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Abstract

We show that the influence functions of the information matrix test for the multinomial logit model
are the Kronecker product of the outer product of the generalised residuals minus their covariance
matrix conditional on the explanatory variables times the outer product of those variables. Thus, it
resembles a multivariate heteroskedasticity test a la White (1980), which confirms Chesher’s
(1984) unobserved heterogeneity interpretation. Our simulation experiments indicate that using
theoretical expressions for the conditional covariance matrices involved substantially reduces size
distortions, while the parametric bootstrap practically eliminates them. We also show that the test
has good power against several relevant alternatives.
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1 Introduction

White’s (1982) information matrix (IM) test provides a general procedure for examining
the correct specification of models estimated by maximum likelihood (ML). It directly assesses
the IM equality, which states that the sum of the Hessian matrix and the outer product of the
score vector should be zero in expected value when the estimated model is correctly specified.
Chesher (1984) reinterpreted it as a score test against unobserved heterogeneity, a serious concern
in microeconometric models as the parameters characterising objective functions or constraints
often vary across agents. Not surprisingly, the IM test has been extensively studied for univariate
probit and tobit models (see Horowitz (1994) and the references therein).

However, the IM test has not been derived for multinomial logit models in which the explana-
tory variables are common across categories but their effects are not. Polytomous choice models
specify how the probabilities of mutually exclusive Bernoulli variables that make up a multino-
mial random variable & = (&;,...,&x)" vary across observations as a function of L observed

characteristics z. Typically, they are parametrised as

where 3 is a finite vector of parameters. Since the distribution of £ is necessarily multinomial,
correct specification of (1) is equivalent to correct specification of the functional forms for Fy(.; 3).

There are two main categories of logit-type models for polytomous unordered selection:

1. Conditional logit models in which the probabilities depend on the choices’ characteristics
(for example, travel costs for transportation mode choice), but their effects are invariant
across alternatives, so that 8, = 3 Vk.

2. Multinomial logit models in which the probabilities depend on the choosers’ characteristics
(for example, education, age and gender for occupational choice), which are invariant across

choices, while their effects are captured by B}.s that vary across alternatives.

We focus on the latter because they are also popular in switching regime models for time series.
Thus, we complement Mai, Frejinger and Bastin (2015), who apply the IM test to a variant of
the conditional logit model for transportation mode choice originally introduced by McFadden
(1974).

The rest of the note is organised as follows. We derive our theoretical results in Section 2
and report the Monte Carlo exercises that look at the finite sample size and power of the test in
Section 3. Finally, we conclude by discussing some avenues for further research, relegating proofs

and details about our simulations to supplemental appendices.



2 Theoretical results

Consider the following parametrisation of the conditional probabilities in (1):
eBrz

= )
25:1 efiz

Fk(z76) k:17>Ka (2)

where B = (8),...,8%)" collects the coefficient vectors. Naturally, Zf::l pr(z;8) = 1 for all z
and B. For identification purposes, we follow the usual practice of setting 3; = 0, so that the
first category becomes the baseline one, thereby eliminating L elements of the score vector, s(3),
and L(L + 1)/2 of the Hessian matrix, h(3), without loss of generality because the ordering of
the categories is arbitrary. In this respect, Lemma 1 in Amengual, Fiorentini and Sentana (2024)
implies that the IM test is numerically invariant to reparametrisations.

Let pr(z; 8) = [p2(z; B), . ..,px(z; B)] represent the vector of conditional probabilities of the
non-normalised categories, and u,(§,,2;8) = [u2(&y,2;8), ..., ux(x,2;0) = &, — pr(z;0),
with &, = (£,,...,&x)’, the corresponding vector of what Gouriéroux, Monfort, Renault and
Trognon (1987) called generalised residuals by analogy to OLS regressions. Finally, let B N =
(0’,,3/2N, e ,,B/KN)’ = (0, B:,N) denote the ML estimator. Then, we can show that:
Proposition 1 1) The score vector and Hessian matriz of model (2) are given by

