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1 Introduction

The classical theory of portfolio selection pioneered by Markowitz (1952) remains to this

day an immensely prominent approach to asset allocation and active portfolio manage-

ment. The key inputs to this approach are the expected returns and the covariance

matrix of the assets under consideration in the portfolio selection problem. According

to the classical theory, optimal portfolio weights can be found by minimizing the vari-

ance of the portfolio’s returns subject to the constraint that the expected portfolio return

achieves a specified target value. In practical applications of mean-variance portfolio the-

ory, the expected returns and the covariance matrix of asset returns obviously need to be

estimated from the historical data. As with any model with unknown parameters, this

immediately gives rise to the well-known problem of estimation risk; i.e., the estimated

optimal portfolio rule is subject to parameter uncertainty and can thus be substantially

different from the true optimal rule.

The implementation of mean-variance portfolios with inputs estimated via their sample

analogues is notorious for producing extreme portfolio weights that fluctuate substantially

over time and perform poorly out of sample; see Hodges and Brealey (1972), Michaud

(1989), Best and Grauer (1991), and Litterman (2003). A recent study by DeMiguel,

Garlappi, and Uppal (2009) casts further doubt on the usefulness of estimated mean-

variance portfolio rules when compared to naive diversification. The naive strategy, or

1/N rule, simply invests equally across the N assets under consideration, relying neither

on any model nor on any data. DeMiguel, Garlappi, and Uppal consider various static

asset-allocation models at the monthly frequency and find that the asset misallocation

errors of the suboptimal (from the mean-variance perspective) 1/N rule are smaller than

those of the optimizing models in the presence of estimation risk. See also Jobson and

Korkie (1980), Michaud and Michaud (2008), and Duchin and Levy (2009) for more on

the issue of estimation errors in the implementation of Markowitz portfolios.

Kirby and Ostdiek (2011) show that the research design in DeMiguel, Garlappi, and

Uppal (2009) places the mean-variance model at an inherent disadvantage relative to naive
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diversification because it focuses on the tangency portfolio which targets a conditional

expected return that greatly exceeds the conditional expected return of the 1/N strategy.

The result is that estimation risk is magnified which in turn leads to excessive portfolio

turnover and hence poor out-of-sample performance. Kirby and Ostdiek argue that if

the mean-variance model is implemented by targeting the conditional expected return

of the 1/N portfolio, then the resulting static mean-variance efficient strategies can out-

perform naive diversification for most of the monthly data sets considered by DeMiguel,

Garlappi, and Uppal. Kirby and Ostdiek note, however, that this finding is not robust to

the presence of transactions costs.

The correlation structure across assets is a key feature of the portfolio allocation prob-

lem since it determines the riskiness of the investment position. It is well known that these

correlations vary over time and the econometrics literature has proposed many specifica-

tions to model the dynamic movements and co-movements among financial asset returns,

which are especially pronounced at the daily frequency. The importance of dynamic cor-

relation modeling is obvious for risk management because the risk of a portfolio depends

not on what the correlations were in the past, but on what they will be in the future.

Engle and Colacito (2006) take the asset allocation perspective to measure the value

of modeling dynamic correlation structures. Just like DeMiguel, Garlappi, and Uppal

(2009) and Kirby and Ostdiek (2011) (and others), they too study the classical asset

allocation problem, but with forward-looking correlation forecasts obtained from dynamic

correlation models. They consider the realized volatility of optimized portfolios and find

that it is smallest when the dynamic correlation model is correctly specified. Their focus,

however, is primarily on a setting with only two assets—a stock and a bond—and hence

with relatively little estimation risk since few parameters need to be estimated.

In this paper, we further contribute to the literature on portfolio management in the

presence of estimation risk by considering an active portfolio manager who uses forecasts

from dynamic correlation models to rebalance a portfolio of Exchange Traded Funds

(ETFs) on a daily basis. The asset mix consists of ETFs that track broad stock market

indices for five countries: the US, UK, Japan, Mexico, and Malaysia. The first three
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of those are developed markets, whereas the last two are considered emerging markets.

This choice of assets (with synchronous returns) allows us to examine whether there is

any evidence supporting the decoupling hypothesis in international finance, namely that

recently the evolution of emerging stock markets has decoupled itself from the evolution

of more developed stock markets. Serban et al. (2007) also consider some dynamic

correlation models of daily returns, but present only a limited analysis of Markowitz

portfolios comprising three country ETFs over a relatively short and tranquil out-of-

sample period.

In addition to the usual plug-in method which simply replaces the covariance matrix

by its sample counterpart, we also consider several other popular approaches to forecast

the inputs to the portfolio selection problem, ranging from quite parsimonious to highly

parametrized ones. The first of these is J.P. Morgan’s RiskMetrics, which is a simple ex-

ponentially weighted moving average (EWMA) model of return covariances without any

parameters to estimate. The other models include the constant conditional correlation

(CCC) model of Bollerslev (1990) and some variants of it, the dynamic conditional cor-

relation (DCC) model of Engle (2002), the time-varying correlation (TVC) model of Tse

and Tsui (2002), and the recent dynamic equi-correlation (DECO) model of Engle and

Kelly (2009). Each of these models builds on a decomposition of the conditional covari-

ance matrix into a product involving the conditional correlation matrix and a diagonal

matrix of conditional standard deviations.

The conditional variances (standard deviations) are specified either according to EWMA

models or standard generalized autoregressive conditional heteroskedasticity (GARCH)

models (Bollerslev 1986). The return innovations are modeled according to a generalized

version of the standard multivariate Student-t distribution proposed by Bauwens and Lau-

rent (2005) that allows for asymmetries in each of the marginal distributions. The reason

for this choice is the well-known stylized fact about financial returns that they exhibit

fat tails and are often skewed; see Cont (2001) for a comprehensive survey of the stylized

facts. In order to gain finite-sample statistical efficiency, it is important to base modeling
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and inference on a more suitable distribution than the multivariate normal.1 The most

sophisticated correlation models we consider have a total of 18 parameters that need to be

estimated, even though we follow Engle and Colacito (2006) and make use of the correla-

tion targeting method of Engle and Mezrich (1996) to reduce the dimensionality problem.

See Engle (2009) for a discussion of variance and correlation targeting.

Following DeMiguel, Garlappi, and Uppal (2009) and Kirby and Ostdiek (2011), the

1/N rule serves as our benchmark strategy for comparison purposes and, as in Kirby and

Ostdiek, we level the playing field by using the conditional expected return of the 1/N

rule as the target expected portfolio return. We hasten to emphasize that our goal is not

to advocate the use of the 1/N rule as an asset allocation strategy, but merely to use

it as a benchmark to assess the performance of the more sophisticated data- and model-

dependent strategies. The evaluation period covers the recent financial crisis which was

marked by soaring volatilities and correlations across international stock markets. Amid

such episodes of turmoil that pervade markets around the world, it becomes especially

important to know whether standard models remain useful tools for portfolio management.

We consider portfolios that comprise risky assets only and, in addition, we examine the

effects of introducing a risk-free security into the asset mix. As in Frost and Savarino

(1988), Chopra (1993), and Jagannathan and Ma (2003), we also examine whether the

imposition of short-sale constraints leads to improved portfolio performances.

We focus on the realized (ex post) out-of-sample Sharpe ratio as the measure of portfo-

lio performance, which is defined as the ratio of the realized excess return of an investment

to its standard deviation. This choice is motivated by the fact that the Sharpe ratio is

the most ubiquitous risk-adjusted measure used by financial market practitioners to rank

fund managers and to evaluate the attractiveness of investment strategies in general. For

example, Chicago-based Morningstar calculates the Sharpe ratio for mutual funds in its

Principia investment research and planning software. In order to gauge the statistical

1Related evidence is found in Engle and González-Rivera (1991) where it is shown that Gaussian

quasi-maximum likelihood estimation of GARCH models is inefficient, with the degree of inefficiency

increasing in the severity of departures from normality.
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significance of the differences between Sharpe ratios we use the block bootstrap infer-

ence methodology proposed by Ledoit and Wolf (2008), which is designed specifically for

that purpose. We also examine a simple modification of the Sharpe ratio proposed by

Israelsen (2003, 2005) to overcome some shortcomings of the usual measure. To complete

our analysis, we finally test for statistical differences in the variances (or, equivalently, in

the standard deviations) of returns. It is important to note that the standard deviation

of returns is the measure of risk in the Sharpe ratio.

The remainder of the paper is organized as follows. Section 2 presents the modeling

framework. It begins with a description of the multivariate distribution of returns, and

then moves on to present the volatility specifications and the various correlation speci-

fications that we consider. Details about how the model parameters are estimated are

also given in that section. Section 3 presents the in-sample estimation results for each

model specification. Section 4 considers the portfolio management problem and presents

the out-of-sample portfolio performance results. Section 5 concludes.

2 Modeling framework

2.1 Multivariate distribution

Consider a collection of N assets whose day-t returns are stacked in the N × 1 vector yt.

We assume that the daily returns can be represented as

yt = µ+ εt, (1)

εt = H
1/2
t zt, (2)

where µ is the vector of expected returns, εt is the vector of unexpected returns, and

zt is the vector of innovation terms with conditional moments E(zt|It−1) = 0 and

V ar(zt|It−1) = IN , the identity matrix. Here It represents the information set avail-

able up to time t. The conditional covariance matrix of yt given It−1 is H t and the

matrix H
1/2
t is its Cholesky factorization. In our empirical application we have N = 5

risky assets and, as will become clear, the number of parameters to be estimated in each
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of our model specifications is fairly large. So to make the estimation simpler, we follow

the common practice and use auxiliary estimators for unconditional moments. The first

instance of this is that we replace µ in (1) by the vector of sample means, ȳ. As expected

from daily returns, those estimates of the first moments turn out to be very close to zero.

It is well known that financial asset returns exhibit excess kurtosis which is at odds

with models that assume a multivariate normal distribution of returns. While the com-

monly used multivariate Student-t distribution can capture heavy tails, it still restricts

returns to be symmetrically distributed around their means. In order to allow for pos-

sible return asymmetries, the zt innovation terms in (2) are assumed to be independent

and identically distributed random vectors following the multivariate skewed Student-t

distribution of Bauwens and Laurent (2005), which generalizes the standard multivariate

Student-t distribution by allowing each marginal distribution to have its own asymmetry

parameter. Specifically, the density of zt, given the shape parameters ξ = (ξ1, ..., ξN),

ξi > 0, and the degrees-of-freedom parameter v > 2, is given by

f(zt; ξ, v) =

(

2√
π

)N
(

N
∏

i=1

ξisi
1 + ξ2i

)

Γ(v+N
2

)

Γ(v
2
)(v − 2)

N
2

(

1 +
z∗′
t z

∗
t

v − 2

)− v+N
2

, (3)

where

z∗
t = (z∗1,t, ..., z

∗
N,t)

′,

z∗i,t = (sizi,t +mi)ξ
Ii
i ,

mi =
Γ(v−1

2
)
√
v − 2

√
πΓ(v

2
)

(

ξi −
1

ξi

)

,

s2i =

(

ξ2i +
1

ξ2i
− 1

)

−m2
i ,

Ii =







−1 if zi ≥ −mi

si
,

1 if zi < −mi

si
.

Note that mi and s2i are functions of ξi, so they do not represent additional parameters.

Here ξ2i determines the skewness in the marginal distribution of zi,t. With this specifi-

cation, the marginal distribution of zi,t is symmetric when log ξi = 0 and it is skewed to
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the right (left) when log ξi > 0 (< 0). See Bauwens and Laurent (2005) for the derivation

and further discussion of this distribution. It should be clear that this specification also

implies the same degree of tail heaviness across marginals, controlled by the parameter

v. In a Bayesian setting, Jondeau and Rockinger (2008) consider a more general alterna-

tive where each marginal distribution has its own kurtosis parameter. Further discussion

of these generalized multivariate Student-t distributions is found in Jondeau, Poon, and

Rockinger (2007).

