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1 Introduction

Although the effi cient markets hypothesis implies that current stock prices reflect all the

information included in previous prices and financial statements, there is a substantial body of

empirical evidence which suggests that individual stock returns are not cross-sectionally inde-

pendent of some of their observable characteristics. In particular, a broad consensus has emerged

on the presence of momentum, reversals and value effects in individual stock returns all over the

world (see e.g. Asness, Moskowitz and Pedersen (2013) and the references therein). As is well

known, short term reversal strategies regularly invest in those stocks that have underperformed

in the past month, while momentum strategies typically invest in stocks that outperformed over

the previous months of the past year. In turn, value strategies focus on stocks whose price-to-

book or price-to-earnings ratios are low. However, most of the literature has focused on assessing

the excess returns obtained by various trading strategies rather than on precisely analyzing the

cross-sectional dependence between stock returns this month and those characteristics at the

time investment decisions are made. Such an analysis is important not only because it can

potentially lead to better decisions, but also because it can shed some light on the sources of

the dependence.

There are several different ways of characterizing dependence. The most straightforward

one is by means of linear relationships, as it is often done in the extensive growth convergence

literature in macroeconomics. Specifically, a researcher could cross-sectionally regress individual

stock returns this month on a constant and returns over previous months, and look at the size

and significance of Pearson correlation coeffi cient. Figures 1a (reversals) and 1b (momentum)

contain the results of applying such a procedure to stocks in the CRSP database in March

1998, an uneventful month. Similarly, Figures 2a and 2b present the corresponding evidence

for August 2007, a period at the beginning of the global financial crises with wild gyrations in

the US stock market due to the actions of quantitative equity market—neutral trading strategies

(see Lo (2007)). The problem with this linear approach is that the OLS coeffi cient estimates

may be extremely sensitive to a few outliers, as illustrated in Figure 2b, in which the slightly

negative slope is largely driven by the southeasternmost stocks. In fact, if we trim the sample

of 2,463 observations by simply excluding those five stocks whose cumulative return over the

period September 2006 - June 2007 exceeded 300%, we obtain a positive correlation.

A far more robust procedure would involve rank regressions, whereby one regresses the cross-
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sectional rank of stocks this month on a constant and their cross-sectional rank over the relevant

period in the past. Figures 1c and 2c (reversals) and 1d and 2d (momentum) contain the scatter-

plots of the corresponding normalized ranks for the same two months, the associated regression

lines and Spearman correlation coeffi cients. This procedure is closely related to the concept of

“copula”, which allows us to separate joint distributions from marginal ones by fixing the latter.

In the case of rank regressions, in particular, the empirical marginal distributions are discrete

uniform by construction. But this is not the only possibility. An equally robust approach is

to look at the dependence between the so-called Gaussian ranks, which are simple monotonic

transformations of the usual ranks by means of the standard normal quantile function. In fact,

one may convincingly argue that scatterplots of Gaussian ranks are easier to interpret than

scatterplots of uniform ranks, if only because empirical researchers are more used to analyz-

ing real data with approximately Gaussian marginals than uniform ones (see Joe (2015) for a

more formal justification). Figures 1e and 2e (reversals) and 1f and 2f (momentum) show the

scatterplots of these alternative ranks, the level curves of bivariate kernel density estimates, the

corresponding regression lines and what we shall henceforth call the Gaussian rank correlation

coeffi cients.

Both the Gaussian rank correlation and Spearman correlation coeffi cients confirm the pres-

ence of momentum and short term reversals in individual stock returns. However, feasible

trading strategies that exploit such dependence require more specificity. In particular, we can

devise sound trading strategies along the following lines:

1. We look at the (Gaussian) rank of the chosen characteristic of an individual stock over the

relevant observation period.

2. Conditional on that rank, a copula allows us to make probabilistic predictions about the

rank of the return on that stock over the next month.

3. If the predicted probability of the rank being high is large, we buy the stock.

4. If the predicted probability of the rank being low is large, we sell it short.

5. Otherwise, we do not hold any position on it.

The (Gaussian) rank correlation is obviously very important in determining those proba-

bilities, but it will not necessarily be a suffi cient statistic in the non-Gaussian copula case. In
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general, non-linear (i.e. tail) dependence matters, especially when the rank correlation coeffi cient

is low, as in Figures 1 and 2.

Nowadays copulas are extensively used in many other economic and finance applications, with

the Gaussian copula being very popular despite ruling out non-linear dependence, particularly

in the lower tail. Nevertheless, the validity of this copula in finance has been the subject of

considerable public debate, to the extent that the media declared it “the formula that felled Wall

Street”(see the provocative article by Salmon (2009), the more nuanced analysis by MacKenzie

and Spears (2012), and the academic response by Donnelly and Embrechts (2010)). To be fair,

the statistics and econometric literatures were well aware of the possibility of misspecification

of the assumed copula, and several more or less formal diagnostics have already been proposed

(see e.g. Malevergne and Sornette (2003), Berg and Quessy (2009) and Genest, Rémillard and

Beaudoin (2009)).

The first objective of our paper is to provide computationally simple and intuitive expres-

sions for score-based specification tests of Gaussian copulas against both Generalized Hyperbolic

alternatives, which include the symmetric and asymmetric Student t, normal-gamma mixtures,

hyperbolic, normal inverse Gaussian and symmetric and asymmetric Laplace distributions, and

Hermite polynomial expansions.

We decompose our tests into third and fourth moment analogues, and obtain more powerful

one-sided Kuhn-Tucker versions that are equivalent to the Likelihood Ratio test. Importantly, we

show that the asymptotic distribution of our proposed tests is standard despite the non-standard

features of the problem in the case of the asymmetric Student t (underidentified parameters

under the null), Generalized Hyperbolic (three different ways of converging to the null), and

Hermite expansions (identically zero scores). In all cases, we derive closed-form expressions for

the asymptotic covariance matrices of the influence functions we use for testing, which should

improve the finite sample reliability of our tests. As an aside, we also show that the empirical

Gaussian rank correlation coeffi cient is an effi cient estimator of its population counterpart when

the true copula is Gaussian, and remains consistent even when it is not, thereby inheriting the

usual properties of the Gaussian pseudo maximum likelihood estimators of Pearson correlation

coeffi cient.

For pedagogical reasons, we initially assume known margins, but since this rarely happens

in practice, we also consider the usual two-step estimation procedure, whereby the marginal
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distributions are replaced by their (re-scaled) empirical cdf counterparts. For the distributions

that we consider as alternatives, we show that it is possible to capture the variance modification

in the scores of the shape parameters by adding linear combinations of third and fourth Hermite

polynomials in the Gaussian ranks. In contrast, the adjustment for the correlation coeffi cients

only involves linear combinations of second order polynomials in each of those variables.

We also study the finite sample properties of the asymptotic and parametric bootstrap ver-

sions of our proposed tests with an extensive Monte Carlo analysis. We find that the asymptotic

p-values are very reasonable in moderately large samples sizes, but not in small ones. In con-

trast, the parametric bootstrap rejection rates are close to being perfect for all samples sizes. In

addition, the finite sample power of the different test statistics agrees with what the asymptotic

results would suggest.

Finally, we employ our proposed tests to assess the suitability of the Gaussian copula for

capturing the short-term reversals and momentum effects observed in individual stock returns

in the CRSP data base. In both cases, we reject the null hypothesis of a Gaussian copula by a

long margin, the source of the rejection being not only the “cokurtosis”between the Gaussian

ranks, but also their “coskewness”, especially for momentum strategies. For that reason, we

estimate the parameters of the non-Gaussian copulas by means of a constrained indirect inference

approach that uses the Gaussian rank correlations and our score tests as sample statistics to

match, as suggested by Calzolari, Fiorentini and Sentana (2004). Importantly, we find that it is

possible to devise successful trading strategies that exploit those features of the data.

The rest of the paper is divided as follows. In section 2, we discuss the relevant theoretical

background to the problem, and develop our proposed tests. Next, we report the results from

an extensive Monte Carlo exercise in section 3. We then analyze the cross-sectional dependence

between monthly returns on individual U.S. stocks in the CRSP database and some of their

observable characteristics in section 4, followed by our conclusions. Proofs and auxiliary results

are relegated to appendices.

2 Theoretical background

2.1 Econometric model

Let x denote a vector of K continuous random variables. The traditional way of modelling

the dependence between the elements of x is through the joint distribution function FK(x) or the
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associated density function fK(x) when it is well defined. These functions are often recursively

factorized for a predetermined ordering as the sequence of conditional distributions of xk given

xk−1, xk−2, . . . x1 (k = 2, . . . ,K) times the marginal distribution of x1.

In contrast, the standard copula approach first instantaneously transforms each of the el-

ements of x into a uniform random variable by means of the probability integral transform

uk = F1k(xk), where F1k(.) is the marginal cumulative distribution function of xk, and then

models the dependence of the random vector u = (u1, . . . , uK)′ through a joint distribution

function FU(u) with uniform marginals defined over the unit hypercube in RK . This distrib-

ution function is known as the copula distribution function, and the associated density as the

copula density function.

Although there are many well known examples of bivariate copulas, some of them are popular

simply because they are mathematically convenient, as opposed to being motivated by empirical

observations on real life phenomena. More importantly, they are diffi cult to generalize to multiple

dimensions. On the other hand, the Gaussian copula is a popular choice both in bivariate and

multivariate contexts since it is easily scalable. Moreover, as it name suggests, it is the copula

function that corresponds to the multivariate Gaussian distribution, which remains dominant in

multivariate statistical analysis.

More formally, define y = (y1, . . . , yK)′, where yk = Φ−1
1 (uk), Φ1(.) denotes the univariate

standard normal cumulative distribution function and Φ−1
1 (.) the corresponding quantile func-

tion. The Gaussian copula with correlation matrix P(ρ), where P(ρ) is a positive definite matrix

which contains K(K−1)/2 possibly distinct functions of the p×1 vector of parameters ρ, is de-

rived from the cumulative distribution function of a multivariate random vector y ∼ N [0,P(ρ)].

Specifically, its density function will be given by

fU(u;ρ) = |P(ρ)|−1/2 exp

{
−1

2
y′[P−1(ρ)− IK ]y

}
= |P(ρ)|−1/2 exp

{
−1

2
[ς(ρ)− ς(0)]

}
,

where ς(ρ) = y′P−1(ρ)y and ς(0) = y′y, as we assume throughout that we have parametrized

P(ρ) in such a way that P(0) = IK . Figure 3 displays a bivariate Gaussian copula density with

Spearman correlation of .115 (ρ = .12), both with uniform (Figures 3a-b) and Gaussian margins

(Figures 3c-d). Finally, Figure 3e presents the conditional densities generated by the Gaussian

copula density with Gaussian margins. As expected, only the mean depends on the value of the

conditioning variable.

In principle, we could consider more complex models by conditioning on past values of x or
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present and past values of some exogenous variables z, but for the sake of clarity we will only

explicitly cover multivariate distributions without conditioning variables.1

2.2 Some parametric models that nest the Gaussian copula

As we mentioned in the introduction, the Gaussian copula rules out any type of non-linear

dependence between the elements of y. For that reason, empirical researchers have considered

more flexible copulas that nest the normal copula as a special case, which are generated from

a multivariate distribution that in turn nests the multivariate normal distribution. Some im-

portant examples are the symmetric Student t, the far more flexible Generalized Hyperbolic

distribution, as well as Hermite polynomial expansions.

2.2.1 Student t copulas

The Student t distribution generalizes the multivariate normal distribution through a single

additional parameter, which is usually known as the degrees of freedom. The log density of a

(standardized) multivariate Student t distribution with mean 0, correlation matrix P(ρ) and

ν > 2 degrees of freedom is given by the following expression:

l(φ;K) = h(η;K) + d(ρ) + g [ς(ρ), η;K] , (1)

h(η;K) = ln

[
Γ

(
Kη + 1

2η

)]
− ln

[
Γ

(
1

2η

)]
− K

2
ln

(
1− 2η

η

)
− K

2
lnπ,

d(ρ) = −1

2
ln |P(ρ)| ,

g [ς(ρ), η;K] = −
(
Kη + 1

2η

)
ln

[
1 +

η

1− 2η
ς(ρ)

]
where Γ(.) is Euler’s gamma (or generalized factorial) function and η = 1/ν (see Fiorentini,

Sentana and Calzolari (2003)).2 This distribution is such that its marginal components are also

univariate Student t’s with mean 0, unit variance and ν degrees of freedom.

Therefore, the Student t copula will be given by the expression

fU(u;ρ, η) = |P(ρ)|−1/2 exp[h(η;K)−Kh(η; 1)]
[1 + ης(ρ)/(1− 2η)](Kη+1)/(2η){

ΠK
k=1

[
1 + ηy2

k/(1− 2η)
]}(η+1)/(2η)

,

where y = F−1
1 (u1; η), ..., F−1

1 (uK ; η)]′, with F−1
1 (uk; η) denoting the quantile function of a

univariate standardized Student t.
1One common complication in dynamic copula models is that in theory the “marginal” distributions of the

components used to transform observations into ranks should be conditional on the past of all the random variables
involved.

2This distribution differs from the textbook multivariate Student t distribution in that the kernel is ln[1 +
η(1 − 2η)−1ς] instead of ln[1 + ης] in order to guarantee that P(ρ) coincides with the correlation matrix. This
difference is inconsequential in the neighbourhood of the null hypothesis H0 : η = 0.
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As expected, this expression converges to the normal copula as η → 0+ but otherwise it

induces tail dependence even when ρ = 0. Figure 4 displays a bivariate Student t copula density

with the same Spearman correlation as in Figure 3 (ρ = .122), both with uniform (Figures 4a-b)

and Gaussian margins (Figures 4c-d). Figure 4e presents the conditional densities that arise

from the Student t copula density with Gaussian margins. In this case, not only the conditional

mean changes but also the higher order moments. Nevertheless, those conditional distributions

will be symmetric when ρ = 0.

2.2.2 Generalized hyperbolic copulas

The Generalized Hyperbolic (GH) distribution introduced by Barndorff-Nielsen (1977) and

studied in detail by Blæsild (1981) is a rather flexible family of multivariate distributions that

nests not only the normal and Student t but also many other examples such as the asymmetric

Student t, the hyperbolic and normal inverse Gaussian distributions, as well as symmetric and

asymmetric versions of the normal-gamma mixture and Laplace.

We can gain some intuition about the GH distribution by considering its interpretation as a

location-scale mixture of normals in which the mixing variable is a Generalized Inverse Gaussian

(GIG). If ε is a GH vector, then it can be expressed as

ε = α+ Υβξ−1 + ξ−
1
2Υ

1
2ε◦, (2)

where α,β ∈ RK , Υ is a symmetric positive definite matrix of order K, ε◦ ∼ iidN(0, IK)

and the positive mixing variable ξ is an independent iid GIG with parameters −ν, γ and δ, or

ξ ∼ GIG (−ν, γ, δ) for short, where ν ∈ R and γ, δ ∈ R+ (see Jørgensen (1982) and Johnson,

Kotz, & Balakrishnan (1994) for details). Since ε given ξ is Gaussian with conditional mean

α+Υβξ−1 and covariance matrixΥξ−1, it is clear that α andΥ play the roles of location vector

and dispersion matrix, respectively. There is a further scale parameter, δ, two other scalars, ν

and γ, to allow for flexible tail modelling, and the vector β, which introduces skewness in this

distribution. In this sense, the distribution of ε becomes a simple scale mixture of normals, and

thereby spherical, when β is zero. Mencía and Sentana (2012) set δ = 1 and derive restrictions

on α and Υ which ensure that the elements of ε are uncorrelated with zero means and unit

variances. They also parametrize β as a function of a new vector of parameters b in the following

way:

β(ρ,b) = P
1
2
′(ρ)b, (3)
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so that the resulting distribution does not depend on the choice of square root matrix.3 Finally,

it is analytically convenient to replace ν and γ by η and ψ, where η = −.5ν−1 and ψ = (1+γ)−1,

although we continue to use ν and γ in some equations for notational simplicity.

A rather useful property of the GH distributions is that the marginal distributions of linear

combinations (including the individual components) also follow univariate GH distributions (see

Blæsild (1981)). As a result, we can easily construct the GH copula by once again combining

the joint distribution and its marginals.

Figure 5 displays a bivariate asymmetric Student t copula density with negative tail depen-

dence but the same Spearman correlation as in Figure 3 (ρ = .186), both with uniform (Figures

5a-b) and Gaussian margins (Figures 5c-d). In turn, Figure 5e presents the conditional densities

that arise from the asymmetric Student t copula density with Gaussian margins. In this case,

all higher moments depend on the values of the conditioning variable even when ρ = 0.

2.2.3 Hermite polynomial expansions of the Gaussian copula

Hermite polynomial expansions of the multivariate normal density can be understood as

Edgeworth-like expansions of its characteristic function. To keep the algebra manageable, we

only consider explicitly fourth order expansions in the bivariate case. We say that (ε1, ε2) follow

a fourth order Hermite expansion of the Gaussian distribution when their joint density function

is given by

f2(ε1, ε2; ρ,ϕ) = φ2

(
ε2

1 + ε2
2 − 2ρε1ε2

1− ρ2

)
P2(ε1, ε2;ϕ)

where ϕ = (c1, c2, c3, c4, d1, d2, d3, d4, d5)′ and

P2(ε1, ε2;ϕ) = 1 + c1H3(ε1) + c2H2(ε1)H1(ε2) + c3H1(ε1)H2(ε2) + c4H3(ε2) + d1H4(ε1)

+d2H3(ε1)H1(ε2) + d3H2(ε1)H2(ε2) + d4H1(ε1)H3(ε2) + d5H4(ε2), (4)

with Hj(εk) denoting the jth standardized Hermite polynomial of the kth variable.

This distribution obviously nests the bivariate normal distribution with zero means, unit

variances and correlation coeffi cient ρ when ϕ = 0, but it can depart significantly from Gaus-

sianity otherwise. Nevertheless, by relying on third and fourth order (cross-products of) Hermite

polynomials we ensure that the two marginals have zero means and unit variances, and at the

same time, the correlation ρ will remain the same under the alternative.

3P1/2(ρ) denotes some particular “square root”matrix such that P1/2(ρ)P1/2′(ρ) = P(ρ).
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A complication of this distribution is that without further restrictions on ϕ, P2(ε1, ε2;ϕ)

cannot be guaranteed to be positive with probability 1. Unfortunately, the required restrictions

are non-trivial to find. But since we are interested in testing, as opposed to estimation, we will

ignore those positivity restrictions in our analysis, even though this might result in some loss of

power.

Figure 6 displays a bivariate Hermite polynomial expansion of the Gaussian copula density

with the same Spearman correlation as in Figure 3 (ρ = .14), both with uniform (Figures 6a-b)

and Gaussian margins (Figures 6c-d). Finally, Figure 6e presents the conditional densities that

arise from this copula with Gaussian margins. A noticeable feature of this copula is that it

might generate multimodal conditional distributions for certain conditioning levels.

2.3 Score, Hessian and information matrix

Before developing our proposed tests, though, it is convenient to obtain generic expressions

for the score, Hessian and information matrix of a K-dimensional copula derived from a multi-

variate distribution of the same size.

To do so, let fK(ε;ρ,ϕ) denote the joint density of ε, which we assume is well defined. The

p + q parameters of interest are φ = (ρ′,ϕ′)′, which include the correlation parameters ρ and

the shape parameters ϕ. Similarly, let f1k(ε;ϕ) denote the marginal density of the kth element

of the multivariate nesting distribution, which is such that∫ εk

−∞
f1k(ε;ϕ)dε = uk

where uk(ϕ) = F1k(εk;ϕ) is the probability integral transform of the kth observed variable

with respect to its assumed marginal distribution. Finally, let φ0 denote the true value of the

parameter vector φ.

The log-likelihood function of the copula for a sample of size N for those values of ρ for

which P(ρ) has full rank will take the form LN (φ) =
∑N

n=1 ln c(un;φ),

ln c (u;ρ,ϕ) = ln fK
[
F−1

11 (u1;ϕ), ..., F−1
1K (uK ;ϕ);ρ,ϕ

]
−

K∑
k=1

ln f1k

[
F−1

1k (uk;ϕ);ϕ
]
. (5)

Let s(φ) denote the score function ∂ ln c(u;φ)/∂φ, and partition it into two blocks, sρ(φ) and

sϕ(φ), whose dimensions conform to those of ρ and ϕ, respectively. If P1/2(ρ) and ln f(ε;ρ,ϕ)

are differentiable, then

sρ(ρ,ϕ) =
∂ ln fK

[
F−1

11 (u1;ϕ), ..., F−1
1K (uK ;ϕ);φ

]
∂ρ

= −Zs(ρ)es(φ)
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where

Zs(ρ) =
∂vec′[P1/2(ρ)]

∂ρ
· [IK ⊗P−1/2′(ρ)]

es(φ) = vec

{
IK +

∂ ln f [ε∗(ρ);ϕ]

∂ε∗
· ε∗′(ρ)

}
,

ε∗(ρ) = P−1/2(ρ)εt,

because ρ only enters through the joint distribution and not through the marginals or the

quantile functions.

On the other hand,

sϕ(ρ,ϕ) =
∂ ln fK

[
F−1

11 (u1;ϕ), ..., F−1
1K (uK ;ϕ);φ

]
∂ϕ

−
K∑
k=1

∂ ln f1

[
F−1

1 (uk;ϕ);ϕ
]

∂ϕ

=
∂ ln fK [y1, ..., yK ;φ]

∂ϕ
−

K∑
k=1

∂ ln f1 (yk;ϕ)

∂ϕ

+

K∑
k=1

(
∂ ln fK (y1, ..., yK ;φ)

∂yk
− ∂ ln f1 (yk;ϕ)

∂yk

)
∂F−1

1 (uk;ϕ)

∂ϕ
. (6)

Expression (6) decomposes the copula score into three easy to interpret components. The first

one corresponds to the score of the joint distribution. The second one to the scores of the K

marginal distributions. Finally, for the third component, we have to multiply the difference be-

tween the log-derivatives of the joint and marginal distributions with respect to their arguments

by the derivatives of the marginal quantile functions with respect to the shape parameters.

