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1 Introduction

A common specification for regression functions in the context of data with a group structure

is

Yi = αCi
+Wiτ +X>i β + εi, (1.1)

where the αCi
are the group fixed effects (e.g., Wooldridge [2010]). The coefficient on the binary

treatment Wi, denoted by τ , is the object of interest. This regression function is often estimated

by least squares. The use of this specification, and similar ones with two-way fixed effects and

nonlinear adjustments for the covariates Xi, is widespread in empirical work, where the groups

may correspond to states, cities, SMSAs, classrooms, birth cohorts, firms, or other geographic or

demographic groups. The fixed effects are intended to capture unobserved differences between

the groups. The motivation for including the fixed effects in the regression is that without them

the least squares estimator may not have a credible causal interpretation (e.g., Arellano [2003]).

The main issue that we wish to address in the current paper is that the fixed effect specification

can be quite restrictive, and is not naturally generalized. In particular we are interested in the

case where we have a modest number of units per group, not sufficiently large to do the analysis

entirely within groups, followed by averaging over the groups. With a modest number of units

per group, such a flexible within-group analysis is not feasible, and we are forced to rely on

comparisons of treated and control units in different groups. However, we may be concerned

that simply accounting for the group differences through additive fixed effects is not sufficient

to adjust for all relevant differences (e.g., Altonji and Matzkin [2005], Imai and Kim [2019]). A

second issue is that the fixed effect approach is focused on the average treatment effect, and does

not naturally generalize to other estimands such as quantile treatment effects without changing

the nature of the assumptions.

To motivate our approach, we make two observations. The first observation, following from

repeated applications of omitted variable bias formulas, is that we can estimate the coefficient
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on Wi in (1.1) by least squares estimation of a different regression function, namely

Yi = α +Wiτ +X>i β +WCi
δ +X

>
Ci
γ + εi, (1.2)

where W c and Xc are the group averages of Wi and Xi in group c. This equivalence is mentioned

in Mundlak [1978] in a seminal paper on panel data, and exploited by Altonji and Mansfield

[2018] to bound treatment effect variance. In the regression in (1.2) the low dimensional group

averages WCi
and XCi

are used as control variables along with Xi instead of high-dimensional

fixed effects in (1.1). This representation suggests thinking about the fundamental identification

assumption underlying the estimator for τ as an unconfoundedness type assumption common

in the program evaluation literature:

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi,WCi
, XCi

. (1.3)

A second observation is that if assignment to treatment is completely random, independent

of both covariates and group membership, the fixed effect estimator is consistent even if the

conditional expectation of the outcome is not not linear in covariates, treatment and fixed

effects. More generally, the fixed effect estimator is consistent if we weight the units by the

inverse of the propensity score:

(α̂c, τ̂ , β̂) = arg min
αc,τ,β

N∑
i=1

(
Yi − αCi

−Wiτ −X>i β
)2 1

p(Xi, Ci)Wi(1− p(Xi, Ci))1−Wi
,

where p(x, c) ≡ pr(Wi = 1|Xi = x,Ci = c) is the propensity score. This observation suggests

using the propensity score weighting as an alternative to a fixed effect model to adjust for general

group differences.

We use these two observations to motivate three distinct modifications of the fixed effect

estimation strategy. These three modifications can be used individually or collectively to free up

implicit and explicit restrictions in the fixed effect approach. First, the conditional independence

in (1.3) suggest that we can use more flexible specifications for the regression function as a

function of the control variables (Xi,WCi
, XCi

) and the treatment Wi. In general we could
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specify the regression function as:

Yi = g(Wi, Xi,WCi
, XCi

) + εi,

with a parametric or non-parametric specification for g(·). These specifications may include

higher order moments of the control variables, or interactions with the treatment, or transforma-

tions of the linear index. Given estimates of g(·) we can average the difference g(1, Xi,WCi
, XCi

)−
g(0, Xi,WCi

, XCi
) over the sample to estimate the average treatment effect.

Second, the conditional independence in (1.3) suggest that we can model the propensity

score, defined as a function of Xi and the group indicator, as a function of the control variables

(Xi,WCi
, XCi

):

p(Xi, Ci) = e(Xi,WCi
, XCi

) ≡ pr(Wi = 1|Xi,WCi
, XCi

).

Once we have estimates of the propensity score, we can use them to develop inverse propensity

score weighting estimators. In particular, an attractive approach would be to use the inverse

propensity score weighting in combination with a credible specification of the regression function.

For example, one could use the conventional fixed effect specification but use a weighted version

to make the results more robust to misspecification of the regression function. Such double

robust methods have been found in the causal inference literature on unconfoundedness to be

more effective than estimators that rely solely on specifying the conditional mean of the outcome

given conditioning variables and treatments.

Third, the representation in (1.2) and the associated unconfoundedness assumption in (1.3)

highlight that the fixed effect approach implicitly assumes that the two averages WCi
and XCi

capture all the relevant differences between the groups. A natural question is whether this is so.

We may wish to consider additional characteristics of the clusters beyond these two averages to

improve the comparability of clusters. This is similar to how we build up the propensity score

using logistic regression models with an increasingly rich set of covariates. We build a framework

for doing so in the current context where the propensity score is defined as the probability of

treatment given covariates and group membership. This framework suggests conditions under

which the average covariate values and average treatment per group are sufficient to capture all

relevant differences between groups.

3



In practice our recommendation is to use all three modifications: First choose what group

characteristics one wishes to include in the analysis, beyond the group averages of the covari-

ates and treatment that are included in the standard fixed effect approach. Second, specify a

credible conditional mean function, possibly, but not necessarily involving fixed effects, and in-

cluding these additional group characteristics. Third, estimate the propensity score and combine

that with the conditional mean specification to obtain a more robust estimator for the average

treatment effect.

The first contribution in the current paper is a formal characterization of the primitive

assumptions that justify the unconfoundedness assumption in (1.3) as well as generalizations

that include other group-level variables. These assumptions are primitive in the sense that they

impose restrictions on the population distribution of units and groups, whereas (1.3) depends

partly on the sampling process (e.g., the properties of the group averages change with the number

of units sampled per group). Our second contribution is to characterize the average treatment

effects that can be identified under this assumption, which will involve some trimming along the

lines of Crump et al. [2009]. In the third contribution, we develop a new estimator. We derive

large sample properties of the procedures proposed here, including consistency and asymptotic

normality. A major challenge is that some of the conditioning variables, WCi
and XCi

in (1.3)

are sample averages rather than population values. To capture the relevant empirical settings,

we focus on asymptotics where the number of units per group remains fixed while the number of

groups increases. As a result, the within-group averages WCi
and XCi

are not estimating their

population counterparts consistently. Nevertheless, we show that Normal distribution based

confidence intervals for our proposed estimators are valid in large samples. Finally, we show

how our approach can be used to estimate other estimands, such as quantile treatment effects.

