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1 Introduction

Mean-variance analysis is widely regarded as the cornerstone of modern investment

theory. Despite its simplicity, and the fact that more than five and a half decades

have elapsed since Markowitz published his seminal work on the theory of portfolio

allocation under uncertainty (Markowitz (1952)), it remains the most widely used asset

allocation method. There are several reasons for its popularity. First, it provides a

very intuitive assessment of the relative merits of alternative portfolios, as their risk and

expected return characteristics can be compared in a two-dimensional graph. Second,

mean-variance frontiers are spanned by only two funds, a property that simplifies their

calculation and interpretation, and that also led to the derivation of the Capital Asset

Pricing Model (CAPM) by Sharpe (1964), Lintner (1965) and Mossin (1966), which

identifies the market with a mean-variance efficient portfolio. Finally, mean-variance

analysis becomes the natural approach if we assume Gaussian or elliptical distributions,

because then it is fully compatible with expected utility maximisation regardless of

investor preferences (see e.g. Chamberlain (1983), Owen and Rabinovitch (1983) and

Berk (1997)).

A portfolio with excess returns r1t is mean-variance efficient with respect to a given

set of N2 assets with excess returns r2t if it is not possible to form another portfolio

of those assets and r1t with the same expected return as r1t but a lower variance, or

more appropriately, with the same variance but a higher expected return. If the first

two moments of returns were known, then it would be straightforward to confirm or

disprove the mean-variance efficiency of r1t by simply checking whether they lied on

the portfolio frontier spanned by rt = (r1t, r
0
2t)

0. In practice, of course, the mean and

variance of portfolio returns are unknown, and the sample mean and standard deviation

of r1t will lie inside the estimated mean-variance frontier with probability one. Therefore,

a statistical hypothesis test provides a rather natural decision method in this context,

especially taking into account the fact that there is substantial sampling variability in the

estimation of mean-variance frontiers, and that such a variability is potentially misleading

because the inclusion of additional assets systematically leads to the expansion of the

sample frontiers irrespective of whether the theoretical frontier is affected, in the same

way as the inclusion of additional regressors systematically leads to increments in sample
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R20s regardless of whether their theoretical regression coefficients are 0.

Despite the simplicity of the definition, testing for mean-variance efficiency is of

paramount importance in many practical situations, such as mutual fund performance

evaluation (see De Roon and Nijman (2001) for a recent survey), gains from portfolio

diversification (Errunza, Hogan and Hung (1999)), or tests of linear factor asset pricing

models, including the CAPM and APT, as well as other empirically oriented asset pricing

models (see e.g. Campbell, Lo and MacKinlay (1996) or Cochrane (2001) for advanced

textbook treatments).

As is well known, r1t will be mean-variance efficient with respect to r2t in the presence

of a riskless asset if and only if the intercepts in the theoretical least squares projection of

r2t on a constant and r1t are all 0 (see Black, Jensen and Scholes (1972), Jobson and Ko-

rkie (1982, 1985), Huberman and Kandel (1987) and Gibbons, Ross and Shanken (1989)

(GRS)). Therefore, it is not surprising that this early literature resorted to ordinary least

squares (OLS) to test those theoretical restrictions empirically. If the distribution of r2t

conditional on r1t (and their past) were multivariate normal, with a linear mean a+br1t

and a constant covariance matrix Ω, then OLS would produce efficient estimators of the

regression intercepts a, and consequently, optimal tests of the mean-variance efficiency

restrictions H0 : a = 0. In addition, it is possible to derive an F version of the test

statistic whose sampling distribution in finite samples is known under exactly the same

restrictive normality assumption (see GRS). In this sense, this F test generalises the

t-test proposed by Black, Jensen and Scholes (1972) from univariate (i.e. N2 = 1) to

multivariate contexts.

However, many empirical studies with financial time series data indicate that the

distribution of asset returns is usually rather leptokurtic. For that reason, MacKinlay

and Richardson (1991) proposed alternative tests based on the generalised method of

moments (GMM) that are robust to non-normality, unlike traditional OLS test statistics

(see also Harvey and Zhou (1991)).

The purpose of this paper is to survey mean-variance efficiency tests, with an empha-

sis on methodology rather than empirical findings, and paying more attention to some

recent contributions and their econometric subtleties. In this sense, it complements pre-

vious surveys by Shanken (1996), Campbell, Lo and MacKinlay (1997) and Cochrane

(2001).
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In order to accommodate most of the literature, in what follows I shall consider r1t as

a vector of N1 asset returns, so that the null hypothesis should be understood as saying

that some portfolio of theN1 elements in r1t lies on the efficient part of the mean-variance

frontier spanned by r1t and r2t.1

The rest of the paper is organised as follows. I introduce the theoretical set up in

section 2, review the original tests in section 3, and analyse the effects of the number of

assets and portfolio composition on test power in section 4. Then I discuss asymptot-

ically equivalent tests based on mean representing portfolios and Hansen-Jagannathan

frontiers in section 5, and study the trade-offs between efficiency and robustness of using

parametric and semiparametric likelihood procedures that assume either elliptical inno-

vations or elliptical returns in section 6. After reviewing finite sample tests in section 7,

I conclude with a discussion of mean-variance-skewness efficiency and spanning tests in

section 8. Finally, I briefly mention some related topics and suggestions for future work

in section 9. Proofs of the few formal results that I present can be found in the original

references.

2 Mean-Variance Portfolio Frontiers

Consider a world with one riskless asset, and a finite number N of risky assets. Let

R0 denote the gross return on the safe asset (that is, the total payoff per unit invested,

which includes capital gains plus any cash flows received), R = (R1, R2, . . . , RN)
0 the

vector of gross returns on the N remaining assets, with vector of means and matrix

of variances and covariances ν and Σ respectively, which I assume bounded. Let p =

w0R0+w1R1+ . . .+wNRN denote the payoffs to a portfolio of the N+1 primitive assets

with weights given by w0 and the vector w = (w1, w2, . . . , wN)
0. Importantly, I assume

that there are no transaction costs or other impediments to trade, and in particular, that

short-sales are allowed. I also assume that the wealth of any particular investor is such

that her individual behaviour does not alter the distribution of returns.

There are at least three characteristics of portfolios in which investors are usually

interested: their cost, the expected value of their payoffs, and their variance, given by

C(p) = w0 +w
0ιN , E(p) = w0R0 +w

0ν and V (p) = w0Σw respectively, where ιN is a

1In this sense, it is important to note that in the case in which r1t contains single asset, the null hy-
pothesis only says that r1t spans the mean-variance frontier, so in principle it could lie on its innefficient
part (see GRS).
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vector of N ones. Let P be the set of payoffs from all possible portfolios of the N + 1

original assets, i.e. the linear span of (R0,R0), hR0,R0i. Within this set, several subsets
deserve special attention. For instance, it is worth considering all unit cost portfolios

R = {p ∈ P : C(p) = 1}, whose payoffs can be directly understood as returns per unit
invested; and also all zero cost, or arbitrage portfolios A = {p ∈ P : C(p) = 0}. In this
sense, note that any non-arbitrage portfolio can be transformed into a unit-cost portfolio

by simply scaling its weights by its cost. Similarly, if r = R−R0ιN denotes the vector

of returns on the N primitive risky assets in excess of the riskless asset, it is clear that

A coincides with the linear span of r, hri. The main advantage of working with excess
returns is that their expected values µ = ν−R0ιN directly give us the risk premia of R,
without altering their covariance structure. On the other hand, one must distinguish

between riskless portfolios, S = {p ∈ P : V (p) = 0} and the rest. In what follows, I
shall impose restrictions on the elements of S so that there are no riskless “arbitrage”
opportunities. In particular, I shall assume that Σ is regular, so that S is limited to the
linear span of R0, and the law of one price holds (i.e. portfolios with the same payoffs

have the same cost). I shall also assume that R0 is strictly positive (in practice, R0 ≥ 1
for nominal returns).

A simple, yet generally incomplete method of describing the choice set of an agent

is in terms of the mean and variance of all the portfolios that she can afford. Let us

consider initially the case of an agent who has no wealth whatsoever, which means that

she can only choose portfolios in A. In this context, frontier arbitrage portfolios, in the
usual mean-variance sense, will be those that solve the program minV (p) subject to the

restrictions C(p) = 0 and E(p) = µ̄, with µ̄ real. Given that C(p) = 0 is equivalent to

p = w0r, I can re-write this problem as minww0Σw subject to w0µ =µ̄. There are two

possibilities: (i) µ = 0, when the frontier can only be defined for µ̄ = 0; or (ii) µ 6= 0,
in which case the solution for each µ̄ is

w∗(µ̄) =µ̄(µ0Σ−1µ)−1Σ−1µ

As a consequence, the arbitrage portfolio rp = (µ0Σ−1µ)
−1µ0Σ−1r generates the whole

zero-cost frontier, in what can be called one-fund spanning. Moreover, given that the

variance of the frontier portfolios with mean µ̄ will be µ̄2(µ0Σ−1µ)−1, in mean-standard

deviation space the frontier is a straight line reflected in the origin whose efficient section

has slope
p
µ0Σ−1µ. Therefore, this slope fully characterises in mean-variance terms the
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investment opportunity set of an investor with no wealth, as it implicitly measures the

trade-off between risk and return that the available assets allow at the aggregate level.

Traditionally, however, the frontier is usually obtained for unit-cost portfolios, and

not for arbitrage portfolios. Nevertheless, given that the payoffs of any portfolio inR can
be replicated by means of a unit of the safe asset and a portfolio in A, in mean-standard
deviation space, the frontier for R is simply the frontier for A shifted upwards in parallel
by the amount R0. And although now we will have two-fund spanning, for a given safe

rate, the slope
p
µ0Σ−1µ continues to fully characterise the investment opportunity set

of an agent with positive wealth.

