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1 Introduction

The information matrix test introduced by White (1982) constitutes a rather general pro-

cedure for examining the specification of models estimated by maximum likelihood (ML). As

is well known, it directly assesses the information matrix equality, which states that the sum

of the Hessian matrix and the outer product of the score vector should be 0 in expected value

when the estimated model is correctly specified. As an illustration, White (1982) looked at the

information matrix test for a univariate normal random variable, which simply checks that the

third- and fourth-order Hermite polynomials of the standardised variable have 0 means in the

population. Therefore, it is equivalent to the version of the popular Jarque and Bera (1980)

test proposed by Kiefer and Salmon (1981) among many others. In this note, we show that the

information matrix test for a multivariate normal random vector coincides with the sum of the

two moment tests that look at the means of all the third- and fourth-order multivariate Hermite

polynomials, respectively, thereby generalising the univariate result.

There is an extensive literature on the theoretical properties and interpretation of the infor-

mation matrix test, as well as on its applications and finite sample behaviour. To the best of

our knowledge, though, it has never been used for testing multivariate normality. Given the uni-

variate precedent, it is not surprising that the information matrix test statistic is equivalent to

the smooth test against a fourth-order Hermite polynomial expansion of the multivariate normal

density in Koziol (1987), which is in turn equivalent to Mardia and Kent’s (1991) score test of

multivariate normality against exponential distributions whose suffi cient statistics depend not

only on the levels and cross-products of the observations but also on all possible products of

three and four elements. The neglected heterogeneity interpretation of the information matrix

test in Chesher (1984) provides a completely different justification.

Importantly, we explicitly address the widespread and often justified concern that the infor-

mation matrix is unreliable in finite samples by explaining how to simulate its exact, parameter-

free, finite sample distribution to any desired degree of accuracy for any dimension of the random

vector and sample size. In this respect, we exploit the numerical invariance of the test statistic

to affi ne transformations of the observed variables to simulate draws extremely quickly.

The rest of the note is organised as follows. We include our theoretical results in section

2 and discuss computational issues in section 3. Next, we present the results of some Monte

Carlo exercises looking at the power of the test in finite samples, and finish by mentioning some

avenues for further research. Proofs and auxiliary results are relegated to appendices.
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2 The information matrix test

Our null hypothesis is that

xt ∼ i.i.d. N(ν,Γ) with |Γ| > 0. (1)

Let∆ = Γ−1 and ε(ν) = (x−ν). Barndorff-Nielsen and Petersen (1979) define the (centred)

multivariate Hermite polynomials of x of order k = k1 + . . .+ kN ≥ 0 as

H
1k1...1...NkN... N

[ε(ν),∆] · e−
1
2
(x−ν)′∆(x−ν) = (−1)k ∂k

(∂x1)k1 . . . (∂xN )kN

[
e−

1
2
(x−ν)′∆(x−ν)

]
. (2)

As is well known, when model (1) is correctly specified, the mean of any Hermite polynomial

of positive degree is 0. We can then state our main result:

Proposition 1 The information matrix test of model (1) coincides with the sum of the two

asymptotically independent moment tests that check whether the expected values of all the distinct

third- and fourth-order multivariate Hermite polynomials of xt are 0.

Following Chesher (1984), we can interpret the moment test of the fourth-order multivariate

Hermite polynomials as a test of neglected heterogeneity in the covariance matrix of the obser-

vations. Similarly, the test that looks at the third-order ones effectively assesses dependence in

the neglected heterogeneity of the mean and covariance parameters. In contrast, neglected het-

erogeneity in the vector of mean parameters is untestable because the means of the second-order

multivariate Hermite polynomials are always 0 when the covariance matrix Γ is freely estimated.

Multivariate Hermite polynomials of different orders are uncorrelated (see Holmquist (1996)),

which justifies the additive decomposition of the test statistic in Proposition 1. Holly and

Gardiol (1995) explain how to obtain matrix expressions for the covariance matrices of the entire

vector of polynomials of any given order using the formulas for the higher order moments of the

multivariate normal in Balestra and Holly (1990). But the symmetry of the higher-order partial

derivatives in (2) implies that some of the Nk multivariate Hermite polynomials of order k will

be replicated several times. Specifically, there are only
(
N+k−1

k

)
different polynomials, so we can

avoid generalised inverse matrices by eliminating the redundant ones from the list of moments

to test. In the third- and fourth-order cases, we can use the triplication and quadruplication

matrices in Meijer (2005), which generalise the duplication matrix. Thus, we end up with

N(N + 1)(N + 2)/6 and N(N + 1)(N + 2)(N + 3)/24 distinct third- and fourth-order moment

conditions, respectively, which coincide with the degrees of freedom of the asymptotic chi-square

distributions of the corresponding multivariate skewness and kurtosis tests. The next result

contains detailed expressions for the covariances between two arbitrary third- and fourth-order

polynomials:
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Lemma 1 Let δij denote the (i, j)th element of ∆. When model (1) is correctly specified

cov(Hijk, Hi′j′k′)=δii′δjj′δkk′+δii′δjk′δkj′+δij′δji′δkk′+ δij′δjk′δki′+ δik′δji′δkj′+ δik′δjj′δki′ ,

cov(Hijkh, Hi′j′k′h′) = δii′δjj′δkk′δhh′ + δii′δjj′δkh′δhk′ + δii′δjk′δkj′δhh′ + δii′δjk′δkh′δhj′

+δii′δjh′δkj′δhk′ + δii′δjh′δkk′δhj′ + δij′δji′δkk′δhh′ + δij′δji′δkh′δhk′

+δij′δjk′δki′δhh′ + δij′δjk′δkh′δhi′ + δij′δjh′δki′δhk′ + δij′δjh′δkk′δhi′

+δik′δji′δkj′δhh′ + δik′δji′δkh′δhj′ + δik′δjj′δki′δhh′ + δik′δjj′δkh′δhi′

+δik′δjh′δki′δhj′ + δik′δjh′δkj′δhi′ + δih′δji′δkj′δhk′ + δih′δji′δkk′δhj′

+δih′δjj′δki′δhk′ + δih′δjj′δkk′δhi′ + δih′δjk′δki′δhj′ + δih′δjk′δkj′δhi′ .