s (&2:8) = w(z8) Rz, (3)
h.(&,2;,8) = —{diaglp.(z;8)] — p, (2 B)p;(z;8)} @ 22/, (4)

respectively, so that the IM influence functions are:
m, (§,2; B) = vechlu,(§,z; B)u, (€, z; B) — {diaglpr(z; B)] — pr(z: B)py(z: B)}] @ vech(zz'). (5)
2) Let ﬁTN(ﬁN) denote the sample mean of m,(€,z;3) evaluated at BN, and define
[ R(3) U(B) ] . { m, (€, ) } | ©
u'p) 1(B) sr(&,,2; B)
Then, under correct specification, the IM test statistic
N > 1,y (B [R(Bo) = UB)T ™ (BoU(Bo)) ' mon(Br) * Xicie—vyriunyas ()
If following Newey (1985) and Tauchen (1985) we regard the IM test as a moment test of the
influence functions (5), it is clear that it is effectively testing the conditional mean independence
of the conditionally demeaned outer product of the generalised residuals. Thus, it resembles
a multivariate version of White’s (1980) test for residual conditional heteroskedasticity, which
in turn confirms Chesher’s (1984) reinterpretation of the IM test as a score test for neglected
unobserved heterogeneity.
One feasible version of IM test statistic (7) replaces the elements of (6) by their sample
counterparts evaluated at B ~» which Chesher (1983) and Lancaster (1984) showed is numerically



identical to N R2 in the regression of 1 on m,(€,,z; By) and s,(€,,2; By). Given that this yields
very noisy estimators of (6), we propose another feasible version of the IM test that evaluates the
different elements of (6) by relying on the law of iterated expectations, with 3 replaced by B N and
unconditional expectations by sample averages. Our next result provides analytical expressions

for the required conditional moments:

Proposition 2 a) The relevant conditional variances and covariances required to compute R are:
cov(myg, mjrg) = E[E(mjiymji|z)vech(zz' Jvech'(zz')], where
E(m3;|z) = pj — 5p; + 8p] — 4pj, E(m3|z) = pipe + pjp; — 40507,
E(mjjmyjij|z) = —pjpj + 2p3pyr + 2pjpy — 4pip5,  E(mymyelz) = —pjpe + 4p5pe — 4p3pe,
E(mjymyi|z) = 2p;jpype — Ap5pype,  E(mjemjilz) = ppipjr — 4pipipy
and  E(mjemjip|z) = —4p;pepjipe -
b) In turn, the relevant conditional covariances required to compute U are:
E(mjs’y) = cov(mjy,sj) = E[E(mjeus|z)vech(zz')2'], where
E(mjju;lz) = p; — 3p7 + 2p3, E(mjjuj|z) = —pjpj + 2p3pjr,
E(mjeuj|z) = —pipe + 2p]2-pg and E(mjeu;|z) = 2pjpep;r.
¢) Finally, the information matriz is
I = E{ldiag(pr) — p,p;| ® 22’} (8)
It is important to mention that the IM test cannot be computed when the only regressor is a
constant because in that case the score simplifies to u, and the influence functions underlying the
IM test have zero mean in the sample when evaluated at B ~- The same situation arises when the
explanatory variables consist of an exhaustive set of dummies that in practice generate a partition
of the observations because the coefficients of those dummies effectively correspond to a model
which imposes that the probabilities are constant within each category but heterogeneous across
categories. In both these cases, the multinomial logit model provides a perfect fit to the data.
Nevertheless, as soon as at least one of the elements of z is a continuous random variable, the IM

test can be computed.!