Let h(φ) denote the Hessian function ∂s(φ)/∂φ′ = ∂2 ln cn(u;φ)/∂φ∂φ′. Assuming twice

differentiability of the different functions involved, we can show that

hϕϕ(φ) =
∂sϕ (ρ,ϕ)

∂ϕ′

=
∂2 ln fK

[
F−1

11 (u1;ϕ), ..., F−1
1K (uK ;ϕ);ρ,ϕ

]
∂ϕ∂ϕ′

−
K∑
k=1

∂2 ln f1k

[
F−1

1k (uk;ϕ);ϕ
]

∂ϕ∂ϕ′

=
∂2 ln fK [y1, ..., yK ;ρ,ϕ]

∂ϕ∂ϕ′
−

K∑
k=1

∂2 ln f1k [yk;ϕ]

∂ϕ∂ϕ′

+2
K∑
k=1

∂F−1
1 (uk;ϕ)

∂ϕ

(
∂2 ln fK [y1, ..., yK ;ρ,ϕ]

∂xk∂ϕ′
− ∂2 ln f1k [yk;ϕ]

∂xk∂ϕ′

)

+

K∑
k=1

K∑
j=1

∂F−1
1k (uk;ϕ)

∂ϕ

(
∂2 ln fK [y1, ..., yK ;ρ,ϕ]

∂yk∂yj
− ∂2 ln f1k [yk;ϕ]

∂xk∂xj

)
∂F−1

1j (uj ;ϕ)

∂ϕ′

+
K∑
k=1

∂2F−1
1k (uk;ϕ)

∂ϕ∂ϕ′

(
∂2 ln fK [x1, ..., xK ;ρ,ϕ]

∂xk
− ∂2 ln f1k [xk;ϕ]

∂xk

)
, (7)
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hρρ(φ) = Zs(ρ)
∂es(φ)

∂ρ′
+
[
e′s(φ)⊗ Ip

] ∂vec[Zs(ρ)]

∂ρ′
,

and

hρϕ(φ) = Zs(θ)∂es(φ)/∂ϕ′.

Importantly, while Zs(ρ), and ∂vec[Zs(ρ)]/∂ρ′ depend on the specification of the correlation

structure, the first and second derivatives of ln fK(x;ρ,ϕ) depend on the specific distribution

assumed for testing purposes.

Finally, the (minus) expected value of h(φ) will give us the information matrix.

2.3.1 The correlation scores and information matrix under Gaussianity

Maximum likelihood estimation of ρ and ϕ usually requires a numerical optimization pro-

cedure. However, given that in terms of the Gaussian ranks the scores with respect to ρkj

(k, j = 1, . . . ,K) take the form

sρkj (yk, yj ; ρkj) =
(1 + ρ2

kj)ykyj − ρkj(y2
k + y2

j − 1)− ρ3
kj

(1− ρ2
kj)

2
, (8)

there are numerically convenient closed-form expressions for the unrestricted ML estimator of ρ

under the assumption of normality. Specifically, ρ̂kj will be the real root to the cubic equation∑N
i=1 sρkj (yki, yji; ρkj) = 0 that leads to the largest log-likelihood value.4

In addition, we can prove the block diagonality of the information matrix:

Proposition 1 The scores sρ(ρ,ϕ) and sϕ(ρ,ϕ) evaluated at ϕ = 0 are orthogonal when the

true copula is Gaussian.

This result, which is the analog for copulas of Lemma 2 in Fiorentini and Sentana (2010), is

particularly convenient for our purposes because it allows us to evaluate our tests at any root-N

consistent estimator of ρ without having to adjust the asymptotic variance of sϕ(φ) for parame-

ter uncertainty. Obvious consistent estimators are ρ̌kj = N−1
∑N

i=1 ykiyji and ρ̃kj = ρ̌kj/
√
σ̃2
kσ̃

2
j ,

with σ̃2
k = N−1

∑N
i=1 y

2
ki, which are the sample covariance and correlation coeffi cients of the

Gaussian ranks yk and yj , respectively. Nevertheless, these estimators are generally ineffi cient

relative to the ML estimator:
4Algebraic solutions to any cubic equation have been available since at least the early 16th century even though

they remain relatively unknown. What is well known, though, is that every cubic equation with real coeffi cients
has at least one real solution, while the other two solutions can be either real or a pair of complex conjugates. In
Section 2.5 we revisit the uniqueness of the real root to the cubic equation

∑N
i=1 sρkj (yki, yji; ρkj) = 0.
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Proposition 2 When the copula is Gaussian and the margins are known, the asymptotic vari-

ances of ρ̂kj, ρ̃kj and ρ̌kj, which are the ML estimator of ρkj, and the sample correlation and

covariance coeffi cients of the Gaussian ranks, respectively, are

AV ar(ρ̂kj) =
(1− ρ2

kj)
2

1 + ρ2
kj

, AV ar(ρ̃kj) = (1− ρ2
kj)

2, AV ar(ρ̌kj) =
1

1 + ρ2
kj

,

so that AV ar(ρ̂kj) ≤ AV ar(ρ̃kj) ≤ AV ar(ρ̌kj), with equality if and only if ρkj = 0.

2.4 Score tests

2.4.1 Test against Student t copulas

Under the null hypothesis, ς(ρ0) will be distributed as a χ2 random variable with K degrees

of freedom (see Malevergne and Sornette (2003)). Let

L2 [ς(ρ)] =
1

4
ς2(ρ)− K + 2

2
ς(ρ) +

K(K + 2)

4

denote the second Laguerre polynomial associated to this special case of a gamma random

variable. Finally, let y′(k) = (y1, . . . , yk−1, yk+1, . . . , yK), P(kj)(ρ) the (K − 1)× (K − 1) matrix

obtained from P(ρ) after suppressing row k and column j, and p(k)(ρ) the coeffi cients in the

theoretical least squares projection of yk on to (the linear span of) y(k).

Proposition 3 The score of the Student t copula with respect to the reciprocal of the degrees of

freedom parameter η when η = 0 is given by

sη (u1, ...uK ;ρ, 0) =

√
K(K + 2)

2
L2 [ς(ρ)]−

√
3

2

K∑
k=1

H4 (yk)

+
1

2

√
3

2

K∑
k=1

[
p′(k)(ρ)P−1

(kk)(ρ)[y(k) − p(k)(ρ)yk]

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

]
H3(yk). (9)

Therefore, the LM test will simply be given by N times the square of the sample average

of (9) evaluated at some consistent estimator of ρ divided by the variance of this score, whose

expression can be found in Supplemental Appendix E.3.

It is important to mention that the fact that η = 0 lies at the boundary of the admissible

parameter space invalidates the usual χ2
1 distribution of the likelihood ratio (LR) and Wald (W)

tests, which under the null will be more concentrated towards the origin (see Andrews (2001) and

the references therein). The intuition can be perhaps more easily obtained in terms of the W test.

Given that η̂N cannot be negative,
√
Nη̂N will have a half-normal asymptotic distribution under

12



the null (Andrews (1999)). As a result, the W test will be an equally weighted mixture of a chi-

square distribution with 0 degrees of freedom (by convention, χ2
0 is a degenerate random variable

that equals zero with probability 1), and a chi-square distribution with 1 degree of freedom. In

practice, we simply need to compare the appropriate t-statistic with the appropriate one-sided

critical value from the normal tables. For analogous reasons, the asymptotic distribution of the

LR test will also be degenerate half the time, and a χ2
1 the other half.

Although the above argument does not invalidate the distribution of the LM test statistic,

intuition suggests that the one-sided nature of the alternative hypothesis should be taken into

account to obtain a more powerful test. For that reason, we also propose a simple one-sided

version of the LM test for multivariate normality. In particular, since E [sη(ρ0, 0)|φ0] > 0 when

η0 > 0, we suggest to use the LM test statistic when the sample average of the score is positive

and 0 otherwise as our one-sided LM test, and to compare it to the same 50:50 mixture of

chi-squares 0 and 1. In this context, we would reject H0 at the 100κ% significance level if the

average score with respect to η evaluated under the Gaussian null is positive and the LM statistic

exceeds the 100(1− 2κ) percentile of a χ2
1 distribution. Since the Kuhn-Tucker (KT) multiplier

associated with the inequality restriction η ≥ 0 is equal to max[−N−1
∑

n sηn(ρ̂N , 0), 0], our

proposed one-sided LM test is equivalent to the KT multiplier test introduced by Gourieroux,

Holly and Monfort (1980), which in turn is equivalent in large samples to the LR and W tests.

As we argued before, the reason is that those tests are implicitly one-sided in our context. In

this respect, it is important to mention that when there is a single restriction, such as in our

case, those one-sided tests would be asymptotically locally more powerful (Andrews (2001)).

It is interesting to compare our score test of the Student t copula to the corresponding test

of the Student t distribution. Following Fiorentini, Sentana and Calzolari (2003), the score for

η under the null is proportional to L2 [ς(ρ)]. In the bivariate case with ρ = 0 this distributional

score becomes

H4 (y1) +H4 (y2) +H2 (y1)H2 (y2)

while the copula score reduces to

H2 (y1)H2 (y2) .

Given that the Gaussian ranks satisfy the additional moment conditions E[H4(y1)] = 0 and

E[H4(y1)] = 0 by construction, irrespective of the copula being Gaussian, including those addi-

tional marginal terms necessarily reduces (local) power.
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Nevertheless, it is also important to emphasize that (9) is computed in terms of the Gaussian

ranks y1,. . . ,yK while the score of the joint Student t distribution is computed in terms of the

innovations of a multivariate conditionally heteroskedastic regression model. As a result, the

copula test is not generally invariant to affi ne multivariate transformations of the observed series,

unlike the distribution test. The reason is that in the case of a copula, the original variables are

of direct interest.

2.4.2 Tests against asymmetric Student t copulas

The asymmetric Student t distribution is a location-scale mixture of normals in which the

mixing variable follows a reciprocal gamma distribution, which is a special case of the GIG.

The derivation of the Lagrange multiplier (LM) test for a multivariate normal copula versus an

asymmetric one is complicated by the fact that b drops out from both the joint and marginal

distributions when η → 0 (see Mencía and Sentana (2012)). One standard solution in the

literature to deal with testing situations with underidentified parameters under the null involves

fixing those parameters to some arbitrary values, and then computing the appropriate test

statistic for the chosen values.

Proposition 4 The score of the asymmetric Student t copula with respect to the reciprocal of

the degrees of freedom parameter η when η = 0 for fixed values of the skewness parameters b is

given by

sη (u1, ..., uK ;ρ, η,b) = sη (u1, ...uK ;ρ, 0) + b′y [ς(ρ)− (K + 2)]−
√

6

K∑
k=1

[ßk(ρ,b)H3(yk)]

+
√

2
K∑
k=1

p′(k)(ρ)P−1
(kk)(ρ)[y(k) − p(k)(ρ)yk]

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

ßk(ρ,b)H2(yk). (10)

where ß(ρ,b) = P(ρ)b.

On this basis, it would be straightforward to develop the associated test statistic, LMN (b).

However, the previous approach is plausible in situations where there are values of the underiden-

tified parameters that make sense from an economic or statistical point of view. Unfortunately,

it is not at all clear a priori what values of b are likely to prevail under the alternative of GH

innovations. For that reason, we consider instead a second approach, which consists in comput-

ing the LM test for all possible values of b, and then take the supremum over those parameter

values.
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It turns out that we can maximize LMN (b) with respect to b in closed form, and also obtain

the asymptotic distribution of the resulting test statistic:

Proposition 5 The supremum with respect to b of the LM tests based on (10) is equal to the

sum of two asymptotically independent components: the symmetric Student t LM test based on

(9), and a moment test based on the following K influence functions

mbk (u1, ..., uK ;ρ, η) = yk [ς(ρ)− (K + 2)]−
√

6

K∑
j=1

Pkj(ρ)H3(yj)

+
√

2
K∑
j=1

p′(j)(ρ)P−1
(jj)(ρ)[y(j) − p(j)(ρ)yj ]

1− p′(j)(ρ)P−1
(jj)(ρ)p(j)(ρ)

Pkj(ρ)H2(yj). (11)

This second moment test is asymptotically distributed as a χ2 distribution with K degrees of

freedom when the true copula is Gaussian.

Given that sη (u1, ..., uK ;ρ, η) is orthogonal to the other K moment conditions, we can

conduct a partially one-sided test by combining the KT one-sided version of the Student t test

and the moment test based on mbk (u1, ..., uK ;ρ, η). By analogy with Mencía and Sentana

(2012), this one-sided version should be equivalent in large samples to the corresponding LR

test. The asymptotic distribution of the joint test under the null will be a 50:50 mixture of χ2
K

and χ2
K+1.

Once again, it is interesting to compare the moments of the asymmetric Student t copula

associated to bk under normality to the corresponding moments for the asymmetric Student

t distribution in Mencía and Sentana (2012). In the bivariate case with ρ = 0 the influence

functions of the distribution test corresponding to the asymmetric components are

H3 (y1) +H2 (y1)H1 (y2) ,

H3 (y2) +H2 (y2)H1 (y1) ,

while in the copula test they reduce to

H2 (y1)H1 (y2) ,

H2(y2)H1(y1).

Given that the Gaussian ranks satisfy the additional moment conditions E[H3(y1)] = 0 and

E[H3(y1)] = 0, by construction, irrespective of the copula being Gaussian, the inclusion of those

terms necessarily reduces (local) power, as in the symmetric component case.
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Interestingly, the K moment conditions E[mbk (u1, ..., uK ;ρ, η)] = 0 can also be used to con-

sistently test the hypothesis of a symmetric Student copula against an asymmetric one because

we can show that the expected values of those influence functions would remain zero under this

new null. But the test will be incorrectly sized if we used the covariance matrix of (11) under

Gaussianity. To avoid size distortions, we can either compute the correct covariance expression

by numerical quadrature or Monte Carlo integration for a given value of η, or else run the uni-

variate regression of 1 on mb1(ρ̂T ), . . . ,mbK (ρ̂T ). We use this second approach in the empirical

application.

2.4.3 Tests against Generalized Hyperbolic copulas

As discussed by Mencía and Sentana (2012), there are three different paths along which

a symmetric GH distribution converges to a Gaussian distribution. Specifically, the normal

distribution can be achieved when (i) ν → −∞ or (ii) ν → +∞, regardless of the value of γ; and

(iii) γ → ∞ irrespective of the value of ν. In addition, one of the shape parameters becomes

increasingly underidentified when the other one is on a normality path. Nevertheless, Mencía

and Sentana (2012) showed that the score of the remaining identified parameter evaluated under

the null of normality is (proportional to) (9) along those three paths. As a result, the LM/KT

tests of Gaussian copula against a “symmetric” GH copula are numerically identical to the

LM/KT tests against symmetric Student t in Proposition 3.

Since the same is true for asymmetric GH alternatives, the LM/KT tests of Gaussian copula

against an “asymmetric” GH copula will also be numerically identical to the LM/KT tests

against asymmetric Student t in Proposition 5.

2.4.4 Tests against Hermite expansions of the Gaussian copula

The econometric complication here is that some linear combinations of the scores with

respect to the original coeffi cient vector ϕ = (c1, c2, c3, c4, d1, d2, d3, d4, d5)′ in (4) are identically

0 under the null, which means that we cannot compute the usual LM test for H0 : ϕ = 0. To

deal with this unusual type of testing situation, Lee and Chesher (1986) propose to replace the

LM test by what they call an “extremum test”(see also Bera, Ra, and N. Sarkar (1998)).5 Given

that the first-order conditions are identically 0, their suggestion is to study the restrictions that

the null imposes on higher order conditions. Lee and Chesher (1986) also show that the same

5Neyman and Scott (1966) considered similar problems in the context of the C(α) statistic.
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test can often be achieved by a suitable reparametrization. Specifically, if we re-write the model

in terms of γ1, γ4 and δ5, where

γ1 =

√
c1 −

ρ√
3
c2, γ4 =

√
c4 −

ρ√
3
c3, δ5 =

√
d5 −

ρ

2
d4 +

ρ

2
d2 − d1,

we can show that the scores with respect to these three new parameters are one-half the second

derivatives of the log-likelihood function with respect to γ2
1, γ

2
4 and δ

2
5.

In Proposition 10 in Appendix B we provide the influence functions which are the basis

for our LM test of the null hypothesis of a Gaussian copula against a Hermite polynomial

expansion.6 From a practical point of view, the main problem with this test is that it involves

many degrees of freedom: 4 to capture skewness and 5 for kurtosis. Moreover, the number of

singularities increases if we maintain the assumption that ρ = 0. In particular, 2 additional

skewness parameters and 1 kurtosis one become underidentified in that case. For that reason,

we suggest a modified test for this situation in Proposition 11 in Appendix B.

2.5 Replacing margins with empirical cdf’s

Marginal distributions are rarely known in practice. The most common solution is a two-

step estimation procedure, whereby the margins are replaced by their (re-scaled) empirical cdf

counterparts. In this manner, the proposed tests can be viewed as functions of the collection

of Gaussian ranks obtained from the uniform ranks, where the scaling factor N/(N + 1) is only

introduced to avoid potential problems with the copula density blowing up at the boundary of

[0, 1]K . Smoothed versions of the empirical cdf can also be used, but the effects should be the

same (up to first-order).

The use of sample ranks has two implications. First, the exact discrete uniform nature of

their distribution simplifies some of the previous expressions. Specifically, the sample averages

of all the odd-order Hermite polynomials of the Gaussian ranks will be identically zero, while

the sample averages of the even-order ones will converge to zero at faster than square root N

rates. Among other things, this in turn implies that the real solution to the cubic equation∑N
i=1 sρkj (yki, yji; ρ̂kj) = 0 which defines the unrestricted ML estimator of ρij will be unique for

N > 6 (see footnote 4).

Second, it effectively transforms the Gaussian ML estimation procedure we have considered so

6The Lee and Chesher (1986) test effectively imposes one-sided restrictions on γ1, γ4 and δ5 because the scores
with respect to γ1 and −γ1, say, are identical under the null. Nevertheless, given that we also ignore the positivity
restrictions that may affect some of the remaining parameters in our analysis, we focus on two-sided LM tests.
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far into a sequential semiparametric procedure, which requires us to take into account the sample

uncertainty resulting from its non-parametric first-stage (see Newey and McFadden (1994)).

Otherwise, our test statistics will have size distortions even in large samples.

Following Chen and Fan (2006a), we can obtain the variance of a generic influence function

mφ(u1, ..., uK) adjusted for non-parametric estimation of the margins by computing the variance

of the adjusted function

mc
φ(u1, ..., uK ;ρ,0) = mφ(u1, ..., uK ;ρ,0)− nφ(u1, ..., uK ;ρ),

where

nφ =
K∑
j=1

∫ 1

0
[1{Uj ≤ uj} − uj ]W j

φk
duj ,

with

W j
φ =

∫
...

∫
∂mφ(u1, ..., uK)

∂uj
c(u1, ..., uK ;φ)du1...duk−1duk+1...duK .

In the case of the correlation parameters, one can capture the inflation in variance by adding

linear combinations of second order Hermite polynomials of each of the variables (in Gaussian

form) to the original scores sρ(ρ,0), as the following proposition shows:

Proposition 6 The correction to sρkj
(
uk, uj ; ρkj

)
is given by

nρkj
(
uk, uj ; ρkj

)
= − 1√

2

ρkj
1− ρ2

kj

[H2(yk) +H2(yj)] .

On this basis, we obtain the following modified version of Proposition 2:

Proposition 7 When the copula is Gaussian and the margins are replaced by their empirical

cdfs, the asymptotic variances of ρ̂kj, ρ̃kj and ρ̌kj, which are the ML estimator of ρkj, and the

sample correlation and covariance coeffi cients of the Gaussian ranks, respectively, are given by

AV ar(ρ̂kj) = AV ar(ρ̃kj) = AV ar(ρ̌kj) = (1− ρ2
kj)

2.

Similarly, for the distributions that we consider as alternatives, we show that it is possible

to capture the variance modification in the scores of the shape parameters, sϕ(ρ,0), by adding

linear combinations of third and fourth Hermite polynomials in those variables. The following

result provides the expressions for the corrections corresponding to Propositions 3, 4 and 5:
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Proposition 8 The correction of sη (u1, ...uK ;ρ,0) is given by

nη (u1, ...uK ;ρ) = −1

4

√
3

2

K∑
k=1

p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

H4(yk)

+
1

4

√
3

2

K∑
k=1

∑
h6=k

p′(h)(ρ)P−1
(h)(ρ)

1− p′(h)(ρ)P−1
(hh)(ρ)p(h)(ρ)

P3
kh(ρ)H4(yk),

the correction of mbk (u1, ..., uK ;ρ, η) by

nbk (u1, ...uK ;ρ) = −
√

2

3

p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

H3(yk)

+

√
2

3

∑
j 6=k

p′(j)(ρ)P−1
(jj)(ρ)

1− p′(j)(ρ)P−1
(jj)(ρ)p(j)(ρ)

P2
kj(ρ)H3(yk)

−
√

2

3

∑
j 6=k

p′(j)(ρ)P−1
(jj)(ρ)p(j)(ρ)

1− p′(j)(ρ)P−1
(jj)(ρ)p(j)(ρ)

Pkj(ρ)H3(yj)

+

√
2

3

∑
j 6=k

∑
h6=j

p′(h)(ρ)P−1
(hh)(ρ)

1− p′(h)(ρ)P−1
(hh)(ρ)p(h)(ρ)

Pkh(ρ)P2
jh(ρ)H3(yj),

and the correction of sη (u1, ..., uK ;ρ, η,b) by

nη (u1, ...uK ;ρ) +
K∑
k=1

bknbk (u1, ...uK ;ρ) .

For example, for the bivariate asymmetric Student t, the score corrections will be

nη (y1, y2; ρ) = −1

4

√
3

2
ρ2 [H4(y1) +H4(y2)] ,

nb1 (y1, y2; ρ) =

√
2

3
ρ2
[
(6− ρ2)H3(y1) + 5ρH3(y2)

]
and

nb1 (y1, y2; ρ) =

√
2

3
ρ2
[
(6− ρ2)H3(y2) + 5ρH3(y1)

]
In turn, the correction terms for the influence functions of Propositions 10 and 11 are given

in Proposition 12 in Appendix B.

Importantly, since Hermite polynomials form an orthonormal basis under Gaussianity, the

orthogonality between the original scores for correlation and shape parameters stated in Propo-

sition 1 is preserved in the modified scores.

2.6 Power comparisons

We can assess the power of the different score tests that we have introduced in previous

sections by computing the probability of rejecting the null hypothesis when it is false as a
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function of the shape parameters ϕ under the assumption that the asymptotic non-central chi-

square distributions of the different LM and KT tests provide reliable rejection probabilities

in finite samples. In this regard, we explain in appendix D the way in which we compute

the non-centrality parameters of our proposed tests, as well as the non-centrality parameters

of distributional tests of Gaussian vs Student t and Gaussian vs asymmetric Student t, which

ignore that the margins of the copula are uniform by construction. But given that the degrees

of freedom are the same for copula and distributional tests, we can directly compare the non-

centrality parameters instead.

Figures 7a-c depict the non-centrality parameters of symmetric Student t tests under asym-

metric Student t local alternatives, while Figures 8a-c do the same for asymmetric Student

t tests. In those plots, LM and LMNP denote the LM-copula tests when the marginals are

known and when they are estimated nonparametrically, respectively, while DistNP indicates the

LM-distributional test when the margins are estimated nonparametrically.

In Figures 7a and 8a we have represented η in the x-axis for fixed values of ρ = .75 and

bi = 0. As can be seen, the distributional tests have less power than the copula tests when

marginals are estimated nonparametrically, which in turn have less power than the copula tests

when the margins are known.

