecessary because the in�uence functions indexed with respect to the

arguments of the joint cdf over Rm give rise to a continuum of moments in an L2 space. As

a result, AFS24 extend Carrasco and Florens (2000) and directly construct a Hansen (1982)

overidentifying restrictions-type test based on the same in�uence functions as in the discrete

grid case, but with a covariance operator playing the role of the usual covariance matrix.

Speci�cally, by transforming "�it into its empirical uniform rank

��it =
1

T

XT

s=1
1(�1;"�it)("

�
is); (10)

we can de�ne the marginal and joint in�uence functions

qit(ui) = 1(0;ui)(�
�
it)� ui; and (11)

qt(u) =
Y
i2M

1(0;ui)(�
�
it)�

Y
i2M

ui; (12)

which are numerically identical to (7) and (9) in the previous section, respectively.

Next, let $ be a probability density function with support the unit hypercube. Then, the

function qt(u) may be regarded as a random element of L2 ($), the space of real-valued functions

which are square integrable with respect to the density $. For any functions f and g in L2 ($),

the inner product on this Hilbert space is de�ned as hf; gi =
R
[0;1]m f (u) g(u)$ (u) du. By the

central limit theorem for iid random elements of a separable Hilbert space (see e.g. proof of

Theorem 9 in Rackauskas and Suquet (2006)), we have that under independence,
p
T �qT (u) )

N (0;K) in L2 ($) as T goes to in�nity, where �qT (u) denotes the sample average of (12) and

N (0;K) a Gaussian process of L2 ($) fully characterised by its covariance operator K, which

is an integral operator from L2 ($) to L2 ($) such that

(Kf) (u) =

Z
[0;1]m

k(u;v)f(v)$ (v) dv; (13)

whose kernel k (u;v) = E[qt(u)qt(v)] is given in Proposition 2b of AFS24.

In terms of the eigenvalues �jk and the complete set of orthonormal eigenfunctions �jk(u)

of the spectral decomposition of K, the direct analogue to the J test statistic would be written

as X
j

X
k

1

�jk

���DpT �qT ; �jkE���2 ; (14)

Unfortunately, this expression will blow up because of the division by the small eigenvalues. As

in Carrasco and Florens (2000), AFS24 use Tikhonov regularisation, which leads to

X
j

X
k

�jk

�2jk + �

���DpT �qT ; �jkE���2 ; (15)
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where � � 0 is a regularisation parameter.

For computational reasons, it is convenient to rewrite the test statistic (15), which uses as

eigenvalues and eigenfunctions those of K, in terms of certain matrices and vectors (see Carrasco

et al. (2007) for analogous expressions for K under time series dependence). Speci�cally, we use

the following computationally convenient expression for (15):

W0f�IT + [(IT � `T `0T =T )D2(IT � `T `0T =T )]2g�1W; (16)

whereW is a T �1 vector whose tth element is wt =
R
qt (u) �qT (u)$ (u) du, D is a T �T matrix

whose (t; s)th element is dts = hqt; qsi =T , and `T is a T � 1 vector of ones. In practice, only D

is needed to compute the test statistic because (16) is equivalent to

`0TD(IT � `T `0T =T )f�IT + [(IT � `T `0T =T )D2(IT � `T `0T =T )]2g�1(IT � `T `0T =T )D`T ; (17)

with the analytical expression for the (t; s)th element of the matrix D provided in Proposition 4

of AFS24.

In addition to the e¤ects of estimating the marginal cdfs of the shocks on the covariance

operator, we must again take into account the sampling variability in estimating #. Fortunately,

the only di¤erence with the discrete grid case is that the expected Jacobian will now be a function

of the values of the arguments of the cdf, and the same will be true of the covariance between

the in�uence functions and the score of the Gaussian PMLE. With this trivial re-interpretation,

all we need is to replace D by E = D + C, in (17), where C is given in equation (27) in AFS24.