Composite likelihood: A well-known property of multinomial logit models is that they con-
tinue to represent the relative probabilities of any subset of categories for those observations
belonging to them. In particular, if we focus on the first and second categories only, we will end
up with the following binary logit model:

P2z 1+ K, efim

bz B) — = = = ;
pa(2; By) = Pr(§y = 1]z) = 11 oBoz =12(2 By) - 1 + ePaz

'The number of degrees of freedom might need to be adjusted in very special circumstances. For example, in a
binary logit model with a single continuous explanatory variable, the IM test statistic will generally be distributed
as a x7 when the slope coefficient is actually 0.



with the identification condition B; = 0. Since this is true for any two categories, a popular
consistent estimation method for multinomial logit models obtains 3; from K —1 such binary logit
models, in what is effectively a composite likelihood approach (see Lindsay (1988)). This yields
computational gains at the cost of asymptotic efficiency. Nevertheless, the results in Proposition
1 apply to each of those conditional binary logit models as well, with the number of degrees of
freedom becoming L(L + 1)/2. For that reason, in Section 3 we will study these binary IM tests
too.

Unfortunately, the relationship between the IM test for the full model and the K — 1 IM
tests for the binary models is not straightforward because they are based on different subsets of
observations. However, they all maintain not only the same distribution for the underlying choice
shocks but also the independence of irrelevant alternatives assumption, which is precisely what

guarantees the validity of the binary models.

3 Monte Carlo simulations

The asymptotic distribution of the IM test might not be very reliable in small samples. For
that reason, we study its size and power properties in simulated samples of length N = 125,
N =500 and N = 2,000. To estimate the parameters for binary and multinomial logit models,
we make use of the MATLAB toolbox available at https://www.spatial-econometrics.com/ (see

LeSage and Pace (2009)).

3.1 Size properties

When assessing size, we generate 10,000 samples under the null for each data generating
process (DGP) we describe below. We then compare two asymptotically equivalent versions
of the infeasible IM test statistic in (7): the Outer-Product-of-the Score version proposed by
Chesher (1983) and Lancaster (1984) (OPS), and one that replaces the true parameter values 3
with their MLESs B n in the theoretical expressions of the conditional variances and covariances
in Proposition 2 (CM). In all cases, we consider not only asymptotic critical values but also a
parametric bootstrap procedure in which we simulate B = 99 samples from the mixture model
estimated under the null, as proposed by Horowitz (1994).2

We simulate multinomial logit models with K = 3 and K = 5 categories, always including a
constant and one or two continuous regressors. Details on the specific designs can be found in
Supplemental Appendix B.1. Table 1 contains the rejection rates of the multinomial IM tests at
the 1%, 5% and 10% significance levels. Panels A and B refer to models with three categories,

*Horowitz (1994) found that increasing the number of bootstrap samples beyond 99 had little effect on the
results of his experiments.



with two and three explanatory variables, respectively, while Panels C and D to models with five
categories.

The rejection rates using asymptotic critical values in the left subpanels of Table 1 confirm the
need for finite sample size adjustments, especially for the OPS version of the IM test.? Still, the
quality of the asymptotic approximation is much better when we use the theoretical expressions
for the weighting matrix even in samples of size N = 500, although there is still a systematic
overrejection of the null at the 1% level.

In contrast, the bootstrap-based rejection rates in the right subpanels of Table 1 give a com-
pletely different picture: sizes are very accurate and almost all Monte Carlo rejection rates fall
within the relevant 95% confidence set, with the exceptions of the OPS version for N = 125 and
N =500, and the CM version when N = 125 in models with five categories (Panels C and D).

In Table A1 in the supplementary material we report the same figures but for the conditional
binary logits mentioned at the end of section 2.* Not surprisingly, there is still massive over-
rejection of the OPS version of the tests that rely on asymptotic critical values. Interestingly,
though, the overrejections of the CM test at the 1% level are more moderate, probably due to
the smaller number of degrees of freedom of their asymptotic distribution. In any event, the

parametric bootstrap corrects the size distortions for all the sample sizes we consider.

