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1 Introduction

I propose a new nonlinear model for causal inference in the frameworks where researchers observe

individual-level data for few large clusters over at least two time periods. The proposed model is

flexible enough to handle multiple outcome variables, multidimensional heterogeneity, and mul-

tiple clusters. It allows for identification (sometimes partial) of the counterfactual distribution,

in particular, identifying average treatment effects and quantile treatment effects. The model

applies to the settings where the new policy is introduced in some of the clusters (and applies to

everybody in the cluster), and a researcher additionally has information about the pretreatment

periods.

As a motivating example, consider two schools and assume there is a policy intervention in

one of the schools (e.g., change in the curriculum). There are two different sources of the bias

that we need to address to make causal statements. The first one is the familiar selection bias:

different schools attract students that are different regarding their underlying ability. The second

one is the technological bias: different schools use different “production functions”, and thus even

students with the same skills might have different outcomes if assigned to a different school. These

differences in production functions can arise due to various reasons: schools can be different in

terms of teachers’ qualifications, class sizes, curriculum or general specialization. Athey and

Imbens [2006] propose a particular nonparametric strategy for dealing with the selection bias

using pretreatment information. In their model subjects in two clusters are different regarding

their unobservable characteristic which is assumed to be fixed over time. One way to interpret

their identification strategy is to say that the pretreatment outcomes should be used to control for

the underlying heterogeneity.1 This approach is explicitly based on the assumption that there are

no structural differences between clusters. In the school example described above it is reasonable

to expect that the technological bias is present. If this is the case, then the identification strategy

is no longer valid.

In this paper, I deal with both technological and selection biases. I assume that the clusters

are different regarding the distributions of underlying unobservables. Instead of using pretreat-

ment outcomes to control for this heterogeneity I employ standard techniques, e.g., randomized

assignment, covariates or instruments, to deal with it. At the same time, I explicitly allow clus-

ters to be structurally different. Technological bias can be handled if the production functions

1This is a conceptual interpretation, one of the central results of the paper is identification in the repeated
sampling case, where we observe only the marginal distribution of the pretreatment outcomes.
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do not change much over time. I focus on the case when the technology is fixed. With this

structure, it is natural to restrict attention to situations in which only two periods are observed,

and this is the case that I analyze in the paper. With more periods we can either test that the

technology does not change or explicitly model the way it evolves. I view this as a separate

question and leave it to future research.

I focus on the situations with few large clusters. In this case, even if the treated clusters

are randomly selected we cannot expect the average technological difference between treated

and control clusters to be small. As a result, I need to assume that the production functions

satisfy specific structural properties. I am trying to find a middle ground by imposing restrictions

that are practical and can be motivated by general economic intuition. While not universally

applicable, they can serve as an approximation that applied researchers can use either as a first

part of the analysis or in the absence of a better model.

This strategy relies heavily on the assumption that the underlying heterogeneity is one-

dimensional. In this case, identification can be achieved using monotonicity restrictions. In the

school example discussed above it can be motivated in the following way: assume that we take a

top student in one of the schools and reassign her to the second school. If schools are similar, then

it is natural to expect that the student will still be at the top of the class. I impose a stronger

form of this restriction, making production functions in two clusters strictly co-monotone (rank

invariant) with respect to some underlying order on the unobservables. Monotonicity restrictions

are often used in the identification literature. Two papers that are particularly relevant to my

work are Matzkin [2003] and Altonji and Matzkin [2005]. The main difference is that I do not

focus on identification of the production function (which can be non-identified in my setup);

instead, I use structural properties to connect outcomes in two clusters and explicitly address

the technological bias. Identification results in the one-dimensional model can be interpreted in

terms of optimal transportation theory. The problem of optimal transportation of measure has

a long history in mathematics (see Villani [2008]) and recently attracted considerable attention

in economics (see Galichon [2016] for particular applications) and statistics (see Chernozhukov

et al. [2017] and Carlier et al. [2016]). This theory is crucial in my work because it paves the

way for dealing with multidimensional heterogeneity.

In many cases, it appears unlikely that all the relevant differences between units can be cap-

tured by a single unobserved random variable. At the same time, one-dimensional heterogeneity

cannot be rejected by the data in the framework with two clusters, two periods and a single

2



outcome variable. To address this, I assume that more than one outcome variable is observed.

This assumption is motivated by the empirical work, where researchers frequently have data on

multiple outcome variables. Multiple outcomes allow me to check the validity of the previously

described model. In particular, I develop a new, consistent test for one-dimensional heterogeneity.

The null hypothesis states that a distinct one-dimensional model generates each of the observed

outcomes. Rejection of this hypothesis implies that variables should be analyzed jointly, rather

than separately.

Presence of multidimensional heterogeneity considerably complicates the identification strat-

egy. I propose three different approaches. The first method is based on the low-level structural

restrictions on production functions. I assume that the relationship between unobservables and

outcomes can be identified as an optimal transportation mapping. This idea was previously used

in a different context by Chernozhukov et al. [2014]. I show that this approach leads to identifica-

tion only under very restrictive informational assumptions on the distribution of unobservables.

This is not the case in the one-dimensional model, where we can be utterly ignorant about these

distributions.

The second approach is based on a generalization of the order restrictions that were used in the

one-dimensional case. I prove that such restrictions imply a triangular structure of the produc-

tion function. This leads to the identification strategy using Knothe-Rosenblatt transportation

map (see Chapter 2 of Santambrogio [2015] for definition). This identification technique was

previously used in the nonlinear IV context in Imbens and Newey [2009]. In my case, production

function itself is not identified, but we can still construct a counterfactual distribution. The key

requirement for this approach to be applicable is that the researcher needs to select a fixed order

on the outcomes. In the applications where there is no information about this order, it does not

lead to exact identification.

My last strategy puts explicit high-level restrictions on the relationship between two clusters.

These constraints generalize the one-dimensional ones but are arguably less intuitive. The main

advantage of this approach is that the counterfactual distribution is identified using a well-defined

extremal program: optimal transportation problem with quadratic costs. This result implies that

the solution satisfies natural properties that make it reasonable in practice.

I consider several extensions of the basic model. These extensions are developed in the

context of one-dimensional heterogeneity. The first extension deals with outcomes with a discrete

component in the distribution. I show that in this case counterfactual distribution is partially
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identified. The second extension deals with multiple clusters. I demonstrate that in this case

identification can be achieved under weaker assumptions using a particular matching algorithm.

Finally, I apply the developed methods to a particular empirical study. I use data from

Engelhardt and Gruber [2011]. One of the questions addressed in this paper is the size of

the effect that introduction of Medicare Part D had on the out-of-pocket spending. I use my

methodology to estimate this effect and get qualitatively similar but more conservative results.

This paper is the first one to explicitly address both technological and selection biases in

the diff-in-diff framework both with single and multi-dimensional heterogeneity. My results can

be used on the conceptual level, emphasizing the importance of two types of biases and on the

practical level, providing a flexible strategy to deal with these issues. I view this as my main

contribution to the literature. I also develop new statistical results. For the one-dimensional case,

I prove uniform consistency and convergence of the relevant transportation maps, generalizing

previously available results. This allows me to construct a powerful test in the case with multiple

clusters. This test has a non-pivotal asymptotic distribution, and I show that its distribution

can be approximated using a bootstrap-type procedure.

Notation

For any Ω ⊆ Rn, B(Ω) is a Borel σ-algebra on Ω (topology induced by Rn). For any measure µ

on (Ω,B(Ω)) and function h : Ω → R the expectation with respect to this measure is denoted

by Eµ[h(X)]. I drop the subscript if the measure naturally follows from the context. For any

measurable map T , T#µ denotes the image measure (pushforward) of µ. λ(Ω) is used for the

Lebesgue measure on Ω. For any random vectors X and Z, µX is used for the distribution of X

(image measure), σ(X) for the generating σ-algebra and µZ|X for the conditional distribution. For

a scalar random variable X and any random element Z, FX|Z denotes a conditional distribution

function of X given Z and F−1
X|Z denotes a conditional quantile function.2 For any random

variables (X, Y, Z) I write X ⊥ Y |Z when X and Y are independent conditionally on Z.

P2(Ω) is a set of measures such that Eµ[‖X‖2] < ∞ for any µ ∈ P2(Ω). Cb(Ω) is the vector

space of bounded continuous real-valued functions on Ω endowed with the sup-norm; Ck,α(Ω) is a

set of k-differentiable functions with α-Hőlder continuous derivatives. For any Ω and p ∈ [1,∞]

I denote the Wasserstein space with Lp cost function by Wp(Ω) (see Santambrogio [2015] for

definition of this space).

2Conditional distributions and measures are well-defined, because I work in Rn.
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‖ · ‖p is used for Lp-type norm (p = ∞ corresponds to sup-norm). For vectors x, y ∈ Rn

(x, y) =
∑n

j=1 xiyi – the standard dot product on Rn. For any function ψ : Ω → R ∪ {+∞}
Legendre-Fenchel transform of ψ is defined in the following way ψ?(y) = supx∈Ω{(x, y)− ψ(x)}.
For any product space ×Kk=1Ωk πk denotes the projection on k-th coordinate. {A} is the indicator

function for the event A. For any function f : A→ B restriction of f to a set C ⊂ A is denoted

by f|C .

For any function f : X → R and a random sample {Xi}ni=1 ∈ X n with a distribution P define

Pnf :=
∑n

i=1 f(Xi), and Gnf :=
√
n (Pnf − Pf).3 For a sequence of random elements {Xn}∞n=1

I use Xn
w?−→ X to denote weak?-convergence.4

2 2× 2 model

2.1 Setup

There are two periods t = 1, 2 and two clusters c = 1, 2. We are interested in the causal effect of

a policy variable w ∈ {0, 1}. In the period t potential outcomes in cluster c with policy variable

equal to w have the following form:

Yt(w, c) = h(w, c, νt) (2.1)

where νt ∈ V is an unobservable random element on (V, σ, µνt) and h : {0, 1}2 × V → R is a

real-valued function. The goal is to construct a counterfactual distribution Y2(0, 1) and estimate

a causal effect, e.g., the average treatment effect:

τ := Eµν2 [Y2(1, 1)− Y2(0, 1)] (2.2)

or the quantile treatment effect:

τ(q) := Y −1
2 (1, 1)(q)− Y −1

2 (0, 1)(q) (2.3)

The form (2.1) places a restrictions on the potential outcomes. In particular, it assumes that

the production function h does not explicitly depend on time, assigning all time variation to the

differences in νt. This is the key element of the setup that connects two periods. At the same

3I use P instead of E for the statistical analysis in order to be consistent with the standard notation used in
the empirical processes literature.

4Whenever measurability issues can arise this should be understood in terms of convergence of outer expecta-
tions.
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time, h explicitly depends on c, implying that the technology is different between clusters. The

following examples suggest particular empirical situations in which this structure makes sense.

Example 2.1.1. (Cohort Analysis) Clusters are two schools; time periods correspond to

different cohorts of students. The outcome variable is a success metric (e.g., SAT score). Policy

corresponds to a change in the curriculum in the first school that affects the second cohort of

students. Different schools might teach the same students differently and thus h(w, c, ·) explicitly

depends on c. Cohorts are likely to have a different distribution of νt (underlying ability).

Function h does not explicitly depend on time, meaning that in the absence of treatment schools

do not change the way they teach.

Example 2.1.2. (Mobile applications) Clusters are two different mobile platforms, and t

are two different time periods. In both applications, we observe user-level data, and the outcome

is a success metric (installs, rides, payments). Treatment variable corresponds to a marketing

campaign. Applications themselves do not change (technologically) over t, so that function h

does not depend on t explicitly. νt represents some latent engagement level that has a different

distribution in two time periods.

Example 2.1.3. (Medicare example) We observe two time periods and the policy change

(expansion of Medicare) happens in the second period. Clusters are defined in terms of eligi-

bility for Medicare: Ct := {subject is eligible for Medicare in period t}. Outcome variables are

different types of medical expenditures. We assume that people are different in their underlying

level of health and preferences for treatment νt. The main assumption is that the policy does

not change the market environment for non-eligible subjects.

In applications, we can have three types of data. We can either observe the same population

over two periods as in Example 2.1.2, two separate populations (cohorts) as in Example 2.1.1

or a mixed case as in Example 2.1.3. In the main text of the paper, I assume that we observe

two different populations. I describe the case with a single population observed over time in

Appendix A. Identification strategy in the single-population case is conceptually similar, but the

underlying assumptions are different and are related to the evolution of unobservables over time.

I assume that the cluster assignment Ct is a measurable function of νt, Wt = {Ct = 1}{t = 2}
(diff-in-diff setup) and observable outcomes Yt are generated in the following way:

Yt = Yt(Wt, Ct) (2.4)
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Given µνt this construction defines a distribution µ(Yt,Ct,Wt) on (R× {0, 1}2,B(R× {0, 1}2)). In

the identification part of the paper these distributions are assumed to be known. By definition

µY1(0,c)|Ct=c = µY1|C1=c, µY2(0,2)|C2=2 = µY2|C2=2 and µY2(1,2)|C2=1 = µY2|C2=1. I will use this notation

interchangeably.

2.2 Discussion of the identification strategy

The primary goal of the paper is to construct a counterfactual distribution of Y2(0, 1) from the

observable random variables. There are two sources of differences that should be addressed with

this construction. The first difference corresponds to the fact that generally µνt|Ct=1 6= µνt|Ct=2.

This is a manifestation of the selection bias: different units select themselves into different

clusters. The second difference arises from the fact that h(w, c, νt) explicitly depends on c and

corresponds to the technological bias: even in the absence of selection, the same individuals will

have different outcomes in different clusters.

These two problems require different approaches. The selection issue is a classical one, and

there are many strategies available to cope with it, with the most notable ones based on random

experiments, unconfoundedness assumptions, and instrumental variables. The second problem

is structural since it requires comparing variables that are inherently distinct. As a result, we

need conceptually different assumptions that would allow us to connect outcomes between the

clusters. These assumptions are more controversial than those that address the selection problem

because there is no perfect benchmark in this case (randomized experiments cannot solve this

problem).

My approach to identification in this setup is the following: I will assume that the selection

issue can be dealt with by the standard methods (experiments, covariates or instruments) and

will focus on the technological problem. This approach should be contrasted with the existent

identification diff-in-diff literature (e.g., Athey and Imbens [2006]) that uses the pretreatment

periods to address the selection problem.

2.3 Identification: independent case

I start with an assumption that for t = 1, 2 νt and Ct are independent. This assumption is

justified if the subjects were randomly assigned into clusters (due to either controlled or natural

experiment). In practice we rarely expect this to hold exactly, but it is a useful starting point.
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Assumption 2.3.1. (Independent selection) For t = 1, 2 unobservables are not affected by

the selection process:

µνt|Ct=1 = µνt|Ct=2 = µνt (2.5)

This assumption effectively assumes away the selection problem, allowing me to focus on the

technological differences between the clusters. I relax this hypothesis in the next subsection,

allowing for the selection bias. The main consequence of this assumption is summarized in the

following lemma:

Lemma 2.1. (Identification of potenital outcomes) Under Assumption 2.3.1 the dis-

tributions µY1(0,1), µY1(0,2), µY2(0,2), and µY2(1,1) are identified.

Proof. By construction Y1(0, 1) = h(0, 1, ν1) and since by assumption µν1|C1 = µν1 we have that

µY1(0,c) = µY1(0,C1)|C1=1. The same logic works for the other three distributions.

As a next step, I fix several properties of h and V that pin down the relationship between

different clusters. The first assumption restricts the way unobservables and observables are

related:

Assumption 2.3.2. (univariance) For any (w, c) function h(w, c, ·) : V → R is a bijection.

While being a standard assumption in the identification literature, the univariance is very

restrictive from a theoretical viewpoint. It implies that the heterogeneity is one-dimensional. If

only a single outcome is observed then this is non-testable (cannot be rejected by any data), but

it does not make it more plausible.

The next assumption restricts the measures µν1 and µν2 :

Assumption 2.3.3. (Overlap) Measure µν2 is absolutely continuous with respect to µν1.

This assumption connects the unobservables in both periods within the cluster. It is essential

if we want to achieve full identification. Intuitively the assumption means that in both periods

we observe the same units in terms of ν. What is different is the number (measure) of subjects

with a particular value of ν. This assumption can be restrictive in specific applications, where

we expect ν to increase over time. In this case, it can be relaxed leading to partial identification

results.