Intuitively, the only thing they do is to apply the Carrasco and Florens (2000) procedure to the

residuals from projecting the relevant in�uence functions for testing purposes onto the linear span

generated by the in�uence functions de�ning the marginal cdfs and the scores of the pseudo log-

likelihood function for each value of u (see Khmaladze (1981) for an analogous transformation).

Once again, though, we must adapt the expressions in AFS24 to re�ect the fact that Gaussian

PML estimates�c instead of all the elements of c.

4 Finite sample properties

4.1 Design and computational details.

To keep Cpu time within bounds, we focus on bivariate data generation processes (Dgps)

with Var(1) dynamics. Speci�cally, we generate samples of size T from the following processes:�
y1t
y2t

�
= � +A

�
y1t�1
y2t�1

�
+C

�
"�1t
"�2t

�
; (18)
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with

� 0 =

�
1

�1

�
and A0 =

�
1
2 �1

6
0 1

3

�
:

As for the true matrix of impact multipliers, we consider three possibilities:

C0I =

�
1 0
1
2 2

�
; C0II =

�
1 1

2
1
2 2

�
; C0III =

�
1 5

8
1
2 2

�
:

C0I trivially satis�es the usual short-run restrictions while C
0
II the long-run ones in conjunction

with A0. In contrast, C0III satis�es neither. We then combine each of these matrices with the

following distributions of the shocks:

Dgp 0: ("�1t; "
�
2t) follows a standardised bivariate Gaussian, i.e., ("

�
1t; "

�
2t) � N(0; I2).

Dgp 1: "�1t and "
�
2t follow two independent univariate scale mixture of normals in which the higher

variance component has probability � = 1
5 and the ratio of the two variances is { =

1
6 , so

that E("�it)
4 = 6 for i = 1; 2.

Dgp 2: "�1t and "
�
2t follow two independent univariate location-scale mixture of normals in which

the higher variance component has probability � = 1
5 , � = �0:67 and { = 0:18 so that

E("�it)
3 = �3

4 and E("
�
it)
4 = 6 for i = 1; 2.

Dgp 3: ("�1t; "
�
2t) follows a standardised bivariate scale mixture of two zero mean normals with

scalar covariance matrices in which the higher variance component has probability � = 1
5

and the ratio of the two variances is { = 1
6 .

Dgp 4: ("�1t; "
�
2t) follows a standardised bivariate discrete mixture of two normals with parameters

chosen in such a way that the margins are identical, which we achieve by assuming that

�1 = �(1� �)
�
1
1

�
, �2 = ���

�
1
1

�
,

@1 =
�
[1� �2�(1� �)]=[�+ (1� �){] ��2�(1� �)=[�(1� {) + {]
��2�(1� �)=[�(1� {) + {] [1� �2�(1� �)]=[�+ (1� �){]

�
;

and @2 = {@1 (see Appendix C for details). In particular, we set � = �0:67 and { = 0:18

with the mixing probability set to � = 1
5 so that E("

�
it)
3 = �3

4 and E("
�
it)
4 = 6 for i = 1; 2.

Therefore, we consider three bivariate distributions in which the shocks are truly indepen-

dent: Dgps 0 to 2, and two in which they are not: Dgps 3 and 4.3

In turn, our PML estimation procedure imposes that either C or (I�A)�1C is lower trian-

gular, depending on whether we rely on the short- or long-run restrictions in estimation. In this

3Appendix A.4.2 in Amengual, Carrasco and Sentana (2020) provides further details about Dgps 1 to 3.
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respect, we impose the short-run restrictions in designs corresponding to C0I and C
0
II , and the

long-run restrictions in designs corresponding to C0II and C
0
III .

Finally, we follow AFS22 and AFS24 in using resampling procedures to compute the rejection

rates of all the di¤erent test statistics that we have described in sections 3.1, 3.2.1 and 3.2.2.

