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1 Introduction

The econometric literature on serial correlation tests, which can be traced back at least

to Durbin and Watson (1950, 1951) and the references therein, is vast. Given that Lagrange

Multiplier (LM) tests only require estimation of the model parameters under the null, following

Breusch (1978) and Godfrey (1978a,b), they became the preferred choice for neglected serial

correlation tests in econometric applications. In addition to computational considerations, which

continue to be very relevant for resampling procedures, two other important advantages of LM

tests are that (i) rejections provide a clear indication of the speci�c directions along which

modelling e¤orts should focus, and (ii) they are often easy to interpret as moment tests, so they

remain informative for alternatives they are not designed for. Furthermore, under standard

regularity conditions, they are asymptotically equivalent to the Likelihood ratio (LR) and Wald

tests under the null and sequences of local alternatives, and thus they share their optimality

properties.

One of those standard regularity conditions is a full rank information matrix of the unre-

stricted model parameters evaluated under the null. However, Fiorentini and Sentana (2016)

highlighted some examples of neglected serial correlation tests in which this condition does not

hold despite the fact that the model parameters are locally identi�ed both under the null and

the alternative hypotheses. To tackle this problem, they applied the �extremum� tests pro-

posed by Lee and Chesher (1986), thereby obtaining asymptotic chi-square distributions under

the null. As is well known, Lee and Chesher (1986) studied the restrictions that the null im-

poses on higher-order optimality conditions. Sometimes, the second derivative su¢ ces, but it

might be necessary to study the third or even higher-order ones. They proved the asymptotic

equivalence between their extremum tests and the corresponding LR tests under the null and

sequences of local alternatives in unrestricted contexts. Using earlier results by Cox and Hinkley

(1974), this equivalence intuitively follows from the fact that the extremum tests can often be

re-interpreted as standard LM tests of a suitable transformation of the parameters such that the

new information matrix is no longer singular. In contrast, Wald tests are extremely sensitive to

reparametrization under these circumstances.

Importantly, though, the nullity of the information matrix of the alternative model under

the null is assumed to be 1 in all the aforementioned references. The purpose of this paper is to

develop tests for neglected serial correlation asymptotically equivalent to the LR test in some

highly irregular situations in which the nullity of the information matrix is two or higher. To do

so, we rely on the generalized extremum tests (GET) we have proposed in a companion paper �

see Amengual, Bei and Sentana (2023). For illustrative purposes, we use as examples two classes
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of time series models very popular among practitioners: the multiplicative seasonal Arima

models put forward by Box and Jenkins (1970), and the Ucarima models, which constitute the

basis of the �structural time series�models studied by Harvey (1989) (see Lippi and Reichlin

(1992) for an insightful comparison of some important characteristics of these two models).

We show that our proposed tests e¤ectively check that certain autocorrelations of the ob-

servations are 0, which in turn implies that their asymptotic distribution is standard. This is

somewhat remarkable because GET statistics typically have unusual asymptotic distributions

(see e.g. Amengual, Bei and Sentana (2022)).

We conduct Monte Carlo exercises that study the �nite sample size and power properties

of our proposal and compare it to other tests for neglected serial correlation. We �nd that our

suggested parametric bootstrap procedures yield very reliable test sizes for the small sample

sizes typically encountered in empirical applications to macroeconomic data. In addition, we

con�rm the power superiority of our tests over their competitors. Finally, we also con�rm

their substantial computational superiority over the corresponding LR tests, which require the

maximization over the entire parameter space of an unrestricted log-likelihood function which

is extremely �at around its maximum when the null hypothesis is true. These computational

advantages are particularly pertinent for computing the bootstrap critical values mentioned

above.

The rest of the paper is organized as follows. In Sections 2 and 3, we derive our proposed

tests for the two aforementioned examples and study both their asymptotic properties and their

�nite sample ones. Next, we present our conclusions in Section 4, relegating proofs and some

additional results to the appendix.

2 Multiplicative seasonal ARIMA models

Box and Jenkins (1970) introduced the popular multiplicative seasonal Arima model to

capture the autocorrelation of series with strong seasonal patterns, such as their famous airline

passenger example. The serial dependence structure of these models is perfectly understood,

and the same is true of the properties of the maximum likelihood estimators (MLE) of their

parameters in normal circumstances. Moreover, LM tests for neglected serial correlation in such

models have been readily available for several decades.

However, what it is far less known is that in some cases, the standard regularity condi-

tions that guarantee the asymptotic validity of such tests do not hold. Next, we showcase the

di¢ culties involved by means of a rather simple example.
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2.1 The test statistic

Suppose that after taking regular and seasonal di¤erences of an observed time series, a

researcher would like to formally assess the need for a more complicated dependence structure.

Speci�cally, assuming the data is observed at the quarterly frequency, one of the alternatives

that she might consider is the following Ar(2)-Sar(2) process:

(1� #1L)(1� #2L)(1� #3L4)(1� #4L4)(yt � 'M ) = "t; (1)

with E("t) = 0 and V ("t) = 'V , where yt = ��4xt and xt denotes the original data, so that

H0 : # = 0; with # = (#1; #2; #3; #4)0.

