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We characterize full implementation of social choice sets in mixed strategy Bayesian 
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implementation, we identify a strengthening of Bayesian monotonicity, which we refer 
to as mixed Bayesian monotonicity. It is shown that, in economic environments with at 
least three agents, mixed Bayesian implementation is equivalent to mixed Bayesian 
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function, the case of two-agents is also covered by these conditions and mixed 
Bayesian monotonicity reduces to Bayesian monotonicity. Following parallel steps, 
mixed virtual implementation is shown to be equivalent to mixed virtual monotonicity, 
incentive compatibility and closure. The key condition, mixed virtual monotonicity, is 
argued to be very weak. In particular, it is weaker than Abreu-Matsushima’s 
measurability, thereby implying that: (1) virtual implementation in mixed Bayesian 
equilibrium is more permissive than virtual implementation in iteratively undominated 
strategies, and (2) non-regular mechanisms are essential for the implementation of 
rules in that gap. 
 
JEL Codes: C72, D78, D82. 
Keywords: Exact implementation, approximate implementation, incomplete information, 
incentive compatibility, monotonicity. 
 
 
 
Roberto Serrano 
Brown University and IMDEA-Social Sciences 
roberto_serrano@brown.edu 

Rajiv Vohra 
Brown University 
rajiv_vohra@brown.edu 

 



1 Introduction

The literature on implementation with incomplete information has often left
out the consideration of mixed-strategy equilibria. This is particularly prob-
lematic for a research program that attempts to address the problem of multi-
plicity of equilibria in economic institutions. Thus, the current work attempts
to close an important gap in the implementation literature. It provides char-
acterizations of the social choice rules that can be decentralized by means
of all the mixed-strategy equilibria of a mechanism. In doing so, the paper
takes a unified approach to exact and approximate implementation, and con-
siders general social choice sets in economic environments with incomplete
information – outside of economic environments, tight characterizations are
generally not available, even for pure-strategy equilibria.

Most of the papers on implementation that use equilibrium concepts have
confined their scope to the case of pure strategies.1 This includes the con-
tributions to virtual or approximate nash implementation (Abreu and Sen
(1991), Matsushima (1988)), the results for exact Bayesian implementation
(Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1987, 1989),
Mookherjee and Reichelstein (1990), Jackson (1991)) and those on virtual
Bayesian implementation (Serrano and Vohra (2001, 2005)). This restriction
is undesirable and it makes comparisons with other results more difficult. In
particular, we are thinking of the connections with implementation using un-
dominated or iteratively undominated strategies (Jackson (1992), Abreu and
Matsushima (1992a, b)), whose results have implications for mixed-strategy
equilibrium implementation, as well as for the mechanisms employed.

Our unified approach to exact and approximate implementation is facili-
tated by the use of random mechanisms. That is, even when we deal with ex-
act implementation, we consider allocation rules that map information states
into probability distributions over alternatives. This is especially natural if
one considers incomplete information environments, as we do, since agents
are already involved in problems of decision making under uncertainty, given
their asymmetric information. In addition, we shall relax the assumption of
finite type spaces, made by most of the papers mentioned above.2

In Theorem 1, we show that incentive compatibility, mixed Bayesian

1Two salient exceptions are Duggan (1997) and Maskin (1999). Duggan provides a
sufficiency theorem for virtual Bayesian implementation, while Maskin restricts attention
to complete information environments.

2Duggan (1997) is again the exception here.
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monotonicity and closure are necessary and sufficient for a social choice
set to be Bayesian implementable in mixed strategies when there are at
least three agents. With respect to Jackson’s (1991) result characterizing
Bayesian implementation in pure strategies for the same problems, the only
difference stems from the two monotonicity conditions. While his Bayesian
monotonicity considers only pure deceptions, mixed Bayesian monotonicity
is formulated for all mixed deceptions. Suppose F is a social choice set, and
consider a function f ∈ F . Let α be a mixed deception, i.e., a (possibly ran-
dom) play of the direct mechanism for f that is different from truth-telling.
Mixed Bayesian monotonicity says that if a mixed deception α undermines
our goals, i.e., f ◦ α /∈ F , then there must exist an agent type ti and an-
other function y that exhibit a preference reversal (while he prefers f over
y, he prefers y ◦ α over f ◦ α). Importantly, we show that mixed Bayesian
monotonicity reduces to Bayesian monotonicity if one considers social choice
functions instead of multivalued sets. The reason is that any strictly mixed
deception exhibiting such a preference reversal can be “decomposed” into
the pure deceptions in its support exhibiting a similar reversal.3 However,
when one considers multivalued sets, mixed Bayesian monotonicity is more
restrictive: it only reduces to Bayesian monotonicity when the set satisfies a
convex range property over the set of pure deceptions.

Theorem 2 studies social choice functions and also covers the two-agent
case. With functions, closure is a trivial requirement and mixed Bayesian
monotonicity reduces to Bayesian monotonicity. Therefore, incentive com-
patibility and Bayesian monotonicity provide the full characterization for this
case.

For approximate implementation with incomplete information, social choice
sets have not been treated so far. Serrano and Vohra (2005) obtained a char-
acterization of social choice functions and implementability in pure-strategy
equilibria. Our Theorems 3 and 4 are exact parallels of Theorems 1 and 2,
respectively. The only change in the conditions is the replacement of mixed
Bayesian monotonicity with mixed virtual monotonicity, which is the exten-
sion to mixed deceptions of Serrano and Vohra’s (2005) virtual monotonicity
condition. Thus, mixed virtual monotonicity requires the kind of preference
reversal described above, but involving an incentive compatible function x

3A different reason to see that approaches based on pure versus mixed equilibria should
make no difference is found in robust implementation, where results are sought to be robust
over multiple type spaces (see, e.g., Bergemann and Morris (2009) and Artemov, Kunimoto
and Serrano (2007)).