With Assumptions 2.3.2 and 2.3.3 we can state the following straightforward result:

8



Lemma 2.2. Let Assumptions 2.3.2 and 2.3.3 be satisfied. Then for any (w, c) distribution

µY2(w,c) is absolutely continuous with respect to µY1(w,c).

Proof. Due to univariance, for any measurable At we have the equality {Yt(w, c) ∈ At} = {νt ∈
h−1(w, c)(At)}. Then the overlap assumption implies the result.

If Assumptions 2.3.1 and 2.3.2 are satisfied then this lemma implies that overlap is testable.

This is natural and important from a practical point of view: if in the second period we observe

outcomes that we have never seen before, then we should be particularly cautious.

Finally, I make the structural assumption that connects outcomes in different clusters:

Assumption 2.3.4. (Monotonicity) There exists a linear order % on V such that for any

x, y ∈ V , x � y implies either h(0, c, x) > h(0, c, y) for c = 1, 2 or h(0, c, x) < h(0, c, y) for

c = 1, 2.

Again, this is a standard assumption made in the identification literature. Typically, it is

stated in a more restrictive form, where V is set to be [0, 1] and the functions are required to be

strictly monotonic (increasing). In my case, this is excessive because I do not need to identify

function h. The assumption implies that there is an order on observables such that both clusters

behave similarly with respect to this order. This is a structural assumption that connects two

clusters.

Monotonicity is non-testable (since we never observe the same unit in both clusters) but we

would not expect it to hold exactly. Its validity depends on the application at hand. E.g., in

the school example, we expect it to be satisfied, at least approximately, if both schools have a

similar specialty. At the same time, if we are comparing the performance of students from MIT

to those from Juilliard, then monotonicity is unreasonable.

Univariance and monotonicity imply the following restriction.

Lemma 2.3. Let Assumptions 2.3.4, 2.3.2 be satisfied, then the function γ? := h(0, 1, ·) ◦
h−1(0, 2, ·) : R→ R is strictly monotone.

Proof. Monotonicity and univariance implies that for any x 6= y we have the following inequality

(h(0, 1, x)− h(0, 1, y))(h(0, 2, x)− h(0, 2, y)) > 0 which implies the statement.

Assumption 2.3.5. (No atoms) For t = 1, 2 and c = 1, 2 distributions µYt|Ct=c are absolutely

continuous with respect to Lebesgue measure on R.
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This assumption restricts the applications of the model to the cases with absolutely continuous

outcomes. Discrete outcomes can be included assuming that h(0, c, ·) is weakly increasing, leading

to partial identification results. I analyze this extension in Section 4.

Combining all the assumptions and lemmas we get the following identification result:

Proposition 2.1. (Identification under independence) Let Assumptions 2.3.1, 2.3.2,

2.3.3 2.3.4 and 2.3.5 hold. Then the counterfactual distribution of µY2(0,1)|C2=1 is identified:

µY2(0,1)|C2=1 = γ#µY2(0,2)|C2=2, where γ = F−1
Y1|C1=1 ◦ FY1|C1=2.

Proof. Assumptions 2.3.1,2.3.2, 2.3.4 imply that the function γ? := h(0, 1, ·) ◦ h−1(0, 2, ·) is a

transportation map between µYt(0,2) and µYt(0,1). Lemma 2.3 implies that the function γ? is

strictly monotone. General results from optimal transportation (see Santambrogio [2015]) then

imply that under Assumption 2.3.5 (γ?)|A = F−1
Y1(0,1) ◦FY1(0,2), where A is the support of µY1|C1=1.

Assumption 2.3.3 then implies that γ := (γ?)|A is a valid transportation map from µY2(0,2) to

µY2(0,1).

Remark 2.3.1. Observe that the function γ? is not identified, only its restriction to the support

of µY1(0,2) is. If Assumption 2.3.3 does not hold then we can map only absolutely continuous part

of µY2(0,2) achieving partial identification.

The proposition implies that Yt(0, 1) ∼ γ(Yt(0, 2)) and thus using function γ we can construct

the counterfactual outcome in the second period and estimate the causal effects, e.g., the average

treatment effect:

τ = E[Y2|C2 = 1]− E[γ(Y2)|C2 = 0] (2.6)

This construction and the restrictions it implies are shown in the following simple example.

Example 2.3.1. (Normal outcomes) Let µY1(0,c) = N (mc, σ
2
c ). Normalizing ν1 = λ([0, 1])

and assuming strict monotonicity we have the following expression for function h: h(0, c, νt) =

σcΦ
−1(νt) +mc, where Φ−1 is the quantile function of the standard normal distribution.

In this case he function γ has the following form:

γ(x) = m1 +
σ1

σ2

(x−m2) (2.7)

The relationship (2.7) generalizes the linear diff-in-diff type approach. In fact, if σ1 = σ2 then

we have the standard diff-in-diff identification.
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2.3.1 Discussion

Using quantile-quantile methods for identification is not new, the same approach was used in

Altonji and Matzkin [2005] for the second estimator that they consider. There this construction

is used to identify an analog of function h, while in my case this is just an intermediate step in

relating potential outcomes in two different clusters.

The assumptions above were stated in a more abstract way than required by the problem.

Indeed, monotonicity assumption 2.3.4 can be substituted by the following, more straightforward

one:

Assumption 2.3.6. (Simple monotonicity) V = [0, 1], µν1 = λ([0, 1]) and for c = 1, 2

functions h(0, c, ·) : [0, 1]→ R are strictly increasing.

This assumption implies that restriction of function h(0, c, ·) is identified as a quantile function

in each cluster leading to the same expression for function γ.

I present a more abstract version of the assumptions for two reasons. First of all, I want

to emphasize the essence of the identification argument: it does not depend on any topology

on V , it does not rely on the distribution of µν1 , and it is independent of the identification

of the function h. Instead, the central assumptions are univariance and monotonicity, which

imply that the technologies can be combined and specify the way to connect them. Secondly,

I want to ensure logical continuity between the assumptions in the one-dimensional case and

the multivariate case. As I show later, there is a natural extension of these assumptions in the

multivariate case.

In the rest of the paper, I relax the three out of four assumptions made above. I start with the

independence assumption. I describe how we can achieve identification using the standard meth-

ods of causal inference: controlling for observable covariates and instruments. Other approaches

might be adapted to this framework; I am focusing on the most conventional ones.

2.4 Identification: selection on observables

In this section, I assume that we have access to a characteristic Xt ∈ A. I explicitly include

covariates in the definition of the potential outcome function:

Yt(w, c, x) = h(w, c, νt, x) (2.8)
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Characteristics have a distribution µXt , unobservables have a conditional distribution µνt|Xt . I

assume that cluster assignment Ct is a measurable function of Xt and νt, Wt = {Ct = 1}{t = 2}
and the observed outcomes are generated in the following way:

Yt = h(Wt, Ct, νt, Xt) (2.9)

This construction defines measures µ(Yt,Wt,Ct,Xt) that are used for identification below.

Assumption 2.4.1. (Selection on observables) Cluster assignment is independent of un-

observables given the covariates:

µνt|Xt,Ct=1 = µνt|Xt,Ct=2 = µνt|Xt (2.10)

This is a standard assumption used in the causal inference literature (e.g., Imbens and Rubin

[2015]). Its validity depends on the application at hand, but in general a rich set of covariates

makes it more plausible. Because the production function h now depends on x univariance,

overlap and monotonicity should be generalized in the following way:

Assumption 2.4.2. (Univariance with covariance) νt ∈ V ; for each x and c = 1, 2

function h(0, c, ·, x) : V → R is a bijection.

Assumption 2.4.3. (Overlap with covariance) For each x µν2|X2=x is absolutely contin-

uous with respect to µν1|X1=x.

Assumption 2.4.4. (Monotonicity with covariance) For each x there exists a linear

order %x on V such that for any z1, z2 ∈ V , z1 �x z2 implies either h(0, c, z1, x) > h(0, c, z2, x)

for c = 1, 2 or h(0, c, z1, x) < h(0, c, z2, x).

Assumption 2.4.5. (No atoms with covariates) For t = 1, 2, c = 1, 2 and x distributions

µYt|Ct=c,Xt=x are absolutely continuous with respect to Lebesgue measure on R.

We have the same lemma as before (the proof is omitted):

Lemma 2.4. Let Assumption 2.4.4, 2.4.2 be satisfied, then the function γ?x := h(0, 1, ·, x) ◦
h−1(0, 2, ·, x) : R→ R is strictly monotone.

This result leads to the straightforward generalization of Proposition 2.1 (proof is omitted):
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Proposition 2.2. (Identification with Covariates) Let Assumptions 2.4.1,2.4.2, 2.4.3,

2.4.4, and 2.4.5 to be satisfied. Then the conditional (on Xt) counterfactual distribution of

Y2(0, 1) is identified: µY2|Ct=1,Xt=x = (γx)#µY2|Ct=2,Xt=x, where γx = F−1
Y1|C1=1,X1=x ◦FY1|C1=2,X1=x.

Similar to the independent case we have the following: Yt(0, 1, x) ∼ γx(Yt(0, 2, x)). The

conditional treatment effect is identified in the following way:

τ(x) = E[Y2|C2 = 1, X2 = x]− E[γx(Y2)|C2 = 1, X2 = x] (2.11)

Conditional treatment effects can be integrated with respect to different measures on Xt leading

to a variety of average effects.

General non-parametric identification can be significantly simplified if we consider a particular

conditional distribution of outcomes.

Example 2.4.1. (Conditional Normal Outcomes) It is straightforward to extend the

normal example we considered before to the case with covariates. In this case, I assume that

µY1(0,c)|X1=x = N (mc(x), σ2
c (x)). The function γx has the following form:

γx(y) = m1(x) +
σ1(x)

σ2(x)
(y −m2(x)) (2.12)

Similar to the independent case, if σ1(x) = σ2(x) then we have the standard conditional diff-in-

diff identification.

Covariates make the univariance assumption more plausible since it needs to hold only for

a fixed value of x but might not on average. The same is true for monotonicity because the

order can now depend on x. This implies that covariates play two different roles in this setup:

they are making independence more plausible, but at the same time they allow for relaxation of

the structural assumptions as well. If µXt|Ct=c does not depend on c, meaning that observable

characteristics are perfectly balanced in two clusters, then Assumption 2.4.1 implies Assumption

2.3.1. At the same time, even in this case structural assumptions 2.4.2 and 2.4.4 do not imply

their unconditional analogs 2.3.2 and 2.3.4. In particular, this means, that even in the perfectly

balanced sample we need to use Proposition 2.2 for identification.

2.5 Identification: binary instrument

Selection on observables is not always plausible, especially in cases where we do not have access to

a large set of covariates. Identification can be achieved if instead, we have access to an instrument.
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Let {Zt}t=1,2 be a sequence of binary instruments. I make the standard assumptions about the

relationship between Zt and Ct.

Assumption 2.5.1. (Zt is an instrument)

(a) Random assignment: µνt|Zt=z = µνt.

(b) Exclusion: h(w, c, ν) does not explicitly depend on z.

(c) Potential cluster assignment function Ct(z) is increasing in z.

Values of Ct(z) define three standard groups (for each period): never-takers (Ct(0) = Ct(1) =

1), compliers (Ct(1) > Ct(0) = 1) and always-takers (Ct(1) = Ct(0) = 2). See Imbens and

Angrist [1994] for discussion of these groups. I use subscripts (at,cmp,nt) to denote a member of

a particular group. Let πk,t denote the total measure of group k in period t. Under Assumption

2.5.1 these proportions are identified (Imbens and Angrist [1994]).

A standard result in the instrumental variable literature (Imbens and Rubin [1997]) implies

that we can identify the part of the distribution of potential outcomes that corresponds to

compliers’ groups using the following equalities:
πcmp,1µY1(0,1)|cmp = (πcmp,1 + πat,1)µY1(0,1)|C=1,Z1=1 − πat,1µY1(0,1)|C=1,Z1=0

πcmp,1µY1(0,2)|cmp = (πcmp,1 + πnt,1)µY1(0,2)|C=2,Z1=0 − πnt,1µY1(0,2)|C=2,Z1=1

πcmp,2µY2(1,1)|cmp = (πcmp,2 + πat,2)µY2(1,1)|C=1,Z2=1 − πat,2µY2(1,1)|C=1,Z2=0

πcmp,2µY2(0,2)|cmp = (πcmp,2 + πnt,2)µY2(0,2)|C=2,Z2=0 − πnt,2µY2(0,2)|C=2,Z2=1

(2.13)

Thus the distributions (µY1(0,1)|cmp, µY1(0,2)|cmp, µY2(1,1)|cmp, µY2(0,2)|cmp) can be treated as known.

This result plays the same role as Corollary 2.1 in the independent case. Compliers’ groups can

be different in both periods, but this is not important for identification.

Technical assumptions need to be adjusted:

Assumption 2.5.2. (Overlap with instruments) Measure µν2|cmp is absolutely continuous

with respect to µν1|cmp

Assumption 2.5.3. (No atoms with instruments) For c = 1, 2 distributions µY1(0,c)|cmp are

absolutely continuous with respect to Lebesgue measure on R.

Overlap is a restrictive assumption, that connects potentially different compliers groups in

two periods. Similar to the Assumption 2.3.3 it is testable under monotonicity. I use it as a
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high-level restriction that can be adjusted for a particular setup leading to partial identification

results.

Together these assumptions imply the following identification result (proof is omitted):

Proposition 2.3. (Identification with instruments) Assume that Assumptions 2.5.1,

2.3.2, 2.3.4, 2.5.2, and 2.5.3 hold; let γins := F−1
Y1(0,2)|cmp ◦ FY1(0,1)|cmp. Then the counterfactual

distribution µY2(0,1)|cmp is identified: µY2(0,1)|cmp = (γins)#µY2(0,2)|cmp.

We can construct the following causal effect:

τcmp = E[Y2|cmp(1, 1)]− E[γins(Y2|cmp(0, 2))] (2.14)

where Yt|cmp(w, c) are random variables with distributions µYt(w,c)|cmp. The average treatment

effect isn’t identified in this case, only the effect for compliers.

Compared to the case with covariates identification using instruments is more involved: as

an intermediate step, we need to compute µYt(w,c)|cmp. In practice, it is difficult to construct the

whole distribution function; it is much easier to identify particular moments. If we are willing to

assume a parametric model for µYt(w,c)|cmp then these moments might sufficient for identification.

This situation is illustrated with the following example:

Example 2.5.1. (Normal outcomes (III)) Assume that µY1(0,c)|cmp = N (mc, σ
2
c ). Using

formulas above we can identify relevant parameters. The means are identified in the following

way: {
m1 = (πcmp,1+πat,1)E[Y1(0,1)|C=1,Z1=1]−πat,1E[Y1(0,1)|C=1,Z1=0]

πcmp,1

m2 = (πcmp,1+πnt,1)E[Y1(0,2)|C=2,Z1=0]−πnt,1E[Y1(0,2)|C=2,Z1=1]

πcmp,1

(2.15)

The variances are identified similarly:{
σ2

1 = (πcmp,1+πat,1)E[(Y1(0,1)−m11)2|C=1,Z1=1]−πat,1E[(Y1(0,1)−m11)2|C=1,Z1=0]

πcmp,1

σ2
2 = (πcmp,1+πnt,1)E[(Y1(0,1)−m12)2|C=2,Z1=0]−πnt,1E[(Y1(0,1)−m12)2|C=1,Z1=1]

πcmp,1

(2.16)

The γins function has the same form as before:

γins(x) = m1 +
σ1

σ2

(x−m2) (2.17)

with σ1 = σ2 this can be viewed as IV diff-in-diff strategy.
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The analysis above does not include covariates, but they can be added similarly as before.

Identification algorithm becomes even more complicated because we need to construct conditional

distributions for compliers. At the same time, if we are willing to make parametric assumptions

then the results from (Abadie [2003]) can be applied, making the identification easier.

3 Multidimensional heterogeneity

3.1 Motivation

All the identification results in previous section were achieved under restrictive univariance and

monotonicity assumptions (2.3.4,2.3.2). In the framework described so far, these assumptions

do not place any testable restrictions on the observable data and cannot be rejected based

on empirical evidence. At the same time, they are questionable from a general theoretical

perspective: there is no reason to believe that a one-dimensional characteristic can summarize

all the inherent heterogeneity of the subjects.