When Γ = IN , the components of xt are stochastically independent and the multivariate

Hermite polynomialH
1k1...1...NkN... N

[ε(ν),∆] simplifies to the product of the univariate polynomials

H
1k1...1

[ε1(ν1)]. . . .HNkN... N
[εN (νN )]. As a result, different multivariate Hermite polynomials of the

same order become orthogonal to each other, which allows us to prove the following result:

Corollary 1 If Γ = IN , the information matrix test of model (1) would be asymptotically equiv-

alent to the sum of the individual moments tests for all possible distinct multivariate Hermite

polynomials of orders 3 and 4.

Consequently, if we consider a sequence of local departures from a multivariate spherically

normal distribution, the non-centrality parameter of the asymptotic distribution of the skewness

and kurtosis tests in Proposition 1 will be the sum of the non-centrality parameters of each of

the
(
N+2
3

)
+
(
N+3
4

)
asymptotically independent moment tests, which are easy to compute.

3 Computational considerations

Consider the following full-rank affi ne transformation yt = a+Bxt with |B| 6= 0. As is well

known, yt ∼ i.i.d. N(a+Bν,BΓB′) when (1) holds. Our next result shows that the information

matrix test statistic is numerically invariant to the values of a and B:

Proposition 2 The information matrix test statistic of model (1) numerically coincides with

the analogous test statistic for yt.

This numerical invariance is not only a very desirable property of any multivariate normality

test, as forcefully argued by Henze (2002),1 but it also provides a very fast numerical procedure

for computing the test statistic when we combine it with the sample analogue to Corollary

1. Specifically, given a sample of size T on xt, we can subtract the sample mean from each

1Sometimes, though, inspecting individual multivariate Hermite polynomials for the observed variables might
be more informative for understanding the source of the rejections than looking at specific polynomials for or-
thogonalised variables.
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observation and premultiply the resulting vector by any square root of the sample covariance

matrix to create standardised random vectors for which the ML estimators of their mean vector

and covariance matrix will be 0 and IN , respectively. Thus, the information matrix test statistic

would be numerically equivalent to the sum of the individual moments tests for all possible

multivariate Hermite polynomials of orders 3 and 4, which are very simple to compute because

of their factorisation as products of univariate Hermite polynomials. Asymptotically, we can

obtain the non-centrality parameter of the test for any value of Γ by applying the same trick.

Proposition 2 also implies that the sample mean vector and covariance matrix of the obser-

vations do not affect the null distribution of our proposed test in finite samples. As a result, it

is possible to simulate its exact, parameter-free, finite sample distribution to any desired degree

of accuracy for any dimension of the random vector and sample size. In particular, it suffi ces to

simulate R times a random sample of size T of a spherical Gaussian random vector of dimen-

sion N to obtain R independent draws of the information matrix test statistic for multivariate

normality. Although this can be regarded as a parametric bootstrap procedure that provides

the exact p-value of the test statistic obtained in a real sample as the number of bootstrap

replications R grows without bound, the fact that the only characteristics of the original sample

that matter are the values of N and T implies that a researcher could obtain tables with exact

critical values before observing the data.

Given that the sample mean and covariance matrix of a multivariate random vector take

hardly any time to compute, and that the information matrix test statistic for random vectors

standardised in the sample can also be swiftly computed, our suggested procedure generates

very accurate simulated p-values very quickly.

4 Monte Carlo evidence

The discussion in the previous section indicates that assessing the finite sample size of our

proposed test only makes sense if R were small. For that reason, in this section we focus

on the small sample power of the information matrix test by means of an extensive Monte

Carlo simulation exercise in which we generate 20,000 samples from three multivariate non-

Gaussian distributions whose mean vector and covariance matrix are 0 and IN , respectively:

the asymmetric Student t distribution and the two-component location-scale mixture of normals

(LSMN) discussed by Mencía and Sentana (2009), and the multivariate skew normal distribution

in Azzalini and Dalla Valle (1996). Our results complement those in Best and Rayner (1988),

who studied the finite sample power of Koziol (1987) test in the bivariate case.

We make use of Proposition 2 not only in fixing the mean vector and covariance matrix, but

also in exploiting that for these three distributions skewness is a common feature (see Engle
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and Kozicki (1993)), so that one can always find orthogonal rotations of the original random

vectors in which only one variable is asymmetric. Specifically, Theorem 5.12 in Azzalini and

Capitanio (2014) provides a canonical representation of the multivariate skew normal with this

property. Similarly, the LSMN representation in Mencía and Sentana (2009) allows us to do the

same for the other two distributions. The main difference between the skew normal distribution

and the other two, though, is that in the former the other N − 1 variables are Gaussian and

stochastically independent, so that all the remaining third and fourth multivariate cumulants

are 0, while in the latter, those variables are symmetric but neither normal nor independent.

Thus, the non-normality of the multivariate distributions is effectively governed by two

parameters: the skewness and kurtosis coeffi cients of the only asymmetric random variable. We

choose a skewness coeffi cient of −3/4 for all three distributions, and a kurtosis coeffi cient of 4.5

for the two LSMNs.2

We accurately approximate the finite sample critical values with R = 106 replications and

report the rejection rates at the 5% significance level for three dimensions (N = 2, 4, 8) and

three sample lengths (T = 64, 256, 1024) in Table 1. As expected, power increases with the

sample size T . Similarly, power increases with N for the two LSMNs but it decreases for the

skew normal. The reason is simple. Given the canonical representation of the skew normal

mentioned above, the only thing that increasing N does is to add more independent Gaussian

components, which in turn add more 0 (co-)skewness and (co-)kurtosis terms. As a result, the

non-centrality parameter does not change while the number of degrees of freedom increases.

In summary, our Monte Carlo exercises confirm the non-trivial power of the information

matrix test.

5 Directions for future research

The multivariate normality test that we studied in this note is not consistent because in

arbitrary large samples it would fail to reject with probability one departures from normality

such that all third- and fourth-order cumulants are 0. Unlike in the univariate case, though, it

is not obvious how to construct distributions with this characteristic because it is diffi cult to

ensure the global positivity of multivariate Hermite expansions of the Gaussian density.

The information matrix test could be extended to multivariate, conditionally heteroskedastic,

dynamic regression models with Gaussian innovations, but the number of moments involved

would increase very quickly. It could also be extended to examine the specification of more

general multivariate distributions. We are currently exploring these interesting research avenues.