The conditional covariance matrix of yt is written in the familiar form

H t = DtCtDt, (4)

where Dt = diag(h
1/2
11,t, ..., h

1/2
NN,t) is a diagonal matrix of conditional standard deviations

and C t is the conditional correlation matrix. The elements of Dt are the square roots of

the expected return variances based on It, referred to here as the volatilities. The two

main volatility specifications that we shall consider are described next.

2.2 Volatility specifications

The most basic conditional variance forecasting specification we consider is the widely

popular J.P. Morgan’s RiskMetrics, which is an EWMA model that is written as

hii,t = λhii,t−1 + (1− λ)ε2i,t−1, (5)

with λ = 0.94 for daily returns following the prescription in J.P. Morgan’s (1996) technical

document. The EWMA model posits today’s volatility, hii,t, as a weighted average of the

lagged volatility, hii,t−1, and the square of the lagged unexpected return, ε2i,t−1. Here we

follow the common practice and initialize the EWMA recursions with the sample variance

so that hii,1 = σ̂2
i = T−1

∑T
t=1(yi,t − ȳi)

2. With no parameters to estimate, the EWMA

model in (5) has the clear advantage of simplicity. Furthermore, it does a fairly good job

at tracking variance changes. On the flip side, however, it restricts the variance processes

to be non-stationary, which is a potential shortcoming if long-run average variances tend

to be relatively stable over time.
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So as an alternative to the EWMA model in (5), the second volatility specification we

consider is the GARCH(1,1) model with a stationary solution. This specification, which

is often termed the “workhorse of the industry” owing to its immense popularity, takes

the form

hii,t = δi + αiε
2
i,t−1 + βihii,t−1, (6)

where the restrictions δi > 0, αi, βi ≥ 0, and αi + βi < 1 ensure that the conditional

variance processes are stationary with unconditional (long-run) variances given by σ2
i =

δi/κi, where κi = 1 − αi − βi (Bollerslev 1986). In order to reduce the dimension of the

parameter space and the computational complexity of the estimation problem, we use the

variance targeting method proposed by Engle and Mezrich (1996). The method takes the

models in (6) and rewrites them as

hii,t = κiσ
2
i + αiε

2
i,t−1 + βihii,t−1, (7)

with κi + αi + βi = 1, and where the positivity and stationarity constraints become

κi, σ
2
i > 0, αi ≥ 0, and κi + αi ≤ 1. From (7) we see that today’s volatility, hii,t, is a

weighted average of the long-run variance, σ2
i , the square of the lagged unexpected return,

ε2i,t−1, and the lagged volatility, hii,t−1. The parameter κi is the weight on the long-run

variance in that average. Variance targeting here consists of replacing σ2
i in (7) by the

sample variance σ̂2
i and then estimating the αi’s and βi’s by maximum likelihood. We also

follow the common practice and set the initial value as hii,1 = σ̂2
i . See Francq, Horvath,

and Zakoian (2009) for further discussion about the method of variance targeting.

With the volatilities in hand, we can then define the vector of standardized (or de-

volatilized) returns ut = (u1,t, ..., uN,t)
′ whose typical element is ui,t = εi,t/

√

hii,t. If a

portfolio of the assets comprising yt is formed with weights ω, then its conditional return

variance is V ar(ω′yt|It−1) = ω′H tω. In light of (4), this expression makes clear that the

correlation matrix Ct is a key feature of the portfolio management problem.
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2.3 EWMA of covariances

Before we turn to the various structures for the conditional correlation matrix C t, it

seems natural to consider the simple RiskMetrics model of covariances. This multivariate

EWMA (mEWMA) model is given by

H t = λH t−1 + (1− λ)εt−1ε
′
t−1, (8)

where again λ = 0.94 as it was in the EWMA model of scalar volatilities. The recursion

in (8) is initialized by setting H1 equal to the unconditional covariance matrix of sample

returns.

Although it is quite a natural extension of the scalar EWMA approach, the mEWMA

model also implies that covariances are not mean-reverting, so if today’s covariances are

high, then according to (8) they will remain high rather than revert back to their long-

run mean values. In the following we present alternatives that yield stationary covariance

forecasts.

2.4 CCC specifications

Our starting point for specifying the correlation matrix C t appearing in (4) is the con-

stant conditional correlation (CCC) model proposed by Bollerslev (1990) in which the

conditional correlations between each pair of asset returns are restricted to be constant

over time. So in the CCC model, the conditional covariance matrix is defined as

H t = DtCDt, (9)

where C = [ρij ] is a well-defined correlation matrix; i.e., symmetric, positive definite,

and with ρii = 1 for all i. As Engle (2009) discusses, it is particularly simple to obtain a

well-defined CCC matrix estimate if we use correlation targeting—a direct analogue of the

variance targeting method—which consists of replacing C by its empirical counterpart:

C̄ = diag

[

1

T

T
∑

t=1

uτu
′
τ

]− 1
2
[

1

T

T
∑

t=t

uτu
′
τ

]

diag

[

1

T

T
∑

t=1

uτu
′
τ

]− 1
2

, (10)

the sample correlation matrix of standardized returns.
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2.4.1 IND specifications

A special case of the CCC model is the independence correlation structure which simply

sets C = IN , an N ×N identity matrix. This benchmark case will be useful to assess the

relevance of capturing non-zero correlations when forecasting future returns. We consider

two versions of this specification: (i) based on the volatilities from the scalar EWMA

models, and (ii) based on the volatilities implied by the GARCH models. In the tables

presented below, those cases are labeled as EWMA and IND. A comparison of these two

specifications allows an assessment of the value of GARCH modeling.

2.4.2 ECO specification

Rather than imposing zero correlations, a slightly more general specification is to assume

that all pairs of returns have the same time-invariant correlation. This equicorrelation

(ECO) structure, which is also a restricted case of Bollerslev’s CCC model, can be written

as

ρ =
1

N(N − 1)

(

ι′C̄ι−N
)

=
2

N(N − 1)

∑

i>j

uij√
uiiujj

, (11)

where ι is an N -vector of ones and uij is the (i, j)-th element of the C̄ matrix in (10).

The equicorrelation matrix is then

CECO = (1− ρ)IN + ρJN , (12)

where JN is an N ×N matrix of ones.

The reason for considering an equicorrelation structure is that it is well known that

unrestricted sample correlations like those in (10) can produce notoriously noisy estimates.

In an early study of portfolio selection rules, Elton and Gruber (1973) found that imposing

all pairwise correlations to be equal to their average value had the effect of reducing the

estimation risk and provided superior asset allocations when compared to a wide range

of alternative assumptions. This noise reduction technique also forms the basis of Engle

and Kelly’s (2009) dynamic version of the equicorrelation model, discussed below.
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2.5 DCC specification

The CCC model has a clear advantage of computational simplicity, but the assumption

of constant conditional correlations in (9) may be too restrictive for practical portfolio

management. The dynamic conditional correlation (DCC) model of Engle (2002) gener-

alizes the CCC model by allowing the correlations to vary over time. It is defined as in

(4) with the following correlation matrix:

CDCC
t = diag [Qt]

− 1
2 Qtdiag [Qt]

− 1
2 , (13)

where diag[Qt] is a matrix with the same diagonal as Qt and zero off-diagonal entries.

The matrix of quasi-correlations Qt evolves according to the GARCH-like recursion

Qt = (1− a− b)Q̄+ a(ut−1u
′
t−1) + bQt−1, (14)

where the persistence parameters a and b are non-negative scalars satisfying a + b <

1 to ensure stationarity of the process. Here we use correlation targeting in (14), as

done in Engle (2002); i.e., we set Q̄ = T−1
∑T

t=t uτu
′
τ . So provided that Q1 is positive

definite, each subsequent Qt will also be positive definite (and hence invertible) since

it is a weighted average of positive definite matrices. Note that the Qt’s need not be

correlation matrices with unit diagonals. It is the rescaling in (13) that converts Qt into

CDCC
t , a well-defined correlation matrix for every t.

2.6 TVC specification

An important alternative specification to (13) is the time-varying correlation (TVC) model

of Tse and Tsui (2002). There, the correlation dynamics are specified as an ARMA process

of the form

CTV C
t = (1− a− b)C̄ + aΨt−1 + bCTV C

t−1 , (15)

where the N ×N matrix Ψt−1 is given by

Ψt−1 = diag

[

1

m

t−1
∑

τ=t−m

uτu
′
τ

]− 1
2
[

1

m

t−1
∑

τ=t−m

uτu
′
τ

]

diag

[

1

m

t−1
∑

τ=t−m

uτu
′
τ

]− 1
2

, (16)
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a rolling sample estimate of the correlation matrix based on standardized returns between

times t−m and t−1. A necessary condition forΨt−1 to be positive definite is thatm ≥ N .

Here we follow Tse and Tsui (2002) and set m = N . The stationarity of CTV C
t is imposed

through the constraints 0 ≤ a, b ≤ 1 and a + b < 1. These restrictions also imply that

CTV C
t is a convex combination of C̄ in (10), Ψt−1, and CTV C

t−1 . So if CTV C
1 is positive

definite with unit diagonal elements, then, by recursion, all the successive CTV C
t ’s will

also be well-defined correlation matrices. An apparent difference between the DCC and

TVC models is that the DCC dynamics of Qt in (14) are based on the single lagged term

ut−1u
′
t−1 (as in a standard GARCH(1,1) model), whereas the complete specification of

the TVC dynamics in (15) depends on a and b, and m in (16).

2.7 DECO specification

A middle ground between the CCC model on one hand and the DCC and TVC models on

the other is to maintain the assumption of dynamic correlations, but to restrict all pairwise

correlations to be equal. Such an approach would be expected to work well when the

pairwise correlations are dominated by a common factor. To examine that possibility, we

follow Engle and Kelly (2009) and consider their DCC-based equicorrelation specification.

That model uses the DCC matrix in (13) and then sets the equicorrelation parameter ρt

equal to the average of the pairwise DCC correlations:

ρt =
1

N(N − 1)

(

ι′CDCC
t ι−N

)

=
2

N(N − 1)

∑

i>j

qij,t√
qii,tqjj,t

, (17)

where qij,t is the (i, j)-th element of theQt matrix in (14). The DCC-based equicorrelation

(DECO) matrix is then

CDECO
t = (1− ρt)IN + ρtJN , (18)

where JN is defined as in the case of the ECO model in (12). Engle and Kelly show that

the transformation of CDCC
t in (13) to the equicorrelation structure via (17) and (18)

results in a positive definite CDECO
t matrix.

12



2.8 Model estimation

Let θ denote a generic parameter vector. In the basic CCC and IND specifications,

that vector comprises 16 parameters (ξ1, ..., ξ5, v, κ1, α1, ..., κ5, α5). The DCC, TVC, and

DECO specifications add two more parameters (a, b) for a total of 18. Given the sample of

asset returns y1, ...,yT , we estimate each model by maximizing its sample log-likelihood

function L(θ) =
∑T

t=1 log f(yt|θ, It−1) with respect to θ, where

f(yt|θ, It−1) = |H t|−1/2f
(

H
−1/2
t (yt − µ)|θ, It−1

)

, (19)

subject to the model’s positivity and stationarity constraints. The functional form of the

multivariate density is given in (3), and the term |H t|−1/2 in (19) is the Jacobian factor

that arises in the transformation from zt to yt. We should emphasize that the non-normal

distribution used here does not allow the log-likelihood function to be decomposed as in

Engle (2002), Engle and Sheppard (2005), and Engle and Kelly (2009). This means that

we cannot employ Engle’s two-step estimation approach, but instead we estimate the

parameters of the multivariate skewed Student-t distribution together with those of the

conditional variances and covariances processes in one step.2

3 Estimation results

Our empirical assessment uses daily data on five country ETFs, which are relatively new

and already quite popular financial instruments. ETFs hold a fixed number of stocks

based on an underlying basket of stocks and, just like common stocks, they are traded

on exchanges and can be sold short or bought on margin by both retail and institutional

investors. Their popularity stems in large part from the fact that they are low-cost,

transparent, and tax-efficient investment vehicles for accessing exposure to the underlying

stocks. Since ETFs are actively traded at all times during market hours, deviations of

their price from the value of the underlying asset are quickly arbitraged away. Indeed,

2The computations were done in Fortran using IMSL. A quasi-Newton method with finite-difference

gradients was used for the maximization of the sample log-likelihood function of each model.