2 Set Up

In this section we set up the problem and introduce the notation. Using the potential outcome set

up (e.g., Imbens and Rubin [2015]), we consider a set up with a large, possibly infinite, population

of units, characterized by a pair of potential outcomes (Yi(0), Yi(1)), and a K-component vector

of pretreatment variables Xi. The population is partitioned into subpopulations or groups, with

Ci indicating the group unit i is a member of. The number of groups in the population is large,
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and so is the number of units per group.

We are interested in the average treatment effects. Ideally we might wish to estimate the

population average effect,

τ ≡ E[Yi(1)− Yi(0)],

but this may be challenging, and we may need to settle for some other average of Yi(1)− Yi(0),

e.g., the average over some subpopulation defined in terms of groups, covariates and assignments.

Unit i receives treatment Wi ∈ {0, 1}. We first randomly sample C groups, and then draw a

random sample of size N from the subpopulation defined by the sampled groups. For the

sampled units we observe the quadruple (Yi,Wi, Xi, Ci), i = 1, . . . , N , where Yi ≡ Yi(Wi) is

the realized outcome, that is, the potential outcome corresponding to the treatment received,

and Ci ∈ {1, . . . , C} is the group label for unit i. Also define Cic = 1Ci=c as the binary group

indicators, and let Nc ≡
∑N

i=1Cic be the number of sampled units in group c. For any variable

Zi, let Zc ≡
∑

i:Ci=c
Zi/Nc be the corresponding group average in group c. For each unit in the

population the (partly unobserved) data tuple is given by {(Yi(0), Yi(1),Wi, Xi, Ui, Ci)}Ni=1. The

variable Ui is an unobserved cluster-level variable that varies only between clusters, so that it is

equal to its cluster average for all units, UCi
= Ui for all i.

In the settings we are interested in the number of strata or clusters in the sample, C, may be

substantial, on the order of hundreds or even thousands. The dimension of Xi is modest. The

number of units in the population in each cluster is large, but we observe only few units in each

group, possibly as few as two or three. As a result methods that rely on accurate estimation

of features of the population distribution of potential outcomes or treatments conditional on

covariates within clusters may have poor properties.

The set up we consider has a large population of clusters. In the population, each cluster

has a large number of units. We randomly sample a finite number of clusters and then sample a

finite number of units from the subpopulation of sampled clusters. Large sample approximations

to estimators are based on the number of sampled clusters increasing, with the average number

of sampled units per cluster converging to a constant.
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3 Identification, Estimation, and Inference

In this section we propose a new estimator for average treatment effects in the setting with

grouped data. The estimator has features in common with the efficient influence function

estimators from the program evaluation literature, as well as with the fixed effect estimators

from the panel data literature. Unlike fixed effect estimators, it can accommodate differences

in potential outcome distributions between clusters that are not additive. There are two issues

involved in our approach. First, we have to be careful in defining the estimand to account for

the fact that there may be few units in a cluster. In general, we can not consistently estimate

the overall average causal effect, because there are likely to be clusters with no treated or no

control units. To take this into account, we define a subset of units for which we estimate the

average effect. Of course, this is not entirely new to our approach even in the panel data setting:

implicitly standard fixed effect estimators do not estimate the average effect of the treatment

if there is systematic variation in treatment effects by strata and some strata have no variation

in treatments. However, by explicitly moving away from focusing on population quantities, we

relax the conditions required for identification, compared to, say, those in Altonji and Matzkin

[2005]. Second, a key feature in our approach is that we need to adjust for characteristics of

the clusters that are not observed. Although we can estimate these features, they cannot be

estimated consistently under the asymptotic sequences we consider.

3.1 Identification

This assumption describes the sampling process.

Assumption 3.1. (Balanced clustered sampling) There is a super-population of groups,

we randomly sample C clusters. We then randomly sample N units from the subpopulation of

sampled clusters. Let Nc be the number of units sampled from cluster c, so that N =
∑C

c=1Nc

is the total sample size.

Our second assumption imposes restrictions on the treatment assignment process:

Assumption 3.2. (Unconfoundedness within Clusters)

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi, Ci. (3.1)
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This assumption implies that we can always compare individuals with the same characteris-

tics within the cluster. Some version of this assumption underlies most fixed effect approaches.

The second assumption imposes restrictions on the fixed effects.

Assumption 3.3. (Random effects)

There is an unobserved group-level variable UCi
such that:

(
Yi(1), Yi(0), Xi,Wi

)
⊥⊥ Ci

∣∣∣ UCi
(3.2)

This assumption, what Altonji and Matzkin [2005] (Assumption 2.3 in their paper) call

exchangeability, essentially turns the problem into a random effects set up: the labels of the

clusters Ci are not important, only the cluster-level characteristics UCi
are. This assumption

allows us to conceptualize similarity of clusters. This assumption is without essential loss of gen-

erality, as it follows in the case with infinitely sized groups from deFinetti’s theorem (De Finetti

[2017], Diaconis [1977]).

Since UCi
is measurable with respect to cluster indicator variable, a direct implication of the

previous pair of assumptions is:

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi, UCi
. (3.3)

Now we can also compare treated and control units in different clusters, as long as the clusters

have the same value for UCi
.

For the first identification result we need some additional notation. For each cluster c define

Pc to be the empirical distribution of (Xi,Wi) in cluster c. In the case with discrete Xi this

amounts to the set of frequencies of observations in a cluster for each pair of values (Wi, Xi).
1

Proposition 1. (Unconfoundedness with empirical measure) Suppose Assumptions

3.1-3.3 hold. Then:

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi, NCi
,PCi

(3.4)

For the proofs of the results in this section see Appendix A.

1For the formal definition of this object including continuous Xi see Appendix A.
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This result states that as long as units have the same characteristics, and they come from

clusters identical in terms of PCi
, they are comparable. This is a balancing/propensity score

type result in the sense that subpopulation with the same value for (Xi,PCi
) are balanced: the

distribution of treatments is the same for all units within such subpopulations. See, for example,

Rosenbaum and Rubin [1983].

However, the empirical relevance of this result is limited, because in most cases the dimension

of the conditioning set is high. If Xi is discrete and takes on K values, with K typically large,

and there are Nc units in group c, the number of possible values for (Xi,Pc) is K × (2K)Nc/Nc!.

Overlap of the distributions of the conditioning variables is going to be a major problem in this

case. This is the motivation for the next assumption. We put structure on the joint distribution

of (Wi, Xi) within groups to reduce the dimension of the conditioning set.

Assumption 3.4. (Exponential family) Conditional on UCi
distribution of (Xi,Wi) belongs

to an exponential family with a known sufficient statistic:

fXi,Wi|Ui
(x,w|u) = h(x,w) exp

{
η>(u)S(x,w) + η0(u)

}
, (3.5)

with potentially unknown carrier h(·).

Define Sc ≡ (Nc,
∑

i:Ci=c
S(Xi,Wi)/Nc be the sample size in cluster c and the cluster average of

S(Xi,Wi) for cluster c.

