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1 Introduction

Around 30% to 50% of older workers in the United States experience post-retirement

employment before exiting the labor force for good (Alcover et al., 2014; Wang et al., 2014;

Cahill and Quinn, 2020), and more than half of them move to jobs with lower wages and

fewer working hours (Ameriks et al., 2020). This type of "gradual transition" to full retire-

ment is important to study to understand employment dynamics near retirement age. It is

also policy-relevant because many countries have considered retirement policy reforms,

including increasing the statutory retirement age to relieve the pressures on the pension

system, as population aging is becoming an increasingly large challenge.1 Evaluation of

the effectiveness and welfare effects of these policies requires researchers to understand

how individuals make retirement decisions, which further requires understanding the

risks that older people face and how those risks interact with their retirement decisions.

The interest in the different types of risks that individuals face is not only limited to

policy evaluation. Indeed, the study of the risks that older workers face is essential for

understanding income dynamics near retirement. However, the identification of risks

requires controlling for endogenous choices such as employment decisions. This is so

because individuals may react to different shocks by making contingent choices. For

example, individuals who receive a firm-specific productivity shock that worsens the

match with their job may move to a different one. The total variation in the observed

wage changes is therefore the result of both exogenous shocks and endogenous choices.2

Consequently, taking those employment choices into account is crucial in distinguishing

exogenous risks from observed earning variation.

This paper studies the risks that older people face and their gradual transition to full

retirement. First, using Health and Retirement Study (HRS) data, I document the left-

skewness in the wage and hour changes for jobmovers. To explain this type of movement

to worse-paying and less-demanding jobs, I propose an aging-related shock, mismatch

shock, that mismatches workers with their existing jobs and triggers job leave. One

possible interpretation is the stamina decreases: as people age, it becomes more difficult

to work and focus for a long period of time, which causes productivity drops and stress,

1Reported in World Population Ageing 2019 by Population Division of the United Nations Department
of Economic and Social Affairs, the number of 65+ persons in the world is projected to double to 1.5 billion
in 2050, and by the end of this century, therewill be 155 countries withmore than one fifth of the population
older than 65 years old

2Low et al. (2010) obtain smaller variance of permanent shocks adding endogenous choices in employ-
ment and job.



and triggers movement to worse-paying but less-demanding jobs. Following the income

dynamics literature, I further build a latent-variable wage and hour processes jointly

with flexible employment and job transition model. This empirical model is flexible but

interpretable, and allows us to disentangle health risks, individual-specific productivity

risks, firm-specificmismatch risks, quality of outside offers, and jobdestruction risks from

endogenous choices. I study the role of different shocks in explaining job movement to

worse-paying and less-demanding jobs. Finally, I calculate the welfare cost of different

risks and the value of the smooth transition to full retirement by building a utility-based

model where agents make consumption and employment choices facing the same set of

risks, identified from my flexible model.

Using a sample of male individuals aged between 50 to 70 in the HRS data, I start by

documenting statistics on employment, wage, and working hours for older workers in

the US. Descriptive statistics show that in each period, around 11% of individuals start

working in a new job. Workers leave the previous job for different reasons, including

business closure (6.9%), lay-offs (20.3%), poor health (13.5), better job (7.1%), job quits

(9.6%), and retirement (39.4%), each followed by different employment status in later

waves. For those who continue working with a different employer, most of them face

wage and hour decreases, leading to a left-skewed distribution ofwage and hour changes.

I then build a panel data-based estimation framework of wages, hours, employment,

and job dynamics. The model consists of three blocks. The first block is stochastic

wage and hour equations. The wage equation consists of individual’s characteristics,

latent health, unobserved fixed effect, general productivity, firm-specific productivity,

and measurement error.3 I specify the hour equation in a parallel way allowing for a

firm-specific working-hour component.

The second block includes equations describing the uncertainty people face. Specif-

ically, the model includes a rich set of risks associated with which are shocks to health,

general productivity, firm-specific productivity, and employment (i.e., job destruction).

Additionally, individuals also receive a random outside job offer, a package of firm-

specific wage and hour components, in each period. In particular, I define mismatch

shock as an aging-related discrete shock that is connected with changes in firm-specific

productivity and job leave. Moreover, it can also have a persistent effect on future job

offers.
3Individual characteristics include age, education and race
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The last block of the model is a list of equations describing the employment and

job transitions between periods. Possible transitions for workers include becoming non-

employed, staying at the same job, and starting a new job. Themovements are depicted by

employment-to-employment and job change equations, which are affected by the quality

of offers, their current wages, health, and wealth. In contrast, there are only two paths

possibly observed for those who were non-employed: either remaining non-employed

or moving to a new job. The probability of being employed is captured by the non-

employment-to-employment equation. All these equations involve latent variables, are

flexible and empirically rich. They can be seen as approximate reduced form rules of a

class of more restrictive utility-based structural models.

In this empirical model, mismatch shock is expected to be a key component to explain

the gradual transition to full retirement. This is because those who suffer mismatch

shocks are more likely to receive worse job offers and at the same time more likely to

accept a worse offer due to reservation wage changes. The 0-1 discrete format therefore

creates a natural asymmetry and left-skewness in wage and hour changes. Mismatch

shocks also provide a possible justification for non-linear persistence (as in Arellano

et al., 2017): compared with receiving some marginal shocks to general productivity,

individuals who receive mismatch shocks and start a new job lose all the accumulated

tenure, which potentially corresponds to a much smaller persistence of wage history.4

Intuitively, shocks to general productivity are identified through job stayers whereas

mismatch shocks are identified through job movers especially those with non-marginal

wage changes.

As an extension, I study the welfare cost of these risks and quantify how much

individuals value the possibility of a flexible transition to full retirement. To do this,

I construct and estimate a utility-based structural model of consumption, employment,

and job movements. Agents in the model derive utility from consumption and leisure

and pay extra costs for working, re-entry, and changing jobs depending on their age

and health. They make decisions on consumption and saving, labor supply, and job

changes by optimizing the expected discounted utility facing the same health, income,

and employment risks as in the non-structural empirical model. This structural model

can be seen as a more restrictive version of the empirical model, which serves as a

4Friedrich et al. (2019) has similar similar framework and allows for firm-level shocks identified from
matched employer-employee data. The difference is that they use Swedish data, they do not specifically
focus on older people, and they use earning data for the lack of hour measurement.
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tool for measuring the welfare changes in different settings. Specifically, I conduct two

counterfactual analyses. In the first exercise, I evaluate the welfare cost from the risks of

being mismatched or losing jobs involuntarily by eliminating the risks and compare to

the baseline model. In the second exercise, I evaluate the welfare loss from not being able

to change jobs or re-enter after 65 years of age, which speaks of the value of bridge jobs.

Two measures are constructed, where one is a lump-sum transfer of assets, and the other

is consumption flows.

To estimate the empirical model, which contains various latent variables, I exploit the

parameter-expanded stochastic EM algorithm (PX-SEM) studied in Wei (2021). PX-SEM

is a simulation-based algorithm that combines the parameter expansion techniques in

Liu et al. (1998) with the stochastic EM algorithm (Diebolt and Celeux, 1993), which is

a variant of the original EM algorithm (Dempster et al., 1977). Similar to the standard

SEM algorithm, PX-SEM alternates between an E-step, where we simulate draws from

the posterior distribution of the latent components, and an M-step, where we update pa-

rameters. The difference is that in theM-step of PX-SEM, I exploit more robust estimators

to the draws from the E-step by imposing some assumptions from themodel itself, taking

into account that the E-step draws might be simulated under values of the parameters

that are far away from the optimum. This is achieved by applying parameter expansion

techniques, which requires in theM-step: 1) expanding the originalmodel by allowing for

extra correlations between latent variables and observables and by adding extra param-

eters to relax the covariance matrix, 2) estimating the expanded model, and 3) reducing

to the original model space while keeping the likelihood of observables unchanged. The

PX-SEM method improves the algorithmic efficiency in estimating the empirical model

which otherwise is intractable using standard SEM algorithm.

To estimate the structural model, I propose a new simulation-based algorithm that

makes use of the estimates of the empirical model. Specifically, parameters are chosen

such that the structural model best approximates the estimated empirical model. This

method is different from Indirect Inference because it exploits the information on latent

variables. Under the premise that the empirical model can be treated as a flexible approx-

imation to the reduced form of the structural model, it improves both the algorithmic and

statistical efficiency. Precisely, we can bring directly the risks from the empirical model

to the structural one as input, and estimate the remaining parameters of the structural

model more efficiently by comparing its simulations with the estimated empirical model
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instead of data.

This paper constructs two types of models to combine their advantages. The empir-

ical model brings us more credible estimates of risks due to its flexibility; whereas the

structural model allows us to do welfare analysis.5 These two models are well-connected

by both the nested structure and the new simulation-based algorithm.

The models are estimated using the 1996-2016 data from the Health and Retirement

Study (HRS). Specifically, I focus on male individuals aged between 50 and 70. The

estimation results show that our model can capture the dynamics in employment and job

movements, as well as the left-skewness in the distribution of wage changes and hour

changes among job movers. Mismatch shocks play an important role in explaining the

jobmovements of older workers to jobs that pay less and/or require fewerworking hours.

Shutting down mismatch shocks implies that the mean wage drop of movers is reduced

by around 55%, and the variance of wage changes goes down by 17% to 28%, depending

on the age groups. This is mainly driven by the bottom percentiles, as %10 of wage

changes increases by 17% and 23% for the younger and older group respectively, and the

%10 of hours changes increases by 28% and 49%, whereas the %90 is almost unchanged in

all cases. A similar pattern also applies to hour changes. Additionally, I look at bridge job

movements and the associated wage and hour changes. The conclusion is that mismatch

shocks are the main driver of bridge job movements associated with cuts in wages and

hours.

Finally, the welfare calculation shows that the median cost of mismatch shocks

amounts to a lump sum transfer of assets at age 55/56 of around $62, 300 for the high

education group and $26, 700 for the low education group, or a reduction in consumption

flow by 7.11% for the high education (HE) and 5.33% for the low education (LE). Indi-

viduals seem to value the possibility of a flexible transition at their older age. Imposing

restrictions on job changes and re-entry causes a median loss of around $107, 300 for HE

and $58, 400 for LE, which is equivalent to a reduction in consumption flow by 12%−14%.

Literature and contribution. This paper is closely related to several strands of the

literature. The first one is the vast literature on income dynamics. From the perspective of

the identification of income risks, models can be classified into two types: univariate and

multivariate (Arellano, 2014). Univariate models refer to those that use income history

alone and identify the risks from income variation (Lillard andWillis, 1978; Hause, 1980;

5Structural models tend to have simplified risk dynamics due to dimensionality restriction. In addition,
the model is more restrictive due to the parametric assumption.
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MaCurdy, 1982; Chamberlain and Hirano, 1999). Compared to the canonical random-

walk permanent transitory models, the recent literature has documented new features of

incomedynamics and accommodates themby further relaxation in different dimensions.6

That being said, this paper belongs to the group of multivariate models that exploit not

only income history but also other information, like working hours and employment

history (Abowd and Card, 1989; Altonji et al., 2013; Low et al., 2010; Friedrich et al.,

2019). By modelling a list of risks and their contingent decisions jointly, we can hope to

distinguish exogenous risks from endogenous choices whenmodelling the total variation

of income. Relative to other papers in this literature, a distinguishing feature of this paper

is a specific focus on older workers. Related to this, another contribution is that the rich

set of risks is intended to capture the risk specificities of older workers—in particular by

allowing for mismatch shocks that capture firm-worker-level productivity declines and

trigger the move of some workers to worse-paying jobs. Key papers in the multivariate

literature, such as Altonji et al. (2013) and Low et al. (2010), do not include health shocks

and the productivity of a match remains constant. Low and Pistaferri (2015) includes

health shocks but no firm-level productivity. Friedrich et al. (2019) studies the pass-

through of firm-level shocks to wages, and allows for variation of firm-level productivity

but they do not focus on older workers.

Secondly, this paper is related to retirement studies (Gustman and Steinmeier, 1983;

Rust and Phelan, 1997; Blau and Gilleskie, 2008; French, 2005; French and Jones, 2011,

among others). In this literature, structural models are commonly used as tools to study

labor participation changes and to conduct counterfactual policy analysis.7 Fewer papers

have focused on job dynamics and the corresponding patterns of wage change for older

workers. Blau (1994) provides a descriptive analysis of employment dynamics for older

workers. Berkovec and Stern (1991), to which this paper is closely related, model job

movements as a result of shocks and choices. However, theydonot allow for an individual

persistent productivity component, ignore the effect of wealth in labor supply decisions,

6Guvenen et al. (2021) and the papers in the Global Income Dynamics project document the evolution of
skewness and kurtosis of income and income changes using administrative data over the years in different
countries. Arellano et al. (2017) shows the evidence of the nonlinear persistence of income dynamics with
flexible quantile models. Browning et al. (2010) models earnings processes allowing for high-dimensional
heterogeneity. Hospido (2012) allows for heterogeneity in the conditional variance of wages. Almuzara
(2020) models both permanent and transitory income changes allowing for cross-sectional heterogeneity.
Sanchez and Wellschmied (2020) models age-varying positive and negative earning shocks over the life-
cycle and finds out the negative shocks dominates for workers between 50-55.

7Such as analyzing the role of social security system (French, 2005), Medicare (Blau and Gilleskie, 2008;
French and Jones, 2011), and etc.
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and assume perfect information of future health.8 They do not focus on explaining the

pattern of wage changes associated with job movements either. Recent work by Jacobs

and Piyapromdee (2016) tries to explain the re-entry behavior by incorporating a burnout-

recovery process to utility functions (Maestas andLi, 2007). This paper complements their

study by trying to explain the dynamics from the risk side on the basis of a rich set of risks

and paying attention to job-to-job changes in addition to revised retirement choices.9

A third strand towhich this paper is related is the interdisciplinary literature on bridge

jobs. The interest in bridge jobs draws from different social science, including economics

(Ruhm, 1990; Maestas, 2010; Cahill et al., 2011, 2018; Cahill and Quinn, 2020; Ameriks

et al., 2020; Brunello and Langella, 2013), psychology (Zhan et al., 2009; Wang et al., 2008),

sociology (Han and Moen, 1999) and management (Kim and Feldman, 2000; Sullivan

and Al Ariss, 2019). The detailed definition of bridge job varies according to disciplines,

the main question under study, or the available datasets. This paper contributes to

this literature by studying bridge jobs in an economic model that is not built around a

narrow definition of bridge job. The bridge job movement manifests itself through the

employment and job movements in the model. Furthermore, the model allows us to

control for selection, explore quantitatively the reasons and outcomes of starting a bridge

job, and conduct counterfactual analysis.

Additionally, this paper is also related to the literature on health dynamics and their

impact on other outcomes. In terms of themodelling of health dynamics, this paper fits in

the line of research that assumes health as an exogenous process (Amengual et al., 2017;

Lange andMcKee, 2012; Halliday, 2008; Heiss, 2011).10 Once again, this paper specifically

focuses on the impact on the labor supply of older workers (Blundell et al., 2016, 2017;

French, 2005; French and Jones, 2011).11 This paper contributes to the health literature by

estimating a latent health process that interacts flexibly with other model components.

Finally, from a methodological point of view, this paper belongs to an expanding

literature that considers the application of the EM algorithm (Dempster et al., 1977) and

its variants as well as Indirect Inference in estimating latent variable models (Diebolt and

8They argue that wealth is partly captured by the non-wage utility flow, which is constant during the
tenure and employment history has not effect on the random job-specific opportunities.

9Usually they distinguish full time and part time.
10Examples of endogenous health dynamics in which pecuniary and/or non-pecuniary investments are

allowed includeGrossman (1972);HokayemandZiliak (2014);Halliday et al. (2019);Margaris andWallenius
(2020).

11Research on saving includes Bueren (2018); De Nardi et al. (2010), and research on the effect over the
life cycle include De Nardi et al. (2017); Capatina et al. (2018); Jolivet and Postel-Vinay (2020); Hosseini et al.
(2021)
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Celeux, 1993; Arcidiacono and Jones, 2003; Arellano and Bonhomme, 2016; Liu et al.,

1998; Keane and Smith, 2003). This paper contributes to this literature in two ways. First,

I apply the idea of parameter-expanded stochastic EM algorithm studied in a companion

paper to the estimation of the nonlinear panel datamodel (Wei, 2021). Second, I propose a

novel simulation-based estimation method that exploits the flexible reduced-frommodel

in order to estimate the structural model.

Organization. The paper proceeds as follows. In section 2, I discuss the institutional

background of the US labor market for workers near retirement, which also motivates

the model specification. Section 3 presents the empirical model of earning dynamics.

Section 4 explains the mapping between variables in the model and the data. In section

5, I discuss the estimation methods. In section 6, I present model fit diagnostics and

empirical results. Next, I quantify the welfare cost of risks in section 7 by conducting

counterfactual analysis in a utility-based model. Finally, Section 8 concludes.

2 Older Workers In HRS

For many older Americans, retirement does not mean a one-time and permanent with-

drawal from the labor market. On the contrary, retirement is a gradual and dynamic

process, accompanied by moving in and out of the labor market and job changes (Cahill

et al., 2011; Cahill and Quinn, 2020; Ameriks et al., 2020). Jobs that take place between the

career employment period and full exit from the labor force are often referred to as bridge

jobs. In the rest of this section, I will present evidence related to employment dynamics

of older workers in the US using the HRS dataset, which further inspires our modelling

strategy.

HRS is a longitudinal panel study that surveys a representative sample of non-

institutionalized individuals aged 50+ in the US.12 It includes detailed information on

health and economic characteristics and has been conducted every other year since 1992.13

For consistency of the questionnaire, we use data from 1996 to 2016, a total of 11 waves.

We present statistics for male individuals aged between 51 to 70. See Section 4 for further

details of sample selection.

Table 1 shows that around 32% of HRS individuals between 51 to 70 make at least
12The Health and Retirement Study is sponsored by the National Institute on Aging (grant number NIA

U01AG009740) and is conducted by the University of Michigan.
13The exception is the AHEAD cohort whose second wave and third wave are in year 1993 and 1995

respectively.
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one job change.14 Two situations are further distinguished depending on whether there

is a spell of non-employment between two jobs. We categorize a job change that happens

between two consecutive waves as a job-to-job transition and a job movement with at

least one wave of non-employment in between as a re-entry.15 Around 21% of HRS

individuals have experienced job-to-job transitions whereas fewer, around 14%, have

experienced re-entry. Measures based on individual-year observation show that 4% of

the non-employed transition to employment, and among those who stay employed, 11%

change jobs. The number remains relatively stable for different age groups, except that

the job-to-job movement decreases slightly after 65 to around 8%. In general, there is a

non-negligible number of employment and job movements, and the movements do not

concentrate on a narrow age group.

Table 1: Employment Dynamics

Age group
All ≤ 55 55 ∼ 60 60 ∼ 65 > 65

Individual
People who have started new jobs 0.32 0.16 0.21 0.17 0.13

job-to-job transition 0.21 0.12 0.15 0.10 0.05
re-entry 0.14 0.03 0.06 0.06 0.08

Individual-year
Employment to Employment 0.60 0.87 0.78 0.54 0.30
Employment to Nonemployment 0.14 0.08 0.10 0.18 0.14
Nonemployment to Employment 0.04 0.03 0.04 0.03 0.04
Nonemployment to Nonemployment 0.23 0.02 0.08 0.24 0.52
Job-to-job transition 0.07 0.11 0.09 0.06 0.02

conditional on employment 0.11 0.12 0.11 0.11 0.08
Notes: HRS sample, male 51-70, further selection discussed in Section 4.

Among those who left their jobs, HRS shows a diversity of motivations for doing

so. Table 2 presents the main reasons for leaving the employer recorded in the previous

wave,which includes retirement (39.4%), laid-off (20.3%), poorhealth (13.5%), quit (9.6%),

better job (7.1%), and business close (6.9%).16 Moreover, different reasons for leaving are

14Including individuals who have not reached 70, removing individuals with missing wage and hours,
or attrition can lead to an underestimation of this statistics.