An alternative graphical interpretation of the same result would be as follows. The

trade-off between risk and return of any unit-cost portfolio in R is usually measured as

the ratio of its risk premium to its standard deviation. More formally, if Ru ∈ R, then
s(ru) = µu/σu, where µu = E(ru), σ2u = V (ru), and ru = Ru − R0. This expression,

known as the Sharpe ratio of the portfolio after Sharpe (1966, 1994), remains constant

for any portfolio whose mean excess return and standard deviation lie along the ray

which, starting at the origin, passes through the point (µu, σu) because the Sharpe ratio

coincides with the slope of this ray. As a result, the steeper (flatter) a ray is (i.e. the

closer to the y (x) axis), the higher (lower) the corresponding Sharpe ratio.

Then, since µp = 1 and σ2p = (µ
0Σ−1µ)−1, the slope s(rp) = µp/σp =

p
µ0Σ−1µ will

give us the Sharpe ratio of

Rp(wrp) = R0 + wrprp

for any wrp > 0, which is the highest attainable. Therefore, in mean excess return-

standard deviation space, all Rp(wrp) lie on a positively sloped straight line that starts

from the origin. As the investor moves away from the origin, where she is holding all her

wealth in the safe asset, the net total position invested in the riskless asset is steadily

decreasing, and eventually becomes zero. Beyond that point, she begins to borrow in

the money market to lever up her position in the financial markets. The main point

to remember, though, is that a portfolio will span the mean-variance frontier if and

only if its (square) Sharpe ratio is maximum. As we shall see below, this equivalence

relationship underlies most mean-variance efficiency tests.

For our purposes, it is useful to relate the maximum Sharpe ratio to the Sharpe

ratio of the N underlying assets. Proposition 3 in Sentana (2005) gives the required
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expression:

Proposition 1 The Sharpe ratio of the optimal portfolio (in the unconditional mean-

variance sense), s(rp), only depends on the vector of Sharpe ratios of the N underlying

assets, s(r), and their correlation matrix, ρrr = dg−1/2(Σ)Σdg−1/2(Σ) through the fol-

lowing quadratic form:

s2(rp) = s(r)0ρ−1rr s(r), (1)

where dg(Σ) is a matrix containing the diagonal elements of Σ and zeros elsewhere.

The above expression, which for the case of N = 2 adopts the particularly simple

form:

s2(rp) =
1

1− ρ2r1r2

£
s2(r1) + s2(r2)− 2ρr1r2s(r1)s(r2)

¤
, (2)

where ρr1r2 = cor(r1, r2), turns out to be remarkably similar to the formula that relates

the R2 of the multiple regression of r on (a constant and) x with the correlations of the

simple regressions. Specifically,

R2 = ρ0xrρ
−1
xxρxr. (3)

The similarity is not merely coincidental. From the mathematics of the mean-

variance frontier, we know that E(rj) = cov(rj, rp)E(rp)/V (rp), and therefore, that

s(rj) = cor(rj, rp)s(rp). In other words, the correlation coefficient between rj and rp is

s(rj)/s(rp), i.e. the ratio of their Sharpe ratios. Hence, the result in Proposition 1 follows

from (3) and the fact that the coefficient of determination in the multiple regression of

rp on r will be 1 because rp is a linear combination of this vector.

We can use the partitioned inverse formula to alternatively write expression (1) in

the following convenient form

s2(rp) = s(r1)
0ρ−1rr s(r1) + s(z2)

0ρ−1zz s(z2), (4)

where the vector z2 = r2 − Σ21Σ
−1
11 r1 contains the components of r2 whose risk has

been fully hedged against the risk of r1, ρzz = dg−1/2(Ω)Ωdg−1/2(Ω) and Ω = Σ22 −
Σ21Σ

−1
11Σ12. In the bivariate case, (4) reduces to:

s2(rp) = s2(r1) + s2(z2),
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where

s(z2) =
µ2 − (σ12/σ21)µ1p

σ22 − σ212/σ
2
1

=
s(r2)− ρ12s(r1)p

1− ρ212

is the Sharpe ratio of z2 = r2−σ12/σ21 r1. When r1 is regarded as a benchmark portfolio,
s(z2) is often known as the information (or appraisal) ratio of r2.

Corollary 1 in Shanken (1987a) provides the following alternative expression for the

maximum Sharpe ratio of z2 in terms of the Sharpe ratio of the mean-variance effi-

cient portfolio obtained from r1 alone, rp1 = µ
0
1Σ

−1
11 r1, and the correlation between this

portfolio and rp:

s(z2)
0ρ−1zz s(z2) = s2(rp1)

∙
1

cor2(rp1 , rp)
− 1
¸
.

This result exploits the previously mentioned fact that cor(rp1, rp) = s(rp1)/s(rp) (see

also Kandel and Stambaugh (1987) and Meloso and Bossaerts (2006)). Intuitively, the

incremental Sharpe ratio will reach its minimum value of 0 when rp1 = rp but it will

increase as the correlation between those two portfolios decreases.

3 The original tests

The framework described in the previous section has an implicit time dimension

that corresponds to the investment horizon of the agents. To make it econometrically

operational for a panel data of excess returns on N1 + N2 = N assets over T periods

whose length supposedly coincides with the relevant investment horizon, GRS considered

the following multivariate, conditionally homoskedastic, linear regression model

r2t = a+Br1t + ut = a+Br1t +Ω1/2ε∗t , (5)

where a is a N2× 1 vector of intercepts, B is a N2×N1 matrix of regression coefficients,

Ω1/2 is an N2×N2 “square root” matrix such that Ω1/2Ω1/2 = Ω, ε∗t is a N2-dimensional

standardised vector martingale difference sequence satisfying E(ε∗t |r1t, It−1;γ0,ω0) = 0
and V (ε∗t |r1t, It−1;γ0,ω0) = IN2 , γ 0 = (a0,b0), b = vec(B), ω = vech(Ω), the subscript 0

refers to the true values of the parameters, and It−1 denotes the information set available

at t− 1, which contains at least past values of r1t and r2t. Crucially, GRS assumed that
conditional on r1t and It−1, ε∗t is independent and identically distributed as a spherical

Gaussian random vector, or ε∗t |r1t, It−1;γ0,ω0 ∼ i.i.d. N(0, IN2) for short.

Given the structure of the model, the unrestricted Gaussian ML estimators of a

and B coincide with the equation by equation OLS estimators in the regression of each
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element of r2t on a constant and r1t. Consequently,

â = µ̂2 − B̂µ̂1, (6)

B̂ = Σ̂21Σ̂
−1
11 , (7)

Ω̂ = Σ̂22 − Σ̂21Σ̂
−1
11 Σ̂

0
21,

where

µ̂ =

µ
µ̂1
µ̂2

¶
=
1

T

TX
t=1

µ
r1t
r2t

¶
,

Γ̂ =

µ
Γ̂11 Γ̂021
Γ̂21 Γ̂22

¶
=
1

T

TX
t=1

µ
r1tr

0
1t r1tr

0
2t

r2tr
0
1t r2tr

0
2t

¶
,

and Σ̂ = Γ̂− µ̂µ̂0.
In fact, â and B̂ would continue to be the Gaussian ML estimators if the matrix Ω0

were known. In those circumstances, the results in Breusch (1979) would imply that the

Wald (WT ), LR (LRT ) and LM (LMT ) test statistics for the null hypothesis H0 : a = 0

would all be numerically identical to

T · â0Ω−10 â

1 + µ̂01Σ̂
−1
11 µ̂1

,

whose finite sample distribution conditional on the sufficient statistics µ̂1 and Σ̂11 would

be that of a non-central χ2 with N2 degrees of freedom and non-centrality parameter

T · a00Ω−10 a0/(1 + µ̂01Σ̂−111 µ̂1).2 The reason is that the finite sample distribution of â,

conditional on µ̂1 and Σ̂11, is multivariate normal with mean a0 and covariance matrix

T−1(1 + µ̂01Σ̂
−1
11 µ̂1)Ω0.

In practice, of course, Ω0 is unknown, and has to be estimated along the other

parameters. But then, the Wald, LM and LR tests no longer coincide. However, for

fixed N2 and large T all three tests will be asymptotically distributed as the same

non-central χ2 with N2 degrees of freedom and non-centrality parameter

ã0Ω−1ã
1 + µ01Σ

−1
11 µ1

under the Pitman sequence of local alternatives HlT : a = ã/
√
T (see Newey and Mac-

Fadden (1994)). In contrast, they will separately diverge to infinity for fixed alternatives

2Consequently, the distribution under the null H0 : a = 0 is effectively unconditional. In contrast,
the unconditional distribution under the alternative is unknown.
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of the form Hf : a = ȧ, which makes them consistent tests. In the case of the Wald test,

in particular, we can use Theorem 1 in Geweke (1981) to show that

p lim
1

T
WT =

ȧ0Ω−1ȧ
1 + µ01Σ

−1
11 µ1

coincides with Bahadur’s (1960) definition of the approximate slope of the Wald test.3

In finite samples, though, the test statistics satisfy the following inequalities

WT ≥ LRT ≥ LMT ,

which may lead to the conflict among criteria for testing hypotheses pointed out by

Berndt and Savin (1977). In effect, the above inequalities reflect the fact that the

finite sample distribution of the three tests is not well approximated by their asymptotic

distribution, especially when N2 is moderately large. For that reason, Jobson and Korkie

(1982) proposed a Bartlett (1937) correction that scales the usual LRT statistic by

1−(N2+N1+3)/2T to improve the finite sample reliability of its asymptotic distribution.

In this context, the novel contribution of GRS was to exploit results from classic

multivariate regression analysis to show that, conditional on the sufficient statistics µ̂1

and Σ̂11, the test statistic

FT =
T −N2 −N1

N2

â0Ω̂−1â

1 + µ̂01Σ̂
−1
11 µ̂1

will be distributed in finite samples as a non-central F with N2 and T −N1−N2 degrees

of freedom and non-centrality parameter

T · a00Ω−10 a0
1 + µ̂01Σ̂

−1
11 µ̂1

.