As usual, non-linear least squares estimation coincides with Gaussian ML, so that the crite-

rion function will be

�T
2
ln(2�)� T

2
ln'V �

TX
t=1

[yt � �t('M ;#)]2
2'V

; (2)

where the conditional mean under the alternative is

�t('M ; #) ='M + (#1 + #2) (yt�1 � 'M )� #1#2 (yt�2 � 'M ) + (#3 + #4) (yt�4 � 'M )

� (#1 + #2) (#3 + #4) (yt�5 � 'M ) + #1#2 (#3 + #4) (yt�6 � 'M )

� #3#4 (yt�8 � 'M ) + (#1 + #2)#3#4 (yt�9 � 'M )� #1#2#3#4 (yt�10 � 'M ) :

The model parameters under the null are 'M and 'V , whose restricted MLEs coincide

with the sample mean and variance (with denominator T ) of yt. Moreover, the MLEs of the

parameters of the alternative model, which also include #, usually converge to their true values

at the standard
p
T rate.

However, as we shall formally prove below, the information matrix of model (1) evaluated

at # = 0 has two zero eigenvalues because

@lt
@#1

� @lt
@#2

= 0 (3)

and
@lt
@#3

� @lt
@#4

= 0; (4)

which makes this testing problem a highly irregular one.1

As we show in the proof of Proposition 1, we can �nd a suitable reparametrization

('M ; 'V ; #1; #2; #3; #4) 7! (�M ; �V ; �i1; �i2; �u1; �u2)

1This irregularity is particularly relevant for Wald tests, which are extremely sentitive to reparametrizations
in this context. For example, Fiorentini and Paruolo (2009) found that the rate of convergence of a sequential
Cochrane-Orcutt-type estimator of what is e¤ectively the product of the �rst two autocorrelations of yt is T rather
than T

1
2 or T

1
4 when #1 = #2 = 0 in a non-seasonal version of model (1) in which #3 = #4 = 0.
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that isolates the singularity in the last two parameters in such a way that the �rst derivatives of

the log-likelihood function corresponding to �u1 and �u2 are both 0, where �0i = (�i1; �i2) contains

the parameters of the alternative model that are �rst-order identi�ed while �0u = (�u1; �u2) refers

to those that are �rst-order underidenti�ed but second-order identi�ed.

Fortunately, the assumptions of Theorem 1 in Amengual, Bei and Sentana (2023) apply to

the second derivatives
@2lt

(@�u1)2
=
2 (yt � �M ) (yt�2 � �M )

�V
; (5)

@2lt
@�u1@�u2

= 0; (6)

and
@2lt

(@�u2)2
=
2 (yt � �M ) (yt�8 � �M )

�V
; (7)

because the asymptotic covariance matrix of

@lt
@�M

;
@lt
@�V

;
@lt
@�i1

;
@lt
@�i2

; �2u1
@2lt

(@�u1)2
+ �2u2

@2lt
(@�u2)2

+ 2�u1�u2
@2lt

@�u1@�u2

scaled by
p
T has full rank for any (�u1; �u2) 6= (0; 0), which allows us to obtain the following

result:

Proposition 1
LRT = GETT +Op(T

� 1
4 );

under H0, where LRT is the likelihood ratio statistic based on (2), and

GETT = T (r̂21T + r̂
2
4T + r̂

2
2T1[r̂2T � 0] + r̂28T1[r̂8T � 0]); (8)

where 1[:] is the usual indicator function and

r̂jT =
1

T

X
t

(yt � ~�M )(yt�j � ~�M )
~�V

;

with ~�M = T�1
P
t yt and ~�V = T�1

P
t(yt � ~�M )2.

Therefore, the GETT statistic is simply focusing on the �rst two regular sample autocor-

relations and the �rst two seasonal ones, which is very intuitive in view of (1). Given that

these estimated autocorrelations are asymptotically independent under the null, the asymptotic

distribution of (8) will be a mixture of �22, �
2
3 and �

2
4 with weights

1
4 ,

1
2 and

1
4 , respectively.

2

Furthermore, we can show that a test of white noise against the multiplicativeAr(k)-Sar(ks)

model Qk
j=1(1� #jL)

Qk+ks
j=k+1(1� #jL

4)(yt � 'M ) = "t

2The partially one-sided nature of the test arises from the multiplicative nature of the alternative, which forces
the roots to be always real. Additive alternatives, which allow for complex roots too, give rise to two-sided tests.
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for k � 3 or ks � 3 will numerically coincide with the statistic in (8). The rationale is as follows.

When the null is true, we can prove that the MLE of an additive Ar(3) is such that all three

roots of the lag polynomial are real with probability tending to 0, unless one of the roots is forced

to be 0. Consequently, the LR for multiplicative Ar(3) is asymptotically equivalent to the LR

for Ar(2), and the same applies to the corresponding GETs. Perhaps less surprisingly, we can

also show that we would obtain exactly the same test statistic if we considered multiplicative

Ma alternatives instead.

Finally, it is important to mention that our proposed test, which is based on sample autocor-

relations, is numerically invariant to a¢ ne transformations of the observed series yt. E¤ectively,

this means that its �nite sample distribution is pivotal with respect to ' = ('M ; 'V )
0. There-

fore, one can estimate the sample mean and variance of yt, and apply our test directly to the

standardized series as if they were the observed variables.

2.2 Simulation evidence

Next, we study the �nite sample size and power properties of the testing procedures we in-

troduced in the previous subsection by means of several extensive Monte Carlo exercises. Given

that no nuisance parameters are e¤ectively involved under the null, we can set the unconditional

mean and variance of the innovation "t to 0 and 1, respectively, both under the null and alter-

native hypotheses without any loss of generality. We also estimate 'M and 'V with the sample

mean and variance, respectively, which e¤ectively impose the null.