The empirical situation changes if we consider a framework with multiple outcome variables.

If these outcomes are connected, then the information contained in their joint distribution might

allow us to reject the univariance assumption. I start this section showing that a natural extension

of the basic model makes this possible.

The model that can handle the multiple outcomes is useful on its own, not just for testing.

In applications we rarely observe a single outcome variable, it is more typical to have a variety

of metrics that we are interested in. At the same time, the current practice is to analyze these

variables separately, ignoring the information that is contained in their joint distribution.5 It is a

priori unclear how this information should be utilized, and I show that under some assumptions

there is a way to do that.

Finally, it is natural to ask what happens to the identification results of the previous section

if we still observe only a single outcome, but the restrictive assumptions are relaxed in some way.

The extension with the multiple outcomes allows us to approach this question in the following

way. Assume that the underlying heterogeneity is two-dimensional, but in the data, we observe

only a single outcome. Viewing the second outcome as a latent variable, we can apply the solution

concept for the two-dimensional model and use it as a relaxation of the one-dimensional model.

I show that this type of argument leads to some qualitative results about the one-dimensional

5Situation is different in structural models, where typically all the available information is used.
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model.

To construct and analyze the model with multi-dimensional heterogeneity, I use results from

optimal transportation theory. There is a variety of great sources on optimal transportation

(e.g., Villani [2008] or Santambrogio [2015]). Optimal transportation has a deep connection

with several classical economic problems and recently started to attract considerable attention

in econometrics (see Galichon [2016] for examples).

3.2 Notation and basic assumptions

I assume that the researcher observes a K-dimensional vector of outcomes

Yt(w, c) := (Yt1(w, c), . . . , YtK(w, c)) (3.1)

Potential outcomes are generated in the following way:

Ytk(w, c) = hk(w, c, νt) (3.2)

Defining h(w, c, νt) := (h1(w, c, νt), . . . , hK(w, c, νt)) we have that Yt(w, c) = h(w, c, νt). This

structure directly generalizes the model from Section 2. Technology (function h) is assumed to

be constant in time, with all differences between periods coming from the differences between ν1

and ν2. Each function hk depends on the same unobservables νt, implying that all the outcomes

should be analyzed together as a vector. Observable data is defined in the same way as before:

Wt = {Ct = 1}{t = 2}, Ct is assumed to be the measurable function of νt and Yt = Yt(Wt, Ct).

For t = 1, 2 distributions µνt define measures µ(Yt,Wt,Ct) on (RK × {0, 1}2,B(RK × {0, 1}2)) that

are assumed to be known in this section.

To focus on the technological bias and abstract away from the selection problem I let Assump-

tion 2.3.1 hold: νt ⊥ Ct in both periods. As before, it can be relaxed using additional information

(covariates and instruments). The first structural assumption that I will adopt throughout the

whole section is the following generalization of univariance:

Assumption 3.2.1. (Multivariance) For c = 1, 2 function h(0, c, ·) : V → RK is a bijection.

Informally, this restriction means that we have access to enough outcomes to control the

underlying heterogeneity. If we believe that the variables are measured without any idiosyncratic

error (which is implicitly assumed throughout the paper), then this assumption is reasonable for

K large enough.
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Assumption 3.2.2. (Full support) For c = 1, 2 the set h(0, c, V ) is open in RK.

This assumption implies that the underlying heterogeneity is K-dimensional. This rules out

some applications, where be might believe that outcomes lie on a low-dimensional manifold.

Identification in this setup is a challenging but conceptually different problem that I leave to

further research.

3.3 Testable restrictions in the univariate model

One-dimensional model from Section 2 can be embedded in the framework described above. This

requires the following assumption:

Assumption 3.3.1. (Product structure) V = ×Kk=1Vk, νt = (νt1, . . . , νtK) and hk(0, c, νt) =

h̃k(0, c, νtk) for some function h̃k : {0, 1}2 × Vk → R.

This restriction means that each outcome variable can only depend on its own unobservable.

This does not imply that the outcomes are mutually independent because the random variables

{νtl}Kl=1 can be dependent. Together with Assumptions 2.3.2 and 2.3.4 product structure implies

the following Proposition.

Proposition 3.1. (Diagonal transportation) Let Assumption 2.3.1 be satisfied and assume

that for each k = 1, . . . , K functions h̃k satisfy Assumptions 2.3.2 and 2.3.4 and for each k 2.3.5

holds for µY1k|C1=c for c = 1, 2. Define γk := F−1
Y1k|C1=1 ◦ FY1k|C1=2 , then γ := (γ1, . . . , γk) is

transportation map: µY1|C1=1 = γ#µY1|C1=2.

Proof. Assumption 2.3.2 holding for k = 1, . . . , K implies that h satisfies Assumption 3.2.1. This

implies that γ? := h(0, 1, ·)◦h−1(0, 2, ·) is well-defined and due to independence is a transportation

map between µY1(0,2) and µY1(0,1). By Assumption 3.3.1 we have that γ? has the diagonal structure:

k-th outcome depends only on k-th coordinate. γ? = (γ?1 , . . . , γ
?
K), where each γ?k is strictly

monotone by Assumption 2.3.4. Proposition 2.1 implies that γk = (γ?k)|supp{µY1k|C1=2} and the

result follows

The main consequence of Proposition 3.1 is that it implies that a particular function γ

(identified from the data) is a transportation map. This is a testable restriction for the following

reason:

Corollary 3.3.1. (Testable restriction) Under the same assumptions as in Proposition

3.1 distributions µY1|C1=1 and µY1|C1=2 have the same copula.
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Proof. Above I showed that (Y11(0, 1), . . . , Y1K(0, 1)) ∼ (γ1(Y11(0, 2), . . . , γK(Y1K(0, 2))) for strictly

increasing functions {γ1, . . . , γK}. By defintions it implies that two measures share the same cop-

ula.

Copulas are identified from distributions µY1|C1=c (c = 1, 2) and this corollary provides a

testable restriction. In particular, if we assume that 2.3.5 holds for each k and 2.3.1 holds

(which sometimes can be justified due to explicit randomization) then Corollary 3.3.1 can be

viewed as a testable restriction for Assumptions 3.3.1,2.3.4 and 2.3.2. This has a practical

implication: in the situations where we observe multiple outcomes, there is a way to understand

whether the outcomes should be analyzed jointly or can be analyzed separately using the one-

dimensional model. In Section 5 I describe a particular consistent test that can be used to reject

this hypothesis.

Corollary 3.3.1 can be used to jointly reject several assumptions. One can ask whether

these assumptions can be tested separately. Univariance and monotonicity (for each component)

without 3.3.1 are very restrictive, because they imply that for each c and t the distribution µYt|Ct=c

is supported on the one-dimensional subset of RK which violates Assumption 3.2.2. Situation is

more complicated for 3.3.1: under additional continuity assumptions on functions h(0, c, ·) and

3.2.1 with 2.3.1 (which we assume to hold) it can be tested in a similar way. Whether the same

can be done without continuity remains an open question.

3.4 Preview of the identification results

In the univariate setting, monotonicity is a low-level assumption, in a sense that it restricts the

primitives (function h). It has another advantage: it is expressed entirely in terms of order

restrictions, which are arguably more easy to understand and motivate in the applied work. It

is natural to follow the same approach in the case with multiple outcomes. Unfortunately, this

leads to identifications results that are considerably weaker. In particular, I show that the order

restrictions that generalize Assumption 2.3.4 lead to exact identification only under additional

informational assumptions. There are infinitely many linear orders on RK and to identify the

counterfactual distribution we need to know which is the right one.

An alternative approach is to put restrictions on the function h that would lead to its iden-

tification. I did not focus on this approach in the one-dimensional case, but it is possible to

do this and have the same identification results as before. A standard way to identify a func-
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tion is to assume that it solves a known extremal problem. In particular, under multivariance

and independence assumptions h(0, c, ·) is a transportation map from µνt to µYt(0,c). Structural

restrictions on h can identify it as a particular transportation map, which can then be charac-

terized as a solution to an extremal problem.6 This approach also leads to weak identification

results: the counterfactual distribution is identified if we know a lot about the distribution of

unobservables. I show that if there is no such information then in the particular example the

mean of the counterfactual distribution is not identified.

Limited applicability of two natural approaches suggests that in order to achieve positive

results one might focus on the high-level assumptions on the function γ? = h(0, 1, ·) ◦h−1(0, 2, ·).
Multivariance and independence imply that this function is a transportation map. I show that

natural structural assumptions allow us to identify this function. I emphasize that these assump-

tions are not the only ones that guarantee the exact identification. In a particular application,

one might use different assumptions.

3.5 Identification with low-level assumptions

3.5.1 Order restrictions

Identification in the one-dimensional case was particularly appealing because it was based on

the order restrictions. I start with a generalization of this assumption to the multidimensional

case. Let % be a standard lexicographic order on RK : (x1, . . . , xK) � (y1, . . . , yK) if either

(x1 > y1) or (xk > yk and xl = yl) for l = 1, . . . , k − 1 and 1 < k ≤ K. For any permutation

σ : {1, . . . , K} → {1, . . . , K} define %σ in the following way:

(x1, . . . , xK) %σ (y1, . . . , yK)⇔ (xσ(1), . . . , xσ(K)) % (yσ(1), . . . , yσ(K)) (3.3)

For any function T = (T1, . . . , Tk) : V → RK and permutation σ define T σ in the following way:

T σ(x) := (Tσ(1)(x), . . . , Tσ(K)(x)) (3.4)

Using this notation, I make the following assumption:

Assumption 3.5.1. (Order restriction) There exists a linear order �ν on V and a per-

mutation σ such that for any x, y ∈ V with x �ν y we have either h(0, c, x) �σ h(0, c, y) or

6Transportation maps are extremal points in the convex and compact set of joint distributions with given
marginals and thus can be supported by some linear functionals.
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h(0, c, y) �σ h(0, c, x) for c = 1, 2.

This restrictions implies that unobservables are ‘ordered’ is the same way in both clusters. It

is especially powerful when combined with the following assumption:

Assumption 3.5.2. (Continuity) Function γ? := h(0, 1, ·)−1 ◦ h−1(0, 2, ·) is continuous.

I formulate this assumption for γ? which is well-defined by Assumption 3.2.1, alternatively,

one can specify a topology on V and assume that production functions are homeomorphisms.

Proposition 3.2. (Triangular form) Fix a permutation σ and let Assumptions 3.5.1,3.5.2,

3.2.2 and 3.2.1 hold. Then function γ? has the following form:

γ?(x) =


γ?σ(1)(xσ(1))

γ?σ(2)(xσ(1), xσ(2))

. . .
γ?σ(K)(xσ(1), xσ(2), . . . , xσ(K))

 (3.5)

Proof. Fix x, y ∈ RK such that x 6= y and πσ(1)(x) = πσ(1)(y) = xσ(1) Assume that x �σ y and

define the set A := {z ∈ RK : x %σ z %σ y} ∩ h(0, 2, V ). Consider the images of x, y under γ?.

The goal is to prove that γ?σ(1)(x) = γ?σ(1)(y), so I assume that this isn’t true. Assumption 3.5.1

implies that γ?(x) �σ γ?(y) and thus γ?σ(1)(x) > γ?σ(1)(y). Define the set B := {z ∈ RK : γ?(x) %σ

z %σ γ?(y)} ∩ h(0, 1, V ) and observe that by definition of %σ, the fact that γ?σ(1)(x) > γ?σ(1)(y)

and openness of h(0, 1, V ) we have int(B) 6= ∅ (in RK).

To prove the contradiction observe that by Assumption 3.5.1 we have that B = γ?(A) and by

Assumption 3.2.1 A = γ−1(B). But then Assumption 3.5.2 implies that A has non-empty interior

in RK (because h(0, 2, V ) is open) which is impossible because π1(A) = x1 by construction. This

implies that γ?σ(1)(x) = γ?σ(1)(0, c, y) proving the first line in 3.5.

To prove the rest, I proceed by induction, assuming that the claim is proved up k-th line.

Again, fix c and let x, y ∈ RK be such that x �σ y and πσ(l)(x) = πσ(l)(y) = xσ(l) for 1 ≤ l ≤ k+1.

By the induction assumption we have that γ?σ(l)(x) = γ?σ(l)(y) for 1 ≤ l ≤ k. Proving by

contradiction assume that γ?σ(k+1)(x) > γ?σ(k+1)(y). Define the sets A and B as before and observe

that the projection of the set B on K − k coordinates has non-empty interior (in RK−k), while

the same projection of B does not, proving the contradiction. As a result, the whole claim is

proved.

Remark 3.5.1. It is clear, that for each k function γ?k(·) is strictly monotone in each of its

arguments.
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Proposition 3.3. (Identification under order restrictions) Let Assumptions of Propo-

sition 3.5 and Assumption 2.3.1 hold; assume that µY1|C1=c are absolutely continuous with respect

to λ(RK);7 define function γ := γ?supp{µY1|C1=2}. Then function γ is equal to Knothe-Rosenblatt

transportation map between µY1|C1=2 and µY1|C1=1 and thus is identified. If additionally 2.3.3

holds then the counterfactual distribution µY2(0,1)|C2=1 is identified.

Proof. Relabel the outcomes according to permutation σ: Yt(w, c) := Y σ
t (w, c). Independence

and multivariance implies that γ? is a transportation mapping. Proposition 3.5 implies that γ?

has the triangular form with each of functions γ?k strictly monotone. Together with restrictions

on distributions µYc|C1=c this implies that γ?|supp{µY1|C1=2} is equal to a Knothe-Rosenblatt trans-

portation map between µY1|C1=2 and µY1|C1=1 (see Santambrogio [2015] for the precise definition

of Knothe-Rosenblatt transportation) proving the first clam. The last claim is obvious.

Observe that the map γ defined above depends on the labeling of the coordinates: each

permutation σ leads to a different function γ. Since there is no reason to assume that σ is known

in applications we have the following corollary:

Corollary 3.5.1. Let Assumptions 3.2.1,2.3.1, 3.5.2 hold. Also assume that there exists an

unknown permutation σ such that Assumption 3.5.1 holds. The the function γ is identified up to

relabeling the outcomes (K! possible combinations).

In applications, Assumption 3.5.1 might be too restrictive, and we can substitute it with the

following assumption:

Assumption 3.5.3. (Weak order restriction) There exists a linear order �ν on V and

a homeomorphism g : RK → RK such that for any x, y ∈ V with x �ν y we have either

g(h(0, c, x)) � g(h(0, c, y)) or g(h(0, c, y)) � g(h(0, c, x)) for c = 1, 2.

Using this assumption we can prove in exactly the same way as before that function γ is

identified up to a continuous bijection g:

γ = g−1 ◦ γ̃ ◦ g (3.6)

where γ̃ is Knothe-Rosenblatt transportation between µg(Y1)|C1=2 and µg(Y1)|C1=1. The previous

result shows that in general different g will lead to a different γ (relabeling is a particular example

of a homeomorphism that satisfies 3.5.3).

7This is more restrictive than necessary but suffices in applications.
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These results show that unless we have a lot of additional information (know the function g),

then the identification using only order restrictions is impossible. It is a consequence of the fact

that RK has a lot of linear orders that are continuous bijections of the lexicographic order, while

R has only two (g(x) = x and g(x) = −x) and g−1 ◦ γ̃ ◦ g is the same map in both cases.

Identification using Knothe-Rosenblatt transportation has been used before in the economet-

ric literate (e.g., Matzkin [2003]). One particular application is a non-linear IV case (see Imbens

and Newey [2009]) where a particular triangular structure is natural and is a consequence of the

exclusion and exogeneity.

3.5.2 Structural technological assumption

I start with an example that illustrates the general problem with the structural assumptions on

the function h. I assume that independence assumption 2.3.1 holds.

Example 3.5.1. Consider the following set of distributions: µY1(0,c) = N (mc,Σc) and µν1 =

N (0,Σ0). I put a structural assumption on the function h:

Assumption 3.5.4. (Linearity) For c = 1, 2 we h(0, c, x) = ac+Bcx, where Bc is a symmetric

positive-definite matrix.