2



(not necessarily in F ) and another function y for each mixed deception α.
The same comments made for mixed Bayesian monotonicity of sets versus
functions apply to mixed virtual monotonicity, which can also be shown to
be an extremely permissive condition, as discussed in Subsection 5.2.

Abrue and Matsushima (1992b) characterize the functions that are virtu-
ally implementable in iteratively undominated strategies in terms of incentive
compatibility and a measurability condition. They also argue how the same
conditions characterize virtual implementation in mixed-strategy equilibria
if one relies on small monetary punishments out of equilibrium and uses reg-
ular mechanisms.4 An important example due to Duggan (1997) exhibits a
function in a finite environment that is not measurable in the AM sense, but
that can be exactly implemented in the standard sense, i.e., in pure-strategy
Bayesian equilibria, by means of its direct mechanism. We further analyze
this example and, in light of our results, we can conclude that non-regular
mechanisms are essential to the approximate Bayesian implementation of
functions that are not AM-measurable.

This is the plan of the paper. Section 2 goes over the model and its
basic definitions. Section 3 is concerned with exact implementation, and
the parallel results on approximate implementation are found in Section 4.
Section 5 discusses the connections between our work, Maskin’s approach to
mixed-strategy Nash implementation and AM-measurability.

2 The Model and Definitions

We shall consider implementation in the context of a general environment
with asymmetric information. Let N = {1, . . . , n} be a finite set of agents.
Let Ti denote the set of agent i’s types; these will be arbitrary sets, includ-
ing of uncountably infinite cardinality. The interpretation is that ti ∈ Ti

describes the private information possessed by agent i. We refer to a profile
of types t = (t1, . . . , tn) as a state. Let T =

∏
i∈N Ti be the set of states.

We will use the notation t−i to denote (tj)j 6=i. Similarly T−i =
∏

j 6=i Tj. The
set of types Ti is equipped with the σ-algebra Ti. Let T denote the product
σ-algebra over T .5

4In regular mechanisms best responses always exist; integer games, open strategy sets,
and devices alike are hence ruled out.

5If T is countable, the natural σ-algebra is discrete, i.e., the one containing all subsets
of T . In this case, strategies are automatically well behaved. For more general spaces,
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Let A denote the set of social alternatives, which is assumed to be inde-
pendent of the information state. Let A be a σ-algebra on A containing all
singleton sets, and 4 denote the set of probability measures on (A,A).

The Bernoulli utility of agent i for pure alternative a in state t is ui(a, t).
Abusing notation slightly, given B ∈ A, ui(B, t) will refer to agent i’s ex-
pected utility evaluation of lottery B in state t. We shall assume that ui is
A× T -measurable.

Each agent’s prior belief about the state is given by a probability measure
µi on (T, T ). These beliefs agree on sets of measure 0: for all i, j ∈ N and for
all S ∈ T , µi(S) = 0 if and only if µj(S) = 0. Let T ∗ ⊆ T be the smallest set
of states with full measure, i.e., µj(S) = 0 for every S for which S ∩ T ∗ = ∅.

We can now define an environment as E = {(A,A), (ui, (Ti, Ti), µi)i∈N}.
A social choice function (SCF) is a mapping f : T 7→ 4. The notation

f(B, t) refers to the likelihood assigned to B ∈ A by the measure f(t). We
assume that f(B, t) is T -measurable as a function of t. Denote the set of
SCFs by F, equipped with σ-algebra F .

A social choice set (SCS) F is a subset of F.
Consider the following metric on SCFs:

d(f, h) = sup{|f(A′ | t) − h(A′ | t)| | t ∈ T ∗, A′ ∈ A}.

For ε ≥ 0, we shall say that two SCSs F and H are ε-approximate (F ≈ε

H) if there exists a bijection π such that for every f ∈ F and every h ∈ H
h = π(f) satisfying that d(f, π(f)) ≤ ε for every f ∈ F .

We shall say that two SCSs F and H are equivalent (F ≈ H) if they are
0-approximate. This means that the two sets “coincide” for every t ∈ T ∗.

Note that since all measures µi are absolutely continuous, i.e., agree on
the identification of sets of measure 0, these concepts are well defined. Also,
for any two SCFs f and h, we shall assume that the set S ⊆ T such that if
t ∈ S f(t) 6= h(t) is T -measurable: a host of different sufficient conditions can
be used to guarantee this; for example, those identified in Duggan’s (1997)
Proposition 1.

A mechanism G = ((Mi,Mi)i∈N , g) consists of a message space Mi for
agent i, equipped with a σ-algebra Mi, where we denote by M the Cartesian
product of the Mis and by M the product σ-algebra, and an outcome function

the restriction to measurable strategies is called for. While it may sometimes be judged
as counterintuitive, it is a technical requirement for agents to be able to calculate best
responses. The reader is referred to Duggan’s (1997) introduction for a clear explanation.
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g : M 7→ 4. Thus, g(m) is an SCF, and we denote by g(m(A′, t)) the
likelihood assigned to A′ ∈ A by the measure g(m(t)). We shall assume that
g(m) is M-measurable as a function of m.

Denote by 4(Mi) the set of measures (mixed strategies) over (Mi,Mi.
In general, given a measurable mixed strategy profile m̃ ∈ ∏

i∈N 4(Mi), we
shall assume that g(m̃(t)) is M×T -measurable. Therefore, for any mi ∈ Mi,
g(mi, m̃−i(t)) is M−i × T−i-measurable.

For each i ∈ N and ti ∈ Ti, the conditional likelihood of a set S−i ∈ T−i,
given ti is denoted µi(S−i | ti).

The (interim/conditional) expected utility of agent i of type ti corre-
sponding to an SCF f , whenever it exists, is defined as:

Ui(f |ti) ≡
∫

T−i

∫

A
ui(f(a, t), t)µi(S−i|ti)dadS−i.

A (mixed) Bayesian equilibrium of G is a profile of strategies (m̃i)i∈N

such that ∀i ∈ N , ∀ti ∈ Ti,

Ui(g(m̃)|ti) ≥ Ui(g(m̃−i, mi)|ti) ∀mi : Ti 7→ Mi.