2The kurtosis of the skew normal is completely determined by its skewness parameter. See Suplemental
Appendix C for further details.
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Appendix
Proof of Proposition 1

The contribution of x to the log-likelihood function is

−N
2
ln 2π − 1

2
ln |Γ| − 1

2
z′(ν,γ)∆−1z(ν,γ),

where z(ν,γ) = ∆ε(ν) = Γ−1(x − ν) and γ = vech(Γ). The scores of this component with

respect to the vector of mean parameters are

sν(x;ν,γ) = z(ν,γ),

which coincide with the first-order Hermite polynomials of x. Similarly, the scores with respect

to the covariance matrix parameters are given by

sγ(x;ν,γ) =
1

2
D′Nvec[z(ν,γ)z

′(ν,γ)−∆],

which coincide with the product of the (transposed) duplication matrixDN and the second-order

Hermite polynomials.

Therefore, the Hessian matrix is given by

hνν(x;ν,γ) = −∆,

hγν(x;ν,γ) = −D′N [z(ν,γ)⊗∆],

and

hγγ(x;ν,γ) = −
1

2
D′N{2[(∆⊗ z(ν,γ)z′(ν,γ)]− (∆⊗∆)}DN .

Hence, the sum of the outer product of the score and the Hessian yields the following three

terms

νν : z(ν,γ)z′(ν,γ)−∆

γν :
1

2
D′N{vec[∆z(ν,γ)z′(ν,γ)−∆]z(ν,γ)z′(ν,γ)− 2[z(ν,γ)z′(ν,γ)⊗∆]}

and

γγ :
1

4
D′Nvec[z(ν,γ)z

′(ν,γ)−∆]vec′[z(ν,γ)z′(ν,γ)∆−∆]DN

−1
2
D′N{2[z(ν,γ)z′(ν,γ)]− (∆⊗∆)}DN .

If we vectorise the expressions above before we premultiply or postmultiply them by the

duplication matrix and ignore the dependence of z(ν,γ) on ν and γ for notational simplicity,

then we obtain that the νν block of the sum of the outer product of the score with the Hessian
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will be given by

vec(zz′ −∆) = (z⊗ z)− δ,

where δ = vec(∆), because
vec(zz′) = (z⊗ z).

Similarly, the γν block will be

vec[vec(zz′ −∆)z′ − 2(z⊗∆)] = (z⊗ z⊗ z)− (z⊗ δ)− 2(KNN ⊗ IN )(z⊗ δ), (1)

where KNN is the commutation matrix of orders N and N , because

vec[vec(zz′)z′] = [z⊗ vec(zz′)] = (z⊗ z⊗ z),

vec[vec(∆)z′] = (z⊗ δ),

vec(z⊗∆) = (1⊗KNN ⊗ IN )(z⊗ δ) = (KNN ⊗ IN )(z⊗ δ),

in view of Theorem 3.10 in Magnus and Neudecker (2019).

Finally, the γγ block will be

vec{vec(zz′ −∆)vec′(zz′ −∆)− [4(∆⊗ zz′)− 2(∆⊗∆)]}

= (z⊗ z⊗ z⊗ z)− (z⊗ z⊗ δ)− 5(δ ⊗ z⊗ z) + (δ ⊗ δ) + 2(IN ⊗KNN ⊗ IN )(δ ⊗ δ) (2)

because

vec[vec(zz′)vec′(zz′)] = [vec(zz′)⊗ vec(zz′)] = (z⊗ z⊗ z⊗ z),

vec[δvec′(zz′)] = [vec(zz′)⊗ δ] = (z⊗ z⊗ δ),

vec[vec(zz′)δ′] = [δ ⊗ vec(zz′)] = (δ ⊗ z⊗ z),

vec(δδ′) = (δ ⊗ δ),

vec(∆⊗ zz′) = (IN ⊗K1N ⊗ IN )[δ ⊗ vec(zz′)] = (δ ⊗ z⊗ z),

vec(∆⊗∆) = (IN ⊗KNN ⊗ IN )(δ ⊗ δ)

Holly and Gardiol (1995) express the first, second, third and fourth centred multivariate

Hermite polynomials of z in matrix notation as

SNι1z

SNι2 [(z⊗ z)− δ],

SNι3 [(z⊗ z⊗ z)− 3(δ ⊗ z)], (3)

SNι4 [(z⊗ z⊗ z⊗ z)− 6(z⊗ z⊗ δ) + 3(δ ⊗ δ)], (4)
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where SNιk (k = 1, . . . , 4) are the symmetrisation operators discussed by Homlquist (1996),

whose detailed expressions we provide in Supplemental Appendix A.

It is easy to see that the νν term coincides with the second-order Hermite polynomials

because SNι2 applied to (z⊗z) has no effect and KNNδ = δ by the symmetry of ∆. However, a

comparison of this term with sγ(x;ν,γ) confirms that these cannot be used for testing purposes

because they will be identically 0 when evaluated at the ML estimators when the mean and

variance parameters are freely estimated.

Let us now look at the γν block. Clearly, SNι3 applied to (z ⊗ z ⊗ z) has no effect either.

In contrast, if we apply 6SNι3 to (z⊗ δ) we obtain

[IN3 + (IN ⊗KNN ) + (KNN ⊗ IN ) + (IN ⊗KNN )(KNN ⊗ IN )

+(KNN ⊗ IN )(IN ⊗KNN ) + (KNN ⊗ IN )(IN ⊗KNN )(KNN ⊗ IN )](z⊗ δ)

= (z⊗ δ) + (z⊗ δ) + (KNN ⊗ IN )(z⊗ δ) + (δ ⊗ z)

+(KNN ⊗ IN )(z⊗ δ) + (δ ⊗ z)

= 2[(z⊗ δ) + (δ ⊗ z) + (KNN ⊗ IN )(z⊗ δ)],

so that

(IN ⊗KNN )(z⊗ δ) = (z⊗ δ),

(IN ⊗KNN )(KNN ⊗ IN )(z⊗ δ) = KN2N (z⊗ δ) = (δ ⊗ z)

by virtue of Theorems 3.7 (iii) and 3.1 in Magnus (1986), and

(KNN ⊗ IN )(IN ⊗KNN )(KNN ⊗ IN )](z⊗ δ) = (KNN ⊗ IN )(δ ⊗ z) = (δ ⊗ z).