We then look at the non-centrality parameters for different values of ρ in the x-axis for fixed

values of η = .1 and bi = −.5 in Figures 7b and 8b. As expected, as ρ approaches zero, LM ,

LMNP and DistNP tend to have the same power.

Finally, we plot the non-centrality parameters against asymmetric Student t alternatives

with increasing skewness when η = .1 and ρ = .75. Not surprisingly, the Student t tests are not

sensitive to the different values of b (Figure 7c), while the asymmetric Student t tests have more

power as b moves away from zero.

2.7 Constrained indirect estimation

If a researcher who uses our proposed tests does not reject the null hypothesis, she can rely

on the Gaussian copula evaluated at the Gaussian rank correlation coeffi cients. However, if she

rejects, she might be interested in estimating the parameters of the alternative distributions

that we have considered. Before doing so, though, it is important to remember that many em-

pirical researchers continue to use the Gaussian pseudo-maximum likelihood (PML) estimators

advocated by Bollerslev and Wooldridge (1992) in multivariate location-scale models with non-
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normal observations because they remain consistent for the (conditional) mean and variance

parameters as long as those moments are correctly specified. The following result characterizes

the analogous property for Gaussian copulas:

Proposition 9 The Gaussian pseudo-ML estimators of the p×1 vector of parameters ρ charac-

terizing the potentially restricted, but correctly specified correlation matrix P(ρ) of the Gaussian

ranks remain consistent even when the copula is not Gaussian.

The same would be true of the K(K − 1)/2 sample Gaussian rank correlation coeffi cients

ρ̃kj if P(ρ) were unrestricted.

Conceptually, the most straightforward procedure for estimating the parameters of the non-

Gaussian copulas we have considered would be maximum likelihood using the analytical expres-

sions for the scores that we have derived. Unfortunately, this is easier said than done because

those analytical expressions are computationally involved under the alternative (see the supple-

mental appendix to Mencía and Sentana (2012) for some of the required expressions).

Nevertheless, it is possible to come up with much simpler consistent estimators of ρ and ϕ

along the lines of Calzolari, Fiorentini and Sentana (2004). Specifically, we can estimate those

coeffi cients for a specific parametric copula by generating data from this copula and matching

in the simulated data the values in the original data of both the Gaussian rank correlation co-

effi cients and the test statistics we have proposed. Proposition 4 in Calzolari, Fiorentini and

Sentana (2004) guarantees the consistency and asymptotic normality of these constrained indi-

rect estimators. Similarly, their Proposition 7 characterizes the effi ciency loss of these estimators

relative to MLE.

3 Monte Carlo evidence

In this section, we assess the finite sample size and power properties of the testing procedures

discussed above by means of several extensive Monte Carlo exercises. Given that all our tests

are numerically invariant to strictly monotonic transformations of the data, without loss of

generality we can work directly with observations ε generated from the relevant multivariate

distribution regardless of the marginal distribution we would choose, which saves CPU time.
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3.1 Design and estimation details

For simplicity, we look at bivariate and trivariate models. In the bivariate case, the cor-

relation coeffi cient of the Gaussian copula is ρ = .12, which matches the one used in Figure

3. In contrast, we use ρ12 = .013, ρ13 = .041, and ρ23 = .014 in the trivariate case, which are

motivated by some of the empirical estimates.

For our first alternative, we draw from a (symmetric) bivariate or trivariate Student t distri-

bution with the same correlation matrices. In addition, we generate observations from an asym-

metric Student t with identical correlation matrices but negative tail dependence (bi = −.5).

Given that the asymptotic distributions that we have derived in previous sections may be

unreliable in finite samples, we also compute bootstrap critical values. Specifically, we employ

a parametric bootstrap procedure with 10,000 simulated samples for all tests.7 Despite the

asymptotic orthogonality of the scores corresponding to correlation and shape parameters, our

bootstrap procedure takes into account the sensitivity of the critical values to the values of ρ

in order not to rule out higher order refinements (see Supplemental appendix E.1 for further

details).

Importantly, we compare our proposed score tests to the Kolmogorov—Smirnov and Cramér—

von Mises tests for copula models, which are often reported in empirical work (see Rémillard

(2010) for details). Since the asymptotic distributions of these tests in copula models with

non-parametric margins are unknown, we must exclusively rely on their bootstrap values.

3.2 Size properties

The first question that we need to address is whether the asymptotic distribution under the

null attributed to the test statistics introduced in section 2 is reliable in finite samples.

Figures 9a-b show the dependence of the rejection rates on ρ in the bivariate case. As

expected, the asymptotic p-values are very reasonable in samples of size 3,200, when they hardly

depend on ρ. For smaller sample sizes, though, this is not the case. In contrast, Table 1 indicates

that the parametric bootstrap rejection rates are close to being perfect for all the different

samples sizes and significance levels we consider.

7For the Hermite expansion based test we use the influence functions given in Proposition 10 whenever |ρ̂| ≥ .02
and the ones in Proposition 11 otherwise. In our simulations, though, |ρ̂| < .02 only happens 2.6% of the time for
N = 200, and 0.04% for N = 800.
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3.3 Power properties

Table 2 reports the Monte Carlo rejection rates at the 1%, 5% and 10% significance levels

for a Student t alternative with 20 degrees of freedom. By and large, the behavior of the different

test statistics is in accordance with what the asymptotic results would suggest. In particular,

the Student t tests are the most powerful, with the Kuhn-Tucker versions being more powerful

than the Lagrange multiplier’s ones. Interestingly, the test against a Hermite expansion yields

decent rejection rates. In contrast, both the Kolmogorov—Smirnov and Cramér—von Mises tests

have close to trivial power in samples of 200 observations.

In turn, Table 3 reports the Monte Carlo rejection rates at the same levels for an asymmetric

Student t alternative with 20 degrees of freedom and asymmetry parameters bi = −.5. The only

surprising result is the fact that in the bivariate case LM−t is slightly more powerful than

LM−At in samples of 200 observations when the DGP is an asymmetric Student t. In all other

cases, the ranking suggested by our asymptotic results is preserved.

4 Momentum and reversals in stock returns

In this section we apply our Gaussian copula tests to formally analyze the cross-sectional

dependence between monthly returns on individual U.S. stocks in the CRSP database and some

of their observable characteristics. Given their prominence in the empirical finance literature,

we focus on short term reversals, in which the observable characteristic are the individual stock

returns over the previous month, and momentum, where the relevant variable are the individual

stock returns from month t − 2 to month t − 12. In line with most previous studies (see e.g.

Asness, Moskowitz and Pedersen (2013)), we only consider common equities (CRSP sharecodes

10 and 11) and exclude those stocks with share prices less than $1 at the beginning of the holding

period. We also restrict our analysis to those firms with at least 60 months of return history, so

that we focus on liquid stocks with low transaction costs and high tradability.

An important advantage of working with either uniform or Gaussian ranks is that we obtain

exactly the same numerical results whether we work with the original returns or with their

deviations from the returns on an aggregate stock market index or the level of the risk free rate.

Nevertheless, the presence of other time-varying effects that may potentially affect different firms

differently could alter the cross-sectional dependence. For that reason, we carry out our analysis
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both at the aggregate level using all individual stocks and at the industry level.8

Our dataset spans the period from July 1991 to December 2012. For any given month,

we have available a cross-section of the form Yt = {(yt11, y
t
21), ..., (yt1Nt , y

t
2Nt

)}, where Nt is the

number of individual stocks for which we have data on both their return and the relevant

observable characteristics. From the point of view of devising trading strategies, though, a period

by period analysis is of little interest. For that reason, we pool all
∑T

t=1Nt bivariate observations

Y = {Y1, ..., YT } as follows. First, for each t we compute the cross-sectional average of the log-

likelihood score, say s̄φt(Yt; ρ) = N−1
t

∑Nt
i=1 sφ(yt1i, y

t
2i; ρ). Then, we time-average those scores,

thereby creating a pooled average score s̄φ(Yt; ρ) = T−1
∑T

t=1 s̄φt(Yt; ρ), on the basis of which

we can estimate the correlation coeffi cient ρ and construct our tests. The only complication is

that our pooled procedure requires the computation of robust standard errors to capture the

potential time-series dependence in s̄φt(Yt; ρ) for different t’s (see Supplemental Appendix E for

details).

Before characterizing dependence through the copula, though, it is convenient to look at

correlations. Table 4 presents the parameter estimates and their corresponding asymptotically

robust standard errors for the Pearson, Spearman and Gaussian rank correlation coeffi cients. In

this regard, the standard errors have been corrected for heteroskedasticity and autocorrelation

(HAC) using Bartlett weights with 5 lags. The left panel corresponds to short term reversals

while the right panel contains the correlation estimates for momentum strategies. Both Spear-

man and Gaussian rank correlations have the expected sign for all the industries when looking at

momentum strategies, and the same is true for reversals with the exception of Telecommunica-

tions. In contrast, Pearson correlation estimates have the wrong sign for most of the industries,

especially for short term reversals.

In Table 5 we report the Gaussian copula test statistics, with KT—t and KT—At denoting the

Kuhn-Tucker versions of the tests against Student t and asymmetric Student t copulas,9 Skew the

Lagrange multiplier test based on the K moment conditions mbk (u1, ..., uK ;ρ, 0) in Proposition

4, and LM-HE the Lagrange multiplier test based on the score of the Hermite expansion of the

8 Industry definitions: Non Durables: Consumer NonDurables — Food, Tobacco, Textiles, Apparel, Leather,
Toys; Durables :Consumer Durables —Cars, TV’s, Furniture, Household Appliances; Manufacturing: Manufac-
turing —Machinery, Trucks, Planes, Off Furn, Paper, Com Printing; Energy: Oil, Gas, and Coal Extraction and
Products; Chemicals: Chemicals and Allied Products; Business : Business Equipment —Computers, Software, and
Electronic Equipment; Telecom: Telephone and Television Transmission; Utilities; Shops: Wholesale, Retail, and
Some Services (Laundries, Repair Shops); Healthcare: Healthcare, Medical Equipment, and Drugs; Financials;
and Other: Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment. See Ken French’s website for details.

9We omit the Lagrange multiplier versions since they are numerically identical.
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Gaussian copula in Proposition 5. As can be seen, in all cases we reject the null hypothesis of a

Gaussian copula for both short term reversals and momentum by a long margin. Importantly,

the source of the rejection is not only the “cokurtosis”between the Gaussian ranks, but also their

“coskewness”, specially for momentum strategies. In this regard, it is worth emphasizing that

the use of the HAC procedure ensures that the asymmetric component of the test is correctly

sized under the null of a symmetric Student t copula too, as argued at the end of section 2.4.2.

Given those rejections, the natural next step is to gauge the parameters of the alternative

distributions that we have considered. As explained in section 2.7, we can consistently do so

by means of an equality constrained indirect estimation procedure which matches the observed

tests statistics and the estimated Gaussian rank correlations. We report in Table 6 the resulting

estimates of the correlation and shape parameters. We find moderate negative tail dependence

but quite substantive “leptokurtosis”, with estimated degrees of freedom in the neighborhood

of 5. Therefore, we can safely conclude that it should be possible to devise successful trading

strategies that exploit those features of the data.

4.1 Trading implications of a non-Gaussian copula

As mentioned in the introduction, the (rank) correlation is obviously very important in

deriving probabilistic predictions about the rank of a stock over the next month given the rank

of its characteristic, but it is by no means the only determinant. In general, non-linear tail

dependence also matters. To illustrate the importance of looking at the entire copula, we use

the parameter estimates for the Gaussian, Student t and asymmetric Student t copulas in Table

6 obtained using the full data set to compute the probabilities that a stock will be in the bottom

30, middle 40 or top 30 percentiles during period t conditional on the same stock being in the

bottom 5%, next 25%, middle 40%, next 25% and top 5% according to its short-term reversal

or momentum characteristics.10

Figure 10 presents the results for short-term reversals. As can be observed, the estimated

negative correlation is not large enough for the Gaussian copula to suggest any position. In

contrast, the non-linear dependence of both the symmetric and asymmetric Student t copulas

results in long positions on recent losers (5%) and short positions on recent winners (95%).

Figure 11 contains the result of a similar exercise with momentum strategies. Once again, we

10See Gagliardini et al. (2014) for a formal discussion of portfolio choice based on the maximization of the
expected utility of the ranks.
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find that the small positive correlation of the Gaussian copula is too weak to lead to any position.

But the non-linear dependence of the symmetric Student t copula changes the probabilities

enough to recommend taking short positions on past losers (5%) and long positions on past

winners (95%). Somewhat surprisingly, though, the negative tail dependence of the asymmetric

Student t in this case, which is higher than for short-term reversals, leads to the opposite trading

strategy for the case of winners.

5 Conclusions

We derive computationally simple and intuitive expressions for score tests of Gaussian copu-

las against GH alternatives, which include the symmetric and asymmetric Student t, and Hermite

polynomial expansions. We decompose our tests into moment tests based on linear combinations

of third and fourth cross products of Hermite polynomials of the Gaussian ranks. By taking

into account the partial one-sided nature of some of the alternative hypotheses, we also obtain

more powerful one-sided Kuhn-Tucker versions that are equivalent to the Likelihood Ratio test,

whose asymptotic distribution we provide. This equivalence implies that our approach has a

likelihood interpretation. Thus, we can learn from our tests in which directions the model is

really worth extending.

We conduct detailed Monte Carlo exercises to study our proposed tests in finite samples.

We find that the asymptotic p-values are very reasonable in moderately large samples sizes,

and that the parametric bootstrap rejection rates are close to being perfect for all samples

sizes. Moreover, the finite sample power of the different test statistics agrees with what the

asymptotic results would suggest. Importantly, our findings indicate that our parametric tests

have substantially more power than the Kolmogorov—Smirnov and Cramér—von Mises tests even

for departures for which our procedures are not optimal. This is particularly true of the test

against Hermite polynomial expansions, which has a non-parametric flair.

In an empirical application to CRSP data, we re-assess the widely held view that stocks

that underperformed in the past month (short term reversals) and stocks that outperformed

in previous months (momentum) show superior performance. Our tests indicate that short-

term reversals and momentum effects are better captured by non-Gaussian copulas. We devise

successful trading strategies based on a asymmetric Student t copula whose parameters we

estimate by an indirect inference procedure that matches our test statistics in the simulated and
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real data. Although we obtain exactly the same numerical results whether we work with the

original returns or with their deviations from the returns on an aggregate stock market index

or the level of the risk free rate, we carry out our empirical analysis both at the aggregate level

and at the industry level to allow for the presence of time-varying industry effects.

Nevertheless, we could explicitly consider more complex models by conditioning on past

values of x or present and past values of some exogenous variables z (see e.g. Patton (2006) or

Chen and Fan (2006a) for some interesting examples of dynamic copula models).

Another interesting extension would be to develop testing procedures that direct power

locally over the third quadrant, say, as opposed to over the entire distribution. In principle,

one could do so by using mixtures of normals with the second component located in the third

quadrant, or with a GH-based test in which we fix both betas to be big and negative.

It would also be interesting to compare our score tests to information criteria approaches (see

e.g. Chen and Fan (2005 and 2006b)), as well as to tests based on non-parametric estimates of

the copula density (see Fermanian (2005) and Scaillet (2007)). Alternatively, we could consider

as our null hypothesis special cases of the GH distribution, such as the symmetric or asymmetric

Student t. All these extensions constitute promising avenues for further research.
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Appendix

A Proofs

Proposition 1

We can use the conditional analogue to the generalized information matrix equality (see

e.g. Newey and McFadden (1994)) to show that

E
{

sρ(ρ,0)s′ϕ(ρ,ϕ)
∣∣ρ,ϕ} = −E

{[
∂sρ(ρ,0)

∂ϕ′

]∣∣∣∣ρ,ϕ} = 0,

irrespective of the conditional distribution of ε∗t , where we have used the fact that sρ(ρ,0) does

not vary with ϕ when regarded as the influence function for ρ̂T . Then, the required result

follows from the i.i.d. nature of both es(ρ0,0) and sϕ(ρ0,ϕ0). �

Proposition 2

Under the null of Gaussian copula, it is straightforward to obtain AV ar(ρ̂kj) using the

moments of the bivariate normal. To obtain the asymptotic variances of ρ̃kj and ρ̌kj , consider

the following vector of influence functions

m(yk, yj ; ρkj) = [m′µkj (yk, yj ; ρkj),m
′
Σkj

(yk, yj ; ρkj)]
′

withmµkj (yk, yj ; ρkj) = (yk, yj)
′ andmΣkj (yk, yj ; ρkj) = (y2

k−σ2
k, y

2
j −σ2

j , ykyj−ρkjσkσj)′. Since

E
[
mµkj (yk, yj ; ρkj)m

′
Σkj

(yk, yj ; ρkj)
]

= 0, the relevant quantities are

Akj = E
[
mΣkj (yk, yj ; ρkj)m

′
Σkj

(yk, yj ; ρkj)
]

and Bkj = E
[
sΣkj (yk, yj ; ρkj)m

′
Σkj

(yk, yj ; ρkj)
]
,

where

sΣkj (yk, yj ; ρkj) = [sσ2k
(yk, yj ; ρkj), sσ2j

(yk, yj ; ρkj), sρkj (yk, yj ; ρkj)]
′.

This expression can be easily evaluated at σ2
k = σ2

j = 1 to obtain AV ar(ρ̃) as the (3, 3) element

of (BkjA
−1
kj B

′
kj)
−1. �

Proposition 3

From (1) we can easily compute the first two terms of (6), which taking limits when η → 0

reduce to

lim
η→0

∂ ln fK (y1, ..., yK ; ρ, η)

∂η
=

√
K(K + 2)

2
× L2(ς)
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and

lim
η→0

K∑
k=1

∂ ln f1 (yk; η)

∂η
=

√
3

2
×

K∑
k=1

H4(yk),

where Lj(·) and Hj(·) are the normalized Laguerre and Hermite polynomials of order j, respec-

tively. As for the remaining terms in (6), we can use the fact that for a generic copula density

such as the one in (5),

lim
ϕ→0

∂ ln fK (y1, ..., yK ;ρ,ϕ)

∂ς
= −1

2
and lim

ϕ→0

∂ ln f1 (yk;ϕ)

∂yk
= −yk,

so that

lim
ϕ→0

[
∂ ln fK (ς;ρ,ϕ)

∂ς

∂ς

∂yk
− ∂ ln f1 (yk;ϕ)

∂yk

]
=

p′(k)(ρ)P−1
(kk)(ρ)[y − p(k)(ρ)yi]

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

, (A1)

where y − p(k)yk are residuals of univariate simple regressions of y−k onto yk because p(k)

are the corresponding OLS coeffi cients and the denominator is the residual variance in a re-

gression of yk onto the remaining components of y. As for ∂F−1
1 (uk; η)/∂η, differentiating∫ F−11 (uk,η)

−∞ f1(yk; η)dyk = uk with respect to η yields

∂F−1
1 (uk; η)

∂η
=

−1

f1[F−1
1 (uk; η); η]

∫ F−11 (uk,η)

−∞

∂f1(yk; η)

∂η
dyk.

But then, noticing that limη→0 f1[F−1
1 (uk; η); η] = φ[Φ−1(uk)] and that

lim
η→0

∂f1(yk; η)

∂η
= φ(yk)×

√
3

2
×H4(yk)

we obtain

lim
η→0

∂F−1
1 (uk; η)

∂η
=

1

2

√
3

2
×H3(yk).

Collecting terms finally yields (9). �

Proposition 4

For fixed b, the LM test is based on the average score with respect to η evaluated at the

limit of η → 0. In this regard, we first obtain the parameters of the corresponding marginal

distributions appearing in (5). Specifically, if y ∼ At(0,P(ρ), η,b) with β = P1/2′(ρ)b, then

yk ∼ At(0, 1, η,ßk(η,b)) where

ßk(η,b) =
c(b′P(ρ)b, η)ı′kP(ρ)b

1 + [c(b′P(ρ)b, η)− 1]ı′kP(ρ)bb′P(ρ)ık/b′P(ρ)b
,

with ık denoting a K × 1 vector with 1 in its k’th position and 0’s otherwise, and

c(b′P(ρ)b, η) =
−(1− 4η) +

√
(1− 4η)2 + 8η(1− 4η)b′P(ρ)b

4ηb′P(ρ)b
.
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In this context, we can write sη (u1, ...uK ;ρ, η,b) as

∂ ln fK (y1, ..., yK ;ρ, η,b)

∂η
−

K∑
k=1

∂ ln f1 [yk; η,ßk(η,b)]

∂η
−

K∑
k=1

∂ ln f1 [yk; η,ßk(η,b)]

∂ßk

∂ßk(η,b)

∂η

+
K∑
k=1

(
∂ ln fK (y1, ..., yK ;ρ, η,b)

∂yk
− ∂ ln f1 [yk; η,ßk(η,b)]

∂yk

)
∂F−1

1 [uk; η,ßk(η,b)]

∂η
. (A2)

As for the first two terms of (A2), Mencía and Sentana (2012) provide the corresponding ex-

pressions, which reduce to

lim
η→0

∂ ln fK(y1, ..., yK ,ρ, η,b)

∂η
=

√
K(K + 2)

2
× L2(ς) + b′y [ς − (K + 2)]

and

lim
η→0

∂ ln f1 [yk; η,ßk(η,b)]

∂η
=

√
3

2
H4(yk) + P[k](ρ)bH3(yk),

where P[k](ρ) denotes the k’th row of P(ρ). Regarding the third term of (A2), they also show

that

lim
η→0

∂ ln f1 [yk; η,ßk(η,b)]

∂ßk
= 0.

As for ∂F−1
1 (uk; η,ßk(η,b))/∂η, differentiating

∫ F−11 (uk,η,ßk(η,b))
−∞ f1[yk; η,ßk(η,b)]dyk = uk with

respect to η yields

∂F−1
1 (uk; η,ßk(η,b))

∂η
=

−1

f1[F−1
1 (uk; η,ßk(η,b)); η]

∫ F−11 (uk,η,ßk(η,b))

−∞

∂f1[yk; η,ßk(η,b)]

∂η
dyk.

Then, noticing that limη→0 f1[F−1
1 (uk; η,ßk(η,b)); η] = φ[Φ−1(uk)] and that

lim
η→0

∂f1[yk; η,ßk(η,b)]

∂η
= φ(yk)

[√
3

2
H4(yk) +ßk(η,b)

√
6H3(yk)

]

we obtain

lim
η→0

∂F−1
1 (uk; η,ßk(η,b))

∂η
= ßk(η,b)

√
2H2(yk) +

1

2

√
3

2
H3(yk).

Collecting terms and using (A1) yields (10). �

Proposition 5

Under normality, the score with respect to b is 0, while the score with respect to η for fixed

values of b is given in Proposition 4. Now consider a reparameterization in terms of η‡ and b‡,

where η‡ = η and b‡ = bη. This reparameterization is such that under normality, both η‡ and

b‡ will be zero, while under local alternatives of the form η‡T = T−1/2η̄‡ and b‡T = T−1/2b̄‡, we
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will have an asymmetric Student t distribution with parameters ηT = T−1/2η̄ and bT = b̄. As

for the score test, we start by defining

c‡
(
u;ρ, η‡,b‡

)
= c

(
u;ρ, η,

b‡

η‡

)
.