Denote by B(G) the set of (mixed) Bayesian equilibria of the mechanism
G. Let g(B(G)) be the corresponding set of equilibrium outcomes.

The two definitions of implementability we shall consider in this paper
are the following.

An SCS F is exactly Bayesian implementable in mixed strategies if there
exists a mechanism G such that g(B(G)) ≈ F .

An SCS F is virtually Bayesian implementable in mixed strategies if ∀ε >
0 there exists a mechanism G such that g(B(G)) ≈ε F .

A direct mechanism is one with Mi = Ti for all i ∈ N .
A mixed deception is a profile of functions, α = (αi)i∈N , where αi : Ti 7→

4(Ti) is T〉-measurable, αi(ti) 6= ti for all ti ∈ Si for some set of types Si of
positive measure, for some i ∈ N . (Note that the identity function on T is
not a deception.)

For an SCF f and a mixed deception α, f ◦α denotes the SCF such that
for each t ∈ T , [f ◦ α](t) = f(α(t)), where α(t) =

∏
i∈N αi(ti) denotes the

measure on T induced by α in state t, and f(α(t)) imposes f(t′) on each of
the realizations t′ of the measure α.

For an SCF f , a mixed deception α and a type ti ∈ Ti, let fαi(ti)(t
′) =

f(t′−i, αi(ti)) for all t′ ∈ T , where f(t′−i, αi(ti)) is defined as above.

5



The most fundamental condition in the theory of implementation with
incomplete information using Bayesian equilibrium is (Bayesian) incentive
compatibility:

An SCF f satisfies incentive compatibility if for all i ∈ N , ti ∈ Ti and all
deceptions α,

Ui(f | ti) ≥ Ui(fαi(ti) | ti).

An SCS F satisfies incentive compatibility if every SCF f ∈ F satisfies it.
In addition to incentive compatibility, the next two conditions are also

necessary for exact Bayesian implementation in mixed strategies.
An SCS F satisfies mixed Bayesian monotonicity if for every f ∈ F ,

whenever it so happens that for any mixed deception α f ◦α /∈ F , there exist
i ∈ N , ti ∈ Ti and an SCF y such that

Ui(y ◦ α | ti) > Ui(f ◦ α | ti) while Ui(f | t′i) ≥ Ui(yαi(ti) | t′i), ∀t′i ∈ Ti. (∗)

If one imposes this condition to take account of only pure deceptions, one
obtains the condition of Bayesian monotonicity (Jackson (1991)), already
known in the literature. In Subsection 3.1 we shall provide a discussion that
illustrates the differences between the two conditions.

Let E, E ′ ⊂ T be two common knowledge events among the agents in
N . Denote by F (E) and F (E ′) the ranges assigned by the SCS F to E
and E ′, respectively, and denote by F (E, E ′) the range assigned by F to the
concatenation of the two events.

An SCS F satisfies closure if F (E, E ′) = F (E) × F (E ′).
Jackson (1991) provides a characterization result for economic environ-

ments with at least three agents: he shows that an SCS is Bayesian imple-
mentable in pure strategies if and only if it is equivalent to an SCS that
satisfies incentive compatibility, Bayesian monotonicity and closure. Our
first task in this paper is to obtain a characterization of exact Bayesian im-
plementation in mixed strategies.

3 Exact Implementation

In this section we show that closure, mixed Bayesian monotonicity and in-
centive compatibility are the only properties relevant to characterize exact
Bayesian implementation in mixed strategies over economic environments.

We begin by introducing some additional pieces of notation.
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For every SCF f ∈ F and for every mixed deception α such that f◦α /∈ F ,
a test-agent is any i ∈ N for whom condition (*) holds. Denote by Di(f) the
set of mixed deceptions for which i is a test-agent at f . For each test-agent
i and each mixed deception α ∈ Di(f), fix an SCF yα,f

i satisfying (*) for i
of type ti. Notice that condition (*) concerns the SCF y only in those states
in which agent i is of type αi(ti). There is, therefore, no loss of generality in
assuming that yα,f

i is of the form:

yα,f
i (t−i, t

′
i) = yα,f

i (t−i, ti) for all t−i ∈ T−i and t′i ∈ Ti.

Thus yα,f
i is constant over Ti.

6

For each f ∈ F and each i ∈ N , let

Cf
i = {f} ∪

⋃

α∈Di(f)

{yα,f
i }.

Of course, it follows that if agent i is not a test-agent for any mixed deception
α at f ∈ F , Cf

i = {f}.
For the remainder of the paper, we shall make two regularity assump-

tions on environments. First, we adapt the “no-total-indifference” (NTI)
assumption made in Serrano and Vohra (2005) to our environments:

An environment E satisfies no-total-indifference (NTI) if for every j ∈ N ,
tj ∈ Tj and T ′

−j ⊆ T−j such that µj(T
′
−j|tj) > 0, there exist a, a′ ∈ A such

that ∫

T ′
−j

uj(a, t)µj(S−j|tj)dS−j 6=
∫

T ′
−j

uj(a
′, t)µj(S−j|tj)dS−j.

In addition, we shall make the economic environment assumption made
in Jackson (1991). Prior to its definition, we shall define the concept of a
splicing.

For two SCFs f and h, let the splicing of f and h be the following SCF:
f/hS defined as follows:

f/hS(t) =

{
f(t) ift ∈ S;
h(t) otherwise

An environment E is economic (E) if for any SCF f and any S ⊆ T ∗ with
positive measure, there exist at least two agents i and j, i 6= j, and SCFs h

6This observation also applies to the definition of mixed Bayesian monotonicity, and
to its virtual counterpart, found in the sequel.
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and h′ such that Ui(h/fS | ti) > Ui(f | ti) and Uj(h
′/fS | tj) > Uj(f | tj) for

some ti ∈ Ti and tj ∈ Tj.
Our first result is the following characterization theorem for SCSs.