Comment 1: This assumption restricts the joint distribution of the treatment and covariates

conditional on the cluster, (Xi,Wi)|UCi
but places no restrictions on the conditional distribution

of the outcome variable, Yi|Xi,Wi, UCi
. �

Comment 2: If we do not restrict the dimension of S(·) the exponential family assumption is

without essential loss of generality. To see this, note that if the distribution of Xi is discrete, one

can immediately write the joint distribution of (Xi,Wi) within each cluster as an exponential

family distribution with a cluster specific parameter. In addition, we can approximate any

distribution arbitrarily well by a discrete distribution. �

Comment 3: One might wonder why we make any assumptions on the distribution of Xi at all

and not just focus on a model for the propensity score, as is commonly done in unconfoundedness

settings. The reason is key to our approach. With the number of units within the cluster not

increasing with the sample size, we cannot estimate the propensity score consistently (we cannot
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estimate the exponential family parameters η(u) consistently). This situation is akin to fixed-T

models in panel data, where common parameters can be identified, but individual effects are

not. Modeling the joint distribution of (Wi, Xi) in the way we do we can bypass the need for

consistent estimation of η(u) and instead focus on the conditional distribution of Wi given Xi

and SCi
. �

Lemma 1. Suppose Assumptions 3.1–3.4 hold. Then

Wi ⊥⊥ Ci

∣∣∣ Xi, SCi
. (3.6)

Theorem 1. (Unconfoundedness with sufficient statistic) Suppose Assumptions 3.1–

3.4 hold. Then:

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi, SCi
. (3.7)

Comment 4: Theorem 1 can be viewed as essentially a direct consequence of Proposition 1,

but it is substantially more operational. It reduces the potentially high-dimensional object PCi

to a lower dimensional average SCi
. It is unusual in that one of the conditioning variables,

SCi
, is not a fixed unit-level characteristic. Instead, it is a characteristic of the cluster and the

sampling process. If we change the sampling process, say to sampling twice as many units per

cluster, the distribution of SCi
changes. Nevertheless, this conceptual difference in the nature

of SCi
relative to the unit-level characteristic Xi does not affect how it is used in the estimation

procedures. �

Comment 5: There is another key difference between the unconfoundedness condition in Theo-

rem 1 and in Proposition 1. With continuous covariates, the latter essentially makes it impossible

to have overlap. Indeed, unless we have individuals with the same value of covariates within the

cluster, the distribution of Wi given Xi and PCi
is degenerate. It is well known that overlap is

crucial in the semiparametric estimation of treatment effects and without it, the identification

is possible only under functional form assumptions.�

Comment 6: The result in Theorem 1 is more useful because it allows us to control the degree

of overlap as well. The higher the dimension of S(·) the closer we are to controlling for PCi
, and

thus the smaller is the region for which we have overlap. �

Comment 7: In Altonji and Matzkin [2005] a key assumption (Assumption 2.1) requires that
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there is an observed variable Zi such that conditioning on Zi renders the covariate of interest (the

treatment in our case) exogenous. The role of this conditioning variable is in our setting played

by the sufficient statistic SCi
. Our set up shows how this property can arise from assumptions

on the joint distribution of the treatment and the other covariates, and how we can make this

more plausible by expanding the set of sufficient statistics. �

In this and the next section, we l assume that S(·) is known, fixed and there is a known

region of the covariate space where we have overlap. In Section 3.3 we discuss selecting the set

of sufficient statistics. In particular, recall the definition of the propensity score:

e(x, s) ≡ E[Wi|Xi = x, SCi
= s] (3.8)

We are making the following assumption:

Assumption 3.5. (Known overlap) We assume that there exists η > 0 and a nonempty

known set A, such that for any (x, s) ∈ A we have η < e(x, s) < 1− η.

Comment 8: This assumption has two parts: the first part restrict e(x, s) to be non-degenerate

on a certain set. This is necessary if we want to identify treatment effects without relying on

functional form assumptions. The second part is different: we assume that the set is known to a

researcher. This is a generalization of the standard overlap assumption, where we assume that

the set A is equal to the support of the covariate space. See Crump et al. [2009]. �

3.2 Estimation and Inference

Here we collect several inference results for the general semiparametric estimator. All proofs

can be found in Appendix B.

For the further use we use following notation for the conditional mean, propensity score and

residuals:
µ(Wi, Xi, SCi

) ≡ E[Yi|Wi, Xi, SCi
]

e(Xi, SCi
) ≡ E[Wi|Xi, SCi

]

εi(w) ≡ Yi(w)− µ(w,Xi, SCi
)

(3.9)
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Note that these expectations are defined conditional on Assumption 3.1, which determines the

distribution of SCi
.

We will use µ̂i(·) and êi(·) for generic estimators of µ(·) and e(·). Subscript i is used to

allow for cross-fitting (Chernozhukov et al. [2016]). Define Ai ≡ {(Xi, SCi
) ∈ A}, where A is

a (known) set with overlap in the distribution of (Xi, SCi
). Define true and estimated share of

observations with overlap:π(A) ≡ E[Ai]

A ≡ 1
N

∑N
i=1Ai

(3.10)

We assume the generic estimators êi and µ̂i satisfy several high-level consistency properties.

These restrictions are standard in the program evaluation literature.

Assumption 3.6. (High-level conditions) The following conditions are satisfied for êi(·)
and µ̂i(·):



η < êi(Xi, SCi
) < 1− η a.s.

1
N

∑N
i=1Ai(e(Xi, SCi

)− ê(Xi, SCi
))2 = op(1)

1
N

∑N
i=1Ai(µ(Wi, Xi, SCi

)− µ̂i(Wi, Xi, SCi
))2 = op(1)

1
N

∑N
i=1Ai(e(Xi, SCi

)− êi(Xi, SCi
))2

× 1
N

∑N
i=1Ai(µ(Wi, Xi, SCi

)− µ̂i(Wi, Xi, SCi
))2 = op

(
1
n

)
(3.11)

We also restrict moments of the residuals:

Assumption 3.7. (Moment conditions)

E[ε2i (k)|Xi, SCi
] < K a.s.

E[ε4i (k)] <∞
(3.12)

For arbitrary (subject to appropriate integrability conditions) functions (µ(·), e(·)) define the
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following functional:

ψ(y, w, x, s, µ(·), e(·)) ≡ µ(1, x, s)−µ(0, x, s)+

(
w

e(x, s)
− 1− w

1− e(x, s)

)
(y−µ(w, x, s)). (3.13)

We focus on the following conditional estimand:2

τ̃A =
1

A

1

N

N∑
i=1

Ai
(
µ(1, Xi, SCi

)− µ(0, Xi, SCi
)
)

(3.14)

Theorem 2. (Consistency) Suppose Assumptions 3.1–3.4 and Assumption 3.6 hold. Then:

τ̂dr ≡
1

NA

N∑
i=1

Aiψ(Yi,Wi, Xi, SCi
, µ̂(Wi, Xi, SCi

), ê(Xi, SCi
)), (3.15)

satisfies τ̂dr − τ̃A = op(1).