4.2 Simulation results

This subsection summarises the main �ndings from the Monte Carlo experiments, focusing

on the �nite-sample size and power properties of the proposed independence tests. We generate

10; 000 samples for the designs under the null and 2; 500 for those under the alternative. For

each sample, we also compute p-values based on B = 99 resampling replications. We report

results separately for short-run and long-run identi�cation schemes and consider both moderate

(T = 250) and large (T = 1; 000) sample sizes, which are representative of macroeconomic and

empirical �nance applications, respectively.

Finite-sample size

Tables 1-4 report empirical rejection frequencies under the null hypothesis of shock inde-

pendence. Overall, the size performance of the proposed tests is satisfactory across designs,

identi�cation schemes, and sample sizes. When asymptotic critical values are used, the rejection

rates are generally close to nominal levels, although some mild over-rejection appears for dis-

crete grid tests when T = 250, particularly with �ner partitions. As expected, these distortions

largely disappear as the sample size increases.

Resampling-based critical values substantially improve �nite-sample accuracy in small sam-

ples. In particular, for T = 250, bootstrap versions of the discrete grid tests correct the slight

size distortions observed under asymptotic inference, bringing empirical rejection frequencies

very close to their nominal counterparts. Tests based on coskewness and cokurtosis exhibit good

size even without resampling, re�ecting their relatively simple structure.

The continuous grid test also displays stable size properties. Its empirical size is largely

insensitive to the choice of the regularisation parameter � over the range of values considered,

namely � 2 [1e�5; 1e�8]. This robustness is especially appealing given the test�s generality and

consistency properties.

Overall, these results indicate that the proposed tests can be reliably implemented in sample

sizes typical of macroeconomic applications, especially when one employs critical values obtained

through resampling procedures.

Finite-sample power: short-run restrictions

Tables 5 and 6 report rejection frequencies under alternatives in which the short-run restric-

tions imposed are wrong. We exclude the Gaussian design (Dgp 0) combined with C0II , for
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which asymptotic power is mechanically equal to size due to the joint normality of the shocks.

Several clear patterns emerge. First, all tests display increasing power as the sample size

grows from T = 250 to T = 1; 000, con�rming the validity of the asymptotic approximations

and the consistency of the procedures under �xed alternatives.

Second, tests based on integer moments � particularly those exploiting cokurtosis � tend

to be the most powerful against the non-Gaussian alternatives considered. This is true for

Dgps 1 and 2, where the shocks are independent but non-Gaussian, and the restrictions on the

impact multiplier matrix C are not satis�ed. And it is especially true for Dgps 3 and 4, where

dependence arises through mixtures, even when the restrictions on C are satis�ed. In these

settings, higher-order moments capture deviations from independence that are not necessarily

concentrated in speci�c regions of the joint distribution.

Discrete grid tests also exhibit non-negligible power, but it is sensitive to the choice of the

partition. Coarse grids may fail to detect dependence localised in the tails, while �ner grids

require larger samples to perform well. This trade-o¤ is particularly evident when T = 250.

The continuous grid test delivers more uniform power across alternatives, although it is

sometimes less powerful than the integer moment tests in small samples. This behaviour is

consistent with its design: by integrating information over the entire joint distribution, the test

avoids reliance on speci�c features of dependence but may sacri�ce power against alternatives

that are well aligned with particular cross-moments.

Finite-sample power: long-run restrictions

Tables 7 and 8 report rejection frequencies under alternatives when identi�cation is achieved

through long-run restrictions. The qualitative patterns largely mirror those obtained under

short-run restrictions, although some di¤erences emerge in smaller samples.

Integer moment tests continue to exhibit strong power against alternatives involving cross-

sectional dependence, particularly those generated by location-scale mixtures. Their perfor-

mance remains robust across both sample sizes, indicating that higher-order cross-moments of

the recovered shocks remain informative even when identi�cation relies on long-run restrictions.

Discrete grid tests also display satisfactory power for both sample sizes. However, when T =

250, their rejection frequencies are somewhat lower than in the corresponding short-run designs.