Theorem 1 Let n ≥ 3. Suppose an environment E satisfies NTI and E.
Then, a social choice set F is exactly Bayesian implementable in mixed strate-
gies if and only if it is equivalent to a social choice set that satisfies incentive
compatibility, mixed Bayesian monotonicity and closure.

Proof of Theorem 1.

Necessity. Since the necessity of incentive compatibility and closure of an
equivalent SCS is well known, we shall show that mixed Bayesian monotonic-
ity is necessary for exactly implementing an incentive compatible SCS in
mixed strategies.

Let f ∈ F , and consider a mixed deception α such that f◦α /∈ F . Suppose
F is exactly implementable in mixed strategies. This implies that there exists
a mechanism G and a strategy profile σ in it such that g(σ) ≈ f . For σ ◦ α
not to be a Bayesian equilibrium of the mechanism, a preference reversal as
specified in the mixed Bayesian monotonicity condition must exist. Thus, F
must satisfy mixed Bayesian monotonicity.

Sufficiency. Suppose F̂ ≈ F satisfies incentive compatibility, mixed Bayesian
monotonicity and closure. We shall construct a canonical mechanism, G =
((Mi,Mi)i∈N , g) to exactly implement F̂ in mixed strategies.

Consider the following mechanism: The message set of agent i is defined
as Mi = Ti×F ×∏

f∈F Cf
i ×F×I, where I is the set of non-negative integers,

and recall that F is the set of all SCFs. Let Mi = Ti ×F ×∏
f F ×F ×2I be

its associated σ-algebra. Denote by (m1
i , m

2
i , m

3
i , m

4
i , m

5
i ) a typical message

sent by agent i, by m3f
i the part of the third component of agent i that is an

element of Cf
i , and by m a profile of messages. Fixing a constant k ∈ (0, 1)

and denoting by ā the uniform distribution over alternatives, the outcome
function is defined by the following rules:

(i) If there exists f ∈ F̂ such that at least n − 1 agents announce m2
i = f

and m3f
i = f , then

g(m) = (1 − k)f(m1) +
k

n

∑

i∈N

m3f
i (m1).
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(ii) Otherwise, denoting by j the agent with the lowest index among those
who announce the highest integer,

g(m) = (1−k)m2
j(m

1)+k[
m5

j

m5
j + 1

m4
j(m

1)+
1

n(m5
j + 1)

(ā+
∑

i 6=j

m2
i (m

1)].

To prove the theorem, we take the following steps:

Step 1: Let f ∈ F̂ . A strategy profile where for each i ∈ N and each ti ∈ Ti,
mi(ti) = (ti, f, f, h, 0) is a Bayesian equilibrium of G. To see this, note that
this strategy profile corresponds to the outcome of rule (i). Note that under
this strategy profile, the outcome in state t is f(t). Moreover, no unilateral
deviation from it can trigger rule (ii), and therefore m4

i or m5
i have no effect

on the outcome. Changing m2
i has no effect on the outcome either. The only

way an agent can change the outcome is by changing his announcement of
m1

i or m3
i . Since f is incentive compatible, reporting a false type is not a

profitable deviation for any agent. By condition (*) it is not profitable to
report a change in m3

i . Nor is it possible to profit by changing both m1
i and

m3
i because each yα,f

i in Cf
i is constant with respect to i’s type. Thus, as

claimed, this profile is a Bayesian equilibrium of G and the outcome is f .

Step 2. There cannot be an equilibrium σ that induces case (ii) with positive
σ-measure over a positive-measure set of states. We argue by contradiction.
Let T I ⊆ T ∗ be such a positive measure set of states, i.e., those in which
the integer game is induced with positive σ-measure (case (ii)). Let ñ be
the supremum of the integers announced in any state in T I , and let j be the
lowest indexed agent who, without loss of generality, announces ñ in some
state in T I . Thus there exists a state t ∈ T ∗ in which the integer game is
played, and is won by agent j of type tj who announces the integer ñ. Let

T ′
−j = {t′−j ∈ T−j|(tj, t′−j) ∈ T I}.

By hypothesis, this set has positive measure. By construction, agent j of type
tj, by announcing nj = ñ, wins the integer game in all states in {tj} × T ′

−j.
Since j is the lowest indexed agent who announces ñ in T I, if agent j of type tj
changes her announcement of the integer to n′

j > ñ, everything else being the
same, she continues to be the winner in (almost) the same states as before,
namely {tj} × T ′

−j. Let σj(tj) include (t̃j, f̃j, (z̃
f
j )f∈F , h̃j, ñ) on its support.

Consider a measurable strategy σ′
j such that σ′

j(tj) = (t̃j, f̃j, (z̃
f
j )f∈F , h′j, n′

j),
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where n′
j > ñ and h′

j is chosen appropriately using NTI to yield a preferred
lottery over these states where agent j of type tj wins the integer game.
This would increase type tj’s expected utility, but this would contradict the
hypothesis that the strategy profile σ is a Bayesian equilibrium.

Step 3: There cannot be an equilibrium σ that, in a positive measure of
states induces rule (i) of the outcome function g where, with positive σ-
measure, exactly n− 1 agents i coordinate on the announcement of the same
f ∈ F̂ in their m3f

i , while agent j announces m3f
j = yα,f

j 6= f . Suppose this
happened with positive σ-measure in a positive measure of states. Let type
tj of agent j be this “odd man out.” Then, in every state compatible with
type tj the outcome is

(1 − k)f(m1) + k[
n − 1

n
f(m1) +

1

n
yα,f

j (m1)].