As alternative hypotheses we consider the covariance stationary models

(1� :1L� :1L2 � :1L3 � :1L4)yt = "t (Ha1)

and

(1� :4L)(1 + :4L)(1� :4L4)(1 + :4L4)yt = "t (Ha2);

for which the �rst, second, fourth and eighth autocorrelation coe¢ cients in the population are

(0:14,0:14,0:14,0:03) and (0,0:16,0:03,0:16). Note that two of the roots of the �rst process are

complex conjugates, while our test is designed for the case of real roots.

We approximate the exact �nite sample distribution using 10,000 simulated samples under

the maintained hypothesis that the yt�s are i:i:d: as standard normals. In fact, we could thus

obtain �exact� critical values for any sample size by increasing the number of simulations.

Alternatively, one could consider a non-parametric bootstrap procedure that randomly draws

with replacement from the observations, which would eliminate any time series dependence

while allowing for any marginal distribution. Either way, we do not need to take into account
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the sensitivity of the critical values to ~' because the test statistics are numerically invariant to

the values of these estimators.

In Table 1 we compare the results of our test for T = 100 (top) and T = 400 (bottom)

with three alternative procedures: LM-Ar(1) and LM-SAr(4), which denote standard LM tests

based on the score of an Ar(1) and a Wallis (1972)-style seasonal Ar(4), respectively, and a

moment test based on the �rst two regular sample autocorrelations and the �rst two seasonal

ones (MT), which is e¤ectively the two-sided version of (8), whose asymptotic distribution is �24

under the null.

In turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels for the

two alternatives. The behavior of the di¤erent test statistics is in accordance with expectations.

In particular, our proposal is the most powerful for Ha2 , which is not very surprising given that

it is designed to direct power against such multiplicative alternatives with real roots. But it is

also the top performer for Ha1 even though the process has two complex roots, which is perhaps

not entirely surprising in view of the positive value of the relevant population autocorrelations.

The scatterplot in Figure 1 visually illustrates the asymptotic equivalence under the null

between LRT and GETT statistics stated in Proposition 1, with the Gaussian rank correlation

coe¢ cients3 between them being 0.932 and 0.986 across Monte Carlo samples of size T = 100 and

400, respectively. Finally, our results also indicate indicate that the LR takes 755 (921) seconds

of CPU time for 10,000 samples of length 100 (400), while computing GET only requires 0.20

(0.24) seconds, respectively, which makes a huge di¤erence in the calculation of the bootstrap

critical values.

3 UCARIMA models

These popular unobserved component models assume that the observed time series are

the superposition of two or more latent Arima time series models, whose parameters can be

estimated by maximizing the Gaussian log-likelihood function of the observed data, which can

be readily obtained either as a by-product of the Kalman �lter prediction equations or from

Whittle�s (1962) frequency domain asymptotic approximation. Once the parameters have been

estimated, �ltered values of the unobserved components can be extracted by means of the

Kalman smoother or its Wiener-Kolmogorov counterpart. These estimation and �ltering issues

are well understood (see e.g. Harvey (1989) for a textbook treatment).

3The Gaussian rank correlation coe¢ cient between two variables is the usual Pearson correlation coe¢ cient
between the Gaussian scores of those variables, which are obtained by applying the inverse Gaussian cumulative
distribution function transform to the ranks of the observations on each variable divided by n+1 (see Amengual,
Sentana and Tian (2022)). Like the Spearman correlation coe¢ cient, the Gaussian one is less sensitive to outliers
than the Pearson one.
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In contrast, tests that assess the correct speci�cation of the parametric Arima models for the

underlying components are far less well studied, even though the various outputs of an Ucarima

model could be misleading under misspeci�ed dynamics. As mentioned in the introduction,

Fiorentini and Sentana (2016) provided a thorough discussion of such tests, highlighting the

popular local level model as an example in which the LM test cannot be computed in the usual

way because the information matrix of the alternative model is sometimes singular under the

null. Unfortunately, the extremum tests of Lee and Chesher (1986) cannot be applied when

the nullity of the information matrix is two or more. Next, we study a simple example of this

situation.

3.1 The test statistic

Undoubtedly, the local level model is the most popular Ucarima model among practitioners.

It assumes that

xt = zt + ut; (9)

�zt = ft; (10)

ut = vt; (11)�
ft
vt

�
jIt�1 � N

��
0
0

�
;

�
�2f 0

0 �2v

��
; (12)

where ft and vt follow two univariate white noise processes orthogonal at all leads and lags, and

�2f and �
2
v are both strictly positive to exclude degenerate cases. Thus, the observed series is

simply a random walk plus noise, whose �rst di¤erences yt = �xt follow anMa(1) process with

coe¢ cient

�y =
1

2

�p
q2 + 4q � 2� q

�
< 0; (13)

where q = �2f=�
2
v denotes the positive but bounded signal to noise ratio, and residual variance

�2a = ��2v=�y:

As is well known, this model justi�es the popular Exponentially Weighted Moving Average

(Ewma) prediction rule, which has proved remarkably successful in many applications ranging

from macro time series to volatility forecasts. However, Ewma predictions become suboptimal

if (10) or (11) are dynamically misspeci�ed, so it makes sense to test them against some more

general alternatives.