The Wald, LM or LR statistics mentioned before can be written as monotonic transfor-

mations of this F test. For instance,

FT =
T −N2 −N1

N2
[exp(LRT/T )− 1]

Importantly, GRS also showed that

â0Ω̂−1â = µ̂0Σ̂−1µ̂− µ̂01Σ̂−11 µ̂1 = ŝ2(r̂p)−ŝ2(r̂p1),
3Although in general approximate slopes differ from non-centrality parameters for local alternatives,

in this case both expressions coincide because the asymptotic variance of â is the same under the null
and the alternative.
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where ŝ2(r̂p) = µ̂0Σ̂−1µ̂ is the (square) sample Sharpe ratio of the ex-post mean-variance

efficient portfolio that combines r1 and r2, while ŝ2(r̂p1) = µ̂
0
1Σ̂

−1
1 µ̂1 is the (square)

sample Sharpe ratio of the ex-post mean-variance efficient portfolio that uses data on

r1 only.4 In view of expression (4), an alternative interpretation is that â0Ω̂−1â is the

maximum ex-post Sharpe ratio obtained by combining ẑ2, which are the components of

r2 that have been fully hedged in sample relative to r1. The corresponding portfolio,

â0Ω̂−1(r2 − B̂r1) = â0Ω̂−1ẑ2, is sometimes known as the (ex post) optimal orthogonal

portfolio (see MacKinlay (1995)).

Strictly speaking, GRS considered an incomplete (conditional) model that left un-

specified the marginal distribution of r1t. But they would have obtained exactly the same

test had they considered the complete (joint) model rt|It−1;ρ ∼ i.i.d. N [µ(ρ),Σ(ρ)],

where

µ(ρ) =

µ
µ1

a+Bµ1

¶
, (8)

Σ(ρ) =

µ
Σ11 Σ11B

0

BΩ11 BΣ11B
0 +Ω

¶
, (9)

and ρ0 = (a0,b0,ω0,µ01,σ
0
11), where σ11 = vech(Σ11). The reason is that under this

assumption the joint log-likelihood function of rt conditional on It−1 can be written as

the sum of the conditional log-likelihood function of r2t given r1t (and the past), which

depends on a, B and Ω only, plus the marginal log-likelihood function of r1t (conditional

on the past), which just depends on µ1 and Σ11. Given that (a,b,ω) and (µ1,σ11)

are variation free, we have thus performed a sequential cut of the joint log-likelihood

function that makes r1t weakly exogenous for (a,b,ω), which in turn guarantees the

efficiency of the GRS procedure (see Engle, Hendry and Richard 1983). In addition,

the i.i.d. assumption implies that r1t would in fact be strictly exogenous, which justifies

finite sample inferences.

Although the existence of finite sample results is very attractive, particularly when

N2 is moderately large, many empirical studies with financial time series data indicate

that the distribution of asset returns is usually rather leptokurtic. For that reason,

MacKinlay and Richardson (1991) developed a robust test of mean-variance efficiency

by using Hansen’s (1982) GMM methodology (see also Harvey and Zhou (1991)). The

4Kandel and Stambaugh (1989) provide an alternative graphical interpretation of the GRS test in
sample mean-variance space.
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orthogonality conditions that they considered are

E [mR (Rt;γ)] = 0,

mR (rt;γ) =

∙µ
1
r1t

¶
⊗ εt(γ)

¸
, (10)

εt(γ) = r2t − a−Br1t.

The advantage of working within a GMM framework is that under fairly weak regu-

larity conditions inference can be made robust to departures from the assumption of nor-

mality, conditional homoskedasticity, serial independence or identity of distribution. But

since the above moment conditions exactly identify γ, the unrestricted GMM estimators

coincide with the Gaussian pseudo5 ML estimators in (6) and (7).6 An alternative way

of reaching the same conclusion is by noticing that the influence functionmR (Rt;γ) is a

full-rank linear transformation with time-invariant weights of the Gaussian pseudo-score

with respect to γ

sγt(θ,0) =

µ
1
r1t

¶
⊗Ω−1εt(γ). (11)

Not surprisingly, GMM asymptotic theory yields the same answer as standard Gaussian

PML results for multivariate regression models:

Proposition 2 Under appropriate regularity conditions

√
T (γ̂GMM − γ0)→ N [0, Cγγ(φ0)] , (12)

where

Cγγ(φ) = A−1γγ(φ)Bγγ(φ)A−1γγ(φ),
Aγγ(φ) = −E [hγγt(θ,0)|φ] = E [Aγγt(φ)|φ] ,

Aγγt(φ) = −E[hγγt(θ;0)| r1t, It−1;φ] =
µ
1 r1t
r1t r1tr

0
1t

¶
⊗Ω−1,

Bγγ(φ) = lim
T→∞

V

"√
T

T
s̄γT (θ,0)|φ

#
,

where hγγt(θ;0) is the block of the component of the Gaussian Hessian matrix corre-

sponding to γ attributable to the tth observation, and s̄γT (θ,0) is the sample mean of the

Gaussian scores.
5In this paper I use “pseudo ML” estimator in the same way as Gourieroux, Monfort and Trognon

(1984). In contrast, White (1982) uses the term “quasi ML” for the same concept.
6The obvious GMM estimator of ω is given by Ω̂, which is the sample analogue to the residual

covariance matrix.
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From here, it is straightforward to obtain robust, efficient versions of the Wald and

LM tests, which will continue to be asymptotically equivalent to each other under the

null and sequences of local alternatives (see Property 18.2 in Gouriéroux and Monfort

(1995)).7 However, the LR test will not be asymptotically valid unless εt(γ0) is i.i.d.

conditional on r1t and It−1. But it is possible to define a LR analogue as the difference

in the GMM criterion functions under the null and the alternative. This “distance

metric” test will have an asymptotic χ2 distribution only if the GMMweighting matrix is

optimally chosen, in which case it will be asymptotically equivalent to the optimal GMM

versions of theWT and LMT tests under the null and sequences of local alternatives (see

e.g. Theorem 9.2 in Newey and MacFadden (1994)).

Importantly, the optimal distance metric test will coincide with the usual overidenti-

fication test since the moment conditions (10) exactly identify γ under the alternative.

In addition, given that the influence functions (10) are linear in the parameters γ, the

results in Newey and West (1987) imply that regardless of whether we use the Wald,

Lagrange multiplier or Distance Metric tests, there will be two numerical distinct test

statistics only: those that use the optimal GMM weighting matrix computed under the

null, and those based on the optimal weighting matrix computed under the alternative.

4 The effects of the number of assets and portfolio
composition on test power

As we mentioned in the introduction, Black, Jensen and Scholes (1972) proposed

the use of the t ratio of ai in the regression of r2t on a constant and r1t to test the

mean-variance efficiency of r1t. However, when r2t contains more than one element, it

seems natural to follow GRS and conduct a joint test of H0 : a = 0 in order to gain

power. Somewhat surprisingly, the answer is not so straightforward. For simplicity, let

us initially assume that there are only two assets in r2t, rit and rjt, say. As we saw before,

the maximum (square) Sharpe ratio that one can attain by combining r1t, rit and rjt is

7If sγt(θ,0) in (11) is a martingale difference sequence because E(ε∗t |r1t, It−1;φ) = 0, then Bγγ(φ) =
E [Bγγt(φ)|φ] , where

Bγγt(φ) = V [sγt(θ;0)| r1t, It−1;φ] =
µ

1 r1t
r1t r1tr

0
1t

¶
⊗Ω−1E[εt(γ)ε0t(γ)|r1t, It−1;φ]Ω−1,

which simplifies the calculations.
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given by the following expression

µ0Σ−1µ = µ01Σ
−1
11 µ1 + a

0Ω−1a,

where a0Ω−1a is the maximum (square) Sharpe ratio that one can achieve by combining

zi = ai + εi and zj = aj + εj, which are the components of rit and rjt that are fully

hedged with respect to r1t. But if we use expression (4) in section 2 we will have that

a0Ω−1a =
a2i
ω2j
+
[s(zj)− ρzizjs(zi)]

2q
1− ρ2zizj

where ρzizj is the correlation between zi and zj. An alternative way to interpret this

expression is to think of the second summand as the (square) Sharpe ratio of uj =

zj − (ωij/ω
2
j)zi, which is the component of rj that is fully hedged with respect to both

r1t and rit.8 Therefore, when we add rj to ri for the purpose of testing the mean-variance

efficiency of r1 we must consider three effects:

1) The increase in the non-centrality parameter, which is proportional to s2(uj) and

ceteris paribus increases power.

2) The increase in the number of degrees of freedom of the numerator, which ceteris

paribus decreases power.

3) The decrease in the number of degrees of freedom of the denominator resulting

from the fact that there are additional parameters to be estimated, which ceteris paribus

decreases power too, although not by much if T is reasonably large.

The net effect is studied in detail by Rada and Sentana (1997). For a given value of

ŝ2(r1) and different values of T , these authors obtain isopower lines, defined as the locus

of points in s2(zi), s
2(uj) space for which the power of the univariate test is exactly the

same as the power of the bivariate test. GRS also present some evidence on the effects

of increasing the number of assets on power under the assumption that the innovations

are cross-sectionally homoskedastic and equicorrelated, so that

Ω = ω[(1− ρ)IN2 + ριN2ιN2 ], (13)

where ω and ρ are two scalars. Given that the F test estimates a fully unrestricted Ω,

it is not surprising that their results suggest that one should not use a large N2 (see also

8It is important to remember that as the correlation between zi and zj increases, the law of one price
guarantees that s2(uj) = 0 in the limit of ρ2zizj = 1.
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MacKinlay (1987)). In fact, the F test can no longer be computed if N2 ≥ T −N1.9

The answer to the previous question leads to the following question: Should we group

rit and rjt into a portfolio and carry out a single individual t test, or should we consider

them separately? Rada and Sentana (1997) study this question in a multivariate context.