Under this assumption it is easy to show that ac and Bc are identified and have the following

form (e.g., this follows from the results in Dowson and Landau [1982]):ac = mc

Bc = Σ
1
2
c

(
Σ

1
2
c Σ0Σ

1
2
c

)− 1
2

Σ
1
2
c

(3.7)

Putting this together we have the following form for the function γ:

γ(x) = a1 +B1B
−1
2 (x− a2) = m1 + Σ

1
2
1UΣ

− 1
2

2 (x−m2) (3.8)

where U =
(

Σ
1
2
1 Σ0Σ

1
2
1

)− 1
2

Σ
1
2
1 Σ
− 1

2
2

(
Σ

1
2
2 Σ0Σ

1
2
2

) 1
2

is an orthogonal matrix that depends on Σ0. It is

easy to see that for any matrix U we can construct a matrix Σ0 that leads to U .

In applications, it is unreasonable to assume that Σ0. As a result, we have that γ is iden-

tified up to an orthogonal transformation, which in particular implies that the mean of the

counterfactual distribution is non-identified.
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This example emphasizes the main problem with the identification using structural restric-

tions on function h. Assumptions that guarantee identification of h most likely lead to results

that depend on the unknown distribution µν1 .

Assumption 3.5.5. V and h(0, c, V ) are convex and bounded subsets of RK.

For any measure µν on (V,B(V )) absolutely continuous with respect to λ(RK) construct the

following function:

hµν (c, ·) := arg min
T :µY1(0,c)=T#µν

E[‖ν − T (ν)‖2
2] (3.9)

This is a consistent definition, because for each absolutely continuous µν the solution is exists

and unique (e.g., Villani [2008]). Moreover, different measure µν lead to different functions hµν .

This follows from the fact that h is a bijection and µY1(0,1) is fixed.

Assumption 3.5.6. (Identification of h) For c = 1, 2 function h satisfies the following

restriction:

h(0, c, ·)|supp{µν1} = hµν1 (c, ·) (3.10)

Similar identification restriction (in different context) was used recently in Chernozhukov

et al. [2014]. This assumption leads to the following identification result:

Proposition 3.4. Let Assumptions 3.2.1, 2.3.1, 3.5.6 hold and assume that µν1 is known. Then

γ := γ?|supp{µY1|C1=2} is identified. If additionally Assumption 2.3.3 holds then the counterfactual

distribution µY2(0,1)|C2=1 is identified.

Proof. Assumption 3.2.1 implies that γ? is a well-define function. Assumption 2.3.1 implies

that γ? is a transportation map between measures µYt(0,2) and µYt(0,1). By independence we

have γ?|supp{µY1|C1=2} = h(0, 1, ·)|supp{µν1} ◦ h
−1(0, 2, ·)|supp{µν1}. Assumption 3.5.6 implies that

h(0, c, ·)|supp{µν1} = hµν1 (c, ·) and thus γ = γ?|supp{µY1|C1=2} is identified from the data. The second

claim follows in a standard way.

This approach works either if we know µν1 or γ?µν1 := hµν1 (1, ·) ◦h−1
µν1

(2, ·) does not depend on

µν1 . In applications there is no reason to expect that µν1 is known, so I focus on the latter case.

The following proposition shows that if µν1 belongs to a certain set, then we have identification

(proof in Appendix B).
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Proposition 3.5. Define Ω = h(0, 1, V ) ∪ h(0, 2, V ). Fix arbitrary µ1 and µ2 that belong to the

geodesic between µY1(0,1) and µY1(0,2) in W2(Ω). Then γ?µ1 = γ?µ2.

This proposition shows that we can achieve identification using only partial knowledge of µν1 ,

in particular, the fact that it belongs to a geodesic. One might wonder, whether this result can

be generalized to other sets in W2(Ω). I leave the full characterization for future research, but

the following simple example shows that possibilities for identification are severely limited, in a

sense that even simple transformations of µν1 affect γ?µν1 .

Example 3.5.2. Let K = 2, fix arbitrary µY1(0,c) ∈ P2(Ω) and consider two different measures

for ν1: µ1 = µY1(0,2) and µ2 = µ(
Y11(0,2),

Y12(0,2)
2

). Then it follows that γ?µ1 is equal to the optimal

transformation map from µY1(0,2) to µY1(0,1). At the same time, it is clear that h−1
µ2

(2, x) = (x1,
x2
2

).

From the general theory we know that hµ2(1, ·) is a gradient of a convex function. The same

is true for γ?µ1 (because it is the optimal transportation map). It is easy to see that the map

defined a composition of a gradient with a diagonal linear map can’t be a gradient (e.g., its

Jacobian is not symmetric). This implies that we can have γ?µ1 = hµ2(1, ·) ◦ h−1
µ2

(2, ·) and thus

the counterfactual distribution isn’t identified for any set that contains µ1 and µ2.

The results presented above imply that identification using structural assumptions on h is

very fragile. Similar effects can be achieved using different assumptions, in particular if h is

identified as a solution to a transportation problem with a different cost function.

3.6 Identification under high-level assumptions

In this subsection I directly restrict function γ? := h(0, 1, ·)◦h−1(0, 2, ·). Intuitively this function

describes the relationship between the outcomes in two clusters for the same subjects. The first

assumption that I make is a version of monotonicity:

Assumption 3.6.1. (Multidimensional monotonicity) Function γ? := h(0, 1, ·)◦h−1(0, 2, ·)
is strictly monotone (as operator in RK). In particular, for any x, y ∈ RK the following restric-

tion holds:

(x− y, γ?(x)− γ?(y)) > 0 (3.11)

This form of operator monotonicity is standard in analysis (e.g., see Boyd and Vandenberghe

[2004]). In particular, it implies the following coordinate-wise montonicity:
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Corollary 3.6.1. (Coordinate-wise monotonicity) If γ? = (γ?1 , . . . , γ
?
K) satisfies Assump-

tion 3.6.1 then for each k the real-valued function γ?k(y1, . . . , y
K) is strictly monotone with respect

to yk.

Proof. Consider two vectors x1 = (x11, . . . , x1k, . . . , x1K) and x̃1 = (x11, . . . , x̃1k, . . . , x1K) with

x1k > x̃1k. Assumption 3.6.1 then implies that γ?k(x1) > γ?k(x̃1).

Informally, it implies that changes in outcomes in both clusters are aligned (form an acute

angle). This type of restriction might be possible to motivate in specific applications. In the

school example with different subject scores as outcome metric, it is natural to expect that

changes should be monotone.

The next assumption that I make restricts the relationship between different outcomes:

Assumption 3.6.2. (Symmetry) Function γ? : RK → RK is differentiable and has a symmetric

Jacobian:

∂γ?k(x)

∂xl
=
∂γ?l (x)

∂xk
(3.12)

for all k, l.

This assumption has two parts: a technical part where I assume differentiability of the func-

tion γ? and a conceptual part, where I restrict the relationship between different outcomes. I

view this assumption as a more controversial one, because it puts a lot of restrictions on the

function γ? and it is harder to motivate from a practical perspective.

It is important to emphasize that both Assumption 3.6.2 and 3.6.1 are not scale-invariant.

In particular, Assumption 3.6.2 is not invariant under (diagonal) linear transformations. This

implies that the appropriate scale should be selected before the analysis. In particular, the scale

should be chosen in such a way that Assumption 3.6.2 makes sense. One particular option is

to normalize the outcomes using quantile functions, but depending on the applications other

normalizations might be more attractive.

These two assumptions imply the following lemma:

Lemma 3.1. (Convex potenital) Under Assumptions 3.6.1, 3.6.2 function γ? = ∇g, where

g : RK → R is a strictly convex function.
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Proof. Symmetry (and the fact that RK is simply connected) implies that γ? is a path-independent

vector field and thus is a gradient for some function g : RK → R. Strict monotonicity then implies

that g is strictly convex (see Boyd and Vandenberghe [2004]).

This lemma is the main part of the the theorem below and thus Assumptions 3.6.1 and 3.6.2

can be substituted directly with assumption that γ? = ∇g with g strictly convex. I used an

indirect approach, because I believe that symmetry and monotonicity directly emphasize the

restriction we are making and thus might be more helpful in applications.8

Finally, I need to put some mild technical restrictions on measures that will guarantee that

γ can be identified from the data.

Assumption 3.6.3. (Technical conditions) For c = 1, 2 measure µY1|C1=c is absolutely

continuous with respect to λ(RK); for c = 1, 2 outcomes are square-integrable: E[‖Y1‖2|C1 = c] <

∞; densities fY1|C1=c are supported on the open, bounded and convex regions Λc, bounded from

below and above and belong to Cα(Λc) for some α.

Square-integrability is a standard restriction that guarantees that the optimal transportation

problem I state below is well-defined. Restrictions on the densities follow from Caffarelli’s reg-

ularity theory (see Villani [2008] and references therein). These constraints guarantee that the

solution of the problem (and in turn γ?) is smooth (differentiable).

Using all the assumptions and results discussed above, I can state the following identification

proposition.

Proposition 3.6. (Identification under high-level assumptions) Let Assumptions 2.3.1,

3.2.1,3.6.1,3.6.2,3.6.3 hold. Then the function γ := γ?|Λ2
is identified as a solution to the following

transportation problem:

γ := arg min
T :µY1|C1=1=T#µY1|C1=2

E
[
‖Y1 − T (Y1)‖2

2|C1 = 2
]

(3.13)

If additionally Assumption 2.3.3 holds then µY2(0,1) = γ#µY2|C2=2 and thus the counterfactual

distribution is identified.

Proof. Independence and multivariance imply that γ? := h(0, 1, ·)◦h−1(0, 2, ·) is a transportation

map from µY1(0,2) to µY1(0,1). Monotonicity and symmetry allow us to use the result of Lemma

8Another approach is to restrict monotonicity to cyclical-montonicity which is a necessary and sufficient
condition for γ? ∈ ∇g. I do not follow this route because cycical-monotonicity is a global property that is hard
to motivate directly.
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3.1. The result then follows from the basic optimal transportation theory (see Villani [2008]).

Overlap assumption guarantees that γ|Λ2 is enough to identify the counterfactual in the second

period.

This result allows us to compute any causal effects, e.g., the average treatment effects:

τk = E[Y2k(1, 1)− Y2k(0, 1)] = E[Y2k|C2 = 1]− E[γk(Y2)|C2 = 2] (3.14)

Note that in this case, to compute the treatment effect for the single outcome we need to use

the whole vector Y2.

3.6.1 Properties of the solution

Consider the case when the measures µY1(0,1), µY1(0,2) have the same copulas. It is natural to

expect that the solution should be ‘diagonal’: for each coordinate, we just match the outcomes

in the same way as in the one-dimensional model. Motivating any different solution from an

agnostic viewpoint is hard. The proposed solution passes this test, which is summarized in the

following proposition.

Lemma 3.2. (Consistency) Let the Assumptions of Proposition 3.6 hold and assume that

µY1(0,1), µY1(0,2) share the same copula. Then γ has a diagonal structure:

γ = (γ̃1, . . . , γ̃K) (3.15)

where γ̃k = F−1
Y1k|C1=1

◦ FY1k|C1=2

Proof. For measures µY1(0,1) and µY1(0,2) let Γ(µY1(0,1), µY1(0,2)) be the set of random vectors (Y1, Y2)

such that marginal distribution of Yk is equal to µY1(0,k). For each k ∈ {1, . . . , K} and c = 1, 2 let

µck be the marginal distribution of k-th coordinate: µck = (πk)#µY1(0,c). Under the assumptions

of Proposition 3.6 problem (3.13) is equivalent to the following (e.g., Villani [2008]):

min
(X1,X2)∈Γ(µY1(0,1),µY1(0,2))

E[‖X1 −X2‖2] ≥
K∑
k=1

min
(X1k,X2k)∈Γ(µ1k,µ2k)

E[‖X1k −X2k‖2] (3.16)

The solution of the problem on the right side of the inequality is given by γ̃k (Villani [2008])

and because the distributions share the same copula γ = (γ̃1, . . . , γ̃K) is a transportation map.

It follows from the inequality that it is optimal.
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Now consider a situation where K = 2 and Y
(n)

1 (0, c) = (Y11(0, c), Y12(0,c)
n

). This corresponds

to the case where the variance of the second outcome is small. It is reasonable that in this

case, the solution should approach the one-dimensional one. It is, in fact, the case, which is

summarized in the following proposition.

Lemma 3.3. (Continuity at zero) Let the assumptions of Proposition 3.6 hold and assume

that Y
(n)

1 (0, c) = (Y11(0, c), Y12(0,c)
n

). Let γ(n) be the corresponding solution. Then γ
(n)
1 (Y11(0, 2), Y12(0,c)

n
)

converges to the one-dimensional solution in L2(Λ2) sense.

Proof. The minimization program has the following form in this case:

E[‖Y11(0, 1)− Y11(0, 2)‖2] + E

[∥∥∥∥Y12(0, 1)

n
− Y12(0, 2)

n

∥∥∥∥2
]

=

E[‖Y11(0, 1) − Y11(0, 2)‖2] +
1

n2
E[‖Y12(0, 1) − Y12(0, 2)‖2] (3.17)

The result then follows from the result in Carlier et al. [2010].

The two properties represent necessary consistency requirements that we would expect from

a reasonable solution concept. It is clear that other approaches might satisfy these restrictions

as well.9

3.6.2 Sensitivity analysis

Identification results in the multidimensional model have a consequence for the one-dimensional

model as well. As I argued before, monotonicity and univariance are very restrictive in the one-

dimensional model. A particular way to relax them is to assume that the actual model is the

one described in this section, but some of the outcomes are not observed.

In particular, fix K = 2, define Yt(0, c) = (Yt1(0, c), Vt2(0, c)) and assume that only Yt1(0, c) is

observed. This can be viewed as a way to embed the one-dimensional model in a two-dimensional

one. Assume for a moment that Vt2(0, c) is observed and all the identification assumptions of

Proposition 3.6 hold. In this case, that counterfactual distribution is identified using function γ =

(γ1, γ2). Now, returning back to the fact that only one outcome is observed we are interested in

the properties of the function γ1(Yt1(0, 2), Vt2(0, 2)), in particular, it is interesting to compare this

9Generalization of the first one to the case when the cost function is convex and separable (no cross-coordinate
terms) is straightforward.
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function with the solution of the one-dimensional model. Below I summarize several qualitative

features of this function.

Corollary 3.6.2. Let Assumptions 2.3.1, 3.2.1,3.6.1,3.6.2,3.6.3 hold. Then the function γ1

defined above satisfies the following properties:

(a) γ1 is monotone in Yt1(0, 2);

(b) If µVt2(0,2)|Yt1(0,2) doesn’t depend on t then the stochastic coupling between Yt1(0, 1) and

Yt1(0, 2) is the same in two periods.

(c) If the copula between Yt1(0, c), Vt2(0, c) doesn’t depend on c (in particular if Vt2(0, c) is

independent) then γ1 = F−1
Y11|C1=1 ◦ FY11|C1=2 – solution in the one-dimensional model.

(d) Let V
(n)
t2 (0, 2) = Vt2(0,2)]

n
then we have the following:

E[‖γ1(Yt1(0, 2), V
(n)
t2 (0, 2))− F−1

Y11|C1=1 ◦ FY11|C1=2(Yt1(0, 2))‖2]→ 0 (3.18)

Proof. (a) follows directly from Corollary 3.6.1; (b) follows by definition of γ1; (c) is the corollary

of Proposition 3.2 and (d) is the corollary of Proposition 3.3.

4 Extensions

4.1 Multiple clusters

I consider an extension of the basic model to the case of multiple clusters (but still restrict

analysis to two time periods). Let C be a finite set of clusters with c ∈ C denoting a generic

cluster. In terms of data generating process I assume that Wt = {t = 2}{Ct ∈ CT}, where CT ⊆ C
is a set of treated clusters; also define CC := C \ CT – set of control clusters.10

There are multiple ways to proceed in this setting. If we maintain all the identification

assumptions of Section 2, then there are different ways to construct a counterfactual distribution

for each c ∈ CT . These counterfactuals should be equal if the model is correctly specified

producing a powerful testable restriction. I discuss this approach in Section 5. Alternatively, we

can use multiple clusters to weaken the identification assumptions and construct a more robust

counterfactual distribution. In this section, I follow the second path. The first assumption that I

10Note that CT is fixed (non-random).
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make describes potential outcomes for all clusters as monotone functions of some fixed functions

(types):

Assumption 4.1.1. (Types of outcomes) Let L = {h1, . . . , hL} – finite set of functions,

such that for any hl ∈ L function hl : V → R, is a bijection and ‖hl‖∞ < ∞. For any c ∈ C
there exists a strictly increasing function fc and a function hl ∈ L such that h(0, c, ·) = fc ◦ hl.