To illustrate the issues that may arise, we consider the following nesting model:

(1�  1L�  2L2)�zt = ft
(1� �L)ut = vt

�
(14)
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in which the �signal� zt follows an an Arima(2,1,0) process while the �noise�ut a stationary

Ar(1) process. As a result, the null hypothesis of interest is H0 : � =  1 =  2 = 0.

Once again, we can formally prove that the nullspace of the information matrix of the

parameters of model (14) evaluated under the null is 2 because the �rst-derivatives of the log-

likelihood function corresponding to  1 and  2 are linear combinations of the ones corresponding

to �2f , �
2
v and �. As a result, we show in the proof of Proposition 2 that we can �nd a suitable

reparametrization

(�2f ; �
2
v; �;  1;  2) 7! (�2yf ; �

2y
v ; �

y;  y1;  
y
2)

that isolates the singularity in the last two parameters in such a way that the �rst-derivatives

of the log-likelihood function corresponding to  y1 and  
y
2 are both 0.

Like Fiorentini and Sentana (2016), we can explicitly relate this singularity to the identi-

�cation conditions for Ucarima models in Hotta (1989). Speci�cally, although model (14) is

generally identi�ed, it is locally equivalent around the null to the following model:

�zt = (1�  1L�  2L2)ft
ut = (1� �L)vt

�
; (15)

in the sense that the (absolute value of the) scores and information matrices are identical when

H0 holds. Unlike model (14), which generates the autocorrelation structure of a restricted

Arma(3,3) for yt, model (15) generates the autocorrelation structure of an unrestricted Ma(2),

which depends on three parameters only, namely the twoMa coe¢ cients plus the variance of the

reduced form innovations. In contrast, model (15) depends on �ve parameters, namely  1,  2

and � together with �2f and �
2
v, which means that the Ma(2) reduced form can only identi�ed

a manifold of dimension 2 of the structural parameters.

In addition, we show that after the aforementioned reparametrization,

@2lt

(@ y1)
2
= 0

and
@3lt

(@ y1)
3
= 0;

while
@2lt

(@ y2)
2
6= 0;

which means that these two parameters have di¤erent degrees of identi�cation. Fortunately,

the assumptions of the more general Theorem 2 in Amengual, Bei and Sentana (2023) apply,

allowing us to obtain the following result:
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Proposition 2
LRT = GETT +Op(T

� 1
8 );

under H0, where LRT is the corresponding likelihood ratio statistic, and

GETn =
�
~r2T ~r3T ~r4T

�
V�1�a�a

0@ ~r2T
~r3T
~r4T

1A ;

with

~rjT =

P
t ytyt�jP
t y
2
t

and

V�a�a = lim
T!1

V

24pT
0@ ~r2T
~r3T
~r4T

1A35 : (16)

Therefore, both LRT and GETT are e¤ectively testing that the second, third and fourth

autocorrelations of yt are 0. This result is not entirely surprising in view of the fact that yt

follows an Ma(1) model under the null and an Arma(3,3) under the alternative. Unlike what

happened in the model discussed in section 2, though, the sample autocorrelations are no longer

asymptotically independent under the null, so we need their asymptotic covariance matrix, which

is particularly simple to obtain in the frequency domain using the expressions in Appendix B.1,

as we explain in the proof of Proposition 2.

3.2 Simulation evidence

To assess the size properties of our proposed test, we generate 10,000 samples of lengths

T = 100 and T = 400 of the local level model (9)-(12). Under the null, we simulate Gaussian

shocks with �2f = 1 and �
2
v = 0:5, so that the signal to noise ratio is neither too small nor too

high.

We compute GETT using its spectral version (A3) with the information matrix (A2) esti-

mated using (B7) after computing the periodogram using the fast Fourier transform. It is also

important to emphasize that the LRT statistic requires the estimation of model (14). For the rea-

sons described in the introduction, this is a non-trivial numerical task. To increase the chances

that we obtain the correct unrestricted ML estimates, we maximize the spectral log-likelihood

of model (14) starting from the true values of the parameters in each design.

Although our main interest lies in the GETT and LRT statistics in Proposition 2, we also

consider the following two moment tests for comparison purposes:

1. no second-order serial correlation in yt,

2. no second- or third-order serial correlation in yt.

9



Importantly, in computing these moment tests, we use the relevant elements of (A2) to obtain

the adjusted asymptotic covariance matrix of the second and third sample autocovariances.

Unlike what happens in the multiplicative seasonal Arima model in section 2, the �nite

sample distribution of GETT and LRT is not pivotal with respect to the value of the signal to

noise ratio q, even though both statistics are numerically invariant to the scale of �yt. For that

reason, we conduct a parametric bootstrap procedure whereby for each of those 10,000 simulated

samples, we simulate another NB� 1 samples in which we set �2f to 1 without loss of generality

and (1+q)�1 to its estimated value, so that we can automatically compute size-adjusted rejection

rates, as forcefully argued by Horowitz and Savin (2000).4

We present the rejection rates under the null for the tests at the 10%, 5% and 1% in the

�rst three columns of Table 2 for samples of length 100 (top) and 400 (bottom).5 As can be

seen, all the testing procedures have reasonable size in both cases, which is reassuring for macro

applications.6

Next, we simulate and estimate 10,000 samples of the same length of the following two

alternative data generation processes (DGPs):

(1 + 0:5L+ 0:4L2)�zt = ft
(1� 0:5L)ut = vt

�
(Ha1)

and
(1� 0:1L+ 0:5L2)�zt = ft

(1 + 0:5L)ut = vt

�
(Ha2)

with the same �2f and �
2
v as in the null hypothesis. The �rst four autocorrelation coe¢ cients of

these processes in the population are (-0:32,-0:19,0:15,-0:04) and (-0:42,0:03,-0:15,0:15), respec-

tively.