Similarly,

6SNι3(δ ⊗ z) = [IN3 + (IN ⊗KNN ) + (KNN ⊗ IN ) + (IN ⊗KNN )(KNN ⊗ IN )

+(KNN ⊗ IN )(IN ⊗KNN ) + (KNN ⊗ IN )(IN ⊗KNN )(KNN ⊗ IN )](δ ⊗ z)

= (δ ⊗ z) + (IN ⊗KNN )(δ ⊗ z) + (δ ⊗ z) + (IN ⊗KNN )(δ ⊗ z)

+(z⊗ δ) + (z⊗ δ)

= 2[(z⊗ δ) + (δ ⊗ z) + (IN ⊗KNN )(δ ⊗ z)],

because

(KNN ⊗ IN )(δ ⊗ z) = (δ ⊗ z),

(KNN ⊗ IN )(IN ⊗KNN )(δ ⊗ z) = KNN2(δ ⊗ z) = (z⊗ δ)
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by virtue of expression (3.3) in Magnus (1986), which implies that KNN2 = K−1
N2N

, and his

Theorem 3.1.

Finally,

6SNι3(KNN ⊗ IN )(z⊗ δ) = [IN3 + (IN ⊗KNN ) + (KNN ⊗ IN ) + (IN ⊗KNN )(KNN ⊗ IN )

+(KNN ⊗ IN )(IN ⊗KNN ) + (KNN ⊗ IN )(IN ⊗KNN )(KNN ⊗ IN )](KNN ⊗ IN )(z⊗ δ)

= (KNN ⊗ IN )(z⊗ δ) + (δ ⊗ z) + (z⊗ δ) + (z⊗ δ)

+(δ ⊗ z) + (KNN ⊗ IN )(z⊗ δ)

= 2[(z⊗ δ) + (δ ⊗ z) + (KNN ⊗ IN )(z⊗ δ)].

because
(KNN ⊗ IN )(KNN ⊗ IN ) = IN3 .

Hence,

SNι3 [(z⊗ δ) + 2(KNN ⊗ IN )(z⊗ δ)]

= [(z⊗ δ) + (δ ⊗ z) + (KNN ⊗ IN )(z⊗ δ)] = 3SNι3(z⊗ δ),

so that (1) does indeed coincide with (3).

A very tedious but entirely analogous procedure confirms that SNι4 applied to (2) coincides

with (4). �

Proof of Lemma 1

The proof is a careful but straightforward application of the procedure described in Holly

and Gardiol (1995), which can be easily implemented using a computer algebra system. �

Proof of Corollary1

The proof is straightforward in view of Lemma 1. �

Proof of Proposition 2

Given that the mapping from xt to yt is affi ne, its first-order Jacobian will be B while all

other higher-order Jacobians will be 0. As a result, the application of Faà di Bruno’s generalised

chain rule to (2) implies that the vector of multivariate Hermite polynomials of order k for yt

will be B⊗k = B⊗B⊗ ...⊗B︸ ︷︷ ︸
k times

times the vector of multivariate Hermite polynomials of order

k for xt. The numerical invariance of moment tests to linear transformations of the influence

functions with constant coeffi cients yields the desired result. �
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Table 1: Monte Carlo rejection rates at the 5% significance level

Panel A: Joint test of (co-)skewness components
Asymmetric t Mixture of normals Skew normal

N \ T df 64 256 1,024 64 256 1,024 64 256 1,024

2 4 44.42 96.17 100.00 64.52 98.45 100.00 37.44 97.90 100.00
4 20 45.86 96.72 100.00 83.30 99.82 100.00 17.75 80.80 100.00
8 120 55.67 98.56 100.00 98.80 100.00 100.00 8.935 38.06 99.78

Panel B: Joint test of (co-)kurtosis components
Asymmetric t Mixture of normals Skew normal

N \ T df 64 256 1,024 64 256 1,024 64 256 1,024

2 5 31.77 69.41 99.12 58.21 97.61 100.00 14.78 30.57 69.53
4 35 39.06 80.91 99.87 84.09 99.97 100.00 9.62 19.47 48.37
8 330 56.48 96.77 100.00 99.41 100.00 100.00 7.21 11.69 25.34

Panel C: Joint test of (co-)skewness and (co-)kurtosis components
Asymmetric t Mixture of normals Skew normal

N \ T df 64 256 1,024 64 256 1,024 64 256 1,024

2 9 38.93 91.52 100.00 66.12 99.59 100.00 24.01 88.25 100.00
4 55 43.15 92.19 100.00 87.27 99.99 100.00 12.07 46.47 99.99
8 450 58.06 98.40 100.00 99.50 100.00 100.00 7.59 17.64 81.86

Notes: df denotes degrees of freedom. We approximate the exact finite sample critical values with R = 106

replications from a spherical Gaussian random vector. We generate 20,000 samples from three multivariate
non-Gaussian distributions whose mean vector and covariance matrix are 0 and IN , respectively: the
asymmetric Student t distribution and the two-component location-scale mixture of normals discussed
by Mencía and Sentana (2009), and the skew normal multivariate distribution in Azzalini and Dalla Valle
(1996). See Supplemental Appendix C for details.
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A The symmetrisation operators

The first four symmetrisation operators discussed by Homlquist (1996) are

SNι1 = IN ,

SNι2 =
1

2
(IN2 +KNN ),

SNι3 =
1

6
[IN3 + (IN ⊗KNN ) + (KNN ⊗ IN ) + (IN ⊗KNN )(KNN ⊗ IN )

+(KNN ⊗ IN )(IN ⊗KNN ) + (KNN ⊗ IN )(IN ⊗KNN )(KNN ⊗ IN )],

SNι4 =
1

24
[IN4 + (IN2 ⊗KNN ) + (IN ⊗KNN ⊗ IN ) + (IN2 ⊗KNN )(IN ⊗KNN ⊗ IN )

+(IN ⊗KNN ⊗ IN )(IN2 ⊗KNN ) + (IN ⊗KNN ⊗ IN )(IN2 ⊗KNN )(IN ⊗KNN ⊗ IN )

+(KNN ⊗ IN2) + (KNN ⊗KNN ) + (IN ⊗KNN ⊗ IN )(KNN ⊗ IN2)

+(IN2 ⊗KNN )(IN ⊗KNN ⊗ IN )(KNN ⊗ IN2) + (IN ⊗KNN ⊗ IN )(KNN ⊗KNN )