15The job-to-job transition may also contain a non-employment period of up to two years between two
surveys. To be categorized as re-entry, at least 3 waves are required: employed, non-employed, and
employed. In Section 4, we discuss in detail the definition of employment variables and their limitations.

16Other reasons includes family care (1.5%), family moved (1.4%), ownership changed (1.3%), pension
rule changed (0.1%), divorce/separation (0.0%), handed over responsibilities to other family members
(0.0%), transportation (0.6%), to travel (0.1%), early retirement incentive/offer (0.5%), financial advanta-
geous (0.2%), transferred (0.0%).
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associated with different employment dynamics. For instance, people with poor health

are much more likely to be non-employed in the following wave. In contrast, around

half of people who left due to business close start a new job in the following wave. The

results suggest that there is substantial heterogeneity in the shocks that people receive

(e.g., involuntary job separation, health shocks, productivity shocks, etc.), which further

leads to distinct employment dynamics in later life.

Table 2: Fractions of Reasons For Leaving The Job

In the following wave
All Employed Non-employed

Business close 6.9 3.4 3.4
Laid off 20.3 9.0 11.3
Poor health 13.5 0.6 12.8
Better job 7.1 6.5 0.6
Quit 9.6 5.3 4.3
Retire 39.4 5.1 34.3

Notes: HRS sample.

Additionally, for those who left their jobs, a job-to-job transition is much more likely

than re-entry. Figure 1 presents the result of fitting a Cox proportional hazards model

for unemployment duration with age and education as independent variables. Figure

1(a) is the estimated hazard function, and 1(b) is the survivor function. The results show

that for those who left their jobs, the probability of starting a new job decreases with the

non-employment duration: most of them start working immediately in the next wave.

Figure 1: Cox Proportional Hazards Model For Unemployment Duration

(a) Hazard function (b) Survivor function

Notes: the hazards model controls for education and age.

Finally, we focus on the group of individuals with a job-to-job transition and compare

their wage and hour changes with those of the group of stayers. Figure 2 plots the density
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of logwages and log hours for stayers andmovers. Specifically, Figure 2a compares the log

wage changes. It is obvious that the distribution for stayers is more concentrated around

zero, whereas the one for movers is much more widespread. Furthermore, the wage

changes of movers are more left-skewed, with more negative changes than positive ones.

The result indicates that stayers face much less wage volatility thanmovers. Indeed, most

movers end up with a worse-paying job, and only a small fraction of them end up with a

better-paying job. Figure 2b presents the distribution for hour changes. The comparison

between stayers and movers is qualitatively the same as that for wage changes, which

suggests that the switch to worse-paying jobs might be accompanied by a reduction in

working hours. We further restrict the sample to workers with more than 10yrs of tenure

to get closer to the notion of bridge jobs. As shown in Figures 2c and 2d, the features are

more pronounced. In Appendix B, we include additional results by education, similar

figures in which "business close" movers are excluded, figures in which both "business

close" and "laid-off" movers are excluded, and the pattern remains the same.17

To sum up, there are a non-negligible amount of employment and job changes with

distinct reasons. In terms of wage and hour changes, there is heterogeneity between stay-

ers andmovers. Amongmovers, a large fraction switch to jobs that areworse paid and/or

less time demanding. Motivated by these facts, we construct a model that takes into ac-

count different types of shocks and aims to capture the heterogeneity in employment

transitions, job mobility, as well as changes in wages and hours.

3 An Empirical Model of Earning Dynamics

In this section, I propose an empirical model of earning dynamics following Altonji et al.

(2013) with extensions in adding health andmismatch shocks and endogenizing working

hours. The model specifies a set of interpretable shocks and their transmission to wages,

hours of work, and employment status. It also allows for observed and unobserved

heterogeneity.

The timing of events is as follows. Consider individual 8, 8 ∈ {1, 2, ..., #} at period
C, C ∈ {1, ..., )} whose current or most recent job is indexed by 9(C).18 Firstly, he receives

a set of shocks to employment status, latent wage rate, and working hours. At the same

17For prime-age workers, Bowlus et al. (2021) document that non-laid-off movers on average experience
positive earnings growth, Karahan et al. (2019) document the left skewness of earning change distribution
for both stayers andmovers and the level vary with lifetime earnings, and Halvorsen et al. (2019) document
that the left skewness is mainly driven by stayers.

18We use job and firm interchangeably.
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Figure 2: Log Wage And Hour Changes For Movers And Stayers

(a) Log wage changes
0

2
4

6

-2 -1 0 1 2
log wage changes

Stayers
Movers

(b) Log hour changes

0
2

4
6

8

-2 -1 0 1 2
log hour changes

Stayers
Movers

(c) Log wage changes, Tenure ≥ 10HAB

0
2

4
6

-2 -1 0 1 2
log wage changes

Stayers
Movers

(d) Log hour changes, Tenure ≥ 10HAB

0
2

4
6

8

-2 -1 0 1 2
log hour changes

Stayers
Movers

Notes: HRS sample.

time, he also gets an outside job offer 9′, which is a package of wage rate and working

hours. Then the worker will face three possibilities: stay at the old job, move to the new

job or become non-employed. The non-employed only face two possibilities: move to the

new job or stay non-employed. Finally, the observed wage rate and working hours are

determined based on the employment outcomes.

Notation. Throughout the model specification, we uniformly use � to represent coef-

ficients, whose superscript and subscript refer to the dependent variable and explanatory

variable, respectively. We use 5:(·) to represent a function whose output is variable : or a

component of variable :. Letter � stands for an i.i.d. error component, and its superscript

refers to the variable on which � has a direct effect.

Log wages. We start by introducing the wage process. Denote the observed log wage

rate by F8C for individual 8 at period C. We only observe F8C for workers (�8C = 1), and it
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equals the latent wage F∗
8C
plus the measurement error �8C , as indicated by equation (1).19

F8C = �8C × (F∗8C + �8C) (1)

F∗8C = -
′
8C�

F
- + ℎ8C�

F
ℎ
+ �8 + $8C +  8 9(C) (2)

Equation (2) describes the composition of the latent wage. The first component contains

a vector of exogenous observables -8C including education, race, polynomials of age, and

a recession indicator. The second term contains a latent health status variable ℎ8C . The

third one is an unobserved individual fixed effect �8 .20 Finally, the last two components

are individual productivity, $8C , and firm-specific productivity,  8 9(C).

Working hours. Let ;8C denote the annual working hours. They are determined in the

following way:

;8C = �8C × (-′8C�;- + ℎ8C�
;
ℎ
+ �8�;� + �8 9(C) + �;8C) (3)

Equation (3) says that we only observe positive working hours for workers. The amount

depends on the demographic characteristics and aggregate shocks -8C , health ℎ8C , un-

observed fixed effect �8 , a firm-specific working-hour requirement �8 9(C) and a transitory

shock �;
8C
.

Health dynamics. Latent health ℎ8C follows an age-dependent Markovian exogenous

process:

ℎ8C = 5ℎ(ℎ8 ,C−1, 0648 ,C−1, 43D8 , �
ℎ
8C) (4)

We regard ℎ8C as an underlying continuous index associated with self-reported health

level in the HRS survey, BAℎ8C , which is a discrete variable varying from 1 (Excellent) to 5

(Poor). The measurement equation is:

BAℎ8C =

5∑
:=1

1(ℎ8C > �BAℎ
:
) (5)

The range of ℎ8C , which is (−∞,∞), is divided into five intervals by the thresholds �BAℎ .

Self-reported health is a subjective measure. It is comprehensive and is considered as

a powerful predictor of mortality (Idler and Benyamini, 1997; Heiss, 2011). In addition,

self-reported health alone is enough for identifying the parametric model of latent health

dynamics. Adding more variables might improve the efficiency, but might also change

19In principle, �8C could also capture transitory shocks that are independent of employment outcomes.
20We assume �8 is independent of the education and race in -8C . Therefore, �8 represents the extra

heterogeneity in addition to the linear effects of education and race.
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the interpretation of the latent variable. Health investments, either pecuniary or non-

pecuniary, are not considered.

Individual earning power. In our model, people differ in productivity $8C and pro-

ductivity risk �8C . The productivity risk �8C is determined by lagged risk, age, and health,

and further affects the process of productivity $8C . Their joint dynamics are as follows

$8C = �(�8C , 0648 ,C−1)$8 ,C−1 + �$8C�8C (6)

�8C = 5�(0648 ,C−1, ℎ8 ,C−1, �8 ,C−1, 43D8 , �
�
8C) (7)

As shown in equation (6), productivity risk �8C affects $8C through both the variance

of the shocks and the persistence. The interpretation is that some people might face

larger volatility and/or faster depreciation of productivity than others. Furthermore,

this heterogeneity can change over time and be partly explained by their age and health

history.

This specification ismotivated by the recent literature that finds non-linear persistence

in income dynamics (Arellano et al., 2017; Almuzara, 2020).21 The nonlinearity means

that the persistence, instead of being constant, changes with the current status and the

shocks. As a result, some extreme shocks could fully erase the accumulation of human

capital. One way to allow for this feature in our model is through �8C : negative health

history causes non-marginal drop in productivity.

Firm-specific wage component and mismatch shock. The firm-specific component

 8 9(C) consists of two parts, a deterministic polynomial trend of tenure C4=′
8 9(C)�4 and a

stochastic term �8 9(C) that captures the job fit. The value of �8 9(C) changes with jobs and can

also change during a job tenure when workers become mismatched. Let �′
8 9(C) denote the

wage component attached to the job offer, and <8C denote a 0-1 discrete mismatch shock.

We have the following equations:

 8 9(C) = C4=
′
8 9(C)�

 
C4= + �8 9(C) (8)

�8 9(C) =


�′
8 9(C) if start a new job (D48C = 1 or 928C = 1)
�′′
8 9(C) � �8 9(C−1) if not start a new job and <8C = 1
�8 9(C−1) Otherwise

(9)

Equation (9) says that variable �8 9(C) is determined by both shocks and choices. When

peoplemove to a new job, either fromnon-employment (D48C = 1) or their old job (928C = 1),

�8 9(C) changes to the value of the new job �′
8 9(C). If people maintain their employment and

21A special case of equation (7) is a fixed �8 as in Almuzara (2020).
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job status without suffering from mismatch shock, �8 9(C) keeps the same value as in the

previous period. However, if an individual receives a mismatch shock, �8 9(C) is reduced

to a much smaller value �′′
8 9(C−1) such that staying at the old job implies earning a much

lower wage rate in the following periods.

The probability that a mismatch shock happens depends on age, education, the

stochastic firm-specific wage component, and the employment status in the previous

period.

<8 9(C) = 1{ 5<(0648 ,C−1, 43D8 , �8 ,C−1, �8 ,C−1) + �<8C > 0} (10)

A mismatch shock is defined as a shock that reduces wages and also triggers a job

change.22 , 23 The shock is intended to capture a non-marginal drop in firm-specific pro-

ductivity, which is associated with the randomness of the aging processes in life. On the

one hand, deteriorating health as people age might cause a decrease in productivity. On

the other hand, the impact of aging on productivity is not necessarily associated with

diseases. For instance, fluid intelligence, which refers to the ability of reasoning, learning

new things, and other mental activities that depend onlyminimally on prior learning and

acculturation, tends to decline during late adulthood (McArdle et al., 2002). The decline

of cognitive skills associated with fluid intelligence is heterogeneous across individuals

and rather general at the within-individual level as people age (Ghisletta et al., 2012).

Therefore, this may cause workers in cognitive-skill demanding occupations to mismatch

with their job requirements and other similar jobs.24 However, finding a comprehensive

cognitive health measure is often difficult.25 Relying on the latent mismatch shock, we

expect to capture part of the changes in cognitive health as well.

In combinationwith thedynamics of �8 9(C), oncemismatch shockhappens in themodel,

staying at the current job becomes too costly. The options opened to amismatchedworker

will only be non-employment or to accept an outside offer, which will also be impacted

by the mismatch shock. Mismatch shocks can also happen during non-employment,

thus reflecting the depreciation of job-specific productivity, which further affects the

22Alternatively, a mismatch shock could be specified as a shock to wages only. However, such a model
would not be able to capture the pattern of wage changes. This is because we observe much smaller wage
volatility among stayers than movers.

23In principle the mismatch shock might also capture the wage changes due to the pass-through of the
firm productivity. Without matched employ-employee data, we can not distinguish the two.

24Wen (2018) provides evidence that cognitive health affects labor supply depending on occupation for
older workers.

25For instance, Wen (2018) uses memories only, Blundell et al. (2017) constructs an index from memories
and two variables of IADL list, Heineck and Anger (2010) uses results of symbol correspondence test.
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probability of transitioning to employment as well as future wages.

Firm-specific effect on working hours. The firm-specific hours component �8 9(C) is

included in the hours equation to reflect some potential fixed requirements of each job. It

stays the same during the tenure of a worker and changes to �′
8 9(C) when the worker starts

a new job.

�8 9(C) =

{
�′
8 9(C) if D48C = 1 or 928C = 1

�8 9(C−1) otherwise
(11)

Job destruction and new offer. In each period, there are some workers involuntarily

losing their jobs due to job destruction. We define 938C as a 0-1 binary variable that equals

1 when job destruction happens. Its probability varies with education to allow people

with different education levels to have different levels of work stability (equation ??). s

Meanwhile, everyone receives a job offer in each period. In our model, a job offer is

defined as a package of wage component �′
8 9(C) and hours requirement �′

8 9(C). The hours

requirement can be treated as a sort of amenity (Lamadon et al., 2019; Card et al., 2018).

People either take it or leave it. The distribution of offers is expressed in equations (12)

and (13):

�′
8 9(C) = 5�(�8 9(C0), <8C , 938C , �8 ,C−1, 43D8) + ��8C (12)

�′
8 9(C) = 5�(�8 9(C0), <8C , 938C , �8 ,C−1, 43D8 , �

′
8 9(C)) + �

�
8C

(13)

Variables �8 9(C0) and �8 9(C0) represent the initial firm-specific wage and hours components

of the current or most recent job. The dependence of new offers on (�8 9(C0), �8 9(C0)) may

reflect different aspects. For example, new employers may refer to workers’ previous

wages when they make an offer.26 In addition, the employment status can also affect the

job offer. Whether someone was working or not (�8C−1), or whether someone lost the job

involuntarily or not (938C) might reflect their effort in searching for new jobs. Moreover,

the mismatch shock <8C also has an influence on the job offer. This is because one of

the potential causes of job mismatch is impaired firm-specific skills. Even if a person

moves from job 9 to 9′, depending on the type of job, the new place may still to some

extent requires the same skill, which in turn affects the wages. In other words, in general,

workers can not neutralize the mismatch shock by changing firms if the new job is similar

26Altonji et al. (2013) give three potential reasons including 1) employers base the offer on their previous
wage, 2) reflect some common demanding shocks to a certain group of firms and, 3) quality of firm may
affect the workers network
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to the previous one. If the person is lucky (through ��
8C
), he might still receive a well-

paying offer, for example, when the skills required in job 9 are not essential in job 9′.

Finally, we allow for correlation between �′
8 9(C) and �′

8 9(C).

As a result, mismatched workers will leave their jobs and be more likely to accept

job opportunities that they would not have considered otherwise. This is so because, in

addition to having an effect on the reservation wage, <8C will also affect the quality of

new job offers as we discuss below.

Employment to employment transition. After drawing all shocks, workers who

receive neither the job destruction shock nor the mismatch shock (�8 ,C−1 = 1, 938C = 0, and

<8C = 0) can make decisions of whether and where to work. Two equations are used to

describe their decisions. We start by depicting their decisions of labor supply. Define

448C = 1 if workers continueworking , either in the same place or in a new one, and 448C = 0

otherwise. Given �8 ,C−1 = 1, 938C = 0 and <8C = 0, we specify the following equation:

448C = 1{ 544(-8C , �8 ,C−1, ℎ8C , C4=8 ,C−1, F
∗
8 ,C−1, $8C , �8 9(C−1), �

′
8 9(C), �8 9(C−1), �8) + �448C > 0} (14)

where �44
8C

is the exogenous shock to the labor supply decision and �8 ,C−1 denotes assets.

Demographics-8C , health ℎ8C , and tenure C4=8 ,C−1 can affect employment through thewage

equation, but may also reflect some systematic difference among groups in the utility cost

of working.27 Employees observe ℎ8 ,C , �8 9(C−1), �8 9(C−1), $8C and hence know the wage if they

continue working in the same place. The quality of the outside offer �′
8 9C

also affects the

employment choice.28 In principle, we expect that a good offer increases the probability

of working, potentially in a nonlinear way.29

Job change. If an employee decides to continue working (i.e. �8 ,C−1 = 1, 938C = 0,

<8C = 0, and �8C = 1), he still needs to decide whether to change job or not. The binary

variable 928C equals one if worker 8 accepts the new offer opened to him and changes jobs.

928C = 1{ 592(-8C , �8 ,C−1, ℎ8 ,C , C4=8 ,C−1, $8C , �8 9(C), �
′
8 9(C), �8 9(C), �

′
8 9(C), �8) + �

92

8C
> 0} (15)

where � 92
8C
is an exogenous shock to the job decision. If a worker moves to a new job, his

stochastic wage and hours component will be updated to �′
8 9(C) and �′

8 9(C), but at the same

time he will lose the accumulated tenure in the previous job. In addition to job-specific

27For instance, unhealthy people may bear more cost of working; the uncertainty in medical expenditure
affects the employment choice too (French and Jones, 2017). Tenure may also capture their stickiness to
labor market.

28We tried to add �′
8 9(C). However estimation becomes less stable.

29In a structural model in which people choose between staying and moving, what is important is the
maximum of the expected discounted utility of staying and of moving.
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characteristics, other components including health, individual-specific productivity, and

fixed effect can also affect job decisions. Even though these components do not change

with jobs, theymay still matter for evaluating the two options. In amodelwhere changing

jobs induces utility loss, one way is by affecting income and thus assets, which affects the

trade-off between the utility cost and the marginal change in consumption. Another way

is through expectations. Potentially, healthier workersmight expect a longer employment

spell such that the discounted value of moving to a better-paying job is more profitable.

Wehave specifiedworkers’ choices in equations (14) and (15) conditioning one after the

other. However, this does not necessarily mean that workers make decisions sequentially.

These options can be seen as reduced form rules from a structural labor supply model,

where an agent would simultaneously decide whether and where to work.30 On the

other hand, if workers make choices sequentially, this would be equivalent to adding

constraints on the arguments of equations (14) and (15).31

Non-employment to employment transition. Individuals who were non-employed

(�8 ,C−1 = 0), or lost their job due to job destruction shocks (938C = 1), or individuals who

left their job due to mismatch shocks (<8C = 1), will choose to remain non-employed or

accept a new job opportunity. If they accept the job offer opened to them, we set D48C = 1,

otherwise D48C = 0. The decision rule is specified through the following equation:

D48C = 1{ 5D4(-8C , �8 ,C−1, ℎ8C , D38 ,C−1, 938C , <8C , $8C , �
′
8 9(C), �

′
8 9(C), �8) + �

D4
8C > 0} (16)

where �D4
8C

is the exogenous shock to labor supply, and variable D38 ,C−1 is the number

of years of non-employment since leaving the last job. The characteristics of the offer

�′
8 9(C) and �′

8 9(C) affect the probability of transition to employment. In addition, whether

someone has been non-employed for some periods or just left due to 938C or <8C may

also affect their assessment of the new job opportunity. Equations (14-16) describe the

employment transitions and job mobility. They are empirically flexible and have an

economic interpretation. Moreover, they control for selection and play an important role

in identifying different risks.