This di¤erence may re�ect the greater sampling variability of the estimated structural shocks

under long-run identi�cation, which propagates into noisier estimates of joint cell probabilities

and reduces power in small samples. As the sample size increases to T = 1; 000, this e¤ect

largely disappears.

The continuous grid test remains well behaved across all designs and sample sizes. Although
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its power is occasionally lower than that of integer moment tests in small samples, it increases

steadily with T and remains relatively stable across identi�cation schemes. This robustness

suggests that the continuous grid test provides a reliable diagnostic when researchers seek a

broadly consistent assessment of independence rather than maximum power against speci�c

forms of dependence.

Comparative assessment

Taken together, the Monte Carlo results highlight a clear complementarity among the pro-

posed tests. Integer moment-based statistics o¤er strong power against a wide range of econom-

ically relevant non-Gaussian alternatives and perform well even in moderately small samples.

Discrete grid tests provide intuitive diagnostics and competitive power when the number of par-

titions is chosen judiciously, especially when combined with resampling. Continuous grid tests,

while computationally more demanding, deliver consistent inference and stable behaviour across

designs, sample sizes, and identi�cation schemes. Consequently, applied researchers may bene�t

from using the proposed tests jointly rather than in isolation, exploiting their distinct strengths

to assess whether identi�ed structural shocks can plausibly be regarded as independent.

5 Empirical applications

5.1 The oil market

In his seminal contribution, Kilian (2009) argues that movements in the real price of oil

cannot be interpreted as the outcome of a single underlying disturbance. Instead, they arise from

three distinct structural shocks, each with di¤erent macroeconomic implications: (i) an oil supply

shock arising from exogenous disruptions to crude oil production (such as geopolitical con�icts);

(ii) a global aggregate demand shock associated with �uctuations in worldwide economic activity;

and (iii) an oil-speci�c (precautionary) demand shock, re�ecting changes in expectations and

concerns about future supply availability rather than contemporaneous production conditions.

The recursive ordering adopted by Kilian (2009) provides a simple and economic interpretable

identi�cation scheme, grounded in plausible assumptions about which variables can respond

contemporaneously within a given month.

Although this framework corrected several earlier misinterpretations of oil price movements,

the parsimonious three-variable, recursively identi�ed Svar model that he considered could still

be vulnerable to omitted-variable bias, misspeci�ed contemporaneous interactions, or violations

of the assumed independence of structural shocks. These concerns motivate the application of

our independence-based speci�cation tests to his estimated model.

We use the original data from Kilian (2009) from the American Economic Review reposi-
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tory and estimate a trivariate Svar with twenty-four lags to replicate his empirical setup. We

then apply the independence tests described in sections 3.1, 3.2.1 and 3.2.2. For each test, p-

values are obtained from 9; 999 resampling replications that impose the null hypothesis of shock

independence.

The joint tests based on integer moments reject the null of independence with a p-value equal

of 0:010. This rejection is driven primarily by the joint cokurtosis component (p-value 0.008),

with a weaker contribution from coskewness (p-value 0.065). Examination of the individual

moment components reveals that the rejection is almost entirely attributable to dependence

between the oil supply shock and the oil-speci�c (precautionary) demand shock. A plausible

explanation is that, within the three-variable Svar, the oil-speci�c demand shock may act as a

residual category that absorbs speculative behaviour, inventory demand, or other omitted forces.

This interpretation is consistent with Kilian and Murphy (2014), who extend the baseline model

by explicitly incorporating inventories (or separate storage/speculative demand).

In contrast, the discrete grid test based on a 3 � 3 � 3 partition does not reject the null of

independence at the 5% signi�cance level, yielding a p-value of 0:132. Similarly, the continuous

grid test does not reject independence for any conventional choice of the regularisation parameter

either. The associated p-values range from 0:340 (� = 10�5) to 0:413 (� = 10�7).

Overall, these results suggest mild but non-negligible departures from independence that are

detectable by higher-order cross-moment tests but not by distribution-based methods, highlight-

ing the value of applying multiple diagnostic tools when assessing Svar identi�cation.