3.2 Power properties

We consider four types of alternatives. Given that an important source of misspecification
in many econometric models are omitted variables, we first simulate data from a model with
L + 1 explanatory variables in which the variance of the additional one is proportional to the
square of the L included variable in the estimated model. In turn, the neglected heterogeneity
interpretation of the IM test provides the motivation for our next two alternatives. Specifically,
we consider a model in which the coefficients for one of the z’s take different values in two equally
sized subgroups of the population, while remaining homogeneous within subgroups. In addition,
we consider another model in which the coefficients for one of the z’s are randomly distributed as
a multivariate Gaussian vector across individuals. Finally, we generate data from an ordered logit
model as an example of misspecification of the functional form F'. In this respect, it is important
to emphasise that the so-called “parallel lines” assumption of the ordered logit model implies
that if we lump together all the categories below and above any given threshold, we will obtain

a binary logit model, in marked contrast to the multinomial logit model (2), in which the binary

3Given the number of replications, the 95% asymptotic confidence intervals for the Monte Carlo rejection prob-
abilities under the null are (0.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1%, 5% and 10% levels.

4The corresponding results for models with five categories are available upon request.



logit models apply to any two categories after suppressing the remaining K — 2 ones. Again,
Supplemental Appendix B.1 contains the details on the specific designs.

We simulate 2,500 samples for each of these alternatives. Given our results in the previous
subsection, we take an accept/reject decision by systematically relying on the bootstrap CM
version of the IM test statistic, thereby ensuring that we carry out a feasible size adjustment.

In Panels A to D of Table 2 we report the results for DGP a to DGP d. As expected, power
increases with the sample size V. In contrast, no clear pattern arises when increasing the number
of explanatory variables. In particular, power seems to increase for DGP b and DCGP d, decrease
for DGP ¢, and present mixed patterns for DGP a. The same comment applies when we move from
three to five categories.

Finally, Table A2 in Supplemental Appendix B.2 reports the same figures for the three binary
logits implied by the models with three categories. As expected, the same pattern is obtained.
More importantly, the IM test of the multinomial logit model is more powerful than the binary

tests.

4 Extensions

The IM tests in this paper can be extended in at least three empirically relevant directions.
First, we could consider discrete Markov chains in which each column of the K x K transition
matrix is a multinomial logit function of the explanatory variables z. Given that a Markov chain
is a collection of K separate multinomial logit models indexed by the value taken by the preceding
multinomial variable & with coefficients which are variation-free, the IM influence functions will
be the collection of IM influence functions for each of those K multinomial models. Second, we
could study mixture models and switching regression models in which the probabilities of the
mixture components or regimes are determined by another multinomial logit model. Given that
the multinomial variable & becomes latent in those circumstances, as in Amengual, Fiorentini and
Sentana (2024), we would need to compute the conditional expected values of the outer product
of the generalised residuals given the observable variables to obtain the IM test. Finally, we could
combine the previous two extensions in a switching regime model in which the regimes follow a
Markovian structure, as in Hamilton (1989), which would force us to rely on a smoother rather
than a filter, as in Almuzara, Amengual and Sentana (2019). We are currently pursuing these

interesting research avenues.
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A Proofs
A.1 Proof or Proposition 1

Note that
BB L [ (S ) — 5] 5 = il AL~ py(as D),
ﬁj <Z£1€B2Z)
while

) _ Bz ﬁ}z
Opr(z;8) _  —eli%e 52 = —pi(z; B)p;j (z; B)z

96, (Zf:l eﬂ,ﬂ)

when k # j. Interestingly, these expressions coincide with z times the conditional variance of ¢

given z and the conditional covariance between {; and §;, given z, respectively.

To derive the score, it is convenient to re-write both expressions together as
Opi(2; B)
8,

where I(.) is the usual indicator function. The contribution of a single observation to the log-

=pr(z B)I(J = k) — pi(z; 8)]z,

likelihood function (ignoring constant terms) will be

In f(€,2;8) = Sy & Inpr(z: B).

Hence, the score with respect to 8; (k =2,..., K) will be given by

0ln z;
sz = TEEBO I 11— ) - i Bz = € i@ )8 = (6B
J

where u;(§;,2;8) = §; — pj(z;8). Thus, we can write the first-order conditions together as (3).