After an individual receives exogenous shocks and makes employment and job de-

cisions, his employment status �8C , non-employment duration D38C , and tenure C4=8C are

determined endogenously as described in equations (17-19), and therefore the observed

30Equation (14) describes the probability that max(�, �) > � and equation (15) describes the probability
that � > � conditional on max(�, �) > �.

31For example, if individuals make employment decisions before receiving the offer, then it is equivalent
to restricting the coefficients of �′

8 9(C) and �′
8 9(C) in equation (14) to zero.
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wage in equation (1) is determined.

�8C = 448C�8 ,C−1 + D48C(1 − �8 ,C−1) (17)

D38C = (1 − �8C) × (D38 ,C−1 + 2) (18)

C4=8C = 448C(1 − 928C)(C4=8 ,C−1 + 2) + D48C × 2 + 928C × 2 (19)

Asset accumulation. Finally, at the end of each period, assets evolve according to the

following conditional probability distribution:

E(1(�8C < ��
:
)) = Φ( 5�,:(-8C , �8 ,C−1, �8C , F

∗
8C , ;8C , ℎ8C , $8C , �8C , �8)) (20)

where ��
:
∈ (0, 1). We specify assets as a function of demographics, aggregate shocks,

lagged assets, labor supply, wage rate, individual-specific productivity, firm-specific pro-

ductivity, and unobserved heterogeneity. The standard budget constraint can be treated

as a special case when consumption and other expenditures are functions of the argu-

ments in equation (20).

Initial conditions and error components. To complete the model, we specify the

distributions of the initial variables as follows:

ℎ81 ∼ #(�ℎ1(-81, �81, �81), 1) (21)

�81 ∼ #(��1(06481, 43D8), �2
�1(43D8)) (22)

�81 ∼ #(��1(06481, 43D8 , �81), �2
�1(43D8)) (23)

�82 ∼ �0<<0(:�2 , 5�2(43D8 , 06481, ℎ81)/:�2) (24)

$81 ∼ #(0, �2
$1) (25)

�8 ∼ #(0, �2
�) (26)

The conditional distribution of health on initial status is Normal with a conditional mean

that depends on demographics, assets, and employment status. Initial firm-specific wage

and hour components are drawn from a joint Normal distribution whose mean depends

on age and education, and whose variance depends on education. Initial individual

productivity risk is assumed to follow a conditional Gamma distribution with a shape

parameter :�2 and a scale parameter 5�2(43D8 , 06481, ℎ81)/:�2 , and thus the conditional

mean is 5�2(43D8 , 06481, ℎ81). Finally, we assume both initial individual productivity and

unobserved heterogeneity are from Normal distributions with means normalized to be

zero.
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All the error components are i.i.d. over individuals and time, and independent of each

other. Specifically, we assume that �44
8C
, � 92

8C
, �D4

8C
, �<

8C
, � 93

8C
and �$

8C
follow standard Normal

distributions. In addition, the error components of the wage equation �8C , the hours

equation �;
8C
and the latent health equation �ℎ

8C
are also normally distributed with zero

mean and unknown variances. The offer error components ��
8C
and ��

8C
are draws from

Normal Mixture distributions whose CDF is (1− �)Φ(G) + �Φ(G/:), with � = 1/(:2 − 1).32
The dynamics of individual productivity risk �8C is assumed to follow an autoregressive

gamma process (Gourieroux and Jasiak, 2006), and will be discussed in Section 5.1.

Additional discussion of the mismatch shocks. The mismatch shock is an important

tool in our model to explain the worker’s movement to a worse-paying job. It is discrete,

and thus, the change in the firm component takes the form of a step function. This

is a simple way to create asymmetry in log wage changes in correspondence with its

left-skewness in data. At the same time, mismatch shocks also generate nonlinearity

in persistence: those who receive mismatch shocks and end up in a new job lose their

accumulated tenure.

Different fromshocks to individual-specific productivity,mismatch shocks forcework-

ers to leave their current job. At the same time,mismatch shocks have a persistent negative

effect on productivity, whereas the job destruction shocks, which also lead to leaving the

job, do not have. Intuitively, individual-specific productivity shocks are mostly identified

fromwage variation among the stayers, whereas the mismatch shocks are identified from

the wages of job movers, especially those who switch to jobs that pay less and require

fewer working hours.

4 Mapping Variables in Model to Data

In this section, we discuss the construction of the main variables of our model. The data

comes from RANDHRS, which is a user-friendly version provided by the RAND Center

for the Study of Aging.33 For consistency, our sample covers 11 waves from 1996 to 2016.

Wage F8C is the log real hourly wage calculated from the usual hours worked per

week, the usual weeks worked per year, and a pay rate using 2016 as the base year. Labor

supply ;8C is the log total working hours calculated from usual number of hours per week

32See Ali (1974). We estimate the model whose parameter : varies with education, mismatch shock, and
employment status in period C − 1. Further detail is in Section 5.1.

33This file was developed at RAND with funding from the National Institute on Aging and the Social
Security Administration.
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and usual weeks worked per year.

Employment status �8C equals one if individuals are employed at the time of the in-

terview, whether full-time or part-time, retired or not. On the contrary, it equals zero

if individuals are unemployed or not in the labor force.34 Accordingly, employment

transition variables 448C and =48C are constructed based on the labor force status in two

consecutive waves: 448C = 1(�8 ,C−1 = �8C = 1) and =48C = 1(�8 ,C−1 = 0, �8C = 1). Further-

more, for those with 448C = 1 but do not work for the same employer as in the last wave,

job change 928C equals one.

The way �8C is defined implies that variables 448C and =48C are silent about the indi-

vidual’s employment status between the two surveys. Similarly, 928C does not inform

us about potential job changes in between waves, or whether a mover has experienced

unemployment. Indeed, people labeled as "employed" in both periods may have experi-

enced unemployment, or those labeled as "job movers" may have gone through a period

of unemployment in between waves, in which cases job-to-job movement would not be

an accurate description. With this in mind, our employment transition equations could

be interpreted as a reduced form describing employment changes at two points in time.

HRS also asks why people left the employer in the last wave. Those who mentioned

"business closure" are assigned 938C equal to one. Additionally, the education measure

43D8 is an indicator of higher education which is defined as some college or above. The

health measure BAℎ8C is a self-reported general health status categorical variable. Its value

ranges from "1" for Excellent to "5" for Poor. Finally, assets �8C are defined as the sum of

all wealth components (excluding secondary home) net of all debt.

Observations for a given person-year are retained if the person is aged 51 to 70,

never self-employed, and has non-missing data on education, race, self-reported health,

birth, wages, working hours, and employment status.35 We restrict the sample to male

individuals who have eligible observations for at least three consecutive waves and are

employed for at least one wave. See Appendix A for further details. We end up with a

sample of 2, 897 individuals and 15, 277 individual-year observations.

34Including peoplewho not in the labor force potentially affects the transition probability to employment.
However, we expect the impact to be small, because based on the sample selection, the sample is limited to
individuals who have been employed for at least one period.

35The estimation algorithmwe use, which is a variant of EM algorithm, would allow us to handlemissing
data, such as missing wages and working hours. However, increasing the amount of missing information
may decrease the rate of convergence and increase the computing time.
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5 Estimation Strategy

5.1 Empirical Specification

We now explain the empirical specification of the model components. Health dynamics

consist of a polynomial age trend, the accumulation from the previous period (ℎ8C in-

teracted with an age polynomial and health in the last period), and the random shocks

whose variance varies with previous self-reported health.36 Individual productivity is

expressed as the sum of the productivity accumulation ( $8 ,C−1 interacted with a linear

function of age and productivity risk �8C) and shocks whose variance is �2
8C
. Productiv-

ity risk is assumed to follow the autoregressive gamma process (Gourieroux and Jasiak,

2006).

We assume the mean of job offers are a linear function of the current firm-specific

component, mismatch shocks, employment status at the beginning of the current period,

and its interaction with mismatch shocks, education and its interaction with mismatch

shocks. At the same time, education, mismatch shocks, and employment status at the

beginning of the current period also affect the variance of the shocks.

In the employment-to-employment equation, in addition to polynomials for each com-

ponent, we also add interactions of age with C4=8 ,C−1, �8 9(C−1) and �′
8 9(C), and interactions

of education with �8 9(C−1) and �′
8 9(C). This is motivated by the data pattern that the effect

of tenures and wages on future employment vary with education and age groups. Sim-

ilarly, in the non-employment-to-employment equation, we add interactions of age and

education with �′
8 9(C). Additionally, we allow a flexible specification for job destruction

shocks by adding the interactions of 938C with other elements, to take into account that

the non-employed and those who just lost their job involuntarily may have different em-

ployment dynamics. Finally, the job change equation adds the interaction of age and

education with  8 9(C−1), Δ 8 9(C)1(Δ 8 9(C) > 0), Δ 8 9(C)1(Δ 8 9(C) <= 0) allowing for different

reactions to offers depending on the total firm-specific component.37 Further details on

the specification can be found in Appendix C.

36The coefficient of ℎ8 ,C−1 is limited between 0 and 1
37Variable Δ 8 9(C) is defined as �′

8 9(C) − �8 9(C−1) + ΔC4=′8 9(C)�
 
C4= . Starting a new job correspondes a tenure of

two years.
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5.2 Estimation Algorithm

The Expectation-Maximization (EM) algorithm proposed by Dempster et al. (1977) is a

useful tool for empirical models with latent variables for obtaining maximum-likelihood

estimates. Starting from an initial guess of parameters, the algorithm iterates between

an E-step, which computes the conditional mean of certain functions of latent variables

given observables, and an M-step, which solves the optimization problem and updates

parameters until the convergence to the maximum of the likelihood. The EM algorithm

has also been extended to introduce GMM estimation in the M-step (Arcidiacono and

Jones, 2003). However, in complicated models where computing the E-step analytically

is infeasible, simulated versions of the EM algorithm are often implemented. A promi-

nent example is the stochastic expectation-maximization (SEM) algorithm (Diebolt and

Celeux, 1993). In this case, in the E-step, we draw latent variables from the posterior

distribution given observables, and in the M-step, update parameters as if the draws

were observables. We iterate between two steps until the convergence of the estimates to

the stationary distribution. However, a drawback of the EM algorithm and its variants

is the slow convergence in some situations, especially when the models contain multiple

latent variables over multiple periods, such as our case.

In this paper, I estimate the model using a modified (parameter-expanded) stochastic

EM algorithm (PX-SEM), which is developed in Wei (2021). The algorithm combines the

parameter expansion techniques in Liu et al. (1998) with the SEM algorithm. Similar to

the standard SEM algorithm, PX-SEM also consists of an E-step where we draw latent

variables and an M-step where we update parameters. The E-step is the same for both

algorithms. However, in the M-step, PX-SEM requires 1) expanding the original model,

2) estimating the expanded one, and 3) reducing to the original model space to obtain

the estimator. The main motivation of the algorithm is to make better use of some model

assumptions in eachM-step to accelerate the convergence: we realize that the draws from

the E-step given a bad guess will violate some model assumptions; therefore, we exploit

a more robust estimator to the guesses in E-step.38 Wei (2021) shows that PX-SEM can

38Consider a simple deconvolution example of H8 = H∗
8
+ &8 , &8 ∼ #(0, 1), H∗

8
∼ #(0, �2), and H∗

8
⊥ &8 .

If we estimate this model using SEM algorithm, in the E-step, we need to draw H∗
8
∼ 5 (H∗

8
|H8 ; �(B)). It is

easy to show that 2>E(H∗
8
, &8) =

�(B)2(�2
CAD4−�(B)2)

(�(B)2+1)2 , which is only zero when the guess �(B) is correct, �(B) = �CAD4 .
Otherwise, wewill observe correlations between sampled H∗ and H−H∗ that violates themodel assumptions.
Intuitively, if we have a guess �(B) that is significantly larger than the true value, then a negative correlation
between H∗ and H − H∗ will be observed given the variance of H8 is always preserved. PX-SEM takes into
account the possibility of this type of violation.
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greatly reduce the computing time.39 , 40

Let . denote all observables . ≡ {-, F, ;, �, 92, 93, C4=, BAℎ, �}, / denote all latent

variables / ≡ {ℎ, �, $, �, �′, �, <, �′, �}, and Θ denote all parameters. Then the density

function of the joint distribution of . and / is expressed as 5 (., /;Θ). In addition, we

use 5.(.;Θ) for the marginal density of observables, and 5/ |.(/ |.;Θ) for the posterior

density of latent variables given all observables. Starting with an initial guess Θ̂(0), we

iterate between the following two steps until the convergence of the Θ̂(B) process to its

stationary distribution:

1. Stochastic E-step: draw /(B) from 5/ |.(/ |.; Θ̂(B−1))
2. PX-M-step: update to Θ̂(B) = arg maxΘ

∑
6(., /(B);Θ)

where 6(·) is the overall estimation objective function.41 The final estimator is Θ̂ =

1
(0

∑(
(−(0+1 Θ̂

(B).

There are many options for the function 6(·) in the M-step depending on the way

the original model is expanded. So far, there is not a general rule. A simple rule is

that the expansion and the reduction need to be easy to operate. Considering that our

original model is complex enough, we will only expand the model by allowing linear

dependence of latent variables on observables and scaling up and down the variances

of each latent variable. The explicit form of 6(·), as well as the likelihood function and

detailed estimation steps, canbe found inAppendixD.Weuse a random-walkMetropolis-

Hastings sampler in the E-step. The acceptance rate is controlled to be between 20% and

40%.

In practice, we take a two-stage estimation strategy. First, we estimate the health

dynamics process (equations 4 and 5). The reason is that health dynamics are exogenous

to the model, and the parameters are separately identified. Secondly, we estimate the

rest of the parameters taking health dynamics as given. The results are based on 500

39SEM algorithm starts with some initial guess of unknown parameters and iterates between E-step and
M-step until the convergence of the parameter process. However, in practice, if the initial guess is far
away from the true values, it may take very long time to converge. Furthermore, very often it is even
difficult to know whether the initial guess is close to the true vales or not, researchers usually go through
SEM algorithm many times from different initial guess and pick one based on some criteria such as largest
likelihood. All these reasons prolong the computing time for the SEM algorithm.

40Nielsen (2000) proves the ergodicity of the process. Liu et al. (1998) proves the parameter expansion
technique could accelerate EM algorithm.

41In the M-step of SEM, the optimization is based on the likelihood: 6(., /(B);Θ) = ln 5 (., /(B);Θ), but
6(·) could also combine a likelihood component for some parameters with a GMM component for others,
such as in Arcidiacono and Jones (2003). As another example, in Arellano and Bonhomme (2016), the
M-step is based on quantile regression.
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iterations (( = 500), with 150 MH draws in each iteration. We take the average of the last

200 iterations as the estimates ((0 = 200).

6 Results

In this section, we present the estimation results from our empirical model. We start

by checking model fit by comparing the model simulations with the data along relevant

margins. Then we present the model implications. Specifically, we will analyze the

importance of mismatch shocks in explaining job movements to worse-paying jobs and

study the contribution of different risks and fixed effects to the dynamics of employment,

wages and hours of work.

6.1 Model Fit

To evaluate the fit of the model, we simulate the employment and wage trajectories for

20 × # individuals from the estimated model. Then we calculate and compare several

statistics from simulated and actual data.

Employment. Figure 3 presents results on employment rates and employment tran-

sitions. Specifically, Figures 3a and 3b show employment profiles for HE and LE, respec-

tively. In each figure, we plot the proportion of the employed at each age using both data

and the simulations from our model. The employment rate for both education groups

decreases with age. The employment rate of LE is similar to HE before 61, but decreases

faster after 61. Figures 3c and 3d show the proportions of individuals transitioning to

employment conditional on being employed and non-employed in the previous period at

each age for HE and LE, respectively. For the employed, around 90% remain employed

in the next period in their 50s. The number decreases to around 70% in their 60s. For the

non-employed, the proportion of individuals being employed in the next perioddecreases

sharply from around 80% in their early 50s to around 10% since early 60s. In general,

Figure 3 shows that our model captures the trends in employment rates and transitions

well.
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Figure 3: Employment And Employment Transition By Age

(a) LFP, HE (b) LFP, LE

(c) Employment transitions, HE (d) Employment transitions, LE

Notes: Comparison of the employment profile in the HRS sample (dashed line) and the simulations from the estimated
model (solid line). Figures (a) and (b) plot the employment rate by age for the subpopulation with high education
(HE) and low education (LE), respectively. Figures (c) and (d) plot the probability of being employed in the following
period for the employed (E-E) and the non-employed (NE-E) by age for HE and LE, respectively.

Figure 4 displays the proportions ofworkerswho change jobs in the followingwave by

age. The proportion decreases with age for HE, whereas for LE, the number is relatively

stable before 61 and declines after. For both education groups, our model fits the pattern

well.

Wages. In Figure 5, we show how the percentiles of log wages vary with age in the

data and the simulations. Results are presented by the education group. We see that for

both education groups, the median wage decreases with age. The HE group has larger

dispersion in wages than LE. Furthermore, the dispersion for the HE increases with age

as the top percentiles decline less than the bottom percentiles with age, as we can see

in Figures 6a and 6b where we plot the %90 − %10, and 6c and 6d where the dispersion

is further decomposed into %90 − %50 and %50 − %10. However, the dispersion for LE

is relatively stable until around 65, and then it starts to decrease as the top percentiles
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Figure 4: Job Change By Age

(a) Job-to-job move conditional on EE, HE (b) Job-to-job move conditional on EE, LE

Notes: Comparison of the job change profile in the HRS sample (dashed line) and the simulations from the estimated
model (solid line). Figures (a) and (b) plot the probability of changing jobs in the following period for the employed,
that is, %A>1(928C |�8 ,C−1 = 1, �8C = 1). The rate is computed by age for the subpopulation with high education (HE)
and low education (LE), respectively.

drop more than the bottom ones. Our simulations fit the data better for workers before

age 65. The model performs less well for the 65+ in fitting the dispersion and other

higher moments. The counterpart of quantile-based measures, the mean and standard

deviation, are presented in Appendix E.

Figure 5: Quantiles of Log Wages

(a) Quantiles of wages (excluding zeros), HE (b) Quantiles of wages (excluding zeros), LE

Notes: Comparison of the log wage profile in the HRS sample (dashed line) and the simulations from the estimated
model (solid line). Figures (a) and (b) plot the 10th, 25th, 50th, 75th, and 90th percentiles of log wages by age for the
subpopulation with high education (HE) and low education (LE), respectively.
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Figure 6: Dispersion of Log Wages

(a) %90 − %10 of log wages, HE (b) %90 − %10 of log wages, LE

(c) %90 − %50 and %50 − %10 of log wages, HE (d) %90 − %50 and %50 − %10 of log wages, LE

Notes: Comparison of the log wage profile in the HRS sample (dashed line) and the simulations from the estimated
model (solid line). The upper panel plots the overall dispersion measured by %90 − %10 for the subpopulation with
high education (HE) and low education (LE), respectively. The lower panel decomposes the overall dispersion into
upper dispersion %90 − %50 and lower dispersion %50 − %10 for HE and LE, respectively.

Next, we check how well our model can reproduce the heterogeneity in wage change

distributions for stayers andmovers. Table 3 compareswage changedistributions between

the data and the simulations for both stayers and movers in each education group. We

can see that our model fits the data both qualitatively and quantitatively. Compared with

stayers, the wages of movers are more volatile. The median movers face a wage decline.

Additionally, the distribution of movers is left-skewed, with the 10Cℎ percentile being

more than 1.5 times larger than the 90Cℎ percentile in absolute value.
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Table 3: Percentiles of log wage changes

HE LE
Stayers Movers Stayers Movers

Data Model Data Model Data Model Data Model

P10 -0.168 -0.187 -0.583 -0.622 -0.118 -0.139 -0.557 -0.606
P25 -0.055 -0.076 -0.266 -0.318 -0.044 -0.052 -0.237 -0.315
P50 0.005 0.007 -0.023 -0.042 0.001 0.022 -0.043 -0.062
P75 0.083 0.091 0.163 0.156 0.059 0.096 0.103 0.089
P90 0.203 0.201 0.373 0.377 0.15 0.181 0.254 0.234

Notes: Comparison of the distribution of log wage changes in the HRS sample (Data) and the simulations from the
estimated model (Model) for job stayers and job movers. The left panel shows the distributions for the high education
group (HE), and the right one shows the distributions for the low education group (LE).