5.2 Aggregate demand and supply

Blanchard and Quah (1989) propose an in�uential alternative identi�cation strategy for

demand and productivity shocks. Their approach exploits long-run restrictions by assuming that

aggregate demand shocks have no permanent e¤ects on real economic activity while aggregate

supply shocks do. They apply this framework to quarterly US real GDP and the unemployment

rate over the period 1948:Q2�1987:Q4.

We have obtained the data used by Herwartz (2019) from the Journal of Applied Economet-

rics repository and estimated an exactly identi�ed Var with eight lags, imposing the restriction

that the upper-right element of the long run multiplier matrix is zero. Our estimation results

are virtually indistinguishable from those reported in equation (5) of Herwartz (2019).

We then apply our independence tests using 9; 999 resampling replications. Once again, the

evidence is mixed but does not point to strong model misspeci�cation. Tests based on integer

moments do not reject independence when focusing on cokurtosis components, with a p-value

of 0:738. In contrast, the test based on the two coskewness moments produces a very small p-
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value of 0.004. This rejection is entirely driven by the moment combining the level of the supply

shock with the square of the demand shock. More speci�cally, the negative sign of the associated

in�uence function suggests a negative linear relationship between the level of the supply shock

and the volatility of the demand shock.

The discrete grid tests do not formally reject the null of independence at the 5% level,

although the p-values are relatively close to conventional thresholds. Using partitions into three

and four segments yields p-values of 0:102 and 0:069, respectively. We do not consider �ner

partitions, as the sample size is limited and the expected number of observations per cell would

be too small to ensure reliable inference.

Finally, the consistent continuous grid test do not reject independence for any conventional

value of the regularisation parameter. The resulting p-values range from 0:191 (� = 10�6) to

0:204 (� = 10�8). These �ndings are broadly consistent with those in Herwartz (2019), who

reports 0.147 as the p-value of the independence test of Bakirov, Rizzo and Székely (2006).

6 Conclusions

This paper proposes a battery of speci�cation tests designed to assess a fundamental as-

sumption underlying Gaussian Svar analysis: the stochastic independence of the structural

shocks. Although Gaussian PML estimation remains the dominant approach in those models

due to its simplicity and robustness to distributional misspeci�cation, it o¤ers no guarantee that

the shocks extracted from imposed identi�cation restrictions truly behave as independent driving

forces. Our contribution consists in translating the logic of independence-based identi�cation

in the non-Gaussian literature into a practical set of diagnostic tools applicable to conventional

Gaussian Svars, in particular those identi�ed with short-run and long-run restrictions.

We propose three complementary testing approaches. First, test statistics exploiting coskew-

ness and cokurtosis o¤er a simple and computationally fast diagnostic, particularly well-suited

for detecting possibly asymmetric tail-dependence in estimated shocks. Second, discrete-grid

contingency-type tests compare the empirical joint distribution of the shocks against the product

of their marginals, allowing the researcher to trace which speci�c regions of the joint distribution

violate independence. Third, the continuous-grid test provides a consistent inference procedure

based on the entire support of the joint distribution using continuum-of-moments methods and

regularisation techniques to ensure stability. Together, these tools provide a �exible diagnostic

device adaptable to diverse empirical settings and sample sizes.

Our simulation results show that the proposed tests behave well in practice. Across a range

of empirically relevant Dgps, identi�cation schemes and distributional speci�cations, size distor-
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tions remain small - particularly when coupled with resampling-based critical values - and they

have non-trivial power against economically relevant alternative models that involve some forms

of dependence between the shocks. Importantly, the di¤erent approaches exhibit complementary

comparative advantages: integer-moment statistics are powerful against non-Gaussian depen-

dence, discrete-grid methods yield interpretable rejection patterns even in moderately small

samples, while continuous-grid tests provide a consistent procedure regardless of the nature of

the joint dependence. Taken together, our �ndings suggest that empirical practice need no

longer rely on untested identi�cation assumptions because their plausibility can be empirically

assessed rather than taken on faith.