From here, the second derivatives will be

9%In f(€,2; B)
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I
2 .
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whence (4) follows. Therefore, we will have that
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where we have used the fact that f? = ¢; and ;§, = 0. Therefore, we can write the influence
functions corresponding to the information matrix equality in matrix notation as (5), the ad-
vantage of using of vech instead of vec being that we easily eliminate the duplicated influence
functions that appear in (4) and the outer product of (3), thereby avoiding generalised inverses
and providing the right number of degrees of freedom.

The reminder statements in the second part of the proposition follow directly from Chesher

(1983) and Lancaster (1984) given the 4.i.d. nature of the sample. O



A.2 Proof of Proposition 2

We can expand the quantities that appear in cov(mj,, mjy) as

E(m?j‘z)
E(m?|z)

E(mj;mjiji|z)

E{[u} —pji(1
E[(ujug + pjpe)?|2]

B{[u} — p;(1 — py)[uf;

- i)z} =

E(uflz) — 2p;(1 — pj) E(u}|z) + p3 (1 — p;)?,

= E(u?uﬂz) —

2p;peE (ujuelz) + pipy,
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= E(uju|z) — pj(1 — pj)E(ul|z) — pjy (1 — pj ) E(ul|z) + pj(1 — pj)py (1 — pjr),
E(mjjmjelz) = E{[(u} —p;j(1 - pj)(ujue + pjpe) |2}
= E(uuglz) + pjpeE(uf|z) — p;(1 — pj) E(ujuelz) — p3 (1 — pj)pe,

E(mjmjelw) = E{[u} = pji(1 = pji))(ujrue + pjype)|z}
= E(uujuglz) + pypeE(uf|z) — pi(1 — pj) E(ujuelz)] — pi(1 = pj)pype,
E(mjimjulz) = E(ujue+ pjpe)(ujue + pjpe)|2]
= E(ujujuji|z) + p;pepjpe + pypeE(ujuglz)] + pjpeE(ujuglz)  and

E(mjemje|z) = E[(ujue + pjpe) (ujrue + pjpe )|z

= E(ujueujrup|z) + pjpepjpe + pjpeE(ujue|z) + pyrpe E(ujuelz).

Then, if we use the formulae for the fourth-order centered moments of the multinomial distribution

in Ouimet (2021), namely

E(f) = (1-p;)p[1—3(1-p))pj,
E(ulug) = —pj[l —3(1 - pj)pjilpe,
E(wiui) = pjpe(pj + pe — 3p;pe),

E(u?u]/ug) = pj(1 —pj)pjype and
E(ujupujrup) = —3pipepjper,

we obtain the expressions in part a) of the lemma.

Doing the same with the expressions entering in cov(myjy, s;):
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El(ujue + pjpe)u;|z]
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= E(u?u@\z) + pipeE(uj|z)

—p;(1
and

= cov(mjp,uy|z) = El(ujug+ pjpe)uy|z] = E(ujupuy|z) + pjpeE(uyz),

and using the formulae for the third-order centered moments of the multinomial distribution in



Ouimet (2021),

E(}) = pj(1—p;)(1-2p),
E(ufug) = pi(1—2p;)pe

E(ujuguy) = 2pipepjr,

we obtain the expressions in part b) of the lemma.

Finally, the expression for the information matrix follows from its definition. ([

B Monte Carlo simulations: design and additional results

B.1 Design

For each DGP, we always include an intercept and either one or two standard normal uncor-
related explanatory variables. Following Horowitz (1994), we keep the explanatory variables z;,
i=1,..., N fixed in repeated samples. Nevertheless, we minimise the effects of the specific draws
of these regressors by using the standard normal quantile function to generate them inverting a
grid of points equally spaced over the unit interval - from 1/(2N) to 1 — 1/(2N). In the case of
two non-constant regressors, we randomly permute each of them separately to ensure their inde-
pendence, and additionally conduct a Cholesky decomposition to make them exactly orthogonal
in the sample.