+(IN ⊗KNN ⊗ IN )(IN2 ⊗KNN )(IN ⊗KNN ⊗ IN )(KNN ⊗ IN2)

+(KNN ⊗ IN2)(IN ⊗KNN ⊗ IN ) + (IN2 ⊗KNN )(KNN ⊗ IN2)(IN ⊗KNN ⊗ IN )

+(IN ⊗KNN ⊗ IN )(KNN ⊗ IN2)(IN ⊗KNN ⊗ IN )

+(IN2 ⊗KNN )(IN ⊗KNN ⊗ IN )(KNN ⊗ IN2)(IN ⊗KNN ⊗ IN )

+KN2N2 + (IN2 ⊗KNN )KN2N2 + (KNN ⊗ IN2)(IN ⊗KNN ⊗ IN )(IN2 ⊗KNN )

+(KNN ⊗ IN2)(IN ⊗KNN ⊗ IN )(IN2 ⊗KNN )(IN ⊗KNN ⊗ IN )

+(KNN ⊗ IN2)(IN ⊗KNN ⊗ IN )(KNN ⊗KNN )

+(IN2 ⊗KNN )(KNN ⊗ IN2)(IN ⊗KNN ⊗ IN )(KNN ⊗KNN )

+(KNN ⊗ IN2)KN2N2 + (IN2 ⊗KNN )(KNN ⊗ IN2)KN2N2 ,

which applied to the arbitrary vectors of dimension N a, b, c and d yield

SNι1a = a,

SNι2(a⊗ b) =
1

2
[(a⊗ b) + (b⊗ a)],

SNι3(a⊗ b⊗ c) =
1

6
[(a⊗ b⊗ c) + (a⊗ c⊗ b) + (b⊗ a⊗ c)

+(b⊗ c⊗ a) + (c⊗ a⊗ b) + (c⊗ b⊗ a)],

SNι4(a⊗ b⊗ c⊗ d)=
1

24
[(a⊗ b⊗ c⊗ d)+(a⊗ b⊗ d⊗ c)+(a⊗ c⊗ b⊗ d)+(a⊗ c⊗ d⊗ b)

+(a⊗ d⊗ b⊗ c) + (a⊗ d⊗ c⊗ b) + (b⊗ a⊗ c⊗ d) + (b⊗ a⊗ d⊗ c)

+(b⊗ c⊗ a⊗ d) + (b⊗ c⊗ d⊗ a) + (b⊗ d⊗ a⊗ c) + (b⊗ d⊗ c⊗ a)

+(c⊗ a⊗ b⊗ d) + (c⊗ a⊗ d⊗ b) + (c⊗ b⊗ a⊗ d) + (c⊗ b⊗ d⊗ a)

+(c⊗ d⊗ a⊗ b) + (c⊗ d⊗ b⊗ a) + (d⊗ a⊗ b⊗ c) + (d⊗ a⊗ c⊗ b)

+(d⊗ b⊗ a⊗ c) + (d⊗ b⊗ c⊗ a) + (d⊗ c⊗ a⊗ b) + (d⊗ c⊗ b⊗ a)].
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B Special cases

B.1 The univariate case

The contribution of x to the log-likehood function is

−1
2
ln 2π − 1

2
ln γ2 − ε2(ν)

2γ2

The score of this component with respect to the mean parameter is

sν(x; ν, γ
2) = z(ν, γ2),

while the score with respect to the variance parameter is given by

sγ2(x; ν, γ) =
1

2
[z2(ν, γ2)− δ2],

where δ2 = γ−2, so they coincide with the first and second Hermite polynomials of z(ν, γ2).

In turn, the Hessian matrix is given by[
hνν(x; ν, γ

2) hγν(x; ν, γ
2)

hγν(x; ν, γ
2) hγγ(x; ν, γ)

]
= −

[
δ2 δ2z(ν, γ2)

δ2z(ν, γ2) δ2[z2(ν, γ2)− δ2]

]
,

while the covariance matrix of the score will be the expected value of the outer product matrix[
z2(ν, γ2) 1

2z(ν, γ
2)[z2(ν, γ2)− δ2]

1
2z(ν, γ

2)[z2(ν, γ2)− δ2] 1
4 [z

2(ν, γ2)− δ2]2
]
.

Therefore, the sum of the outer product of the score and the Hessian yields the following three terms

νν : z2(ν, γ2)− δ2

γ2ν :
1

2
z(ν, γ2)[z2(ν, γ2)− δ2]− δ2z(ν, γ2) = 1

2
[z3(ν, γ2)− 3δ2z(ν, γ2)]

and

γ2γ2 :
1

4
[z2(ν, γ2)− δ2]2 − δ2[z2(ν, γ2)− δ2] = 1

4
[z4(ν, γ2)− 6δ2z2(ν, γ2) + 3δ4].

Under the null of correct specification, the expected value of these three terms should be 0. However, the

expected value of the first term will also be 0 under misspecification, so the test should only be based on

the other two terms, which coincide with the third- and fourth-order Hermite polynomials of z(ν, γ2), as

claimed.

B.2 The bivariate case

The contribution of x = (x1, x2)
′ to the log-likehood function is

−N
2
ln 2π +

1

2
ln |∆| − 1

2
ε′(ν)∆ε(ν),

where ν = (ν1, ν2)′ and vech(∆) = (δ11, δ12, δ22).

If we suppress the dependence on the means for notational simplicity, the scores of this component

2



with respect to the vector of mean parameters are

sν(x;ν,γ) =

(
δ11 δ12
δ12 δ22

)(
ε1
ε2

)
=

(
δ11ε1 + δ12ε2
δ12ε1 + δ22ε2

)
,

which coincide with the H10(ε,∆) and H01(ε,∆) bivariate Hermite polynomials of ε in Barndorff-Nielsen

and Petersen (1979).

Similarly, the scores with respect to the covariance matrix parameters γ = (γ11, γ12, γ22)
′ are given

by one half of the product of the transpose of the duplication matrix

D′2 =

 1 0 0 0
0 1 1 0
0 0 0 1


times

vec

[(
δ11 δ12
δ12 δ22

)(
ε1
ε2

)(
ε1 ε2

)( δ11 δ12
δ12 δ22

)
−
(
δ11 δ12
δ12 δ22

)]

=


δ211ε

2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11

δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12

δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12

δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22

 ,
which coincide with the H20(ε,∆), H11(ε,∆) and H02(ε,∆) bivariate Hermite polynomials of ε in

Barndorff-Nielsen and Petersen (1979). Therefore, the νν term of the sum of the outer product of the

score and the Hessian matrix are identical to these polynomials.