Our two empirical applications illustrate this point. The Kilian (2009) oil-market Svar, a

cornerstone of applied macro-energy analysis, delivers mixed results: integer moment tests detect

correlation between powers of the identi�ed shocks, which is in line with interpretations that pre-

cautionary demand is partly absorbing inventory or speculative behaviour. In contrast, discrete

and continuous grid tests do not reject independence at conventional signi�cance levels. The

Blanchard and Quah (1989) decomposition, on the other hand, appears largely consistent with

independence, though some interesting traces of dependence emerge in speci�c cross-moments.

In summary, these applications highlight the value of speci�cation testing as a lens through

which researchers can evaluate the credibility and interpretation of shocks, and, if necessary,

re�ne model design by relaxing timing assumptions or modifying identifying restrictions.
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Appendices

A Asymptotic distribution of the Gaussian PMLEs with inde-
pendent shocks

Supplemental Appendix C of AFS24 derives analytical expressions for the conditional vari-

ance of the score and the expected value of the Hessian of Svar models with cross-sectional

independent non-Gaussian shocks when the distributions assumed for estimation purposes may

well be misspeci�ed but all the parameters that characterise the conditional mean and covariance

functions are consistently estimated, as in the case of �nite normal mixtures (see Fiorentini and

Sentana (2023) for the general case). Given that a Gaussian distribution is a trivial example

of such mixtures, we can specialise their expressions for the Gaussian PMLEs. To do so, we

only need to realise two things. First, there are no shape parameters, so all terms involving %

disappear. Second, the fact that

@ ln f("�it)

@"�i
= �"�it and

@2 ln f("�it)

(@"�i )
2

= �1 (A1)

simpli�es considerably the expressions for the elements of the covariance matrix of the score

and the (minus) expected value of the Hessian. Speci�cally, if we denote by �i0 the true values

of the shape parameters of the distribution of the ith shock, which is potentially of unbounded

dimension, the necessary ingredients for the variance of the score will be

oll(�i0) = V

�
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which can be consistently estimated from the third and fourth sample moments of the estimated

shocks. As for the expected Hessian, we will have

hll(�i0) = �E
�
@2 ln f("�it)

(@"�i )
2

�����i0� = 1;
hls(�i0) = �E

�
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�����i0� = 0;

hss(�i0) = �E
�
@2 ln f("�it;%1)

(@"2i )
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2

�����i0� = E("�2it j�i0) = 1;
which do not require any estimation.

Analogous simpli�cations apply to the covariances between the in�uence functions underlying
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our di¤erent tests and the Gaussian scores in view of (A1).

On the other hand, we must explicitly take into account that, unlike in the case of models

estimated with non-Gaussian independent shocks, not all elements of the matrix C will be

identi�ed without further restrictions, so that both the variance of the score and the expected

Hessian that they obtain for a model expressed in terms of c = vec(C) will be singular. The

next appendix discusses how to deal with this issue.

B The relationship between restricted and unrestricted elements
of C

The purpose of this appendix is to establish the relationship between c and�c in the case

of short- and long-run restrictions.

In the �rst case, the relationship is trivial given that c = vec(C) and�c =vech(C). Speci�-

cally, let LN denote the usual elimination matrix, which is the unique N(N +1)=2�N2 matrix

such that L0Nvech(P) = vec(P) for any lower triangular matrix P (see chapter 5 and of Magnus

(1988)). The elimination matrix is such that LNvec(G) = vech(G) for any square matrix G

regardless of its nature. Consequently,�c = LNc. In fact, in the case of short-run restrictions,

we can easily obtain the direct relationship between�c = vech(�L) and � = vech(�) as follows.