Then, by Assumption E, there exists a type ti of agent i for whom this
equilibrium outcome is not top ranked in his preference ordering. Then, any
such type ti can announce m3f

i 6= f , m4
i and an integer m5

i sufficiently high
so that he becomes the winner in all states {ti} × T ′

−i where types ti and
tj are present. Note that for the marginal calculated by type ti the set of

these states has positive measure. Let σi(ti) include (t̃i, f̃i, (f̃
f
i )f∈F , h̃i, ñi)

in its support, and consider a measurable strategy σ′
i such that σ′

i(ti) =
(t̃i, f̃i, (z

f
i )f∈F , h′

i, n
′
i) where n′

i is chosen to ensure that i wins the integer
game in all states in {ti} × T ′

−i, and h′
i is chosen suitably to approximate a

top ranked outcome. This implies a gain in terms of interim utility. But this
contradicts the hypothesis that σ is a Bayesian equilibrium.

Step 4: Finally, we claim that in any equilibrium of G under rule (i) where
each agent i announces m3f

i = f for some f ∈ F̂ , agents do not use a mixed
deception α where f ◦α /∈ F̂ . Suppose not, i.e., there is an equilibrium under
rule (i) in which a mixed deception α is used where f ◦ α /∈ F̂ . Since F̂
satisfies mixed Bayesian monotonicity, there exists an agent i and an SCF
yα,f

i satisfying (*). Therefore, type ti of agent i has an incentive to deviate
and change only the third component of his announcement to m3f

i = yα,f
i ,

which is a contradiction (of course, the messages of the other types of agent
i can be changed to preserve the measurability of the strategy). Thus, either
no mixed deception is used in equilibrium or the mixed deception being used
is such that f ◦ α ∈ F̂ . In either case, therefore, the equilibrium outcome is
in F̂ . This proves that our mechanism exactly implements F̂ .

10



As the reader may have noticed, Theorem 1 does not cover SCSs in the
case of two agents. Note that if one tried to use the mechanism in the proof
of Theorem 1 to implement an SCS with only two agents, one would run into
the following problem. Suppose f and f ′ are two SCFs in the SCS F that
we wish to implement. The mechanism allows for an equilibrium where both
agents agree on the announcement of f as the second component of their
strategy, and another in which they agree on f ′. However, rule (i) ceases to
be well defined if one of them announces f , while the other announces f ′. It
turns out that this is not just a failure of the particular mechanism employed
to prove Theorem 1. Indeed, an extra condition is needed. Dutta and Sen
(1994) study Bayesian implementation in pure strategies for the case of two
agents, and prove that an extra condition having to do with the non-empty
intersection of certain lower contour sets being non-empty is also necessary
and sufficient. We would expect to find a similar condition to cover the case
of mixed strategies.

However, the two-agent case is covered if one concentrates on SCFs, as
shown in Theorem 2:

Theorem 2 Suppose an environment E satisfies NTI and E. Then, a social
choice function f is exactly Bayesian implementable in mixed strategies if
and only if it is equivalent to a social choice function that satisfies incentive
compatibility and mixed Bayesian monotonicity.

Proof of Theorem 2.

The necessity arguments are similar to those in Theorem 1, so we omit
them (in particular, note how they are completely independent of the n ≥ 3
assumption, used only in the sufficiency part of Theorem 1). For sufficiency,
the proof is also very similar, but we outline it: we construct a similar canon-
ical mechanism to that in the proof of Theorem 1 with a simpler message set
and σ-algebra for each agent i. Let f̂ ≈ f . Then, agent i’s message set is

Mi = Ti×C f̂
i ×F× I. Let Mi = Ti ×F ×F ×2I be its associated σ-algebra.

We modify the outcome function as follows:

(i) If at least (n − 1) agents i announce m2
i = f̂ , then

g(m) = (1 − k)f̂(m1) +
k

n

∑

i∈N

m2
i (m

1).
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(ii) Otherwise, denoting by j the agent with the lowest index among those
who announce the highest integer,

g(m) = (1−k)m2
j(m

1)+k[
m4

j

m4
j + 1

m3
j(m

1)+
1

n(m4
j + 1)

(ā+
∑

i 6=j

m2
i (m

1)].

With this mechanism, one can then follow the same steps as in the proof
of Theorem 1 to show that it exactly implements f̂ .

3.1 Mixed Bayesian Monotonicity and Bayesian Monotonic-
ity

In this subsection we shall discuss the differences between Bayesian monotonic-
ity and its mixed counterpart. We first show that BM and MBM are different,
by constructing an example that demonstrates that the mixed condition is
more restrictive for SCSs.

Example 1 Let N = {1, 2}, and A = {a, b, c}. Agent 1 is informed and his
set of types is T = {t, t′}, and agent 2 is uninformed and comes in only one
type. Preferences are as follows:

u1((a, b, c), t) = (0, 0,−1) u2((a, b, c), t) = (2, 1, 0)
u1((a, b, c), t′) = (0, 0,−1) u2((a, b, c), t′) = (1, 2, 1.5)

Consider the following SCS

F ≡ {(a, a), (a, b), (b, a), (b, b)}.

Denote the four SCFs in F by f1, . . . , f4. Clearly, the SCS F is fully imple-
mented with a mechanism in which only agent 1 sends messages, his message
set is F × T with typical message (f̂ , t̂), and the outcome is f̂(t̂). Thus, F
satisfies Bayesian monotonicity.

However, F does not satisfy MBM. Consider the SCF f2 = (a, b) ∈ F
and the mixed deception α in which each type of agent 1 randomizes equally
between telling the truth and lying. It is clear that the resulting SCF, f2 ◦ α,
which imposes in each state the random alternative (1/2)a + (1/2)b, is not
in F . Therefore, one needs to find a test-agent.

Agent 2 cannot be a test agent: we know that U2(f2◦α) = 3/2. Any SCF y
is such that for this deception α the random alternative (1/2)y(t)+(1/2)y(t′)
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is implemented. Denote this probability distribution by (λ, µ, 1−λ−µ). Then,
his expected utility from y ◦ α is:

U2(y ◦ α) = (3/2)λ + (3/2)µ + (3/4)(1 − λ − µ) ≤ 3/2,

so agent 2 cannot be used as a test-agent.
Clearly, no type of agent 1 can be used as a test-agent either. Using the

same argument as above for agent 2, note that U1(f2, s) = U1(f2 ◦ α, s) = 0
for s = t, t′. And

U1(y ◦ α, s) = λ + µ − 1 ≤ 0.