Unless we somehow restrict how different types are related, this assumption does not have

any power: we can always assume that fc = Id and let L = ∪c∈Ch(0, c, ·). For any l ∈ {1, . . . , |L|}
let C(l) denote the set of clusters such that h(0, c, ·) = fc ◦ hl. For any c let l[c] denote the index

of its type. The main property of the clusters of the same type is that the following monotonicity

restriction holds:

Corollary 4.1.1. For any l any c1, c2 ∈ C(l) and x 6= y ∈ V monotonicity assumption is

satisfied:

(h(0, c1, x)− h(0, c1, y)) (h(0, c2, x)− h(0, c2, y)) > 0 (4.1)

The next assumption restricts the type space, guaranteeing that there is at least one treated

and control cluster of each type:

Assumption 4.1.2. (Richness) There is at least one treated and control cluster of each type:

C(l) ∩ CT 6= ∅ 6= C(l) ∩ CC for any l ∈ L.

The final assumption restricts the distance between clusters of the same type:

Assumption 4.1.3. (Separation of types) For any l1 6= l2 define:

dl1,l2 := W∞(µhl1 , µhl2 ) (4.2)

then for any l ∈ L and any c1 ∈ C(l) we have:

‖h(0, c1, ·)− hl(·)‖∞ <
mink 6=l dl,k

3
=:

dl
4

(4.3)

This is a high-level assumption that guarantees that clusters are separated in Wasserstein

space. This is summarized in the following lemma:
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Lemma 4.1. Fix arbitrary l1 6= l2 and take any c1, c2 ∈ C(l1) and c3 ∈ C(l2). Then Assumption

4.1.3 implies the following:

W∞(µh(0,c1,·), µh(0,c2,·)) < W∞(µh(0,c1,·), µh(0,c3,·)) (4.4)

Proof. Because fc are strictly monotone we have the following:

dl1,l2
2
≥ dl1

2
> |h(0, c1, ·)− h(0, c2, ·)‖∞ = W∞(µh(0,c1,·), µh(0,c2,·)) (4.5)

where the first inequality follows by definition of dl, the second one follows by triangle inequality

(which is valid because W∞ is a distance) and equality is a consequence of the strict monotonicity

of functions fc. At the same time we have the following chain of inequalities:

W∞(µh(0,c1,·), µh(0,c3,·)) ≥ |W∞(µh(0,c3,·), µhl1 (·))−W∞(µh(0,c1,·), µhl1 (·))| =

W∞(µh(0,c3,·), µhl1 (·))−W∞(µh(0,c1,·), µhl1 (·)) ≥

|W∞(µhl1 (·), µhl2 (·))−W∞(µh(0,c3,·), µhl2 (·))| −W∞(µh(0,c1,·), µhl1 (·)) =

W∞(µhl1 (·), µhl2 (·))−W∞(µh(0,c3,·), µhl2 (·))−W∞(µh(0,c1,·), µhl1 (·)) ≥ dl1,l2−
dl1
4
−dl2

2
≥ dl1,l2

4
> 0

(4.6)

To see that these are correct start from the last one and go backwards. Putting the two inequal-

ities together we get:

W∞(µh(0,c1,·), µh(0,c2,·)) <
dl1,l2

4
≤ W∞(µh(0,c1,·), µh(0,c3,·)) (4.7)

which concludes the proof.

Together with Assumption 4.1.2 this lemma implies the following corollary:

Corollary 4.1.2. Let Assumptions 4.1.2 and 4.1.3 hold. For each c ∈ CT define:

CC(c) := arg min
k∈CC

W∞(µY1(0,c), µY1(0,k)) (4.8)

the set of nearest control clusters with respect to W∞ distance. Then CC(c) ∈ l[c], that is control

clusters have the same type as the treated one.

Proof. Corollary follows directly from the fact that clusters of the same type are closer than the

clusters of the different types (previous lemma) and the fact that there are treated and control

clusters of the same type (Assumption 4.1.2).
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These results lead naturally to the following theorem:

Proposition 4.1. (Identification with multiple clusters) Let Assumptions 2.3.1,4.1.1,

4.1.2,4.1.3 hold. For any c ∈ CT and k ∈ CC(c) define the function γ?c,k := h−1(0, c, ·)◦h−1(0, k, ·).

Then γc,k := (γ?c,k)|supp(µY2|C2=k
) is identified. If additionally Assumption 2.3.3 holds then the

counterfactual distribution µY2(0,k) is identified.

Proof. Independence guarantees that µYt(0,c) are identified for t = 1, 2 and c ∈ C. Corollary

4.1.1 and Corollary 4.1.2 guarantees that for any c ∈ CT and k ∈ CC(c) function γ?c,k is strictly

monotone and thus its restriction to the support is equal to the optimal transportation map.

This implies the identification result. The overlap condition guarantees that the counterfactual

distribution in the second period is identified.

This result prescribes a way to identify a counterfactual distribution for each treated cluster.

It is safe to assume that in applications CC(k) will be a singleton for all c, implying that this

process will produce a single counterfactual distribution. At the same time, this result does not

mean that the model does not have overidentifying restrictions. In particular, it might happen

that the partition induced by nearest neighbors matching does not satisfy Assumption 4.1.3 (e.g.,

if the treated clusters matched to different control clusters are close). There always exist a set

of types that all assumptions are satisfied: just assume that there is a single type located at the

barycenter (in Wasserstein space) of all clusters. Given a particular configuration of distributions,

there might be other sets of types that all assumptions are satisfied. It is natural to look for the

richest set of types (the finest partition). This partition might be non-unique, but the previous

theorem implies that it will always contain nearest neighbors. From a practical perspective, it

means that if we are interested in constructing a counterfactual distribution rather than testing

the underlying model, we can always use the matching algorithm.

4.2 Semicontinuous outcomes

I assume that the distribution µYt(0,c) has a discrete component. I develop this extension in the

one-dimensional case because it can be done with a simple change in assumptions on primitives.

The resulting approach can in principle be adapted to the multi-dimensional case as an ad hoc

solution. I do not restrict the absolutely continuous component of µYt(0,c) in any way. As a result,

the proposed solution can be applied both to the cases where outcomes are purely discrete (e.g.,

binary) or mostly absolutely continuous, but have atoms (e.g., due to censoring at zero).
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If the distribution of µY1(0,c) has a discrete component, then the univariance and monotonicity

imply that discrete part of µY1(0,1) and µY1(0,2) should have the same structure. This is unneces-

sarily restrictive and most likely does not hold in empirical applications. It is natural to drop the

univariance assumption and weaken the monotonicity assumption. This leads to the following

restriction:

Assumption 4.2.1. (Weak monotonicity) There exists a linear order % on V such that for

any x, y ∈ V , x � y implies either h(0, c, x) ≥ h(0, c, y) for c = 1, 2 or h(0, c, x) ≤ h(0, c, y) for

c = 1, 2.

This assumption has the same interpretation as the monotonicity assumption before, but

is less restrictive, allowing the outcomes to stay constant. To continue, I need the following

definition:

Definition 1. For any two measures µ1 and µ2 on R define Γ(µ1, µ2) :=
(
F−1
µ1

(U), F−1
µ2

(U)
)
,

where µU = λ([0, 1]) and γmon(µ1, µ2) := µΓ(µ1,µ2); γmon(µ1, µ2) is called a co-monotone transport

plan between measures µ1 and µ2.

The crucial role of monotone plans is a consequence of the following lemma:

Lemma 4.2. Assume that 4.2.1 is satisfied. Let Zt := (h(0, 1, νt), h(0, 2, νt)); then µZt =

γmon(µh(0,1,νt), µh(0,2,νt)). Additionally, if Assumption 2.3.3 holds then the following restriction

on the supports is satisfied:

supp
(
γmon(µh(0,1,ν2), µh(0,2,ν2))

)
⊆ supp

(
γmon(µh(0,1,ν1), µh(0,2,ν1))

)
(4.9)

Proof. The first part of the lemma follows directly from Lemma 2.8 in (Santambrogio [2015]).

Restriction on supports is a direct consequence of the overlap assumption that implies that µZ2

is absolutely continuous with respect to µZ1 and the fact that γmon(µh(0,1,ν2), µh(0,2,ν2)) = µZ2 .

Remark 4.2.1. Overlap assumption has another straightforward but important consequence.

Define µt := µh(0,2,νt) and let µdt be the discrete part of measure µt ( see Kolmogorov and Fomin

[1968]). Absolute continuity of µ2 with respect to µ1 implies that µd2 is absolutely continuous

with respect to µ2
1 and as a result supp(µd2) ⊆ supp(µd1).

Before I state the main result I need to define several additional sets. In particular, for

any x ∈ R, define A(x) := {y : (y, x) ∈ supp
(
γmon

(
µY1|C1=1, µY1|C1=2

))
and Ad(x) := A(x) ∩
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supp
(
µdY1|C1=1

)
, where µdY1|C1=1 is a discrete component of µY1|C1=1. For any x ∈ R let M(x)

be the set of probability measures such that for any µ ∈ M(x) we have supp(µ) = A(x) and

supp(µd) = Ad(x). Let K be the set of probability kernels (conditional probability distributions)

such that for any K : R× B(R)→ [0, 1] in this set we have that K(x, ·) ∈M(x).11

Proposition 4.2. Let Assumptions 2.3.1,4.2.1 and 2.3.3 hold. Then the counterfactual distri-

bution µY2(0,1) is partially identified; in particular, the following inclusion holds:

µY2(0,1)|C1=1 ∈ {µ ∈ P(R) : µ(A) =

∫
K(x,A)dµY2(0,2)|C2=2 for some K ∈ K} (4.10)

Proof. Independence implies that µY1(0,c) = µY1|C1=c. It follows from Lemma 4.2 and indepen-

dence that supp
(
γmon(µh(0,1,ν1), µh(0,2,ν1))

)
is identified. Overlap assumption implies the restric-

tion on supports 4.9. Decomposing measure µ(Y2(0,1),Y2(0,2)) into a marginal component µY2(0,2)

and kernel K we have that K ∈ K. This implies the result.

Statement of the proposition might look unnecessarily complicated because it covers a lot of

different situation. Informally the result is simple: in the first period we identify the support

of the joint distribution, and in the second period we observe only one marginal (but know the

support of the joint distribution). Kernels then just specify how the marginal measure is split

between for each x. Additional properties can help with constructing a particular kernel that

satisfies the restriction. First, if FY2|C2=2 is continuous at x then by construction of γmon it follows

that A(x) is a singleton and thus K(x, ·) is a Dirac measure for any K ∈ K. Second, let K1

be the kernel of γmon(
(
µY1|C1=1, µY1|C1=2

)
), then K1 ∈ K.12 As a result, we can always use the

kernel from the first period. If the measures are entirely discrete then kernels are simple: each

kernel can be represented as a collection of function from supp(µY1(0,2)) into the finite-dimensional

simplex. In this case, it is easy to optimize over this set, and thus partial identification analysis is

possible. If we are not that interested in the partial identification but instead want to construct

an answer, then the kernel from the first period seems to be the most natural choice.

5 Estimation and inference

I present formal statistical results for the several versions of the model considered in the previous

parts. I focus on the case with no covariates or instruments. Discrete covariates that take a finite

11I include necessary measurability restrictions requiring that K(·, ·) is a valid probability kernel.
12In particular, it proves that the set K is non-empty.
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number of values can be introduced straightforwardly.

5.1 One-dimensional model

Basic estimation and inference in the (continuous) one-dimensional model can be done using the

well-known results from Athey and Imbens [2006] or Matzkin [2003]. I present a generalization:

I prove functional central limit theorems for the transportation maps and quantile function of

the counterfactual distribution. This provides additional opportunities for testing in the case

with multiple clusters.

For t = 1, 2 define Dt := (R × C × {0, 1})nt . In each period t we observe a random element

{Yit, Cit,Wit}i∈nt ∈ Dt from
(
Dt,B(Dt),⊗nt1 µ(Yt,Ct,Wt)

)
.

5.1.1 Estimation, continuous case

I start with the following assumption:

Assumption 5.1.1. For c ∈ C and t = 1, 2 distributions FYt|Ct=c are strictly increasing, contin-

uously differentiable functions on [a, b] with strictly positive derivative on (a, b).

This assumption guarantees that the transportation function is strictly increasing and maps

[a, b] into [a, b], in particular it is bounded. Fix arbitrary c ∈ CT and k ∈ CC . In the continuous

case the main object of interest is the following transportation function:

γc,k := F−1
Y1|C1=c ◦ FY1|C1=k (5.1)

Following Athey and Imbens [2006] I propose to use a plug-in estimator:

γ̂c,k := F̂−1
Y1|C1=1 ◦ F̂Y1|C1=2 (5.2)

where F̂Y1|C1=c and F̂−1
Y1|C1=k are some estimators of FY1|C1=c and F−1

Y1|C1=k. Perhaps, the most

natural choice is to use empirical distribution and empirical quantile function, but other esti-

mators can be used, e.g., those arising from smoothing the empirical distribution. Depending

on different estimators f̂c,k might have different statistical properties, I discuss this later in the

section on inference.

Given the function γ̂c,k we can estimate the average effect in a straightforward way:

τ̂c,k =
1

n2c

n2c∑
i=1

Y2ci −
1

n2k

n2k∑
i=1

γ̂c,k(Y2ki) (5.3)

36



Another opportunity, is to estimate the difference in quantiles. Since γc,k is strictly monotone,

quantile function is given by γc,k ◦ F−1
Y2|C2=k. In this case, the plug-in estimator of the difference

in quantile functions is given by:

τ̂c,k(q) = F̂−1
Y2|C2=c(q)− γ̂c,k ◦ F̂

−1
Y2|C2=k(q) (5.4)

As a preparation for the inference step, I introduce two additional operators:
C1 : l([a, b])→ l([0, 1])

C1(F )(p) := inf{x ∈ [a, b] : F (x) > p}
C2 : l([a, b])× l([c, d])→ l([a, b])

C2(F,G) := F ◦G

(5.5)

Be definition C1(F ) = F−1 for any distribution function F . Using this notation, I define the

following operators:
C3 : l([a, b])× l([a, b])→ l([a, b])

C3(F,G) := C2(C1(F ), G)

C4 : l([a, b])× l([a, b])× l([a, b])→ l([a, b])

C4(F,G, L) := C2(C2(C1(F ), G), C1(L))

(5.6)

With this notation function γc,k and the quantile function of the counterfactual distribution have

the following form:{
γc,k = C3(FY1|C1=c, FY1|C1=k)

γc,k ◦ F−1
Y2|C2=k = C4(FY1|C1=c, FY1|C1=k, FY2|C2=l)

(5.7)

This form is useful, because statistical properties of the estimators will follow directly from

continuity and appropriate differentiability of operators C3 and C4.

5.1.2 Consistency, continuous case

Consistency is a direct consequence of the following lemma:

Lemma 5.1. Let F1 ∈ D[a, b] be a strictly increasing (but probably discontinuous) function such

that f1 := F ′1 > c > 0 at all points where it exists. Then C1 is continuous at F (with respect

to ‖ · ‖∞). For any F2 ∈ C[a, b] and F3 ∈ D[a, b] C2 is continuous at (F2, F3) (with respect to

sup-norm).

The proof is in Appendix C. Note that I allow for F1 to be discontinuous.
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Corollary 5.1.1. For any c ∈ CT and k ∈ CC, C3 and C4 are continuous at (FY1|C1=c, FY1|C1=k)

and (FY1|C1=c, FY1|C1=k, FY2|C2=k), respectively.

Proof. Result follows directly from the lemma and definitions of C3 and C4 in terms of operators

C1, C2, the fact that FY1|C1=c is continuous and strictly increasing and thus C1(FY1|C1=c) is con-

tinuous and finally because γc,k is continuous (as a composition of two continuous functions).