The di¤erential of � = �L�0L is

d� = d�L ��0L +�L � d�0L;

whence

dvec(�) = (�L
 IN )dvec(�L)+(IN 
�L)dvec(�0L) = [(�L
 IN )+(IN 
�L)KNN ]dvec(�L);

where KNN is the usual symmetric commutation matrix that transforms vec(G) into vec(G0)

and vice versa for any square matrix G (see Magnus and Neudecker (2019)). Unfortunately,

this transformation is singular, which means that we must �nd an analogous transformation

between the corresponding dvech0s. In this context, we can make use of the elimination to write

the previous expression as

dvech(�) = [LN (�L 
 IN )L0N + LN (IN 
�L)KNNL
0
N ]dvech(�L): (B2)

We can then use the results in chapter 5 of Magnus (1988) to show that the above mapping

will be lower triangular of full rank as long as �L has full rank, which means that we can

readily obtain the Jacobian matrix of � with respect to�c. In addition, the full rank nature of

this Jacobian implies that we can also obtain the Jacobian of�c with respect to � by using the
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inverse mapping theorem.

From a numerical point of view, the calculation of both LN (�L 
 IN )L0N and LN (IN 


�L)KNNL
0
N is straightforward. Speci�cally, the e¤ect of premultiplying by the

1
2N(N+1)�N

2

matrix LN is to eliminate rows N + 1, 2N + 1 and 2N + 2, 3N + 1, 3N + 2 and 3N + 3, etc.

Similarly, given that LNKNNvec(A) = vech(A0), the e¤ect of postmultiplying by KNNL
0
N is

to delete all columns but those in positions 1, N + 1, 2N + 1,. . . ,N + 2, 2N + 2,. . . , N + 3,

2N + 3,. . . , N2 (see Supplemental Appendix D of Fiorentini and Sentana (2021) for further

details).

The Jacobian linking c and�c in the case of long-run restrictions is more involved because

their relationship is less direct. Nevertheless, we can obtain it by applying the implicit mapping

theorem to the identi�cation condition, which says that vecl[C0(IN �
Pp
j=1A

0
j)
�1] = 0, where

vecl(:) is the operator that maps by columns the strict lower triangle of a square matrix. In

this context, the formal analysis can be considerably simpli�ed if we make use of the the strict

elimination matrix SN , which is the unique N(N � 1)=2 � N2 matrix such that S0Nvecl(O) =

vec(O) for any strictly lower triangular matrixO. This matrix is such that SNvec(G) = vecl(G)

for any square matrix G regardless of its nature (see chapter 6 of Magnus (1988) for further

details). Naturally, vech(G) and vecl(G0) together represent a mere reordering of the elements of

vec(G), as formally shown in Theorem 6.10.i in Magnus (1988), which states that (L0N ;KNNS
0
N )

is an orthogonal matrix.

Let us de�ne the matrix

B = IN �
Pp
j=1Aj (B3)

so that we can write

F = (IN �
Pp
j=1A

0
j)
�1C = B�1C:

The product rule for di¤erentials immediately implies that

dF = d(B�1) �C+B�1 � dC = �B�1 � dB �B�1C+B�1 � dC:

If we write this in vector form, we obtain

dvec(F) = �(C0B�10 
B�1)dvec(B) + (I 
B�1)dvec(C):

Therefore,

@vec(F)

@vec0(B)
= �(C0B�10 
B�1);

@vec(F)

@vec0(C)
= (IN 
B�1):
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If we do the same with (B3), we obtain

dB = �
Pp
j=1 dAj ;

dvec(B) = �
Pp
j=1 dvec(Aj)

and
@vec(B)

@vec0(Aj)
= �IN 8j:

Consequently, the chain rule for �rst derivatives leads to

@vec(F)

@vec0(Aj)
=
@vec(F)

@vec0(B)

@vec(B)

@vec0(Aj)
= �(C0B�10 
B�1) 8j:

If we then transform vec(F) into vecl(F0) by premultiplying by the matrix SNKNN de�ned

above, we can show that

@vecl(F0)

@vec0(Aj)
= �SK(C0B�10 
B�1) 8j;

@vecl(F0)

@vec0(C)
= SK(I
B�1):

On this basis, the implicit function theorem allows us to obtain the Jacobian of c with respect

to�c and a.