In turn, the γν term is one half the transpose of the duplication matrix times
(δ211ε

2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ11ε1 + δ12ε2)

(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)(δ11ε1 + δ12ε2)

(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)(δ11ε1 + δ12ε2)

(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ11ε1 + δ12ε2)

(δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ12ε1 + δ22ε2)

(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)(δ12ε1 + δ22ε2)

(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)(δ12ε1 + δ22ε2)

(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ12ε1 + δ22ε2)



−2


δ11(δ11ε1 + δ12ε2) δ12(δ11ε1 + δ12ε2)
δ12(δ11ε1 + δ12ε2) δ22(δ11ε1 + δ12ε2)
δ11(δ12ε1 + δ22ε2) δ12(δ12ε1 + δ22ε2)
δ12(δ12ε1 + δ22ε2) δ22(δ12ε1 + δ22ε2)

 ,
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which reduces to  (δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ11ε1 + δ12ε2)

2
(
δ11δ12ε

2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)(δ11ε1 + δ12ε2

)
(δ212ε

2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ11ε1 + δ12ε2)

(δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ12ε1 + δ22ε2)

2
(
δ11δ12ε

2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)(δ12ε1 + δ22ε2

)
(δ212ε

2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ12ε1 + δ22ε2)


−2

 δ11(δ11ε1 + δ12ε2) δ12(δ11ε1 + δ12ε2)

2δ11δ12ε1 + (δ
2
12 + δ11δ22)ε2 (δ212 + δ11δ22)ε1 + 2δ22δ12ε2

δ12(δ12ε1 + δ22ε2) δ22(δ12ε1 + δ22ε2)


=

 (δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ11ε1 + δ12ε2)− 2δ11(δ11ε1 + δ12ε2)

2(δ11δ12ε
2
1+(δ

2
12+δ11δ22)ε1ε2+δ22δ12ε

2
2−δ12)(δ11ε1+δ12ε2)−2(2δ11δ12ε1+(δ212+δ11δ22)ε2)

(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ11ε1 + δ12ε2)− 2δ12(δ12ε1 + δ22ε2)

(δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ12ε1 + δ22ε2)− 2δ12(δ11ε1 + δ12ε2)

2(δ11δ12ε
2
1+(δ

2
12+δ11δ22)ε1ε2+δ22δ12ε

2
2−δ12)(δ12ε1+ δ22ε2)−2((δ212+δ11δ22)ε1+2δ22δ12ε2)

(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ12ε1 + δ22ε2)− 2δ22(δ12ε1 + δ22ε2)


It is tedious but trivial to see that the (2,1) and (2,2) elements are twice as big as the (1,2) and (3,1)

ones, respectively. Therefore, the number of different elements coincides with the number of different

third moments, which is N(N + 1)(N + 2)/6 = 4 in the bivariate case. Those four terms are

(δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ11ε1 + δ12ε2)− 2δ11(δ11ε1 + δ12ε2)

= δ311ε
3
1 + 3δ

2
11δ12ε

2
1ε2 + 3δ11δ

2
12ε

2
2ε1 + δ

3
12ε

3
2 − 3δ211ε1 − 3δ11δ12ε2 = H30(ε,∆),

(δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ12ε1 + δ22ε2)− 2δ12(δ11ε1 + δ12ε2)

= δ211δ12ε
3
1 +

(
δ22δ

2
11 + 2δ11δ

2
12

)
ε21ε2 + (δ

3
12 + 2δ11δ22δ12)ε

2
2ε1 + δ22δ

2
12ε

3
2

−3δ11δ12ε1 − (2δ212 + δ11δ22)ε2 = H21(ε,∆),

(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ11ε1 + δ12ε2)− 2δ12(δ12ε1 + δ22ε2)

= δ222δ12ε
3
2 +

(
δ11δ

2
22 + 2δ22δ

2
12

)
ε22ε1 +

(
δ312 + 2δ11δ22δ12

)
ε21ε2 + δ11δ

2
12ε

3
1

−(2δ212 + δ11δ22)ε1 − 3δ22δ12ε2 = H12(ε,∆),

and

(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ12ε1 + δ22ε2)− 2δ22(δ12ε1 + δ22ε2)

= δ322ε
3
2 + 3δ

2
22δ12ε

2
2ε1 + 3δ22δ

2
12ε

2
1ε2 + δ

3
12ε

3
1 − 3δ22δ12ε1 − 3δ222ε2 = H03(ε,∆),

which coincide with the four different bivariate Hermite polynomials of order three in Barndorff-Nielsen

and Petersen (1979), as expected.
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Finally, the γγ term of the outer product of the score is one quarter of δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11

2(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)

δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22


×

 δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11

2(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)

δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22

′

=

 (δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)2

2(δ11δ12ε
2
1+(δ

2
12+δ11δ22)ε1ε2+ δ22δ12ε

2
2−δ12)(δ211ε21+2δ11δ12ε1ε2+δ212ε22−δ11)

(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ211ε21 + 2δ11δ12ε1ε2 + δ212ε22 − δ11)

2(δ211ε
2
1+2δ11δ12ε1ε2+δ

2
12ε

2
2−δ11)(δ11δ12ε21+(δ212 + δ11δ22)ε1ε2+δ22δ12ε22−δ12)

4(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2 − δ12)2

2(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)(δ11δ12ε21 + (δ212 + δ11δ22)ε1ε2 + δ22δ12ε22 − δ12)

(δ211ε
2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2 − δ11)(δ212ε21 + 2δ12δ22ε1ε2 + δ222ε22 − δ22)

2(δ11δ12ε
2
1+(δ

2
12+δ11δ22)ε1ε2+δ22δ12ε

2
2−δ12)(δ212ε21+2δ12δ22ε1ε2+δ222ε22−δ22)