These two results lead to the following proposition (proof is in Appendix C):

Proposition 5.1. (Consistency) For c = C and t = 1, 2 let the estimator F̂Yt|Ct=c be such that

the following holds:

‖F̂Yt|Ct=c − FYt|Ct=c‖∞ = op(1) (5.8)

Then |τ̂c,k − τc,k| = op(1) and ‖τ̂c,k(q)− τc,k(q)‖∞ = op(1).

Remark 5.1.1. Uniform consistency requirement in the proposition above holds for the empirical

distribution function (by virtue of Glivenko-Cantelli theorem) but also for a variety of other

estimators. This is the only restriction that we need to achieve consistency.

This result proves a strong (uniform) consistency of the quantiles, generalizing the consistency

result from Athey and Imbens [2006].

5.1.3 Asymptotic normality, continuous case

Asymptotic normality will follow from the following facts:

Fact 5.1. For any F ∈ D the map C1 is Hadamard-differentiable tangentially to C[a, b]. The

derivative (linear map) is given by the following function:

D(C1)|G(h) := −h
g
◦G−1 (5.9)

where g := G′. If g > c > 0 then for any h ∈ C[a, b] function DC1|G(h) is uniformly continuous.

Fact 5.2. For any F,G function C2 is Hadamard-differentiable and the derivative is given by

the following function:

D(C2)|(F,G)(h1, h2)(x) := h1 ◦G(x) + F ′G(x)(h2(x)) (5.10)
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For the proof of both facts check Van Der Vaart and Wellner [1996]. These two facts imply

the differentiability of operators C3 and C4:

Lemma 5.2. For any c ∈ CT and k ∈ CC, operator C3 is Hadamard-differentiable at (FY1|C1=c, FY1|C1=k)

tangentially to C[a, b]×D[a, b]; operator C4 is Hadamard-differentiable at (FY1|C1=c, FY1|C1=k, FY2|C2=k)

tangentially to C[a, b]×D[a, b]×C[a, b]. Explicit form of the derivatives is given in Appendix C.

Proof. The result follows directly from the differentiability of C1 and C2 and chain rule for

Hadamard differentiation.

Hadamard differentiability and Donsker theorem for empirical distribution leads to the fol-

lowing proposition:

Proposition 5.2. (Asymptotic normality) Let Assumption 5.1.1 hold. Let F̂Yt|Ct=c be the

empirical distribution. Then the following is true:
√
n1c + n1k (γ̂c,k(·)− γc,k(·))

w?−→ G1,c,k
√
n (τ̂c,k − τc,k)

w?−→ N (0, V )
√
n (τ̂c,k(·)− τc,k(·))

w?−→ G2,c,k

(5.11)

where G1,c,k and G1,c,k are centered Gaussian processes on [a, b] and [0, 1] with covariance func-

tions ΦG1,c,k
and ΦG2,c,k

, respectively. Exact expressions for asymptotic variance and covariance

functions are given in the appendix. Asymptotic distributions can be approximated by a standard

nonparametric bootstrap algorithm.

The proof is in Appendix C. In light of the previous lemma, it follows by the functional delta

method.

Remark 5.1.2. The result remains valid if instead of F̂Yt|Ct=c any other F̃Yt|Ct=c is used as long

as
√
n‖F̂Yt|Ct=c − F̃Yt|Ct=c‖∞ = op(1).

5.1.4 W∞ matching

To apply the matching algorithm, I need to estimate W∞ distance. I use the following estimator:

Ŵ∞(c, k) = ‖F̂−1
Y1|C1=c

− F̂−1
Y1|C1=k

‖∞ (5.12)

For each c ∈ CT define k̂(c) ∈ Cc in the following way:

k̂(c) ∈ arg min
k
Ŵ∞(c, k) (5.13)
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where ties can be broken arbitrarily. This results in the following estimator for the treatment

effect:

τ̂c =
1

n2c

n2c∑
i=1

Y2ci −
1

n2k̂(c)

n2k̂(c)∑
i=1

γ̂c,k̂(c)

(
Y2k̂(c)i

)
(5.14)

The following lemma implies that this estimator has exactly the same asymptotic properties

as τ̂c,k(c):

Lemma 5.3. For any c ∈ CT and k ∈ CC we have:

|Ŵ∞(c, k)−W∞(c, k)| = op(1) (5.15)

Proof. By Lemma 5.1 C1 is continuous at FY1|C1=c and FY1|C1=k and supremum is a continuous

function (with respect to uniform norm). Thus the result follows by continuous mapping theorem

(for metric spaces).

Using this lemmas and Slutsky lemma one can see that k̂(c) can be substituted with k(c)

without affecting any asymptotic properties. Similar construction can be used for difference in

quantiles.

5.1.5 Testing

I focus on testing in a situation with a single treated cluster and two control clusters. It can be

extended straightforwardly to the case with multiple treated and control clusters. Let CT = {1}
and CC = {2, 3}. In this case, we have two estimators for counterfactual distribution: we can

use either f̂1,2 or f̂1,3. In this case, it is natural to base the test on the distribution of the

pseudo-observations:

T :=
√
n22 + n23

∥∥∥∥∥ 1

n22

n22∑
i=1

{γ̂1,2 < t} − 1

n23

n22∑
i=1

{γ̂1,3 < t}

∥∥∥∥∥
∞

(5.16)

The following two lemmas imply that this statistic converges in distribution to a supremum of a

centered Gaussian process.

Lemma 5.4. For f̂1,c defined above the following is true:

√
n12 + n13

(
γ̂1,2(γ−1

1,2(t))− γ̂1,3(γ−1
1,3(t))

) w?−→ G3 (5.17)
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where G3 is a centered Gaussian process on [a, b], with the following covariance function:

ΦG3(x, y) =
1

α
Φ2(x, y) +

1

(1− α)
Φ3(x, y) (5.18)

where α = lim n12

n12+n13
and Φc(x, y) is defined in the following way:

Φc(x, y) :=
FY1|C1=c(γ

−1
1,c (max{x, y}))− FY1|C1=c(γ

−1
1,c (x))FY1|C1=c(γ

−1
1,c (y))

fY1|C1=1(x)fY1|C1=1(y)
(5.19)

Also, let G be the weak limit of
√
n11

(
F̂Y1|C1=1 − FY1|C1=1

)
. Then G and G3 are independent.

Lemma 5.5. Difference of the empirical distributions converges to a centered Gaussian process:

√
n22 + n23

(
1

n22

n22∑
i=1

{γ̂1,2 < ·} −
1

n23

n22∑
i=1

{γ̂1,3 < ·}

)
w?−→ G31 + G4 (5.20)

where G4 and G3 are independent centered Gaussian processes with covariance functions ΦG4 and

ΦG31, respectively. Covariance function for G4 has the following form:

ΦG4(x, y) = FY2(0,1)|C2=1(max{x, y}))− FY2(0,1)|C2=1(x)FY2(0,1)|C2=1(y) (5.21)

where FY2(0,1)|C1=1 is the counterfactual distribution. Covariance function of G3,1 satisfies the fol-

lowing restriction: ΦG3,1(x, y) = λfY2(0,1)|C2=1(x)fY2(0,1)|C2=1(y)ΦG31(x, y), where λ = lim n22+n23

n12+n13
.

Proofs of both lemmas are in Appendix C. The first lemma is a straightforward consequence

of Proposition 5.2. The second lemma follows from the results in van der Vaart and Wellner

[2007]. The second lemma together with continuous mapping theorem implies that T converges

to a supremum of G31 + G4. The limit distribution depends on the unknown parameters and

thus should be approximated. In Appendix D, I propose a bootstrap algorithm that can be used

for such approximation.

5.1.6 Semi-continuous case

I focus on showing that we can consistently estimate the support of the monotone transportation

map. Let S1, S2 ⊆ [a, b]2 we can define (Hausdorff distance) dH(S1, S2) in a standard way. For
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any F1, F2, G1, G2 ∈ D1[a, b] define:{
S(F1, G1) := {(x, y) ∈ [a, b] : (F−1(p), G−1(p), p ∈ [0, 1]}
d(F1, G1, F2, G2) := dH(S(F1, G1), S(F2, G2))

(5.22)

Consistency is handled by the following proposition:

Proposition 5.3. Assume that distribution functions are uniformly consistent:

‖F̂Y1|C1=c − FY1|C1=c‖∞ = op(1) (5.23)

and for c = 1, 2 FY1|C1=c is strictly increasing on [a, b]. Then the following is true:

d(FY1|C1=1, FY1|C1=2, F̂Y1|C1=1, F̂Y1|C1=2) = op(1) (5.24)

Proof. Consider any G1, G2 ∈ D1[a, b] such that:{
‖FY1|C1=1 −G1‖∞ < ε

‖FY1|C1=2 −G2‖∞ < ε
(5.25)

Since for c = 1, 2 FY1|C1=c is strictly increasing and has strictly positive density Lemma 5.1 we

get the following:{
‖C1(FY1|C1=1)− C1(G1)‖∞ < Kε

‖C1(FY1|C1=2)− C1(G2)‖∞ < Kε
(5.26)

And by definition it follows that d(FY1|C1=1, FY1|C1=2, G1, G2) < Kε. This implies that

d(FY1|C1=1, FY1|C1=2, ·, ·) : D1[a, b]2 → R+ (5.27)

is continuous at (FY1|C1=1, FY1|C1=2) and the result follows by the continuous mapping theorem

(and uniform consistency).

5.2 Multi-dimensional case

5.2.1 Estimation and inference

Assumption 5.2.1. (Caffarelli’s Regularity) For c = 1, 2 µY1|C1=c are supported on

[0, 1]K and admit densities (with respect to Lebegues measure on RK) which lie in Ck[0, 1]K

and are bounded away from zero and infinity.
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Remark 5.2.1. In this assumption [0, 1]K can be substituted for arbitrary closed convex compact

in RK with non-empty interior and smooth boundary.

Define Ψ := {ψ : [0, 1]K →: ψ(0) = 0, ψ is convex}. For each ψ ∈ Ψ let ψ? be the restriction

of convex conjugate of ψ to [0, 1]K . Estimation strategy is based on the solution of the dual

transportation problem:

ψ̃ := arg inf
ψ∈Ψ

(∫
ψ(x)dµY1|C1=1 +

∫
ψ?(u)dµY1|C1=2

)
(5.28)

The main reason why we are interested in ψ̃ is because of the following fact:

Fact 5.3. If Assumption 5.2.1 holds then (a) ψ̃ defined above belongs to Ck+2[0, 1]K and (b)

Q(x) := ∇ψ̃(x) solves the optimal quadratic transportation problem between µY1|C1=2 and µY1|C1=1

This fact is useful for two reasons. First, it implies that solution of the transportation

problem can be recovered from the solution of the dual problem. Second, it connects smoothness

assumptions on measures with the regularity of Q. This fact might be used in statistical analysis.

In this paper I do not exploit this point, leaving it for future research. This result suggests the

following way of estimating γ: first, solve the dual problem and then compute the gradient. In

particular, let µ̂Y1|C1=c be some estimators of µY1|C1=c and consider the following estimators:{
ψ̂ ∈ arg infψ∈Ψ

(∫
ψ(x)dµ̂Y1|C1=1 +

∫
ψ?(u)dµ̂Y1|C1=2

)
γ̂(x) := arg supx∈[0,1]K{xTy − ψ̂(y)}

(5.29)

Solution for this program can be found by a variety of algorithms, check Chernozhukov et al.

[2017] for details.

If estimators µ̂ are good enough (uniformly consistent) then we have the following result from

Chernozhukov et al. [2017]:

Fact 5.4. Assume that for c = 1, 2 dBL(µ̂Y1|C1=c, µY1|C1=c) = op(1), let Assumption 5.2.1 hold.

Then ‖γ̂ − γ‖∞ = op(1).

This uniform consistency result implies that for any continuous function g : RK → R we have

the following:

E[|g(γ̂(Y2))− g(γ(Y2))||C2 = 2] ≤ ‖g ◦ γ̂ − g ◦ γ‖∞ = op(1) (5.30)
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where the last equality follows because g is uniformly continuous on [0, 1]K (compact set) and

thus ‖g ◦ γ̂ − g ◦ γ‖ = Op(‖γ̂ − γ‖∞). This implies that any moments of the counterfactual

distribution can be estimated consistently.

5.2.2 Testing

Results from the Section 3 imply that the test for univariance and monotonicity should be based

on the difference between copulas of two distributions. I describe it in case of two-dimensional

outcomes, the extension to the multidimensional case is straightforward.

Define Cc(q, p) := FY1|C1=c(F
−1
Y11|C1=c(q), F

−1
Y12|C1=c(p)). Let F̂Y1|C1=c and F̂−1

Y1k|C1=c be the em-

pirical distribution function and empirical quantile functions, respectively. Using this we can

define empirical copula:

Ĉc(q, p) := F̂Y1|C1=c(F̂
−1
Y11|C1=c(q), F̂

−1
Y12|C1=c(p)) (5.31)

It is well-known that under smoothness assumptions on Cc Ĉc(q, p) converges (once appro-

priately scaled) to a limit process. In particular, the following fact is true (see Van Der Vaart

and Wellner [1996]).

Fact 5.5. Assume that function Cc is continuously differentiable on [0, 1]2, then
√
n1c(Ĉ1−C1)→

C, where C is a centered Gaussian process (indexed by [0, 1]2).

Using this fact we can base the test on the following statistic:

T :=

∫
(Ĉ1(x)− Ĉ2(x))2dx (5.32)

It follows that the scaled version of T has the asymptotic distribution of
∫

[0,1]2
C2dx. Since

covariance function of C depends on the unknowns this distribution should be approximated.

In Rémillard and Scaillet [2009] authors suggest a particular scheme based on multiplier central

limit theorem.

In principle, any other test statistic can be used, for example, Kolmogorov-Smirnov type

statistic, where L2 distance is substituted with sup-norm. If the statistic is a continuous function

of the copulas, then its asymptotic distribution follows from the continuous mapping theorem.

Then the algorithm in Rémillard and Scaillet [2009] can be used to approximate its distribution.
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6 Empirical example

In this section, I apply my methodology to the data from Engelhardt and Gruber [2011]. In this

paper, authors analyze the introduction of Medicare Part D in 2006. The Medicare Modernization

Act of 2003 introduced a new benefit to a Medicare system providing coverage for prescription

drugs. The central question that the paper addresses is whether this new (at the time) system

increased welfare by reducing the financial risk for elderly or simply redistributed money within

the insurance system.

The data consists of 2002-2005 and 2007 waves of the MEPS, which is a nationally represen-

tative set of respondents drawn from the National Health Interview Survey (NHIS). The MEPS

is a two-year overlapping panel focused on health insurance coverage, health care utilization, and

expenditure, and is used to construct data for the National Health Accounts.

In the data, we observe two periods and two clusters. The first period corresponds to 2002-

2005 before Part D was introduced and the second period is the year 2007. For both periods we

observe a population of Medicare-eligible people (age 65 to 70) and a population of near-elderly

(age 60-64) who aren’t eligible for Medicare. The primary variable of interest is the out-of-

pocket prescription-drug spending. We also have information on demographic covariates (race,

sex, etc.).

In this case, it is natural to view the unobservable νt as an underlying health characteristic.

Since we are focused on the out-of-pocket spendings and the market environment (insurance) is

different for Medicare-eligible individuals it is natural to assume that h(0, c, νt) depends on c.

Monotonicity requirement is reasonable in this case: we expect healthier individuals to spend

less on the prescription drugs irrespective of their eligibility status. The cutoff rule defines the

cluster assignment, and it seems likely that the underlying health characteristics do not change

sharply at the age of 65. This situation makes independence assumption plausible, at least for

individuals who are close to the cutoff.

In the paper, this data is analyzed using different methods. The closest one to what I am

proposing is the difference in quantiles regression (see Table 8 in Engelhardt and Gruber [2011]).

The central structural assumption underlying this method is that the difference between quantiles

in two populations should stay constant over time in the absence of policy intervention. This is

a restrictive assumption that implies that the quantile function of the counterfactual data is the

sum of a quantile function for the control cluster and a difference in quantiles in the first period.
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Since the difference in quantiles does not need to be monotonic, there is no guarantee that this

sum is a bona fide quantile function. In general, it is not clear what assumptions on primitives

would imply this identification strategy.