For simplicity, we will only discuss the situation in which Ω is assumed to be a known

diagonal matrix, in which case we should work with the vector of re-scaled excess returns

r∗2 = dg−1/2(Ω)r2, which are such that

r∗2 = a
∗ +B∗r1 + ε∗,

where a∗ = dg−1/2(Ω)a, B∗ = dg−1/2(Ω)B and V (ε∗|r1) = IN2. As we mentioned at the
end of section 2, the elements of a∗ are often referred to as the “information ratios” of the

elements of r2 in the portfolio evaluation literature. In this simplified context, Rada and

Sentana (1997) express the non-centrality parameter of the joint Wald test ofH0 : a
∗ = 0

as the sum of the non-centrality parameters of a Wald test that a∗ = a∗ιN2 and a Wald

test that a∗ = 0, where a∗ is a scalar. Their result is based on a standard analysis of

variance argument applied to the ML estimator of a∗. Specifically, they exploit the fact

that
N2X
i=1

â∗2i = N2(â
∗2 + δ̂) (14)

where

â∗ = N−1
2

N2X
i=1

â∗i ,

δ̂ = N−1
2

N2X
i=1

(â∗i − â∗)2

It is then easy to see that under their maintained distributional assumptions, â∗2 is

proportional to a non-central chi-square with one degree of freedom, while δ̂ is propor-

tional to an independent non-central chi-square with N2 − 1 degrees of freedom. Not
surprisingly, Rada and Sentana (1997) show that the contribution of each of those two

components to the power of the test depend exclusively on the relative values of the cross-

sectional mean of the information ratios a∗ = N−1
2

PN2
i=1 a

∗
i , and their cross-sectional

variance δ = N−1
2

PN2
i=1(a

∗
i − a∗)2.

9Affleck-Graves and McDonald (1990) proposed a maximum entropy statistic that ensures the non-
singularity of the estimated residual covariance matrix Ω even if N2 > T . Unfortunately, the finite
sample distribution of their test statistic is generally unknown even under normality, and can only be
assessed by simulation. In addition, it is not clear either what is limiting behaviour will be when both
N2 and T go to infinity at the same rate.
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Finally, Rada and Sentana (1997) extend their analysis to the case in which one

forms L equally weighted portfolios of M different assets from the N2 elements of r∗2,

where M = N2/L. In that case, an analysis of variance decomposes the test into three

components: a test that the overall mean of the information ratios is zero, as in the

previous case, a test that the between group variance in information ratios is 0, and

finally a test that their within groups variance is 0. More specifically, if we denote

by â∗l the average value of â
∗
i for those assets that belong to the lth group, so that

â∗ = L−1
PL

l=1 â
∗
l , then we will have that

δ̂ =
1

L

LX
l=1

(â∗l − â)2 +
1

L

LX
l=1

L

N2

MX
j=1

(â∗i − â∗l )
2. (15)

Note that the first summand is proportional to a non-central chi-square with L − 1
degrees of freedom, while the second one is proportional to an independent non-central

chi-square with N2 − L degrees of freedom. In this context, Rada and Sentana (1997)

provide isopower lines in the space of within group and between group variances. Their

analysis suggests that randomly chosen portfolios will have very little power over and

above a test that the overall mean is zero, since the between groups variance is likely

to be close to 0 for large M . In contrast, if we could form portfolios that reduce the

within group variance in information ratios but increase their between group variance

then we would have substantially more power in the portfolio tests than in the test that

considers the individual assets. The above results provide a formal justification for the

usual practice of grouping returns according to the ranked values of certain observable

characteristics that are likely to yield disperse information ratios, such as size or book

to value, as opposed to grouping them by industry, which is likely to produce very

similar information ratios. Nevertheless, it is important to realise that such procedures

may introduce some data snooping size distortions, as illustrated by Lo and MacKinlay

(1990).

Another fact that is worth remembering in this context is that the maximum Sharpe

ratio attainable for any particular N2 will be bounded from above by the limiting max-

imum Sharpe ratio, s∞, which is also bounded if we rule out arbitrage opportunities as

N2 → ∞ (see Ross (1976) and Chamberlain (1983)). This is important because an in-

creasing number of assets cannot result in an unbounded Sharpe ratio, and consequently,

an unbounded non-centrality parameter, as explained by MacKinlay (1987, 1995). In
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other words, N2(a
∗2 + δ) must remain bounded as N2 goes to infinity, which requires

that (a∗2 + δ) = O(N−1
2 ).

Rada and Sentana (1997) obtain the asymptotic distribution of the mean-variance

efficiency test when N2 → ∞ in the case in which Ω is diagonal but unknown and the

distribution of returns is i.i.d. multivariate normal. Their result exploits the fact that

conditional on ŝ2(r1), the t-ratio of the intercept of the ith asset

t̃∗2i =
T − 2

[1 + ŝ2(r1)]

â2i
ω̂ii

will be distributed independently of the t-ratios of the intercepts of the other assets as

a non-central F distribution with 1 and T − 2 degrees of freedom and non-centrality

parameter Ta∗2i [1 + ŝ2(r1)]
−1, so that its mean will be

πi =
T − 2
T − 4

∙
1 +

T

[1 + ŝ2(r1)]
a∗2i

¸
(16)

and its variance

λ2i =
2(T − 2)2

(T − 4)2(T − 6)

(∙
1 +

T

[1 + ŝ2(r1)]
a∗2i

¸2
+ (T − 4)

∙
1 +

2T

[1 + ŝ2(r1)]
a∗2i

¸)
.

Given that the mean-variance efficiency test that exploits the diagonality of Ω will be

proportional to
PN2

i=1 t̃
∗2
i , they use the Linderberg-Feller central limit theorem for inde-

pendent but heterogeneously distributed random variables10 to obtain the asymptotic

distribution of the joint test for fixed T but large N2, which under the null will be given

by √
N2

N2

N2X
i=1

µ
t̃∗2i −

T − 2
T − 4

¶
→ N(0, 2).

In contrast, the mean under the alternative will be proportional to a∗2 + δ in view (16).

But since we saw before that a∗2 + δ = O(N−1
2 ) in order to rule out limiting arbitrage

opportunities, one cannot even allow for local alternatives of the form (ā∗2 + δ̄)/
√
N2,

10As is well known, this central limit theorem says thatPN2

i=1 t̃
∗2
i −

PN2

i=1 πiqPN2

i=1 λ
2
i

→ N(0, 1)

as long as the Lindeberg condition is satisfied, which Rada and Sentana (1997) assumed. This condition
guarantees that the individual variances λ2i are small compared to their sum, in the sense that for given
� and for all sufficiently large N2, λ

2
i /
PN2

j=1 λ
2
j < � for i = 1, ...,N2 (see Feller 1971, p. 256).
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and therefore the mean-variance efficiency test is likely to have negligible asymptotic

power in those circumstances.11

Affleck-Graves and McDonald (1990) suggest to use the statistic
PN2

i=1 t̃
∗2
i even when

Ω is not diagonal. Part of their motivation is that in this way there is no longer any need

to form portfolios for the purposes of avoiding a singular estimated covariance matrix.

The problem is that the distribution of such a statistic is non-standard if Ω is not

diagonal, although in samples in which N2 is small but T is large, we could use Imhof’s

procedure (see e.g. Farebrother (1990)) to approximate the distribution of the statisticPN2
i=1 t̃

∗2
i , replacing the matrix Ω by its unrestricted sample counterpart Ω̂ in computing

the weights of the associated quadratic form in normal variables. Alternatively, we could

impose structure on the cross-sectional distribution of the asset returns. Bossaerts and

Hillion (1995) take a first step in this direction and derive the asymptotic distribution

of
PN2

i=1(rit −
PN1

j=1 b̃ijrjt) for large N2 but fixed T , where b̃ij is the restricted OLS

estimator of bij that imposes the null hypothesis ai = 0, under the assumptions that (i)

the conditional distribution of εt given r1t is exchangeable (see e.g. Kingman (1978)),

which among other things requires that Ω can be written as in (13), and (ii) Ω has an

approximate zero factor structure as N2 grows (see Chamberlain and Rothschild (1983)).

More generally, the application of mean-variance efficiency tests in situations in which

N2/T is not negligible will require not only a different asymptotic theory in which the

object of interest is the cross-sectional limit of a0Ωa, but also the imposition of plausible

restrictions on the matrix Ω, with exact or approximate factor structures being the most

natural candidates.

5 Asymptotically equivalent tests

A stochastic discount factor (SDF), m say, is any scalar random variable defined

on the same underlying probability space which prices assets in terms of their expected

cross product with it. For instance, in a complete markets set-up,m would correspond to

the price of each Arrow-Debreu security divided by the probability of the corresponding

state. The stochastic discount factor mean-variance frontier (SMVF) introduced by

11Rada and Sentana (1997) also combine the decompositions of
PN

i=1 â
∗2
i in (14) and (15) with this

asymptotic approximation to obtain the asymptotic distribution of the components of the mean-variance
efficiency test attributable to the overall mean of the information ratios, their between groups variance
and the within groups one.
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Hansen and Jagannathan (1991) represented a major breakthrough in the way financial

economists looked at data on asset returns to discern which asset pricing theories are not

empirically falsified. Somewhat remarkably, it turns out that this frontier is intimately

related to the RMVF, as they effectively summarise the sample information about the

first and second moments of asset payoffs.