For inference results we need to use µ̂i with cross-fitting. We also need to take account of

the clustering. Define

ρ(c, µ(·), e(·)) ≡ 1

Nc

∑
i:Ci=c

Aiψ(Yi,Wi, Xi, SCi
, µ(Wi, Xi, SCi

), e(Xi, SCi
)),

so that

τ̂dr =
1

A

C∑
c=1

Nc

N
ρ(c, µ̂(·), ê(·)).

Theorem 3. (Inference for semiparametric case) Suppose Assumptions 3.1–3.4 and

Assumption 3.6 hold. Assume that µ̂i is estimated using cross-fitting with L folders. Then:

√
n(τ̂dr − τ̃A)

d−→ N (0,V), where V =
E [ξ2c ]

π2(A)
,

2It is straightforward to extend our inference results to a more standard target τA, in which case we will have
a different variance.
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where ξc is defined in the following way:

ξc ≡
∑
i∈c

Ai
Nc

(
Wi

e(Xi, SCi
)
− 1−Wi

1− e(Xi, SCi
)

)
(Yi − µ(Wi, Xi, SCi

))

Finally, we address the estimation of variance. For this define the following empirical version

of ξc:

ξ̂c ≡
∑
i∈c

Ai
Nc

((
Wi

ê(Xi, SCi
)
− 1−Wi

1− ê(Xi, SCi
)

)
(Yi − µ̂(Wi, Xi, SCi

))

)
(3.16)

The proposed variance estimator is just the variance of ξ̂c:

V̂ :=
1

A
2

1

C

C∑
c=1

(
ξ̂c −

1

C

C∑
c′=1

ξ̂c′

)2

. (3.17)

The following proposition says that asymptotically variance of the estimated influence func-

tion is equal to the variance of the true influence function:

Proposition 2. (Variance consistency) Suppose the assumptions of Theorem 3 hold. Then

the variance estimator is consistent:

V̂ = V + op(1). (3.18)

3.3 Choosing the Sufficient Statistics

The suggestion to include additional group characteristics raises the question how to select

these. Selecting more sufficient statistics raises concerns with overlap and the ability to adjust

for these sufficient statistics adequately given the finite sample, and failure to adjust for all the

relevant group characteristics may lead to biased estimators. Intuitively we would like a selection

procedure to select more sufficient statistics in settings where we have a lot of units per cluster,

and if the distributions vary substantially by cluster. A full treatment of this problem is an open

question. However, we provide a suggestion for systematically selecting sufficient statistics in

the case where we have a large set of potential sufficient statistics that includes all the relevant

ones, but also some that are not relevant.
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The sufficient statistics are intended to capture the differences in distributions of (Xi,Wi)

between clusters. If a particular sufficient statistic is important, it should therefore be useful in

predicting which cluster a unit belongs to. Hence we can cast this as a prediction or classification

problem and bring to bear machine learning methods. Under the exponential family assumption,

and given the sampling framework in Assumption 3.1, the conditional probability that a unit in

the sample is from group c, conditional on (Wi, Xi) and conditional on the set of U1, . . . , UC ,

has a multinomial logit form:

pr(Ci = c|Wi, Xi, U1, · · · , UC) =
exp(η0(U c) + η>(U c)S(Xi,Wi))∑C

c′=1 exp(η0(U c′) + η>(U c′)S(Xi,Wi))
.

Hence the problem of selecting the sufficient statistics is similar to the problem of selecting

covariates in a multinomial logistic regression model. Given a large set of potential sufficient

statistics we can use standard regularization methods, such as LASSO (Tibshirani [1996]) to

select a sparse set of relevant ones.

4 Extensions

In this section we discuss three extensions of the ideas introduced in this paper.

4.1 Quantile Treatment Effects

Theorem 1 states that conditional on the covariates and the sufficient statistics we have the

unconfoundedness condition:

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi, SCi
.

This implies that we can study estimation of effects other than average treatment effects. This

is important in applications where we want to estimate, say, nonlinear effects controlling on

cluster-level unobserved heterogeneity.

In particular, for any bounded function f : R → R we can estimate E[f(Yi(w))] using the
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following representation:

E[f(Yi(w)] = E
[
{Wi = w}f(Yi)

e(Xi, SCi
)

]

This allows us to deal with quantile treatment effects of the type introduced by Lehmann and

D’Abrera [2006]. If we are interested in q-th quantile of the distribution of Yi(w) then (under

appropriate continuity) we can identify it as a solution of the following problem:

c : E
[
{Wi = w}{Yi ≤ c}

e(Xi, SCi
)

]
= q

For the standard case under unconfoundedness Firpo [2007] has developed effective estimation

methods that can be adapted to this case.

4.2 Panel Data

Although we focus in the current paper on a cross-section setting with clusters, as in Altonji

and Mansfield [2018], the issues raised here are also relevant to proper panel or longitudinal

data settings. In that literature the paper fits into a recent set of studies Abadie et al. [2010],

de Chaisemartin and D’Haultfœuille [2018], Bonhomme and Manresa [2015], Imai and Kim

[2019] that connects more directly with the causal (treatment effect) literature than the earlier

panel data literature by allowing for general heterogeneity beyond additive effects.

Suppose we have N observations on C individuals, and T time periods, so that N = C × T .

We observe Yi for all units and a binary treatment Wi. Let Ti ∈ {1, . . . , T} denote the time

period observation i is from, and let Ci ∈ {1, . . . , C} denote the individual it goes with.

For any variable Zi, define the time and individual averages:

Z ·t :=
1

C

∑
i:Ti=t

Yi, Zc· :=
1

T

∑
i:Ci=c

Yi,

and the overall average

Z :=
1

N

N∑
i=1

Zi,
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and the residual

Żi = Zi − Z ·t − Zc· + Z

Let τ̂fe be the least squares estimator for the regression

Yi = αTi + βCi
+ τWi +X>i γ + εi (4.1)

Compare this to the least squares regression

Yi = τWi +X>i γ + δW ·Ti + µWCi· + ψX ·Ti + ϕXCi· + εi

The two least squares estimators for τ are numerically identical. This suggests that we can view

the standard fixed-time effects approach in (4.1) as controlling for time and individual level

sufficient statistics. This view opens a road to generalizing the standard estimators.

At the same time, this type of generalization is not completely satisfactory. For one, con-

trolling for future values of Xit and Wit seems controversial. Also, it seems that the outcome

information should be used to control for individual-level heterogeneity. Finally, in the panel

case, the definition of treatment effects is inherently more complex, because of the dynamic

structure of the problem. For these reasons, we think that the approach of this paper while

insightful should be refined to make it appropriate for the panel data settings. We leave this for

future research.