(δ212ε
2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2 − δ22)2

 .
To obtain the Hessian, we need the following matrix

2δ11(δ
2
11ε

2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2)− δ211

2δ11(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2)− δ11δ12

2δ12(δ
2
11ε

2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2)− δ12δ11

2δ12(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2)− δ212

2δ11(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2)− δ11δ12

2δ11(δ
2
12ε

2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2)− δ11δ22

2δ12(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2)− δ212

2δ12(δ
2
12ε

2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2)− δ12δ22

2δ12(δ
2
11ε

2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2)− δ12δ11

2δ12(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2)− δ212

2δ22(δ
2
11ε

2
1 + 2δ11δ12ε1ε2 + δ

2
12ε

2
2)− δ22δ11

2δ22(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2)− δ22δ12

2δ12(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2)− δ212

2δ12(δ
2
12ε

2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2)− δ12δ22

2δ22(δ11δ12ε
2
1 + (δ

2
12 + δ11δ22)ε1ε2 + δ22δ12ε

2
2)− δ22δ12

2δ22(δ
2
12ε

2
1 + 2δ12δ22ε1ε2 + δ

2
22ε

2
2)− δ222


which postmultiplied by the duplication matrix and premultiplied by its transpose yields δ11

(
2ε21δ

2
11 + 4ε1ε2δ11δ12 + 2ε

2
2δ
2
12 − δ11

)
4ε21δ

2
11δ12 + 2δ22ε1ε2δ

2
11 + 6ε1ε2δ11δ

2
12 + 2δ22ε

2
2δ11δ12 + 2ε

2
2δ
3
12 − 2δ11δ12

δ12
(
2δ11ε

2
1δ12 + 2ε1ε2δ

2
12 + 2δ11δ22ε1ε2 + 2δ22ε

2
2δ12 − δ12

)
4ε21δ

2
11δ12 + 2δ22ε1ε2δ

2
11 + 6ε1ε2δ11δ

2
12 + 2δ22ε

2
2δ11δ12 + 2ε

2
2δ
3
12 − 2δ11δ12

2ε21δ
2
11δ22 + 6ε

2
1δ11δ

2
12 + 12ε1ε2δ11δ12δ22 + 4ε1ε2δ

3
12 + 2ε

2
2δ11δ

2
22 + 6ε

2
2δ
2
12δ22 − 2δ11δ22 − 2δ212

2ε21δ
3
12 + 2δ11ε

2
1δ12δ22 + 6ε1ε2δ

2
12δ22 + 2δ11ε1ε2δ

2
22 + 4ε

2
2δ12δ

2
22 − 2δ12δ22

δ12
(
2δ11ε

2
1δ12 + 2ε1ε2δ

2
12 + 2δ11δ22ε1ε2 + 2δ22ε

2
2δ12 − δ12

)
2ε21δ

3
12 + 2δ11ε

2
1δ12δ22 + 6ε1ε2δ

2
12δ22 + 2δ11ε1ε2δ

2
22 + 4ε

2
2δ12δ

2
22 − 2δ12δ22

δ22
(
2ε21δ

2
12 + 4ε1ε2δ12δ22 + 2ε

2
2δ
2
22 − δ22

)


If we subtract twice this matrix from the compressed outer product of the score we end up with a
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3× 3 matrix with the following elements

(1,1) : ε41δ
4
11 + 4ε

3
1ε2δ

3
11δ12 + 6ε

2
1ε
2
2δ
2
11δ

2
12 − 6ε21δ311 + 4ε1ε32δ11δ312

−12ε1ε2δ211δ12 + ε42δ412 − 6ε22δ11δ212 + 3δ211
(2,1) : 2ε41δ

3
11δ12 + 2δ22ε

3
1ε2δ

3
11 + 6ε

3
1ε2δ

2
11δ

2
12 + 6δ22ε

2
1ε
2
2δ
2
11δ12 + 6ε

2
1ε
2
2δ11δ

3
12

−12ε21δ211δ12 + 6δ22ε1ε32δ11δ212 + 2ε1ε32δ412 − 6δ22ε1ε2δ211
−18ε1ε2δ11δ212 + 2δ22ε42δ312 − 6δ22ε22δ11δ12 − 6ε22δ312 + 6δ11δ12

(3,1) : ε41δ
2
11δ

2
12 + 2ε

3
1ε2δ

2
11δ12δ22 + 2ε

3
1ε2δ11δ

3
12 + ε

2
1ε
2
2δ
2
11δ

2
22 + 4ε

2
1ε
2
2δ11δ

2
12δ22 + ε

2
1ε
2
2δ
4
12

−ε21δ211δ22 − 5ε21δ11δ212 + 2ε1ε32δ11δ12δ222 + 2ε1ε32δ312δ22 − 8ε1ε2δ11δ12δ22
−4ε1ε2δ312 + ε42δ212δ222 − ε22δ11δ222 − 5ε22δ212δ22 + δ11δ22 + 2δ212

(1,2) : 2ε41δ
3
11δ12 + 2δ22ε

3
1ε2δ

3
11 + 6ε

3
1ε2δ

2
11δ

2
12 + 6δ22ε

2
1ε
2
2δ
2
11δ12

+6ε21ε
2
2δ11δ

3
12 − 12ε21δ211δ12 + 6δ22ε1ε32δ11δ212 + 2ε1ε32δ412 − 6δ22ε1ε2δ211

−18ε1ε2δ11δ212 + 2δ22ε42δ312 − 6δ22ε22δ11δ12 − 6ε22δ312 + 6δ11δ12
(2,2) : 4ε41δ

2
11δ

2
12 + 8ε

3
1ε2δ

2
11δ12δ22 + 8ε

3
1ε2δ11δ

3
12 + 4ε

2
1ε
2
2δ
2
11δ

2
22 + 16ε

2
1ε
2
2δ11δ

2
12δ22 + 4ε

2
1ε
2
2δ
4
12

−4ε21δ211δ22 − 20ε21δ11δ212 + 8ε1ε32δ11δ12δ222 + 8ε1ε32δ312δ22 − 32ε1ε2δ11δ12δ22
−16ε1ε2δ312 + 4ε42δ212δ222 − 4ε22δ11δ222 − 20ε22δ212δ22 + 4δ11δ22 + 8δ212
(3,2) : 2δ11ε