More importantly, we choose the 3's so that in simulated samples of five million observations
they provide roughly balanced frequencies across categories and reasonable values for the pseudo-
R?’s proposed by Cragg and Uhler (1970) and McFadden (1974), which we denote as RZ,;, and

RJZW p» respectively. Specifically, we consider under the null:

DGP A K =3, L=2: We pick B5,=(—1,-2)" and B3=(—1,2) so that the average frequencies are
0.36, 0.32 and 0.32, with R?MF:0.34 and RQCU =0.14. As the coefficient sign does not alter
the explanatory power of the z’s, the two binary logits have R?\“‘:0.26 and R%U:O.LB.

DGP B K =3, L=3: We pick B,=(—1,-2,2) and B83=(—1,2,—1) so that the average frequencies
are 0.28, 0.36 and 0.36, with R3,,=0.45 and R%;,=0.21, and R3%,,=0.35 and R%,,=0.21
for the binary logits.

DGP ¢ K =5, L =2: We pick B, = (—1,-2), B3 = (-1,2), B, = (—2,—4) and 35 = (—2,4)
so that the average frequencies are 0.24, 0.14, 0.14, 0.24 and 0.24, with R?MF =(0.37 and
R%U:0.10. Once again, the sign of the coefficient does not alter the explanatory power of
the 2’s, so that the two binary logits involving (¢1,&,) and (£;,&3) are such that R2,.=0.15
and R%,;;,=0.08, while those for (£;,&,) and (£1,&5) have R3,,=0.51 and RZ,,=0.34.



DGP D K =5 L =3: We pick 8, =(—1,-2,2), B85 =(-1,2,-2), B, =(-2,—4,4)" and B =
(—2,4,—4)" so that the average frequencies are 0.18, 0.11, 0.11, 0.30 and 0.30, with R?WF:
0.47 and R%;;=0.16. In turn, the two binary logits for (§;,&,) and (&;,&3) have R2,.=0.18
and RZ;;=0.10, while those for (£;,&,) and (£1,&5) have R3,,=0.59 and RZ;,;=0.43.

As for the alternatives, we consider:

DCP a We simulate the omitted variable as zy 41 = e\/@ with € obtained by applying the standard
normal quantile function to an equally spaced grid of points between 1/(2N) and 1—1/(2N),
choosing By = (—1,—2)" and B3 = (1,—4)' for L =2 and By = (1,—1,-2,-2) and 35 =
(—=1,1,—-1,4) for L=3.

DCGP b For the second half of the sample, we replace the slopes of z; by — 6 and 4 when K = 3,
and —4, 6, 4 and 0 when K = 5.

DGP ¢ We perturb the K — 1 slopes of z; by 3¢, with € obtained by the standard normal quantile
function to a grid of points equally spaced ranging from 1/(2N) to 1 —1/(2N).

DGP d We draw samples from an ordered logit model with y* = 2z 4+ n or v* = /221 + V22 + 1
depending on whether L = 2 or L = 3, with 7 distributed as a standard logistic, and

thresholds —1 and 1 for K = 3 and —2, —%, % and 2 for K = 5.

B.2 Additional results for the binary logit model

In Table Al below we report the same figures as in Table 1 but for the binary logits for models
with three categories. The results for models with five categories are available upon request. Not
surprisingly, the same pattern is obtained regarding the massive overrejection of the OPS version
of the test when relying on asymptotic critical values. Interestingly, the overrejection of the CM
test at the 1% level becomes more moderate, likely due to small number of degrees of freedom
of the corresponding asymptotic distribution, namely L(L + 1)/2. Once again, the bootstrap
corrects the size distortions for all the sample sizes we consider. Similarly, in Table A2 below we
report the figures but for the binary logit models when there are three categories. As expected,

the power figures indicate the same pattern as in Table 2, but with less power.

B.3 Additional references

Cragg, S. G. and Uhler, R. (1970): “The demand for automobiles”, Canadian Journal of Eco-
nomics, 3, 386—406.
Ouimet, F. (2021): “General formulas for the central and non-central moments of the multinomial

distribution”, Stats 4, 18-27.
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