We can then expand ln c (u;ρ, η,b) around η = 0 as follows

ln c (u;ρ, η,b) = ln c (u;ρ, 0,b) + sη (u;ρ, 0,b) η +O(η2),

and similarly, we can also expand ln c‡
(
u;ρ, η‡,b‡

)
as

ln c‡
(
u;ρ, η‡,b‡

)
= ln c‡ (u;ρ, 0,0) + s‡η (u;ρ, 0,0) η

+s‡
b‡

(u;ρ, 0,0) b‡ +O(η2) +O(b‡′b‡) +O(b‡η‡).

Since ln c (u;ρ, 0,b) does not depend on b and

sη (u;ρ, 0,b) η = J0 (u;ρ) η +
K∑
k=1

Jk (u;ρ) biη

in light of Proposition 4, we can identify J0 (u;ρ) with s‡η (u;ρ, 0,0) and, for k = 1, ...,K,

Jk (u;ρ) with s‡
b‡

(u;ρ, 0,0) as b‡ = bη. �

Proposition 6

As in Chen and Fan (2006a), to obtain the correction for non-parametric estimation of the

marginals for the element sρkj (uk, uj ; ρkj), we need to compute

nρkj =

∫ 1

0
[1{Uk ≤ uk} − uk]W k

ρkj
duk +

∫ 1

0
[1{Uj ≤ uj} − uj ]W j

ρkj
duj ,

with W j
ρkj =

∫
[∂sρkj (uk, uj ; ρkj)/∂uj ]c(uk, uj ; ρkj)duk. Then, the result follows from

W j
ρkj

=

∫ [
1 + ρ2

kj

(1− ρ2
kj)

2
yk −

2ρkj
(1− ρ2

kj)
2
yj

]
φ(yj)duk =

1 + ρ2
kj

(1− ρ2
kj)

2
yj

and the fact that∫ y

−∞
H1(x)Φ(x)dx =

H1(y)

2

1√
2π

exp

(
−y

2

2

)
+

1

2
√

2
H2(y)

[
1 + erf

(
y√
2

)]
and ∫ ∞

y
H1(x)[1− Φ(x)]dx =

H1(y)

2

1√
2π

exp

(
−y

2

2

)
− 1

2
√

2
H2(y)

[
erfc

(
y√
2

)]
,

where erf(z) = 2π−1/2
∫ z

0 e
−t2dt and erfc(z) = 1−erfc(z). �
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Proposition 7

Analogous calculations to the ones provided in the proof of Proposition 6 allow us to obtain

nρkj
(
yk, yj ; ρkj

)
= −

ρkj
2

[H2(yk) +H2(yj)] ,

nσ2k

(
yk, yj ; ρkj

)
=
√

2H2(yk) and nσ2j

(
yk, yj ; ρkj

)
=
√

2H2(yj).

In this context, the asymptotic variances of the estimators of ρkj can be obtained as

AV ar(ρ̂npkj ) =
cov[snpρkj

(
yk, yj ; ρkj

)
, sρkj

(
yk, yj ; ρkj

)
]

V [snpρkj
(
yk, yj ; ρkj

)
]

= (1− ρ2
kj)

2,

which, interestingly, coincides with the common asymptotic variance of ρ̌npkj and ρ̃
np
kj given by

AV ar(ρ̃npkj ) = AV ar(ρ̌npkj ) = (1− ρ2
kj)

2

since E[mnp
Σkj

(yk, yj ; ρkj)m
np′
Σkj

(yk, yj ; ρkj)] and E[sΣkj (yk, yj ; ρkj)m
np′
Σkj

(yk, yj ; ρkj)] have all the

elements equal to zero except the (3, 3) ones, which are equal to (1− ρ2
kj)

2 and 1, respectively.�

Proposition 8

Following Chen and Fan (2006a), to obtain the correction for non-parametric estimation of

the marginals for a generic score sφ(u1, ..., uK), we need to compute

nφ =

K∑
j=1

∫ 1

0
[1{Uj ≤ uj} − uj ]W j

φk
duj

with

W j
φ =

∫
...

∫
∂sφ(u1, ..., uK)

∂uj
c(u1, ..., uK ;φ)du1...duk−1duk+1...duK .

To do so, we can exploit the fact that zk= y(k) − p(k)(ρ)yk ∼ N(0,Υk) with Υk = P(kk)(ρ) −

p(k)(ρ)p′(k)(ρ), and that

ς(ρ) = y2
k + z′k

[
P(kk)(ρ)− p(k)(ρ)p′(k)(ρ)

]−1
zk, (A3)

yk − p′(k)(ρ)P−1
(kk)(ρ)y(k) =

[
1− p′(k)(ρ)P−1

(kk)(ρ)p(k)(ρ)
]
yk + p′(k)(ρ)P−1

(kk)(ρ)zk. (A4)

We can also make use of the fact that

c(u(k);φ)du(k) = c(u1, ..., uK ;φ)du1...duk−1duk+1...duK

involves integrating with respect to

f(zk;φ) =
(2π)−(K−1)/2

|Υk|1/2
× exp

(
−1

2
z′kΥ

−1
k zk

)
.
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Specifically, for the first term of (9), using the fact that

∂

∂ς

[√
K(K + 2)

2
L2 (ς)

]
=
ς − (K + 2)

2
and

∂ς(ρ)

∂yk
= 2×

yk − p′(k)(ρ)P−1
(kk)(ρ)y(k)

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

,

and substituting (A3) and (A4), we obtain∫
∂

∂yk

[√
K(K + 2)

2
L2 (ς)

]
c(u(k);φ)du(k) =

√
6H3(yk) (A5)

where the last equality follows from∫
zkz
′
kΥ
−1
k zkf(zk;φ)dzk = 0 and

∫
z′kΥ

−1
k zkf(zk;φ)dzk = K − 1.

Similarly, for the second term of (9), using ∂Hj(y)/∂y =
√
jHj−1(y) we notice that∫

∂

∂yk

[√
3

2

K∑
h=1

H4 (yh)

]
f(zk;φ)dzk =

√
6H3(yk),

which cancels with (A5). Regarding the final term of (9), given that
∫

zkf(zk;φ)dzk = 0 and

that ∫
H3(yj)f(zk;φ)dzk =

∫
H3(yj)

1√
1− ρ2

jk

φ

yj − ρjkyk√
1− ρ2

jk

 f(zk;φ)dyj = ρ3
jkH3(yk),

we can show that∫
∂

∂yk

{√
3

8

K∑
h=1

[
p′(h)(ρ)P−1

(h)(ρ)zh

1− p′(h)(ρ)P−1
(hh)(ρ)p(h)(ρ)

]
H3(yh)

}
f(zk;φ)dzk

can be written as

−
√

3

8

p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

H3(yk) +

√
3

8

∑
h6=k

p′(h)(ρ)P−1
(h)(ρ)

1− p′(h)(ρ)P−1
(hh)(ρ)p(h)(ρ)

P3
kj(ρ)H3(yk).

As for mbk (u1, ..., uK ;ρ, η), we can use (A3) to rewrite its first term as

∂ {yk [ς(ρ)− (K + 2)]}
∂yk

= 3y2
k + z′kΥ

−1
k zk − (K + 2)− 2×

p′(k)(ρ)P−1
(kk)(ρ)zk

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

,

so that ∫
∂ {yk [ς(ρ)− (K + 2)]}

∂yk
f(zk;φ)dzk = 3(y2

k − 1) = 3
√

2H2(yk),

where we have used the fact that
∫

z′kΥ
−1
k zkf(zk;φ)dzk = K − 1 and

∫
zkf(zk;φ)dzk = 0,

which again cancels with the correction corresponding to the second term since

∫
∂

∂yk

√6
K∑
j=1

Pkj(ρ)H3(yj)

 f(zk;φ)dzk = 3
√

2H2(yk)
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because Pkk(ρ) = 1 and
∫
f(zk;φ)dzk = 1. Finally, as for

∂

∂yk

√2

K∑
j=1

p′(k)(ρ)P−1
(kk)(ρ)[y(k) − p(k)(ρ)yk]

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

Pkj(ρ)H2(yj)

 ,

we have to deal with the following two terms:

−
√

2
p′(k)(ρ)P−1

(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

H2(yk) +
√

2
∑
j 6=k

p′(j)(ρ)P−1
(jj)(ρ)

1− p′(j)(ρ)P−1
(jj)(ρ)p(j)(ρ)

Pkj(ρ)H2(yj)

and

2
p′(k)(ρ)P−1

(kk)(ρ)zk

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

Pkk(ρ)H1(yk).

The integral of the last term is zero since
∫

zkf(zk;φ)dzk = 0. As for the first one, noticing

that ∫
H2(yj)f(zk;φ)dzk =

∫
H2(yj)

1√
1− ρ2

jk

φ

yj − ρjkyk√
1− ρ2

jk

 f(zk;φ)dyj = ρ2
jkH2(yk)

we obtain that

−
∫ √

2
K∑
j=1

p′(j)(ρ)P−1
(jj)(ρ)p(j)(ρ)

1− p′(j)(ρ)P−1
(jj)(ρ)p(j)(ρ)

Pkj(ρ)H2(yj)f(zk;φ)dzk

is equal to

−
√

2

 p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

1− p′(k)(ρ)P−1
(kk)(ρ)p(k)(ρ)

+
∑
j 6=k

p′(j)(ρ)P−1
(jj)(ρ)

1− p′(j)(ρ)P−1
(jj)(ρ)p(j)(ρ)

P2
kj(ρ)

H2(yk).

Analogous calculations allow us to obtain the relevant quantities for ∂mbk (u1, ..., uK ;ρ, η) /∂yj .

Finally, the results stated in the proposition are obtained by collecting terms and integrating yk

out using the fact that∫ y

−∞
H3(x)Φ(x)dx =

H3(y)

4

1√
2π

exp

(
−y

2

2

)
+

1

4
H4(y)

[
1 + erfc

(
y√
2

)]
,∫ ∞

y
H3(x)[1− Φ(x)]dx =

H3(y)

4

1√
2π

exp

(
−y

2

2

)
− 1

4
H4(y) erf

(
y√
2

)
so that ∫ y

−∞
H3(x)Φ(x)dx−

∫ ∞
y

H3(x)[1− Φ(x)]dx =
1

2
H4(y),

and ∫ y

−∞
H2(x)Φ(x)dx =

H2(y)

3

1√
2π

exp

(
−y

2

2

)
+

1

2
√

3
H3(y)

[
1 + erfc

(
y√
2

)]
,∫ ∞

y
H3(x)[1− Φ(x)]dx =

H2(y)

3

1√
2π

exp

(
−y

2

2

)
− 1

2
√

3
H3(y) erf

(
y√
2

)
so that ∫ y

−∞
H2(x)Φ(x)dx−

∫ ∞
y

H2(x)[1− Φ(x)]dx =
1√
3
H3(y).

�
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Proposition 9

If P(ρ) were unrestricted i.e. when ρ contains the off-diagonal elements of P(ρ), p =

K(K − 1)/2 and ρ̂kj
p→ ρkj∞ where

E
[
sρkj (yk, yj ; ρkj∞)

∣∣∣ c0(.,φ0)
]

= E

[
(1 + ρ2

kj∞)ykyj − ρkj∞(y2
k + y2

j − 1)− ρ3
kj∞

(1− ρ2
kj∞)2

∣∣∣∣∣ c0(.,φ0)

]
= 0.

But since E(y2
k) = E(y2

j ) = 1, the previous expression reduces to

E
[
(1 + ρ2

kj∞)ykyj − ρkj∞(1 + ρ2
kj∞)

∣∣ c0(.,φ0)
]

= (1 + ρ2
kj∞)E

[
ykyj − ρkj∞

∣∣ c0(.,φ0)
]

= 0

so that ρkj∞ = E [ykyj | c0(.,φ0)]. More generally, we could consider P[ρ(θ)], where ρ(θ) is a

K(K − 1)/2× 1 vector and θ a p× 1 vector with p < K(K − 1)/2 so that

0 = E [sθ(y;θ)| c0(.,φ0)] =
∂ρ′(θ)

∂θ
E [sρ(y;ρ)| c0(.,φ0)]

as desired. �

B Hermite expansion-based copula tests

Proposition 10 The LM test for a Gaussian copula against a Hermite polynomial expansion

copula with ρ 6= 0 coincides with a moment test based on the following influence functions:

mϕ (u1, u2;ρ) =



sγ1 (y1, y2; ρ)
sc2 (y1, y2; ρ)
sc3 (y1, y2; ρ)
sγ4 (y1, y2; ρ)
sd1 (y1, y2; ρ)
sd2 (y1, y2; ρ)
sd3 (y1, y2; ρ)
sd4 (y2, y1; ρ)
sδ5 (y1, y2; ρ)


=



sγ1 (y1, y2; ρ)
sc2 (y1, y2; ρ)
sc2 (y2, y1; ρ)
sγ1 (y2, y1; ρ)
sd1 (y1, y2; ρ)
sd2 (y1, y2; ρ)
sd3 (y1, y2; ρ)
sd2 (y2, y1; ρ)
sδ5 (y1, y2; ρ)


where

sγ1 (y1, y2; ρ) = ρ6H2
3 (y2) +

2√
3
ρH3 (y1)H2 (y1) [ρH1 (y1)−H1 (y2)]− 2√

3
ρH3 (y2)H2 (y2)H1 (y2)

+
1

3
ρH2

2 (y1)
{
ρ
[
1−H2

1 (y2)
]

+ ρ3
[
H2

1 (y1)− 1
]}

+
1

3
ρ6H2

2 (y2)H2
1 (y2)

+
2
√

2

3
ρH2 (y1)H1 (y1)

(
1− ρ2

)
[ρH1 (y1)−H1 (y2)]

+
2

3
ρ3
[
2H1 (y1)H1 (y2)− 2H2

1 (y1)− ρ3
]

sc2(y1, y2; ρ) = H2(y1)H1(y2)−H2(y1)H1(y1)ρ−H1(y2)H2(y2)ρ2

+
ρ(y2 − ρy1)

1− ρ2
ρ
[
H2(y1) +

√
2
]

+
ρ(y1 − ρy2)

1− ρ2
ρ2
[
H2(y2) +

√
2
]
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sd1(y1, y2, ρ) = −H4(y2)ρ4 +
ρ(y2 − ρy1)

1− ρ2

1

2
H3(y1) +

ρ(y1 − ρy2)

1− ρ2

ρ4

2
H3(y2)

sd2(y1, y2, ρ) = H3(y1)H1(y2)−H3(y1)H1(y1)ρ−H3(y2)H1(y2)ρ3

+
ρ(y2 − ρy1)

1− ρ2
ρ

[
H3(y1) +

√
3

2
H1(y1)

]
+
ρ(y1 − ρy2)

1− ρ2
ρ3

[
H3(y2) +

√
3

2
H1(y2)

]

sd3(y1, y2, ρ) = H2(y1)H2(y2)− ρ2
[
H2

2 (y1) +H2
2 (y2)− 1

]
+
ρ(y2 − ρy1)

1− ρ2
ρ2

[√
3

2
H3(y1) + 2H1(y1)

]
+
ρ(y1 − ρy2)

1− ρ2
ρ2

[√
3

2
H3(y2) + 2H1(y2)

]
and

sδ5 (y1, y2, ρ) = 2H4 (y1)H4 (y2)− (2− ρ4)ρ4
[
H2

4 (y1) +H2
4 (y2)

]
+ρH4 (y1)

[
H3 (y1)H1 (y2)−H3 (y2)H1 (y1)− ρH3 (y1)H1 (y1)

(
1 + ρ2

) (
1− ρ2

)2]
+ρH4 (y2)

[
H3 (y2)H1 (y1)−H3 (y1)H1 (y3)− ρH3 (y2)H1 (y2)

(
1 + ρ2

) (
1− ρ2

)2]
+

1

4
ρ2H2

3 (y1)
{

1−H2
1 (y2) + ρ2

[
5− 6ρ2 +H2

1 (y1)
(
1− ρ2

)2]}
+

1

4
ρ2H2

3 (y2)
{

1−H2
1 (y1) + ρ2

[
5− 6ρ2 +H2

1 (y2)
(
1− ρ2

)2]}
−
√

3

4
ρ
(
1− ρ2

)
H3 (y1)

{
2H2 (y1)H1 (y2) + ρH1 (y1)

[
3
√

2ρ4 − 2H2 (y1)
(
1− ρ2

)]}
−
√

3

4
ρ
(
1− ρ2

)
H3 (y2)

{
2H2 (y2)H1 (y1) + ρH1 (y2)

[
3
√

2ρ4 − 2H2 (y2)
(
1− ρ2

)]}
+

3

2
√

2
ρ3
(
1− ρ2

)
H2 (y1)H1 (y1)

[
H1 (y2) +H1 (y1) ρ

(
1− ρ2

)]
+

3

2
√

2
ρ3
(
1− ρ2

)
H2 (y2)H1 (y2)

[
H1 (y1) +H1 (y2) ρ

(
1− ρ2

)]
+

3

8
ρ5
(
1− ρ2

) {
2H1 (y1)H1 (y2) + ρ

[
H2

1 (y1) +H2
1 (y2)

]}
+

1

2
ρ
[
1− ρ2 + ρH1 (y1)H1 (y2)

]
H1 (y3)H3 (y2)

Proof. Under the alternative hypothesis, (y1, y2) follow a fourth order Hermite expansion of

the Gaussian distribution so that their joint density is

f2(y1, y2; ρ,ϕ) = φ2

(
y2

1 + y2
2 − 2ρy1y2

1− ρ2

)
P2(y1, y2; ρ,ϕ),

where ϕ = (c1, c2, c3, c4, d1, d2, d3, d4, d5)′ and P2(y1, y2; ρ,ϕ) is given in (4), so that the marginals

become

fi(yi; ρ,ϕ) =
1

1 + d3ρ2
φ1 (yi)Pyi(yi; ρ,ϕ),

where

Pyj (yj ; ρ,ϕj) = 1 + (ϕj1 + ϕj4ρ
3)H3(yj) + (ϕj2ρ+ ϕj3ρ

2)H1(yj)H2(yj)

+(ϕj5 + ϕj9ρ
4)H4(yj) + (ϕj6ρ+ ϕj8ρ

3)H1(yj)H3(yj) + ϕj7ρ
2H2

2 (yj),
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with ϕj = (c1, c2, c3, c4, d1, d2, d3, d4, d5)′ and ϕ2 = (c4, c3, c2, c1, d5, d4, d3, d2, d1)′.

We can easily obtain the relevant quantities for the joint score by noticing that

lim
ϕ→0

∂ ln f2 (y1, y2; ρ,ϕ)

∂ϕi

coincides with the Hermite Polynomial associated to the coeffi cient ϕi, with the exception of

ϕ7 = d3, in which case limϕ→0 ∂ ln f2 (y1, y2; ρ,ϕ) /∂d3 = H2(y1)H2(y2) − ρ2. Analogously, we

can obtain the corresponding expressions for the score of the marginal densities, which yield

limϕ→0 ∂ ln f1 (y;ϕ) /∂d3 =
[
H2

2 (y)− 1
]
ρ2, while for the remaining elements of ϕ coincide with

the Hermite Polynomial associated to the coeffi cient ϕi of Pyi(yi; ρ,ϕ).

The remaining quantities involved in the expressions for the score are the quantile derivatives

under Gaussianity. Specifically, if we define

F−1
1(j,i)(u; ρ,0) = lim

ϕ→0

∂F−1
1 (u; ρ,ϕj)

∂ϕi
=

−1

φ[Φ−1(u)]

∫ Φ−1(u)

−∞
φ(z)

∂Pj(z; ρ,ϕ)

∂ϕi
dz

we will have that

F−1
1(1,1)(u; ρ,0) =

1

ρ3
F−1

1(1,4)(u; ρ,0) =
1√
3
H2(y1),

F−1
1(1,2)(u; ρ,0) =

1

ρ
F−1

1(1,3)(u; ρ,0) = ρ
[
H2(y1) +

√
2H0(y1)

]
,

F−1
1(1,5)(u; ρ,0) =

1

ρ4
F−1

1(1,9)(u; ρ,0) =
1

2
H3(y1),

F−1
1(1,2)(u; ρ,0) =

1

ρ3
F−1

1(1,3)(u; ρ,0) = ρ

[
H3(y1) +

√
3

2
H1(y1)

]
,

and

F−1
1(1,7)(u; ρ,0) = ρ2

[√
3

2
H3(y1) + 2H1(y1)

]
.

Collecting terms we then obtain the score vector sϕ (y1, y2; ρ). It is then straightforward to see

that

sc1(y1, y2, ρ)− ρ√
3
sc2(y1, y2, ρ) = 0,

sc4(y1, y2, ρ)− ρ√
3
sc3(y1, y2, ρ) = 0,

and

sd1(y1, y2, ρ)− ρ

2
sd2(y1, y2, ρ) +

ρ

2
sd4(y1, y2, ρ)− sd5(y1, y2, ρ) = 0.

But if we reparametrize the expansion so that

γ1 =

√
c1 −

ρ√
3
c2, γ4 =

√
c4 −

ρ√
3
c3 and δ5 =

√
d5 −

ρ

2
d4 +

ρ

2
d2 − d1,
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we can show that the scores with respect to these three new parameters are one-half the second

derivatives of the log-likelihood function with respect to γ2
1, γ

2
4 and δ

2
5. Specifically,

sγ1(y1, y2, ρ) = hc1c1(y1, y2, ρ)− ρ√
3
hc2c2(y1, y2, ρ),

sγ4(y1, y2, ρ) = hc4c4(y1, y2, ρ)− ρ√
3
hc3c3(y1, y2, ρ),

and

sδ5(y1, y2, ρ) = hd5d5(y1, y2, ρ)− ρ

2
hd4d4(y1, y2, ρ) +

ρ

2
hd2d2(y1, y2, ρ)− hd1d1(y1, y2, ρ),

where hϕiϕi(y1, y2, ρ) gets slightly simpler than in (7) since the last two terms in that expres-

sion disappears because ∂2F−1
1 (u1;ϕ)/∂ϕ2

i = 0 for all i in the case of an Hermite expansion.