4.3 Beyond Exponential Families

Modelling the conditional distribution of (Xi,Wi) given Ui using exponential family is very

natural for the purposes of this paper. Nevertheless, in some applications other families can

be more appropriate. In particular, another operational choice is a discrete mixture. Assume

that UCi
can take a finite number of values {u1, . . . , up} with probabilities π1, . . . , πp and the

conditional distribution of Xi,Wi given Ui is given by f(x,w|u). Collect all the data that we

observe for cluster c in the following tuple:

Dc ≡ ((Xc,1,Wc,1), . . . , (Xc,Nc ,Wc,Nc)) (4.2)
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Marginal distribution of this object is given by the following expression:

fDc(x1, w1, . . . , xNc , wNc) =

p∑
k=1

Nc∏
j=1

f(xj, wj|k)πk (4.3)

This implies that the conditional distribution of Uc given Dc has the following form:

π(Uc = k|x1, w1, . . . , xNc , wNc) =

∏Nc

j=1 f(xj, wj|k)πk∑p
k=1

∏Nc

j=1 f(xj, wj|k)πk
(4.4)

Define S(Dc) ≡ (π(Uc = 1|Dc), . . . , π(Uc = p|Dc)) and observe that as long as Assumption 3.3

holds we have the following:

(Yi(1), Yi(0)) ⊥ Wi|Xi, S(Dc) (4.5)

Recent results (e.g., Allman et al. [2009], Bonhomme et al. [2016]) show that (π1, . . . , πp) and

f(x,w|u) are nonparametrically identified under quite general assumptions. Using the algo-

rithms proposed in these papers we can estimate S(Dc) and use it as a sufficient statistic.

This is conceptually different from the Bayesian classification that is used in unsupervised

machine learning. Standard classification algorithms assign a unique value Ui to each observation

(in our case, cluster). The usual way of doing this is to assign Ui that has the highest posterior

probability. Here, we do not want to do this; instead, we want to find clusters that are similar in

terms of the whole posterior distribution, not only its mode. If Nc is large, then this difference

is not that important, because the posterior will typically concentrate on a particular value of

Ui. With small Nc this is not going to happen, and the distinction is essential.

5 Conclusion

In this work, we proposed a new approach to identification and estimation in the observational

studies with unobserved cluster-level heterogeneity. The identification argument is based on the

combination of random effects and exponential family assumptions. We show that given this

structure we can identify a specific average treatment effect even in cases where the observed

number of units per cluster is small. From the operational point of view, our approach allows
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researchers to utilize all the recently developed machinery from the standard observational

studies. In particular, we generalize the doubly-robust estimator and prove its consistency and

asymptotic normality under common high-level assumptions. We also show that the standard

fixed effects estimation is a particular case of our procedure.

As a direction for future research, it will be interesting to see whether it is possible to

utilize machine learning methods to learn sufficient statistics from the data. Additionally, it is

essential to understand the statistical trade-off between the dimension of the sufficient statistic,

cluster size and estimation rate for the propensity score. Finally, we view this work as a first

step towards understanding a more challenging and arguably more practically important data

design, where we observe panel data.
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A Identification results

First, we need to formally define Pc. For this fix an arbitrary linear order % on X ×{0, 1} (e.g.,

a lexicographic order). For any cluster c consider a tuple Ac = {(Xi,Wi)}i∈c, order elements

of Ac with respect to % and define Pc =
(
(X(1),W(1)), . . . , (X(c),W(c))

)
∈ (X × {0, 1})c. Under

Assumption 3.1 this construction ensures that Pc is a well-defined random vector. It is clear that

there is a one-to-one relationship between this vector and the empirical distribution of (Xi,Wi)

within the cluster which makes the notation appropriate.

Below we will use the following definition of conditional independence. Let X, Y, Z be three

random elements and A,B be the elements of the σ(X)- and σ(Y )-algebras, respectively. The

X ⊥⊥ Y |Z if the following holds:

E[{X ∈ A}{Y ∈ B}|Z] = E[{X ∈ A}|Z]E[{Y ∈ B}|Z] (1.1)

In the proofs below we are using A and B as generic elements of the appropriate σ-algebras,

without explicitly specifying them.

We start stating several lemmas that are important for the first identification result (Propo-

sition 1). The first lemma says that given the (Xi,Wi, Ui) other covariates cannot help in

predicting (Yi(0), Yi(1)).

Lemma A1. (Statistical exclusion) Under Assumptions 3.1, 3.3 the following is true:

(Yi(1), Yi(0)) ⊥⊥ {(PCj
, Xj,Wj)}Ni=1|Xi,Wi, Ui (1.2)

Proof. From the repeated application of the iterated expectations and Assumptions 3.1, 3.3 we

have the following:

E[{(Yi(1), Yi(0)) ∈ A}{{(PCj
, Xj,Wj)}Nj=1 ∈ B}|Xi,Wi, Ui] =

E[E[{(Yi(1), Yi(0)) ∈ A}{{(PCj
, Xj,Wj)}Nj=1 ∈ B}|{Xi,Wi, Ui, Ci}ni=1]|Xi,Wi, Ui] =

E[{{(PCj
, Xj,Wj)}Nj=1 ∈ B}E[{(Yi(1), Yi(0)) ∈ A}|{Xi,Wi, Ui, Ci}ni=1]|Xi,Wi, Ui] =

E[{{(PCj
, Xj,Wj)}Nj=1 ∈ B}E[{(Yi(1), Yi(0)) ∈ A}|Xi,Wi, Ui]|Xi,Wi, Ui] =

E[{{(PCj
, Xj,Wj)}Nj=1 ∈ B}|Xi,Wi, Ui]E[{(Yi(1), Yi(0)) ∈ A}|Xi,Wi, Ui] (1.3)
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Equality between the first and the last expression implies the independence result.

The second lemma states that only PCi
are useful in predicting Ui.

Lemma A2. (Statistical sufficiency) Under Assumption 3.1 the following holds:

Ui ⊥⊥ {Wj, Xj}Nj=1|PCi
(1.4)

Proof. The proof follows from the following equalities:

E[{Ui ∈ A}{{Wj, Xj}Nj=1 ∈ B}|PCi
] =

E
[
E[{Ui ∈ A}{{Wj, Xj}Nj=1 ∈ B}|PCi

, {Wj, Xj}Nj=1, {Cj = Ci}Nj=1]|PCi

]
=

E
[
{{Wj, Xj}Nj=1 ∈ B}E[{Ui ∈ A}|PCi

, {Wj, Xj}Nj=1, {Cj = Ci}Nj=1]|PCi

]
=

E
[
{{Wj, Xj}Nj=1 ∈ B}E[{Ui ∈ A}|PCi

, {Wj, Xj}j:Cj=Ci
]|PCi

]
=

E
[
{{Wj, Xj}Nj=1 ∈ B}E[{Ui ∈ A}|PCi

]|PCi

]
=

E
[
{{Wj, Xj}Nj=1 ∈ B}|PCi

]
E [{Ui ∈ A}|PCi

] (1.5)

The third equality holds by random sampling (observations in different clusters are independent),

the fourth equality holds by exchangeability of data within the cluster.