I use the version of the model with one-dimensional unobservables, with and without covari-

ates. Following the paper, I use the out-of-pocket spendings as the outcome variable. We observe

several outcomes in the data and thus can potentially apply the multi-dimensional model. At the

same time, these outcomes are all different variants of spendings and seem to capture the same

underlying heterogeneity. Results for the one-dimensional model are presented in the Table 1.

Table 1: Quantile treatment effects

Quantile 10% 20% 30% 40% 50% 60% 70% 80% 90%

Unconditional -15.28 -28.58 -45.15 -97.34 -135.51 -186.82 -282.49 -345.90 -660.98
(3.88) (6.15) (26.37) (50.42) (81.78) (107.62) (108.82) (210.76) (317.24)

Conditional -15.71 3.66 -27.35 -61.99 -120.64 -162.80 -246.99 -305.66 -506.19
(3.30) (21.55) (15.95) (20.65) (30.34) (36.71) (49.69) (65.60) (151.41)

a Bootstrap standard errors in parenthesis.
b Conditional estimates are based on race: estimation in the first period is done keeping race constant, then these results are

aggregated in the second period.

Qualitatively results are similar to Engelhardt and Gruber [2011] but are smaller in magni-

tude, especially for top quantiles. Conditional effects are estimated more precisely, roughly with

the same standard error as in the paper.

7 Conclusion

In this paper, I constructed a new nonlinear model for diff-in-diff empirical settings. The model

can be used to address two different sources of bias that are likely present in these frameworks:

selection and technological bias. Selection bias can be dealt with using standard methods, while

technological bias requires structural assumptions on the underlying production functions. Nat-

ural assumptions are available in the case when the underlying heterogeneity is one-dimensional.

With multi-dimensional heterogeneity, the situation is considerably more complicated.

In the paper, I present three different approaches to identification with multi-dimensional

heterogeneity using multiple outcomes. These strategies are different in motivation; each has

its advantages and limitations. I believe that further research is needed in this direction. A
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particularly attractive approach is to formulate new restrictions on the transportation maps that

might lead either to partial or exact identification. This plan is especially feasible in the discrete

framework. In this case, we will face the same problem as in the extension in Section 4: even if the

unique transportation plan is selected the counterfactual distribution is only partially identified.

The discrete framework is also tractable from the statistical point of view because the optimal

transportation map is defined as a solution of the finite-dimensional linear program and for such

problems statistical guarantees can be obtained.
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A Single population

A.1 Restriction on the joint distribution

So far, I have ignored the joint distribution of the data in two periods. This distribution makes

sense, only when we are analyzing the same population in different time periods. It doesn’t exist

if the time periods correspond to different cohorts of people.

I start this subsection assuming that we don’t have access to any covariates and also let

the Assumption 2.3.1 hold in the first period: ν1 ⊥ C1. I focus on the assumptions that will

guarantee that the independence holds in the second period as well: ν2 ⊥ C2. These assumptions

turn out to be more restrictive in the repeated cross-section case, emphasizing the value of the

panel data.

I start specifying the counterfactual transition probabilities:{
E[{ν2 ∈ A}|ν1] =

∫
ν2∈A K̃(ν2|c2, c1, ν1)dν1

E[{C2 = 1}|ν1, ν2] = p̃(ν2, c1, ν1)
(1.1)

Function K(·|·) : V 2 × {0, 1}2 → R+ is the counterfactual probability kernel that describes

the evolution of unobservables depending on the counterfactual cluster assignment. Function

p(·) : V 2 × {0, 1} → [0, 1] is the counterfactual probability that describes the evolution of the

cluster assignment. Transitions in the data are generated if we substitute c1 with C1.

As a first step, I put an exclusion restriction on the counterfactual transitions:

Assumption A.1.1. (Sequential exogeneity) Counterfactual transitions depend only on

the information available in the first period:{
K̃(ν2|c2, c1, ν1) = K(ν2|c1, ν1)

p̃(ν2, c1, ν1) = p(c1, ν1)
(1.2)

This is a standard assumption made in the panel data literature. It can be separated into two

parts: the first is saying the the selection into clusters occurs before ν2 is known and the second

is saying that ν2 doesn’t depend on the cluster assignment. This assumption is reasonable if

we believe that ν completely characterizes the subjects. This may be restrictive if we put some

additional structure on ν (e.g., univariance).

The following independence restriction is a straightforward corollary of the Assumption A.1.1.
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Corollary A.1.1. (Conditional independence) C2 and ν2 are conditionally independent:

ν2 ⊥ C2|ν1, C1 (1.3)

This simple result emphasizes the connection between the independence in the second period

and information in the first period. It also allows me to systemize the application depending on

the properties of p(C1, ν1).

A.1.1 Overlap

In the first case that I consider, I assume that the following overlap condition holds:

Assumption A.1.2. (Cluster overlap) For any l, x 0 < P(C2 = 1|C1 = l, ν1 = x) < 1.

One might achieve the full identification even if this assumption holds only for some l, x. I

assume the more restrictive version to make identification as simple as possible, it can be adapted

given a particular application.

Define the propensity score: pk(l, x) = P(C2 = k|C1 = l, ν1 = x). Then we have the

following classical lemma (see Imbens and Rubin [2015] for a thorough discussion on the role of

the propensity score methods in causal inference):

Lemma A.1. (Reweighting) Let Assumption A.1.1 hold; fix a measurable function f , set A

and k and define the following random variable:

Z(f, k, A) =
{f(ν2) ∈ A,C2 = k}

pk(C1, ν1)
(1.4)

Then E[Z(f, k, A)] = E[{f(ν2) ∈ A}].

Proof. The proof is standard:

E[Z(f, k, A)] = E
[
{f(ν2) ∈ A,C2 = k}

pk(C1, ν1)

]
= E

[
E
[
{f(ν2) ∈ A,C2 = k}

pk(C1, ν1)

]
|C1, ν1

]
=

E
[
E [{f(ν2) ∈ A}|C1, ν1]E

[
{C2 = k}
pk(C1, ν1)

|C1, ν1

]]
= E[{f(ν2) ∈ A}] (1.5)

where the third equality from the sequential exogeneity.

This lemma implies that for any function f(ν2) we can compute its distribution from the

conditional distribution using appropriate weights. Applying this result to potential outcomes

we get the following corollary.
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Corollary A.1.2. Let Assumptions 2.3.2, A.1.2 hold, then µY2(0,2) and µY2(1,1) are identified.

Proof. I show the identification of µY2(0,2), the proof for the second measure is the same. As-

sumption A.1.2 justifies the use of the Lemma A.1:

E[{Y2(0, 2) ∈ A}] = E[{h(0, 2, ν2) ∈ A}] = E
[
{h(0, 2, ν2) ∈ A,C2 = 2}

p2(C1, ν1)

]
=

E
[
{h(0, C2, ν2) ∈ A,C2 = 2}

p2(C1, ν1)

]
= E

[
{Y2 ∈ A,C2 = 2}

p2(C1, ν1)

]
(1.6)

where the second equality follows from the lemma. Assumption 2.3.2 implies that we can define

ν1 = h−1(0, C1, Y1) leading to p2(C1, ν1) = p2(C1, h
−1(0, C1, Y1)) and thus {Y2∈A,C2=2}

p2(C1,ν1)
can be

constructed.

This result has the same role as the Corollary 2.1, implying that in the second period under

the sequential exogeneity and overlap assumptions we don’t need to assume independence, but

instead can guarantee it. Of course, this strategy is unavailable in the case where we only observe

a repeated cross-section, because we can’t identify the propensity score.

A.1.2 No overlap

I consider the situation with no overlap, in particular, constant assignment C1 = C2:

Assumption A.1.3. (Constant assignment) Cluster assignment stays constant: C1 = C2.

With this assumption we need to restrict the counterfactual transition function K1(ν2|c1, ν1).

I assume the following exclusion restriction:

Assumption A.1.4. (No learning) Counterfactual transition function K1(ν2|c1, ν1) doesn’t

depend on c1: K1(ν2|c1, ν1) = K̂1(ν2|ν1) for some function K̂1.

This assumption doesn’t allow for causal effect of cluster assignment on future unobservables.

This assumption essentially prohibits learning. Its validity depends on the application, definitions

on clusters and meaning of ν. The main consequence of this assumptions is that independence

in the first period implies independence in the second period:

Corollary A.1.3. Assume that ν1 ⊥ C1, let Assumptions A.1.4 and A.1.1 hold. Then ν2 ⊥ C2.

There is no direct relationship between Assumptions A.1.4 and A.1.3. At the same time, if we

have at least some degree of overlap (Assumption A.1.2 holds partially) then there is no reason

to use Assumption A.1.4 for identification, because it can be achieved without it.
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A.1.3 Repeated cross-section

If the data that we observe have no information about the joint distribution of outcomes (re-

peated cross-section) then even if the overlap assumption holds we can’t use the propensity score

to reweigh the observations in the second period. If we know that C1 = C2, then we need As-

sumption A.1.4 to hold. If we know that C1 6= C2, then we can either let Assumption A.1.4 to

hold, or use the following:

Assumption A.1.5. (Independent assignment) Cluster assignment in the second period is

independent of the history: C2 ⊥ (C1, ν1)

Under the last assumption the propensity score is constant (doesn’t depend on (C1, ν1)) and

thus we can formally apply Lemma A.1.

One can summarize the identification results in the following way: if the cluster assignment

is constant then there is no difference between repeated cross-section and panel data in terms

of identification. It can be achieved under a restrictive condition on the transition kernel that

forbids learning.

If the cluster change over time then there is a crucial difference between different data struc-

tures. With the panel data independence can be achieved using propensity score methods using

the sequential exogeneity and overlap. With the repeated cross-section we need to make a re-

strictive assumption on the propensity score to achieve independence.

This logic has a straightforward generalization for the case with time-constant covariates. In

this case, the covariates can be included into Assumptions A.1.1,A.1.3,A.1.4, and A.1.5, leading

to the conditional version of these restrictions. In turn all the identification results will hold

conditional on this covariate.
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B Additional identification results

Proof of Proposition 3.5: Define λc = µY1(0,c). Let T ? be the solution of the following program:

T ? = arg min
T :µY1(0,1)=T#µY1(0,1)

E[‖Y1(0, 2)− T (Y1(0, 2))‖2] (2.1)

By the assumptions the solution exists and is unique (Villani [2008]). For each x ∈ supp{µY1(0,2)}
define the curve (displacement interpolation) πt(x) = (1 − t)x + tT ?(x). Then it is known

that (constant speed) geodesic between λ1 and λ2 is given by µt := (πt)#λ2 for t ∈ [0, 1] (see

Santambrogio [2015]).

Next, take any t ∈ [0, 1] and let µν1 = µt. Standard results about geodesics in W2(Ω) (see

Santambrogio [2015]) imply that h−1
µt (2) = πt(x) and hµt(1) = T ?(πt(x)). Combining this we get

that γµt = T ?. Since t was arbitrary this implies the result.

B.1 Covariates

Covariates can be included in the multidimensional model in exactly the same way as before.

The potential outcome function is adjusted in the same way:

Yt(0, c) = h(0, c, νt, Xt) (2.2)

Multivariance assumption is adapted in the following way:

Assumption B.1.1. (Multivariance with covariance) For c = 1, 2 and x ∈ X function

h(0, c, ·, x) : V → RK is a bijection.

In the case with covariates the high-level restrictions should be placed on γ?x = h(0, 1, ·, x) ◦
h−1(0, 2, ·, x). Assumptions are adapted in a straightforward way:

Assumption B.1.2. (Multidimensional monotonicity with covariates) For each x ∈
X function γ?x := h(0, 1, ·, x) ◦ h−1(0, 2, ·, c) is monotone (as operator in RK). In particular, for

any z1, z2 ∈ RK the following restriction holds:

(z1 − z2, γ
?
x(z1)− γ?x(z2)) > 0 (2.3)
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Assumption B.1.3. (Symmetry with covariates) For each x ∈ X function γx : RK → RK

is differentiable and has a symmetric Jacobian:

∂γ?k,x(z)

∂zl
=
∂γ?l,x(z)

∂zk
(2.4)

for all k, l.

Assumption B.1.4. (Technical conditions with covariates) For c = 1, 2 and x ∈ X
measure µY1(0,c)|X=x is absolutely continuous with respect to λ(RK); for c = 1, 2 outcomes are

square-integrable: E[‖Y1(0, c)‖2|X = x] < ∞; densities fY1(0,c)|x are supported on the open,

bounded and convex regions Λc(x), bounded from below and above and belong to Cα(Λc(x)) for

some α.

As a result of this assumptions we have a conditional analog of the identification result:

Proposition B.1. (Identification with covariates) Let Assumptions 2.4.1, B.1.1,B.1.2,B.1.3,B.1.4

hold. Then the function γx := (γ?x)|Λ2 is identified as a solution to the following transportation

problem:

γ := arg min
T :µY1(0,1)|X=x=T#µY1(0,2)|X=x

E[‖Y1(0, 2)− T (Y1(0, 2))‖2|X = x] (2.5)

If additionally Assumption 2.4.3 holds then µY2(0,1)|C2=1,X = (γx)#µY2|C2=1,X and thus the coun-

terfactual distribution is identified.

From the practical viewpoint, conditional identification is not very useful if we have continuous

covariates because the general nonparametric approach would require a tremendous amount of

data. As a result, it is essential to have a setting that can be used in practice. I present a

particular example below.

Example B.1.1. (Multivariate normal outcomes) Let µY1(0,c)|X=x = N (mc(x),Σc(x)) –

outcomes in the first period have a conditional multivariate normal distribution. In this case,

a known result (for example, see Dowson and Landau [1982]) implies that γx has the following

form:

γx(y) = m1(x) + Σ
1
2
1 (x)

(
Σ

1
2
1 (x)Σ2(x)Σ

1
2
1 (x)

)− 1
2

Σ
1
2
2 (x)(y −m2(x)) (2.6)

This is a direct generalization of the standard diff-in-diff algorithm to multiple outcomes.
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It is clear that the example above can be generalized to a semiparametric location-scale family,

where we can use other generating distribution besides the normal one.
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C Statistical proofs

Proof of Lemma 5.1: I start with the first claim. Let F1 be arbitrary strictly increasing

function on [a, b], fix ε > 0 and let g ∈ D[a, b] be such that ‖F1− g‖∞ < ε and g is a distribution

function on [a, b]. By construction for any x, y ∈ [a, b] and x > y we have the following:

F1(x) ≥ F1(y) +

∫ x

y

f1(τ)dτ ≥ F1(y) + c(x− y) (3.1)

Consider any y ≤ b− 4ε
c

, x ≥ a+ 5ε
c

such that x > y. Then we have the followin{
g(x) ≥ F1(x)− ε > F1(y) + c

2
(x− y)− ε

g(y) ≤ F1(y) + ε < F1(x)− c
2
(x− y) + ε

⇒

{
g
(
y + 4ε

c

)
> F1(y) + ε

g
(
x− 4ε

c

)
< F1(x)− ε

(3.2)

Next, take any p ∈ [0, 1]. Let x := C1(F )(p), by definition it follows that F (x) ≥ p. If

x ≥ b− 4ε
c

, then it follows that C1(g)(p) ≤ b . Otherwise, by the first inequality above it follows

that g
(
x+ 4ε

c

)
> p. As a result, C1(g)(p) < x+ 2ε

c
or C1(g)(p) ≤ x+ 4ε

c
. Next, if F (x) = p and

x ≥ a+ 5ε
c

then the second inequality implies that C1(g)(p) > x− 2ε
c

. If F (x) > p then it follows

that F (x−) ≤ p, and taking left limits in the second inequality we get the following:

g

((
x− 4ε

c

)
−
)
≤ F1(x−)− ε < p (3.3)

This implies that g(x − 5ε
c

) < p and thus it follows that C1(g)(p) > x − 5ε
c

. This implies that

‖C1(g)− C1(F1)‖∞ ≤ Kε proving the first claim.

To prove the second claim observe the following:

‖g2(g3(x))− F2(F1(x))‖∞ ≤ ‖g2(g3(x))− F2(g3(x))‖∞ + ‖F2(g3(x))− F2(F1(x))‖∞ (3.4)

The first summand is less that ‖F2 − g2‖∞ < ε, the second summand can be made arbitrarily

small because F2 is continuous by assumption and thus is uniformly continuous because [a, b] is

compact.