13



a fundamental tenet of ETFs as an asset class is the close adherence of the price of the

ETF to the value of it’s underlying group of stocks.

Our first ETF is the Standard and Poor’s (S&P) Depository Receipt (SPDR) ETF

that tracks the S&P 500, a major US stock market index. The four other ETFs comprise

Morgan Stanley Capital International (MSCI) iShares for the UK, Japan, Mexico, and

Malaysia. These ETFs track their respective MSCI stock market indices, which represent

broad aggregations of national equity markets and are the leading benchmarks for inter-

national portfolio managers. The five considered ETFs are traded on the New York Stock

Exchange and their historical price data are publicly available; their respective ticker

symbols are: SPY, EWU, EWJ, EWW, and EWM. Note that the US, UK, and Japan are

obviously developed markets, but Mexico and Malaysia are considered emerging markets.

In international finance, the traditional argument for reaping the benefits of interna-

tional diversification has relied on the presence of low cross-country correlations. While

the early literature studied developed markets, our data allows us to follow more recent

studies and also examine the benefits offered by emerging markets.3 We use daily closing

prices covering the period from April 1, 1996 to July 7, 2011 and with the price data

we computed series of corresponding daily log-returns for each of the ETFs (3842 obser-

vations). We use log-returns for estimation purposes only, and then we use the simple

returns to assess the portfolio strategies. Note however that at the daily frequency, log-

returns are virtually identical to simple returns. Figure 1 plots the relative evolution of

the daily ETF closing prices, where each series is divided by its first value so they all

begin at a value of 1 dollar on April 1, 1996. It is interesting to observe the co-movements

among these prices and how they rebounded after their spectacular plunge in 2008. Fig-

ure 2 shows the corresponding five return series multiplied by 100 so they can be read

as percentage returns. We can see that volatility changes over time, and the presence of

3Early studies on the benefits of international diversification include Solnik (1974) for developed

markets and Errunza (1977) for emerging markets. More recent evidence is found in DeSantis and

Gerard (1997), Errunza, Hogan, and Hung (1999), Bekaert and Harvey (2000), and Christoffersen et al.

(2010).
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volatility clustering effects is evident in each series. Comparing Figures 1 and 2 we can

also see that volatile periods are generally associated with drops in market values. The

clearly noticeable drops in market values during the financial crisis of 2008 seen in Figure

1 along with the marked increases in volatility that can be observed in Figure 2 is the

obvious case in point.

Table 1 presents some summary statistics of the percentage returns data. The top

portion reports the means, standard deviations, maximum and minimum values, skewness,

and kurtosis of each return series. We see that the daily returns are on average very close

to zero over the entire sample period, but show wide fluctuations on both the up and

downsides. The returns series for the western economies (US, UK, and Mexico) exhibit

negative skewness, whereas the eastern ones (Japan and Malaysia) have much higher

positive skewness. Moreover, we see that the kurtosis in every case is much higher than it

would be if the returns were normally distributed (i.e. 3). The bottom portion of Table 1

displays the sample correlation matrix for these five return series. It is interesting to note

the predominant role played by the US stock market. Indeed, each country ETF returns

show the highest pairwise correlation vis-à-vis the US ETF returns.

Tables 2–7 show the maximum-likelihood parameter estimates of the IND, ECO, CCC,

DCC, TVC, and DECO models, respectively, using the entire sample of returns data. We

began by estimating the IND model and retained as final point estimates those that

attained the highest value of the log-likelihood function over a grid of initial values. We

then used the IND estimates as starting values for the estimation of the other models.

In Tables 2–7, the numbers in parentheses are the standard errors associated with each

point estimate.

In general, the models reveal that the marginal distributions of ETF return innovations

are skewed to the left (since log ξi < 0), except in the case of Japan under the ECO and

DECO models and in the case of Malaysia under the ECO, CCC, DCC, and DECO

models for which they appear more symmetric or even slightly right skewed. The degrees-

of-freedom parameter estimate varies from about 4.5 under the IND model to about 8.5

under the TVC model, implying in each case tails far thicker than those of a normal
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innovation distribution. The GARCH parameter estimates are quite typical of what is

usually found with daily returns; i.e., the weights on the long-run variances κi and the

ARCH parameters αi are quite small, while the GARCH parameters βi are much closer

to 1 in magnitude.

The estimated a and b parameters in Tables 5–7 determine the persistence over time of

the respective model-implied time-varying conditional correlations. The DCC, TVC, and

DECO models each imply a great deal of persistence, as evidenced by the values of a+ b

all close to 1, which in turn implies very slow rates of mean-reversion in correlations. To

illustrate these effects, Figures 3–5 show the model-implied correlations between the stan-

dardized returns for the five ETFs. The horizontal lines in each plot are the correlations

implied by the estimated CCC model, which represent the average innovation correlations.

The solid lines in Figures 3–5 are associated with the DCC model, the dashed lines with

the TVC model, and the dotted line (which is the same in each plot) with the DECO

model. The time-varying innovation correlations are unmistakable in each case. Note

how the DCC and TVC models imply very similar patterns over time, while the DECO

model exhibits quite a different pattern since it captures the average correlation across all

pairs of assets. In general, we observe relative increases in correlations during the 2008

financial crisis. For instance, the US-Japan conditional correlation (in the upper right

plot) in Figure 3 spikes up to its highest sample value (around 0.8) during that period.

This finding of increasing correlations between stock market indices during volatile peri-

ods (typically bear markets) is in line with the inverse relationship between market value

and correlations documented in Longin and Solnik (1995, 2001), Ang and Chen (2002),

and Engle and Kelly (2009).

Recall that the decoupling hypothesis is the idea that recently the evolution of stock

markets in emerging markets has “decoupled” itself from the evolution of more developed

stock markets. This notion is clearly not supported by the evidence presented here. In-

deed, the correlations between all pairs of indices—developed and emerging—are certainly

erratic over short periods of time, but the overall picture that emerges from Figures 3–5

is that they have been trending upward, not downward, over the last decade. This would
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seem to contradict the notion that emerging stock markets are decoupling themselves

from developed stock markets for long periods of time. Christoffersen et al. (2010) reach

the same conclusion with weekly returns during the 1973–2009 period.4

Our focus, however, is not on the in-sample comparison of these models, but rather on

their out-of-sample performance in portfolio management. In the application that follows,

all the models, including the EWMA and mEWMA models, are used to produce forecasts

for time t+1 using only information available up to time t, as would be done in real-time

forecasting. For the forecasting exercise we set aside the last 1500 observations—about 6

years.5 So at time t each model is used to produce the one-day-ahead forecasts µt+1|t and

H t+1|t. The first of these one-day-ahead forecasts is made on July 7, 2005 and every day

the returns data available up to that point in time are used to update the forecasts of the

next day. The model parameters are re-estimated every 20 trading days using the previous

estimates as initial values for the numerical optimization. We iterate this procedure until

the day before last in our return sample has been included in the forecasting window.

4 Application to portfolio management

4.1 Management strategies

We consider the problem faced by an active portfolio manager who rebalances a portfolio

of ETFs on a daily basis. Here we begin by assuming the absence of a risk-free secu-

rity, so the portfolio comprises only risky assets. The naive approach to this problem is

simply to invest the initial wealth each day equally across the N = 5 risky assets under

consideration, so the fraction of wealth in each asset is 1/N . This is referred to as the

4Despite the evidence of recent upward tends in correlations, Christoffersen et al. (2010) argue that

their findings of very low tail dependence at the end of their sample suggests that there are still benefits

from adding emerging markets to a portfolio.
5This choice represents the tradeoff we faced between wanting to have a long out-of-sample evaluation

period and enough in-sample observations for reliable model estimation.
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naive diversification (or 1/N) rule.6 It should be noted that the 1/N rule doesn’t entail

any estimation risk since it relies neither on the data nor on any model. And nonetheless

DeMiguel, Garlappi, and Uppal (2009) find that this portfolio strategy performs remark-

ably well in out-of-sample comparisons against more sophisticated approaches based on

classical portfolio optimization using monthly returns data. Here we too use the naive

1/N rule as our benchmark for comparison purposes.

According to the classical theory of optimal portfolio selection by Markowitz (1952),

the mean-variance manager allocates the wealth across theN risky assets so as to minimize

the portfolio’s variance subject to the constraint that the expected portfolio return attains

a specified target, µ∗
t . Without loss of generality, the initial wealth can be normalized to

1 so the portfolio manager’s problem is to find the optimal normalized portfolio weights,

ω̂t, as the solution to:

min
ωt

ω′
tH t+1|tωt

s.t. ω′
tµt+1|t = µ∗

t ,

ω′
t1 = 1,

ωt ≥ 0,

(20)

where 1 is a vector of ones. The non-negativity constraints ωt ≥ 0 in this formulation of

her problem mean that the portfolio manager is prohibited from making short sales. We

shall also consider a version of (20) without those short-sale constraints so that the optimal

solution, ω̂t, may contain negative weights (short positions). The portfolio optimization

problem in (20) is a standard quadratic programming problem that is readily solved

numerically.

In this formulation of the portfolio problem, the manager only allocates wealth to a set

of N risky assets. We also consider the case where she has access to a risk-free asset with

a zero rate of return, which seems quite realistic given that the portfolio is rebalanced

on a daily basis. In the presence of a risk-free asset, the constraint ω′
t1 = 1 is dropped

from (20) so the portfolio weights need not sum to one; i.e., 1 − ω′
t1 is the share in the

6When we include a safe asset in the investment mix, the naive portfolio rule is in fact 1/(N +1) even

though we simply talk about the “1/N rule.”
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risk-free asset. With a zero rate of return, the refuge asset here can be thought of as cash

holdings in a bank account. In the reported results, we refer to the portfolios that solve

(20) with a specified target µ∗
t as minimum variance (MV) portfolios. Finally, we also

consider the special case of the manager restricted to risky assets only and who wishes

to minimize the portfolio’s variance without a specified target µ∗
t . The corresponding

global minimum variance portfolio (GMV) is the solution to the portfolio problem in (20)

without the constraint ω′
tµt+1|t = µ∗

t . We consider GMV portfolios with and without

short sales. Even though they are somewhat peculiar, these GMV portfolios have the

great advantage of taking expected returns out of the optimization problem, allowing a

sharp focus on estimation of the covariance matrix.

The quantities that the manager needs to input into (20) are the forecasts µt+1|t

and H t+1|t. The so-called “plug-in” approach simply computes the sample mean ȳt and

covariance matrix of asset returns up to time t and uses those as the inputs to (20). That

approach obviously uses the data, but just like the 1/N rule it remains model-free. The

common plug-in approach is included in our comparisons. The model-based approaches

that we consider are those presented in Section 2. Note that the implied forecast µt+1|t in

each case is the same as that of the plug-in approach: ȳt. So the plug-in, EWMA, IND,

ECO, mEWMA, CCC, DCC, TVC, and DECO approaches differ only by their forecasts

of the conditional covariance matrix, H t+1|t.

The fact that H t+1|t is an estimated quantity gives rise to estimation risk (owing to

the uncertainty about the data-generating process) and that risk becomes particularly

important when the cost of rebalancing the portfolio is taken into account. Indeed, if

transactions are costly, then any attempt to improve asset allocation that leads to an in-

crease in portfolio turnover can worsen the after-transactions-costs portfolio performance.