Proof of Proposition 1: We start with the following equalities:

E[{(Yi(1), Yi(0)) ∈ A}|Wi, Xi,PCi
] =

E[E[{(Yi(1), Yi(0)) ∈ A}|Wi, Xi,PCi
, Ui]|Wi, Xi,PCi

] =

E[E[{(Yi(1), Yi(0)) ∈ A}|Wi, Xi, Ui]|Wi, Xi,PCi
] (1.6)
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The last equality follows from Lemma A1. As a next step we have the following result:

E[E[{(Yi(1), Yi(0)) ∈ A}|Wi, Xi, Ui]|Wi, Xi,PCi
] =

E[E[{(Yi(1), Yi(0)) ∈ A}|Xi, Ui]|Wi, Xi,PCi
] =

E[E[{(Yi(1), Yi(0)) ∈ A}|Xi, Ui]|Xi,PCi
] =

E[E[{(Yi(1), Yi(0)) ∈ A}|Xi,PCi
, Ui]|Xi,PCi

] = E[{(Yi(1), Yi(0)) ∈ A}|Xi,PCi
] (1.7)

The first equality follows directly from Assumption 3.2, the second equality follows from Lemma

A2. Combining the two chains of equalities we get the following:

E[{(Yi(1), Yi(0)) ∈ A}|Wi, Xi,PCi
] = E[{(Yi(1), Yi(0)) ∈ A}|Xi,PCi

] (1.8)

which proves the conditional independence. �

Corollary A1. (Exclusion in exponential families) Under the assumptions of Lemma

A1 the following is true:

(Yi(1), Yi(0)) ⊥⊥ {(SCj
, Xj,Wj)}Nj=1|Xi,Wi, Ui (1.9)

Proof. Because SCi
is a function of PCi

the result follows from Lemma A1.

Lemma A3. (Sufficiency in exponential families) Under Assumptions 3.1 and 3.4 the

following holds:

Ui ⊥⊥ {Wj, Xj}Nj=1|SCi
(1.10)

Proof. The proof is exactly the same as in Lemma A2 with SCi
used instead of PCi

. The fourth

equality now holds directly by the exponential family assumption.

Proof of Theorem 1: The same as for Proposition 1, use Corollary A1 and Lemma A3 instead

of Lemmas A1 and A2. �
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Corollary A2. For any function f such that E[|f(Y (k))|] <∞ the following is true:

E[f(Yi)|{Wj, Xj, SCj
}Nj=1] =

{Wi = 0}E[f(Yi(0))|Xi, SCi
] + {Wi = 1}E[f(Yi(1))|Xi, SCi

] (1.11)

Proof. The proof follows from the following equalities:

E[f(Yi)|{Wj, Xj, SCj
}Nj=1] = E[E[f(Yi)|{Wj, Xj, SCj

}Nj=1, Ui]|{Wj, Xj, SCj
}Nj=1] =

E[E[f(Yi)|Wi, Xi, Ui]|{Wj, Xj, SCj
}Nj=1] = E[f(Yi)|Wi, Xi, SCi

] =

{Wi = 0}E[f(Yi(0))|Xi, SCi
] + {Wi = 1}E[f(Yi(1))|Xi, SCi

] (1.12)

where the third equality follows from Corollary A1, the fourth from Lemma A3 and the final

one from Proposition 1.

B Inference results

Notation: We are using standard notation from the empirical processes literature adapted to

our setting. For any cluster-level random vector Xc: Pn(Xc) ≡ 1
n

∑n
c=1Xc and Gn(Xc) ≡

√
n (Pn(Xc)− E[Xc]). Define Bi = (Xi, SCi

) and Di ≡ (Wi, Bi).

We start with a reminder on notation:

µ(Di) ≡ E[Yi|Di]

e(Bi) ≡ E[Wi|Bi]

ε(k) ≡ Yi(k)− µ(k,Bi)

ψ(y, w, x, s, µ(·), e(·)) ≡ µ(1, x, s)− µ(0, x, s) +
(

w
e(x,s)

− 1−w
1−e(x,s)

)
(y − µ(w, x, s))

ρ(c, µ(·), e(·)) ≡ 1
|c|
∑

i:Ci=c
{Ai}ψ(Yi,Wi, Xi, SCi

, µ(Wi, Xi, SCi
), e(Xi, SCi

))

ξc ≡
∑

i∈c
1
Nc
{Ai}

(
Wi

e(Xi,SCi
)
− 1−Wi

1−e(Xi,SCi
)

)
(Yi − µ(Wi, Xi, SCi

))

(2.1)

In order to prove Theorem 2 we consider a more general case that allows for misspecification.
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First we prove Lemma B4 which states that we get identification if either the propensity score

or the conditional mean is potentially misspecified. Then we prove Proposition B1 which is a

general consistency result under possible misspecification. Theorem 2 follows as a special case.

After that we prove Theorem 3 and Proposition 2. Finally, all results below are proved assuming

that Nc = |c| is the same in all clusters. If this is not the case then, one can group the clusters

of the same size and redo the analysis separately for each group. This approach is valid if the

number of clusters of the same size grows linearly with the number of sampled clusters.

Lemma B4. Assume that at least one of the following statements is true:µ̃(Wi, Xi, SCi
) = µ(Wi, Xi, SCi

)

ẽ(Xi, SCi
) = e(Xi, SCi

)

(2.2)

If the assumptions of Theorem 1 hold then we have the following result:

E[ρ(c, m̃, ẽ)] = E

[∑
i∈c

1

|c|
{Ai}τ(Bi)

]
(2.3)

where τ(Bi) := µ(1, Bi)− µ(0, Bi).

Proof. By construction we have the following:

E[ρ(c, µ̃, ẽ)] = E

[∑
i∈c

1

|c|
{Ai}

(
µ̃(1, Bi)− µ̃(0, Bi) +

(
Wi

ẽ(Bi)
− 1−Wi

1− ẽ(Bi)

)
(Yi − µ̃(Di))

)]
=

E

[∑
i∈c

1

|c|
{Ai}(µ̃(1, Bi)− µ̃(0, Bi))

]
+
∑
i∈c

1

|c|
E
[
{Ai}

(
Wi

ẽ(Bi)
− 1−Wi

1− ẽ(Bi)

)
(Yi − µ̃(Di))

]
(2.4)
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For the second part we have the following (using unconfoundedness):

E
[
{Ai}

(
Wi

ẽ(Bi)
− 1−Wi

1− ẽ(Bi)

)
(Yi − µ̃(Di))

]
=

E
[
E
[
{Ai}

(
Wi

ẽ(Bi)
− 1−Wi

1− e(B̃i)

)
(Yi − µ̃(Di))|Bi

]]
=

E
[
{Ai}

(
e(Bi) (µ(1, Bi)− µ̃(1, Bi))

ẽ(Bi)
− (1− e(Bi) (µ(0, Bi)− µ̃(0, Bi))

1− ẽ(Bi)

)]
(2.5)

This implies that if either µ̃(Di) = µ(Di) or ẽ(Bi) = e(Bi) then E[ρ(c, m̃, ẽ)] = E
[∑

i∈c
1
|c|{Ai}τ(Bi)

]
.