The corresponding rejection rates, which we report in the last six columns of Table 2, indicate

that the behavior of the di¤erent test statistics is in accordance with expectations. For both

alternatives, the GET and LR tests are more powerful than the competitors. Interestingly, our

proposal is the most powerful for Ha2 while it has slightly less power than LR for Ha1 .

As in the �rst example, the scatterplot in Figure 2 visually illustrates the asymptotic equiv-

alence under the null between LRT and GETT in Proposition 2, with the Gaussian rank corre-

lation coe¢ cients between the GET and LR test statistics across Monte Carlo samples of size
4 In fact, the bounded support of (1 + q)�1 allows us to compute a table of �exact� critical values for a �ne

grid of values of this reduced-form Ma coe¢ cient before running the actual simulations (see Appendix D.1 in
Amengual and Sentana (2015) for details). The same procedure works if we replace (1+ q)�1 by either �y in (13)
or the �rst-order autocorrelation of yt, which are both between 0 and -1, but it is trickier to apply to q because
this parameter can take any positive real value in the sample.

5Given the number of Monte Carlo replications, the 95% asymptotic con�dence intervals for the Monte Carlo
rejection probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1%, 5% and 10% levels.

6 In a very small fraction of the samples of size T = 100 simulated under the null (0.62%), we encountered
the �pile-up� problem associated to a positive �rst-order sample autocorrelation for yt. In contrast, this never
happened under either of the alternatives, or indeed when T = 400.
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T = 100 and 400 generated under the null being 0.743 and 0.807, respectively, re�ecting the

slower rate of convergence. The simulation results also indicate that the LR takes 1250 (1763)

seconds of CPU time for 10,000 samples of length 100 (400) while computing GET only requires

4.5 (5.5) seconds, respectively, which once again makes a huge di¤erence in the calculation of

the bootstrap critical values.

4 Conclusions

We characterize the singularity of the information matrix of a multiplicative seasonal Ar

model à la Box and Jenkins under the null of white noise, as well as of a trend plus signal

Ucarima model that nests the popular local level process. Using the generalization in Amen-

gual, Bei and Sentana (2023) of the extremum-type tests in Lee and Chesher (1986) to models in

which the nullity of the information matrix under the null hypothesis is strictly larger than one,

we explain how to obtain an LM-type test based on higher-order derivatives which is asymp-

totically equivalent to the LR despite said singularity but only requires estimation under the

null. This is particularly relevant for resampling-based inference because the fact that several

log-likelihood derivatives are 0 under the null implies that the LR requires the estimation of all

the parameters that appear under the alternative in a model whose log-likelihood function is

extremely �at.

Our proposed dynamic speci�cation tests are simple to implement and even simpler to inter-

pret. And although some of our theoretical derivations make extensive use of frequency domain

methods for time series, we provide a simple time domain interpretation of the statistics, so that

empirical researchers who are not familiar with spectral analysis can still apply them easily.

We conduct Monte Carlo exercises that study the �nite sample size and power properties

of our proposals and compare them to alternative approaches. We �nd that our suggested

parametric bootstrap procedures work very well, and that our tests have more power than

alternative procedures. We also �nd that the computational advantages of our GET procedures

relative to the LR ones are very substantial.

In the two examples that we consider the model parameters are only identi�ed up to higher-

order when the null is true. As a result, a local power analysis of our proposed tests would

necessarily involve sequences of those parameters converging to zero at unusually low rates.

Nevertheless, given that in both cases our test statistics have �2-like asymptotic distributions

under the null, they would approximately follow non-central �2 distributions in large samples

if we ignore inequality constraints. Finding exact expressions for the non-centrality parameters

constitutes an interesting avenue for further research.
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Appendices

A Proofs

For the sake of brevity, we have not included below a detailed veri�cation that the mul-

tiplicative seasonal Arima model and the Ucarima models that we consider satisfy all the

assumptions required for the application of Theorem 1 and 2 in Amengual, Bei and Sentana

(2023), respectively.

Proof of Proposition 1

The scores evaluated under the null will be

@lt
@'M

=
yt � 'M
'V

;

@lt
@'V

=
(yt � 'M )2 � 'V

2'V
;

@lt
@#1

=
@lt
@#2

=
(yt � 'M ) (yt�1 � 'M )

'V
and

@lt
@#3

=
@lt
@#4

=
(yt � 'M ) (yt�4 � 'M )

'V
;

which immediately imply (3) and (4), thereby con�rming that the nullity of the information

matrix is 2.

Consider the reparametrization from the original set of parameters % = ('M ; 'V ; #1; #2; #3; #4)
0

to a di¤erent set � = (�M ; �V ; �i1; �i2; �u1; �u2)
0 de�ned by

'M = �M ;

'V = �V ;

#1 = �i1 � �u1;

#2 = �u1;

#3 = �i2 � �u2 and

#4 = �u2:

The corresponding �rst-order derivatives under the equivalent hypothesis H0 : �i1 = �u1 = �i2 =

�u2 = 0 are

@lt
@�i1

=
(yt � �M ) (yt�1 � �M )

�V
;

@lt
@�i2

=
(yt � �M ) (yt�4 � �M )

�V

14



@lt
@�u1

= 0; and

@lt
@�u2

= 0:

In turn, the second-order derivatives involving �u1 and �u2 are given in (5), (6) and (7).