In order to get a sense of the amount of trading required by each portfolio approach, we

follow DeMiguel, Garlappi, and Uppal (2009) and Kirby and Ostdiek (2011) and compute

the portfolio turnover at time t+1, defined as the sum of the absolute values of the trades

across the N assets. More specifically, notice that if we let Ri,t+1 denote the simple return

between times t and t+1 on asset i, then for each dollar invested in the portfolio at time
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t there is ω̂i,t(1 + Ri,t+1) dollars invested in asset i at time t + 1. So the share of wealth

in risky asset i before the portfolio is rebalanced at time t+ 1 is

ω̂i,t+ =
ω̂i,t(1 +Ri,t+1)

∑N
i=1 ω̂i,t(1 +Ri,t+1) + (1−

∑N
i=1 ω̂i,t)(1 +Rf,t+1)

and when the portfolio is rebalanced it gives rise to a trade in risky asset i of magnitude

|ω̂i,t+1 − ω̂i,t+|, where ω̂i,t+1 is the optimal portfolio weight on asset i at time t + 1 (after

rebalancing). Here the risk-free return is assumed to be zero; i.e., Rf,t+1 = 0 in each

period. So the total amount of turnover (or churning) across all assets in the portfolio is

τt+1 =

N
∑

i=1

|ω̂i,t+1 − ω̂i,t+ |+
∣

∣

N
∑

i=1

(ω̂i,t+1 − ω̂i,t+)
∣

∣, (21)

where the second term on the right-hand side appears only in the presence of a risk-free

asset. We shall gauge the magnitude of the turnover measure in (21) relative to its value

under the benchmark 1/N rule.

It is important to remark that with the naive strategy, ωi,t = ωi,t+1 = 1/N , but

ωi,t+ may be different owing to changes in asset prices between times t and t + 1. If c

denotes the proportional transactions cost, then the total cost to rebalance the portfolio

is c× τt+1. Let Rp,t+1 =
∑N

i=1Ri,t+1ω̂i,t denote the portfolio return from a given strategy

before rebalancing occurs. The evolution of wealth invested according to that strategy is

then given by

Wt+1 = Wt(1 +Rp,t+1)(1− c× τt+1) (22)

and the simple return net of rebalancing costs is Rc
p,t+1 = Wt+1/Wt−1. Since the portfolio

ωt is formed using only information available at time t and held for one day before being

rebalanced at time t+1, the return Rc
p,t+1 represents the one-day out-of-sample return. We

report portfolio performance results when there are no transactions costs and assuming

proportional transactions costs of 1 basis point (bp) for c in (22). Recall that 1 bp = 10−4.

The target µ∗
t in (20) needs to be specified. Kirby and Ostdiek (2010) argue that the

amount of turnover in the portfolio is very sensitive to the selected target value. So here

we follow those authors and set µ∗
t equal to the estimated conditional expected return of

the benchmark 1/N portfolio; i.e., µ∗
t = ȳ′

t1/N , or µ∗
t = ȳ′

t1/(N + 1) when a safe asset
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is included. The 1/N portfolio is expected to have relatively low turnover, so this choice

levels the playing field between the naive approach, the plug-in approach, and the eight

model-based approaches. Figure 6 shows the time-series plot of the daily portfolio target

returns (in basis points) on each day from July 21, 2005 to July 5, 2011 that the portfolio

is rebalanced. We see that the target return values vary between about 0.15 and 3 bps

(or between 0.37 and 7.5% in annual terms).

It remains to discuss how we evaluate portfolio performance. For that we choose

the out-of-sample realized Sharpe ratio because it is the most ubiquitous risk-adjusted

measure used by financial market practitioners to rank fund managers and to evaluate the

attractiveness of investment strategies in general. We use an expanding-window procedure

to compare the portfolio performances. Let T denote the total number of returns under

consideration in the data set and let t1 be the first day of portfolio formation. With daily

rebalancing, we obtain a time-series of out-of-sample returns Rc
p,t for t = t1 + 1, ..., T.

In our empirical assessments, we consider three out-of-sample periods: (i) July 22, 2005

to July 6, 2011, (ii) July 22, 2005 to July 15, 2008, and (iii) July 16, 2008 to July 6,

2011. The first of those represents the entire out-of-sample evaluation period with 1499

returns, and the second and third periods each comprise 749 return observations.7 As in

Brownless, Engle, and Kelly (2009), we consider September 2008—the month in which

Lehman Brothers filed for Chapter 11 bankruptcy protection—as the beginning of the

financial crisis, so the period from July 22, 2005 to July 15, 2008 represents our pre-crisis

subsample. The Sharpe ratio of strategy j is then computed as SRj = R̄c
p,j/
√

σ̂2
j , where

R̄c
p,j is the average of the returns to strategy j computed over t1 + 1, ..., T and σ̂2

j is the

corresponding out-of-sample variance.8 We also report the average portfolio turnover τ̄j ,

computed as the out-of-sample average of (21) for each strategy.

The Sharpe ratio works well as a performance gauge when excess returns are positive.

In that case, higher the Sharpe ratio, the better; and at a given level of excess return,

7Note that one observation is lost when computing Rc
p,t, the returns net of rebalancing costs.

8When the portfolio comprises risky assets only, this quantity is sometimes referred to as the infor-

mation ratio in the portfolio management literature.
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lower the standard deviation of return, the better. When excess returns are negative, how-

ever, the Sharpe ratio yields unreasonable performance rankings. For instance, consider

two portfolios that achieve the same negative excess return, but with different standard

deviations. According to the usual Sharpe ratio, the one with the larger standard devi-

ation would be ranked higher! In recognition of this shortcoming, Israelsen (2003, 2005)

proposes to modify the Sharpe ratio as follows:

SR-mj =







R̄c
p,j/

√
σ̂2, if R̄c

p,j ≥ 0,

R̄c
p,j ×

√
σ̂2, if R̄c

p,j < 0.

So when returns are negative, a portfolio with a smaller standard deviation gets ranked

higher than one that took more risk. Whereas when returns are positive, the Sharpe ratio

and its modified version yield the same performance ranking. The modified Sharpe ratio

is thus entirely consistent with the basic principle of risk-adjusted returns, which is that

higher risk is only preferable if accompanied by higher (net) return.9

To assess the statistical significance of the differences between the Sharpe ratio of the

benchmark 1/N strategy (SR1/N ) and those of the plug-in and model-based strategies,

we use a bootstrap inference method. Specifically, we test the equality of Sharpe ratios

according to the block bootstrap proposed in Ledoit and Wolf (2008) which is designed

to accommodate serially correlated and heteroskedastic time series of returns. The null

hypothesis is H0 : SRj − SR1/N = 0 for which we compute a two-sided p-value using

Ledoit and Wolf’s studentized circular block bootstrap with block size equal to 20 and

1000 bootstrap replications.10 Following the suggestion in Ledoit and Wolf (2008), we

use the same methodology to test for statistical differences between the modified Sharpe

ratios and the variances (or standard deviations) of returns.

9As Israelsen (2005) notes, there is an odd feature of the modified Sharpe ratio: its magnitude can be

quite large. So its interest here is mainly as a ranking criterion.
10We also tried other block sizes and found the results to be essentially the same as those reported

here.
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4.2 Portfolio performance results

Tables 8 and 9 report the portfolio performance results over the entire out-of-sample

period (July 22, 2005 to July 6, 2011) when the portfolio comprises only risky assets

(Table 8) and when a risk-free security is part of the asset mix (Table 9). Tables 10 and

11 show the corresponding results over the pre-crisis period from July 22, 2005 to July 15,

2008, and Tables 12 and 13 pertain to the later period from July 16, 2008 to July 6, 2011.

The results for the benchmark 1/N strategy are given in the leading row of each table.

When the investment mix comprises risky assets only (Tables 8, 10, and 13), the results

for the MV portfolios are shown in Panel A while the GMV portfolio results are given in

Panel B of the tables. Note that Tables 9, 11, and 13 only report MV portfolio results,

since the GMV solution in those cases is the trivial portfolio with 100% in the risk-free

asset and no risky positions. Within the panels, the rows refer to the plug-in and model-

based strategies, with and without short selling. Note also that for the portfolios of risky

assets only (again Tables 8, 10, and 13), the short selling constraints never bind for the

EWMA and IND strategies. This follows by construction since those models assume that

the risky assets are uncorrelated. The reported out-of-sample portfolio results include

the annualized percentage mean return, the annualized standard deviation (Std Dev) of

returns, the annualized Sharpe ratio (SR), the annualized modified Sharpe ratio (SR-

m), and the average turnover (Turn) over the out-of-sample period.11 The entries in

the columns labeled “p-val” are respectively the two-sided bootstrap p-values for tests of

the equality of the strategy’s variance (or equivalently of its standard deviation), Sharpe

ratio, and modified Sharpe ratio with those of the benchmark 1/N rule. Finally, each

table shows the results when there are no transactions costs and assuming proportional

transactions costs of 1 bp.

Table 8 shows that when the portfolio comprises risky assets only over the entire out-

of-sample period, the plug-in and the model-based strategies achieve significantly lower

11The annualized mean return is computed here as the daily mean return times 252 and the annualized

standard deviation of returns, SR, and SR-m are obtained by multiplying their daily counterparts by the

square root of 252.
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portfolio variances than the 1/N rule at least in the absence of transactions costs (p-values

< 0.10). The one noticeable exception is the mEWMA when short sales are allowed with p-

values of 0.14 in Panel A and 0.11 in Panel B. When a 1 bp transactions cost is introduced,

however, the plug-in strategy ceases to yield significantly lower portfolio variances in all

cases. In fact, it is only the IND strategy which continues to yield lower portfolio variances

in every case. Indeed all the other model-based strategies do not consistently perform

better than the benchmark in terms of portfolio variance, even under the GMV approach.

Table 8 also shows that the plug-in and model-based strategies yield worse Sharpe and

modified Sharpe ratios than the 1/N rule across the board. This is not surprising for

the MV portfolios given the usual tradeoff one would expect between a portfolio’s mean

return (reward) and its standard deviation (risk), at least in the absence of transactions

costs. In many instances, these performance measures are significantly worse than the

benchmark. We see that the effects of short sale restrictions can be quite important. For

the MV portfolios in Panel A, as well as the GMV ones in Panel B, prohibiting short

selling makes the SR and SR-m measures not significantly lower than what is achieved

through naive diversification.

These results are in line with the findings of Jagannathan and Ma (2003) who show

that imposing a short-selling constraint amounts to shrinking the extreme elements of the

covariance matrix and thereby stabilizes the portfolio weights. As in DeMiguel, Garlappi,

and Uppal (2009) though, we find that even restraining short sales is not sufficient to

completely mitigate the error in estimating the covariance matrix and thus to provide

better portfolio Sharpe ratios than the naive 1/N rule, which ignores the data altogether.

Table 8 already shows how the usual Sharpe ratio can sometimes be misleading. For

instance, the plug-in strategy with a 1 bp transactions cost has a SR of -0.28 and as such

would be ranked better than the DCC strategy with a SR of -0.49. But in fact the negative

returns to both strategies are about the same, and we see that the plug-in strategy with

a standard deviation of 34.15 was far riskier than the DCC one with a standard deviation

of 20.37. In that case, the modified Sharpe ratio correctly ranks the DCC-based strategy

above the plug-in approach.
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The portfolio performance results change dramatically as soon as the manager has

access to a risk-free asset, even if it yields a zero return. Comparing Panel A of Table 8

with Table 9, we clearly see that the introduction of a risk-free asset in the investment

mix results in portfolio variances that are significantly lower than the benchmark. Indeed,

the p-values never exceed 1%. Furthermore, in the presence of a risk-free asset, the

Sharpe ratios delivered by the plug-in and model-based strategies continue to be lower

than that of the 1/N rule, but the differences are unmistakably nowhere statistically

significant. The only apparent exceptions occur with the EWMA and IND strategies

in the presence of a transactions cost (p-values ≤ 0.11), which shows the importance of

capturing conditional correlations when forecasting future returns. The following quote

from Amenc and Martellini (2011) summarizes well this finding about the risk-free asset:

Any attempt at “improving” portfolio diversification techniques, either by

introducing sophisticated time- and state-dependent risk models, or by ex-

tending them to higher-order moments, is also equally misleading if the goal

is again to hope for protection in 2008-like market conditions. When there is

simply no place to hide, even the most sophisticated portfolio diversification

techniques are expected to fail.