4
1δ
3
12 + 2ε

3
1ε2δ

4
12 + 6δ11ε

3
1ε2δ

2
12δ22 + 6ε

2
1ε
2
2δ
3
12δ22

+6δ11ε
2
1ε
2
2δ12δ

2
22 − 6ε21δ312 − 6δ11ε21δ12δ22 + 6ε1ε32δ212δ222 + 2δ11ε1ε32δ322

−18ε1ε2δ212δ22 − 6δ11ε1ε2δ222 + 2ε42δ12δ322 − 12ε22δ12δ222 + 6δ12δ22

(1,3) : ε41δ
2
11δ

2
12 + 2ε

3
1ε2δ

2
11δ12δ22 + 2ε

3
1ε2δ11δ

3
12 + ε

2
1ε
2
2δ
2
11δ

2
22

+4ε21ε
2
2δ11δ

2
12δ22 + ε

2
1ε
2
2δ
4
12 − ε21δ211δ22 − 5ε21δ11δ212 + 2ε1ε32δ11δ12δ222 + 2ε1ε32δ312δ22

−8ε1ε2δ11δ12δ22 − 4ε1ε2δ312 + ε42δ212δ222 − ε22δ11δ222 − 5ε22δ212δ22 + δ11δ22 + 2δ212
(2,3) : 2δ11ε

4
1δ
3
12 + 2ε

3
1ε2δ

4
12 + 6δ11ε

3
1ε2δ

2
12δ22 + 6ε

2
1ε
2
2δ
3
12δ22 + 6δ11ε

2
1ε
2
2δ12δ

2
22

−6ε21δ312 − 6δ11ε21δ12δ22 + 6ε1ε32δ212δ222 + 2δ11ε1ε32δ322 − 18ε1ε2δ212δ22
−6δ11ε1ε2δ222 + 2ε42δ12δ322 − 12ε22δ12δ222 + 6δ12δ22

(3,3) : ε41δ
4
12 + 4ε

3
1ε2δ

3
12δ22 + 6ε

2
1ε
2
2δ
2
12δ

2
22 − 6ε21δ212δ22 + 4ε1ε32δ12δ322

−12ε1ε2δ12δ222 + ε42δ422 − 6ε22δ322 + 3δ222
Once again, it is tedious but straightforward to prove that the elements (2,1), (3,1) and (3,2) are

equal to the elements (1,2), (1,3) and (2,3), respectively. In addition, the (2,2) element is four times the

(3,1) and (1,3) ones. Therefore, the number of different elements coincides with the number of different

fourth moments, which is N(N + 1)(N + 2)(N + 3)/24 = 5 in the bivariate case. Those five terms are

δ411ε
4
1 + 4δ

3
11δ12ε

3
1ε2 + 6δ

2
11δ

2
12ε

2
1ε
2
2 + 4δ11δ

3
12ε1ε

3
2 + δ

4
12ε

4
2

−6δ311ε21 − 12δ211δ12ε1ε2 − 6δ11δ212ε22 + 3δ211 = H40(ε,∆),

2δ311δ12ε
4
1 + 2(δ22δ

3
11 + 3δ

2
11δ

2
12)ε

3
1ε2 + 6(δ22δ

2
11δ12 + δ11δ

3
12)ε

2
1ε
2
2

+2(3δ22δ11δ
2
12 + δ

4
12)ε1ε

3
2 + 2δ22δ

3
12ε

4
2

−12δ211δ12ε21 − 6(δ22δ211 + 3δ11δ212)ε1ε2 − 6(δ22δ11δ12 + δ312)ε22 + 6δ11δ12 = 2H31(ε,∆),

δ211δ
2
12ε

4
1 + 2

(
δ22δ

2
11δ12 + δ11δ

3
12

)
ε2ε

3
1 +

(
δ211δ

2
22 + 4δ11δ

2
12δ22 + δ

4
12

)
ε22ε

2
1

+2
(
δ312δ22 + δ11δ12δ

2
22

)
ε32ε1 + ε

4
2δ
2
12δ

2
22 −

(
δ211δ22 + 5δ11δ

2
12

)
ε21

−4
(
δ312 + 2δ11δ12δ22

)
ε1ε2 − (5δ212δ22 + δ11δ222)ε22 +

(
2δ212 + δ11δ22

)
= H22(ε,∆),
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2δ11δ
3
12ε

4
1 + 2

(
δ412 + 3δ11δ22δ

2
12

)
ε31ε2 + 6

(
δ312δ22 + δ11δ12δ

2
22

)
ε21ε

2
2

+2
(
3δ212δ

2
22 + δ11δ

3
22

)
ε32ε1 + 2δ12δ

3
22ε

4
2 − 6

(
δ312 + δ11δ12δ22

)
ε21

−6
(
3δ212δ22 + δ11δ

2
22

)
ε1ε2 − 12δ12δ222ε22 + 6δ12δ22 = 2H13(ε,∆),

and

δ412ε
4
1 + 4δ

3
12δ22ε

3
1ε2 + 6δ

2
12δ

2
22ε

2
1ε
2
2 + 4δ12δ

3
22ε1ε

3
2 + δ

4
22ε

4
2

−6δ212δ22ε21 − 12δ12δ222ε1ε2 − 6δ322ε22 + 3δ222 = H04(ε,∆),

which are (multiples of) the five different bivariate Hermite polynomials of order four in Barndorff-Nielsen

and Petersen (1979), as expected.

C Alternative distributions

For the multivariate skew normal distribution, we use its canonical representation, choosing .83, 1.30

and −1.35 for the location, scale and skew, respectively, of the first component of the random vector,

which yield values of −3/4 and 3.596 for its skewness and kurtosis coeffi cients (see Figure 2.2 in Azzalini

and Capetiano (2014) for the feasible skewness-kurtosis combinations). In contrast, the remaining N − 1

components are drawn from independent univariate standard normals.

In the case of the multivariate asymmetric Student t, we choose η = .042 and b = (−.91,0′)′, which

yield values of −3/4 and 4.5 for the skewness and kurtosis coeffi cients of the first element (see Proposition

1 in Mencía and Sentana (2009) for details on how to obtain a random vector whose mean vector and

covariance matrix are 0 and IN , respectively). Finally, for the discrete mixture of two normal vectors,

we fix their means to (1−λ)δ and −λδ, where λ = 1/4 is the probability of the first Gaussian vector and

δ = (−.57,0′)′, and their covariance matrices to

Ω1 =
1

λ+ κ(1− λ)
[
IN − δδ′ (1− λ)λ

]
Ω2 = κΩ1,

with κ = .51, so as to achieve the same skewness and kurtosis coeffi cients for the first variable as in the

case of the asymmetric Student t.
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