Let �u1 = ��1 and �u2 = ��2 with �21 + �22 = 1 and consider the simpli�ed null hypothesis

H0 : � = 0 for �xed values of �1 and �2. In this context, the only relevant quantity associated

to � is
@2lt
@�2

= 2�21
(yt � �M ) (yt�2 � �M )

�V
+ 2�22

(yt � �M ) (yt�8 � �M )
�V

:

Moreover, given that

E

�
@lt
@�

@lt
@�0i

�
= 0 and E

�
@lt
@�

vech0
�

@2lt
@�u@�

0
u

��
= 0

under the null, we can ignore the parameter uncertainty in estimating �M and �V , at least

asymptotically.

In this context, the GET statistic will be given by

GETT = sup
jj�jj=1

T�1[S0�i(
~�;0);H�(~�; 0;�)]V�1(~�;�)[S0�i(~�;0);H�(~�; 0;�)]

0; (A1)

where

S�i(�) = [S�i1(�); S�i2(�)]
0 ;

H�(�; �;�) =
TX
t=1

@2lt
@�2

; and

V(�;�) = V arfT�1=2[S0�i(�;0);H�(�; 0;�)]
0j�;0g:

Importantly, the sup-type statistic (A1) can be computed analytically in this example.

Speci�cally, straightforward algebra shows that

GETT = T sup
jj�jj6=0

�
~r21 + ~r

2
4 +

(�21~r2 + �
2
2~r8)

2

�41 + �
4
2

1[�21~r2 + �
2
2~r8 � 0]

�
:

In addition, we can show that the value of � that maximizes the above expression will be

proportional to the vector

(
p
~r21 [~r2 � 0];

p
~r81 [~r8 � 0])

if ~r2 � 0 or ~r8 � 0, and to (1; 1) otherwise, which con�rms (8). �

Proof of Proposition 2

We can use expression (B4) in Appendix B.1 to compute the spectral approximation to the

log-likelihood function of model (14) with gyy(!;�) given in (B8) and � = (�2f ; �
2
v; �;  1;  2)

0.
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To simplify the notation, let us de�ne the vector

C(!) =
2�Iyy(!)� gyy(!;
)

g2yy(!;
)

266664
1

cos(!)
cos(2!)
cos(3!)
cos(4!)

377775 ;

which corresponds to the contribution of frequency ! to the spectral score of an Ma(4) model

parametrized in terms of its unconditional variance and �rst four autocovariances, say 
 =

(
0; 
1; 
2; 
3; 
4), evaluated at 
2 = 
3 = 
4 = 0, as can be immediately seen from (B5).

Importantly, gyy(!;�) = gyy(!;
) for all ! under the locally equivalent null hypotheses H0 :

� =  1 =  2 = 0 and H0 : 
2 = 
3 = 
4 = 0 when both �
2
f and �

2
v are strictly positive.

Therefore, we can write the contribution of frequency ! to the spectral score as

@lt
@�2f

= ( 1 0 0 0 0 )C(!)

@lt
@�2�

= ( 2 �2 0 0 0 )C(!)

@lt
@�

= ( �2�2f 4�2f �2�2f 0 0 )C(!)

@lt
@ 1

= ( 0 2�2f 0 0 0 )C(!)

@lt
@ 2

= ( 0 0 2�2f 0 0 )C(!)

We can immediately notice that the last two elements of this score belong to the linear span of

the �rst three.

To isolate those singularities, we conduct a two-step reparametrization as follows. First, we

consider

�2f = �2�f � 2�2�f  �1 + �2�f ( �1)2 � 2�2�f  �2;

�2� = �2�� + �
2�
f  

�
1 + 2�

2�
f  

�
2;

� = �� +
�2�f
�2��

( �1)
2 +

�2�f
�2��

 �2;

 1 =  �1;

 2 =  �2;

16



and then

�2�f = �2yf � �
2y
� ( 

y
1)
3;

�2�� = �2yf +
1

2
�2y� ( 

y
1)
3;

�� = �y �
(�2yf )

2 + 2�2y� �
2y
f

2(�2y� )2
( y1)

3;

 �1 =  y1;

 �2 =  y2 �
( y1)

2

2
:

As a consequence, the relevant derivatives after reparametrization will be

@l

@�2yf
=

@l

@�2f
= ( 1 0 0 0 0 )C(!)

@l

@�2y�
=

@l

@�2�
= ( 2 �2 0 0 0 )C(!)

@l

@�y
=

@l

@�
= ( �2�2f 4�2f �2�2f 0 0 )C(!)

and
@l

@ y1
=

@l

@ 02
=

@2l

(@ 01)
2
=

@3l

(@ 01)
3
= 0:

In addition, straightforward calculations deliver

@2l

(@ y2)
2
= C0(!)

2666664
2�2f (�

2
� � 2�2f )=�2�
8�4f=�

2
�

�8�2f
�4�4f=�2�
4�2f

3777775 ;

@2l

@ y1@ 
y
2

= C0(!)

2666664
�2�4f=�2�

�2�2f (�2� � 2�2f )=�2�
�2�2f (�2f + 2�2�)=�2�

4�2f
0

3777775 ;
and

@4l

(@ y1)
4
= C0(!)