Table 8 shows what happens when “there is no place to hide” (i.e. when the portfolio

manager can only take risky positions) and Table 9 shows that even if the risk-free rate

of return is zero, having access to a safe-haven investment vehicle provides valuable pro-

tection against downside risk. Indeed, the fact that the statistically significant negative

performance measures in Table 8 cease to be significantly different vis-à-vis the 1/N rule

(in Table 9) once the constraint ω′
t1 = 1 is dropped from (20) is truly remarkable.12 It is

also interesting to compare in Tables 8 and 9 the effects of having access to a risk-free as-

set on portfolio stability. We already saw in Table 8 that prohibiting short sales generally

12Note that relaxing the constraint is the main effect here, since the two series of portfolio target

returns (in Figure 6) are very close. We further confirmed this by performing the portfolio exercises with

a risk-free asset in the mix (so N=6) but targeting the return implied by the 1/5 rule. The results were

virtually identical to those reported in Tables 9, 11, and 13.
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reduces portfolio turnover. Looking now at Table 9 we see that access to a risk-free asset

has an even greater effect. In every instance the portfolio turnover is reduced to a value

less than 1, far below the 1.67 turnover value of the 1/N strategy. This in turn explains

the relative portfolio performance improvements seen in Table 9 when transactions are

costly.

Tables 10 and 11 show the corresponding analysis during our pre-crisis period from

July 22, 2005 to July 15, 2008. During this period the performance of the 1/N rule is

even better, with an annualized Sharpe ratio of 0.66 in the absence of transactions costs

in Tables 10 and 11, and of 0.14 (0.38) with a 1 bp transactions cost in Table 10 (Table

11). These can be attributed to the lower variance of returns during this period. This

relatively calmer period also translates into greater variance and covariance predictability,

as evidenced by the significantly lower portfolio variances of the plug-in and model-based

strategies. Without transactions costs, the corresponding p-values are all less than 0.01

(reported as zero in the tables). Again not surprisingly this translates into lower portfolio

mean returns and significantly lower SR and SR-m performance measures. As in Table

8 though, these findings are not robust for all the strategies in the face of transactions

costs. The significantly lower portfolio variances (p-values < 1%) and the often times

not significantly worse SR and SR-m measures vis-à-vis the 1/N rule are re-established

in Table 11 by allowing the manager to take risk-free positions.

The results for the crisis period from July 16, 2008 to July 6, 2011 are reported in

Tables 12 and 13. As we would expect, we see from those tables that the performance of

the 1/N portfolio strategy deteriorates during the financial crisis. This, however, is not

mainly due to lower mean returns but rather to their increased variances and correlations.

Indeed, comparing Tables 10 and 12 we see that the mean return on the 1/N portfolio

remains about the same but its standard deviation increases from 17.54 to 30.02. The

risk-return tradeoff becomes evident in Table 12. Again comparing Tables 10 and 12

we see during the crisis period nearly doubled portfolio standard deviations and this is

accompanied by higher portfolio mean returns across all strategies, at least when there

are no transactions costs. That relationship, however, gets eroded when transactions are
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costly. With even just a 1 bp transactions cost, many portfolios have higher variances

and lower mean returns during the crisis.

In Table 12 we notice that the plug-in and model-based strategies do not achieve sig-

nificantly lower portfolio variances owing to the fact that return variances and correlations

are less predictable in turbulent times. In sharp contrast to what we see in Tables 8 and

10, the model-based portfolio strategies are clearly not significantly different from those of

the 1/N rule. And this holds under both the MV and GMV approaches, with and without

transactions costs, and whether or not short sales are allowed. In some cases, even though

not significantly so, we see the model-based strategies yielding higher Sharpe ratios than

the naive portfolio with a SR of 0.12. The only exception occurs when transactions are

costly and that is the CCC portfolio whose better SR performance of 0.31 achieves a

p-value of 0.07 under the MV approach without short selling. In that same column we

also see two other low p-values of 0.09 and 0.07 for the mEWMA and DCC strategies, but

those are associated with negative Sharpe ratios under the GMV approach which ignores

expected returns.

So what do we learn from all these portfolio performance comparisons? For starters,

the significantly poorer performance of the model-based strategies over the entire out-of-

sample period (from July 22, 2005 to July 6, 2011) in Table 8 is driven by the pre-crisis

subsample ending on July 15, 2008 (Table 10). Indeed from July 16, 2008 to July 6,

2011, the model-based strategies are generally not statistically different from the 1/N

rule (Tables 12 and 13). Recall also that the portfolio strategies are extremely sensitive

to whether a risk-free asset is available. Comparing Table 8 versus 9, and 10 versus 11,

shows that this constraint plays a far more important role than the short-sale constraints.

Indeed, the effects of limiting short sales on the statistical significance of the portfolio

performances is tiny compared to the effects of relaxing the constraint that the portfolio

weights (of the risky assets) sum to one, which changes the performance results from much

worse to not statistically different from the 1/N rule. This is not to say that limiting the

amount of short selling is not important. In all the tables presented here, we see that

prohibiting short sales generally yields more stable portfolios with lower turnover. The
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ability to shelter funds plays an additional role, allowing the manager to significantly

lower the portfolio variance no matter which strategy is employed. Table 13 shows how

this becomes even more important during high-turbulence crisis periods.

To better understand the role of the risk-free asset here, recall that our portfolio

manager is targeting the 1/N expected return and can get there ex ante either on the

capital market line (CML) or on the frontier of risk assets only. Suppose for a moment

that the active manager cannot take short positions. Is she then better off hitting the

target expected return across risky and risk-free assets rather than just the risky assets?

When positive returns are expected, it is better ex ante to be on the CML as this has

the maximum Sharpe ratio. Our results show that, relative to the 1/N rule, the ex post

benefit is a significantly lower standard deviation, even though the ex post Sharpe ratio

itself is not significantly higher.

5 Conclusion

We have conducted an empirical assessment of alternative time-series models for con-

ditional variances and correlations for the purpose of active portfolio management with

daily rebalancing. In addition to the usual plug-in method which simply replaces the

covariance matrix by its sample counterpart, we also considered the RiskMetrics EWMA

models and several other popular models to forecast the inputs to the portfolio selection

problem. We considered portfolios of five country ETFs which results in a total of 18

parameters that need to be estimated for the most sophisticated correlation models we

consider, even though we make use of correlation targeting to reduce the dimensionality

problem. Following DeMiguel, Gralppi, and Uppal (2009) and Kirby and Ostdiek (2011),

the 1/N rule serves as our benchmark strategy for comparison purposes and, as in Kirby

and Ostdiek, the conditional expected return of the 1/N rule is used as the target expected

portfolio return. We also considered minimum variance portfolios without an expected

return target.

Our empirical assessment reveals that in the three years leading up to the recent
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financial crisis, the model-based strategies were in general statistically better ex-post in

terms of portfolio variance than the 1/N rule when the portfolio manager could only take

risky positions. During the financial crisis, the portfolio variances can not be statistically

distinguished from the benchmark. All that changes when a risk-free asset becomes part

of the investment mix. Indeed, before and during the crisis it is the presence of the safe-

haven asset that allows the plug-in and model-based strategies to achieve significantly

lower portfolio variances. This helps explain the good performance results in Serban et

al. (1997) and Engle and Colacito (2006), for instance, who also consider some models of

variances and correlations for asset allocation, but always with a risk-free asset present.

Our results with the 1/N rule as the benchmark provide further evidence that the

desire to elaborate highly parametrized multivariate conditional heteroskedasticity and

correlation models is necessarily accompanied by greater estimation risk. And that pa-

rameter uncertainty can easily translate into quite poor out-of-sample risk-adjusted port-

folio performances, even during relatively tranquil markets. Indeed, in the absence of

transactions costs our results reveal a clear risk-return tradeoff in the sense that the lower

portfolio variances achieved through the model-based strategies are accompanied by lower

mean returns. So the models do not deliver significantly better Sharpe ratios than does

naive diversification. Even a very small 1 bp transactions cost is enough to break down the

risk-return tradeoff and turn negative the Sharpe ratios for the plug-in and model-based

strategies. This sheds more light on the fragility of mean-variance optimizing portfolios.

The evidence presented here clearly show the relative benefits of limiting short sales to

stabilize the portfolio weights and the far greater importance for the portfolio manager of

being able to take a risk-free position, even if it yields a zero return. This is an interesting

result with practical implications because often times institutional portfolio managers are

constrained to be fully invested in their asset classes, without the flexibility of turning to

the risk-free asset. Of course, retail investors already have that flexibility.
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Table 1: Summary statistics of daily country ETF log-returns

Developed markets Emerging markets

US UK Japan Mexico Malaysia

Mean 0.025 0.021 -0.006 0.053 0.015
Std Dev 1.327 1.597 1.658 2.131 2.174
Max. 13.552 15.771 14.660 19.460 17.526
Min. -10.366 -12.839 -10.945 -18.721 -13.502
Skewness -0.038 -0.132 0.342 -0.007 0.460
Kurtosis 11.902 11.557 8.917 11.265 11.684

Correlation matrix

US 1
UK 0.718 1
Japan 0.597 0.555 1
Mexico 0.670 0.584 0.501 1
Malaysia 0.381 0.353 0.351 0.377 1

Notes: The data consists of daily log-returns (in percentages) on country ETFs

for the US, UK, Japan, Mexico, and Malaysia. The first three of those are

developed markets, whereas the last two are considered emerging markets. The

entire sample period comprises 3842 return observations from April 2, 1996 to

July 6, 2011.
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Table 2: Parameter estimates of the IND model

Developed markets Emerging markets

US UK Japan Mexico Malaysia

Shape parameters

ξi 0.9134 0.9753 0.9834 0.9187 0.9946
(0.0370) (0.0095) (0.0324) (0.0124) (0.0084)

Degrees-of-freedom parameter

v 4.5740
(0.1893)

GARCH parameters

κi 0.0075 0.0076 0.0152 0.0149 0.0050
(0.0046) (0.0041) (0.0087) (0.0078) (0.0019)

αi 0.0722 0.0503 0.0602 0.0636 0.0592
(0.0135) (0.0087) (0.0127) (0.0167) (0.0159)

βi 0.9202 0.9419 0.9245 0.9214 0.9357
(0.0098) (0.0057) (0.0065) (0.0050) (0.0024)

Log-likelihood 55328.0

Notes: This table shows the maximum-likelihood parameter estimates of the independent

correlation structure model based on the entire sample of returns data. The numbers in

parentheses are standard errors.
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Table 3: Parameter estimates of the ECO model

Developed markets Emerging markets

US UK Japan Mexico Malaysia

Shape parameters

ξi 0.8903 0.9677 1.0096 0.9361 1.0057
(0.0204) (0.0256) (0.0245) (0.0228) (0.0209)

Degrees-of-freedom parameter

v 6.4947
(0.3657)

GARCH parameters

κi 0.0053 0.0075 0.0122 0.0088 0.0035
(0.0059) (0.0074) (0.0076) (0.0004) (0.0011)

αi 0.0593 0.0526 0.0569 0.0540 0.0453
(0.0103) (0.0089) (0.0088) (0.0094) (0.0080)

βi 0.9352 0.9397 0.9308 0.9371 0.9511
(0.0089) (0.0093) (0.0097) (0.0094) (0.0067)

Log-likelihood 57756.8

Notes: This table shows the maximum-likelihood parameter estimates of the

equicorrelation model based on the entire sample of returns data. The numbers in

parentheses are standard errors.
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Table 4: Parameter estimates of the CCC model

Developed markets Emerging markets

US UK Japan Mexico Malaysia

Shape parameters

ξi 0.8952 0.9723 0.9981 0.9510 1.0134
(0.0198) (0.0216) (0.0224) (0.0211) (0.0231)

Degrees-of-freedom parameter

v 6.9063
(0.4610)

GARCH parameters

κi 0.0070 0.0086 0.0125 0.0103 0.0031
(0.0017) (0.0053) (0.0057) (0.0035) (0.0029)

αi 0.0564 0.0516 0.0612 0.0552 0.0509
(0.0066) (0.0050) (0.0052) (0.0055) (0.0052)