Therefore

hϕiϕi(y1, y2, ρ) =
∂2 ln f2 (y1, y2;ρ,ϕ)

∂ϕ2
i

− ∂2 ln f1 (y1;ϕ)

∂ϕ2
i

− ∂2 ln f1 (y2;ϕ)

∂ϕ2
i

+2
2∑

k=1

∂F−1
1 (uk;ϕ)

∂ϕi

(
∂2 ln f2 (y1, y2;ρ,ϕ)

∂yk∂ϕi
− ∂2 ln f1 (yk;ϕ)

∂yk∂ϕi

)

+
2∑

k=1

2∑
j=1

∂F−1
1 (uk;ϕ)

∂ϕi

(
∂2 ln f2 (y1, y2;ρ,ϕ)

∂yk∂yj
− ∂2 ln f1 (yk;ϕ)

∂yk∂yj

)
∂F−1

1 (uj ;ϕ)

∂ϕi
.

We can easily obtain the relevant quantities for the joint score by noticing that

lim
ϕ→0

∂2 ln f2 (y1, y2; ρ,ϕ)

∂ϕi∂ϕj

coincides with minus the corresponding product of Hermite polynomials, except again for d3,

where limϕ→0 ∂2 ln f2 (y1, y2; ρ,ϕ) /∂d2
3 = ρ4 − H2

2 (y1)H2
2 (y2). Analogously, we can obtain the

corresponding expressions for the marginal Hessian components, which are given by minus the

corresponding product of Hermite polynomials. For instance, the relevant quantities in the case

of γ2
1 are

lim
ϕ→0

∂2 ln f2 (y1, y2; ρ,ϕ)

∂(γ2
1)2

= −
[
H3(y1)− ρ√

3
H2(y1)H1(y2)

]2

,

lim
ϕ→0

∂2 ln f1 (y1;ϕ)

∂(γ2
1)2

= −
[
H3(y1)− ρ2

√
3
H2(y1)H1(y1)

]2

,

and

lim
ϕ→0

∂2 ln f1 (y2;ϕ)

∂(γ2
1)2

= −
[
H3(y2)ρ3 − ρ3

√
3
H2(y2)H1(y2)

]2

.

The expressions for ∂2 ln f/∂y1∂ϕi can be easily obtained using the recursion

∂Hn(y1)

∂y1
=

2−(n−1)/2n√
n!

Hn−1

(
y1√

2

)
.
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Specifically, for the terms involving derivatives with respect to c̃1, we obtain

lim
ϕ→0

∂2 ln f2 (y1, y2; ρ,ϕ)

∂(γ2
1)∂y1

=
√

3H2(y1)− ρ2

3

√
3

2
H1(y1)H1(y2),

lim
ϕ→0

∂2 ln f2 (y1, y2; ρ,ϕ)

∂(γ2
1)∂y2

= − 1√
3
ρH2(y1),

lim
ϕ→0

∂2 ln f1 (y1;ϕ)

∂(γ2
1)∂y1

=
√

3H3(y1)− ρ2

√
3

[
H2(y1) +

√
2H2

1 (y1)
]
,

and

lim
ϕ→0

∂2 ln f1 (y2;ϕ)

∂(γ2
1)∂y1

= ρ3

{√
3H3(y1)− 1√

3

[
H2(y1) +

√
2H2

1 (y1)
]}

.

Symmetric expressions apply to the terms ∂2./∂(γ2
4)∂y1, and ∂2./∂(γ2

4)∂y2. Analogous calcula-

tions, omitted for the sake of brevity, deliver the required expressions for the terms involving

derivatives with respect to δ5. Finally, we obtain the desired result by collecting terms appro-

priately and using the fact that

∂2 ln f2 (y1, y2;ρ,ϕ)

∂y2
j

− ∂2 ln f1 (yk;ϕ)

∂y2
k

= − ρ2

1− ρ2
for j, k = 1, 2,

and
∂2 ln f2 (y1, y2;ρ,ϕ)

∂y1∂y2
=

ρ

1− ρ2
.

�

Proposition 11 The LM test for a Gaussian copula against a Hermite polynomial expansion

copula under the maintained assumption that ρ = 0 coincides with a moment test based on the

following subset of influence functions:

pϕ (u1, u2;ρ) =



sc2 (y1, y2; ρ)
sc3 (y1, y2; ρ)
sd1 (y1, y2; ρ)
sd2 (y1, y2; ρ)
sd3 (y1, y2; ρ)
sd4 (y1, y2; ρ)

 =



sc2 (y1, y2; ρ)
sc2 (y2, y1; ρ)
sd1 (y1, y2; ρ)
sd2 (y1, y2; ρ)
sd3 (y1, y2; ρ)
sd2 (y2, y1; ρ)

 .

Proof. It follows directly from Proposition 10 and the fact that ρ = 0. �

Proposition 12 The correction terms of the elements of mϕ (u1, u2;ρ) and pϕ (u1, u2;ρ) are

given by

nγ1 (y1, y2; ρ) =
1

3
ρ2(1− ρ2)

[
1−H2

3 (y1)
]

+

√
2

3
ρ2 [H4 (y1)−H4 (y2)]

+
2
√

2

3
ρ2(1− ρ2)H2 (y1) +

2
√

2

3
ρ6H2 (y2) ,
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nc2 (y1, y2; ρ) = −ρ(1 + ρ2)

3
H3 (y1)− 2√

3
ρ2H3 (y2) ,

nd1 (y1, y2; ρ) = −1

4
ρ2
(
1 + ρ2 + ρ4

)
H4 (y1)− 3

4
ρ4H4 (y2) ,

nd2 (y1, y2; ρ) = −1

2
ρ
(
1 + ρ2 + ρ4

)
H4 (y1)− 3

2
ρ3H4 (y2)−

√
3

2
ρ3 [H2 (y1)−H2 (y2)] ,

nd3 (y1, y2; ρ) = −1

4
ρ2
(
2 + ρ2

) [
H2

2 (y1) +H2
2 (y2)− 2

]
− 1√

2
ρ4 [H2 (y1) +H2 (y2)] ,

and

nδ5 (y1, y2; ρ) = −1

4
ρ2
(
1− ρ4

) [
H2

4 (y1) +H2
4 (y2)− 2

]
+

1

4

(
ρ2 + 3ρ4 − 3ρ6 − ρ8

) [
H2

3 (y1) +H2
3 (y2)− 2

]
−9

4

√
3

2
ρ2
(
1− ρ4

)
[H4 (y1) +H4 (y2)]

+
3

2
√

2
ρ4
(
2ρ4 + ρ2 − 3

)
[H2 (y1) +H2 (y2)] .

Proof. Analogous calculations to the ones performed to prove Proposition 8 applied to the

corresponding influence functions. �
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C Tables and Figures

Table 1: Rejection rates under the null at 1%, 5%, and 10% significance levels:

Panel A: Bivariate copula (K = 2)
N = 200 N = 800 N = 3, 200

10% 5% 1% 10% 5% 1% 10% 5% 1%

LM—t .096 .043 .008 .100 .054 .012 .100 .054 .012
Skew .102 .052 .011 .103 .053 .011 .103 .053 .011
LM—At .101 .054 .008 .107 .053 .012 .106 .053 .012
KT—t .100 .048 .009 .103 .050 .011 .103 .050 .011
KT—At .100 .053 .008 .105 .054 .013 .105 .054 .013
LM—HE .107 .054 .009 .105 .056 .011 .105 .056 .010
KS .100 .053 .011 .104 .053 .011 .104 .053 .011
CvM .100 .053 .010 .101 .051 .008 .101 .051 .009

Panel B: Trivariate copula (K = 3)
N = 200 N = 800 N = 3, 200

10% 5% 1% 10% 5% 1% 10% 5% 1%

LM—t .096 .049 .009 .103 .051 .010 .102 .052 .010
Skew .109 .058 .012 .102 .051 .011 .101 .051 .011
LM—At .108 .056 .011 .099 .050 .010 .099 .046 .010
KT—t .095 .048 .010 .096 .049 .009 .098 .052 .012
KT—At .099 .052 .011 .099 .050 .011 .099 .049 .010
KS .108 .057 .011 .109 .052 .012 .104 .051 .011
CvM .100 .054 .013 .103 .055 .008 .101 .051 .010

Notes: DGP: Gaussian with correlation parameter .12 in Panel A, while in Panel B ρ12 = .013, ρ13 =

−.041, and ρ23 = −.014. Critical values are computed using parametric bootstrap. LM—t and LM—
At are the Lagrange multiplier tests based on the score of the symmetric and asymmetric Student t
copula, respectively; while KT—t and KT—At are the corresponding Kuhn-Tucker versions (see Section
2.3 for details). Skew corresponds to the Lagrange multiplier test based on the K moment conditions
mbk (u1, ..., uK ;ρ, 0) of Proposition 4 while LM-HE corresponds to the Lagrange multiplier test based
on the score of the Hermite expansion of the Gaussian copula of Proposition 10. KS and CvM denote
the Kolmogorov—Smirnov and the Cramér—von Mises tests for copula models, see Rémillard (2010) for
details.
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Table 2: Monte Carlo rejection rates under the null at 1%, 5%, and 10% significance levels under
the Student t alternative:

Panel A: Bivariate copula (K = 2)
N = 200 N = 800 N = 3, 200

10% 5% 1% 10% 5% 1% 10% 5% 1%

LM—t .191 .125 .058 .403 .308 .159 .860 .788 .622
Skew .136 .076 .021 .151 .087 .025 .144 .086 .022
LM—At .187 .118 .046 .343 .251 .116 .757 .663 .454
KT—t .277 .174 .074 .527 .386 .183 .923 .853 .660
KT—At .228 .139 .052 .433 .301 .143 .836 .740 .489
LM—HE .199 .130 .047 .330 .242 .108 .687 .582 .376
KS .089 .050 .016 .101 .047 .008 .170 .089 .019
CvM .095 .052 .010 .125 .061 .009 .282 .142 .029

Panel B: Trivariate copula (K = 3)
N = 200 N = 800 N = 3, 200

10% 5% 1% 10% 5% 1% 10% 5% 1%

LM - t .287 .203 .089 .725 .631 .427 .998 .995 .979
Skew .159 .095 .025 .171 .101 .025 .176 .104 .027
LM - At .254 .171 .061 .584 .469 .271 .987 .975 .926
KT - t .411 .278 .099 .827 .723 .476 .999 .998 .987
KT - At .317 .202 .066 .690 .547 .309 .995 .986 .944
KS .076 .034 .006 .075 .033 .005 .129 .060 .013
CvM .112 .059 .014 .146 .078 .013 .391 .217 .050

Notes: DGP: Student t with 20 degrees of freedom. The correlation parameter is .12 in Panel A, while
in Panel B ρ12 = .013, ρ13 = −.041, and ρ23 = −.014. Critical values are computed using parametric
bootstrap. LM—t and LM—At are the Lagrange multiplier tests based on the score of the symmetric and
asymmetric Student t copula, respectively; while KT—t and KT—At are the corresponding Kuhn-Tucker
versions (see Section 2.3 for details). Skew corresponds to the Lagrange multiplier test based on the
K moment conditions mbk (u1, ..., uK ;ρ, 0) of Proposition 4 while LM-HE corresponds to the Lagrange
multiplier test based on the score of the Hermite expansion of the Gaussian copula of Proposition 10.
KS and CvM denote the Kolmogorov—Smirnov and the Cramér—von Mises tests for copula models, see
Rémillard (2010) for details.

45



Table 3: Monte Carlo rejection rates under the null at 1%, 5%, and 10% significance levels under
the Asymmetric t alternative:

Panel A: Bivariate copula (K = 2)
N = 200 N = 800 N = 3, 200

10% 5% 1% 10% 5% 1% 10% 5% 1%

LM—t .190 .123 .060 .405 .311 .163 .871 .806 .635
Skew .177 .106 .038 .344 .239 .104 .779 .694 .451
LM—At .219 .147 .058 .488 .375 .198 .943 .905 .787
KT—t .276 .175 .072 .533 .391 .189 .929 .864 .681
KT—At .260 .166 .065 .568 .427 .230 .966 .934 .812
LM—HE .233 .154 .061 .449 .341 .168 .900 .846 .693
KS .150 .081 .029 .260 .156 .038 .593 .432 .196
CvM .100 .051 .012 .177 .093 .019 .559 .383 .152

Panel B: Trivariate copula (K = 3)
N = 200 N = 800 N = 3, 200

10% 5% 1% 10% 5% 1% 10% 5% 1%

LM—t .321 .240 .114 .798 .714 .523 .999 .999 .993
Skew .533 .425 .213 .972 .954 .869 1.000 1.000 1.000
LM—At .572 .465 .252 .985 .971 .918 1.000 1.000 1.000
KT—t .449 .312 .123 .877 .795 .571 1.000 .999 .997
KT—At .592 .477 .257 .982 .970 .926 1.000 1.000 1.000
KS .236 .130 .030 .494 .325 .099 .941 .869 .603
CvM .149 .086 .029 .495 .374 .145 .989 .968 .864

Notes: DGP: asymmetric Student t with 20 degrees of freedom, and bi = −1 for all i. The correlation
parameter is .12 in Panel A, while in Panel B ρ12 = .013, ρ13 = −.041, and ρ23 = −.014. Critical values
are computed using parametric bootstrap. LM—t and LM—At are the Lagrange multiplier tests based on
the score of the symmetric and asymmetric Student t copula, respectively; while KT—t and KT—At are
the corresponding Kuhn-Tucker versions (see Section 2.3 for details). Skew corresponds to the Lagrange
multiplier test based on the K moment conditions mbk (u1, ..., uK ;ρ, 0) of Proposition 4 while LM-HE
corresponds to the Lagrange multiplier test based on the score of the Hermite expansion of the Gaussian
copula of Proposition 10. KS and CvM denote the Kolmogorov—Smirnov and the Cramér—von Mises tests
for copula models, see Rémillard (2010) for details.
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Table 6: Constrained estimates of the shape parameters:

Panel A: Short term reversals strategies
Student t Asymmetric Student t
ρ̂ η̂ ρ̂ η̂ b̂1 b̂2

Sector
Non Durables -.032 .154 -.029 .155 -.135 -.049
Durables -.047 .093 -.045 .093 -.156 -.219
Manufacturing -.040 .144 -.039 .144 -.065 -.045
Energy -.029 .139 -.027 .139 -.076 -.091
Chemicals -.049 .119 -.048 .120 -.103 -.014
Business -.028 .108 -.027 .109 -.125 -.064
Telecom .022 .131 .027 .130 -.154 -.142
Utilities -.040 .146 -.036 .146 -.124 -.108
Shops -.028 .146 -.026 .146 -.109 -.057
Healthcare -.028 .124 -.026 .124 -.117 -.075
Financials -.058 .209 -.042 .207 -.117 -.091
Others -.027 .133 -.024 .134 -.163 -.069

All -.025 .187 -.018 .187 -.112 -.069

Panel B: Momentum strategies
Student t Asymmetric Student t
ρ̂ η̂ ρ̂ η̂ b̂1 b̂2

Sector
Non Durables .032 .179 .051 .178 -.170 -.176
Durables .046 .105 .051 .104 -.262 -.225
Manufacturing .022 .176 .028 .176 -.087 -.114
Energy .023 .144 .028 .143 -.131 -.159
Chemicals .006 .131 .007 .130 -.054 -.140
Business .010 .141 .014 .140 -.146 -.113
Telecom .057 .123 .062 .118 -.113 -.467
Utilities .010 .152 .014 .152 -.117 -.102
Shops .032 .172 .046 .170 -.136 -.208
Healthcare .026 .139 .034 .137 -.162 -.247
Financials .033 .211 .080 .209 -.139 -.252
Others .035 .155 .047 .153 -.150 -.259

All .034 .213 .074 .212 -.124 -.190

Notes: The data is collected from CRSP and contain monthly series from July 1991 to December 2012.
Estimates are obtained by generating data from this copula and matching in the simulated data the
values in the original data of both the Gaussian rank correlation coeffi cients and the corresponding test
statistics.
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Figure 1: Short term reversal and momentum, March 1998

Figure 1a: STR, Stock returns Figure 1b: MOM, Stock returns
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Figure 1e: STR, Gaussian ranks Figure 1e: MOM, Gaussian ranks
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Notes: The data is collected from CRSP. STR refers to short term reversal and MOM to momentum.
Red lines in the top panels represent the regression lines of the original data, with beta coeffi cients:
-.109 in Figure 1a and .009 in Figure 1b; red lines in the middle panels correspond to the Spearman
rank correlation: -.045 and .023 in Figures 1c and 1d, respectively; and, red lines in the bottom panels
represent the Gaussian rank correlation: -.053 in Figure 1e and .053 in Figure 1f. Contours in the bottom
panels are computed through non-parametric estimation of the bivariate density using Silverman’s rule
of thumb N−1/6 for the standardized Gaussian ranks.
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Figure 2: Short term reversal and momentum, August 2007

Figure 2a: STR, Stock returns Figure 2b: MOM, Stock returns
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Figure 2e: STR, Gaussian ranks Figure 2f: MOM, Gaussian ranks
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Notes: The data is collected from CRSP. STR refers to short term reversal and MOM to momentum.
Red lines in the top panels represent the regression lines of the original data, with beta coeffi cients:
-.019 in Figure 2a and -.004 in Figure 2b; red lines in the middle panels correspond to the Spearman
rank correlation: -.060 and .023 in Figures 2c and 2d, respectively; and, red lines in the bottom panels
represent the Gaussian rank correlation: -.040 in Figure 2e and .030 in Figure 2f. Contours in the bottom
panels are computed through non-parametric estimation of the bivariate density using Silverman’s rule
of thumb N−1/6 for the standardized Gaussian ranks.
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Figure 3: Gaussian copula

Figure 3a: Bivariate Gaussian copula Figure 3b: Contours of a bivariate
density with uniform margins Gaussian copula with uniform margins
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Figure 3c: Bivariate Gaussian copula Figure 3d: Contours of a bivariate
with Gaussian margins Gaussian copula with Gaussian margins
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Figure 3e: Conditional density from Gaussian copula with Gaussian marginals
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Notes: Gaussian copula with correlation coeffi cient ρ = .120 (Spearman correlation ρS = .115). Top
panels plot density (left) and contours (right) of the corresponding copula on [0, 1]2 while middle panels
do the same when marginals are standard normal.
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Figure 4: Student t copula

Figure 4a: Bivariate Student t copula Figure 4b: Contours of a bivariate
density with uniform margins Student t copula with uniform margins
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Figure 4c: Bivariate Student t copula Figure 4d: Contours of a bivariate
density with Gaussian margins Student t copula with Gaussian margins
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Figure 4e: Conditional density from Student t copula with Gaussian marginals
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Notes: Student t copula with 10 degrees of freedom and correlation coeffi cient ρ = .122 (Spearman
correlation ρS = .115). Top panels plot density (left) and contours (right) of the corresponding copula
on [0, 1]2 while middle panels do the same when marginals are standard normal.
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Figure 5: Asymmetric Student t copula

Figure 5a: Bivariate asymmetric Student t Figure 5b: Contours of a bivariate asymmetric
copula density with uniform margins Student t copula with uniform margins
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Figure 5c: Bivariate asymmetric Student t Figure 5d: Contours of a bivariate asymmetric
copula density with Gaussian margins Student t copula with Gaussian margins
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Figure 5e: Conditional density from asymmetric Student t copula with Gaussian marginals
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Notes: Asymmetric Student t copula with 10 degrees of freedom, skewness parameters bi =-.5 and
correlation coeffi cient ρ = .186 (Spearman correlation ρS = .115). Top panels plot density (left) and
contours (right) of the corresponding copula on [0, 1]2 while middle panels do the same when marginals
are standard normal.
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Figure 6: Hermite expansion copula

Figure 6a: Bivariate Hermite expansion Figure 6b: Contours of a bivariate Hermite
copula density with uniform margins expansion copula with uniform margins
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Figure 6c: Bivariate Hermite expansion Figure 6d: Contours of a bivariate Hermite
copula density with Gaussian margins expansion copula with Gaussian margins
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Figure 6e: Conditional density from Hermite expansion copula with Gaussian marginals
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Notes: Hermite expansion copula with ϕ = (0,-.1, .1, 0, 0, .05, .05, .05, 0)′ and correlation coeffi cient
ρ = .140 (Spearman correlation ρS = .115). Top panels plot density (left) and contours (right) of
the corresponding copula on [0, 1]2 while middle panels do the same for the originating distribution when
marginals are standard normal.

55



Figure 7: Power of Student t-based tests under asymmetric Student t local alternatives

Figure 7a: Non-centrality parameter for different kurtosis parameter values
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Figure 7b: Non-centrality parameter for different correlation parameter values
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Figure 7c: Non-centrality parameter for different skewness parameter values
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Notes: Non-centrality parameters of the Student t -based LM-copula and LM-distributional tests un-
der asymmetric Student t alternatives. LM and LMNP denote the LM-copula tests when marginals
are known and when they are estimated nonparametrically, respectively; while DistNP denotes the LM-
distributional test when marginals are estimated nonparametrically. Figure 7a, power against asymmetric
Student t alternatives with ρ = .75 and bi =-.5. Figure 7b, power against asymmetric Student t alter-
natives with different correlation parameter and η = .1, bi =-.5 for i = 1, 2. Figure 7c, power against
asymmetric Student t alternatives with increasing skewness and η = .1, ρ = .75. Figures 7b-c share the
legend of Figure 7a.
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Figure 8: Power of asymmetric Student t-based tests under asymmetric Student t local

alternatives

Figure 8a: Non-centrality parameter for different kurtosis parameter values
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Figure 8b: Non-centrality parameter for different correlation parameter values
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Figure 8c: Non-centrality parameter for different skewness parameter values

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.02

0.04

0.06

0.08

0.1

bi

Notes: Non-centrality parameters of the Student t -based LM-copula and LM-distributional tests un-
der asymmetric Student t alternatives. LM and LMNP denote the LM-copula tests when marginals
are known and when they are estimated nonparametrically, respectively; while DistNP denotes the LM-
distributional test when marginals are estimated nonparametrically. Figure 8a, power against asymmetric
Student t alternatives with ρ = .75 and bi =-.5. Figure 8b, power against asymmetric Student t alter-
natives with different correlation parameter and η = .1, bi =-.5 for i = 1, 2. Figure 8c, power against
asymmetric Student t alternatives with increasing skewness and η = .1, ρ = .75. Figures 8b-c share the
legend of panel Figure 8a.