An SCS F satisfies the convex range property if, whenever it is true that
for f ∈ F and for a collection of pure deceptions β, one has that f ◦ β ∈ F ,
then it is true that for every mixed deception α whose support are the β’s,
it is the case that f ◦ α ∈ F .

Note that every SCF trivially satisfies this property. More generally, we
have the following result:

Proposition 1 Mixed Bayesian monotonicity implies Bayesian monotonic-
ity. Conversely, Bayesian monotonicity and the convex range property imply
mixed Bayesian monotonicity.

Proof of Proposition 1. By definition, it is clear that MBM implies BM
because it imposes the requirement of the appropriate preference reversal
over all mixed deceptions, which include pure deceptions as particular cases.

We now show that BM and the convex range property imply MBM. Con-
sider a non-pure deception α such that f ◦α /∈ F . Let β be a pure deception
in the support of α satisfying that f ◦ β /∈ F . The existence of such a β is
guaranteed by the convex range property.

Since β is a pure deception and F satisfies BM, there exist i ∈ N , ti ∈ Ti

and an SCF y such that

Ui(y ◦ β | ti) > Ui(f ◦ β | ti) while Ui(f | t′i) ≥ Ui(yβi(ti) | t′i), ∀t′i ∈ Ti.

Since α can be expressed as a function of β and the other pure deceptions
in its support, we choose f on the lhs and rhs of (*) as the pair of functions
associated with each of the other pure deceptions. Then, we get a preference
reversal as in (*) using α on the basis only of the inequalities just written for
β.
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4 Approximate Implementation

This section will follow parallel steps to the previous one. We will be able
to prove our results for virtual implementation by appealing directly to our
results for exact implementation.

We begin with a new definition:
An SCS F satisfies mixed virtual monotonicity if for every f ∈ F , there

exists an incentive compatible SCF x such that whenever happens that for
any mixed deception α, f ◦ α /∈ F , there exists i ∈ N , ti ∈ Ti and an SCF y
such that

Ui(y ◦ α | ti) > Ui(x ◦ α | ti) while Ui(x | t′i) ≥ Ui(yαi(ti) | t′i), ∀t′i ∈ Ti. (∗∗)

The main difference between this condition and mixed Bayesian monotonic-
ity is that the preference reversal in the new condition does not necessarily
involve an SCF f ∈ F , but some other incentive compatible SCF x in the
environment. Note how mixed virtual monotonicity differs from the virtual
monotonicity condition proposed in Serrano and Vohra (2005) in several re-
spects. To begin with, in that paper the condition was formulated only for
SCFs. In addition, mixed virtual monotonicity is a strenghthening of virtual
monotonicity for two reasons: first, it is imposed on mixed deceptions that
undermine F , instead of simply on pure deceptions; and second, there is a
change in the quantifiers of the condition: in virtual monotonicity, for each
deception, there is an incentive compatible x and these may differ across de-
ceptions (see Serrano and Vohra (2005, Section 3)). On the other hand, it can
be shown that the stronger condition with the order of quantifiers reversed
can replace the one used in Serrano and Vohra (2005) to show their result.
The reason is that, although it is a stronger condition, it is also necessary
for virtual Bayesian implementation in pure strategies.

The version of virtual monotonicity in Serrano and Vohra (2005) is used
in the sufficiency part of their theorem to construct a canonical mechanism
that implements an SCF that puts probability (1− ε) on f and probability ε
on a convex combination of all the SCFs x that are associated with each pure
deception. Using the extension of that same condition to mixed deceptions
would have been insufficient to construct a similar canonical mechanism for
our purpose here, since we would end up with an uncountable sum of SCFs.
The version proposed here solves this problem, since a single x is associated
with each mixed deception that undermines each SCF of interest. In any
event, we shall provide a shortcut to the sufficiency proof and not rely on the
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construction of a new canonical mechanism. This is the advantage of having
developed the exact implementation results in the previous section (in the
end, virtual or approximate implementation is simply the exact implementa-
tion of a near-by SCS).

Our next result is the following characterization theorem for SCSs in
environments with at least three agents.

Theorem 3 Let n ≥ 3. Suppose an environment E satisfies NTI and E.
Then, a social choice set F is virtually Bayesian implementable in mixed
strategies if and only if it is equivalent to a social choice set that satisfies
incentive compatibility, mixed virtual monotonicity and closure.

Proof of Theorem 3.

Necessity. Since the necessity of incentive compatibility and closure are
standard, we shall show that mixed virtual monotonicity is necessary for
virtually implementing in mixed strategies an incentive compatible SCS.

Suppose then that F is virtually Bayesian implementable in mixed strate-
gies, i.e., for every ε > 0 there exists an SCS F ε that is exactly implementable
in mixed strategies and is ε-approximate to F . Let f ∈ F and call f ε = π(f),
where π is the bijection between F and F ε. Consider an arbitrary mixed de-
ception α such that f ◦ α /∈ F . Choosing ε > 0 small enough, one has that
f ε ◦ α /∈ F ε. It follows from Theorem 1 that F ε satisfies incentive compati-
bility and mixed Bayesian monotonicity. Therefore, f ε satisfies the required
preference reversal in (**) for any such mixed deception α. That is, f ε is
incentive compatible and is such that for every α satisfying that f ◦ α /∈ F ,
there exists i ∈ N , ti ∈ Ti and an SCF y such that

Ui(y ◦ α | ti) > Ui(f
ε ◦ α | ti) while Ui(f

ε | t′i) ≥ Ui(yαi(ti) | t′i), ∀t′i ∈ Ti. (1)

But this means that F satisfies mixed virtual monotonicity.