A similar pattern can be found in the distribution of hour changes in Table 4. Our

model reproduces the left-skewed andmore dispersive hour changes for movers. Among

the movers, more than 10% reduce their work hours by at least half, whereas the 10Cℎ

percentile of stayers reduce them by around 20%.

Table 4: Percentiles of log hour changes

HE LE
Stayers Movers Stayers Movers

Data Model Data Model Data Model Data Model

P10 -0.218 -0.363 -0.601 -0.601 -0.207 -0.361 -0.634 -0.638
P25 -0.085 -0.208 -0.282 -0.302 -0.061 -0.207 -0.266 -0.339
P50 -0.012 -0.037 -0.051 -0.044 -0.008 -0.037 -0.015 -0.075
P75 0.036 0.135 0.052 0.188 0.016 0.134 0.043 0.16
P90 0.173 0.288 0.236 0.394 0.166 0.288 0.262 0.365

Notes: Comparison of the distribution of log hour changes in the HRS sample (Data) and the simulations from the
estimated model (Model) for job stayers and job movers. The left panel shows the distributions for the high education
group (HE), and the right one shows the distributions for the low education group (LE).

In Appendix E, we also provide figures about conditional job change rates, job de-

struction rates, distributions of tenures, distributions of assets by age, and health profiles

by age.
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6.2 Model Implications

In this subsection, wefirst discuss the prevalence ofmismatch shocks 1) by age groups and

2) by age groups and range of log wage changes. Next, we assess the relative importance

of different risks and fixed effects for the dynamics of employment, wages and hours of

work. We achieve this by simulating from alternative versions of the model in which

particular shocks are switched off. Those simulations are compared with the mean and

variance from the baseline model. Finally, we focus on the group of individuals who

move to a "bridge" job, which in this exercise we define as any job that takes place after a

job with a tenure longer than ten years.

Mismatch shocks. Table 5 reports the probability of receiving mismatch shock for

employed workers (�8 ,C−1 = 1) in each education and age group at each period. We can

see that people in their 60s are more likely to receive mismatch shocks than those in their

50s. The probability of receiving mismatch shocks per period ranges from 0.4% and 0.8%

for LE and HE workers aged between 51 and 55 to 3.1% and 4.2% for LE and HE workers

aged between 66 and 70. For all age groups, the mismatch probability for HE workers is

larger than for the LE.We also compute the probability of receiving at least onemismatch

shock for employed workers by age 65 and 70, and the numbers are 10.3% and 13.5%,

respectively.

Table 5: Proportion of <8C = 1 per period for employed workers by age group

Age group
51 ∼ 55 56 ∼ 60 61 ∼ 65 66 ∼ 70

HE 0.008 0.025 0.044 0.042
LE 0.004 0.014 0.027 0.031

Notes: Probability of receiving mismatch shocks per period for the employed by age and education group computed
based on the simulations from the estimated model.

Table 6 shows the mismatch probability for the movers (928C = 1) whose log wage

changes are below a given threshold :. For instance, around 18% of job movers who

experience a wage cut greater than 50% and who are aged between 51 and 55 have

received a mismatch shock. For movers older than 60 with a similar wage cut, the

proportion is as high as 75%. The results indicate that mismatch shocks are important to

explain job movements toward worse-paying jobs despite their relatively low probability

of occurrence.
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Table 6: Proportion of <8C = 1 for movers with Δ ln(F064C) ≤ : by age groups

Age group
k 51 ∼ 55 56 ∼ 60 61 ∼ 65 66 ∼ 70

-0.1 0.098 0.308 0.564 0.632
-0.3 0.135 0.402 0.648 0.699
-0.5 0.184 0.482 0.719 0.741
-0.7 0.212 0.553 0.774 0.75

Notes: Proportion of mismatched workers among job movers whose log wage changes is smaller than threshold :.
Results computed based on the simulations from the estimated model.

Relative importance. We conduct simulations to measure the relative importance of

various sources of risks and unobserved fixed effects for the patterns of employment,

job mobility, wages, and working hours. In each simulation, we remove certain risks

by setting the variance of the shock to zero or remove the unobserved fixed effects by

fixing their values to the median. Then we compare the simulated employment rate,

employment transition, job change rate, and both the mean and the variance of wages,

wage changes, hours, and hour changes with those from the baseline model.

Table 7 presents the comparisons by age groups. The top panel is for the 51 to 60 years

old, and the bottom one is for 61 to 70 years old. In each panel, the first row shows the

results for the baseline model. Entries from the second row to the last display the ratios

relative to the baseline model (the first row). First, we look at mismatch shocks. Table

7 says that removing mismatch shocks barely affects the overall labor force participation

(LFP), and the mean and variance of wages for both age groups, but it reduces the cross-

sectional dispersion in working hours for both age groups. In both groups, there is more

non-employment to employment transition and less job-to-jobmovement. However, what

is more interesting is its effect on wage changes and hour changes for the movers. As we

can see, without mismatch shocks, the average wage changes and hour changes increase

for both age groups. The dispersion of wage changes and hour changes are smaller too.

These effects are mainly driven by the bottom percentiles, as the %10 of wage changes

increases by 17% and 23% for the younger and older group respectively, and the %10 of

hours changes increases by 28% and 49%, whereas the %90 is almost unchanged in all

cases. Additionally, this pattern is not seen in other simulation exercises. The results

illustrate the importance of mismatch shocks in explaining the job movements of older

workers toward worse-paying jobs from a different angle.
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Table 7: Relative importance of different risks and initial conditions (continues)

A. Age group 51 to 60

Employment F, all ℎ, all ΔF, movers Δℎ, movers

LFP E-E NE-E JC "40= +0A "40= +0A "40= +0A %10 %90 "40= +0A %10 %90
Baseline 0.87 0.87 0.29 0.11 3.16 0.36 7.81 0.1 -0.09 0.15 -0.58 0.31 -0.06 0.16 -0.53 0.39
No mismatch shocks 1.0 1.0 1.32 0.87 1.0 0.98 1.0 0.84 0.55 0.83 0.83 1.03 -0.04 0.58 0.72 0.99
No jd shocks 1.01 1.01 1.2 0.89 1.0 1.0 1.0 1.0 0.82 0.94 0.93 1.01 1.06 1.02 1.04 1.0
No offer shocks 1.0 1.0 1.19 1.27 1.0 0.97 1.0 0.87 0.96 0.52 0.8 0.61 0.68 0.68 0.86 0.92
No productivity shocks 1.0 1.0 1.22 1.01 1.0 0.93 1.0 0.99 1.07 0.79 0.94 0.79 0.99 0.99 1.0 1.01
Median � 1.0 1.0 1.22 1.0 1.0 0.95 1.0 1.0 1.03 0.86 0.95 0.87 1.0 1.0 0.99 1.01
No health shocks 1.02 1.03 1.35 1.04 1.0 1.0 1.0 1.0 1.01 0.96 0.99 0.98 0.88 0.97 0.98 1.01
No fix effect 1.0 1.0 1.23 0.99 1.0 0.85 1.0 0.99 1.01 1.18 1.06 1.2 1.01 0.98 0.99 1.0

B. Age group 61 to 70

Employment F, all ℎ, all ΔF, movers Δℎ, movers

LFP E-E NE-E JC "40= +0A "40= +0A "40= +0A %10 %90 "40= +0A %10 %90
Baseline 0.56 0.69 0.11 0.08 3.0 0.39 7.57 0.17 -0.2 0.19 -0.73 0.27 -0.22 0.23 -0.86 0.33
No mismatch shocks 1.02 0.99 1.41 0.61 1.01 0.92 1.01 0.57 0.58 0.72 0.77 1.04 0.29 0.36 0.51 0.92
No jd shocks 1.01 1.01 1.12 0.9 1.0 1.0 1.0 0.99 0.97 0.96 0.99 1.02 1.13 1.07 1.08 0.93
No offer shocks 1.0 1.0 1.09 1.35 0.99 0.94 1.0 0.74 0.75 0.51 0.79 0.61 0.76 0.59 0.77 0.87
No productivity shocks 1.0 1.0 1.14 1.03 1.0 0.88 1.0 0.99 0.97 0.71 0.93 0.69 1.03 1.03 1.03 1.03
Median � 1.0 1.0 1.15 1.02 1.0 0.91 1.0 1.0 0.93 0.81 0.91 0.8 1.07 1.03 1.07 0.98
No health shocks 1.1 1.06 1.32 1.08 1.0 0.99 1.0 0.98 0.96 0.94 0.99 0.95 0.98 1.01 1.0 1.01
No fix effect 1.0 1.0 1.14 1.01 1.0 0.83 1.0 0.99 0.93 1.04 1.0 1.15 1.06 1.0 1.03 0.95

Notes: In both panels, entries in the second row to the last display the ratios relative to the Baseline (first row). The
variables F and ℎ are log wages and log hours, respectively.

The third row shows the result of removing job destruction shocks. As before, there is

no significant effect on the overall employment rate, the mean and variance of wages and

hours of work. The job change rate is slightly lower. What is different is its effect on wage

and hour changes compared with mismatch shocks. Even though both job destruction

shocks and mismatch shocks force workers to leave their jobs, mismatch shocks have

persistent negative effects on firm-specific productivity and affect future job offers. For

the younger group, removing job destruction shocks reduces the wage cut for movers by

18%, smaller than the case without mismatch shocks. Additionally, the hours changes for

both groups and the wage changes for the older group do not vary by much.

Shutting down the uncertainty in job offers increases the job change rate by 27% for

the younger group and by 35% for the older group, which are the highest rates among all

the exercises. The variation in wage changes of movers is much smaller, but in contrast

to mismatch shocks, it is more driven by the top percentiles as the chances of moving to

better-paying jobs are smaller.
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Table 7: –Continued

A. Age group 51 to 60
ΔF, stayers Δℎ, stayers

"40= +0A %10 %90 "40= +0A %10 %90
Baseline 0.01 0.04 -0.16 0.19 -0.03 0.06 -0.35 0.3
No mismatch shocks 0.98 0.99 1.0 1.0 1.01 1.0 1.0 1.0
No jd shocks 0.97 1.0 1.0 1.0 1.01 1.0 1.0 1.0
No offer shocks 0.89 1.0 1.01 0.99 0.99 1.0 1.0 1.0
No productivity shocks 1.0 0.14 0.49 0.56 1.03 1.0 1.0 1.0
Median � 1.0 0.34 0.8 0.83 1.01 1.0 1.0 1.0
No health shocks 1.0 1.01 1.0 1.0 1.01 1.0 1.0 1.0
No fix effect 1.04 1.78 1.64 1.56 1.07 1.0 1.0 1.0

B. Age group 61 to 70
ΔF, stayers Δℎ, stayers

"40= +0A %10 %90 "40= +0A %10 %90
Baseline 0.01 0.05 -0.18 0.21 -0.09 0.06 -0.42 0.23
No mismatch shocks 0.94 1.0 1.01 1.0 1.0 1.0 1.0 1.0
No jd shocks 0.97 1.0 1.0 0.99 1.0 1.0 1.0 1.0
No offer shocks 0.96 1.0 1.0 0.99 1.0 1.0 1.0 1.0
No productivity shocks 1.05 0.11 0.41 0.51 0.99 1.0 1.0 1.01
Median � 1.07 0.26 0.69 0.75 0.97 1.0 0.99 1.01
No health shocks 0.97 0.97 0.99 0.99 0.98 1.0 0.99 1.0
No fix effect 0.99 1.28 1.24 1.22 0.99 1.0 0.99 1.0

Notes: In both panels, entries in the second row to the last display the ratios relative to the Baseline (first row). The
variables F and ℎ are log wages and log hours, respectively.

Individual-specific productivity shocks are an important source of wage volatility

for job stayers, because eliminating these shocks (fifth row) reduces significantly the

variance of wage changes for stayers. A related exercise is to remove the heterogeneity

in individual-specific productivity risk by setting the standard deviation of the shocks

to the median for all individuals over all periods (�8C = "43(�8C) ≈ 0.08). The results

show that this has a large effect on wage volatility too (sixth row). We would expect

this heterogeneity to be essential in generating the high kurtosis in wage changes for

stayers. This is because the baseline specification allows for a group of individuals with

very small risks who therefore have very stable wages across periods. Looking at the

kurtosis of wage changes in the baseline specification for stayers only, the quantile-based

Crow-Siddiqui measure (i.e., %972.5−%2.5
%75−%25 ) turns out to be 4.86 for the younger group and

5.13 for the older one (not in the table), whereas removing the heterogeneity leads to a

value of 2.91 which is the kurtosis for the Gaussian distribution.

Finally, the unobserved fixed effect is the largest contributor to the overall wage vari-

ation in both age groups. After removing the fixed effect (eighth row), the variance of

wages is reduced by 15% for the younger group and by 17% for the older one. This is a
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clear indication that unobserved heterogeneity matters even after including a rich speci-

fication of shocks. On the other hand, health shocks have small effects on all dimensions

of our analysis.

Bridge jobs. Next, we look at workers who move to "bridge" jobs. These are jobs

that bridge career employment with the full exit from the labor force. In the calculations

below, we define any job with more than ten years of tenure as career employment.42

We conduct the same simulation exercises, that is, removing risks and the unobserved

fixed effects, with a specific focus on those who move to bridge jobs. We first compute

the proportion of individuals with bridge jobs (first column). Then we look at their

first bridge job after leaving a career job and separate them by whether it is a job-to-job

movement (JC) or there is a non-employment gap in between (NE-E). We compute their

proportions (second and third columns), mean and variance of the associated changes in

wages and hours (fourth column to the last).

Table 8: Job, mean and variance of wage change conditional on tenure larger than 10yrs

Proportion of IDVI �(ΔF) +0A(ΔF) �(Δℎ) +0A(Δℎ)
Bridge JC NE-E Bridge JC NE-E Bridge JC NE-E Bridge JC NE-E Bridge JC NE-E

Model 0.13 0.08 0.06 -0.49 -0.35 -0.67 0.25 0.19 0.28 -0.31 -0.2 -0.45 0.33 0.23 0.42
No mismatch shocks 0.88 0.67 1.2 0.78 0.7 0.71 0.66 0.79 0.57 0.32 -0.01 0.38 0.35 0.41 0.28
No jd shocks 0.89 0.83 0.96 0.99 0.95 0.98 1.03 0.98 1.03 1.09 1.24 0.97 1.04 1.07 1.01
No offer shocks 0.91 0.91 0.98 1.23 1.31 1.14 0.56 0.39 0.61 1.07 1.21 0.96 0.54 0.64 0.45
No productivity shocks 1.01 1.03 1.0 1.02 1.0 1.03 0.83 0.78 0.81 0.99 1.01 0.99 0.97 0.98 0.97
Median � 1.0 1.01 0.99 1.03 0.99 1.05 0.9 0.84 0.88 1.02 1.05 1.01 1.0 1.0 1.0
No health shocks 1.04 1.08 0.99 0.98 1.0 1.0 0.99 0.94 1.05 0.95 0.95 0.98 0.98 0.97 1.01
No fix effect 1.0 0.99 1.0 0.99 1.0 0.98 1.12 1.08 1.19 1.02 1.05 0.99 1.0 1.0 1.0

Notes: Entries in the second row to the last display the ratios relative to the Baseline (first row). The variables F and
ℎ are log wages and log hours, respectively.

Table 8 shows that mismatch shocks are the most important element in explaining

bridge job movements. Shutting down mismatch shocks reduces the proportion of in-

dividuals moving to bridge jobs and increases the wage and hour changes regardless of

whether there is a non-employment spell or not.43 Consistent with our previous analysis,

we also see a less cross-sectional variation in the change of wages and hours.

42A common definition of career employment is a full-time job lasting more than 10yrs (Brunello and
Langella, 2013; Cahill et al., 2011). Herewe do not require full-time. One reason is that the hourmeasurewe
use is the total annual working hours in all jobs. Without further information, we cannot identify whether
someone is working in a full-time job or not even if the 4G?(ℎ8C) is larger than 1600.

43Our proportion of individuals in bridge jobs is significantly lower than the literature (30% ∼ 50%).
This is related to the sample feature. First, we have unbalanced panel. Some individuals in our sample
only have 3 waves. Second, we do not follow a specific cohort until their full exit from labor market. Some
individuals are still in their career job during their last interview. Third, we include those who do not have
career jobs. All these factors make it difficult to compare the number with the literature, but they do not
affect the comparison between simulation exercises.
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Nonlinear persistence in wages. The last feature that we check about the wage

dynamics is its nonlinear persistence. Arellano et al. (2017) find that the earnings process

features nonlinear persistence where the earnings are constructed from household labor

earnings for male heads aged between 25 and 60. In our case, we focus on the wages of

male workers at older ages from 51 to 70.44 Therefore, we will first check whether the

nonlinear persistence exists in our sample and then evaluate to what extent our model

can generate the same pattern. Figure 7 plots the persistence for data and the simulations.

We can see that our model qualitatively can capture some nonlinear persistence but not

as much as we observe in the data.

Figure 7: Wage Persistence

(a) Data (b) Model

Notes: Comparison of the wage persistence in the HRS sample (a) and the simulations from the estimated model (b)
following Arellano et al. (2017).

7 Quantifying The Welfare Costs of Risks and of Inflexi-
bility in Transitioning to Retirement

In this section, we will quantify the welfare cost of risks and the value of a flexible

transition to full retirement. Todo this,weneed tounderstandhowpeoplenear retirement

age make decisions about employment. Therefore, we construct and estimate a utility-

basedmodel of employmentwhere agents face the same health, income, and employment

risks as in the empirical model developed in Section 3. The structural model will serve us

as a tool for analyzing counterfactuals and measuring changes in welfare. Moreover, the

utility-basedmodel can be treated as a version of the empirical model subject to structural

44In their appendix, they show that the empirical pattern is also present for male wages.
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restrictions. This nested structure makes the empirical model a natural target on which

to base the estimation of structural parameters. Accordingly, a new simulation-based

estimation algorithm is discussed to implement the idea.

7.1 Model

In this model, agents start their life at age 50 (t=1) and live at most up to 90. Each period

lasts for two years: t = 1,2,...,T, with T = 20. People are ex-ante heterogeneous in education

level 43D, health status ℎ, individual productivity $, volatility of individual productivity

�, firm-specific productivity  , initial employment status � and asset �. At each period,

they seek to optimize their expected discounted lifetime utility by choosing consumption

level � and employment status 3 (3 = 0 if not work, 3 = 1 if keep working in the same

job, 3 = 2 if move to a new job), facing the uncertainty of survival, health, income, and

employment.