57



Figure 9: Size distortion of Student t-based and asymmetric Student t-based tests at the 5%

level

Figure 9a: Size distortion of Student t-based tests
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Figure 9b: Size distortion of asymmetric Student t-based tests
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Notes: DGP: Gaussian. Based on 10,000 replications. In Figure 9a, LMK=2 andKTK=2 are the Lagrange
multiplier test and its Kuhn-Tucker version based on the score of the Student t copula; while in Figure
9b, LMK=2 and KTK=2 are the Lagrange multiplier test and its Kuhn-Tucker version based on the score
of the asymmetric Student t copula (see Section 2.3 for details).
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Figure 10: Transition probabilities for short term reversals strategies
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Notes: The data is collected from CRSP and contain monthly series from July 1991 to December 2012.
Gaussian copula with correlation coeffi cient ρ =-.022. For the Student t copula, ρ =-.025 and η = .187;
while for the asymmetric Student t copula, ρ =-.018, η = .187, b1 =-.112 and b2 =-.069 (obtained by
restricted indirect estimation).
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Figure 11: Transition probabilities for momentum strategies

Figure 11a: Bottom 5%

Lo w M ed iu m H ig h
0

0 .2

0 .4

0 .6
G au s s ian
S tu d en tt
A s y mmetrict
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Notes: The data is collected from CRSP and contain monthly series from July 1991 to December 2012.
Gaussian copula with correlation coeffi cient ρ = .035. For the Student t copula, ρ = .034 and η = .213;
while for the asymmetric Student t copula, ρ = .074, η = .212, b1 =-.124 and b2 =-.190 (obtained by
restricted indirect estimation).
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D Local power calculations

Let mϕt(ρ,ϕ) denote the h influence functions used to develop the following moment test

of H0 : ϕ = 0:

MT = Tm̄′ϕt(ρ0,0)Ψ−1m̄ϕt(ρ0,0), (D6)

where m̄ϕt(ρ0,0) is the sample average of mϕt(ρ,ϕ) evaluated under the null, and Ψ is the

corresponding asymptotic covariance matrix. In order to obtain the non-centrality parameter

of this test under Pitman sequences of local alternatives of the form Hl : ϕT= ϕ̄/
√
T , it is

convenient to linearize mϕt(ρ0,0) with respect to ϕ around its true value ϕT . This linearization

yields
√
Tm̄ϕt(ρ0,0) =

√
Tm̄ϕt(ρ0,ϕT ) +

1√
T

T∑
t=1

∂mϕt(ρ,ϕ
∗)

∂ϕ′
ϕ̄,

where ϕ∗ is some “intermediate”value between ϕT and 0. As a result,

√
Tm̄ϕt(ρ0,0)

d→ N [M(ρ0,0)ϕ̄,Ψ],

under standard regularity conditions, where

M(ρ0,0) = E

[
∂mϕt(ρ,0)

∂ϕ′

]
,

so that the non-centrality parameter of the moment test (D6) will be

ϕ̄′M′(ρ0,0)Ψ−1M(ρ0,0)ϕ̄. (D7)

On this basis, we can easily obtain the limiting probability ofMT exceeding some prespecified

quantile of a central χ2
h distribution from the cdf of a non-central χ2 distribution with h degrees

of freedom and non-centrality parameter (D7).

Finally, note that (D7) remains valid when we replace ρ0 by its ML estimator under the

null if mϕt(ρ,0) and the scores corresponding to ρ are asymptotically uncorrelated when H0 is

true, as in all our tests. In addition, both M(ρ0,0) and Ψ coincide with the (2, 2) block of the

information matrix when mϕt(ρ,ϕ) are the scores with respect to ϕ.

D.1 Student t alternatives

Expressions for sη (u1, ..., uK ;ρ, 0) as well as for nη (u1, ..., uK ;ρ), which allows to compute

scη (u1, ..., uK ;ρ, 0) = sη (u1, ..., uK ;ρ, 0)− nη (u1, ..., uK ;ρ) ,
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are given in Propositions 3 and 8, respectively. For instance, in the bivariate case, since both

E [∂mηt(ρ, 0)/∂η] and V [mηt(ρ, 0)] coincide with the (2, 2) block of the information matrix, we

only need to compute

V [sη (u1, u2; ρ, 0)] = 1 +
3

4
ρ2

and

V
[
scη (u1, u2;ρ, 0)

]
= 1 +

3

4
ρ2 +

3

16

(
ρ4 + ρ8

)
in order to obtain the corresponding non-centrality parameters. Similarly, for the distributional

version of the test, we have that mηt(ρ, 0) = dc (u1, u2; ρ, 0) with

dc (u1, u2; ρ, 0) = 2L2 [ς(ρ)]−
√

3

2
[H4(y1) +H4(y2)] ,

and hence

V [dc (u1, u2; ρ, 0)] = 1 + 3ρ4

and

cov
[
dc (u1, u2; ρ, 0) , scη (u1, u2; ρ, 0)

]
= 1− 3

4
ρ6.

D.2 Asymmetric Student t alternatives

The required quantities to compute the non-centrality parameters of the score test in the

bivariate case are

V [sbk (u1, u2; ρ, 0)] = 26 + 24ρ2 + 48ρ4,

cov [sb1 (u1, u2; ρ, 0) , sb2 (u1, u2; ρ, 0)] = 48ρ+ 26ρ3 + 24ρ5,

V
[
scbk (u1, u2; ρ, 0)

]
= 2 +

2

3

(
ρ2 + ρ4

)
+

4

3
ρ6,

and

cov
[
scb1 (u1, u2; ρ, 0) , scb2 (u1, u2; ρ, 0)

]
=

10

3
ρ3 +

2

3

(
ρ5 + ρ7

)
,

while cov [sη (u1, u2; ρ, 0) , sbk (u1, u2; ρ, 0)] = cov
[
scη (u1, u2; ρ, 0) , scbk (u1, u2; ρ, 0)

]
= 0. The

same argument can be applied to the distributional test yielding

dcb1 (u1, u2; ρ, 0) = −2

[√
3

2
H3(y1) + ρ

√
2

3
H3(y2)

]
+ y1 [ς(ρ)− 4]

and

dcb1 (u1, u2; ρ, 0) = −2

[√
3

2
H3(y2) + ρ

√
2

3
H3(y1)

]
+ y2 [ς(ρ)− 4] .
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As in the case of the score test, dcbk (u1, u2; ρ, 0) for k = 1, 2 is orthogonal to dcb1 (u1, u2; ρ, 0).

Therefore, the additional quantities required to compute the corresponding non-centrality para-

meters are

V
[
dcbk (u1, u2; ρ, 0)

]
= 2− 16

3
ρ2 + 8ρ4,

cov
[
dcb1 (u1, u2; ρ, 0) ,mc

b2 (u1, u2; ρ, 0)
]

= −4ρ+ 6ρ3 +
8

3
ρ5,

cov
[
mc
bk

(u1, u2; ρ, 0) , scbk (u1, u2; ρ, 0)
]

= 2− 10

3
ρ2 − 2ρ4 − 4

3
ρ6,

and

cov
[
mc
b1 (u1, u2;ρ, 0) , scb2 (u1, u2;ρ, 0)

]
= −2ρ+

2

3
ρ3 − 10

3
ρ5.

D.3 Interpretation of copula and distributional tests (the bivariate case)

D.3.1 When marginals are known

We can easily express both score copula tests as well as distributional LM tests in terms of

Hermite polynomials of the marginal Gaussian ranks. Taking into account that mb2 (y1, y2; ρ) =

mb1 (y2, y1; ρ) and db2 (y1, y2; ρ) = db1 (y2, y1; ρ), the relevant coeffi cients are in Table D1.

In order to characterize the loss of power of the distributional version of the test we could

write

dϕ (y1, y2; ρ) = βϕsϕ (y1, y2; ρ) + uϕ

where

βϕ =
cov [dϕ (y1, y2; ρ) , sϕ (y1, y2; ρ)]

V [sϕ (y1, y2; ρ)]

so that the non-centrality parameter of dϕ (y1, y2; ρ) under a sequence of local alternatives Hl :

ϕT = ϕ̄/
√
T can be written as

β2
ϕV [sϕ (y1, y2; ρ)]

β2
ϕV [sϕ (y1, y2; ρ)] + V (uϕ)

.

For instance, when ϕ = η we have that

V [sη (y1, y2; ρ)] = 1 +
3

4
ρ2

and

cov [dη (y1, y2; ρ) , sη (y1, y2; ρ)] = 1,

so that the reduction in power of the distributional LM test relative to the score test is

V (uη) = 4− 4

4 + 3ρ2
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where we have used the fact that V [dη (y1, y2; ρ)] = 4.

Table D1: Hermite polynomial coeffi cients for bivariate score copula tests and distributional

LM tests when marginals are known

Copula LM test Distributional LM test
Hermite polynomial sη (y1, y2; ρ) mb1 (y1, y2; ρ) dη (y1, y2; ρ) db1 (y1, y2; ρ)

1 2ρ4+ρ2

(1−ρ2)2
0 2ρ4+ρ2

(1−ρ2)2
0

H1(y1) 0 2ρ2

1−ρ2 0 4ρ2

1−ρ2

H1(y2) 0 −2(ρ3+ρ)
1−ρ2 0 − 2ρ

1−ρ2

H2(y1)
3ρ2(ρ2+3)

2
√

2(1−ρ2)2
0 3

√
2ρ2

(1−ρ2)2
0

H1(y1)H1(y2) −2(2ρ3+ρ)
(1−ρ2)2

0 −2(2ρ3+ρ)
(1−ρ2)2

0

H2(y2)
3ρ2(ρ2+3)

2
√

2(1−ρ2)2
0 3

√
2ρ2

(1−ρ2)2
0

H3(y1) 0 0 0
√

6
1−ρ2

H2(y1)H1(y2) 0 −
√

2ρ
1−ρ2 0 −2

√
2ρ

1−ρ2

H1(y1)H2(y2) 0
√

2(ρ2+1)
1−ρ2 0

√
2

1−ρ2

H3(y2) 0 −
√

6ρ
1−ρ2 0 0

H4(y1)

√
3
2
ρ2

(1−ρ2)2
0

√
3
2

(1−ρ2)2
0

H3(y1)H1(y2) −
√

3
2
ρ(ρ2+3)

2(1−ρ2)2
0 −

√
6ρ

(1−ρ2)2
0

H2(y1)H2(y2) 2ρ2+1
(1−ρ2)2

0 2ρ2+1
(1−ρ2)2

0

H1(y1)H3(y2) −
√

3
2
ρ(ρ2+3)

2(1−ρ2)2
0 −

√
6ρ

(1−ρ2)2
0

H4(y2)

√
3
2
ρ2

(1−ρ2)2
0

√
3
2

(1−ρ2)2
0

Similarly, doing the same calculations for ϕ = bi we have that

V

[(
mb1 (y1, y2; ρ)
mb2 (y1, y2; ρ)

)]
=

[
2 2ρ3

2ρ3 2

]
, V

[(
db1 (y1, y2; ρ)
db2 (y1, y2; ρ)

)]
=

[
8 8ρ
8ρ 8

]
and

cov

[(
mb1 (y1, y2; ρ)
mb2 (y1, y2; ρ)

)
,

(
db1 (y1, y2; ρ)
db2 (y1, y2; ρ)

)′]
=

[
2− 4ρ2 −2ρ
−2ρ 2− 4ρ2

]
.

In this way, it is clear that for b1,

db1 (y1, y2; ρ) =
1− ρ2

1 + ρ2 + ρ4
mb1 (y1, y2; ρ)− ρ+ 2ρ3

1 + ρ2 + ρ4
mb2 (y1, y2; ρ) + ub1 ,

so that the reduction in power of the distributional LM test relative to the corresponding score

test is characterized by

V (ubi) =
6(1 + 2ρ2)

1 + ρ2 + ρ4

because V [dη (y1, y2; ρ)] = 4.

4



D.3.2 Accounting for marginals uncertainty

Direct application of Proposition 8 yields

nη (y1, y2; ρ) =
1

4

√
3

2
ρ2 [H4(y1) +H4(y2)] , nbi (y1, y2; ρ) =

√
2

3
ρ [ρH3(y1) +H3(y2)]

and nb2 (y1, y2; ρ) = nb1 (y2, y1; ρ). Analogous calculations for the distributional test moments

deliver

ndη (y1, y2; ρ) =

√
3

2
[H4(y1) +H4(y2)] , nb1 (y1, y2; ρ) =

√
6H3(y1) + 2ρ

√
2

3
H3(y2),

and nb2 (y1, y2; ρ) = nb1 (y2, y1; ρ). In the following table we summarize the modified moments

that account for non parametric estimation of the marginals.

Table D2: Hermite polynomial coeffi cients for bivariate score copula tests and distributional

LM tests when marginals are estimated nonparametrically

Copula LM test Distributional LM test
Hermite polynomial snpη (y1, y2; ρ) mnp

b1
(y1, y2; ρ) dnpη (y1, y2; ρ) dnpb1 (y1, y2; ρ)

1 2ρ4+ρ2

(1−ρ2)2
0 2ρ4+ρ2

(1−ρ2)2
0

H1(y1) 0 2ρ2

1−ρ2 0 4ρ2

1−ρ2

H1(y2) 0 −2(ρ3+ρ)
1−ρ2 0 − 2ρ

1−ρ2

H2(y1)
3ρ2(ρ2+3)

2
√

2(1−ρ2)2
0 3

√
2ρ2

(1−ρ2)2
0

H1(y1)H1(y2) −2(2ρ3+r)
(1−ρ2)2

0 −2(2ρ3+ρ)
(1−ρ2)2

0

H2(y2)
3ρ2(ρ2+3)

2
√

2(1−ρ2)2
0 3

√
2ρ2

(1−ρ2)2
0

H3(y1) 0
√

2
3ρ

2 0
√

6ρ2

1−ρ2

H2(y1)H1(y2) 0 −
√

2ρ
1−ρ2 0 −2

√
2ρ

1−ρ2

H1(y1)H2(y2) 0
√

2(ρ2+1)
1−ρ2 0

√
2

1−ρ2

H3(y2) 0 −
√

2
3
ρ(ρ2+2)
1−ρ2 0 −2

√
2
3ρ

H4(y1)

√
3
2
ρ2(ρ4−2ρ2+5)
4(1−ρ2)2

0 −
√

3
2
ρ2(ρ2−2)

(1−ρ2)2
0

H3(y1)H1(y2) −
√

3
2
ρ(ρ2+3)

2(1−ρ2)2
0 −

√
6ρ

(1−ρ2)2
0

H2(y1)H2(y2) 2ρ2+1
(1−ρ2)2

0 2ρ2+1
(1−ρ2)2

0

H1(y1)H3(y2) −
√

3
2
ρ(ρ2+3)

2(1−ρ2)2
0 −

√
6ρ

(1−ρ2)2
0

H4(y2)

√
3
2
ρ2(ρ4−2ρ2+5)
4(1−ρ2)2

0 −
√

3
2
ρ2(ρ2−2)

(1−ρ2)2
0

Again, in order to characterize the loss of power of the distributional version of the test we

could write

dnpϕ (y1, y2; ρ) = βnpϕ s
np
ϕ (y1, y2; ρ) + unpϕ

5



where

βnpϕ =
cov [dnpϕ (y1, y2; ρ) , sϕ (y1, y2; ρ)]

cov [snpϕ (y1, y2; ρ) , sϕ (y1, y2; ρ)]

so that the non-centrality parameter of dϕ (y1, y2; ρ) under a sequence of local alternatives Hl :

ϕT = ϕ̄/
√
T can be written as

β2
ϕcov [snpϕ (y1, y2; ρ) , sϕ (y1, y2; ρ)]

β2
ϕcov [snpϕ (y1, y2; ρ) , sϕ (y1, y2; ρ)] + V (unpϕ )

since cov [snpϕ (y1, y2; ρ) , unpϕ ] = 0. For instance, when ϕ = η we have that

cov
[
snpη (y1, y2; ρ) , sη (y1, y2; ρ)

]
= 1 +

3

4
ρ2

and

cov
[
dnpη (y1, y2; ρ) , sη (y1, y2; ρ)

]
= 1,

so that the reduction in power of the distributional LM test relative to the score test is

V (uη) =
12(1 + ρ2)(ρ+ 2ρ3)2

(4 + 3ρ2)2
,

where we have used the fact that V [dnpη (y1, y2; ρ)] = 1 + 3ρ4.

E Computational details

E.1 Monte Carlo details

The Monte Carlo study about the properties of the test when the critical values are boot-

strapped is divided in three main blocks:

1. Estimation of the correlation parameters.

2. Construction of the table with critical values.

3. Evaluation of the test size and power.

E.1.1 Estimation of the correlation parameters

To obtain the range of parameter values from which we calculate the table of critical values

utilized for the Monte Carlo evaluation of the tests, the steps are the following:

1. Fix seed s1.

2. Simulate data from the joint distribution F .
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3. Compute the Gaussian ranks of the simulated data.

4. Estimate the parameter vector ρ by ML using the Gaussian rank correlations as initial

values.

Steps 2 and 3 are repeated 10,000 times, saving the parameter estimates of each iteration

(ρ̂’s). After this block has finished we save the estimates of the 10,000 simulations. In block 3

we will use the same seed, thus we will not need to estimate again.

E.1.2 Construction of the table with critical values

To obtain the distribution of the test as a function of the ρ’s estimated in the previous

section, the steps of the code are the following:

1. Load the estimated ρ’s and create a grid of H points, H = {ρ(1), ...,ρ(h), ...,ρ(H)}, that

covers all ρ̂’s: Φ, say.

2. Fix seed s2 6= s1.

3. Simulate an N ×H matrix of independent Gaussian random numbers ε.

4. For each point h = {1, ...,H}:

(a) Simulate Y from a Gaussian copula: Y = εP1/2(ρ(h)) where P1/2(ρ) is the Cholesky

decomposition of P(ρ).

(b) Compute the Gaussian ranks for the columns of Y .

(c) Estimate the correlation parameters by ML using the Gaussian rank correlations as

initial values.

(d) Compute the tests evaluated at the parameter estimates in step c: Test(s;h), say.

Steps 3 to 5 are repeated 10,000 times, the test statistics for any ρ in Φ of each iteration are

saved.

E.1.3 Evaluation of the test size and power

To obtain the size or power of the tests, the steps of the code are the following:

1. Load the results of sections E.1.1 and E.1.2.

7



2. For each test, compute the relevant (1− α) quantiles of the Test(s, h) for each h: Qα.

3. Fix seed s1.

4. Simulate data from the relevant joint distribution F (Gaussian for size).

5. Compute the Gaussian ranks of the data.

6. Compute the test evaluated at ρ̂: Test(s), say.

7. Find the critical value (cα) of the test at significance level α through a linear interpolation

of the quantiles.

Steps 4 to 7 are repeated 10,000 times and the number of times Test(s) > cα is recorded for

each test to compute size and power.

E.2 Pooled estimation and testing

Recall that under the null

sρ(ρ,0) =
∂ ln fK

[
F−1

1 (u1; 0), ..., F−1
1 (uK ; 0);ρ,0

]
∂ρ

= −Zs(ρ)es(0)

where

Zs(ρ)es(φ,0) =
1

2

∂vec′[P(ρ)]

∂ρ
· [P−1(ρ)⊗P−1(ρ)]vec

{
yty

′
t −P(ρ)

}
.

For a given cross-section, we have Yt = {(yt11, y
t
21), ..., (yt1n, y

t
2n), ..., (yt1Nt , y

t
2Nt

)}. The full sample

would then consist of
∑T

t=1Nt bivariate observations Y = {Y1, ..., YT }. At each t, we can

compute the average score,

s̄φt(Yt; ρ) =
1

Nt

Nt∑
n=1

(
sρ(Yt; ρ)
sϕ(Yt; ρ)

)
,

which is the basis for the pooled average score s̄φ(Yt; ρ) = T−1
∑T

t=1 s̄φt(Yt; ρ). As for Spear-

man correlation coeffi cient, we can simplify our calculations by noticing that for large N ,∑Nt
n=1 Φ(yin) ≈ 1/2 and

∑Nt
n=1 Φ2(yin) ≈ 1/3 so that

√
Nt

Nt

∑Nt
n=1 Φ(y1n)Φ(y2n)− 1/4

1/12

is the relevant moment function required to compute robust standard errors. Finally, to estimate

Pearson’s correlation and its corresponding robust standard error we can consider the following

moment functions

m(Xt) =
1

Nt

Nt∑
n=1

[
xt1n, x

t
2n, (xt1n)2, (xt2n)2, xt1nx

t
2n

]′
8



as our basis for computing the covariance matrix of the sample average of the moments through

a standard HAC estimator. Next, we introduce g : R5 → R3,

g [m(Xt)] =

 m3(Xt)−m2
1(Xt)

m4(Xt)−m2
2(Xt)

m5(Xt)−m1(Xt)m2(Xt)

 so that
∂g

∂m
=

 −2m1 0 1 0 0
0 −2m2 0 1 0
−m2 −m1 0 0 1


and h : R3 → [−1, 1],

h {g [m(Xt)]} =
g3√
g1g2

so that
∂h

∂g
=

[
−g3

2g1
√
g1g2

,
−g3

2g2
√
g1g2

,
1

√
g1g2

]
and apply the Delta method twice to obtain the asymptotic variance of ρ.

E.3 Variances of the moment functions

E.3.1 The bivariate case: Known marginals

Generalized Hyperbolic The variances are

V [sη (y, ρ)] = 1 +
3

4
ρ2,

and

V [mbk (y, ρ)] = 2, for k = 1, 2,

while the covariances are

cov [mb1 (y, ρ) ,mb2 (y, ρ)] = 2ρ3

and

cov [sη (y, ρ) ,mbk (y, ρ)] = 0, for k = 1, 2.

Hermite expansion The variances are

V [sc̃1(y, ρ)] = V [sc̃4(y, ρ)]

=
2

9
ρ2
(
110− 363ρ2 + 408ρ4 − 151ρ6 − 8ρ8 + 8ρ10

)
,

V [sc2(y, ρ)] = V [sc3(y, ρ)] = 1 + ρ2 + 2ρ4,

V [sd1(y, ρ)] =
1

4
ρ2
(
1 + ρ2 + ρ4 + 3ρ6

)
,

V [sd2(y, ρ)] = V [sd4(y, ρ)]

= 1 + ρ2 +
5

2
ρ4 +

9

2
ρ6,

V [sd3(y, ρ)] = 1 + 8ρ2 + 5ρ4 + 3ρ6,

9



and

V [sd5 (y, ρ)] =
1

4

(
1− ρ2

)2 (
16 + 1053ρ2 − 1148ρ4 + 1080ρ6 − 1791ρ8

)
+

1

16

(
1− ρ2

)2 (
6677ρ10 − 3250ρ12 + 801ρ14 + 108ρ16

)
.