57



Proof of Proposition 5.1: The estimator of τ̂ has the following form:

τ̂ − τ =
1

N21

N21∑
i=1

Y21i −
1

N21

N21∑
i=1

γ̂(Y22i)− E[Y2|C2 = 1] + E[γ(Y2)|C2 = 2]+

1

N21

N21∑
i=1

γ(Y22i)−
1

N21

N21∑
i=1

γ(Y22i)⇒

|τ̂ − τ | ≤

∣∣∣∣∣ 1

N21

N21∑
i=1

Y21i − E[Y2|C2 = 1]

∣∣∣∣∣+

∣∣∣∣∣ 1

N21

N21∑
i=1

γ̂(Y22i)−
1

N21

N21∑
i=1

γ(Y22i)

∣∣∣∣∣+∣∣∣∣∣E[γ(Y2)|C2 = 2]− 1

N21

N21∑
i=1

γ(Y22i)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

N21

N21∑
i=1

Y21i − E[Y2|C2 = 1]

∣∣∣∣∣+
‖f̂ − f‖∞ +

∣∣∣∣∣E[γ(Y2)|C2 = 2]− 1

N21

N21∑
i=1

γ(Y22i)

∣∣∣∣∣ = op(1) + op(1) + op(1) (3.5)

The last equality follows by the law of large numbers and continuous mapping theorem (for

general metric spaces) together with Corollary 5.1.1.

The quantile result follows similarly:

‖τ̂(q)− τ(q)‖∞ ≤ ‖F̂−1
Y2|C2=1(q)− F−1

Y2|C2=1(q)‖∞+

‖γ ◦ F−1
Y2|C2=2(q) − γ̂ ◦ F̂−1

Y2|C2=2(q)‖∞ = op(1) + op(1) (3.6)

where results follow from Corollary 5.1.1 and continuous mapping theorem.
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Derivatives for Lemma 5.2: Derivative for C3 has the following form:

D(C3)|(FY1|C1=1,FY1|C1=2)(h1, h2)(x) = − h1

fY1|C1=1

◦ F−1
Y1|C1=1 ◦ FY1|C1=2(x)+

h2(x)

fY1|C1=1(F−1
Y1|C1=1(FY1|C1=2(x)))

(3.7)

Derivative for C4 has the following form:

D(C4)|(FY1|C1=1,FY1|C1=2,FY2|C2=2)(h1, h2, h3)(q) = − h1

fY1|C1=1

◦F−1
Y1|C1=1 ◦FY1|C1=2 ◦F−1

Y2|C2=2(q)+(
h2

fY1|C1=1 ◦ F−1
Y1|C1=1 ◦ FY1|C1=2

)
◦ F−1

Y2|C2=2(q)−

fY1|C1=2(F−1
Y2|C2=2(q))

fY1|C1=1(F−1
Y1|C1=1(FY1|C1=2(F−1

Y2|C2=2(q)))))

(
h3

fY2|C2=2

◦ F−1
Y2|C2=2(q)

)
(3.8)
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Proof of Proposition 5.2: For brevity I assume that we have only two clusters and omit

subscript (c, k). Applying Lemma 5.2 and using the fact that Donsker theorem holds for F̂Yt|Ct=c,

we get the following by the functional delta method:

√
n11 + n12 (γ̂ − γ) = −

√
n11 + n12

n11

(
√
n11

F̂Y1|C1=1 − FY1|C1=1

fY1|C1=1

◦ F−1
Y1|C1=1 ◦ FY1|C1=2

)
+√

n11 + n12

n12

(
1

fY1|C1=1

◦ F−1
Y1|C1=1 ◦ FY1|C1=2

)
√
n12

(
F̂Y1|C1=2 − FY1|C1=2

)
+ op(1) (3.9)

This implies the first result, because
√
n12

(
F̂Y1|C1=2 − FY1|C1=2

)
and
√
n11

(
F̂Y1|C1=1 − FY1|C1=1

)
converge to two independent centered Gaussian processes on [a, b].

In particular, the covariance function has the following representation:

ΦG1 =
1

λ

FY1|C1=1(γ(max{x, y}))− FY1|C1=1(γ(x))FY1|C1=1(γ(y))

fY1|C1=1(γ(x))fY1|C1=1(γ(y))
+

1

1− λ
FY1|C1=2(max{x, y})− FY1|C1=2(x)FY1|C1=2(y)

fY1|C1=1(γ(x))fY1|C1=1(γ(y))
(3.10)

where λ = lim n11

n11+n12
.

To prove the second claim consider the following representation:

√
n22

1

n22

n22∑
i=1

(γ̂(Y22i)− E[γ(Y2)|C2 = 2]) = Gn22γ+ (Gn22γ−Gn22 γ̂) +
√
n22 (P(γ̂ − γ)) (3.11)

The first term is asymptotically normal by the central limit theorem. The second term is op(1)

(see Chapter 19 of Van der Vaart [1998]), because the class of monotone functions is P-Donsker

and γ̂ converges in sup-norm. Expansion for the third term follows from the representation

defined above:

P(γ̂ − γ) = −P

(
F̂Y1|C1=1 − FY1|C1=1

fY1|C1=1

◦ F−1
Y1|C1=1 ◦ FY1|C1=2

)
+

P
((

1

fY1|C1=1

◦ F−1
Y1|C1=1 ◦ FY1|C1=2

)(
F̂Y1|C1=2 − FY1|C1=2

))
+ op

(
1
√
n22

)
(3.12)

Define the following functions:
K11(z) :=

∫ {z<F−1
Y1|C1=1

◦FY1|C1=2(x)}−FY1|C1=2(x)

fY1|C1=1(F−1
Y1|C1=1

◦FY1|C1=2(x))
dFY2|C2=2(x)

K12(z) :=
∫ {z<x}−FY1|C1=2(x)

fY1|C1=1(F−1
Y1|C1=1

◦FY1|C1=2(x))
dFY2|C2=2(x)

(3.13)
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It follows from the representation above:

P(γ̂) = P(γ)− 1

n11

n11∑
i=1

K11(Y11i) +
1

n12

n12∑
i=1

K12(Y12i) + op

(
1
√
n22

)
(3.14)

As a result we have the following:

√
n

1

n22

n22∑
i=1

(γ̂(Y22i)− E[γ(Y2)|C2 = 2]) =

√
n

n22

Gn22γ+

√
n

n11

Gn11K11 +

√
n

n12

Gn12K12 +op(1)

(3.15)

It implies:

√
n (τ̂ − τ) =

√
n

n21

√
1

n21

(
n21∑
i=1

(Y21i − E[Y2|C2 = 1])

)

−
√

n

n22

Gn22f −
√

n

n11

Gn11K11 −
√

n

n12

Gn12K12 + op(1) (3.16)

This implies the asymptotic normality. Asymptotic variance has the following expression:

V =
1

α21

V[Y2|C2 = 1] +
1

α11

V[K11(Y1)|C1 = 1]+

1

α12

V[K12(Y1)|C1 = 1] +
1

α22

V[f(Y2)|C2 = 2] (3.17)

where αct = lim nct
n

.

The last case follows directly by delta method and Lemma 5.2:

√
n22 (τ̂(q)− τ(q)) = −

√
n22

n11

√
n11

(
F̂Y1|C1=1 − FY1|C1=1

fY1|C1=1

◦ F−1
Y1|C1=1 ◦ FY1|C1=2 ◦ F−1

Y2|C2=2(q)

)
+

√
n22

n12

√
n12

(
F̂Y1|C1=2 − FY1|C1=2

fY1|C1=1 ◦ F−1
Y1|C1=1 ◦ FY1|C1=2

)
◦ F−1

Y2|C2=2(q)−

√
n22

fY1|C1=2(F−1
Y2|C2=2(q))

fY1|C1=1(F−1
Y1|C1=1(FY1|C1=2(F−1

Y2|C2=2(q)))))

(
F̂Y2|C2=2 − FY2|C2=2

fY2|C2=2

◦ F−1
Y2|C2=2(q)

)
+op(1)

(3.18)

It follows that estimator converges to a Gaussian process on (0, 1).
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Proof of Lemma 5.4: Following the proof of Proposition 5.2 we have the following:

√
n12 + n13

(
γ̂1,2(γ−1

1,2(·))− γ̂1,3(γ−1
1,3(·))

)
=

√
n12 + n13

(
γ̂1,2(γ−1

1,2(·))− γ1,2(γ−1
1,2(·))− (γ̂1,3(γ−1

1,3(·))− γ1,2(γ−1
1,2(·)))

)
=

√
n12 + n13√
n12

√
n12

(
F̂Y1|C1=2(γ−1

1,2(·))− FY1|C1=2(γ−1
1,2(·))

)
fY1|C1=1(·)

−

√
n12 + n13√
n13

√
n13

(
F̂Y1|C1=3(γ−1

1,3(·))− FY1|C1=3(γ−1
1,3(·))

)
fY1|C1=1(·)

+ op(1) (3.19)

From this representation we have the independence result. Also it implies the convergence to

Gaussian process (by Donsker’s theorem) with the following covariance function:

ΦG3 =
1

α

FY1|C1=2(γ−1
1,2(max{x, y}))− FY1|C1=2((γ−1

1,2(x))FY1|C1=2((γ−1
1,2(y))

fY1|C1=1(x)fY1|C1=1(y)
+

1

1− α
FY1|C1=3(γ−1

1,3(max{x, y}))− FY1|C1=3((γ−1
1,3(x))FY1|C1=3((γ−1

1,3(y))

fY1|C1=1(x)fY1|C1=1(y)
(3.20)

Proof of Lemma 5.5: We start with the following representation:

√
n22 + n23

(
1

n22

n22∑
i=1

{γ̂1,2(Y22i) < ·} −
1

n23

n22∑
i=1

{γ̂1,3(Y23i) < ·}

)
=

√
n22 + n23

(
1

n22

n22∑
i=1

{γ̂1,2(Y22i) < ·} − P{γ1,2(Y22i) < ·}

)
−

√
n22 + n23

(
1

n23

n22∑
i=1

{γ̂1,3(Y23i) < ·} − P{γ1,3(Y23i) < ·}

)
=

√
n22 + n23√
n22

Gn22{γ1,2(Y22i) < ·} −
√
n22 + n23√
n23

Gn23{γ1,3(Y23i) < ·}+
√
n22 + n23√
n22

Gn22 ({γ̂1,2(Y22i) < ·} − {γ1,2(Y22i) < ·}) +

√
n22 + n23√
n23

Gn23 ({γ̂1,3(Y23i) < ·} − {γ1,3(Y23i) < ·}) +

√
n22 + n23P ({γ̂1,2(Y22i) < ·} − {γ1,2(Y22i) < ·})−

√
n22 + n23P ({γ̂1,3(Y23i) < ·} − {γ1,3(Y23i) < ·}) (3.21)

The first part converges to a standard µY2(0,1)|C2=1-Brownian bridge by Donsker’s theorem. The

second two terms are op(1) by Theorem 3.2 and Lemma 3.2 in van der Vaart and Wellner [2007].
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The last two terms are equivalent to the following:

√
n22 + n23P ({γ̂1,c(Y2ci) < ·} − {γ1,c(Y2ci) < ·}) =

√
n22 + n23fY2(0,1)|C2=1

(
γ̂1,c ◦ γ−1

1,c − γ1,c ◦ γ−1
1,c

)
+ op(1). (3.22)

This follows from Lemma 4.2 in van der Vaart and Wellner [2007]. Combining this with the

result of the previous lemma we get that the last two terms together converge to G3,1 with the

following covariance function:

ΦG3,1(x, y) = λfY2(0,1)|C2=1(x)fY2(0,1)|C2=1(y)ΦG3(x, y) (3.23)

where λ = lim n22+n23

n12+n13
.
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D Bootstrap algorithm for testing (preliminary)

In order to compute the quantiles for the test statistic I suggest the following procedure that

consists of three steps. On the first step we estimate consistently the density fY1|C1=1 and use

γ̂1,c(Y2ci) for c = 2, 3 to estimate fY2(0,1)|C1=1. Let f̂Y1|C1=1 and f̂Y2(0,1)|C1=1 be the resulting

estimators. Any estimators that are uniformly consistent in probability can be used. On the

second step we construct four bootstrap samples for Y1,c and Y2,c, where c = 2, 3. Let G?
n be the

empirical process with respect to bootstrap samples and let Y ?
t,c be the bootstrapped Yt,c. In the

third step we construct the following process:

Z(t) :=

(√
n22 + n23√
n22

G?
n22
{Y ?

22i < γ̂−1
1,2(t)}+

√
n22 + n23√
n12

f̂Y2(0,1)|C2=1(t)

f̂Y1|C1=1(t)
G?
n12
{Y ?

12i < γ̂−1
1,2(t))}

)
−(√

n22 + n23√
n23

G?
n23
{Y ?

23i < γ̂−1
1,3(t)}+

√
n22 + n23√
n13

f̂Y2(0,1)|C2=1(t)

f̂Y1|C1=1(t)
G?
n13
{Y ?

13i < γ̂−1
1,3(t))}

)
(4.1)

Given bootstrap samples we can approximate the law of Z(t) with arbitrary precision and com-

pute the distribution of ‖Z‖∞. Quantiles of theses distributions then can be used for testing.

To prove the formal results for this algorithm I start with the following high-level assumption.

Assumption D.0.1. The following conditions are satisfied for estimators:
‖f̂Y1|C1=1 − fY1|C1=1‖∞ = op(1)

‖f̂Y2(0,1)|C2=1 − fY2(0,1)|C2=1‖∞ = op(1) under H0

‖f̂Y2(0,1)|C2=1 − f‖∞ = op(1) for some bounded f under H1

‖γ̂−1
1,c − γ−1

1,c‖∞ = op(1)

(4.2)

Assumptions on density estimator for f̂Y1|C1=1 are mild, e.g., strong uniform consistency is

proved for kernel estimators in Silverman et al. [1978]. The second restriction is trickier, because

we use pseudo observations γ̂1,c(Y2,c) to estimate the density. However, in light of uniform

consistency of γ̂1,c this fact does not matter for uniform consistency of γ̂1,c(Y2,c), at least if

we use kernel estimators: by linearity the error from using pseudo observations is bounded by

‖γ̂1,c−γ1,c‖∞ = op(1). The third restriction, concerning behavior under H1 follows if γ̂1,c converge

under H1 as well. Inspection of propositions concerning behavior of γ̂ implies that the proofs do

not depend on the fact that the model is correctly specified.

64



This assumption is needed to have the following equality:(√
n22 + n23√
n22

G?
n22
{Y ?

22i < γ̂−1
1,2(·)}+

√
n22 + n23√
n12

f̂Y2(0,1)|C2=1

f̂Y1|C1=1

G?
n12
{Y ?

12i < γ̂−1
1,2(·))}

)
−(√

n22 + n23√
n23

G?
n23
{Y ?

23i < γ̂−1
1,3(·)}+

√
n22 + n23√
n13

f̂Y2(0,1)|C2=1

f̂Y1|C1=1

G?
n13
{Y ?

13i < γ̂−1
1,3(·))}

)
=(√

n22 + n23√
n22

G?
n22
{Y ?

22i < γ−1
1,2(·)}+

√
n22 + n23√
n12

fY2(0,1)|C2=1

fY1|C1=1

G?
n12
{Y ?

12i < γ−1
1,2(·))}

)
−(√

n22 + n23√
n23

G?
n23
{Y ?

23i < γ−1
1,3(·)}+

√
n22 + n23√
n13

fY2(0,1)|C2=1

fY1|C1=1

G?
n13
{Y ?

13i < γ−1
1,3(·))}

)
+op(1)

(4.3)

The RHS now does not depend on estimated quantities and thus converges to the same limit as

the following expression:(√
n22 + n23√
n23

Gn23{Y23i < γ−1
1,3(·)}+

√
n22 + n23√
n13

fY2(0,1)|C2=1

fY1|C1=1

Gn13{Y13i < γ−1
1,3(·))}

)
−(√

n22 + n23√
n23

Gn23{Y23i < γ−1
1,3(·)}+

√
n22 + n23√
n13

fY2(0,1)|C2=1

fY1|C1=1

Gn13{Y13i < γ−1
1,3(·))}

)
(4.4)

And since this is the linearization of the process in Lemma 5.5 and ‖·‖∞ is a continuous functional

we have the result by functional continuous mapping theorem.
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