When every asset is an arbitrage portfolio with payoff vector r, as in the case of

returns measured in excess of the risk free rate that we are considering, it is trivial to

show that there is also one-fund spanning in the SMVF, so that it is a straight lines that

starts from the origin with slope
p
µ0Σ−1µ, which is the maximum risk/return trade-off

attainable by an investor. More formally, the SMVF will be given by

mMV (c) = c(1 + µ0Σ−1µ)(1− p+),

where p+ is the (uncentred) mean representing portfolio for arbitrage portfolios, i.e. the

arbitrage portfolio that satisfies:

E(rp+) = µ. (17)

In this notation, the arbitrage (i.e. zero-cost) mean variance frontier (AMVF) will

be

rMV (µ) = µ

µ
1 + µ0Σ−1µ
µ0Σ−1µ

¶
p+.

Peñaranda and Sentana (2004) discuss representing portfolios-based tests of spanning,

which in this case reduce to checking that AN1 = hr1i and AN = hri share the same
mean representing portfolio. In view of (17), it is obvious that the moment conditions

and parametric restrictions that they test are

E(rtr
0
tφ

+ − rt) = E[mU(rt;φ
+)] = 0, (18)

and H0 : φ
+
2 = 0, respectively. Their test is essentially identical to the GMM test of the

moment conditions

E[rt(κ +ψ0
1r1t)] = 0

studied by Cochrane (2001) as a test of linear factor pricing models, since in the case

of excess returns the choice of κ is arbitrary. Intuitively, Cochrane’s moment conditions

can be understood as simply saying that under the null there is a SDF generated from

(1, r1t) alone that prices correctly all N assets under consideration.
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Similarly, the approach of Britten-Jones (1999) to test the mean-variance efficiency

of a given portfolio by looking at its weights can be easily cast in the previous GMM

framework too, because the regression of a vector of ones onto the vector of excess returns

gives the orthogonality conditions (18) that define the mean RP (see also Sentana (2005)).

Thus, we can once more apply the trinity of asymptotic GMM tests, which will again have

a limiting chi-square distribution with N2 degrees of freedom under the null. But since

the moment conditions defining φ∗ and φ+ are exactly identified, the distance metric test

will coincide with the overidentifying restrictions test. In addition, all the tests can be

made numerically identical by using a common estimator of the asymptotic covariance

matrix of
√
Tm̄UT (φ

0), because both the moment conditions and the restrictions to test

are linear in the parameters (see Newey and West (1987)).

Peñaranda and Sentana (2004) also consider an alternative approach based on the

centred mean representing portfolio, Cov(r, p++) = µ, which leads to the moment con-

ditions

E

∙
rt − µ

(rt − µ) (rt − µ)0ϕ+ − rt
¸
= E

∙
mM(rt;µ)

mC(rt;ϕ
+,µ)

¸
= E[mE(rt;ϕ

+,µ)] = 0, (19)

to test H0 : ϕ
+
2 = 0. In this case, their test is entirely analogous to the one considered

by De Santis (1995) and Bekaert and Urias (1996), who based it on the SDF moment

conditions

E{rt[c+ (r1t − µ1)0β1]} = 0,

because once again the choice of c is arbitrary. In this context, sequential GMM can be

successfully applied to (19), and it retains the computational advantage of linearity in ϕ+

(see Ogaki (1993)). In addition, since E[mM(rt;µ)] = 0 exactly identifies the nuisance

parameter µ, Peñaranda and Sentana (2004) show that SGMM entails no asymptotic

efficiency loss.

All GMM tests that we have discussed so far are exactly identified under the alter-

native, in which case the choice of weigthing matrix is asymptotically irrelevant for the

estimators. Under the null, though, the system of moment conditions are overidentified,

so we may need an initial estimate of the optimal weighting matrix based on a consis-

tent estimator of the parameters. Although the choice of preliminary estimator does not

affect the asymptotic distribution of two-step GMM estimators up to Op(T
−1/2) terms,

there is some Monte Carlo evidence suggesting that their finite sample properties can be
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negatively affected by an arbitrary choice of initial weighting matrix such as the identity

(see e.g. Kan and Zhou (2001)).

For that reason, Peñaranda and Sentana (2004) provide the following useful expres-

sions for first-step, consistent restricted estimators, which are optimal under the as-

sumption that rt is independently and identically distributed as an elliptical random

vector with mean µ, covariance matrix Σ, bounded fourth moments, and coefficient of

multivariate excess kurtosis κ <∞:12

Proposition 3 1. The linear combinations of the moment conditions in (18) that

provide the most efficient estimators of φ+1 under H0 : φ
+
2 = 0 will be given by

E(r1tr
0
1tφ

+
1 − r1t) = 0,

so that φ̄
+
1 = Γ̂−111 µ̂1.

2. The linear combinations of the moment conditions (19) that provide the most effi-

cient estimators of ϕ+1 under H0 : ϕ
+
2 = 0 will be given by

E

∙
r1t − µ1

(r1t − µ1)(r1t − µ1)0ϕ+1 − r1t
¸
= 0,

so that µ̄1T = µ̂1 and ϕ̄
+
1 = Σ̂−111 µ̂1, and

3. The linear combinations of the moment conditions (10) that provide the most effi-

cient estimators of b under H0 : a = 0 will be given by

E[(r1t + κµ1)⊗ (r2t −Br1t)] = 0.

In this respect, note that since Γ−1µ = (1+µ0Σ−1µ)−1Σ−1µ by virtue of the Wood-

bury formula, φ̄+1 and ϕ̄
+
1 will be proportional to each other, and the same applies to

φ̂
+
and ϕ̂+ . However, since the factor of proportionality depends on the data, the Wald

tests of H0 : φ
+
2 = 0 and H0 : ϕ

+
2 = 0 cannot be made numerically identical.

We now have three different ways to test for the mean variance efficiency of r1t: cen-

tred and uncentred representing portfolios, and the regression version. The equivalence

between their respective parametric restriction can be easily proved by showing that a

is a full-rank linear transformation of φ+2 , which in turn is proportional to ϕ
+
2 . However,

12See Renault (1997) for a result analogous to part 3 in the special case in which the payoffs of the
arbitrage portfolios are i.i.d. Gaussian.
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the fact that the restrictions to test are equivalent does not necessarily imply that the

corresponding GMM-based test statistics will be equivalent too. This is particularly true

in the case of the regression version of the test, in which the number of moments and

parameters involved is different, although the number of degrees of freedom is the same.

It turns out, however, that those three families of mean-variance efficiency tests are

asymptotically equivalent under the null and sequences of local alternatives, as shown

by Peñaranda and Sentana (2004). Therefore, there is no basis to prefer one test to

the other from this perspective because all three statistics converge to exactly the same

random variable. In this respect, note that this equivalence result is valid as long as the

asymptotic distributions of the different tests are standard, which happens under fairly

weak assumptions on the distribution of asset returns.

However, such an equivalence is lost under fixed alternatives. But by strengthen-

ing the distributional assumptions, Peñaranda and Sentana (2004) prove that if rt are

independently and identically distributed as an elliptical random vector with mean µ,

covariance matrix Σ, and bounded fourth moments, then the approximate slope of the

Wald version of the regression test is at least as large as the approximate slope of the

Wald version of the centred RP test.

In contrast, it is fairly easy to find parametric configurations for which the approx-

imate slope of the uncentred RP test is either bigger or smaller than the approximate

slope of the GMM version of the GRS test. In particular, Peñaranda and Sentana (2004)

prove that the uncentred RP test is more powerful than the regression test under nor-

mality regardless of the parameter values. Although these results are fairly specific, they

can rationalise Monte Carlo results obtained under commonly made assumptions, since

the elliptical distributions nest both the multivariate normal and student t.

6 More efficient tests

6.1 Tests based on the distribution of r2t conditional on r1t

The GMM tests discussed in previous sections provide asymptotically valid inferences

under fairly weak assumptions on the distribution of returns. However, this robustness

may come at the cost of a power loss. In this sense, Hodgson, Linton, and Vorkink (2002;

hereinafter HLV) developed a semiparametric estimation and testing methodology that

enabled them to obtain optimal mean-variance efficiency tests under the assumption
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that the distribution of r2t conditional on r1t (and their past) is elliptically symmetric.

Specifically, HLV showed that their proposed estimators of a and b are adaptive un-

der the aforementioned assumptions of linear conditional mean and constant conditional

variance, which means that they are as efficient as infeasible maximum likelihood esti-

mators that use the correct parametric elliptical density with full knowledge of its shape

parameters. Elliptical distributions are very attractive in this context because they guar-

antee that mean-variance analysis is fully compatible with expected utility maximisation

regardless of investors’ preferences Moreover, they generalise the multivariate normal dis-

tribution, but at the same time they retain its analytical tractability irrespective of the

number of assets.

Before discussing their test, though, it is pedagogically convenient to introduce a

parametric version, which will be based on the assumption that conditional on r1t and

It−1, ε∗t is independent and identically distributed as a spherical random vector, or

ε∗t |rMt, It−1;γ0,ω0,η0 ∼ i.i.d. s(0, IN ,η0) for short. Apart from the normal distribution,

another popular example is a standardised multivariate t with ν0 degrees of freedom, or

i.i.d. t(0, IN , ν0) for short. As is well known, the multivariate student t approaches the

multivariate normal as ν0 →∞, but has generally fatter tails. Zhou (1993) and Amen-
gual and Sentana (2008) consider two other illustrative examples: a Kotz distribution

and a discrete scale mixture of normals.

The original Kotz distribution (see Kotz (1975)) is such that ς t = ε∗0t ε
∗
t is a gamma

random variable with mean N2 and variance N2[(N2 + 2)κ0 + 2], where

κ = E(ς2t |η)/[N2(N2 + 2)]− 1

is the coefficient of multivariate excess kurtosis of ε∗t (see Mardia (1970)). The Kotz

distribution nests the multivariate normal distribution for κ = 0, but it can also be

either platykurtic (κ < 0) or leptokurtic (κ > 0). However, the density of a leptokurtic

Kotz distribution has a pole at 0, which is a potential drawback from an empirical point

of view. In turn, a standardised version of a two-component scale mixture of multivariate

normals can be generated as

ε∗t =
ξt + (1− ξt)

√
κp

π + (1− π)κ
· ε◦t , (20)

where ε◦t is a spherical multivariate normal, ξt is an independent Bernoulli variate with

P (ξt = 1) = π and κ is the variance ratio of the two components. Not surprisingly, ςt
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will be a two-component scale mixture of χ20N2s. As all scale mixtures of normals, the

distribution of ε∗t is leptokurtic, so that

κ =
π(1− π)(1− κ2)
[π + (1− π)κ]2

≥ 0,

with equality if and only if either κ = 1, π = 1 or π = 0, when it reduces to the spherical

normal. In this sense, a noteworthy property of all discrete mixtures of normals is that

their density and moments are always bounded.