Proposition B1. (Consistency with wrong specifications) Assume that the following

conditions hold for (ˆ̃e, ˆ̃µ):



Pn
(∑

i∈c
1
|c|{Ai}

(
ˆ̃µ(1, Bi)− µ̃(1, Bi)

)2)
= op(1)

Pn
(∑

i∈c
1
|c|{Ai}

(
ˆ̃e(Bi)− ẽ(Bi)

)2)
= op(1)

η < ẽ(Bi) < 1− η a.s.

η < ˆ̃e(Bi) < 1− η a.s.

E[ε̃2i (k)] <∞

(2.6)

where ε̃i(k) : Yi(k)− µ̃(k,Bi). Additionally assume that the conditions of Lemma B4 hold. Then

we have the following:

Pnρ(c, µ̃, ẽ) = Pnρ(c, µ̃, ẽ) + op(1) = E[ρ(c, µ̃, ẽ)] + op(1) (2.7)

Proof. To prove the consistency result we need to separate the functional into two parts:

ρ(c, µ̃, ẽ) =
∑
i∈c

1

|c|
{Ai}

(
µ̃(1, Bi) +

Wi

ẽ(Bi)
(Yi − µ̃(1, Bi))

)
−

∑
i∈c

1

|c|
{Ai}

(
µ̃(0, Bi) +

1−Wi

1− ẽ(Bi)
(Yi − µ̃(0, Bi))

)
= ρ1(c, µ̃, ẽ)− ρ0(c, µ̃, ẽ) (2.8)
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In what follows we are working only with the first part of the functional, the second can be

analyzed in the exactly the same way. Define the empirical version:

ρ1(c, ˆ̃µ, ˆ̃e) ≡
∑
i∈c

1

|c|
{Ai}

(
ˆ̃µ(1, Bi) +

Wi

ˆ̃e(Bi)
(Yi − ˆ̃µ(1, Bi))

)
(2.9)

We can decompose this expression into three parts:

ρ1(c, ˆ̃µ, ˆ̃e) =
∑
i∈c

1

|c|
{Ai}

(
µ̃(1, Bi) +

Wi

ẽ(Bi)
(Yi − µ̃(1, Bi))

)
+

+
∑
i∈c

1

|c|
{Ai}

((
ˆ̃µ(1, Bi)− µ̃(1, Bi)

)(
1− Wi

ˆ̃e(Bi)

))
+

∑
i∈c

1

|c|
{Ai}(Yi − µ̃(1, Bi))Wi

(
1

ˆ̃e(Bi)
− 1

ẽ(Bi)

)
= ρ1(c, µ̃, ẽ) + R1c + R2c (2.10)

The result will follow once we prove two approximations:PnR1c = op (1)

PnR2c = op (1)

(2.11)

We start with the second one. Observe that we have the following:

|PnR2c| ≤ Pn|R2c| ≤ Pn
∑
i∈c

1

|c|
{Ai}|ε̃i(1)|

(
{Ai}Wi

ẽ(Bi)ˆ̃e(Bi)

)
{Ai}

∣∣∣ẽ(Bi)− ˆ̃e(Bi)
∣∣∣ ≤

max
i

(
{Ai}Wi

ẽ(Bi)ˆ̃e(Bi)

)√
Pn
∑
i∈c

1

|c|
{Ai}ε̃2i (1)

√
Pn
∑
i∈c

1

|c|
{Ai}

(
ẽ(Bi)− ˆ̃e(Bi)

)2
=

Op(1)
√
Op(1)

√
op(1) = op(1) (2.12)
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For the first term we have the following:

R1c =
∑
i∈c

1

|c|
{Ai}

((
ˆ̃µ(1, Bi)− µ̃(1, Bi)

)(
1− Wi

ˆ̃e(Bi)

))
=

∑
i∈c

1

|c|
{Ai}

((
ˆ̃µ(1, Bi)− µ̃(1, Bi)

)(
1− Wi

ẽ(Bi)

))
+

∑
i∈c

1

|c|
{Ai}

((
ˆ̃µ(1, Bi)− µ̃(1, Bi)

)
Wi

(
ˆ̃e(Bi)− ẽ(Bi)

ẽ(Bi)ˆ̃e(Bi)

))
= R11c + R12c (2.13)

The first part can be bounded in the following way:

|PnR11c| ≤ Pn |R11c| ≤

max
i

∣∣∣∣{Ai}(Wi − ẽ(Bi))

ẽ(Bi)

∣∣∣∣×
√√√√Pn

(∑
i∈c

1

|c|
{Ai}

(
ˆ̃m(1, Bi)− µ̃(1, Bi)

)2)
=

Op(1) × op (1) = op (1) (2.14)

The second part can be bounded in the following way:

|PnR12c| ≤ Pn |R12c| ≤ max
i

(
{Ai}Wi

ẽ(Bi)ˆ̃e(Bi)

)
×√√√√Pn

(∑
i∈c

1

|c|
{Ai}

(
ˆ̃µ(1, Bi)− µ̃(1, Bi)

)2)√√√√Pn

(∑
i∈c

1

|c|
{Ai}

(
ˆ̃e(Bi)− ẽ(Bi)

)2)
=

Op(1) × op (1) op (1) = op (1) (2.15)

Combining all the results together we have the proof.

Proof of Theorem 2: Observe that ê and µ̂ satisfy the assumptions of Proposition B1 with

µ̃ and ẽ equal to m and e. As a result, combining Proposition B1 and Lemma B4 we get the
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following:

1

π̂(A)
Pnρ(c, µ̂, ê) =

1

π̂(A)
(E[ρ(c, µ, e)] + op(1)) =(

1

π(A)
+ op(1)

)
(E[ρ(c, µ, e)] + op(1)) =

1

π(A)
E[ρ(c, µ, e)] + op(1) =

1

π(A)
E[{Ai}τ(Xi, SCi

)] + op(1) (2.16)

Proof of Theorem 3: The start of the argument is the same as in proof for the consistency

result. We decompose the empirical version of ρ1(c, m̂, ê):

ρ1(c, m̂, ẽ)−
∑
i∈c

1

|c|
{Ai}µ(1, Bi) =

∑
i∈c

1

|c|
{Ai}

(
Wi

e(Bi)
(Yi − µ(1, Bi))

)
+

+
∑
i∈c

1

|c|
{Ai}

(
(µ̂(1, Bi)− µ(1, Bi))

(
1− Wi

ê(Bi)

))
+

∑
i∈c

1

|c|
{Ai}(Yi − µ(1, Bi))Wi

(
1

ê(Bi)
− 1

e(Bi)

)
= ξ1c + R1c + R2c (2.17)