2666664
6�2f (4�

4
f + 14�

2
f�

2
� + 9�

4
�)=�

4
�

�24�2f (2�4f + 7�2f�2� + 2�4�)=�4�
24�2f (�

4
f + 4�

2
f�

2
� + 2�

4
�)=�

4
�

�12�4f=�4�
�12�2f

3777775
Thus, in the notation of Theorem 2 in Amengual, Bei and Sentana (2023), we have

S�;T =
TX
t=1

C(!t);
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where !t = 2�t=T (for 0 = 1; : : : ; T � 1) are the usual Fourier frequencies,

��(�) =

0BB@ �2�2f�� 4�2f ( 2)2 �
2�2f (�

2
f+2�

2
�)

�2�
 1 2 +

�2f (�
4
f+4�

2
f�

2
�+2�

4
�)

�4�
 41

�2�4f
�2�
 22 + 4�

2
f 1 2 �

�4f
2�4�

 41
2�2f 

2
2 � 12�2f 

4
1

1CCA ;

and

�T =
np

T��

o
! � = R3:

The interpretation of C(!t) as a spectral log-likelihood score allows us to obtain the asymp-

totic variance of S�;n suitably scaled by T�
1
2 using expression (B6). Speci�cally, if we partition

the autocovariances into 
n = (
0; 
1) and 
a = (
2; 
3; 
4), then we will have that

T�
1
2S�;T

d! N

��
0
0

�
;

�
I
n
n I
n
a
I 0
n
a I
a
a

��
; (A2)

with the di¤erent elements evaluated at 
a = 0.

On this basis, we obtain

GETT =

"
T�

1
2

TX
t=1

C0(!t)

#�
�I�1
n
nI
n
a

I3

��
I
a
a � I

0

n
a

I�1
n
nI
n
a
��1

(A3)

�( �I 0
n
aI
�1

n
n

I3 )

"
T�

1
2

TX
t=1

C0(!t)

#
:

Given that the restricted MLEs for �2f and �
2
v are such that in large samples the estimated

model will perfectly match the sample variance and �rst autocovariance of yt with probability

approaching 1, the �rst two components of S�;T evaluated at ~�T will be 0, which in turn implies

that GETT is e¤ectively testing that the second, third and fourth autocovariances of yt are

simultaneously 0 on the basis of their sample counterparts, but taking into account the sampling

uncertainty in estimating those autocovariances when the true process is the local level model

(9)-(12).

Finally, applying the delta method to go from the autocovariances 
j (j = 0; :::; 4) to the

autocorrelations �j = 
j=
0 (j = 1; :::; 4) delivers the expressions in the statement of the propo-

sition. �
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B Additional results

B.1 Maximum likelihood estimation in the frequency domain

Henceforth, we assume that yt is a covariance stationary series, which may require taking

�rst or seasonal di¤erences of the observations, as in the examples in sections 2 and 3.

Let

Iyy(!) =
1

2�T

TX
t=1

TX
s=1

(yt � �)(ys � �)e�i(t�s)!

denote the periodogram of yt and !j = 2�j=T (for j = 0; : : : T �1) the usual Fourier frequencies.

If we assume that the spectral density gyy(!;�) is not zero at any of those frequencies, the so-

called Whittle (1962)�s (discrete) spectral approximation to the log-likelihood function is

�T
2
ln(2�)� 1

2

T�1X
j=0

ln jgyy(!j ;�)j �
1

2

T�1X
j=0

2�Iyy(!j)

gyy(!j ;�)
: (B4)

The MLE of �, which only enters through Iyy(!), is the sample mean, so in what follows we

focus on demeaned variables. In turn, the score with respect to all the remaining parameters is

@lt
@�

=
1

2

T�1X
j=0

@gyy(!j ;�)

@�
M(!j ;�)m(!j ;�); (B5)

m(!;�) = 2�Iyy(!)� gyy(!;�);

M(!;�) = g�2yy (!;�):

The information matrix is block diagonal between � and the elements of �, with the (1,1)-

element being gyy(0) and the (2,2)-block

Q(�) =
1

4�

Z �

��

@gyy(!j ;�)

@�
M(!;�)

�
@gyy(!j ;�)

@�

��
d!; (B6)

where � denotes the conjugate transpose of a matrix. A consistent estimator will be provided

either by the outer product of the score or by

�(�) =
1

2

T�1X
j=0

@gyy(!j ;�)

@�
M(!j ;�)

�
@gyy(!j ;�)

@�

��
: (B7)

In fact, by selecting an arti�cially large value for T in (B7), one can approximate (B6) to any

desired degree of accuracy. In addition, the univariate nature of yt implies that both gyy(!j ;�)

and its derivatives are real.

Formal results showing the strong consistency and asymptotic normality of the resulting ML

estimators of dynamic latent variable models under suitable regularity conditions were provided

by Dunsmuir (1979), who generalized earlier results forVarmamodels by Dunsmuir and Hannan

(1976). These authors also show the asymptotic equivalence between time and frequency domain

MLEs.
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B.2 The autocorrelation structure of the UCARIMA model

We can derive the autocovariance structure of the yt = �xt by the usual inverse Fourier

transformation


yy(k) = cov(yt; yt�k) =

Z �

��
ei!kgyy(!)d!

after exploiting that gyy(!) is the sum of the spectral densities of the signal and noise compo-

nents, st = �zt and nt = �ut, respectively, which are cross-sectionally uncorrelated at all leads

and lags. Speci�cally, we know that

yt =
1

1�  1L�  2L2
ft +

1� L
1� �Lut = st + nt;

where the �rst component, st, is an Ar(2) process while the second component, nt, is an

Arma(1,1) with a unit root on the Ma part.