Sufficiency. Suppose F̂ ≈ F satisfies incentive compatibility, mixed vir-
tual monotonicity and closure. The novelty of this proof is that, rather than
constructing a canonical mechanism to do the job, we shall rely on the prop-
erties assumed and Theorem 1 to obtain a direct proof. We shall show that
for every ε > 0, there exists F ε such that F̂ ≈ε F ε and satisfying mixed
Bayesian monotonicity.
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Suppose F̂ satisfies mixed virtual monotonicity, incentive compatibility
and closure. Let f ∈ F̂ . By mixed virtual monotonicity, there exists an
incentive compatible SCF x and an SCF y exhibiting the appropriate prefer-
ence reversal as in (**) for every α satisfying f ◦α /∈ F̂ . Let f ε = (1−ε)f +εx
and y′ = (1 − ε)f + εy. Note that, by incentive compatibility of F̂ , the SCF
f ε is also incentive compatible.

Define the SCS F ε to be the following set:

F ε ≡ {f ε : f ∈ F̂}.

For ε > 0 small enough, we claim that F ε satisfies mixed Bayesian monotonic-
ity. Since

Ui(y
′ ◦ α|ti) − Ui(f

ε ◦ α|ti) = ε[Ui(y ◦ α|ti) − Ui(x ◦ α | ti)],

it follows from (**) that

Ui(y
′ ◦ α|ti) > Ui(f

ε ◦ α|ti) (2)

From (**) we also know that

Ui(x | t′i) ≥ Ui(yαi(ti) | t′i), ∀t′i ∈ Ti.

Thus

(1 − ε)Ui(f | t′i) + εUi(x | t′i) ≥ (1 − ε)Ui(f | t′i) + εUi(yαi(ti) | t′i), ∀t′i ∈ Ti.

Since, f is incentive compatible,

Ui(f | t′i) ≥ Ui(fαi(ti) | t′i), ∀t′i ∈ Ti

The last two inequalities imply that

Ui(f
ε | t′i) ≥ Ui(y

′
αi(ti)

| t′i), ∀t′i ∈ Ti. (3)

So the appropriate reversal happens for every mixed deception α such that
f ◦ α /∈ F̂ . However, for ε > 0 small enough, this set of mixed deceptions
is equivalent to the set satisfying that f ε ◦ α /∈ F ε. Therefore, since all
this is true for every f ε ∈ F ε, it follows that F ε satisfies mixed Bayesian
monotonicity.
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It is also true that the SCS F ε defined above satisfies closure because so
does F̂ .

Therefore, since for every ε > 0 sufficiently small, F ε satisfies incentive
compatibility, mixed Bayesian monotonicity and closure, and by construction
F ε ≈ε F̂ , it follows from Theorem 1 that F̂ is virtually implementable in
mixed strategies.

Following parallel steps of reasoning, we obtain the following characteri-
zation of SCFs that are virtually implementable in mixed strategies.

Theorem 4 Suppose an environment E satisfies NTI and E. Then, a social
choice function f is virtually Bayesian implementable in mixed strategies if
and only if it is equivalent to a social choice function that satisfies incentive
compatibility and mixed virtual monotonicity.

The proof of Theorem 4 is similar to that of Theorem 3, but it uses
Theorem 2 instead of Theorem 1. Also, the relationship between virtual
monotonicity and mixed virtual monotonicity is similar to that between
Bayesian monotonicity and its mixed counterpart (see Subsection 3.1). In
particular, for SCFs, mixed virtual monotonicity is not more restrictive than
the condition that uses only pure deceptions.

5 Discussion

This section discusses a couple of related approaches in the literature. First,
we relate our work to Maskin’s (1999) treatment of Nash implementation
in mixed strategies. And second, we shall draw connections between our
conditions and the condition of measurability, introduced in Abreu and Mat-
sushima (1992b) – we shall refer to this condition as A-M measurability.
The latter will have implications on the implementing mechanisms used in
the current paper.

5.1 Maskin’s Approach

Maskin (1999) is the classic paper on Nash implementation. The appendix
to the paper extends the analysis to cover mixed strategies (see also Maskin
and Sjóstróm (2002, Section 4.3)). Maskin’s approach differs from ours in
that, consistent with most of the Nash implementation literature, the social
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choice rule assigns pure alternatives to each ex-post preference profile, instead
of probability distributions over alternatives. The notion of implementabil-
ity that he proposes requires that each realization of a mixed-strategy Nash
equilibrium be consistent with the social choice rule. This “ex-post” ap-
proach allows him to dispense with any specific assumptions concerning risk
preferences. In this framework, he shows that his standard monotonicity con-
dition, which is necessary for Nash implementability, is also sufficient along
with no-veto power if there are at least three agents.7

Especially when one includes incomplete information in the model, it
makes sense to allow that social choice functions map into the probability
simplex over alternatives (e.g., optimal risk sharing in a contract will lead to
different lotteries, depending on the parties’ risk preferences), and this is what
we do. When one restricts attention to complete information environments
and non-random social choice rules, our approach reduces to Masking’s. That
is, even though our implementability requirement is different (i.e., that every
equilibrium outcome –pure or mixed– agree with the rule of interest), if there
is complete information among the agents and randomness plays no role in
the rule, one should expect that the two approaches relate to one another.
Indeed, we argue now that mixed Bayesian monotonicity reduces to Maskin
monotonicity in this case.

Suppose that E and E ′ are two complete information environments. Let
a ∈ A be an alternative assigned by the social choice correspondence when
the environment is E, but not assigned when the environment is E ′. Denoting
the type profiles in E and E ′ by t and t′, respectively, Maskin monotonic-
ity requires the existence of an agent i and an alternative y satisfying that
ui(a, ti) ≥ ui(y, ti), and ui(y, t′i) > ui(a, t′i).