Preferences. Individuals derive utility from consumption and leisure. The within

period utility function takes the following form

*(�C , 3C , 3C−1, 93C , ℎC , &
3
C ) =

1
1 − ��

1−�
C + !C (27)

where !C is the disutility of working. The disutility of working depends on people’s age,

health, and employment history. Specifically, working (E = 1) induces disutility.45 There is

also an extra cost for re-entry (RE = 1) and job changes (JC = 1).46 All costs depend linearly

on health. In addition, we use a piecewise linear function for variable age C, allowing for

different preference forms before and after age 62, which is the earliest retirement age.47

The last component of disutility is the idiosyncratic preference shocks associatedwith the

employment choices &3C . It is specified as i.i.d. over time and distributed Type-I extreme

45Note there is a direct mapping between employment status variables � and 3: �C = 1{3C = 1 or 3C = 2}
46We count it as a re-entry when one becomes employed from non-employment or from an involuntary

job separation or from mismatch leave: '�C = 1{(�C−1 = 0, �C = 1) or (�C−1 = 1, 93C = 1, �C = 1) or (�C−1 =
1, <C = 1, �C = 1)}. Job change happens when one moves to a new job without being non-employed or
being involuntarily separated from the old job or sufferingmismatch shocks: �� = 1{�C−1 = 1, 93C = 0, <C =

0, �C = 1}
47An alternative to piecewise linear function is polynomials. In practice the piecewise linear function fits

better.
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Value with zero mean.48 Therefore the specification for !C is given by:

!C = − (�40 + �41C + �421(C > 6)(C − 6) + �43ℎC)�C
− (�A0 + �A1C + �A21(C > 6)(C − 6) + �A3ℎC)'�C
− (�90 + �91C + �921(C > 6)(C − 6) + �93ℎC)��C + &3C (28)

Individuals also derive utility from leaving a bequest if they die at period C. The

bequest function is of the form

1(�C) = ��C1(�C > 0) (29)

Parameter � captures the intensity of leaving bequest.

Health And Survival Rate. Health dynamics is an exogenous process that only de-

pends on health status in the last period, age, and education. We use the same functional

form as in the empirical model (equation 4). Moreover, health also affects the survival

rate. The probability of being able to survive from C−1 to C is a function of age and health:

�(BC) = 5B(ℎC−1, C) (30)

where BC ∈ {0, 1} is the indicator of survival.
Labor Income And Employment Shocks. Labor income is a product of the hourly

wage ,C and working hours # . In the model, the amount of hour supply is fixed. For

each education group, it is set to be the median working hours.49

.C =,C × # (31)

The log hourly wage rate ln,C takes the same form as in the empirical model, Equation

(2). We treat transitory shocks as measurement errors and hence exclude them from

the structural analysis. In addition, to reduce the dimensionality of state variables, we

combine unobserved heterogeneity �, tenure accumulation C4=′�4 , and the firm-specific

component � (�′) altogether, and define a composite firm component  ̃ ( ̃′).50 More details

about the construction of this composite term can be found in Appendix G. Thus,

ln,C = -
′
C�- + ℎC�ℎ + $C +  ̃ 9C (32)

48Note that with Type-I extreme Value assumption, the policy function of employment and job dynamics
can be rewritten as logistic regressions. As long as the functional form inside the Probit regression in
the non-utility-based model is flexible enough, we can still regard the non-utility-based model as an
approximate reduced form of the utility-based one.

49For HE, N is 5154, which is equivalent to 2577 hrs per year. For LE, the number is 5142, which is 2571
hrs per year.

50To keep the name and notation simpler, I continue using firm component for  ̃ 9C , even though now it
contains individual unobserved heterogeneity as well.
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The firm component  ̃ 9C evolves in a deterministic way during the tenure of a given job.

As described in equation (33), it is a function of its value in the previous period only.51

Once an individual takes a new offer, its value is replaced by the new one  ̃′
9(C). Each

period, individuals receive a new offer which is drawn from a distribution that depends

on their previous firm component  ̃ 9 ,C−1, mismatch shocks < 9C , job destruction shocks

938C , and employment status in the last period �C−1:

 ̃ 9(C) =

{
� 0 + �  ̃ 9(C−1) if stay at the same job
 ̃′
9(C) if move to new job (33)

 ̃′
9(C) ∼ 5 ′( ̃ 9 ,C−1, <C , 938C , �C−1) (34)

Mismatch shocks < 9C ∈ {0, 1} follow the same dynamics as in equation (10), only with

�9 ,C−1 replaced by  ̃ 9 ,C−1. Workers who receive mismatch shocks will face a substantial

step-decrease in the wage in their current job such that in practice they will either choose

to take the new offer or become non-employed. However, they can not fully escape from

the negative effect of mismatch shocks by jumping to a new job because the shocks also

affect the average quality of new offers. People who are not working can also receive

mismatch shocks. This mimics the depreciation of job-related productivity during non-

employment, and similarly, it affects offers:

�(< 9C) = 5<(C , 43D,  ̃C−1, �C−1) (35)

Similarly, the process of job destruction 93C , which depends on age, education, firm

component  ̃C−1 and mismatch shocks <C , is an approximation to equation (??):

�(93C) = 593(C , 43D,  ̃C−1, <C) (36)

Other components, including the individual component $C and the productivity risks �C
are the same as in the empirical model (equations 6 and 7).

Social Security. According to the rules of the Social Security Administration, social

security benefits depend on Average Indexed Monthly Earnings (AIME), which summa-

rizes the 35 years that represent an individual’s top earnings. The age at which people

retire and the employment status after receiving social security benefits could also affect

ones’ benefits.

That being said, we do not model the process of application for social security benefits

for simplicity. We assume that everyone starts collecting social security benefits BBC once

51We tried more flexible functional forms for  ̃ 9C = 5 ( ̃ 9(C−1)). It turns out AR(1) model can already
approximate the dynamics well, with '2 = 0.999.
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they reach 65 years of age regardless of their employment status, that is �C = 1{C ≥ 8}.
We also simplify the dynamics of BBC : they will receive a constant payment, which only

depends on the education group, until death.52

Budget Constraint. During period C, individuals potentially receive income from

four different sources: asset income A�C , labor earnings.C , social security benefits BBC and

government transfers CAC . The only expenditure comes from consumption. Assets are

accumulated as follows:

�C+1 = (1 + A)�C + .C + BBC × �C + CAC − �C (37)

We assume there is a borrowing constraint �C+1 ≥ �<8= . The minimum amount of

assets, �<8= , takes the lowest value observed in the data, which is around −$40, 000.

Government transfers provide a consumption floor that guarantees a minimum amount

of consumption �<8= .

CAC = max{0, �<8= − ((1 + A)�C + .C + BBC × �C − �<8=)}. (38)

where �<8= is set to be $10, 000, which amounts to $5, 000 per year. The number lies in

between the range suggested by the literature.53

Choice Set. At the beginning of each period, individuals receive shocks to survival,

health, productivity, employment, and preferences for work, as well as an outside offer.

Then they will make decisions about consumption and employment status. However, the

options available depend on their state variables.

1. For those who are working (�C−1 = 1, 93C = 0, <C = 0), they can choose among three

options: quit the job and become non-employed (3C = 0), keep the old job (3C = 1)

or move to the new job (3C = 2)

2. For those who are not working (maybe because they were non-employed �C−1 = 0,

or their job is destroyed 93C = 1, or they leave their old job as a consequence of being

mismatched<C = 1 ), they can only choose between two options: stay non-employed

(3C = 0), take the outside offer (3C = 2)

Value Function. Let ΩC denote the set of state variables, namely ΩC = (�C−1,  ̃C−1,  ̃′C ,

$C , �C , ℎC , < 9 ,C , C, 3C−1, 93C , 43D, &3C ). Individuals make optimal decision of consumption

52In the later calibration part, BBC is set to be the median social security benefits of each education group.
53Bueren (2018); French and Jones (2011)
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�C and employment 3C based on the following value function

+C(ΩC) =max
�C ,3C

{
*(�C , 3C , 3C−1, 93C , ℎC , &

3
C ) + �(1 − BC+1)1(�C+1)

+ �BC+1E
(
+C+1(ΩC+1)

���ΩC , �C , 3C

)}
(39)

subject to equations (30) - (38), (6), (7) and (4).

7.2 Estimation Procedure

We propose a novel simulation-based estimation method that exploits the empirical

model. The method is motivated by the following premise: the empirical (or non-utility-

based, NU) model and the structural (or utility-based, U) model share the same wage

equation and latent variable dynamics, and the NU employment and job transitions can

be treated as an approximate reduced form of the U ones. The main idea is to take

advantage of the estimated NU model, especially information on latent variables.

Specifically, the parameters are chosen such that the U model best approximates

the estimated NU model in terms of Kullback-Leibler divergence. Denote NU model

likelihood by 5#*(., /;Θ), where . is the set of all observables, / is the set of all latent

variables, Θ denotes all parameters. Correspondingly, Θ̂ is the NU model estimates we

have obtained. Denote parameter set of U model by Ω, then the proposed estimator Ω̂

can be expressed by the following equation:

Ω̂ = arg max
Ω

∑∑
/̃

ln 5#*(., /̃;Θ(Ω))

where /̃ ∼ 5#*(/ |.; Θ̂), andΘ(Ω) =arg maxΘ
∑∑

B ln 5#*(.B(Ω), /B(Ω);Θ) is amapping

from the U model parameters to NU model parameters.

It is straightforward that we make use of information on latent variables learned from

NUmodel through the draws /̃. Additionally, under the premises, this method allows us

to directly bring the NU model results of the wage equation and the latent components

to U model as input.54 , 55

54With the separability of parameters, we can rewrite the objective as 5#* (., /̃;Θ(Ω2 ,Ω1)) =

5 (.−, |/̃;Θ(Ω2)) 5 (,, /̃;Θ(Ω1)) where Ω1 denotes parameters in common parts of U and NU models,
that is wage equation and latent variable dynamics,Ω2 denotes remaining parameters,, is the wages, and
.−, is all observables other than wages. Due to Θ(Ω1) = Ω1 = Θ1, maximization requires Ω̂1 = Θ̂1.

55Even though thismethod ismotivatedby thepremisesdiscussedbefore, the application canbe extended
to caseswhere nest structure is not satisfied as shown inAppendix I.However, wemaynot be able to directly
use part of the NU model estimates when the premises are not met.
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This method improves algorithmic efficiency compared with estimating the U model

as a whole due to a reduced vector of unknowns. Moreover, the primitive parameters,

that are estimated under the more flexible NU model, are less prone to misspecification

problems. On the other hand, the flexibility of the NU model makes it suitable as a tool

to measure the difference between the U model with real data — its flexibility enriches

the dimensions of the comparison. Finally, the estimator is expected to be statistically

more efficient, given the inclusion of extra information on latent variables learned from

the NU model.56

In this application, the method is executed in two steps. In the first step, we estimate

the survival probability jointly with health dynamics for people between 51 and 90.57 An

extra approximation is required due to the composite firm component  ̃. Denote all the

primitive parameters by Ω̂1 including those in the wage and hours equations, and the

dynamics of health, productivity (both $ and  ̃), offer, and job separation. Further details

can be found in Appendix H.

In the second step, we estimate the remaining parameters Ω2 ≡ (�, �4 , �A , �9 , �, �) by
solving the following equation.

Ω̂2 = arg max
Ω2

∑∑
/̃

ln 5#*(., /̃;Θ(Ω2, Ω̂1))

In practice, we start with some initial guess of Ω2. Given Ω̂1 and Ω2, we simulate "

statistically independent data sets from the U model: {., /}< , < = 1, ..., ", where each

data set consists of #" individuals and )" periods. Then we compute Θ(Ω2, Ω̂1) =
1
"

∑
Θ̂<(Ω2, Ω̂1), where Θ̂< is the estimator for each of the " simulated data sets:

Θ̂<(Ω2, Ω̂1) = arg maxΘ ln 5#*(.< , /< ;Θ). Finally, we evaluate the objective function∑∑
/̃

ln 5#*(., /̃;Θ(Ω2, Ω̂1)). Our estimator Ω̂2 is generated by choosing the value ofΩ2

that maximizes the objective function.58

Note that the part of the objective function related to wages and latent variables

remains unchanged between iterations.59 It is the employment transitions E-E and NE-E,

56Since we ignore approximation errors in the specification of the empirical model as a proper reduced
form, it is important that the empirical model fits the data well as we hope to be the case in light of our
results.

57The estimation of health is similar to the empirical part, except that nowwe expand to 90 years old and
add survival probability.

58We choose " = 50, #" = 10, 000 and )" = 6.
59For example, we could separate latent variables and have 5#* (., /̃;Θ(Ω2 , Ω̂1)) =

5 (. |/̃;Θ(Ω2 , Ω̂1)) 5 (/̃; Ω̂1) where the second component does not change. Similar decomposition
works with wage equations too.
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job changes JC as well as asset accumulation, which are playing an active role.60

It can be shown that in the case when the NU model increases with sample size

(#,) → ∞), both NU model and U model estimators are consistent and the standard

errors are around the true values. If the NU model does not increase with sample

size, then we have a pseudo-maximum likelihood estimator and the standard errors are

around pseudo-true values. A more detailed discussion about the method can be found

in Appendices H and I.

Relation to Indirect Inference. Our method is closely related to but different from

the standard Indirect Inference method. The main difference is that we make use of NU

model estimation results. Instead of choosing parameters by comparing simulations with

data, our method compares the simulations with the NU model. On the other hand, if

one chooses the NUmodel as the auxiliary model to conduct Indirect Inference, then the

estimator which takes LR metric can be expressed as follows:

Ω̂�� = arg max
Ω

∑∑̃
/̃

ln 5#*(., ˜̃/;Θ(Ω))

where ˜̃/ is drawn from posterior 5#*( ˜̃/ |.;Θ(Ω)). Using our method, we draw latent

variable from the posterior distribution givenNUmodel estimates of real data Θ̂, whereas

with I-I method, it is the estimates of simulated data Θ(Ω) that change with iterations.

7.3 Estimation Results

Table 9 lists the estimated preference parameters. The discount factor implied by our

model is 0.899 for HE and 0.881 for LE: theHE ismore patient than the LE. The parameter,

which is identified from both consumption and labor choices, is slightly lower than other

estimates.61 The coefficient of risk aversion is 1.666 for HE and 1.891 for LE. The results

are similar to the literature.62

The estimates of the non-pecuniary part of utility show that the cost of working

increases with age. People in good health (small ℎ) face fewer working costs than those

in bad health (large ℎ). The relatively high cost of re-entry and job change corresponds

to the low RE and JC rates in the data.
60The asset accumulation in our structural model is very simplified. We had problems matching the

original asset equation in the NU model, which depends on many observables and latent variables. In the
end, we change to match only the quantiles (0.2, 0.4, 0.6, 0.8) of assets by age group (51-52, 53-54,...).

61French and Jones (2011) has the estimates that vary with the type from 0.86 to 1.12, and the average
equals 0.91.

62Van der Klaauw andWolpin (2008); Blau andGilleskie (2008); Rust and Phelan (1997); Haan and Prowse
(2014); Wen (2018)
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Table 9: Preference Parameter Estimates

Parameters HE LE Parameters HE LE

�40 : Cost of working -0.347 -0.212 �90 : Cost of job change 2.295 2.005

�41 : Cost of working: 0.106 0.04 �91 : Cost of job change: -0.003 0.11
age dependent (×C) age dependent (×C)

�42 : Extra cost of working for 60+: 0.009 0.061 �92 : Extra cost of job change: for 60+: -0.044 0.002
age dependent (×C) age dependent (×C)

�43 : Cost of working: 0.446 0.373 �93 : Cost of job change: 0.01 0.011
health dependent (×ℎ) health dependent (×ℎ)

�A0 : Extra cost when reentering 1.925 0.978
labor market

�A1 : Reentry cost: 0.147 0.328 � : Coef. risk aversion 1.666 1.896
age dependent (×C)

�A2 : Extra Reentry cost for 60+: -0.188 -0.417 � : Bequest intensity 0.029 0.037
age dependent (×C)

�A3 : Reentry cost: -0.055 -0.084 � : Discount factor 0.899 0.881
health dependent (×ℎ)

Notes: Table shows the point estimation of parameters.

Besides the point estimation, we also plot the simulated age profile of employment,

job change, asset, andwage against the data in Appendix J. Simulated profiles, in general,

match the characteristics of the data quite well.

7.4 Welfare Calculation

In this section, we implement two exercises aimed at providing answers to two different

questions. The first one is about the welfare cost of risks. We focus on mismatch shocks

and job destruction shocks. Specifically, we compute the welfare changes by comparing

the baselineworld to the alternativewhere certain risk is eliminated. The second question

is about the value of bridge jobs. We compute the welfare cost of living in an alternative

economywhere re-entry and job changes are not allowed after age 65. The exercise speaks

of how much people value the probability of a flexible transition to their full retirement.

Two measures are formed to quantify the welfare gain/loss. The first one is a lump-

sum transfer of the asset, Δ�, received at age 55/56 (C = 3). The amount is the equivalent

variations in the asset such that people are indifferent between the baseline economy and

the alternative one. It can be expressed as follows:

+3(�2 + Δ�,Ω3\�2) = +̃3(Ω3)

where +C represents the expected discounted utility given a certain set of state variables

at C in the baseline world, and +̃C represents the alternative world. SymbolΩ3\�2 denotes
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all state variables inΩ3 but �2. Therefore, the asset transfer, Δ�, is defined as the amount

that people receive in the baseline world at C = 3 such that the expected discounted utility

is the same as in the alternative world.

The second measure is based on consumption flows. It is defined as the proportion of

optimal consumption, �, at all ages since 55/56(C ≥ 3) that people receive such that they

have the same expected discounted utility as in the alternative world.

+3(Ω3) +
∑
C=3

�C−3�3

(
B(C) 1

1 − � (��
∗
C )1−�

)
= +̃3(Ω3)

where B(C) = (∏:=C
:=3 B:)/B3 is the survival rate until period t conditional on being alive at

period 3, and �∗C is the policy function for consumption in the baseline world. The LHS of

the equality above has two parts: the value in the baseline world and the extra expected

utility from �more consumption. The RHS is the value of living in the alternative world.

Both measures can be either positive or negative. A positive value means that moving

to the alternative world improves welfare, while a negative one implies the opposite.

However, the sign and magnitude can vary from person to person depending on their

state variables.

7.4.1 Welfare cost of risks

Table 10 presents the welfare gains of eliminating mismatch and employment risks in the

first four and last four columns, respectively. Thewelfare cost of risks is computed for high

and low education groups separately. Additionally, we expect the welfare changes to be

heterogeneous, as peoplewithdifferent state variables react differently to the experiments.

Hence, we report the distribution of the welfare gains by displaying the 10Cℎ, the 50Cℎ,

and the 90Cℎ percentiles of the welfare gains in the first three rows, and the conditional

median on different assets, employment status, and health levels starting from the 4Cℎ

row.

Mismatch Shocks. Results in Table 10 show that mismatch shocks bring welfare loss

to both education groups. The median welfare cost accounts for a lump sum transfer

of assets around $62, 300 for HE and $26, 700 for LE. We also observe heterogeneities

within each education group: the 90th percentile is around more than two times the

10th percentile for both groups. Furthermore, we calculate the welfare loss in each

subgroup with different asset levels, employment status, tenure, wage rate, and health

levels. The cost measured in transfers increases with assets: the number for the bottom
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Table 10: Welfare Cost Of Mismatch And Employment Risks

No mismatch risk No 93 risk
Δ�(×$10, 000) �(%) Δ�(×$10, 000) �(%)
HE LE HE LE HE LE HE LE

P10 3.98 1.45 5.9 4.34 1.69 1.78 2.71 5.41
P50 6.23 2.67 7.11 5.33 3.35 3.63 3.53 7.3
P90 8.62 4.57 7.99 6.18 5.03 6.63 4.31 9.29

By assets level
�C−1 ≤ %33 4.8 1.81 7.43 5.14 2.24 2.31 3.39 6.77
%33 < �C−1 ≤ %66 6.2 2.61 6.91 5.18 3.31 3.52 3.5 7.1
�C−1 > %66 7.97 4.05 6.88 5.68 4.38 5.74 3.69 8.21

By employment status
Non-employed 3.02 1.4 5.31 3.73 1.39 1.77 2.4 4.71
Employed, ten≥ 10 yrs 6.66 3.18 7.09 5.56 3.69 4.43 3.72 7.87
Employed, ten< 10 yrs 5.94 2.39 7.28 5.2 2.99 3.16 3.42 6.86
Employed, high wage (≥ %50) 7.2 3.53 7.04 5.77 4.21 5.09 3.99 8.4
Employed, low wage (< %50) 5.55 2.18 7.35 5.1 2.6 2.81 3.23 6.65

By health level
Good (ℎC−1 > %75) 7.39 3.33 7.4 5.86 4.04 4.65 3.94 8.27
Far (%25 < ℎC−1 ≤ %75) 6.27 2.76 7.07 5.38 3.39 3.79 3.55 7.4
Bad (ℎC−1 ≤ %25) 5.08 1.97 6.54 4.87 2.49 2.64 3.19 6.43

Notes: The columns 1-4 show the distribution of welfare cost caused by mismatch risk measured by asset transfer Δ�
and consumption flow � for the high educated (HE) and low educated (LE). The columns 5-8 show the distribution
of welfare cost caused by job destruction risk measured by asset transfer Δ� and consumption flow � for the high
educated (HE) and low educated (LE).

one-third is $48, 000($18, 100), and it increases to $79, 700($40, 500) for the top one-third.