C Standardised multivariate discrete mixtures of normals with
identical margins

Consider the following mixture of two N -variate normals

y �
�
N(�a;�a) with probability �;

N(�b;�b) with probability 1� �; (C4)

which trivially implies that all N marginal distributions are mixtures of univariate normals.

Speci�cally,

yn �
�
N(�an; 


a
nn) with probability �;

N(�bn; 

b
nn) with probability 1� �; (C5)

for n = 1; : : : ; N . Therefore, to guarantee that not only the unconditional means and variances

are identical across series, but also that their entire marginal distributions are identical, we must

impose that both

�a = �a`N , �b = �b`N ; (C6)

and

vecd(�a) = $a`N , vecd(�b) = $b`N ; (C7)
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where `N is a vector of N ones and vecd(:) is the operator that stacks the diagonal elements of

a square matrix in vector form (see chapter 7 of Magnus (1988) for further details). If we also

want to ensure that all the unconditional means are 0, we need to further impose

�a = �(1� �) and �a = ���;

so that � = �1 � �2 is a scalar parameter that controls the di¤erences between the means of the

components. Under these circumstances, the unconditional covariance matrix of y will be

[��a + (1� �)�b] + �(1� �)�2`N`0N ; (C8)

where the �rst term in square brackets is the average of the covariance matrices of the components

and the second one the covariance matrix of their means. For this matrix to be the identity

matrix of order N , we need that both

vecd[��a + (1� �)�b] + �(1� �)�2vecd(`N`0N ) = vecd(IN ) (C9)

and

veco[��a + (1� �)�b] + �(1� �)�2veco(`N`0N ) = veco(IN ); (C10)

where veco(:) is the operator that stacks by columns the o¤-diagonal elements of a square matrix

(see Magnus and Sentana (2020) for further details). Restriction (C9) reduces to

�$a + (1� �)$b + �(1� �)�2 = 1;

with $a; $b > 0, in view of (C7) and the fact that vecd(`N`0N ) = vecd(IN ) = `N . If we de�ne

� = $a=$b as the ratio of the common variances of the components, this is equivalent to

$a =
1� �(1� �)�2

�+ (1� �)� ; (C11)

whose positivity requires that

�2 <
1

�(1� �) : (C12)

In turn, restriction (C10) requires that

�
anm + (1� �)
bnm + �(1� �)�2 = 0 8n 6= m

because veco(`N`0N ) = `N(N�1) while veco(IN ) = 0N(N�1). In other words, we need


anm
1� � +


bnm
�

= ��2 8n 6= m: (C13)

In addition, we need to guarantee that �a and �b are positive (semi-)de�nite. One particular way
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of achieving this requirement is to assume that both �a and �b have equicorrelated structures.

Speci�cally,

�a = $a
�
(1� �a)IN + �a`M`0M

�
and �b = $a�

h
(1� �b)IN + �b`M`0M

i
; (C14)

with

�1=(N � 1) � �a; �b � 1 (C15)

to guarantee that their eigenvalues, which are $a(1��a) and $a[(1��a)+�aN ], and $b�(1��b)

and $a�[(1� �b) + �bN ], respectively, are non-negative.

In this equicorrelated case, 
anm = $
a�a and 
bnm = $

a��b 8n 6= m, so that (C13) simpli�es

to

$a[��a + (1� �)��b] + �(1� �)�2 = 0:

If we then combine this restriction with (C11), we end up with the relationship

[1� �(1� �)�2][��a + (1� �)��b]
�+ (1� �)� = ��(1� �)�2: (C16)

An even more restricted case arises by assuming that �a = �b = � so that �b = ��a, when

(C16) simpli�es to

� = � �(1� �)�2

1� �(1� �)�2
(C17)

Notice, though, that the equicorrelated structure for each component becomes increasingly

di¢ cult to make compatible with the unconditional orthogonality of the series as N grows in

view of (C15).
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