The result will follow once we prove the following:PnR1c = op

(
1√
n

)
PnR2c = op

(
1√
n

) (2.18)

In exactly the same way as before we can decompose R1c into R11c and R12c. For R12c we have

the following:

|PnR12c| ≤ Pn |R12c| ≤ max
i

(
{Ai}Wi

e(Bi)ê(Bi)

)
×√√√√Pn

(∑
i∈c

1

|c|
{Ai} (µ̂(1, Bi)− µ(1, Bi))

2

)√√√√Pn

(∑
i∈c

1

|c|
{Ai} (ê(Bi)− e(Bi))

2

)
=

Op(1) × op
(

1√
n

)
= op

(
1√
n

)
(2.19)
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For R11c we use the following argument:

E
[
(PnR11c)

2] = E

∑
l∈L

∑
c:l(c)=l

1

n

∑
i∈c

1

|c|
(
µ̂−l(c)(1, Bi)− µ(1, Bi)

)(
1− Wi

e(Bi)

)2 ≤
|L|
∑
l∈L

E

 ∑
c:l(c)=l

1

n

∑
i∈c

1

|c|
(
µ̂−l(c)(1, Bi)− µ(1, Bi)

)(
1− Wi

e(Bi)

)2 =

|L|
∑
l∈L

∑
c:l(c)=l

1

n
E

 1

n

(∑
i∈c

1

|c|
(
µ̂−l(c)(1, Bi)− µ(1, Bi)

)(
1− Wi

e(Bi)

))2
 ≤

|L|
∑
l∈L

∑
c:l(c)=l

1

n
E

[
1

n

∑
i∈c

1

|c|

((
µ̂−l(c)(1, Bi)− µ(1, Bi)

)(
1− Wi

e(Bi)

))2
]

=

|L|
∑
l∈L

∑
c:l(c)=l

1

n
E

[
1

n

∑
i∈c

1

|c|

((
µ̂−l(c)(1, Bi)− µ(1, Bi)

)2(e(Bi)(1− e(Bi)

e2(Bi)

))]
≤

K
1

n
E

[
Pn

(∑
i∈c

1

|c|
(
µ̂−l(c)(1, Bi)− µ(1, Bi)

)2)]
(2.20)

Using this we get the following:

E [|PnR11c|] ≤
√

E
[
(PnR11c)

2] ≤
K√
n
E

[
Pn

(∑
i∈c

1

|c|
(
µ̂−l(c)(1, Bi)− µ(1, Bi)

)2)]
= o

(
1√
n

)
(2.21)

This implies (by Markov’s inequality) that PnR11c = op

(
1√
n

)

E[R2
2c|{Di}Ni=1] ≤

∑
i∈c

1

|c|
E[ε2i |Di]

(
{Ai}Wi

e2(Bi)ê2(Bi)

)
{Ai} (e(Bi)− ê(Bi))

2 ≤

max
i

(
{Ai}E[ε2i |Di]Wi

e2(Bi)ê(Bi)

)∑
i∈c

1

|c|
{Ai} (e(Bi)− ê(Bi))

2 (2.22)

We also have the following:

E[R2c|{Di}Ni=1] = 0 (2.23)
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Using these two things we get the following:

E[(PnR2c)
2 |{Di}Ni=1] ≤ max

i

(
{Ai}E[ε2i |Di]Wi

e2(Bi)ê(Bi)

)
×

1

n
Pn
∑
i∈c

1

|c|
{Ai} (e(Bi)− ê(Bi))

2 ≤ K × op
(

1

n

)
= op

(
1

n

)
(2.24)

This implies that E[(PnR2c)
2] = o

(
1
n

)
(because (ê−e)2 is bounded by 1) and thus R2c = op

(
1√
n

)
.

Proof of Proposition 2: Similarly to all other proofs we can divide ξc into two parts ξ1c and

ξ0c. We will analyze ξ1c, analysis for ξ0c is the same. We have the following decomposition:

ξ̂1c − ξ1c =
∑
i∈c

1

|c|
{Ai}

(
(µ(1, Bi)− µ̂(1, Bi))

Wi

ê(Bi)

)
+

∑
i∈c

1

|c|
{Ai}(Yi − µ(1, Bi))Wi

(
1

ê(Bi)
− 1

e(Bi)

)
= R11c + R12c (2.25)

For the first term we have the following bound:

PnR2
11c ≤ Pn

1

c

∑
i∈c

{Ai}
(

(µ(1, Bi)− µ̂(1, Bi))
2 Wi

ê2(Bi)

)
≤

(
max
i

{Ai}Wi

ê2(Bi)

)
× Pn

(
1

c

∑
i∈c

{Ai} (µ(1, Bi)− µ̂(1, Bi))
2

)
= Op(1)op(1) = op(1) (2.26)

For the second term we have the following bound:

PnR2
12c ≤ Pn

1

c

∑
i∈c

{Ai}{Wi}ε2i (1)
(ê(Bi)− e(Bi))

2

ê2(Bi)e2(Bi)
≤√√√√(Pn1

c

∑
i∈c

{Ai}
{Ai}(ê(Bi)− e(Bi))4

ê4(Bi)e4(Bi)

)(
Pn

1

c

∑
i∈c

{Ai}{Wi}ε4i (1)

)
≤

K

√√√√(Pn1

c

∑
i∈c

{Ai}(ê(Bi)− e(Bi))2

)(
Pn

1

c

∑
i∈c

{Ai}{Wi}ε4i (1)

)
=

op(1)Op(1) = op(1) (2.27)

30



Putting these results together we have the following:

Pn(ξ̂1c + ξ̂2c)
2−Pn(ξ1c + ξ2c)

2 = Pn(ξ1c + ξ2c +R11c +R12c +R01c +R02c)
2−Pn(ξ1c + ξ2c)

2 =

Pn(ξ1c + ξ2c)(R11c +R12c +R01c +R02c) + Pn(R11c +R12c +R01c +R02c)
2 ≤√

Pn(ξ1c + ξ2c)24Pn(R2
11c +R2

12c +R2
01c +R2

02c) + Pn(R2
11c +R2

12c +R2
01c +R2

02c) =√
Op(1)op(1) + op(1) = op(1) (2.28)

This argument also implies that Pn(ξ̂1c) = Pn(ξ1c) = op(1) and thus we have the final result:

1

π̂2(A)

(
Pn(ξ̂1c + ξ̂2c)

2 −
(
Pn(ξ̂1c + ξ̂2c)

)2)
− 1

π2(A)
Pn(ξ1c + ξ2c)

2 =

1

π̂2(A)

(
Pn(ξ̂1c + ξ̂2c)

2 − Pn(ξ1c + ξ2c)
2
)

+

(
1

π̂2(A)
− 1

π2(A)

)
Pn(ξ1c + ξ2c)

2 +Op(1)op(1) =

Op(1)op(1) + op(1)Op(1) + Op(1)op(1) = op(1) (2.29)
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