By employment status, we find that workers with higher tenure and higher wages suffer

greater losses. Lastly, people in better health require more asset transfer.63

Next, we switch to the measure based on the consumption flow (columns 3-4). The

median cost of mismatch shocks is equivalent to 7.11% consumption for HE, and 5.33%

for LE. There is relatively less heterogeneity compared to the other measure: the 90th

percentile is 7.99%(6.18%), and the 10th percentile is 5.9%(4.34%). What’s more, the

correlation between the cost and observables for HE is different from the previous result.

The equivalent proportion of consumption decreases with asset level. Workers with

lower tenure and lower wages face a higher cost. But in general, the differences between

subgroups are minor.

63However, considering the multi-dimensional nature of health, one needs to be cautious in its interpre-
tation
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JD shocks. Columns 5 to 8 in Table 10 show the welfare changes of eliminating the

probability of receiving job destruction shocks. The median welfare gain accounts for

$33, 500 lump sum transfer or 3.53% consumption for HE and $36, 300 lump sum transfer

or 7.3% consumption for LE. In terms of asset transfer, wealthier and healthier people,

workers with higher tenure and higher wages gain more from a smaller 93 risk. The

pattern of consumption flow is similar except for the correlation with assets for the low

educated.

7.4.2 Value of flexible employment transitions

Finally, we assess how much people value the possibility of a flexible transition to full

retirement, which indirectly speaks of the value of bridge jobs. Specifically, in the alterna-

tive economy, people older than 65 are banned from moving to a new job, either through

re-entry or job-to-job movement. Indeed, workers can only stay in their job until their

full exit from the labor market: they can not change jobs even if they have better options.

Similarly, the non-employed who recovered from previous health or productivity shocks

can neither return to the labor market.

The first four columns of Table 11 show the cost of imposing such UE and JC restric-

tions. The median cost is around $107, 300 for HE and $58, 400 for LE. For the most

affected, the loss can be higher than $174, 000. Even for those less affected, the rigidi-

ties of the labor market cause a loss of around $29, 800. If we measure the loss using

consumption changes, then the negative effect is the amount to a 10% − 17% reduction

in consumption. The consumption cost is slightly higher and more dispersive for LE.

Lastly, conditional on subgroups, we find that wealthier, healthier, experienced workers

face higher costs.

We further analyze the effect of mismatch shocks on the cost. By comparing the

baseline world without mismatch shocks and the alternative world without mismatch

shocks butwithUEand JC restrictions,wefind that the cost of the employment restrictions

is slightly higher in all cases. This implies that when people are fully insured against the

mismatch risks in an alternative world, the flexibility in the transition at the end of their

career becomes more valuable.
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Table 11: Value Of Flexible Transition To Full-retirement

No UE/JC after 65
(to baseline)

No UE/JC after 65 +
no mismatch risk
(to baseline +

no mismatch risk)
Δ�(×$10, 000) �(%) Δ�(×$10, 000) �(%)
HE LE HE LE HE LE HE LE

p10 -17.4 -13.4 -13.78 -16.79 -18.0 -13.63 -14.04 -16.92
p50 -10.73 -5.84 -12.65 -13.53 -11.13 -5.99 -12.84 -13.68
p90 -5.55 -2.98 -10.88 -10.52 -5.85 -3.07 -10.99 -10.61

By asset level
�C−1 ≤ ?30 -6.87 -3.78 -11.38 -11.4 -7.14 -3.88 -11.51 -11.52
?33 < �C−1 ≤ ?66 -10.89 -5.78 -12.61 -13.23 -11.3 -5.94 -12.8 -13.37
�C−1 > ?66 -15.74 -10.91 -13.51 -15.88 -16.3 -11.17 -13.76 -16.03

By employment status
Non-employed -4.99 -3.5 -10.99 -11.49 -5.2 -3.59 -11.12 -11.61
Employed, ten≥ 10 -12.0 -7.4 -12.88 -14.31 -12.46 -7.6 -13.08 -14.46
Employed, ten< 10 -9.1 -4.8 -12.29 -12.68 -9.4 -4.91 -12.46 -12.8
Employed, high wage (≥ ?50) -13.99 -8.95 -13.25 -15.08 -14.48 -9.18 -13.48 -15.23
Employed, low wage (< ?50) -8.34 -4.52 -11.93 -12.26 -8.57 -4.59 -12.07 -12.38

By health level
Good (ℎC−1 > ?75) -13.03 -7.43 -13.03 -14.3 -13.5 -7.63 -13.25 -14.45
Far (?25 < ℎC−1 ≤ ?75) -10.85 -6.26 -12.64 -13.76 -11.24 -6.42 -12.83 -13.9
Bad (ℎC−1 ≤ ?25) -8.46 -4.38 -12.1 -12.32 -8.71 -4.46 -12.27 -12.46

Notes: The columns 1-4 show the distribution of welfare cost of banning job change and re-entry after age 65 for
the high educated (HE) and low educated (LE), respectively. The columns 5-8 show the distribution of welfare cost
of banning job change and re-entry after age 65 without mismatch risk (both in baseline economy and alternative
economy) for the high educated (HE) and low educated (LE), respectively. The cost is measured by asset transfer Δ�
and consumption flow �.

8 Conclusion

In this paper, I focus on the gradual transition to full retirement of older workers in

the United States: instead of having a one-time and permanent withdrawal from the

labor force, many older workers experience job movements, which often means moving

towards worse-paying and less-demanding jobs. To explain this pattern, I propose an

aging-related shock â mismatch shock, that mismatches workers with their exiting job. I

built latent-variablewage and hour processes jointlywith a flexiblemodel of employment

and job transitions to disentangle health risks, individual-specific productivity risks,

firm-specific mismatch risks, quality of outside offers, and job destruction risks for older

workers near retirement. Themodel is estimated by applying a simulation-basedmethod
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in a companion paper of mine and using 50+ individuals in the HRS data. The results

show that the mismatch shock could capture the left-skewness in wage and hour changes

observed in the data for job movers. Indeed, the mismatch shock plays an important role

in explaining the non-marginal reduction in wages and hours for movers.

Furthermore, I compute the welfare cost of risks and quantify how much individuals

value the possibility of retiring smoothly in a utility-based structural model. Agents in

the structural model face the same risks as in the empirical model. Moreover, the em-

pirical model is flexible enough to be treated as a good approximation of the reduced

form of the structural model. Taking advantage of these connections, I propose a novel

simulation-based estimation algorithm for the structural model that exploits the results

of the empirical model. The results show that the mismatch risk causes a non-negligible

amount of welfare loss: the loss caused bymismatch risk is heterogeneous with a median

loss amount of $62, 300 for the highly educated (HE) and $26, 700 for the lowly educated

(LE), equivalent to a 7.11% reduction in consumption flow for HE and 5.33% for LE.

Furthermore, results suggest that people value the flexibility in transitioning to full re-

tirement: banning job changes and re-entry causes a median loss of around $107, 300 for

HE and $58, 400 for LE, which is equivalent to a 12% − 14% reduction in consumption

flow.
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APPENDIX to
“Income, Employment And Health Risks Of

Older Workers”

A The Data

The assets �8C are defined as the sum of all wealth components (excluding secondary

home) net of all debt. It is the sum of the primary residence, real estate, vehicles,

businesses, IRA/Keogh accounts, stocks, mutual funds, investment trusts, checking,

savings, money market accounts, CD, government savings bounds, T-bills, bonds, bonds

funds, and all other savings less all mortgages/land contracts, other home loans and

other debt.

Observations for a given person-year are retained if the person is aged 51 to 70, never

self-employed, and has non-missing data on education, race, self-reported health, birth

information, wages, working hours and employment status. FollowArellano et al. (2017),

we do not use observed wage rates when they display extreme âjumpsâ from one year

to the next and treat them as measurement error. Additionally, we also do not use

assets that display extreme "jumps" but for a different reason. This could potentially be a

measurement error, or this could reflect some real changes in capital income, real estate

and etc. Our model do not include other sources of income but labor earnings, and it is

difficult to explain the changes only through labor income. Potentiallywe can incorporate

these possibilities by modelling some extreme shocks on top of normal shocks. But this

is not what we focus on. Instead, we simply remove those observations. We restrict the

sample to male individuals who have eligible observations for at least three consecutive

waves and are employed for at least one wave.

Finally, following Altonji et al. (2013), we censor reported hours at 4000, add 200 to

reported hours before taking logs to reduce the impact of very low values of hours on the

variation in the logarithm, and censor observed hourly wage rates to increase by no more

than 500% and decrease to no less than 20% of their lagged values.
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B Supplement Figures

Figure B1: Log Wage Changes For Movers (excluding business close) And Stayers
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Figure B2: Log Wage Changes For Movers And Stayers, By Education
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Figure B3: Log Wage Changes For Movers (excluding business close and laid-off) And
Stayers

(a) HE

0
1

2
3

4
5

-2 -1 0 1 2
log wage changes

Stayers
Movers

(b) LE

0
2

4
6

8
10

-2 -1 0 1 2
log hour changes

Stayers
Movers

Figure B4: Log Wage And Hour Changes For Movers And Stayers With Tenure ≥ 10HAB,
By Education
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Figure B5: Log Hour Changes For Movers And Stayers, By Education
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Figure B6: Log Hour Changes For Movers And Stayers With Tenure ≥ 10HAB, By
Education
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C Specification of Empirical Model

In this subsection, we describe in detail the specification of our empirical model.

Log Wages. The log wage F8Cof individual 8 at period C is given by:

F8C = �8C × (F∗8C + �8C), �8C ∼ #(0, �2
<) (C1)

F∗8C = -
′
8C�

F
- + ℎ8C�

F
ℎ
+ �8 + $8C +  8 9(C) (C2)

Working hours. The log hour ℎ8C of individual 8 at period C is specified as:

;8C = �8C × (-′8C�;- + ℎ8C�
;
ℎ
+ �8�;� + �8 9(C) + �;8C) (C3)

Individual earning power. The persistence of individual-specific productivity shock

is assumed to be an exponential of a linear function of �8C and 0648 ,C−1. We restrict the

persistence to be non-negative.

$8C = 4G?(�$1 + �
$
� �8C + �$0640648 ,C−1)$8 ,C−1 + �$8C�8C (C4)

In addition, we assume �8C follows an autoregressive gamma process (Gourieroux and

Jasiak, 2006). Variable �8C followsanARG(1) if andonly if �C2 ∼ #>=24=CA0;�0<<0(�, 2��8 ,C−1),
or equivalently 2�C

2 ∼ #>=24=CA0;�ℎ8 − B@D0A43(2�, 2��C−1), where 2, � and � are param-

eters. It can be interpreted as �C is drawn from a Gamma distribution whose shape

parameter depends on its value in previous period �C−1 and parameter �, and whose

4



scale parameter is 2.1

2�8C
4G?(��1 + �

�
43D
43D8 + ��ℎ ℎ8 ,C−1 + ��0640648 ,C−1 + ��0642064

2
8 ,C−1)

∼ "2
2�(2��8 ,C−1) (C5)

As described in Equation (C5), we specify parameter 2 as an exponential of a linear

function of education, health, age, and age squared.

Health dynamics. The latent health ℎ8C depends on a polynomial age trend and its

value in previous period. How much the past health ℎ8 ,C−1 could affect the following

period depends on it own value and age. Finally, ℎ8 ,C−1 also affects the size of health

shocks.

ℎ8C = �ℎ1 + �
ℎ
2 0648 ,C−1 + �ℎ3 064

2
8 ,C−1 + ;>68BC82(�ℎ4 + �

ℎ
5 ℎ8 ,C−1 + �ℎ6 ℎ

2
8 ,C−1+

�ℎ7 ℎ8 ,C−10648 ,C−1 + �ℎ8 0648 ,C−1 + �ℎ9 064
2
8 ,C−1)ℎ8 ,C−1 + �ℎ8C�(BAℎ8 ,C−1) (C6)

BAℎ8C =

5∑
:=1

1(ℎ8C > �:), �1 = −∞ (C7)

where �(BAℎ8 ,C−1) =
∑5
: �:1(BAℎ8 ,C−1 = :). We estimate the process by education group.

Firm-specific component and mismatch shocks. We assume there is a firm-specific

wage component and a firm-specific hour component. The mismatch shock follows

Equation (C10), a Probit model with regressors including age, age squared, education,

stochastic firm component �8 ,C−1, employment status, and its interaction with �8 ,C−1.

 8 9(C) = � C4=1C4=8 9(C) + �
 
C4=2C4=

2
8 9(C) + �

 
C4=3C4=

3
8 9(C) + �8 9(C) (C8)

�8 9(C) =


�′
8 9(C) if start a new job (D48C = 1 or 928C = 1)
�′′
8 9(C) � �8 9(C) if stay at the same job and <8C = 1
�8 9(C−1) Otherwise

(C9)

<8 9(C) = 1{�<1 + �
<
0640648 ,C−1 + �<0642064

2
8 ,C−1 + �<43D43D8 + �

<
� �8 ,C−1+

�<� (1 − �8 ,C−1) + �<���8 ,C−1(1 − �8 ,C−1) + �<8C > 0} (C10)

�8 9(C) =

{
�′
8 9(C) if D48C = 1 or 928C = 1

�8 9(C−1) otherwise
(C11)

Offers. The offer is a package of firm-specific wage and hour components. As we

can see in Equation (C12), mismatch shocks affect the offer in two different ways. First,

workers who receive mismatch shocks will face an average change of the offer quality

by ��< . Secondly, if he does not accept the offer and becomes non-employed, then the

1To simulate �8C , one could draw I from a Poisson distribution with parameter ��C−1 (i.e., I ∼
%>8BB>=(��C−1)), and then draw �C from a Gamma distribution: �C ∼ �0<<0(I + �, 2).
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following offers are also affected through the term (1−�8 ,C−1)
∑C
C> <8 9(C). The accumulated

mismatch shocks
∑C
C> <8 9(C) is the key to express that mismatch shocks have persistent

effect on firm-specific productivity and hence the offers. This term (1 − �8 ,C−1)
∑C
C> <8 9(C)

also allows for different offer distributions for workers with job destruction shock and

with mismatch shocks: those who only receive job destruction shock and become non-

employed have
∑C
C0 <8 9(C) = 0.

�′
8 9(C) = ����8 9(C0) + ��<<8C�8 ,C−1 + ���(1 − �8 ,C−1) + ��<�(1 − �8 ,C−1)

C∑
C>

<8 9(C)+

��
43D
43D8 + ��43D<�43D8 × <8C�8 ,C−1 + ��8C (C12)

�′
8 9(C) = ����8 9(C0) + �

�
<<8C�8 ,C−1 + ���(1 − �8 ,C−1) + ��<�(1 − �8 ,C−1)

C∑
C>

<8 9(C)+

��
43D
43D8 + ��43D<�43D8 × <8C�8 ,C−1 + ��� �′8 9(C) + �

�
8C

(C13)

where ��
8C
∼ <8 9(C)×��0��1�8C+(1−<8 9(C))×��0�8C , and theCDFof �8C is (1−�)Φ(G)+�Φ(G/:),

with � = 1/(:2 − 1). Additionally, we allow parameters ��0, ��1, and : to be education

and employment status �8 ,C−1 specific. The distribution of �
8C
is specified in a similar way.

Employment transitions and Job dynamics. Job destruction only depends on edu-

cation, which captures the systematic differences in stability of the job of workers with

different education levels.

938C = 1{� 931 + �
93

43D
43D8 + � 938C > 0} (C14)

where � 93
8C
∼ #(0, 1).

Employees without job destruction shocks andmismatch shocks. The employment-

to-employment transition is realized based on Equation (C15). Specifically, we allow

individuals in their 70s to have different patterns from those in their 60s by adding

interactions of an age dummy with polynomials of tenures and wage offers.

448C = 1{�44- -8C + �
44
� �8 ,C−1 + �44C4=01(C4=8 ,C−1 = 2) + �44C4=C4=8 ,C−1 + �44C4=2C4=

2
8 ,C−1 + �44C4=3C4=

3
8 ,C−1+

(�44064,C4=C4=8 ,C−1 + �44064,C4=2C4=
2
8 ,C−1 + �44064,C4=3C4=

3
8 ,C−1) × 1(0648 ,C−1 ≥ 61)+

�44
ℎ1ℎC−1 + �44ℎ21(BAℎ8 ,C−1 = 4) + �44

ℎ31(BAℎ8 ,C−1 = 5)+

�44
ℎ4ℎC + �

44
ℎ51(BAℎ8 ,C = 4) + �44

ℎ61(BAℎ8 ,C = 5)+

�44F1 max(FB
8C , F

=4F
8C ) + �44F2 max(FB

8C , F
=4F
8C )1(0648 ,C−1 ≥ 61)+

�44F3 max(FB
8C , F

=4F
8C )43D8 + �44; ;8 ,C−1 + �44� �8 + �448C > 0} (C15)
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where �44
8C
∼ #(0, 1). Variable FB

8C
is defined as wage the worker will earn if he stays at his

job, and variable F=4F
8C

is the wage if he moves to the new job.2

The job movement is specified as in Equation (C16). Workers value the difference in

firm-specific component between the new job and the old job, that is, (�′
8 9(C) − �8 9(C−1)) and

3 8C ≡  ′
8 9(C) −  8 9(C−1). Additionally, the evaluation could depend on the characteristics of

their current job  B
89(C), and the sign of changes |3 8C |.3

928C = 1{� 92
-
-8C + � 92��8 ,C−1 + � 92C4=01(C4=8 ,C−1 = 2) + � 92C4=C4=8 ,C−1 + � 92C4=2C4=

2
8 ,C−1 + �

92

C4=3C4=
3
8 ,C−1+

�
92

ℎ1ℎC−1 + � 92ℎ21(BAℎ8 ,C−1 = 4) + � 92
ℎ31(BAℎ8 ,C−1 = 5)+

�
92

ℎ4ℎC + �
92

ℎ51(BAℎ8 ,C = 4) + � 92
ℎ61(BAℎ8 ,C = 5)+

�
92
$ $8C + �

92

�1(�
′
8 9(C) − �8 9(C−1)) + �

92

�2(�
′
8 9(C) − �8 9(C−1))2+

�
92

�1 
B
89(C) + �

92

�2 
B
89(C)1(0648 ,C−1 ≥ 61) + � 92�3 

B
89(C)43D8 + �

92

�4 
B
89(C)1(0648 ,C−1 ≥ 61)43D8+

�
92

3 1 log(|3 8C |)1(3 8C > 0) + � 92
3 2 log(|3 8C |)1(3 8C > 0)1(0648 ,C−1 ≥ 61)+

�
92

3 3 log(|3 8C |)1(3 8C > 0)43D8 + � 923 4 log(|3 8C |)1(3 8C > 0)1(0648 ,C−1 ≥ 61)43D8+

�
92

3 5 log(|3 8C |)1(3 8C ≤ 0) + � 92
3 6 log(|3 8C |)1(3 8C ≤ 0)1(0648 ,C−1 ≥ 61)+

�
92

3 7 log(|3 8C |)1(3 8C ≤ 0)43D8 + � 923 8 log(|3 8C |)1(3 8C ≤ 0)1(0648 ,C−1 ≥ 61)43D8+

�
92
� �8 + �

92

8C
> 0} (C16)

where � 92
8C
∼ #(0, 1).