βi 0.9364 0.9397 0.9261 0.9344 0.9459
(0.0094) (0.0096) (0.0102 ) (0.0099) (0.0073)

Log-likelihood 58012.6

Notes: This table shows the maximum-likelihood parameter estimates of the constant

conditional correlation model based on the entire sample of returns data. The numbers in

parentheses are standard errors.
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Table 5: Parameter estimates of the DCC model

Developed markets Emerging markets

US UK Japan Mexico Malaysia

Shape parameters

ξi 0.9020 0.9812 0.9891 0.9461 1.0284
(0.0216) (0.0248) (0.0245) (0.0235) (0.0249)

Degrees-of-freedom parameter

v 7.0141
(0.4791)

GARCH parameters

κi 0.0056 0.0057 0.0117 0.0076 0.0030
(0.0046) (0.0061) (0.0016) (0.0047) (0.0018)

αi 0.0453 0.0392 0.0512 0.0466 0.0465
(0.0134) (0.0115) (0.0112) (0.0126) (0.0101)

βi 0.9489 0.9549 0.9369 0.9456 0.9504
(0.0197) (0.0194) (0.0181) (0.0199) (0.0140)

DCC persistence parameters

a 0.0096
(0.0055)

b 0.9895
(0.0054)

Log-likelihood 58601.3

Notes: This table shows the maximum-likelihood parameter estimates of the dynamic

conditional correlation model based on the entire sample of returns data. The numbers

in parentheses are standard errors.
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Table 6: Parameter estimates of the TVC model

Developed markets Emerging markets

US UK Japan Mexico Malaysia

Shape parameters

ξi 0.9966 0.9988 0.9973 0.9986 0.9988
(0.0230) (0.0264) (0.0225) (0.0237) (0.0208)

Degrees-of-freedom parameter

v 8.4999
(0.6648)

GARCH parameters

κi 0.0051 0.0058 0.0099 0.0072 0.0025
(0.0006) (0.0005) (0.0088) (0.0013) (0.0011)

αi 0.0578 0.0535 0.0588 0.0554 0.0545
(0.0054) (0.0010) (0.0033) (0.0045) (0.0027)

βi 0.9370 0.9405 0.9312 0.9372 0.9429
(0.0053) (0.0054) (0.0063) (0.0057) (0.0044)

TVC persistence parameters

a 0.0128
(0.0221)

b 0.9867
(0.0327)

Log-likelihood 58539.9

Notes: This table shows the maximum-likelihood parameter estimates of the time-varying

correlation model based on the entire sample of returns data. The numbers in parentheses

are standard errors.
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Table 7: Parameter estimates of the DECO model

Developed markets Emerging markets

US UK Japan Mexico Malaysia

Shape parameters

ξi 0.8912 0.9682 1.0096 0.9364 1.0067
(0.0207) (0.0266) (0.0244) (0.0241) (0.0216)

Degrees-of-freedom parameter

v 6.4947
(0.3185)

GARCH parameters

κi 0.0056 0.0073 0.0129 0.0084 0.0041
(0.0016) (0.0022) (0.0135) (0.0022) (0.0011)

αi 0.0601 0.0516 0.0549 0.0521 0.0464
(0.0094) (0.0079) (0.0075) (0.0086) (0.0073)

βi 0.9343 0.9410 0.9320 0.9394 0.9493
(0.0136) (0.0141) (0.0142) (0.0142) (0.0111)

DECO persistence parameters

a 0.0246
(0.0221)

b 0.9750
(0.0110)

Log-likelihood 58291.9

Notes: This table shows the maximum-likelihood parameter estimates of the dynamic

equicorrelation model based on the entire sample of returns data. The numbers in

parentheses are standard errors.
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Table 8: Portfolio of risky assets only: July 22, 2005 to July 6, 2011

No transactions costs Transactions costs = 1 bp

Strategy Mean Std Dev p-val SR p-val SR-m p-val Turn Mean Std Dev p-val SR p-val SR-m p-val

1/N 11.08 24.56 1.00 0.45 1.00 0.45 1.00 3.25 2.87 24.72 1.00 0.11 1.00 0.11 1.00

Panel A: MV portfolios

Short sales allowed

Plug-in 6.75 23.28 0.00 0.29 0.07 0.29 0.07 6.49 -9.62 34.15 0.44 -0.28 0.30 -1.30 0.55

EWMA 8.12 23.21 0.01 0.35 0.01 0.35 0.01 3.92 -1.76 24.52 0.82 -0.07 0.25 -0.17 0.37

IND 8.36 23.33 0.00 0.36 0.02 0.36 0.02 2.39 2.31 23.49 0.00 0.09 0.83 0.09 0.83

ECO 5.37 21.87 0.01 0.24 0.02 0.24 0.02 2.59 -1.16 22.10 0.00 -0.05 0.13 -0.10 0.28

mEWMA 2.31 19.70 0.14 0.11 0.29 0.11 0.29 9.16 -20.80 25.43 0.89 -0.81 0.01 -2.10 0.11

CCC 6.18 21.76 0.03 0.28 0.06 0.28 0.06 2.37 0.20 21.84 0.02 0.01 0.35 0.01 0.35

DCC 2.31 20.11 0.05 0.11 0.04 0.11 0.04 4.89 -10.03 20.37 0.06 -0.49 0.00 -0.81 0.02

TVC 0.74 20.25 0.03 0.03 0.01 0.03 0.01 3.97 -9.27 20.41 0.03 -0.45 0.00 -0.75 0.01

DECO 0.55 20.20 0.08 0.02 0.01 0.02 0.01 6.03 -14.66 21.70 0.03 -0.67 0.00 -1.26 0.02

Short sales prohibited

Plug-in 7.67 23.43 0.00 0.32 0.12 0.32 0.12 3.61 -1.43 24.45 0.67 -0.05 0.27 -0.13 0.36

EWMA 8.12 23.21 0.01 0.35 0.01 0.35 0.01 3.92 -1.76 24.52 0.82 -0.07 0.25 -0.17 0.37

IND 8.36 23.33 0.00 0.36 0.02 0.36 0.02 2.39 2.31 23.49 0.00 0.09 0.83 0.09 0.83

ECO 6.81 22.12 0.01 0.30 0.06 0.30 0.06 2.93 -0.59 22.45 0.00 -0.02 0.22 -0.05 0.35

mEWMA 5.27 21.58 0.01 0.24 0.07 0.24 0.07 1.80 0.73 21.64 0.01 0.03 0.52 0.03 0.52

CCC 7.38 22.02 0.02 0.33 0.14 0.33 0.14 1.97 2.41 22.11 0.01 0.11 0.95 0.11 0.95

DCC 6.17 21.62 0.02 0.28 0.09 0.28 0.09 2.32 0.31 22.00 0.00 0.01 0.43 0.01 0.43

TVC 5.51 21.61 0.02 0.25 0.05 0.25 0.05 1.96 0.55 21.77 0.01 0.02 0.45 0.02 0.45

DECO 5.59 21.59 0.03 0.26 0.05 0.26 0.05 2.97 -1.89 22.72 0.07 -0.08 0.26 -0.17 0.37

Panel B: GMV portfolios

Short sales allowed

Plug-in 6.07 22.77 0.00 0.26 0.08 0.26 0.08 6.81 -10.93 32.27 0.44 -0.33 0.27 -1.40 0.54

EWMA 6.97 22.46 0.02 0.31 0.00 0.31 0.00 2.71 0.13 22.57 0.01 0.01 0.13 0.01 0.13

IND 7.56 22.68 0.03 0.33 0.00 0.33 0.00 2.72 0.70 22.82 0.01 0.03 0.27 0.03 0.27

ECO 3.50 20.53 0.03 0.17 0.01 0.17 0.01 4.03 -6.66 23.26 0.59 -0.28 0.13 -0.61 0.34

mEWMA -1.83 18.79 0.11 -0.09 0.12 -0.13 0.19 12.08 -32.30 25.87 0.75 -1.24 0.00 -3.31 0.04

CCC 3.93 20.37 0.03 0.19 0.02 0.19 0.02 3.22 -4.19 20.53 0.01 -0.20 0.01 -0.34 0.08

DCC 0.11 18.80 0.03 0.01 0.03 0.01 0.03 5.89 -14.74 19.26 0.03 -0.76 0.00 -1.12 0.01

TVC -1.79 18.83 0.03 -0.09 0.02 -0.13 0.06 11.54 -30.91 34.07 0.48 -0.90 0.00 -4.18 0.18

DECO -2.18 19.01 0.06 -0.11 0.05 -0.16 0.13 15.40 -41.02 58.77 0.44 -0.69 0.03 -9.56 0.45

Short sales prohibited

Plug-in 7.07 23.22 0.00 0.30 0.09 0.30 0.09 4.33 -3.86 25.09 0.72 -0.15 0.18 -0.38 0.33

EWMA 6.97 22.46 0.02 0.31 0.00 0.31 0.00 2.71 0.13 22.57 0.01 0.01 0.13 0.01 0.13

IND 7.56 22.68 0.03 0.33 0.00 0.33 0.00 2.72 0.70 22.82 0.01 0.03 0.27 0.03 0.27

ECO 4.49 20.75 0.03 0.21 0.02 0.21 0.02 3.96 -5.51 23.51 0.65 -0.23 0.19 -0.51 0.41

mEWMA 2.84 19.96 0.08 0.14 0.08 0.14 0.08 1.69 -1.42 20.00 0.07 -0.07 0.30 -0.11 0.39

CCC 5.13 20.73 0.03 0.24 0.05 0.24 0.05 5.51 -8.78 28.66 0.63 -0.30 0.33 -0.99 0.57

DCC 4.06 20.18 0.06 0.20 0.07 0.20 0.07 5.11 -8.84 28.90 0.59 -0.30 0.30 -1.01 0.55

TVC 2.62 20.04 0.07 0.13 0.04 0.13 0.04 2.58 -3.87 20.26 0.05 -0.19 0.07 -0.31 0.14

DECO 3.27 20.01 0.08 0.16 0.08 0.16 0.08 1.86 -1.42 20.20 0.06 -0.07 0.31 -0.11 0.42

Notes: This table reports the daily out-of-sample portfolio performances of the benchmark 1/N strategy, the plug-in strategy, and 8 model-based strategies. Note

that in this case with risky assets only, the short selling constraints never bind for the EWMA and IND strategies. The portfolio return statistics are the annualized

percentage mean, the annualized standard deviation (Std Dev), the annualized Sharpe ratio (SR), the annualized modified Sharpe ratio (SR-m), and the average

turnover (Turn). For each portfolio strategy, three p-values (p-val) are reported. These correspond to tests of the equality of the strategy’s standard deviation,

Sharpe ratio, and modified Sharpe ratio with those of the benchmark 1/N strategy. Values less than 0.01 are reported as zero.
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Table 9: Portfolio of risky assets and a risk-free asset: July 22, 2005 to July 6, 2011

No transactions costs Transactions costs = 1 bp

Strategy Mean Std Dev p-val SR p-val SR-m p-val Turn Mean Std Dev p-val SR p-val SR-m p-val

1/N 9.23 20.47 1.00 0.45 1.00 0.45 1.00 1.67 5.01 20.49 1.00 0.24 1.00 0.24 1.00

Short sales allowed

Plug-in 1.24 6.08 0.00 0.20 0.39 0.20 0.39 0.79 -0.74 6.08 0.01 -0.12 0.23 -0.02 0.43

EWMA 1.49 8.75 0.01 0.17 0.14 0.17 0.14 0.92 -0.84 8.75 0.01 -0.09 0.06 -0.03 0.27

IND 1.72 8.91 0.01 0.19 0.17 0.19 0.17 0.93 -0.63 8.91 0.01 -0.07 0.08 -0.02 0.26

ECO 1.35 5.61 0.00 0.24 0.49 0.24 0.49 0.82 -0.71 5.61 0.01 -0.12 0.27 -0.02 0.42

mEWMA 1.34 5.29 0.00 0.25 0.67 0.25 0.67 0.91 -0.96 5.29 0.00 -0.18 0.36 -0.02 0.51