As for the covariances, they are

cov [sc̃1 (y, ρ) , sc2 (y, ρ)] = cov [sc̃1 (y, ρ) , sc3 (y, ρ)] = 0,

cov [sc̃1 (y, ρ) , sc̃4 (y, ρ)] =
2

9
ρ2
(
2 + 50ρ2 − 201ρ4 + 244ρ6 − 17ρ8 − 168ρ10 + 94ρ12

)
,

cov [sc̃1 (y, ρ) , sd1 (y, ρ)] =

√
2

3
ρ2
(
2− 3ρ2 + ρ8

)
,

cov [sc̃1 (y, ρ) , sd2 (y, ρ)] = cov [sc̃4 (y, ρ) , sd4 (y, ρ)]

=

√
2

3
ρ
(
4− 5ρ2 − ρ4 + 2ρ8

)
,

cov [sc̃1 (y, ρ) , sd3 (y, ρ)] = cov [sc̃4 (y, ρ) , sd3 (y, ρ)]

=
2

3
ρ2
(
12− 22ρ2 + 7ρ4 + 3ρ6

)
,

cov [sc̃1 (y, ρ) , sd4 (y, ρ)] = cov [sc̃4 (y, ρ) , sd2 (y, ρ)]

=

√
2

3
ρ3
(
9− 19ρ2 + 10ρ4

)
,

cov
[
sc̃1 (y, ρ) , sd̃5 (y, ρ)

]
= cov

[
sc̃4 (y, ρ) , sd̃5 (y, ρ)

]
=

1

12
ρ2(1− ρ2)2

×
(
512− 590ρ2 + 344ρ4 − 761ρ6 + 759ρ8 − 210ρ10

)
,

cov [sc2 (y, ρ) , sc3 (y, ρ)] = ρ(2 + ρ2 + ρ4),

cov
[
scj (y, ρ) , sc̃4 (y, ρ)

]
= cov

[
scj (y, ρ) , sd̃5 (y, ρ)

]
= cov

[
scj (y, ρ) , sdi (y, ρ)

]
= 0,

for i = 1, ..., 4 and j = 2, 3,

cov [sc̃4 (y, ρ) , sd1 (y, ρ)] =

√
2

3
ρ4
(
4− 9ρ2 + 5ρ4

)
,

10



cov [sd1 (y, ρ) , sd2 (y, ρ)] =
1

2
ρ
(
1 + ρ2 + ρ4 + 3ρ6

)
,

cov [sd1 (y, ρ) , sd3 (y, ρ)] =
1

2

√
3

2
ρ2(2 + ρ2)

(
1 + ρ4

)
,

cov [sd1 (y, ρ) , sd4 (y, ρ)] =
1

2
ρ3
(
3 + ρ2 + ρ4 + ρ6

)
,

cov
[
sd1 (y, ρ) , sd̃5 (y, ρ)

]
=

3

4

√
3

2
ρ2
(
2 + ρ2 − 8ρ4 + 10ρ6 − 6ρ8 + ρ10

)
,

cov [sd2 (y, ρ) , sd3 (y, ρ)] = cov [sd3 (y, ρ) , sd4 (y, ρ)]

=

√
3

2
ρ
(
2 + 3ρ2 + 4ρ4 + ρ6

)
,

cov [sd2 (y, ρ) , sd4 (y, ρ)] =
1

2
ρ2(2 + ρ2)

(
3 + ρ2 + 2ρ4

)
,

cov
[
sd2 (y, ρ) , sd̃5 (y, ρ)

]
= cov

[
sd4 (y, ρ) , sd̃5 (y, ρ)

]
=

1

4

√
3

2
ρ2(1− ρ2)(1 + 3ρ2)

(
12− 14ρ2 + 14ρ4 − ρ6

)
,

and

cov
[
sd3 (y, ρ) , sd̃5 (y, ρ)

]
=

1

2
ρ2(1− ρ2)

(
40− 49ρ2 + 53ρ4 − 6ρ6

)
.

E.3.2 The bivariate case: Accounting for non-parametric estimation of the mar-
ginals

Generalized Hyperbolic The variances are

V
[
snpη (y, ρ)

]
= 1 +

3

4
ρ2 +

3

16

(
ρ4 + ρ8

)
,

and

V
[
mnp
bk

(y, ρ)
]

= 2 +
2

3

(
ρ2 + ρ4 + 2ρ6

)
, for k = 1, 2,

while the covariances are

cov
[
mnp
b1

(y, ρ) ,mnp
b2

(y, ρ)
]

= 2ρ3 +
2

3
ρ3
(
2 + ρ2 + ρ4

)
,

and

cov
[
snpη (y, ρ) ,mnp

bk
(y, ρ)

]
= 0, for k = 1, 2.
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Hermite expansion The variances are

V
[
snpc̃1 (y, ρ)

]
= V

[
snpc̃4 (y, ρ)

]
=

2

9
ρ2
(
1− ρ2

)2 [
110 + 3ρ2

(
10ρ6 + ρ4 − 40

)]
,

V
[
snpc2 (y, ρ)

]
= V

[
snpc3 (y, ρ)

]
= 1 +

1

3

(
4ρ2 + 12ρ4 + 5ρ6 + 4ρ8

)
,

V
[
snpd1 (y, ρ)

]
=

1

16
ρ2
(
4 + 5ρ2 + 6ρ4 + 24ρ6 + 8ρ8 + 7ρ10 + 6ρ12

)
,

V
[
snpd2 (y, ρ)

]
= V

[
snpd4 (y, ρ)

]
= 1 +

1

4

(
5ρ2 + 12ρ4 + 36ρ6 + 14ρ8 + 7ρ10 + 6ρ12

)
,

V
[
snpd3 (y, ρ)

]
= 1 + 8ρ2 + 12ρ4 + 10ρ6 +

15

4
ρ8 + 3ρ10 +

3

4
ρ12,

and

V
[
snpd5 (y, ρ)

]
=

1

16

(
1− ρ2

)2 (
64 + 4212ρ2 − 3972ρ4 + 4936ρ6 − 5877ρ8

)
+

1

16

(
1− ρ2

)2 (
5719ρ10 − 3076ρ12 + 1299ρ14 − 313ρ16 + 40ρ18

)
,

As for the covariances, they are

cov
[
snpc̃1 (y, ρ) , snpc2 (y, ρ)

]
= cov

[
snpc̃1 (y, ρ) , snpc3 (y, ρ)

]
= 0,

cov
[
snpc̃1 (y, ρ) , snpc̃4 (y, ρ)

]
=

2

9
ρ2
(
1− ρ2

)2 (
2 + 56ρ2 − 48ρ4 + 36ρ6 + 46ρ8 + 3ρ10

)
,

cov
[
snpc̃1 (y, ρ) , snpd1 (y, ρ)

]
=

1

2
√

6
ρ2
(
1− ρ2

) (
8− 2ρ2 − 3ρ4 + 8ρ6 − 18ρ8 − 2ρ10 − ρ12

)
,

cov
[
snpc̃1 (y, ρ) , snpd2 (y, ρ)

]
= cov

[
snpc̃4 (y, ρ) , snpd4 (y, ρ)

]
=

1√
6
ρ
(
1− ρ2

) (
8− ρ4 + 8ρ6 − 18ρ8 − 2ρ10 − ρ12

)
,

cov
[
snpc̃1 (y, ρ) , snpd3 (y, ρ)

]
= cov

[
snpc̃4 (y, ρ) , snpd3 (y, ρ)

]
=

1

6
ρ2
(
1− ρ2

) {
48− ρ2

[
20 + 3ρ2

(
−4 + 9ρ2 + 8ρ4 + ρ6

)]}
,

cov
[
snpc̃1 (y, ρ) , snpd4 (y, ρ)

]
= cov

[
snpc̃4 (y, ρ) , snpd2 (y, ρ)

]
=

√
2

3
ρ3
(
9− 13ρ2 + 2ρ4 − 2ρ8 + 4ρ10

)
,
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cov
[
snpc̃1 (y, ρ) , snp

d̃5
(y, ρ)

]
= cov

[
snpc̃4 (y, ρ) , snp

d̃5
(y, ρ)

]
=

1

12
ρ2
(
1− ρ2

)2
×
(
512− 488ρ2 + 454ρ4 − 707ρ6 + 579ρ8 − 291ρ10 + 49ρ12

)
,

cov
[
snpc2 (y, ρ) , snpc3 (y, ρ)

]
=

1

3
ρ
(
6 + 7ρ2 + 8ρ4 + 6ρ6 + ρ8

)
,

cov
[
snpcj (y, ρ) , snpc̃4 (y, ρ)

]
= cov

[
snpcj (y, ρ) , snp

d̃5
(y, ρ)

]
= cov

[
snpcj (y, ρ) , snpdi (y, ρ)

]
= 0,

for i = 1, ..., 4 and j = 2, 3,

cov
[
snpc̃4 (y, ρ) , snpd1 (y, ρ)

]
=

1√
6
ρ4
(
8− 13ρ2 + 3ρ4 − 2ρ8 + 4ρ10

)
,

cov
[
snpd1 (y, ρ) , snpd2 (y, ρ)

]
=

1

8
ρ
(
4 + 5ρ2 + 6ρ4 + 24ρ6 + 8ρ8 + 7ρ10 + 6ρ12

)
,

cov
[
snpd1 (y, ρ) , snpd3 (y, ρ)

]
=

1

8

√
3

2

(
ρ+ ρ5

)2 (
8 + 6ρ2 + ρ4

)
,

cov
[
snpd1 (y, ρ) , snpd4 (y, ρ)

]
=

1

8
ρ3
[
12 +

(
1 + ρ2

) (
1 + ρ4

) (
10 + ρ2 + ρ4

)
ρ2
]
,

cov
[
snpd1 (y, ρ) , snp

d̃5
(y, ρ)

]
=

3

16

√
3

2
ρ2
(
1− ρ2

) (
1 + ρ4

) (
4 + ρ2

) (
2 + 3ρ2 + 5ρ4 + 5ρ6 − ρ8

)
,

cov
[
snpd2 (y, ρ) , snpd3 (y, ρ)

]
= cov

[
snpd3 (y, ρ) , snpd4 (y, ρ)

]
=

1

4

√
3

2
ρ
[
8 + ρ2

(
7 + 6ρ2 + ρ4

) (
2 + 3ρ2 + ρ6

)]
,

cov
[
snpd2 (y, ρ) , snpd4 (y, ρ)

]
=

1

4
ρ2
(
1 + ρ4

) (
12 + 16ρ2 + 11ρ4 + 2ρ6 + ρ8

)
,

cov
[
snpd2 (y, ρ) , snp

d̃5
(y, ρ)

]
= cov

[
snpd4 (y, ρ) , snp

d̃5
(y, ρ)

]
=

1

8

√
3

2
ρ
[
24 + ρ2

{
−65 + ρ2

[
128 + ρ2

(
−133 + 68ρ2

)]}]
+

1

8

√
3

2
ρ9
[
3ρ2

(
ρ2 − 5

) (
3 + ρ2

)]
and

cov
[
snpd3 (y, ρ) , snp

d̃5
(y, ρ)

]
=

1

8
ρ2
(
1− ρ2

) (
160− 144ρ2 + 292ρ4 − 43ρ6 + 57ρ8 + 27ρ10 − 9ρ12

)
.
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E.3.3 The trivariate case with known marginals

Generalized Hyperbolic The variances are

V [sη (y1, y2, y3,ρ)] =
3
(
ρ4

12 − ρ13ρ23ρ
3
12 + 3ρ2

12 − ρ13ρ23

(
ρ2

13 + ρ2
23 + 5

)
ρ12

)
4
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
)

+
3
(
ρ4

13 + ρ4
23 + 3ρ2

13 + 3ρ2
23 − 4

)
4
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
) ,

and

V [mbi (y1, y2, y3,ρ)] =
4
(
ρ13ρ23ρ

3
12 −

((
ρ2

23 + 1
)
ρ2

13 + ρ2
23 − 1

)
ρ2

12

)
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1

+
4
(
ρ13ρ23

(
ρ2

13 + ρ2
23 − 1

)
ρ12 −

(
ρ2

13 − 1
) (
ρ2

23 − 1
))

ρ2
12 − 2ρ13ρ23ρ12 + ρ2

13 + ρ2
23 − 1

,

for i = 1, 2, 3. In turn, the covariances are

cov [mb1 (y1, y2, y3,ρ) ,mb2 (y1, y2, y3,ρ)] =
2
(
ρ5

12 − ρ13ρ23ρ
4
12 − ρ13ρ23

(
ρ2

13 + ρ2
23

)
ρ2

12

)
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1

+
2
(((

ρ2
13 + ρ2

23

)
2 − 1

)
ρ12 − ρ13ρ23

(
ρ2

13 + ρ2
23 − 1

))
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
,

cov [mb1 (y1, y2, y3,ρ) ,mb3 (y1, y2, y3,ρ)] =
2
(
ρ5

13 − ρ12ρ23ρ
4
13 − ρ12ρ23

(
ρ2

12 + ρ2
23

)
ρ2

13

)
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1

+
2
(((

ρ2
12 + ρ2

23

)
2 − 1

)
ρ13 − ρ12ρ23

(
ρ2

12 + ρ2
23 − 1

))
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
,

cov [mb2 (y1, y2, y3,ρ) ,mb3 (y1, y2, y3,ρ)] =
2
(
ρ5

23 − ρ12ρ13ρ
4
23 − ρ12ρ13

(
ρ2

12 + ρ2
13

)
ρ2

23

)
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1

+
2
(((

ρ2
12 + ρ2

13

)
2 − 1

)
ρ23 − ρ12ρ13

(
ρ2

12 + ρ2
13 − 1

))
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
,

and

cov [sη (y1, y2, y3,ρ) ,mbk (y1, y2, y3,ρ)] = 0, for k = 1, 2, 3.
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E.3.4 The trivariate case: Accounting for non-parametric estimation of the mar-
ginals

Generalized Hyperbolic The variances are

V
[
snpη (y1, y2, y3,ρ)

]
=

1

16
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
)

2

×
(
3ρ12

12 − 6ρ13ρ23ρ
11
12 + 3ρ2

13ρ
2
23ρ

10
12 − 6ρ10

12 − 3ρ13ρ
3
23ρ

9
12 − 3ρ3

13ρ23ρ
9
12

+18ρ13ρ23ρ
9
12 + 3ρ4

13ρ
8
12 + 3ρ2

13ρ
4
23ρ

8
12 + 3ρ4

23ρ
8
12 − 3ρ2

13ρ
8
12 + 3ρ4

13ρ
2
23ρ

8
12

−12ρ2
13ρ

2
23ρ

8
12 − 3ρ2

23ρ
8
12 + 6ρ8

12 − 3ρ13ρ
5
23ρ

7
12 + 6ρ13ρ

3
23ρ

7
12 − 3ρ5

13ρ23ρ
7
12

+6ρ3
13ρ23ρ

7
12 − 18ρ13ρ23ρ

7
12 − 3ρ4

13ρ
6
12 + 3ρ4

13ρ
4
23ρ

6
12 − 6ρ2

13ρ
4
23ρ

6
12 − 3ρ4

23ρ
6
12

+3ρ2
13ρ

6
12 − 6ρ4

13ρ
2
23ρ

6
12 + 15ρ2

13ρ
2
23ρ

6
12 + 3ρ2

23ρ
6
12 + 6ρ6

12 − 3ρ13ρ
7
23ρ

5
12

−6ρ3
13ρ

5
23ρ

5
12 + 12ρ13ρ

5
23ρ

5
12 − 6ρ5

13ρ
3
23ρ

5
12 + 6ρ3

13ρ
3
23ρ

5
12 − 9ρ13ρ

3
23ρ

5
12

−3ρ7
13ρ23ρ

5
12 + 12ρ5

13ρ23ρ
5
12 − 9ρ3

13ρ23ρ
5
12 − 18ρ13ρ23ρ

5
12 + 3ρ8

13ρ
4
12

+3ρ2
13ρ

8
23ρ

4
12 + 3ρ8

23ρ
4
12 − 3ρ6

13ρ
4
12 + 3ρ4

13ρ
6
23ρ

4
12 − 6ρ2

13ρ
6
23ρ

4
12 − 3ρ6

23ρ
4
12

+3ρ4
13ρ

4
12 + 3ρ6

13ρ
4
23ρ

4
12 + 9ρ4

13ρ
4
23ρ

4
12 − 3ρ2

13ρ
4
23ρ

4
12 + 3ρ4

23ρ
4
12 + 9ρ2

13ρ
4
12

+3ρ8
13ρ

2
23ρ

4
12 − 6ρ6

13ρ
2
23ρ

4
12 − 3ρ4

13ρ
2
23ρ

4
12 + 15ρ2

13ρ
2
23ρ

4
12 + 9ρ2

23ρ
4
12 + 27ρ4

12

−3ρ13ρ
9
23ρ

3
12 + 6ρ13ρ

7
23ρ

3
12 − 6ρ5

13ρ
5
23ρ

3
12 + 6ρ3

13ρ
5
23ρ

3
12 − 9ρ13ρ

5
23ρ

3
12

+6ρ5
13ρ

3
23ρ

3
12 − 18ρ13ρ

3
23ρ

3
12 − 3ρ9

13ρ23ρ
3
12 + 6ρ7

13ρ23ρ
3
12 − 9ρ5

13ρ23ρ
3
12

−18ρ3
13ρ23ρ

3
12 − 132ρ13ρ23ρ

3
12 + 3ρ2

13ρ
10
23ρ

2
12 − 3ρ8

13ρ
2
12 + 3ρ4

13ρ
8
23ρ

2
12

−12ρ2
13ρ

8
23ρ

2
12 − 3ρ8

23ρ
2
12 + 3ρ6

13ρ
2
12 − 6ρ4

13ρ
6
23ρ

2
12 + 15ρ2

13ρ
6
23ρ

2
12 + 3ρ6

23ρ
2
12

+9ρ4
13ρ

2
12 + 3ρ8

13ρ
4
23ρ

2
12 − 6ρ6

13ρ
4
23ρ

2
12 − 3ρ4

13ρ
4
23ρ

2
12 + 15ρ2

13ρ
4
23ρ

2
12 + 9ρ4

23ρ
2
12

+75ρ2
13ρ

2
12 + 3ρ10

13ρ
2
23ρ

2
12 − 12ρ8

13ρ
2
23ρ

2
12 + 15ρ6

13ρ
2
23ρ

2
12 + 15ρ4

13ρ
2
23ρ

2
12

+138ρ2
13ρ

2
23ρ

2
12 + 75ρ2

23ρ
2
12 − 84ρ2

12 − 6ρ13ρ
11
23ρ12 − 3ρ3

13ρ
9
23ρ12

+18ρ13ρ
9
23ρ12 − 3ρ5

13ρ
7
23ρ12 + 6ρ3

13ρ
7
23ρ12 − 18ρ13ρ

7
23ρ12 − 3ρ7

13ρ
5
23ρ12

+12ρ5
13ρ

5
23ρ12 − 9ρ3

13ρ
5
23ρ12 − 18ρ13ρ

5
23ρ12 − 3ρ9

13ρ
3
23ρ12 + 6ρ7

13ρ
3
23ρ12

−9ρ5
13ρ

3
23ρ12 − 18ρ3

13ρ
3
23ρ12 − 132ρ13ρ

3
23ρ12 − 6ρ11

13ρ23ρ12 + 18ρ9
13ρ23ρ12

−18ρ7
13ρ23ρ12 − 18ρ5

13ρ23ρ12 − 132ρ3
13ρ23ρ12 + 156ρ13ρ23ρ12 + 3ρ12

13

+3ρ12
23 − 6ρ10

13 − 6ρ10
23 + 6ρ8

13 + 3ρ4
13ρ

8
23 − 3ρ2

13ρ
8
23 + 6ρ8

23 + 6ρ6
13 − 3ρ4

13ρ
6
23

+3ρ2
13ρ

6
23 + 6ρ6

23 + 27ρ4
13 + 3ρ8

13ρ
4
23 − 3ρ6

13ρ
4
23 + 3ρ4

13ρ
4
23 + 9ρ2

13ρ
4
23

+27ρ4
23 − 84ρ2

13 − 3ρ8
13ρ

2
23 + 3ρ6

13ρ
2
23 + 9ρ4

13ρ
2
23 + 75ρ2

13ρ
2
23 − 84ρ2

23 + 48
)
,
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V
[
mnp
b1

(y1, y2, y3,ρ)
]

=
1

3
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
)2

×
(
4ρ10

12 − 8ρ13ρ23ρ
9
12 + 4ρ2

13ρ
8
12 − 6ρ8

12 + 4ρ3
13ρ

3
23ρ

7
12 + 4ρ13ρ

3
23ρ

7
12

−8ρ3
13ρ23ρ

7
12 + 12ρ13ρ23ρ

7
12 + 8ρ4

13ρ
6
12 − 4ρ2

13ρ
4
23ρ

6
12 − 8ρ2

13ρ
6
12

−2ρ2
13ρ

2
23ρ

6
12 + 2ρ6

12 − 4ρ13ρ
5
23ρ

5
12 + 8ρ5

13ρ
3
23ρ

5
12 − 4ρ3

13ρ
3
23ρ

5
12

−16ρ5
13ρ23ρ

5
12 + 12ρ3

13ρ23ρ
5
12 + 12ρ13ρ23ρ

5
12 + 8ρ6

13ρ
4
12 + 4ρ2

13ρ
6
23ρ

4
12

+4ρ6
23ρ

4
12 − 12ρ4

13ρ
4
12 − 8ρ4

13ρ
4
23ρ

4
12 + 2ρ2

13ρ
4
23ρ

4
12 − 6ρ2

13ρ
4
12

+12ρ4
13ρ

2
23ρ

4
12 − 50ρ2

13ρ
2
23ρ

4
12 − 12ρ2

23ρ
4
12 + 10ρ4

12 + 4ρ3
13ρ

7
23ρ

3
12

−4ρ13ρ
7
23ρ

3
12 − 4ρ3

13ρ
5
23ρ

3
12 + 4ρ7

13ρ
3
23ρ

3
12 − 4ρ5

13ρ
3
23ρ

3
12 + 32ρ3

13ρ
3
23ρ

3
12

+48ρ13ρ
3
23ρ

3
12 − 8ρ7

13ρ23ρ
3
12 + 12ρ5

13ρ23ρ
3
12 + 48ρ3

13ρ23ρ
3
12 − 52ρ13ρ23ρ

3
12

+4ρ8
13ρ

2
12 − 8ρ2

13ρ
8
23ρ

2
12 − 8ρ6

13ρ
2
12 + 4ρ4

13ρ
6
23ρ

2
12 + 8ρ2

13ρ
6
23ρ

2
12 − 2ρ6

23ρ
2
12

−6ρ4
13ρ

2
12 − 4ρ6

13ρ
4
23ρ

2
12 + 2ρ4

13ρ
4
23ρ

2
12 − 36ρ2

13ρ
4
23ρ

2
12 − 12ρ4

23ρ
2
12 + 32ρ2

13ρ
2
12

−2ρ6
13ρ

2
23ρ

2
12 − 50ρ4

13ρ
2
23ρ

2
12 + 16ρ2

13ρ
2
23ρ

2
12 + 36ρ2

23ρ
2
12 − 22ρ2

12 + 4ρ13ρ
9
23ρ12

−4ρ3
13ρ

7
23ρ12 − 4ρ5

13ρ
5
23ρ12 + 12ρ13ρ

5
23ρ12 + 4ρ7

13ρ
3
23ρ12 + 48ρ3

13ρ
3
23ρ12

−52ρ13ρ
3
23ρ12 − 8ρ9

13ρ23ρ12 + 12ρ7
13ρ23ρ12 + 12ρ5

13ρ23ρ12 − 52ρ3
13ρ23ρ12

+36ρ13ρ23ρ12 + 4ρ10
13 − 6ρ8

13 + 2ρ6
13 + 4ρ4

13ρ
6
23 − 2ρ2

13ρ
6
23 + 10ρ4

13

−12ρ2
13ρ

4
23 + 12ρ4

23 − 22ρ2
13 − 12ρ4

13ρ
2
23 + 36ρ2

13ρ
2
23 − 24ρ2

23 + 12
)
,
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V
[
mnp
b2

(y1, y2, y3,ρ)
]