Thus,

gyy(!;�) = = gss(!;�) + gnn(!;�)

=
�2f

(1�  1e�i! �  2e�2i!) (1�  1ei! �  2e2i!)
+
(1� e�i!)(1� ei!)�2v
(1� �e�i!)(1� �ei!)

=
�2f

(1 +  21 +  
2
2)� 2 1(1�  2) cos! � 2 2 cos 2!

+
2(1� cos!)�2v

(1 + �2)� 2� cos! : (B8)

However, the expressions for 
yy(k) are somewhat easier to obtain in the time domain as the

sum of the autocovariances of the two underlying components.

The autocovariances of the Ar(2) process for the signal are given by the usual Yule-Walker

recursion


ss(k) =  1
s(k � 1) +  2
s(k � 2); (B9)

with initial conditions


ss(0) =

�
1�  2
1 +  2

�
�2f

(1�  2)2 �  21
;


ss(1) =

�
 1

1 +  2

�
�2f

(1�  2)2 �  21
;

which yields


ss(2) =
 21 +  2(1�  2)

1�  2

s(0);


ss(3) =
 1[ 

2
1 +  2(2�  2)]
1�  2


s(0); and


ss(4) =
 1[ 

3
1 +  1 2(3�  2)] +  22(1�  2)

1�  2

s(0):
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To �nd the solution for general k, it is convenient to �nd the roots of the characteristic equation

(B9), which are given by

�1 =
1

2
 1 +

1

2

q
 21 + 4 2

�2 =
1

2
 1 �

1

2

q
 21 + 4 2

When the roots are di¤erent (real or complex), the autocorrelation of order k will be given

by


ss(k) =
�k+11 (1� �22)� �k+12 (1� �21)

(�1 � �2)(1 + �1�2)

s(0):

Applying L�Hôpital�s rule, this simpli�es to


ss(k) =

�
1 + k

(1� �2)
(1 + �2)

�
�k
s(0)

when the two roots are equal, which happens for  2 = � 21=4 (see e.g. Fuller (1995)).

In turn, the autocovariances of the Arma(1,1) process for the noise will be


nn(0) = �2v

�
1 +

(�� 1)2
1� �2

�
=

2�2v
�+ 1

;


nn(1) = �2v

�
(�� 1) + (�� 1)

2�

1� �2

�
=
(�� 1)�2v
�+ 1

;

and


nn(k) =
�k�1(�� 1)�2v

�+ 1
:

Finally,


yy(k) = 
ss(k) + 
nn(k):
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C Tables and �gures

Table 1: Monte Carlo rejection rates (in %) under the alternative hypotheses for the white noise
versus multiplicative seasonal Ar test.

Alternative hypotheses
Ha1 Ha2

1% 5% 10% 1% 5% 10%

T = 100

GET 29.3 48.2 57.7 26.5 51.9 64.2
LR 15.3 33.3 44.2 20.8 46.6 59.3
LM-Ar(1) 16.8 32.3 40.9 3.1 10.8 17.0
LM-SAr(4) 15.4 31.7 41.6 3.8 11.6 18.4
MT 27.0 44.3 53.3 22.0 43.7 55.0

T = 400

GET 87.4 94.7 96.8 92.1 97.9 99.1
LR 81.0 92.3 95.3 92.2 98.0 99.1
LM-Ar(1) 60.1 76.9 84.1 3.7 10.8 17.7
LM-SAr(4) 57.3 78.2 86.0 4.9 13.7 22.1
MT 85.3 93.3 95.8 89.6 96.7 98.2

Notes: Results based on 10,000 samples. The mean and variance parameters 'M and 'V are estimated
under the null using their sample analogs. GET is computed as de�ned in section 2.1. DGPs: the true
unconditional mean and the variance of the innovations are set to 0 and 1, respectively, under both the
null and alternative hypotheses. As for the alternative hypotheses,

(1� 0:1L� 0:1L2 � 0:1L3 � 0:1L4)yt = "t (Ha1)

and
(1� 0:4L)(1 + 0:4L)(1� 0:4L4)(1 + 0:4L4)yt = "t (Ha2):

LM-Ar(1) and LM-SAr(4) denote the Lagrange multiplier tests based on the score of an Ar(1) and a
seasonal SAr(4), respectively. MT refers to the two-sided version of GET. Finite sample critical values
are computed using a parametric bootstrap procedure.
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Figure 1: Alignment of GET and LR under the null under null for the white noise versus

multiplicative seasonal Ar test.
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Notes: Scatter plots of the GETT and LRT test statistics. Results based on 10; 000 simulated samples
of size T of y � i:i:d: Gaussian. GET is computed as explain in section 2.1. The true mean and variance
of the simulated data are set to 0 and 1, and the elements of ' are estimated using the sample mean and
variance, respectively.
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Figure 2: Alignment of GET and LR under the null for the local level model versus the
Ucarima model (14).
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Notes: Scatter plots of the GETT and LRT test statistics. Results based on 10; 000 simulated samples
of size T of the model under the null with Gaussian shocks with �2f = 1 and �

2
v = 0:5. GET is computed

as explained in section 3.1.
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