CCC 1.45 5.56 0.01 0.26 0.56 0.26 0.56 0.80 -0.56 5.56 0.01 -0.10 0.34 -0.01 0.47

DCC 0.89 5.17 0.01 0.17 0.52 0.17 0.52 0.85 -1.26 5.17 0.01 -0.24 0.25 -0.02 0.43

TVC 0.60 5.21 0.00 0.11 0.44 0.11 0.44 0.86 -1.57 5.21 0.01 -0.30 0.18 -0.03 0.45

DECO 1.53 5.24 0.00 0.29 0.71 0.29 0.71 0.82 -0.55 5.24 0.00 -0.10 0.38 -0.01 0.46

Short sales prohibited

Plug-in 2.56 9.10 0.01 0.28 0.30 0.28 0.30 0.75 0.67 9.10 0.01 0.07 0.29 0.07 0.29

EWMA 2.66 10.38 0.01 0.25 0.13 0.25 0.13 0.96 0.24 10.38 0.01 0.02 0.06 0.02 0.06

IND 2.77 10.45 0.01 0.26 0.14 0.26 0.14 0.96 0.34 10.45 0.01 0.03 0.11 0.03 0.11

ECO 2.51 8.96 0.01 0.28 0.27 0.28 0.27 0.82 0.43 8.96 0.01 0.05 0.21 0.05 0.21

mEWMA 2.55 8.49 0.01 0.30 0.36 0.30 0.36 0.77 0.60 8.49 0.01 0.07 0.32 0.07 0.32

CCC 2.43 8.74 0.01 0.27 0.29 0.27 0.29 0.79 0.44 8.74 0.01 0.05 0.24 0.05 0.24

DCC 2.60 8.51 0.01 0.30 0.40 0.30 0.40 0.76 0.68 8.51 0.01 0.08 0.34 0.08 0.34

TVC 2.51 8.51 0.01 0.29 0.39 0.29 0.39 0.76 0.59 8.51 0.01 0.07 0.30 0.07 0.30

DECO 2.50 8.56 0.01 0.29 0.38 0.29 0.38 0.77 0.55 8.56 0.01 0.06 0.31 0.06 0.31

Notes: See footnote of Table 8.
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Table 10: Portfolio of risky assets only: July 22, 2005 to July 15, 2008

No transactions costs Transactions costs = 1 bp

Strategy Mean Std Dev p-val SR p-val SR-m p-val Turn Mean Std Dev p-val SR p-val SR-m p-val

1/N 11.69 17.54 1.00 0.66 1.00 0.66 1.00 3.62 2.56 17.81 1.00 0.14 1.00 0.14 1.00

Panel A: MV portfolios

Short sales allowed

Plug-in 4.75 14.75 0.00 0.32 0.06 0.32 0.06 3.79 -4.81 16.41 0.50 -0.29 0.23 -0.31 0.35

EWMA 5.88 15.42 0.00 0.38 0.01 0.38 0.01 2.22 0.29 15.46 0.00 0.02 0.38 0.02 0.38

IND 6.57 15.57 0.00 0.42 0.01 0.42 0.01 2.91 -0.77 16.01 0.00 -0.05 0.36 -0.05 0.41

ECO 1.15 14.01 0.00 0.08 0.01 0.08 0.01 2.30 -4.66 14.07 0.00 -0.33 0.05 -0.26 0.14

mEWMA -5.52 13.13 0.00 -0.42 0.02 -0.28 0.04 13.34 -39.19 26.12 0.48 -1.50 0.00 -4.06 0.13

CCC 0.92 14.03 0.00 0.07 0.00 0.07 0.00 3.05 -6.76 14.21 0.00 -0.47 0.02 -0.38 0.07

DCC -3.71 12.97 0.00 -0.28 0.01 -0.19 0.01 4.83 -15.90 13.21 0.00 -1.20 0.00 -0.83 0.02

TVC -4.71 13.03 0.00 -0.36 0.00 -0.24 0.02 4.36 -15.72 13.19 0.00 -1.19 0.00 -0.82 0.03

DECO -4.41 13.30 0.00 -0.33 0.01 -0.23 0.01 8.76 -26.52 17.17 0.81 -1.54 0.00 -1.80 0.02

Short sales prohibited

Plug-in 6.11 15.06 0.00 0.40 0.09 0.40 0.09 4.59 -5.47 16.81 0.53 -0.32 0.17 -0.36 0.25

EWMA 5.88 15.42 0.00 0.38 0.01 0.38 0.01 2.22 0.29 15.46 0.00 0.02 0.38 0.02 0.38

IND 6.57 15.57 0.00 0.42 0.01 0.42 0.01 2.91 -0.77 16.01 0.00 -0.05 0.36 -0.05 0.41

ECO 3.56 14.42 0.00 0.24 0.01 0.24 0.01 2.93 -3.84 14.81 0.00 -0.26 0.09 -0.23 0.18

mEWMA 2.02 14.11 0.00 0.14 0.02 0.14 0.02 2.02 -3.08 14.25 0.00 -0.21 0.16 -0.17 0.29

CCC 2.86 14.42 0.00 0.19 0.01 0.19 0.01 2.42 -3.25 14.65 0.00 -0.22 0.12 -0.19 0.20

DCC 2.41 14.07 0.00 0.17 0.03 0.17 0.03 2.68 -4.34 15.01 0.00 -0.29 0.15 -0.26 0.25

TVC 1.94 14.08 0.00 0.13 0.02 0.13 0.02 1.76 -2.50 14.21 0.00 -0.17 0.22 -0.14 0.33

DECO 2.93 14.03 0.00 0.21 0.05 0.21 0.05 1.76 -1.50 14.08 0.00 -0.11 0.30 -0.08 0.38

Panel B: GMV portfolios

Short sales allowed

Plug-in 4.64 14.49 0.00 0.32 0.07 0.32 0.07 10.04 -20.67 35.24 0.45 -0.58 0.29 -2.89 0.59

EWMA 4.78 15.13 0.00 0.32 0.00 0.32 0.00 3.09 -3.03 15.32 0.00 -0.19 0.05 -0.18 0.09

IND 5.87 15.41 0.00 0.38 0.00 0.38 0.00 2.91 -1.46 15.54 0.00 -0.09 0.12 -0.09 0.20

ECO -0.29 13.75 0.00 -0.02 0.00 -0.01 0.00 2.33 -6.18 13.82 0.00 -0.44 0.02 -0.34 0.10

mEWMA -8.10 12.77 0.00 -0.63 0.01 -0.41 0.02 13.18 -41.35 26.30 0.36 -1.57 0.00 -4.31 0.07

CCC -0.74 13.52 0.00 -0.05 0.00 -0.04 0.01 3.59 -9.81 13.79 0.00 -0.71 0.00 -0.53 0.05

DCC -5.07 12.58 0.00 -0.40 0.00 -0.25 0.02 4.83 -17.25 13.03 0.00 -1.32 0.00 -0.89 0.03

TVC -6.68 12.61 0.00 -0.53 0.00 -0.33 0.01 7.08 -24.55 17.23 0.79 -1.42 0.00 -1.68 0.06

DECO -6.78 13.05 0.00 -0.52 0.00 -0.35 0.01 7.76 -26.36 15.51 0.13 -1.70 0.00 -1.62 0.02

Short sales prohibited

Plug-in 5.82 14.93 0.00 0.39 0.07 0.39 0.07 5.08 -7.01 19.15 0.62 -0.36 0.34 -0.53 0.52

EWMA 4.78 15.13 0.00 0.32 0.00 0.32 0.00 3.09 -3.03 15.32 0.00 -0.19 0.05 -0.18 0.09

IND 5.87 15.41 0.00 0.38 0.00 0.38 0.00 2.91 -1.46 15.54 0.00 -0.09 0.12 -0.09 0.20

ECO 1.28 14.10 0.00 0.09 0.00 0.09 0.00 2.50 -5.03 14.39 0.00 -0.35 0.05 -0.28 0.16

mEWMA -1.34 14.06 0.00 -0.09 0.01 -0.07 0.01 1.53 -5.19 14.09 0.00 -0.36 0.06 -0.29 0.15

CCC 1.39 14.11 0.00 0.09 0.01 0.09 0.01 8.75 -20.68 31.28 0.43 -0.66 0.16 -2.56 0.59

DCC 0.59 13.94 0.00 0.04 0.01 0.04 0.01 8.62 -21.16 32.40 0.42 -0.65 0.15 -2.72 0.58

TVC -0.76 13.94 0.00 -0.05 0.01 -0.04 0.01 2.67 -7.50 14.29 0.00 -0.52 0.02 -0.42 0.08

DECO -0.30 14.02 0.00 -0.02 0.00 -0.01 0.00 2.33 -6.18 14.50 0.00 -0.42 0.05 -0.35 0.12

Notes: See footnote of Table 8.
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Table 11: Portfolio of risky assets and a risk-free asset: July 22, 2005 to July 15, 2008

No transactions costs Transactions costs = 1 bp

Strategy Mean Std Dev p-val SR p-val SR-m p-val Turn Mean Std Dev p-val SR p-val SR-m p-val

1/N 9.74 14.61 1.00 0.66 1.00 0.66 1.00 1.66 5.54 14.63 1.00 0.38 1.00 0.38 1.00

Short sales allowed

Plug-in 1.92 6.59 0.00 0.29 0.30 0.29 0.30 0.94 -0.46 6.59 0.00 -0.07 0.22 -0.01 0.38

EWMA 2.34 8.88 0.00 0.26 0.04 0.26 0.04 1.05 -0.30 8.89 0.00 -0.03 0.04 -0.01 0.15

IND 2.66 8.96 0.00 0.29 0.04 0.29 0.04 1.04 0.03 8.97 0.00 0.00 0.04 0.00 0.04

ECO 1.45 6.01 0.00 0.24 0.30 0.24 0.30 0.99 -1.04 6.01 0.00 -0.17 0.19 -0.02 0.37

mEWMA 1.73 5.82 0.00 0.29 0.57 0.29 0.57 1.06 -0.93 5.82 0.00 -0.16 0.40 -0.02 0.46

CCC 1.50 6.02 0.00 0.25 0.37 0.25 0.37 0.98 -0.98 6.02 0.00 -0.16 0.23 -0.02 0.39

DCC 0.94 5.59 0.00 0.16 0.40 0.16 0.40 1.00 -1.57 5.59 0.00 -0.28 0.26 -0.03 0.40

TVC 0.82 5.66 0.00 0.14 0.37 0.14 0.37 1.02 -1.74 5.66 0.00 -0.30 0.24 -0.04 0.41

DECO 1.62 5.59 0.00 0.29 0.50 0.29 0.50 0.99 -0.87 5.59 0.00 -0.15 0.36 -0.02 0.45

Short sales prohibited

Plug-in 4.51 9.02 0.00 0.50 0.31 0.50 0.31 0.93 2.16 9.02 0.00 0.24 0.43 0.24 0.43

EWMA 3.34 9.18 0.00 0.36 0.05 0.36 0.05 1.06 0.65 9.18 0.00 0.07 0.06 0.07 0.06

IND 3.48 9.23 0.00 0.37 0.07 0.37 0.07 1.05 0.81 9.23 0.00 0.08 0.07 0.08 0.07

ECO 3.60 8.65 0.00 0.42 0.21 0.42 0.21 1.02 1.03 8.65 0.00 0.12 0.20 0.12 0.20

mEWMA 3.79 8.19 0.00 0.46 0.43 0.46 0.43 1.00 1.26 8.19 0.00 0.15 0.41 0.15 0.41

CCC 3.63 8.54 0.00 0.42 0.25 0.42 0.25 1.01 1.09 8.54 0.00 0.13 0.21 0.13 0.21

DCC 3.90 8.23 0.00 0.47 0.43 0.47 0.43 0.98 1.41 8.23 0.00 0.17 0.38 0.17 0.38

TVC 3.72 8.24 0.00 0.45 0.38 0.45 0.38 0.99 1.23 8.23 0.00 0.15 0.34 0.15 0.34

DECO 3.60 8.31 0.00 0.43 0.33 0.43 0.33 1.00 1.08 8.31 0.00 0.13 0.32 0.13 0.32

Notes: See footnote of Table 8.
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Table 12: Portfolio of risky assets only: July 16, 2008 to July 6, 2011