=
1

3
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
)2

×
(
4ρ10

12 − 8ρ13ρ23ρ
9
12 + 4ρ2

23ρ
8
12 − 6ρ8

12 + 4ρ3
13ρ

3
23ρ

7
12 − 8ρ13ρ

3
23ρ

7
12

+4ρ3
13ρ23ρ

7
12 + 12ρ13ρ23ρ

7
12 + 8ρ4

23ρ
6
12 − 4ρ4

13ρ
2
23ρ

6
12 − 2ρ2

13ρ
2
23ρ

6
12

−8ρ2
23ρ

6
12 + 2ρ6

12 + 8ρ3
13ρ

5
23ρ

5
12 − 16ρ13ρ

5
23ρ

5
12 − 4ρ3

13ρ
3
23ρ

5
12 + 12ρ13ρ

3
23ρ

5
12

−4ρ5
13ρ23ρ

5
12 + 12ρ13ρ23ρ

5
12 + 4ρ6

13ρ
4
12 + 8ρ6

23ρ
4
12 − 8ρ4

13ρ
4
23ρ

4
12

+12ρ2
13ρ

4
23ρ

4
12 − 12ρ4

23ρ
4
12 − 12ρ2

13ρ
4
12 + 4ρ6

13ρ
2
23ρ

4
12 + 2ρ4

13ρ
2
23ρ

4
12

−50ρ2
13ρ

2
23ρ

4
12 − 6ρ2

23ρ
4
12 + 10ρ4

12 + 4ρ3
13ρ

7
23ρ

3
12 − 8ρ13ρ

7
23ρ

3
12 − 4ρ3

13ρ
5
23ρ

3
12

+12ρ13ρ
5
23ρ

3
12 + 4ρ7

13ρ
3
23ρ

3
12 − 4ρ5

13ρ
3
23ρ

3
12 + 32ρ3

13ρ
3
23ρ

3
12 + 48ρ13ρ

3
23ρ

3
12

−4ρ7
13ρ23ρ

3
12 + 48ρ3

13ρ23ρ
3
12 − 52ρ13ρ23ρ

3
12 + 4ρ8

23ρ
2
12 − 2ρ6

13ρ
2
12

−4ρ4
13ρ

6
23ρ

2
12 − 2ρ2

13ρ
6
23ρ

2
12 − 8ρ6

23ρ
2
12 − 12ρ4

13ρ
2
12 + 4ρ6

13ρ
4
23ρ

2
12

+2ρ4
13ρ

4
23ρ

2
12 − 50ρ2

13ρ
4
23ρ

2
12 − 6ρ4

23ρ
2
12 + 36ρ2

13ρ
2
12 − 8ρ8

13ρ
2
23ρ

2
12

+8ρ6
13ρ

2
23ρ

2
12 − 36ρ4

13ρ
2
23ρ

2
12 + 16ρ2

13ρ
2
23ρ

2
12 + 32ρ2

23ρ
2
12 − 22ρ2

12

−8ρ13ρ
9
23ρ12 + 4ρ3

13ρ
7
23ρ12 + 12ρ13ρ

7
23ρ12 − 4ρ5

13ρ
5
23ρ12 + 12ρ13ρ

5
23ρ12

−4ρ7
13ρ

3
23ρ12 + 48ρ3

13ρ
3
23ρ12 − 52ρ13ρ

3
23ρ12 + 4ρ9

13ρ23ρ12 + 12ρ5
13ρ23ρ12

−52ρ3
13ρ23ρ12 + 36ρ13ρ23ρ12 + 4ρ10

23 − 6ρ8
23 + 2ρ6

23 + 12ρ4
13 + 4ρ6

13ρ
4
23

−12ρ2
13ρ

4
23 + 10ρ4

23 − 24ρ2
13 − 2ρ6

13ρ
2
23 − 12ρ4

13ρ
2
23 + 36ρ2

13ρ
2
23 − 22ρ2

23 + 12
)
,
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and

V
[
mnp
b3

(y1, y2, y3,ρ)
]

=
1

3
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
)2

×
(
4ρ10

13 − 8ρ12ρ23ρ
9
13 + 4ρ2

23ρ
8
13 − 6ρ8

13 + 4ρ3
12ρ

3
23ρ

7
13 − 8ρ12ρ

3
23ρ

7
13

+4ρ3
12ρ23ρ

7
13 + 12ρ12ρ23ρ

7
13 + 8ρ4

23ρ
6
13 − 4ρ4

12ρ
2
23ρ

6
13 − 2ρ2

12ρ
2
23ρ

6
13

−8ρ2
23ρ

6
13 + 2ρ6

13 + 8ρ3
12ρ

5
23ρ

5
13 − 16ρ12ρ

5
23ρ

5
13 − 4ρ3

12ρ
3
23ρ

5
13 + 12ρ12ρ

3
23ρ

5
13

−4ρ5
12ρ23ρ

5
13 + 12ρ12ρ23ρ

5
13 + 4ρ6

12ρ
4
13 + 8ρ6

23ρ
4
13 − 8ρ4

12ρ
4
23ρ

4
13

+12ρ2
12ρ

4
23ρ

4
13 − 12ρ4

23ρ
4
13 − 12ρ2

12ρ
4
13 + 4ρ6

12ρ
2
23ρ

4
13 + 2ρ4

12ρ
2
23ρ

4
13

−50ρ2
12ρ

2
23ρ

4
13 − 6ρ2

23ρ
4
13 + 10ρ4

13 + 4ρ3
12ρ

7
23ρ

3
13 − 8ρ12ρ

7
23ρ

3
13

−4ρ3
12ρ

5
23ρ

3
13 + 12ρ12ρ

5
23ρ

3
13 + 4ρ7

12ρ
3
23ρ

3
13 − 4ρ5

12ρ
3
23ρ

3
13 + 32ρ3

12ρ
3
23ρ

3
13

+48ρ12ρ
3
23ρ

3
13 − 4ρ7

12ρ23ρ
3
13 + 48ρ3

12ρ23ρ
3
13 − 52ρ12ρ23ρ

3
13 + 4ρ8

23ρ
2
13

−2ρ6
12ρ

2
13 − 4ρ4

12ρ
6
23ρ

2
13 − 2ρ2

12ρ
6
23ρ

2
13 − 8ρ6

23ρ
2
13 − 12ρ4

12ρ
2
13 + 4ρ6

12ρ
4
23ρ

2
13

+2ρ4
12ρ

4
23ρ

2
13 − 50ρ2

12ρ
4
23ρ

2
13 − 6ρ4

23ρ
2
13 + 36ρ2

12ρ
2
13 − 8ρ8

12ρ
2
23ρ

2
13

+8ρ6
12ρ

2
23ρ

2
13 − 36ρ4

12ρ
2
23ρ

2
13 + 16ρ2

12ρ
2
23ρ

2
13 + 32ρ2

23ρ
2
13 − 22ρ2

13 − 8ρ12ρ
9
23ρ13

+4ρ3
12ρ

7
23ρ13 + 12ρ12ρ

7
23ρ13 − 4ρ5

12ρ
5
23ρ13 + 12ρ12ρ

5
23ρ13 − 4ρ7

12ρ
3
23ρ13

+48ρ3
12ρ

3
23ρ13 − 52ρ12ρ

3
23ρ13 + 4ρ9

12ρ23ρ13 + 12ρ5
12ρ23ρ13 − 52ρ3

12ρ23ρ13

+36ρ12ρ23ρ13 + 4ρ10
23 − 6ρ8

23 + 2ρ6
23 + 12ρ4

12 + 4ρ6
12ρ

4
23 − 12ρ2

12ρ
4
23 + 10ρ4

23

−24ρ2
12 − 2ρ6

12ρ
2
23 − 12ρ4

12ρ
2
23 + 36ρ2

12ρ
2
23 − 22ρ2

23 + 12
)
.
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In turn, the covariances are

cov
[
mnp
b1

(y,ρ) ,mnp
b2

(y,ρ)
]

=
1

3
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
)2

×
(
2ρ11

12 − 4ρ13ρ23ρ
10
12 + 2ρ2

13ρ
2
23ρ

9
12 − 2ρ9

12 − 2ρ13ρ
3
23ρ

8
12 − 2ρ3

13ρ23ρ
8
12

+8ρ13ρ23ρ
8
12 + 2ρ4

13ρ
7
12 + 2ρ2

13ρ
4
23ρ

7
12 + 2ρ4

23ρ
7
12 + 2ρ4

13ρ
2
23ρ

7
12

−10ρ2
13ρ

2
23ρ

7
12 + 8ρ7

12 − 4ρ13ρ
5
23ρ

6
12 + 4ρ3

13ρ
3
23ρ

6
12 + 6ρ13ρ

3
23ρ

6
12

−4ρ5
13ρ23ρ

6
12 + 6ρ3

13ρ23ρ
6
12 − 30ρ13ρ23ρ

6
12 + 2ρ6

13ρ
5
12 + 2ρ2

13ρ
6
23ρ

5
12

+2ρ6
23ρ

5
12 + 4ρ4

13ρ
4
23ρ

5
12 − 14ρ2

13ρ
4
23ρ

5
12 + 8ρ2

13ρ
5
12 + 2ρ6

13ρ
2
23ρ

5
12

−14ρ4
13ρ

2
23ρ

5
12 + 26ρ2

13ρ
2
23ρ

5
12 + 8ρ2

23ρ
5
12 − 12ρ5

12 − 2ρ13ρ
7
23ρ

4
12

+4ρ13ρ
5
23ρ

4
12 + 18ρ3

13ρ
3
23ρ

4
12 − 26ρ13ρ

3
23ρ

4
12 − 2ρ7

13ρ23ρ
4
12 + 4ρ5

13ρ23ρ
4
12

−26ρ3
13ρ23ρ

4
12 + 24ρ13ρ23ρ

4
12 + 2ρ2

13ρ
8
23ρ

3
12 + 2ρ4

13ρ
6
23ρ

3
12 − 6ρ2

13ρ
6
23ρ

3
12

+6ρ4
13ρ

3
12 + 2ρ6

13ρ
4
23ρ

3
12 − 8ρ4

13ρ
4
23ρ

3
12 + 22ρ2

13ρ
4
23ρ

3
12 + 6ρ4

23ρ
3
12

−4ρ2
13ρ

3
12 + 2ρ8

13ρ
2
23ρ

3
12 − 6ρ6

13ρ
2
23ρ

3
12 + 22ρ4

13ρ
2
23ρ

3
12 + 6ρ2

13ρ
2
23ρ

3
12

−4ρ2
23ρ

3
12 − 2ρ3

12 − 4ρ13ρ
9
23ρ

2
12 + 2ρ3

13ρ
7
23ρ

2
12 + 8ρ13ρ

7
23ρ

2
12

−4ρ5
13ρ

5
23ρ

2
12 − 2ρ3

13ρ
5
23ρ

2
12 − 22ρ13ρ

5
23ρ

2
12 + 2ρ7

13ρ
3
23ρ

2
12 − 2ρ5

13ρ
3
23ρ

2
12 −

52ρ3
13ρ

3
23ρ

2
12 + 12ρ13ρ

3
23ρ

2
12 − 4ρ9

13ρ23ρ
2
12 + 8ρ7

13ρ23ρ
2
12 − 22ρ5

13ρ23ρ
2
12

+12ρ3
13ρ23ρ

2
12 + 6ρ13ρ23ρ

2
12 + 2ρ10

13ρ12 + 2ρ10
23ρ12 − 2ρ8

13ρ12 − 6ρ2
13ρ

8
23ρ12

−2ρ8
23ρ12 + 6ρ6

13ρ12 + 4ρ2
13ρ

6
23ρ12 + 6ρ6

23ρ12 − 8ρ4
13ρ12 + 8ρ4

13ρ
4
23ρ12

+30ρ2
13ρ

4
23ρ12 − 8ρ4

23ρ12 − 4ρ2
13ρ12 − 6ρ8

13ρ
2
23ρ12 + 4ρ6

13ρ
2
23ρ12

+30ρ4
13ρ

2
23ρ12 − 24ρ2

13ρ
2
23ρ12 − 4ρ2

23ρ12 + 6ρ12 + 2ρ13ρ
9
23 + 2ρ3

13ρ
7
23

−2ρ13ρ
7
23 − 2ρ3

13ρ
5
23 − 6ρ13ρ

5
23 + 2ρ7

13ρ
3
23 − 2ρ5

13ρ
3
23 − 10ρ3

13ρ
3
23

+10ρ13ρ
3
23 + 2ρ9

13ρ23 − 2ρ7
13ρ23 − 6ρ5

13ρ23 + 10ρ3
13ρ23 − 4ρ13ρ23

)
,
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cov
[
mnp
b1

(y,ρ) ,mnp
b3

(y,ρ)
]

=
1

3
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
)2

×
(
2ρ11

13 − 4ρ12ρ23ρ
10
13 + 2ρ2

12ρ
2
23ρ

9
13 − 2ρ9

13 − 2ρ12ρ
3
23ρ

8
13 − 2ρ3

12ρ23ρ
8
13

+8ρ12ρ23ρ
8
13 + 2ρ4

12ρ
7
13 + 2ρ2

12ρ
4
23ρ

7
13 + 2ρ4

23ρ
7
13 + 2ρ4

12ρ
2
23ρ

7
13

−10ρ2
12ρ

2
23ρ

7
13 + 8ρ7

13 − 4ρ12ρ
5
23ρ

6
13 + 4ρ3

12ρ
3
23ρ

6
13 + 6ρ12ρ

3
23ρ

6
13

−4ρ5
12ρ23ρ

6
13 + 6ρ3

12ρ23ρ
6
13 − 30ρ12ρ23ρ

6
13 + 2ρ6

12ρ
5
13 + 2ρ2

12ρ
6
23ρ

5
13

+2ρ6
23ρ

5
13 + 4ρ4

12ρ
4
23ρ

5
13 − 14ρ2

12ρ
4
23ρ

5
13 + 8ρ2

12ρ
5
13 + 2ρ6

12ρ
2
23ρ

5
13

−14ρ4
12ρ

2
23ρ

5
13 + 26ρ2

12ρ
2
23ρ

5
13 + 8ρ2

23ρ
5
13 − 12ρ5

13 − 2ρ12ρ
7
23ρ

4
13

+4ρ12ρ
5
23ρ

4
13 + 18ρ3

12ρ
3
23ρ

4
13 − 26ρ12ρ

3
23ρ

4
13 − 2ρ7

12ρ23ρ
4
13 + 4ρ5

12ρ23ρ
4
13

−26ρ3
12ρ23ρ

4
13 + 24ρ12ρ23ρ

4
13 + 2ρ2

12ρ
8
23ρ

3
13 + 2ρ4

12ρ
6
23ρ

3
13 − 6ρ2

12ρ
6
23ρ

3
13

+6ρ4
12ρ

3
13 + 2ρ6

12ρ
4
23ρ

3
13 − 8ρ4

12ρ
4
23ρ

3
13 + 22ρ2

12ρ
4
23ρ

3
13 + 6ρ4

23ρ
3
13

−4ρ2
12ρ

3
13 + 2ρ8

12ρ
2
23ρ

3
13 − 6ρ6

12ρ
2
23ρ

3
13 + 22ρ4

12ρ
2
23ρ

3
13 + 6ρ2

12ρ
2
23ρ

3
13

−4ρ2
23ρ

3
13 − 2ρ3

13 − 4ρ12ρ
9
23ρ

2
13 + 2ρ3

12ρ
7
23ρ

2
13 + 8ρ12ρ

7
23ρ

2
13 − 4ρ5

12ρ
5
23ρ

2
13

−2ρ3
12ρ

5
23ρ

2
13 − 22ρ12ρ

5
23ρ

2
13 + 2ρ7

12ρ
3
23ρ

2
13 − 2ρ5

12ρ
3
23ρ

2
13 − 52ρ3

12ρ
3
23ρ

2
13

+12ρ12ρ
3
23ρ

2
13 − 4ρ9

12ρ23ρ
2
13 + 8ρ7

12ρ23ρ
2
13 − 22ρ5

12ρ23ρ
2
13 + 12ρ3

12ρ23ρ
2
13

+6ρ12ρ23ρ
2
13 + 2ρ10

12ρ13 + 2ρ10
23ρ13 − 2ρ8

12ρ13 − 6ρ2
12ρ

8
23ρ13 − 2ρ8

23ρ13

+6ρ6
12ρ13 + 4ρ2

12ρ
6
23ρ13 + 6ρ6

23ρ13 − 8ρ4
12ρ13 + 8ρ4

12ρ
4
23ρ13 + 30ρ2

12ρ
4
23ρ13

−8ρ4
23ρ13 − 4ρ2

12ρ13 − 6ρ8
12ρ

2
23ρ13 + 4ρ6

12ρ
2
23ρ13 + 30ρ4

12ρ
2
23ρ13

−24ρ2
12ρ

2
23ρ13 − 4ρ2

23ρ13 + 6ρ13 + 2ρ12ρ
9
23 + 2ρ3

12ρ
7
23 − 2ρ12ρ

7
23

−2ρ3
12ρ

5
23 − 6ρ12ρ

5
23 + 2ρ7

12ρ
3
23 − 2ρ5

12ρ
3
23 − 10ρ3

12ρ
3
23 + 10ρ12ρ

3
23

+2ρ9
12ρ23 − 2ρ7

12ρ23 − 6ρ5
12ρ23 + 10ρ3

12ρ23 − 4ρ12ρ23

)
,
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cov
[
mnp
b2

(y,ρ) ,mnp
b3

(y,ρ)
]

=
1

3
(
ρ2

12 − 2ρ13ρ23ρ12 + ρ2
13 + ρ2

23 − 1
)2

×
(
2ρ11

23 − 4ρ12ρ13ρ
10
23 + 2ρ2

12ρ
2
13ρ

9
23 − 2ρ9

23 − 2ρ12ρ
3
13ρ

8
23 − 2ρ3

12ρ13ρ
8
23

+8ρ12ρ13ρ
8
23 + 2ρ4

12ρ
7
23 + 2ρ2

12ρ
4
13ρ

7
23 + 2ρ4

13ρ
7
23 + 2ρ4

12ρ
2
13ρ

7
23

−10ρ2
12ρ

2
13ρ

7
23 + 8ρ7

23 − 4ρ12ρ
5
13ρ

6
23 + 4ρ3

12ρ
3
13ρ

6
23 + 6ρ12ρ

3
13ρ

6
23

−4ρ5
12ρ13ρ

6
23 + 6ρ3

12ρ13ρ
6
23 − 30ρ12ρ13ρ

6
23 + 2ρ6

12ρ
5
23 + 2ρ2

12ρ
6
13ρ

5
23

+2ρ6
13ρ

5
23 + 4ρ4

12ρ
4
13ρ

5
23 − 14ρ2

12ρ
4
13ρ

5
23 + 8ρ2

12ρ
5
23 + 2ρ6

12ρ
2
13ρ

5
23

−14ρ4
12ρ

2
13ρ

5
23 + 26ρ2

12ρ
2
13ρ

5
23 + 8ρ2

13ρ
5
23 − 12ρ5

23 − 2ρ12ρ
7
13ρ

4
23

+4ρ12ρ
5
13ρ

4
23 + 18ρ3

12ρ
3
13ρ

4
23 − 26ρ12ρ

3
13ρ

4
23 − 2ρ7

12ρ13ρ
4
23 + 4ρ5

12ρ13ρ
4
23

−26ρ3
12ρ13ρ

4
23 + 24ρ12ρ13ρ

4
23 + 2ρ2

12ρ
8
13ρ

3
23 + 2ρ4

12ρ
6
13ρ

3
23 − 6ρ2

12ρ
6
13ρ

3
23

+6ρ4
12ρ

3
23 + 2ρ6

12ρ
4
13ρ

3
23 − 8ρ4

12ρ
4
13ρ

3
23 + 22ρ2

12ρ
4
13ρ

3
23 + 6ρ4

13ρ
3
23

−4ρ2
12ρ

3
23 + 2ρ8

12ρ
2
13ρ

3
23 − 6ρ6

12ρ
2
13ρ

3
23 + 22ρ4

12ρ
2
13ρ

3
23 + 6ρ2

12ρ
2
13ρ

3
23

−4ρ2
13ρ

3
23 − 2ρ3

23 − 4ρ12ρ
9
13ρ

2
23 + 2ρ3

12ρ
7
13ρ

2
23 + 8ρ12ρ

7
13ρ

2
23 − 4ρ5

12ρ
5
13ρ

2
23

−2ρ3
12ρ

5
13ρ

2
23 − 22ρ12ρ

5
13ρ

2
23 + 2ρ7

12ρ
3
13ρ

2
23 − 2ρ5

12ρ
3
13ρ

2
23 − 52ρ3

12ρ
3
13ρ

2
23

+12ρ12ρ
3
13ρ

2
23 − 4ρ9

12ρ13ρ
2
23 + 8ρ7

12ρ13ρ
2
23 − 22ρ5

12ρ13ρ
2
23 + 12ρ3

12ρ13ρ
2
23

+6ρ12ρ13ρ
2
23 + 2ρ10

12ρ23 + 2ρ10
13ρ23 − 2ρ8

12ρ23 − 6ρ2
12ρ

8
13ρ23 − 2ρ8

13ρ23

+6ρ6
12ρ23 + 4ρ2

12ρ
6
13ρ23 + 6ρ6

13ρ23 − 8ρ4
12ρ23 + 8ρ4

12ρ
4
13ρ23 + 30ρ2

12ρ
4
13ρ23

−8ρ4
13ρ23 − 4ρ2

12ρ23 − 6ρ8
12ρ

2
13ρ23 + 4ρ6

12ρ
2
13ρ23 + 30ρ4

12ρ
2
13ρ23

−24ρ2
12ρ

2
13ρ23 − 4ρ2

13ρ23 + 6ρ23 + 2ρ12ρ
9
13 + 2ρ3

12ρ
7
13 − 2ρ12ρ

7
13

−2ρ3
12ρ

5
13 − 6ρ12ρ

5
13 + 2ρ7

12ρ
3
13 − 2ρ5

12ρ
3
13 − 10ρ3

12ρ
3
13 + 10ρ12ρ

3
13

+2ρ9
12ρ13 − 2ρ7

12ρ13 − 6ρ5
12ρ13 + 10ρ3

12ρ13 − 4ρ12ρ13

)
,

and

cov
[
snpη (y,ρ) ,mnp

bk
(y,ρ)

]
= 0, for k = 1, 2, 3.
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