Non-employed or with job destruction shocks or with mismatch shocks. The non-

employment-to-employment transition is specified as follows:

D48C = 1(�D4- -8C + �
D4
� �8 ,C−1 + �D4ℎ1ℎC−1 + �D4ℎ21(BAℎ8 ,C−1 = 4) + �D4

ℎ31(BAℎ8 ,C−1 = 5)+

�D4
ℎ4ℎC + �

D4
ℎ51(BAℎ8 ,C = 4) + �D4

ℎ61(BAℎ8 ,C = 5)+

�D4F1F
=4F
8C + �D4F2F

=4F
8C 1(0648 ,C−1 ≥ 61) + �D4F3F

=4F
8C 43D8+

�D4
931 938C + 938C × (�

D4
93243D8 + �

D4
9330648 ,C−1 + �D4934064

2
8 ,C−1 + �D4935064

3
8 ,C−1 + �

D4
936ℎ8 ,C−1)+

938C × (�D4937F
=4F
8C + �D4938F

=4F
8C 1(0648 ,C−1 ≥ 61) + �D4

939F
=4F
8C 43D8)+

�D4< <8C�8 ,C−1 + �D4D3D38 ,C−1 + �D4� �8 + �D48C > 0} (C17)

where �D4
8C
∼ #(0, 1). In data, we observe that people with 93 = 1 are significantly

more likely to return to labor market than those who have to non-employed for many

2We have FB
8C
≡ -′

8C
�F
-
+ ℎ8C�Fℎ + �8 + $8C + � C4=1(C4=8 9(C−1) + 2) + � 

C4=2(C4=8 9(C−1) + 2)2 + � 
C4=3(C4=8 9(C−1) +

2)3 + �8 9(C−1), and F=4F
8C
≡ -′

8C
�F
-
+ ℎ8C�Fℎ + �8 + $8C + ��C4=1C4=8 9′(C0) + �

�
C4=2C4=

2
8 9′(C0) + �

�
C4=3C4=

3
8 9′(C0) + �

′
8 9(C).

3We take log of |3 C8 | because it tends to have a long tail in practice. We transform it to increase the
stability.
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periods. For this reason, we add flexible interactions of the job destruction dummy 938C
and demographics, health, and wages.

Assets accumulation. We specify the conditional probability distribution of assets as

in Equation (C18), which is a set of Probit regressions whose parameters depend on the

threshold ��
:
.

1(�8C < ��
:
) = 1{��-(�

�
:
)-8C + ���(�

�
:
)�8 ,C−1 + ��F (��: )F

∗
8C�8C + ��; (�

�
:
);8C�8C+

��� (�
�
:
)(1 − �8C) + ��ℎ (�

�
:
)ℎ8C + ��$(��: )$8C + �

�
� (��: )�8C + �

�
� (��: )�8 + �

�
8C > 0} (C18)

Initial distribution. Finally, the distributions of the initial variables are specified in

Equations (C19 - C24)

ℎ81 = �ℎ1
- -81 + �

ℎ1
� �81 + �

ℎ1
� �81 + �

ℎ1
81 , �

ℎ1
81 ∼ #(0, 1) (C19)

�81 =
7∑
:=1

��1
:

1(2: + 51 ≤ 06481 ≤ 2: + 52) + ��1
43D
43D8 + ��1

81 (C20)

�81 =
7∑
:=1

��1
:

1(2: + 51 ≤ 06481 ≤ 2: + 52) + ��1
43D
43D8 + ��1

�1�81 + �
�1
81 (C21)

�82 ∼ �0<<0(:�2 , 4G?(��01 + �
�
0243D8 + �

�
03ℎ81 + �

�
0406481 + �

�
05064

2
81)/:�2) (C22)

$81 ∼ #(0, �2
$1) (C23)

�8 ∼ #(0, �2
�) (C24)

where ��1
81 ∼ #(0, �2

�43D143D8 + (1− 43D8)�
2
�43D0). Further extension is to allow for selection

of latent variables in initial period, for example, by adding an employment equation for

the first period.

D The Estimation Of The Empirical Model

Let .† denote the observable set {F8C , �8C , Bℎ8C , 938C , 928C , �8C , ;8C}, 8 = 1, ..., # , C = 1, ..., )8 ,

let-† denote the observable set {0648C , 43D8 , A0248 , �81, C4=81, �81, A424BB8C}, 8 = 1, ...# , C =

1, ..., )8 , and let / denote the latent variable set {ℎ8C , �8 , $8C , �8C , �′8C , �81, <8C , �′8C , �81}, 8 =
1, ..., # , C = 1, ..., )8 , denote Θ as all parameters. In addition, I define . ≡ {G |G ∈ .†, G ≠
Bℎ} as all elements in .† except health measures Bℎ. Correspondingly, Θℎ represents all

parameters in health dynamics (eq 4 and 5), and Θ−ℎ ≡ {G |G ∈ Θ, G ∉ Θℎ} is all other

parameters except Θℎ . For simplicity, I use 5 (·) to represent the density function implied

by the empirical model throughout this section.
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The log-likelihood function of the empirical model can be decomposed as follows

!(.† |-†;Θ) =
�∑
8=1

ln 5 (Bℎ8 |-†8 ;Θℎ) +
�∑
8=1

ln 5 (.8 |Bℎ8 , -†8 ;Θℎ ,Θ−ℎ)

Instead of estimating Θ jointly by maximizing !(Θ), we proceed sequentially: we obtain

estimates Θ̂ℎ from maximizing
∑�
8=1 ln 5 (Bℎ |-†;Θℎ) and estimates Θ̂−ℎ from maximizing∑�

8=1 ln 5 (.8 |Bℎ, -†; Θ̂ℎ ,Θ−ℎ). The two-step estimators are consistent.4

Health part. Estimation of Θℎ involves maximizing
∑�
8=1 ln 5 (Bℎ8 |-†8 ;Θℎ). Consider-

ing that there is only one latent variable, which usually implies relatively faster conver-

gence, we implement the SEM algorithm. Given initial guess Θ(0)
ℎ
, we iterate between

E-step and M-step

1. E-step: draw ℎ(B) from 5 (ℎ8 |Bℎ8 , -†8 ;Θ
(B−1)
ℎ
) ∝ 5 (ℎ8 , Bℎ8 |-†8 ;Θ

(B−1)
ℎ
)

2. M-step: update to Θ(B)
ℎ
= arg maxΘℎ

∑�
8=1 ln 5 (ℎ(B)

8
, Bℎ8 |-†8 ;Θℎ)

where the joint distribution is

5 (ℎ8 , Bℎ8 |-†8 ;Θℎ) = 5 (ℎ81 |-†8 ;Θℎ)
( )8∏
C=2

5 (ℎ8C |ℎ8 ,C−1, -
†
8 ;Θℎ)

)
5 (Bℎ8 |ℎ8 ;Θℎ)

The remaining. We exploit PX-SEM algorithm to estimate the remaining parameters

Θ−ℎ . This is motivated by the fact that ourmodel containsmultiple latent variables across

multiple periods, which is often accompanied by a relatively slow convergence in SEM

iterations. In this situation, the value of improving the convergence speed is no longer

negligible.

PX-SEM also requires iterating between E-step and M-step, where the E-step is the

same as the one of SEM algorithm. InM-step, we need to 1) expand the original model (O

model) to a larger model (L model) space that contains the original model 2) estimate the

larger model 3) reduce to the original model space keeping the likelihood of observables

unchanged. By expanding and reducing, we are actually proposing amore robust estima-

tor to bad E-step guess. And the lesson is more than the parameter expansion technique

itself: even without expanding the model (L model = O model), exploiting more robust

estimators inM-step can help too (i.e., the estimator that uses as less as possible the latent

draws from E-step).

There is no unique way to expand the original model. In principle, a larger model

should always be better than or the same as SEM in terms of converging speed. However,

4Check Cox (1975), Amemiya (1978) and Arcidiacono and Jones (2003) for details about asymptotic
properties of these sorts of two-step estimators.
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PX-SEM may cost extra time in expanding and reducing models especially when the L

model is too complicated, and therefore extending the total computing times. Following

the strategy in Wei (2021), we will expand the model in a linearway.5

The specific steps of PX-SEM are as follows: starting with initial guess Θ(0)−ℎ , we iterate

between the E-step and M-step:

1. E-step: draw /(B) from 5 (/8 |.†8 , -†8 ; Θ̂ℎ ,Θ−ℎ) ∝ 5 (.†8 , /8 |-†8 ; Θ̂ℎ ,Θ−ℎ)
2. PX-M-step: update to Θ̂(B) = arg maxΘ

∑
6(.†

8
, /
(B)
8

;Θ)

In the following paragraphs, we discuss E-step andM-step in reverse order. We firstly

present the M-step, which including our choice of L model, its estimation and reduction,

and then we compute the likelihood function of the original model 5 (.†
8
, /8 |-†8 ;Θℎ ,Θ−ℎ)

that is required for MH in E-step.

L model is based on O model. Firstly we revisit the latent wage equation (2) and

firm component equation (8). For simplicity, we separate the recession indicator A42C
from the variable vector -8C and name the remaining demographic part as �8C , that is

[�8C ; A42C] = -8C . The equation (2) and (8) are replaced by equation (D1) and (D2)

F∗8C = �
′
8C$1,t + A428C$2,t + ℎ8C�ℎ + �8k- + $8Ck8 +  8 9(C) (D1)

 8 9(C) = C4=
′
8 9(C)$3,t + �8 9(C)k. (D2)

Compared with O model, L model allows for a time-variant dependence of latent wages

on observables including - and C4= as shown in equation (D1) and (D2). Furthermore,

the coefficient of latent variable �8 , $8C and �8 9(C) can be different from one. Then we move

to working hours. The equation (3) is replaced by the following one

;8C = �8C × (-′8C�;- + ℎ8C�
;
ℎ
+ :��8�;� + �8 9(C)k/ + �;8C) (D3)

where the coefficient of �8 9(C) is also allowed to be other than one.

Next, define �̃8 ≡ �8 − �′81"1 − A42C"2 − C4=′8 9(1)"3, and $̃8C ≡ $8C − �′8C#1,t − A42C#2,t −
C4=′

8 9(C)#3,t . We replace �8 , $8C , �8 9(C) and �8 9(C) in the rest of Omodel, which is all equations

and assumptions in the O model except equation (2), (3) and (8), with :��̃8 , :$$̃8C , :��8 9(C)
and :��8 9(C). For example, we then have :��̃8 ∼ #(0, �2

�). As a result, the fixed effect �8
and the individual-specific productivity $8C can vary with - and C4=.

5It is linear in the sense that the L model expands the O model by affine transformation.
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Finally we assume
(

�1,C + :�61(1) + :$�1,C
�2,C + :�2 × 1(C = 1) + :$�2,C

)
= �F

-
, 2 = 0, �3,C + :�3 × 1(C =

1) + :$�3,C = � C4= , and 3 = 0.6

Apart fromall parameters inOmodelΘ, Lmodel contains a set of auxiliaryparameters

including Λ = (:�, :$ , :� , :� , 1, ..., 3, �1, ..., �3). It is easy to check that when :� = :$ =

:� = :� = 1, 1 = �1,C =
⇀
0 , 2 = �2 = 0, 3 = �3,C =

⇀
0 , ∀C ≤ ), L model equals O

model. On the other hand, L nests O model (L model k O model) because the auxiliary

parameters can aways take other values. We could further expand L model, for instance,

by adding dependent variables including observables and latent variables of all periods

in defining �̃8 and $̃8C , etc. However, it will complicate the estimation and reduction.

The estimation of L model is based on the pseudo-complete data including the draws

from E-step of ℎ8C , �8 , $8C , �8C , �′8C , �81, <8C and �8C . We decompose the parameters into

several groups to estimate sequentially. Firstly, we estimate the auxiliary parameters: 1)

regress �8 on -81 and C4=1 to obtain ̂1 and compute the residual A4B�
8
, 2) regress $8C on

-8C and C4=8C to obtain �̂1, �̂2 and �̂3 and compute residual A4B$
8C
.7

Secondly, we recover coefficients of wage equation, :�, :$ and :�, standard deviation

of � and $81 through following steps: 1) regress ΔF8C on Δ-8C , ΔC4=, Δℎ8C , ΔA4B$8C and

Δ�8 9(C) for individual 8 who works both in period C − 1 and C to get coefficients of variables

other than education and race. The coefficients of ΔA4B$
8C
and Δ�8 9(C) are the estimates of

:$ and :� respectively, 2) regress F8C − -′8C �̂- − ℎ8C �̂Fℎ − A4B
$
8C
:̂$ − C4=′8 9(C)�̂

 
C4= − �8 9(C) :̂� on

43D, A024 and A4B�
8
.8 9 The coefficient of A4B�

8
is the estimate of :�. Step 1) and 2) altogether

provide �̂F
-
, �̂F

ℎ
, �̂ C4= , :̂�, :̂$ and :̂�. We can also compute latent wage for each individual

F∗
8C
.

Next, we estimate the parameters in working hour equation. By regressing non-zero

working hours on -8C , ℎ8C , :̂�A4B
�
8
, and �8 9(C), we obtain �̂;

-
, �̂;� and :̂�.

All parameters in<, 93, 92, 44, D4 and� equations are estimatedwith Probit regression

function in ulıa package GLM. Specifically, asset dynamics are estimated with a set of

Probit regressions. Each regression has a different � and a dependent variable 1(�8C ≤ �).
Finally, parameters in the distribution of latent variables are estimated as follows: 1)

6function 61(1) is a vector of polynomials of 1. The function transforms the coefficients of 0641 and
its polynomials into coefficient of the polynomials of 064C .

7In the estimation of $, we use the assumption that $81 and &$
8C
are independent from other components.

8Combining equation (1), equation (D1), equation (D2), definition of �̃ and $̃8C , and restrictions on
auxiliary parameters, we can get F8C = -′8C�

$
-
+ ℎ8C�Fℎ + :��̃8 + :$$̃8C + C4=′8 9(C)�

 
C4= + :��8 9(C) + &<8C for workers.

9In Step 1), Δ- removes 43D and A024 because they do not vary with time. We use �̂- to represent
coefficients of the rest.
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distribution of �: �̂� = ˆBC3(:̂�A4B�8 ). 2) initial distribution of $: �̂$1 = ˆBC3(:̂$A4B$81). 3)

dynamics of $: use nonlinear least squares regression by solving min
∑(:̂$A4B$8C/�8C −

�(·):̂$A4B$8 ,C−1/�8 ,C−1)2, where NLopt package is exploited. 4) initial distribution of � and

�: regress :̂��8 9(1) on age group dummies (51-52, 53-54,...,69-70) and compute the std of the

residual. Regress :̂��8 9(1) on age group dummies as well as :̂��8 9(1) and compute the std

of the residual. 5) offer distribution: regress :̂��′8 9(C) on :̂��8 9(C−1), interactions of <8C , 938C ,

�8 ,C−1, and compute the std of the residual. Regress :̂��′8 9(1) on :̂��8 9(C−1), interactions of<8C ,

938C , �8 ,C−1, as well as :̂��′8 9(C). Then compute the std of the residual. 6) initial distribution

of �: we estimate parameters in scale parameter bymaximizing log-likelihood function of

Gamma distribution (the shape parameter can be separately and do not affect the result of

scale paraters). Because �81/4G?(�G) ∼ �0<<0(:, 1/:), we solve for the shape parameter

by Newton-Raphson algorithm as described in Choi and Wette (1969). 7) dynamics of �:

The autoregressive gamma process is estimated following Gourieroux and Jasiak (2006).

We obtain a pseudo-maximum likelihood estimator based on a Gaussian pseudo-family.

The rule of reducing from L to O model is to keep the likelihood of observables

unchanged. We specify the L model in such a way that the reduction is easy, we simply

keep the estimates of all O model Θ̂.10.

Finally, we present the likelihood function of the originalmodel.

5 (.†8 , /8 |-†8 ;Θ)

= 5 (F8 , �8 , Bℎ8 , 938 , 928 , �8 , ;8 , ℎ8C , �8 , $8 , �8 , �′8 , �8 9(1), <8 , �
′
8 , �8 9(1) |-†8 ;Θ)

= 5 (�8 |-†8 ) 5 (�82 |-†8 ) 5 (�8 9(1) |-†8 ) 5 (�8 9(1) |-†8 , �81) 5 (ℎ81 |-†8 ) 5 ($81 |-†8 )( )8∏
C=2

5 (938C |-8 , �8 ,C−1) 5 (<8C |-8 , ℎ8 ,C−1, �8 9(C−1), �8 ,C−1) 5 (ℎ8C |ℎ8 ,C−1, -8)

5 (�′
8 9(C) |�8 9(C−1), <8C , 938C , �8 ,C−1) 5 (�′8 9(C) |�8 9(C−1), <8C , 938C , �8 ,C−1, �

′
8 9(C))

5 (�8C |�8 ,C−1, -8 , ℎ8 ,C−1) 5 ($8C |-8 , �8C)

5 (�8C |�8 ,C−1, -8 , ℎ8C , C4=8 ,C−1, D38 ,C−1, 938C , <8C , F
∗
8 ,C−1, $8C , �8 9(C−1), �

′
8 9(C), �8 9(C−1), �

′
8 9(C), �8)

5 (928C |�8 ,C−1, �8C , 938C , <8C , -8 , ℎ8 ,C , C4=8 ,C−1, $8C , �8 9(C), �
′
8 9(C), �8 9(C), �

′
8 9(C), �8)

5 (�8C |�8 ,C−1, -8 , �8C , F
∗
8C , ;8C , ℎ8C , $8C , �8C , <8C , �8)

)
5 (F8 |F∗8 ) 5 (;8 |-8 , ℎ8 , �8 , �8) 5 (Bℎ8 |ℎ8)

whereF∗
8C
is determinedby-8C , ℎ8C ,�8 ,$8C ,C4=8 9(C) and �8 9(C). Similarly, C4=8 9(C) is determined

by C4=8 9(1) and employment history �C
8
, whereas realized firm wage and hour component,

10Until now, the objective function for estimation in M-step, 6(·), is implicitly decided by the steps above.
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�8 9(C) and �8 9(C), can be expressed as a function of all offers (�′
8
C , �′

8
C), initial component

(�8 9(1), �8 9(1)) as well as employment histories �C
8
and 92C

8
.

We have a further discussion about the asset dynamics, which are estimated flexibly

using Distribution Regression. The asset data are two-side bounded. During the pre-

liminary data cleaning, I censor reported net wealth at 1BC and 99Cℎ quantiles, which are

−4.134379 × 104$ and 322.161 × 104$ respectively. Distribution Regression adapts easily

to this feature. In practice, I take 19 cutoffs. In addition to the maximum and minimum

values in the data, I also add 10Cℎ, 20Cℎ,...,80Cℎ, 83Cℎ,..., 95Cℎ, 96Cℎ,...,99Cℎ quantiles of

the empirical distribution of net wealth. I denote the cutoffs as ��,1 < ��,2 <, ..., < ��,19.