No transactions costs Transactions costs = 1 bp

Strategy Mean Std Dev p-val SR p-val SR-m p-val Turn Mean Std Dev p-val SR p-val SR-m p-val

1/N 11.02 30.02 1.00 0.36 1.00 0.36 1.00 2.89 3.73 30.12 1.00 0.12 1.00 0.12 1.00

Panel A: MV portfolios

Short sales allowed

Plug-in 9.43 29.46 0.16 0.32 0.70 0.32 0.70 9.20 -13.79 45.47 0.41 -0.30 0.49 -2.48 0.59

EWMA 10.93 29.01 0.19 0.37 0.77 0.37 0.77 5.63 -3.27 31.07 0.60 -0.10 0.34 -0.40 0.46

IND 10.72 29.12 0.15 0.36 0.97 0.36 0.97 1.88 5.97 29.13 0.14 0.21 0.16 0.21 0.16

ECO 10.18 27.60 0.14 0.37 0.97 0.37 0.97 2.88 2.91 27.93 0.13 0.10 0.87 0.10 0.87

mEWMA 10.71 24.59 0.19 0.43 0.89 0.43 0.89 5.00 -1.90 24.72 0.17 -0.07 0.68 -0.18 0.67

CCC 12.06 27.41 0.16 0.44 0.43 0.44 0.43 1.70 7.77 27.43 0.17 0.28 0.15 0.28 0.15

DCC 9.01 25.33 0.16 0.35 0.94 0.35 0.94 4.96 -3.51 25.62 0.15 -0.13 0.27 -0.36 0.38

TVC 6.81 25.52 0.14 0.26 0.63 0.26 0.63 3.57 -2.21 25.69 0.16 -0.08 0.33 -0.22 0.43

DECO 6.14 25.29 0.15 0.24 0.61 0.24 0.61 3.32 -2.23 25.44 0.17 -0.08 0.41 -0.22 0.47

Short sales prohibited

Plug-in 9.91 29.54 0.14 0.33 0.74 0.33 0.74 2.63 3.26 30.23 0.85 0.10 0.92 0.10 0.92

EWMA 10.93 29.01 0.19 0.37 0.77 0.37 0.77 5.63 -3.27 31.07 0.60 -0.10 0.34 -0.40 0.46

IND 10.72 29.12 0.15 0.36 0.97 0.36 0.97 1.88 5.97 29.13 0.14 0.21 0.16 0.21 0.16

ECO 10.67 27.78 0.13 0.38 0.84 0.38 0.84 2.94 3.25 28.11 0.13 0.11 0.95 0.11 0.95

mEWMA 9.09 27.08 0.14 0.33 0.80 0.33 0.80 1.58 5.11 27.12 0.12 0.18 0.69 0.18 0.69

CCC 12.53 27.62 0.15 0.45 0.33 0.45 0.33 1.52 8.69 27.64 0.14 0.31 0.07 0.31 0.07

DCC 10.61 27.17 0.12 0.39 0.83 0.39 0.83 1.97 5.63 27.27 0.14 0.20 0.55 0.20 0.55

TVC 9.71 27.15 0.16 0.35 0.93 0.35 0.93 2.17 4.23 27.33 0.16 0.15 0.81 0.15 0.81

DECO 8.88 27.14 0.16 0.32 0.74 0.32 0.74 4.18 -1.68 28.90 0.59 -0.06 0.46 -0.19 0.56

Panel B: GMV portfolios

Short sales allowed

Plug-in 8.16 28.77 0.04 0.28 0.47 0.28 0.47 3.59 -0.56 29.04 0.03 -0.02 0.36 -0.06 0.45

EWMA 9.73 27.96 0.14 0.34 0.70 0.34 0.70 2.33 3.84 28.02 0.12 0.13 0.86 0.13 0.86

IND 9.83 28.16 0.13 0.35 0.69 0.35 0.69 2.53 3.43 28.31 0.11 0.12 0.98 0.12 0.98

ECO 7.89 25.59 0.15 0.31 0.67 0.31 0.67 5.73 -6.56 29.87 0.97 -0.22 0.46 -0.77 0.57

mEWMA 5.01 23.31 0.19 0.21 0.76 0.21 0.76 11.00 -22.75 25.46 0.15 -0.89 0.09 -2.29 0.20

CCC 9.23 25.45 0.10 0.36 0.98 0.36 0.98 2.85 2.02 25.57 0.13 0.08 0.80 0.08 0.80

DCC 5.98 23.42 0.12 0.25 0.72 0.25 0.72 6.96 -11.59 23.93 0.10 -0.48 0.07 -1.10 0.17

TVC 3.72 23.47 0.12 0.16 0.49 0.16 0.49 16.02 -36.71 45.04 0.49 -0.81 0.11 -6.56 0.50

DECO 3.02 23.52 0.13 0.12 0.60 0.12 0.60 23.06 -55.17 81.72 0.43 -0.67 0.16 -17.89 0.63

Short sales prohibited

Plug-in 8.98 29.27 0.02 0.30 0.51 0.30 0.51 3.59 -0.08 29.89 0.72 -0.00 0.44 -0.01 0.61

EWMA 9.73 27.96 0.14 0.34 0.70 0.34 0.70 2.33 3.84 28.02 0.12 0.13 0.86 0.13 0.86

IND 9.83 28.16 0.13 0.35 0.69 0.35 0.69 2.53 3.43 28.31 0.11 0.12 0.98 0.12 0.98

ECO 8.30 25.75 0.12 0.32 0.73 0.32 0.73 5.43 -5.40 29.99 0.98 -0.18 0.49 -0.64 0.57

mEWMA 7.62 24.49 0.15 0.31 0.81 0.31 0.81 1.86 2.93 24.54 0.13 0.12 0.98 0.12 0.98

CCC 9.47 25.71 0.12 0.37 0.99 0.37 0.99 2.29 3.69 25.80 0.10 0.14 0.90 0.14 0.90

DCC 8.17 24.91 0.11 0.32 0.83 0.32 0.83 1.61 4.10 24.94 0.12 0.16 0.84 0.16 0.84

TVC 6.64 24.69 0.15 0.27 0.65 0.27 0.65 2.48 0.37 24.85 0.15 0.01 0.62 0.01 0.62

DECO 7.46 24.60 0.16 0.30 0.77 0.30 0.77 1.39 3.94 24.62 0.14 0.16 0.87 0.16 0.87

Notes: See footnote of Table 8.
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Table 13: Portfolio of risky assets and a risk-free asset: July 16, 2008 to July 6, 2011

No transactions costs Transactions costs = 1 bp

Strategy Mean Std Dev p-val SR p-val SR-m p-val Turn Mean Std Dev p-val SR p-val SR-m p-val

1/N 9.18 25.01 1.00 0.36 1.00 0.36 1.00 1.68 4.95 25.04 1.00 0.19 1.00 0.19 1.00

Short sales allowed

Plug-in 0.71 5.54 0.02 0.13 0.64 0.13 0.64 0.63 -0.88 5.53 0.02 -0.16 0.46 -0.02 0.65

EWMA 0.87 8.63 0.01 0.10 0.38 0.10 0.38 0.80 -1.16 8.63 0.03 -0.13 0.27 -0.04 0.48

IND 1.03 8.86 0.02 0.11 0.41 0.11 0.41 0.82 -1.05 8.86 0.02 -0.11 0.28 -0.03 0.53

ECO 1.34 5.18 0.01 0.26 0.83 0.26 0.83 0.64 -0.28 5.18 0.02 -0.05 0.60 -0.01 0.69

mEWMA 0.96 4.70 0.02 0.20 0.79 0.20 0.79 0.77 -0.99 4.70 0.01 -0.21 0.51 -0.02 0.70

CCC 1.49 5.05 0.02 0.29 0.90 0.29 0.90 0.61 -0.06 5.05 0.02 -0.01 0.69 -0.00 0.69

DCC 0.87 4.70 0.01 0.18 0.75 0.18 0.75 0.71 -0.92 4.70 0.02 -0.19 0.51 -0.02 0.68

TVC 0.41 4.72 0.02 0.08 0.63 0.08 0.63 0.71 -1.37 4.72 0.03 -0.29 0.38 -0.02 0.67

DECO 1.51 4.87 0.02 0.31 0.92 0.31 0.92 0.66 -0.15 4.87 0.01 -0.03 0.71 -0.00 0.72

Short sales prohibited

Plug-in 0.83 9.19 0.02 0.09 0.25 0.09 0.25 0.57 -0.60 9.19 0.01 -0.06 0.25 -0.02 0.48

EWMA 2.21 11.46 0.02 0.19 0.34 0.19 0.34 0.85 0.06 11.46 0.02 0.01 0.33 0.01 0.33

IND 2.31 11.56 0.01 0.20 0.38 0.20 0.38 0.87 0.12 11.56 0.01 0.01 0.34 0.01 0.34

ECO 1.60 9.28 0.02 0.17 0.42 0.17 0.42 0.63 0.01 9.28 0.02 0.00 0.40 0.00 0.40

mEWMA 1.44 8.80 0.02 0.16 0.44 0.16 0.44 0.54 0.08 8.80 0.01 0.01 0.46 0.01 0.46

CCC 1.36 8.95 0.02 0.15 0.38 0.15 0.38 0.57 -0.08 8.95 0.02 -0.01 0.42 -0.00 0.54

DCC 1.44 8.79 0.01 0.16 0.42 0.16 0.42 0.53 0.09 8.79 0.02 0.01 0.46 0.01 0.46

TVC 1.43 8.80 0.02 0.16 0.43 0.16 0.43 0.54 0.07 8.80 0.01 0.01 0.45 0.01 0.45

DECO 1.54 8.82 0.02 0.17 0.44 0.17 0.44 0.55 0.15 8.83 0.02 0.02 0.44 0.02 0.44

Notes: See footnote of Table 8.

46



0
2

4
6

8

 

 

2000 2005 2010

US
UK
Japan
Mexico
Malaysia

Figure 1: Time-series plot of the (relative) daily ETF closing prices from April 1, 1996 to July 6,

2011 (3843 observations). The series are divided by their first value, so they each begin at a value

of 1 dollar.
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Figure 2: Time-series plots of the daily log-returns (in percentages) on 3 developed market ETFs (US, UK, Japan) and 2 emerging market

ETFs (Mexico, Malaysia) from April 2, 1996 to July 6, 2011 (3842 observations).
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Figure 3: Time-series plots of the model-implied conditional correlations between the standardized returns on the ETFs for the US and the UK

(upper left), the US and Japan (upper right), the US and Mexico (lower left), and the US and Malaysia (lower right). The horizontal lines correspond

to the CCC model, the solid lines correspond to the DCC model, the dashed lines correspond to the TVC model, and the dotted line (which is the

same in each plot) corresponds to the DECO model.
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Figure 4: Time-series plots of the model-implied conditional correlations between the standardized returns on the ETFs for the UK and Japan

(upper left), the UK and Mexico (upper right), and the UK and Malaysia (lower left). The horizontal lines correspond to the CCC model, the solid

lines correspond to the DCC model, the dashed lines correspond to the TVC model, and the dotted line (which is the same in each plot) corresponds

to the DECO model.
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Figure 5: Time-series plots of the model-implied conditional correlations between the standardized returns on the ETFs for Japan and Mexico

(upper left), Japan and Malaysia (upper right), and Mexico and Malaysia (lower left). The horizontal lines correspond to the CCC model, the solid

lines correspond to the DCC model, the dashed lines correspond to the TVC model, and the dotted line (which is the same in each plot) corresponds

to the DECO model.
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Figure 6: Time-series plot of the daily portfolio target returns (in basis points) from July 21,

2005 to July 5, 2011. The solid line is the target return when the portfolio comprises risky assets

only and the dashed line is the target return when the asset mix includes a risk-free security.