Let φ = (γ 0,ω0,η)0 ≡ (θ0,η)0 denote the 2N2+N2(N2+1)/2+q parameters of interest,

which we assume variation free. The log-likelihood function of a sample of size T based

on a particular parametric spherical assumption will take the form LT (φ) =
PT

t=1 lt(φ),

with lt(φ) = dt(θ) + c(η) + g [ςt(θ),η], where dt(θ) = −12 ln |Ω| corresponds to the
Jacobian, c(η) to the constant of integration of the assumed density, and g [ς t(θ),η] to

its kernel, where ς t(θ) = ε∗0t (θ)ε
∗
t (θ), ε

∗
t (θ) = Ω−1/2εt(θ) and εt(θ) = r2t − a−Br1t.13

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into three blocks,

sγt(φ), sωt(φ), and sηt(φ), whose dimensions conform to those of γ, ω and η, respec-

tively. A straightforward application of expression (2) in Fiorentini and Sentana (2007)

implies that

sγt(φ) =

µ
1
r1t

¶
⊗ δ[ςt(θ),η]Ω

−1εt(θ), (21)

where

δ[ς t(θ),η] = −2∂g[ς t(θ),η]/∂ς,

which reduces to 1 under Gaussianity (cf. (11)).

Given correct specification, the results in Crowder (1976) imply that the score vector

st(φ) evaluated at the true parameter values has the martingale difference property.

His results also imply that, under suitable regularity conditions, which typically require

that both r1t and vech(r1tr
0
1t) are strictly stationary process with absolutely summable

autocovariances, the asymptotic distribution of the feasible ML estimator will be given

by the following expression

√
T
³
φ̂ML −φ0

´
−→ N

£
0,I−1(φ0)

¤
where I(φ0) = E[It(φ0)|φ0],

It(φ) = V [st(φ)|rMt, It−1;φ] = −E [ht(φ)|rMt, It−1;φ] ,
13Fiorentini, Sentana and Calzolari (2003) provide expressions for c(η) and gt [ςt(θ), η] in the multi-

variate student case, which under normality collapse to −(N2/2) log π and −12 ςt(θ), respectively.
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and ht(φ) denotes the Hessian function ∂st(φ)/∂φ
0 = ∂2lt(φ)/∂φ∂φ

0. On this basis,

Amengual and Sentana (2008) prove the following result:

Proposition 4 If ε∗t |rMt, It−1;φ0 in (5) is i.i.d. s(0, IN2,η0) with density exp[c(η) +

g(ς t,η)] such that mll(η0) <∞, and both r1t and vech(r1tr
0
1t) are strictly stationary

processes with absolutely summable autocovariances, then

√
T (âML − a0)→ N [0,Iaa(φ0)], (22)

where

Iaa(φ) = [Iaa(φ)− Iab(φ)I−1bb(φ)I 0ab(φ)]−1 =
1

mll(η)
[1 + s2(r1)]Ω,

mll(η) = E

½
δ2[ς t(θ),η]

ςt(θ)

N

¯̄̄̄
φ

¾
= E

½
2∂δ[ςt(θ),η]

∂ς

ς t(θ)

N
+ δ[ς t(θ),η]

¯̄̄̄
φ

¾
,

µ1 = E(r1t|φ) and Σ11 = V (r1t|φ), so that s(rp1) =
p
µ01Σ

−1
11 µ1 is the maximum Sharpe

ratio attainable with the reference portfolios.

Importantly, expression (22) is valid regardless of whether or not the shape parame-

ters η are fixed to their true values η0, as in an infeasible ML estimator, âIML say, or

jointly estimated with θ, as in a feasible one, âFML say. The reason is that the scores

corresponding to the mean parameters, sγt(φ0), and the scores corresponding to variance

and shape parameters, sωt(φ0) and sηt(φ0), respectively, are asymptotically uncorrelated

under the sphericity assumption. The usual asymptotic efficiency properties of maximum

likelihood estimators and associated test procedures imply that mean-variance efficiency

tests based on this elliptical assumption will be more efficient than those based on the

assumption of normality. Specifically, it is easy to see that

Cαα(φ0) = [1 + s2(rp1)]Ω0, (23)

which does not depend on the specific distribution for the innovations that we are con-

sidering, regardless of whether or not the conditional distribution of ε∗t is spherical, as

long as it is i.i.d. Since mll(η) ≥ 1, with equality if and only if ε∗t is normal, it is clear
that the parametric procedure is more efficient than the GMM one.

However, unless one is careful, the elliptically symmetric parametric approach may

provide misleading inference if the relevant conditional distribution does not coincide

with the assumed one, even if both are elliptical. Nevertheless, Amengual and Sentana
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(2008) show that the parametric pseudo ML estimator of γ that makes the wrong distri-

butional assumption remains consistent in that case. In contrast, the ML estimator of

Ω is only consistent up to scale, in the sense that if reparametrise Ω as τΥ(υ), where υ

are N2(N2+1)/2− 1 parameters that ensure that |Υ(υ)| = 1 ∀υ, υ will be consistently
estimated but τ will not. They illustrate their results when the pseudo log-likelihood

function is based on the multivariate t, in which case the correct asymptotic distribution

for the pseudo t-based ML estimator of a is given by the following expression:

Proposition 5 If ε∗t |rMt, It−1;ϕ0 is i.i.d. s(0, IN ,%0) but not t with κ0 > 0, where

ϕ0 = (γ0,υ0, λ0,%0), then:

√
T (âFML − γ0)→ N

"
0,

mO
ll (φ∞;ϕ0)

λ∞ [mH
ll (φ∞;ϕ0)]

2 · Caa(ϕ0)
#
, (24)

where

mO
ll (φ;ϕ) = E

©
δ2[ς t(ϑ), η] · [ςt(ϑ)/N ]

¯̄
ϕ
ª
,

mH
ll (φ;ϕ) = E {2∂δ[ς t(ϑ), η]/∂ς · [ςt(ϑ)/N ] + δ[ς t(θ), η]|ϕ} ,

λ∞ = τ 0/τ∞, and τ∞ is the pseudo-true value of τ .

The analysis of the “infeasible” t-based PML estimator, which fixes η to some value

η̄, is entirely analogous, except for the fact that the pseudo-true value of τ becomes

τ∞(η̄), as opposed to τ∞ = τ∞(η∞).
14

A natural question in this context is a comparison of the efficiency of the t-based

pseudo ML estimator and the GMM estimator when the distribution is elliptical but

not t. Amengual and Sentana (2008) answer this question by assuming that the condi-

tional distribution is either normal, Kotz, or the two-component scale mixture of normals

previously discussed, for which they obtain analytical expressions for the inefficiency ra-

tio mO
ll (φ∞;ϕ0)/{λ∞[mH

ll (φ∞;ϕ0)]
2}. Trivially, they find that if the true conditional

distribution is Gaussian, then the “infeasible” ML estimator that makes the erroneous

assumption that it is a student t with η̄−1 degrees of freedom is inefficient relative to the

GMM estimator, the more so the larger the value of η̄. Nevertheless, this inefficiency

becomes smaller and less sensitive to η̄ as the number of assets increases. But of course

14When the true distribution is either mesokortic (κ = 0) or platikurtic (κ < 0) Amengual and
Sentana (2008) show that the t-based pseudo ML estimators will be asymptotically equivalent to the
GMM estimators.
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η∞ = 0 in this case, which suggests that estimating η is clearly beneficial under misspec-

ification. They also find that the feasible t-based PML estimator seems to be strictly

more efficient than the GMM one when the true conditional distribution is leptokurtic.

And again, they find that as N2 increases the “infeasible” t-based PML estimator tends

to achieve the full efficiency of the ML estimator for any η̄ > 0.

As we mentioned before, HLV proposed a semiparametric estimator of multivariate

linear regression models that updates θ̂GMM (or any other root-T consistent estimator)

by means of a single scoring iteration without line searches. The crucial ingredient of

their method is the so-called elliptically symmetric semiparametric efficient score (see

Proposition 7 in Fiorentini and Sentana (2007)):

s̊θt(φ0)= sθt(φ0)−Ws(φ0)

½∙
δ[ςt(θ0),η0]

ς t(θ0)

N
− 1̧ − 2

(N+2)κ0+2

∙
ς t(θ0)

N
− 1̧

¾
,

whereW0
s(φ) = [0,0,

1
2
vec0(Ω−1)DN2 ] and DN2 the duplication matrix of order N2 (see

Magnus and Neudecker (1988)). In fact, the special structure ofWs(φ) implies that we

can update the GMM estimator of γ by means of the following simple BHHH correction:"
TX
t=1

sγt(φ0)s
0
γt(φ0)

#−1 TX
t=1

sγt(φ0), (25)

which does not require the computation of s̊ωt(φ0). In practice, of course, sγt(φ0) has

to be replaced by a semiparametric estimate obtained from the joint density of ε∗t .

However, the elliptical symmetry assumption allows one to obtain such an estimate

from a nonparametric estimate of the univariate density of ςt, h (ς t;η), avoiding in this

way the curse of dimensionality (see for instance appendix B1 in Fiorentini and Sentana

(2007) for details).