Now in our notation, since the social choice correspondence will assign to
environment E ′ some other alternative b ∈ A and recalling that our social
choice sets satisfy closure, it means that a/bE ∈ F (E, E ′), while a/aE /∈
F (E, E ′). The existence of the agent i and the alternative y of the previous
paragraph imply that for a pure deception satisfying α(t) = t′ and for the
SCF ỹ such that ỹ(t) = ỹ(t′) = y, f(t′′) = ỹ(t′′) for all other t′′, we have
ui(f(t), t′′i ) ≥ ui(ỹ, t′′i ) for all types t′′i . However, ui(ỹ ◦ α, t′i) > ui(f ◦ α, t′i).
Thus, a preference reversal in the sense of Maskin can always be associated

7In a framework similar to ours, making use of random mechanisms, Benoit and
Ok(2008) and Bochet (2007) investigate conditions under which no-veto power can be
dispensed with in Maskin’s theorem. Since we confine our attention to economic environ-
ments, the issue is moot for us.
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with a reversal in our sense, if one uses a pure deception like this.
Thus, the conditions of Maskin monotonicity and Bayesian monotonic-

ity coincide for this case. They differ if one takes into account non-pure
deceptions. That is, if a pair of alternatives a, b ∈ A is selected by the cor-
respondence in two complete information states E and E ′, mixed Bayesian
monotonicity will require that the social choice set also include the prob-
ability distributions over a and b in those states. Of course, if the model
rules out random outcomes, this difference will be unimportant for such a
model. And if one considers social choice functions instead of multi-valued
correspondences, there is no difference.

By the same token, continuing with our restriction to complete informa-
tion environments, one can see that the condition of mixed virtual monotonic-
ity is trivial when applied over functions, and only adds the restrictions com-
ing from the convex range property when one considers correspondences.
This relates to the very permissive results in Abreu and Sen (1991) and
Matsushima (1988) for virtual Nash implementation.

5.2 Mixed Virtual Monotonicity and A-M Measurabil-
ity

For this subsection we shall follow the assumptions made in most of the
virtual implementation papers and confine our discussion to SCFs. Abreu
and Matsushima (1992b) study virtual implementation with incomplete in-
formation employing the solution concept of iterative elimination of strictly
dominated strategies. Relying on a numeraire to implement small punish-
ments out of equilibrium, they show that virtual implementation in their
sense is characterized by incentive compatibility and A-M measurability; the
reader is referred to Abreu and Matsushima (1992b) or to Duggan (1997) for
the definition of A-M measurability. Obviously in this case, since any im-
plementation in iterative elimination of strictly dominated strategies implies
implementation in mixed-strategy equilibrium, it follows that, for incentive
compatible SCFs, measurability implies virtual monotonicity.8 There is a
sense in which all these conditions are rather weak. Under type diversity (see
Serrano and Vohra (2005), and its references to previous sources), every SCF

8Duggan (1997) provides incentive consistency as a sufficient condition, together with
incentive compatibility, for virtual implementation in mixed-strategy Bayesian equilib-
rium. His condition is not necessary, however, as shown in Serrano and Vohra (2001).
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satisfies A-M measurability, incentive consistency and virtual monotonicity.
If there are at least three alternatives, “almost every” environment satisfies
type diversity.

To illustrate the gap between A-M measurability and implementation in
Bayesian equilibrium, Duggan (1997) provides the following example. We
elaborate further on it:

Example 2 Consider the following environment, in which N = {1, 2}. Each
agent comes in two types: T1 = {t1, t′1} and T2 = {t2, t′2}. The set of states is
the Cartesian product of each agent’s set of types, and each state is equally
likely. There are four alternatives: A = {x1, x2, x3, x4}. Agents’ ex-post
preferences in each state are as follows:

u1((x1, x2, x3, x4), (t1, t2)) = (3, 2, 2.5, 2), u2((x1, x2, x3, x4), (t1, t2)) = (2, 3, 2, 2.5);

u1((x1, x2, x3, x4), (t1, t
′
2)) = (3, 2, 3, 2), u2((x1, x2, x3, x4), (t1, t

′
2)) = (2, 3, 2, 2.5);

u1((x1, x2, x3, x4), (t
′
1, t2)) = (3, 2, 2.5, 2), u2((x1, x2, x3, x4), (t

′
1, t2)) = (2, 3, 2, 3);

u1((x1, x2, x3, x4), (t
′
1, t

′
2)) = (3, 2, 3, 2), u2((x1, x2, x3, x4), (t

′
1, t

′
2)) = (2, 3, 2, 3).

As argued in Duggan (1997), only constant SCFs satisfy A-M measura-
bility in this environment. Duggan (1997) considers the following SCF:

f(t1, t2) = x1, f(t1, t
′
2) = x2, f(t′1, t2) = x4, f(t′1, t

′
2) = x3,

and shows it to be exactly Bayesian implementable in pure strategies via its
direct mechanism.

Therefore, it follows that such an SCF satisfies Bayesian monotonicity.
By our observation preceeding Proposition 1, it also satisfies mixed Bayesian
monotonicity, and thus, by our Theorem 2, it is also exactly implementable
in mixed-strategy Bayesian equilibrium.

However, the implementing mechanism that yields implementation in mixed
strategies will not be the direct mechanism: indeed, as the reader can check,
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the following deception, which undermines f , is a mixed strategy equilibrium
of the direct mechanism for f :

α1(t1) = (1/3, 2/3), α1(t
′
1) = (1/2, 1/2);

α2(t2) = (1/3, 2/3) α2(t
′
2) = (1/2, 1/2).

Abreu and Matsushima (1992b) also show that A-M measurability is
necessary for implementation in Bayesian equilibrium when the implement-
ing mechanism is regular (this condition amounts to the property that best
replies always exist, thereby ruling out devices like integer games). It fol-
lows that in the example just described, due to Duggan, the SCF f , which
is not virtually implementable in iteratively undominated strategies because
it is not A-M measurable, must be implemented by means of a mechanism
in which non-regular features are essential (e.g., the mechanism of the proof
of Theorem 1, properly modified as described in the proof of Theorem 2).
Of course, this observation is general: those SCFs that can be decentral-
ized using equilibrium behavior, and cannot using iteratively undominated
strategies, necessitate non-regular mechanisms.
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