The cdf is

��(�� |-�) = 1(�8C ≤ �� |-�) = Φ(�(��)′-�)

where -� = [�8 ,C−1, -8 , �8C , F
∗
8C
, ;8C , ℎ8C , $8C , �8C , <8C , �8]′. Moreover, I assume �(��) is a

linear spline. Then we can easily get the density function

5 (�8C |-�) = )(�(��)′-�)
�(��,:+1)′-� − �(��,:)′-�

��,:+1 − ��,:
where ��,: and ��,:+1 are closest cutoffs: ��,: ≤ �� < ��,:+1, : ∈ {1, ..., 18}. Two proba-

bility mass points, the minimum and the maximum, have the mass function ��(��,1 |-�)
and (1 − ��(��,19 |-�))

In practice, to keep the CDF function non-decreasing monotonically, the rearrange-

ment operator is exploited.11

E Model Fit

Figure E1: Job Change Over Age

(a) Job-to-job move conditional on 448C = 1 and
93C = 0, HE

(b) Job-to-job move conditional on 448C = 1 and
93C = 0, LE

11Details can be found in notes by Victor Chernozhukov and Ivan Fernandez-Val Distribution Regression
And Counterfactual Analysis
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Figure E2: Job Destruction over Age

(a) JD rate, HE (b) JD rate, LE

Figure E3: Percentiles of Tenures over Age

(a) Percentiles of tenures, HE (b) Percentiles of tenures, LE
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Figure E4: Moments of Wages

(a) Mean wages, HE (b) Mean wages, LE

(c) Std wages, HE (d) Std wages, LE

Figure E5: Percentiles of Wages

(a) Percentiles of wages (including zeros), HE (b) Percentiles of wages (including zeros), LE
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Figure E6: Percentiles of Assets

(a) Percentiles of assets, HE (b) Percentiles of assets, LE

Assets

Figure E7: Moments Of Assets

(a) Mean Assets, HE (b) Mean Assets, LE
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(c) Std of assets, HE (d) Std of assets, LE

(e) Skewness of assets, HE (f) Skewness of assets, LE

(g) Kurtosis of assets, HE (h) Kurtosis of assets, LE

Figure E7: Health Profiles by Age

(a) Mean self-reported health, HE (b) Mean self-reported health, LE
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Figure E8: Employment Rate by Self-reported Health and Age

(a) Employment rate by health and age, HE (b) Employment rate by health and age, LE

F The Solution of the Structural Model

I will solve the model using backward induction. The state variables of the model are

Ω†C = [�C−1,  ̃C−1,  ̃′C , $C , �C , ℎC , <C , C, 3C−1, 93C , 43D, &3C ]. Among all the elements of Ω†C ,

93C and 3C−1 only affects the choice set but not the dynamics of shocks. I also solve and

estimate for each education group separately. For simplicity, define ΩC = [�−1, ̃C−1,  ̃′C ,

$C , �C , ℎC , <C , C]
Value function:

+C(Ω†C ) = max
�C ,�C , 92C

{
*(�C , 3C , 3C−1, 93C , ℎC , &

3
C ) + �(1 − BC+1)1(�C+1) +

�BC+1E
(
+C+1(Ω†C+1)

���Ω†C , �C , 3C)}
B.C. �C+1 = (1 + A)�C + .C + BBC ∗ �C + CAC − �C

�C+1 ≥ �<8= , �C ≥ �<8=

Discretization I discretise variables $, �, �, �′ and ℎ. For each of the variable, a set

of grid-points are taken based on the distribution. The elements of transition matrix

represent the conditional probability on a set of grids of having a draw in an area around

the certain grid. For example, we have $C depending on $C−1 and �C . Accordingly, the

transitions matrix is of dimension 3. Let us use 6$1 ≤ 6
$
2 ≤ ... ≤ 6

$
:$

to represent grids for

$, and 6�1 ≤ 6
�
2 ≤ ... ≤ 6

�
:�
for �. The (8 , 9 , ?) element of the transition matrix is computed

as: �(
6$
?+1+6

$
?

2 |6$
8
, 6�

9
) − �(

6$? +6$?−1
2 |6$

8
, 6�

9
).

Steps Started for the last period T, I iterated among the following steps:

1. Given each possible value of state variable Ω and employment and job decision 3,

I compute the optimal consumption � which does not depend on the preference
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shocks &. With this optimal consumption,we can obtain the present value associated

to the specific group of state variable and labor force participation choice.

2. We obtain the optimal choice given the state variable by choosing the one that are

associated with highest present value.

In step 1, we need to compute�C(+C+1 |Ω†C ). Given the transitionmatrix and the assumption

on thepreference shocks, it canbe computedeasily: �C(+C+1 |Ω†C ) = �C(�C(+C+1 |Ω†C ,ΩC+1)|Ω†C ).
The inner part, the integral over preference shocks, has closed-form, whereas the outer

part can be computed from the transition matrix.

SimulationAfter solving the model, we get policy functions of labor supply, job move-

ments and consumption. Then I use these decision rules to generate simulated histories.

Specifically, the initial distribution comes from the empirical distributions of observables

and estimated distributions of unobservables from the non-utility-based model. In each

period, we draw $, �, �, �′ and ℎ from the continuous processes. Based on the reali-

sation of state variables, policy function and budget constraint, we get their labor force

participation and the accumulated wealth.

Relation to the non-utiltiy-based employment transitions and job movements The non-utility-

based model, whose employment decisions and job movements are characterized by two

separate equations, can be seen as an approximation of reduced form of the utility-based

model. Especially, the two-step estimation of 44 and 92 does not contradict the assumption

of simultaneous decision making in the utility-based model.

Denote + >;3∗
C , +=4F∗

C , +=>=∗
C as the present value net of preference shocks associated

with three different choices: work at the old job (�C = 1, 92C = 0), work at the new job

(�C = 1, 92C = 1) and Not work (�C = 0). Each of the three is a function of state variables.

Then according to the utility-based model, people make decisions by choosing the one

that optimises the present value.

For individuals who were previously non-employed or lose the job because of the job

destruction shock or mismatch shock, they choose between new job and non-employed. It

can be specified as

�C = 1
(
+=4F∗
C −+=>=∗

C + &=4FC − &=>=C > 0
)

Combiningwith the assumption of &, the equation above is the counterpart of D4 equation.

Being Logistic regression of Probit regressionwill notmatter as long as the other elements

in the D4 equation is flexible enough.
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For individuals who were employed and did not lose the job, we have

�C = 1
(
+=>=∗
C + &=>=C < max(+ >;3∗

C + &>;3C , +=4F∗
C + &=4FC )

)
92C = 1

(
+=4F∗
C + &=4FC > + >;3∗

C + &>;3C > 0, �C = 1
)

Combining with the assumption of &, it can be shown that

%(�C = 1|�C−1 = 1, 93C = 0) = 1 −
4G?(+=>=∗

C )
4G?(+ >;3∗

C ) + 4G?(+=4F∗
C ) + 4G?(+=>=∗

C )

%(92C = 1|�C = 1) =
4G?(+=4F∗

C )
4G?(+ >;3∗

C ) + 4G?(+=4F∗
C )

which are counterparts of 44 and 92 equations.

G The construction of  ̃

Labor earnings are the product of hourly wage,,C , and working hours, # . In the model,

the amount of hour supply is fixed. By assumption, N = 4000, which is amount to 2000

hours per year.

.C =,C × # (G1)

Log hourly wage rate ln,C takes the same structure as the one in non-utility-base model.

ln,C = -
′
C�- + ℎC�ℎ + $C +  ̃ 9C (G2)

To reduce the dimension of state variables, I merge unobserved heterogeneity �, firm

component  8 9C and offer �′
8 9C
. Specifically, I define  ̃ 9C ≡ �8 +  9C = C4=′C�4 + �8 9(C) + �8 and

�̃′
9C
≡ C4=′0�4 + �′8 9(C) + �8 .
The new firm component  ̃ 9C contains two parts: �8 + �8 9(C) stays constant during the

tenure and drop significantly when there is mismatch shocks. C4=′C�4 represents the

accumulation of firm-specific experience.

 ̃ 9(C) =

{
� 0 + � �̃9(C−1) if stay at the same job
 ̃′
9(C) if move to new job (G3)

During the tenure, the dynamics of  ̃ 9C is approximated by the equation G3, that is a

linear function of its value in last period.
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H Structural Model Estimation Procedure

The estimation procedure is motivated by such a premise: non-utility-based (NU) and

utility-based (U)model share the same latent variable dynamics, and theNUemployment

and job transitions can be treated as an approximate reduced form of the U ones. These

two characteristics make it attractive to use the estimated latent variable dynamics from

NU model as input in the U one. This is because the NU model is under less parametric

assumption in the employment and job part which matters for the estimation of the

latent variable dynamics. In addition, the flexibility of NU model makes it suitable as an

intermediary to compare simulated data and true data.

For simplicity, I refer to the non-utility-based model as model 1, whereas utility-based

model as model 2. The observed data . consist of a set of observations on # individuals

in each of )8 ≤ ) periods: {H8C}, 8 = 1, ..., # , C = 1, ..., )8 . There are also a set of latent

variables / unobservable to researchers.

Model 1 is represented by 51 ≡ 51(., /∗;�), � ∈ Θ, whose marginal distribution of. is

denoted as 51.(.;�). The family is defined as "1 ≡ { 51 |� ∈ Θ}. By exploiting stochastic

EM algorithm, we have obtained MLE of model 1:

�̂"!� = arg max
�

∑
ln 51.(.;�)

Similarly, the family ofmodel 2 is defined as"2 ≡ { 52(., /∗; �)|� ∈ �}, whosemarginal

distribution is 52.(.; �). The goal is to estimate parameter �.

The estimation procedure is described as follows:

0) we draw a large sample of /̃ from 51(/̃ |.; �̂"!�);
1) given �, we use model 2 to generate " statistically independent simulated data set

{., /}< ;
2) we compute �<(�) = 1

"

∑
�̃<(�), where �̃<(�) is the MLE estimator for each of the

" simulated data sets: �̃<(�) = arg max�∈Θ ln 51(., /;�);
3) evaluate the objective function

∑∑
/̃

ln 51(., /̃;�<(�))
Our estimator �̂#�, of the model 2 is generated by choosing � to maximize objective

function in step 3). In practice, we need to iterate from step 1) to step 3) until the

convergence of the objective function. Note that step 0) is not included in the iteration.

The intuition is to treat /̃ as if they are the observed data. Our estimator can be described

as follows:

�̂#�, = arg max
�∈�

∑∑
/̃

ln 51(., /̃;�(�))
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where /̃ is drawn from posterior 51(/̃ |.; �̂"!�).
The non-utility-based model and the utility-based model in this chapter are special

cases of model 1 and model 2 in the sense that two models have the latent variable

dynamics in common. Under such preconditions, we can further simplify the estimation

procedure: directly use MLE of latent variable dynamics �̂/
"!�

= �̂/
"!�

, and estimate the

rest of the parameters �\�̂/
"!�

in iterations.

In practice, a two-step strategy is exploited. In the first step, I estimate survival prob-

ability, which depends on latent health and age, for people between 51 and 90. Estimates

for latent health, wage equation, individual and firm component, unemployment risks

and random offers from the NU based model are directly taken (�̂/
"!�

).12 In the second

step, I estimate the rest of parameters �\�̂/
"!�
≡ (�, �4 , �A , �9 , �, �, �<8=) using the iter-

ation procedure described above. Specifically, I take random draws from the empirical

joint distribution of assets, health status, initial employment status, and demographics for

initial wave, and simulate the life course according to model 2 given a set of parameters.

To compute the objective function, in step 3, 44, D4 and 92 equations (eq 14-16) as well as

asset accumulation (eq 20) are used.13

Relation to Indirect Inference Note that the procedure above is closely related to

but different from the standard Indirect Inference method. Under the same notation, I-I

estimator which uses Model 1 as auxiliary model and takes LR metric can be expressed

as follows:

�̂�� = arg max
�∈�

∑
ln 51.(.;�(�))

where �(�) = arg min�∈Θ �(ln 52.(�)
51.(�)). However, the difficulty is that the analytical form

51. is difficult to get because of latent variables. One natural idea is to combine EM

algorithm, with which we have I-I estimator expressed as:

�̂�� = arg max
�∈�

∑∑
/̃

ln 51(., /̃;�(�))

where /̃ is drawn from posterior 51(/̃ |.;�(�)). The problem of implementing �̂�� is that

it may be very time consuming: for each �(�), we need to draw /̃ ∼ 51(/̃ |.;�(�)). When

the direct sampling is not feasible, which is our case, we have to go for MCMC in each

iteration.
12A further step is needed to approximate the dynamics of new firm component and its interactions with

other elements conditional on age groups.
13In practice, I put extra restriction on equation 20 by assuming assets only depends on previous asset

level and age
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Now it is clear how �̂#�, is different from �̂�� : instead of drawing /̃ in each iteration,

we use the draw from the posterior distribution given the estimates of Model 1.

I Further Discussion About Structural Model Estimation

Imagine the true model produces observables . and latent variables /∗ from DGP:

6(., /∗)

with a marginal distribution of observable . denoted as 6.(.)
There are two models:

Model 1 is assumed to be a flexible model.

51 ≡ 51(., /∗;�), � ∈ Θ

with a marginal distribution of . denoted as 51.(.;�). The family is defined as "1 ≡
{ 51 |� ∈ Θ}

Model 1 is estimated using MLE (maybe combine EM algorithm). The MLE estimator

is defined as

�̂"!� = arg max
�

∑
ln 51.(.;�)

Model 2 is a structural model that we are interested in. The model could potentially

contain other variables. But it produces the following joint distribution of . and /∗

52 ≡ 52(., /∗; �), � ∈ �

with marginal distribution 52.(.; �). The family is defined as "2 ≡ { 52 |� ∈ �}.
First we try to estimate Model 2 using Indirect Inference with Model 1 being auxiliary

model. I choose the LR approach: the metric is the likelihood function associated with

the auxiliary model. The procedure is

1) given �(B), simulate from Model 2 {.(B), /(B)}

2) estimate Model 1 with {.(B), /(B)} and obtain �(B) = �(�(B))

3) evaluate objective function ln 51.(.;�(B))

The mapping fromModel 2 to Model 1 in step 1) and 2):

" : { 52(�)|� ∈ �} → { 51(�)|� ∈ Θ}
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Specifically, I define the range as "21 ≡ {"( 52)|� ∈ �}. By definition "21 ⊆ "1.

In step 2), if we use MLE, then we know that:

∀�0 ∈ �, "( 52(�0)) = 51(�0), where �0 = arg min
�∈Θ

�
(

ln
52(.(B), /(B); �0)
51(.(B), /(B);�)

)
Combine three steps togetherwithMLE in step 2), II is to choose optimal � tomaximize

the objective function.

�̂�� = arg max
�∈�

∑
ln 51.(.;�(�))

where �(�) = arg min�∈Θ �(ln 52(�)
51(�)).

Note that �̂�� is a MLE of a more restricted version of Model 1.

However, the analytical form 51. is difficult to get because of latent variables. One

possible solution is to combine the EM algorithm:

�̂�� = arg max
�∈�

∑∑
/̃

ln 51(., /̃;�(�))

where /̃ is drawn from posterior 51(/̃ |.;�(�)). The limitation of this estimator is that it is

time consuming: for each �(�(B)), we need to draw /̃ ∼ 51(/̃ |.;�(�(B))). If direct sampling

is not feasible, it means that we may need to combine with MCMC.

So instead, here I use an estimator that makes use of the �̂"!�.14 The estimator �̂#�,
is defined as follows:

�̂#�, = arg max
�∈�

∑∑
/̃

ln 51(., /̃;�(�))

where /̃ is drawn from posterior 51(/̃ |.; �̂"!�). Take �̂"!� as given, the II procedure is

as follows:

0) draw a large sample of /̃ from 51(/̃ |.; �̂"!�)

1) given �(B), generate {.(B), /(B)} from Model 2

2) estimate the auxiliary model (Model 1) with {.(B), /(B)} and obtain �(B) = �(�(B))

3) evaluate the objective function
∑∑

/̃
ln 51(., /̃;�(�(B))) and return to step 1) with

�(B+1)

Now I will discuss about the consistency of �̂#�, under different assumptions.

14Why we may want to estimate the potentially complicated model 1 as auxiliary model? It could be
that Model 1 is interesting on its own/helps identify some parameters outside Model 2. Or it may be some
flexible models in the literature that has interesting empirical facts that we want to match with Model 2.
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Case 1: Both Model 1 and Model 2 are correctly specified

Assumption: True model 6(., /∗) ∈ "1, 6(., /∗) ∈ "2

Model 1 does not necessarily nest Model 2. The possible cases include:

"1 "26

"2 ⊆ "1

"1 "26

"1 ∩ "2 ≠ ∅, ∃ 51 ∈ "1 : 51 ∉ "2

The estimator �̂#�, converges to the true value in limit.

Sketch:

(0(�) =
∫

6.(.)
∫

ln 51(., /̃;�(�)) 51(/̃ |.;)SRK)3/̃3.

where �"!� = arg max�∈Θ
∫
6.(.) ln 51(., �)3.

Under assumption 6 ∈ "1, we know 51(., /∗;�"!�) = 6(., /∗).

(0(�) =
∫ ∫

ln 51(., /̃;�(�)) 51(., /̃;)SRK)3/̃3.

In addition, 6 ∈ "2, then ∃�∗ ∈ � such that 52(., /∗; �∗) = 6(., /∗) = 51(., /∗;�"!�).
Now it can be proved that �(�∗) = �"!�.

�(�∗) ≡ arg max
�∈Θ

∫
ln 51(., /;�) 52(., /; �∗)3./

= arg max
�∈Θ

∫
ln 51(., /;�) 51(., /;�"!�)3./ = �"!�

Then it is easy to show that

(>(�) − (0(�∗) =
∫ ∫

ln
51(., /̃;�(�))
51(., /̃;�"!�)

51(., /̃;)SRK)3/̃3.

≤ ln
∫ ∫

51(., /̃;�(�))
51(., /̃;�"!�)

51(., /̃;)SRK)3/̃3.

=0

Case 2: Model 1 is correctly specified but Model 2 not

"1 "2

6

"2 ⊆ "1

"1 "2

6

"1 ∩ "2 ≠ ∅, ∃ 51 ∈ "1 : 51 ∉ "2

"1 "2

6

"1 ∩ "2 = ∅
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Assumption: True model 6(., /∗) ∈ "1, 6(., /∗) ∉ "2

(0(�) =
∫

6.(.)
∫

ln 51(., /̃;�(�)) 51(/̃ |.;)SRK)3/̃3.

where �"!� = arg max�∈Θ
∫
6.(.) ln 51(., �)3.

Under assumption 6 ∈ "1, we know 51(., /∗;�"!�) = 6(., /∗).

(0(�) =
∫ ∫

ln 51(., /̃;�(�)) 51(., /̃;)SRK)3/̃3.

Maximum (0(�) is equivalent to minimize
∫

ln 51(.,/∗;�"!�)
51(.,/∗;�(�)) 51(., /

∗;�"!�)3/∗3.
�̂ is a pseudo-maximum likelihood estimator that minimizes Kullback-Leibler diver-

gence from 51(., /∗;�(�)), � ∈ � to true model 51(., /∗;�"!�)

Case 3: Model 1 is not correctly specified

(0(�) =
∫

6.(.)
∫

ln 51(., /̃;�(�)) 51(/̃ |.;)SRK)3/̃3.

=

∫ ∫
ln 51(., /̃;�(�)) 51(/̃ |.;)SRK)6.(.)︸                   ︷︷                   ︸

?(.,/̃;�"!�)

3/̃3.

�̂ is chosen in a way to best approximate a new density ?(., /̃;�"!�). The marginal dis-

tribution of observables 6.(.) is from the true model, while the conditional distribution

of latent variables on observables are taken from the MLE 51(/̃ |.;�"!�).

J The Fit Of Utility-based Model

Model fit

Figure J1: Employment

(a) LFP, HE (b) LFP, LE
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(a) Employment transitions, HE (b) Employment transitions, LE

Figure J1: Job Destruction

(a) Proportion of 938C = 1 by age, HE (b) Proportion of 938C = 1 by age, LE

Figure J2: Job Change

(a) Proportion of 928C = 1 by age, HE (b) Proportion of 928C = 1 by age, LE
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(a) Proportion of 92C = 1 cond. on �C−1 = 1, HE (b) Proportion of 92C = 1 cond. on �C−1 = 1, LE

Figure J2: Asset Accumulation

(a) Quantiles of asset by age, HE (b) Quantiles of asset by age, LE
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