Proposition 7 in Fiorentini and Sentana (2007) shows that the elliptically symmetric

semiparametric efficiency bound will be given by:

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
0
s(φ0) ·

½∙
N + 2

N
mss(η0)− 1

¸
− 4

N [(N + 2)κ0 + 2]

¾
,

which implies that S̊γγ(φ0) = Iγγ(φ0) in view of the structure of Ws(φ0). This result

confirms that the HLV estimator of γ is adaptive.15

15HLV also consider alternative estimators that iterate the semiparametric adjustment (25) until it
becomes negligible. However, since they have the same first-order asymptotic distribution, we shall not
discuss them separately.
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Unfortunately, the HLV approach may also lead to erroneous inferences if the true

conditional distribution is asymmetric, and the same is true of the parametric proce-

dure. Amengual and Sentana (2008) illustrate the problem for the case in which ε∗t is

distributed as an i.i.d. multivariate asymmetric t (see Mencía and Sentana (2005)). In

that context, they show that the feasible MLE of a will be inconsistent. In contrast, B

will be consistently estimated precisely because the estimator of a will fully mop up the

bias in the mean. Unfortunately, mean-variance efficiency tests are based on a, not B.

For analogous reasons, the HLV estimator of a also becomes inconsistent under

asymmetry. Intuitively, the problem is that it will not be true any more that the N-

dimensional density of ε∗t could be written as a function of ς t = ε∗0t ε
∗
t alone. Therefore, a

semiparametric estimator of sγt(φ0) that combines the elliptical symmetry assumption

with a non-parametric specification for δ[ς t(θ),η] will be contaminated by the skewness

of the data. In contrast, the GMM estimator always yields a consistent estimator of a, on

the basis of which we can develop a GMM-based Wald test with the correct asymptotic

size because (12) remains valid under asymmetry.

Another problem that the semiparametric procedures may have is that their finite

sample performance may not be well approximated by the first-order asymptotic theory

that justifies them. In this respect, the Monte Carlo evidence presented in Amengual and

Sentana (2008) suggests that HLV-based joint and individual tests have systematically

the largest size distortions. In contrast, the GMM tests have finite sample sizes that are

close to the asymptotic levels. As for the tests that use the t-based PML estimator, they

find that both the robust and non-robust versions are well behaved.

6.2 Tests based on the joint distribution of r1t and r2t

In this section we explicitly study the framework analysed byMacKinlay and Richard-

son (1991), who considered a joint distribution of excess returns for the N assets in rt.

As we mentioned before, when the joint distribution of rt is i.i.d. Gaussian, the distrib-

ution of r2t conditional on r1t must also be normal, with a mean a+Br1t that is a linear

function of r1t, and a covariance matrix Ω that does not depend on r1t. However, while

the linearity of the conditional mean will be preserved when rt is elliptically distributed

but non-Gaussian, the conditional covariance matrix will no longer be independent of

27



r1t. For instance, if we assume that Σ−1/2(ρ)[rt − µ(ρ)] ∼ i.i.d. t(0, IN , η), where

E [r2t|r1t;ρ, η] = a+Br1t,

V [r2t|r1t;ρ, η] =
µ

ν − 2
ν +N1 − 2

¶ ∙
1 +

1

(ν − 2) (r1t − µ1)
0Σ−111 (r1t − µ1)

¸
Ω,

which means that model (5) will be misspecified due to contemporaneous, conditionally

heteroskedastic innovations. In other words, the variances and covariances of the re-

gression residuals will be a function of the regressor. In addition, note that we can no

longer operate the sequential cut of the joint log-likelihood function discussed in section

3, which invalidates the exogeneity of r1t.

As MacKinlay and Richardson (1991) pointed out, the GMM estimator of γ remains

consistent in this case. In fact, Amengual and Sentana (2008) show that if rt is inde-

pendently and identically distributed as an elliptical random vector with mean µ(ρ),

covariance matrix Σ(ρ), and bounded fourth moments, then

V (âGMM) =
£
1 + s2(rp1) (1 + κ0)

¤
Ω0. (26)

In this sense, note that the only difference with respect to (12) is that the maxi-

mum (square) Sharpe ratio of the reference portfolios s2(rp1) is multiplied by the fac-

tor (1 + κ0). In practice, we could estimate V (âGMM) by using heteroskedastic robust

standard errors a la White (1980). Specifically, we should use the sandwich expression

Cγγ(φ) = D−1U (φ)SU(φ)D−1U (φ), with

ŜU(φ) = 1

T

TX
t=1

mR (Rt;γ)m
0
R (Rt;γ) , (27)

and

D̂U(φ) =
1

T

TX
t=1

µ
1 rMt

rMt r2Mt

¶
⊗ IN . (28)

At the other extreme of the efficiency range, we can use Proposition 5 in Amengual

and Sentana (2008) to show that

V (âJML) =
1

mll(η0)

∙
1 +

mll(η0)

mss(η0)
s2(rp1)

¸
Ω, (29)

where âJML denotes the joint ML estimator that makes the correct assumption that
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²∗t (ρ) = Σ−1/2(ρ)[rt − µ(ρ)] ∼ i.i.d. s(0, IN ,η),

mll(η) = E

½
δ2N [²

∗0
t (ρ)²

∗
t (ρ),η]

²∗0t (ρ)²
∗
t (ρ)

N

¯̄̄̄
φ

¾
= E

½
2∂δN [²

∗0
t (ρ)²

∗
t (ρ),η]

∂ς

²∗0t (ρ)²
∗
t (ρ)

N
+ δN [²

∗0
t (ρ)²

∗
t (ρ),η]

¯̄̄̄
φ

¾
,

mss(η) =
N

N + 2

∙
1 + V

½
δN [²

∗0
t (ρ)²

∗
t (ρ),η]

²∗0t (ρ)²
∗
t (ρ)

N

¯̄̄̄
φ

¾¸
= E

(
2∂δN [²

∗0
t (ρ)²

∗
t (ρ),η]

∂ς

[²∗0t (ρ)²
∗
t (ρ)]

2

N(N + 2)

¯̄̄̄
¯φ
)
+ 1,

and the subscript N in δ emphasises the cross-sectional dimension of rt. This estimator

has been proposed by Kan and Zhou (2006) for the case of the multivariate t.

Amengual and Sentana (2008) also prove the consistency of the t-based estimators

of γ which make the erroneous assumption that V [r2t|r1t] = τΥ(υ), where τ = |Ω|1/N2
and Υ(υ) = Ω/|Ω|1/N2 , and provide expressions for the conditional variance of the score
and expected Hessian matrix under such misspecification. Specifically, they show that

a sandwich formula analogous to the one in (24) can still be applied to obtain the

asymptotic variance of the feasible ML estimator. They also quantify the efficiency of

the GMM and conditional ML estimator relative to the full information ML estimator

when rt is distributed as a multivariate t. Their results indicate that the “infeasible”

t-based PML estimator of γ is more efficient than the GMM estimator for all values of η̄,

the more so the larger N2 is. Furthermore, the feasible t-based PML estimator that also

estimates η gets close to achieving the full efficiency of the joint ML estimator, especially

for large N2.

In principle, their results will continue to hold if we replace the t-based ML estimator

by any other estimator based on a specific i.i.d. elliptical distribution for r2t|r1t, It−1. But
since the HLV estimator is asymptotically equivalent to a parametric estimator that uses

a flexible elliptical distribution as we increase the number of parameters, their results

suggest that the HLV estimator of γ will continue to be consistent. In fact, an argument

analogous to the one made by Hodgson (2000) in a closely related univariate context

would imply that the HLV estimator is as efficient as the parametric estimator that used

the true unconditional distribution of the innovations εt = r2t−a0−B0r1t. Nevertheless,
inferences about a and B would have to be adjusted to reflect the contemporaneous

conditional heteroskedasticity of εt, which is not straightforward.

29



7 Finite sample tests

As we discussed in section 3, one of the nicest features of the GRS test is that it allows

us to make exact finite sample inferences conditional on the observations of r1t for t =

1, . . . , T under the assumption of conditional normality and homoskedasticity. But since

their distributional assumption turns out to be empirically implausible, several studies

have analysed the finite sample properties of their tests in more realistic circumstances.

In particular, Affleck-Graves and McDonald (1989) found that while the nominal size

and power of the GRS test can be seriously misleading if the non-normalities are severe,

they are reasonably robust to minor departures from normality (see also MacKinlay

(1987), and Zhou (1993), who shows that the finite sample results differ depending on

whether the non-normality affects the conditional distribution of r2t given r1t, or the

joint distribution of r1t and r2t, which is not surprising in view of the discussion in the

previous section).

Given that elliptical distributions are natural alternatives to multivariate normality

in this context, Zhou (1993) proposed simulation-based p-values for the GRS statistic for

a few fully specified elliptical distributions, including multivariate t, Kotz and discrete

scale mixtures of normals (see also Harvey and Zhou (1991)). Similarly, Gezcy (2001)

suggested an adjustment to the F version of the GRS test that has approximately the

correct size under the same distributional assumptions.

More recently, Beaulieu, Dufour and Khalaf (2007) have developed a method to obtain

the exact distribution of the Gaussian-based Wald, LR, LM and F versions of the mean-

variance efficiency tests described at the beginning of section 3 when the innovations are

i.i.d. but not necessarily Gaussian or elliptical. For the sake of clarity, let us discuss

first the case in which the distribution of the innovations is fully specified, including the

nuisance parameters η. Their approach relies on the fact that in classical multivariate

regression models such as (5) the numerical values of the LR, W and LM test of a = 0

depend exclusively on the realisations of the regressors r1t and innovations ε∗t over the full

sample t = 1, . . . , T . Consequently, tests of linear hypothesis on the regression coefficients

a are pivotal with respect to the parameters b and ω for any finite T . On this basis,

one can simulate to any desired degree of accuracy the finite sample distribution of the

trinity of classical tests conditional on the full sample realisation of r1t by simulating
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artificial sample paths of the standardised disturbances ε∗t according to some specific

i.i.d. distribution, such a multivariate t with some fixed degrees of freedom ν0.16

Interestingly, their procedure could also be trivially applied to the Wald, LM and DM

versions of the MacKinlay and Richardson (1991) test, as long as one exploits the i.i.d.

assumption in computing the efficient GMM weighting matrix according to expression

(23).

To handle the more realistic situation in which the distribution of the innovations

depends on some unknown parameters η, Beaulieu, Dufour and Khalaf (2007) exploit the

fact that the sample values of the multivariate skewness and kurtosis measures underlying

Mardia’s (1970) multivariate normality tests are also pivotal with respect to b and ω

conditional on the full sample realisation of r1t (see Zhou (1993) and Dufour, Khalaf and

Beaulieu (2003)). On this basis, they manage to construct an exact 1 − α1 confidence

set for the nuisance parameters by “inverting” a simulated moment-based distributional

goodness of fit test that they construct by comparing the aforementioned skewness and

kurtosis components with their finite sample expectations computed by simulation under

the assumed i.i.d. distribution for the innovations.17 Then, they repeat the procedure

described in the previous paragraph at a confidence level α2 for all values of η in the

1 − α1 confidence set, and report the maximum p-value. Somewhat remarkably, they

show that the resulting maximised Monte Carlo p-value has exact level α1 + α2, in the

sense that the probability of rejecting the null hypothesis of mean-variance efficiency is

not greater than α1 + α2 for any data generating process compatible with the null (see

Lehmann (1986, chap. 3)).

Like in the original GRS test, the sampling framework of their tests is one in which

the full sample path of the excess returns on the candidate portfolio r1t is “fixed in

repeated samples”. Except in the i.i.d. normal case, though, it is not clear whether the

null distribution of the Beaulieu, Dufour and Khalaf (2007) tests is in fact independent

in finite samples from the values of the regressors.

Despite the fact that it may seem a contradiction in terms, it is interesting to analyse

the asymptotic behaviour of their finite sample procedures in order to relate them to

16In fact, if one is only interested in finding the exact p-value for a given value of the LR statistic say,
as opposed to the exact critical values at some pre-specificed level α, the Beaulie, Dufour and Khlaf
(2007) procedure provides the answer with a finite number of simulations.
17That is, their 1 − α1 confidence level set for η is made up by all the values of this parameter for

which their distribution goodness of fit test has an exact Monte Carlo p-value less than or equal to α1.
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the analysis in section 6. Although the exact confidence set for η that they construct

should become more and more concentrated around the true value η0 as T → ∞, let
us consider for simplicity the case in which a researcher specifies that the distribution

of the innovations is i.i.d. t with ν0 degrees of freedom. Given that the multivariate

regression Wald test numerically coincides with a GMM version that exploits the i.i.d.

assumption in computing the efficient GMM weighting matrix, the asymptotic size and

power properties of the Beaulieu, Dufour and Khalaf (2007) procedure are identical to

the asymptotic size and power properties of the GMM tests discussed in section 6.1 as

long as the distribution of the innovations is i.i.d., regardless of whether or not they

really follow a t with ν0 degrees of freedom. However, their test will have asymptotically

the wrong size if the conditional distribution of the innovations is not i.i.d., and the

same is obviously true in finite samples. As we saw in section 6.2, a potentially relevant

example would be one in which the joint distribution of r1t and r2t were elliptical.

Obviously, standard simulation techniques, such as bootstrap and subsampling meth-

ods, can in principle be applied to any of the tests that we have previously discussed,

although once again it would important to distinguish the situation in which r1t is treated

as if it were “fixed in repeated samples” from the more realistic situation in which the

relevant sampling framework involves all assets in rt.

In this sense, it is worth remembering that the same exogeneity considerations apply

to Bayesian testing methods, such as the ones considered by Shanken (1987b), Harvey

and Zhou (1990), Kandel, McCulloch and Stambaugh (1995) or Cremers (2006), which

can also be regarded as finite sample methods.

8 Mean-variance-skewness efficiency and spanning
tests

Despite its popularity, mean-variance analysis also suffers from important limita-

tions. Specifically, it neglects the effect of higher order moments on asset allocation. In

particular, it ignores the third central moment of returns, which as a measure of skew-

ness is undoubtedly a crucial ingredient in analysing derivative assets, games of chance

and insurance contracts. In this sense, Patton (2004) uses a bivariate copula model to

show the empirical importance of asymmetries in asset allocation. Further empirical

evidence has been provided by Harvey et al. (2002). From the theoretical point of view,
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Athayde and Flores (2004) derive several useful properties of mean-variance-skewness

frontiers, and obtain their shape for some examples by simulation techniques. Similarly,

Briec, Kerstens and Jokung (2007) propose an optimisation algorithm that obtains the

“closest” mean-variance-skewness efficient portfolio to a given portfolio, where distance

is measured in a metric that may reflect investors’ relative preferences for those three

moments.

From an econometric point of view, it is important to distinguish between testing the

mean-variance-skewness efficiency of a particular portfolio, and testing spanning of the

mean-variance-skewness frontier.

Let us start with the first test. Using a variational argument, Kraus and Litzen-

berger (1976) showed that the risk premia of any portfolio could be expressed a linear

combination of its covariance and co-skewness with any mean-variance-skewness efficient

portfolio (see also Ingersoll (1987)). Specifically, they showed that18

µi = τ rσi1 + τ sφi11 ∀i, (30)

where

σij = cov(ri, rj),

φijk = E[(ri − µi)(rj − µj)(rk − µk)],

and the coefficients τ r and τ s are common across assets. These restrictions were cast in

a GMM framework by Sánchez-Torres and Sentana (1998) as follows:

E(r1t − τ rσ11 − τ sφ111) = 0

E[(r1t − τ rσ11 − τ sφ111)
2 − σ11] = 0

E[(r1t − τ rσ11 − τ sφ111)
3 − φ111] = 0

E(rit − τ rσi1 − τ sφi11) = 0

E[(rit − τ rσi1 − τ sφi11)(r1t − τ rσ11 − τ sφ111)− σi1] = 0

E[(rit − τ rσi1 − τ sφi11)(r1t − τ rσ11 − τ sφ111)
2 − φi11] = 0

Note that for each asset except the reference portfolio there are three restrictions but only

two parameters, while for the reference portfolio there are four parameters but only three
18Strictly speaking, Kraus and Litzenberger (1976) derived a “beta” version of (30), in which σi1 is

divided by σ11 and φi11 by φ111, with the appropriate adjustments to τr and τs An advantage of the
formulation in (30) relative to the original one is that it does not require the reference portfolio to be
asymmetric.
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restrictions. All in all, there are 3(N2+1) moment restrictions on r with 2(N2+1)+2 pa-

rameters (τ r, τ s, σi1, φi11). Therefore, the corresponding overidentification test hasN2−1
degrees of freedom under the null hypothesis of mean-variance-skewness efficiency of r1,

the loss of one degree of freedom relative to the MacKinlay and Richardson (1991) test

being due to the addition of the parameter τ s. As in the case of mean-variance fron-

tiers, the overidentifying test can be made robust to departures from the assumption of

normality, conditional homoskedasticity, serial independence or identity of distribution.

Given that (30) would also arise from an asset pricing model in which the SDF were

proportional to

1− τ r(r1t − µ1)− τ s[r
2
1t − (µ21 + σ11)], (31)

we could always interpret a test of H0 : τ s = 0 as a test that (co-)skewness with r1t is not

priced.19 This interpretation also suggests that an alternative test of the mean-variance-

skewness efficiency of r1t could be obtained from the SDF-type restrictions:

E[rit{1− τ r(r1t − µ1)− τ s[r
2
1t − (µ21 + σ11)]}] = 0 ∀i.

An econometric problem that arises in this set-up is that σi1 and φi11 are highly

cross-sectionally collinear in practice (see Barone-Adessi, Gagliardini and Urga (2004)),

which makes the separate identification of τ r and τ s problematic (see Kan and Zhang

(1999a,b) or Kleibergen (2007) for related discussions in more general contexts).

Given the well-known relationship between beta pricing and SDF pricing, Barone-

Adessi, Gagliardini and Urga (2004) proposed a “quadratic” regression version of the

above problem. Specifically, they showed that if the SDF is a linear combination of r1t

and (R21t −R0t), then the intercept of the following multivariate regression

r2t = α+ βr1t + γ(R
2
1t −R0t) + vt

must satisfy the restriction

α = τ gγ, (32)

where τ g is a scalar parameter (see also Barone-Adesi (1985)). However, it is necessary

to bear in mind that unless r1t is symmetric, γi will not be exactly proportional to

19Chabi-Yo, Leisen and Renault (2007) extend the infinitesimal risk analysis of Samuelson (1970) to
provide a justification for a SDF specification such as (31). They also provide an alternative repre-
sentation of the SDF in terms of r1t and a skewness-representing portfolio, which is the least squares
projection of r21t on a constant and rt.
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the co-skewness of asset i with r1 even if one makes the additional assumptions that

E(vit|r1t, It−1) is 0 and both R0t and V (vit|r1t, It−1) are constant because

φi11 = cov(rit, r
2
1t) = γiV (r

2
1t) + βicov(r1t, r

2
1t).

As a result, one has to be careful in testing whether co-skewness with r1t is priced (see

also Chabi-Yo, Leisen and Renault (2007)). Nevertheless, Barone-Adesi, Gagliardini and

Urga (2004) argue that the difference between γi and φi11/V (r
2
1t) is likely to be fairly

small in practice when r1t is a well diversified portfolio, since the distribution of such

portfolios is strongly leptokurtic but only mildly asymmetric, if at all.20 More recently,

Beaulieu, Dufour and Khalaf (2008) have explained how to obtain by simulation the

finite sample size of the Wald and LR test of the non-linear restriction (32) under the

assumption that the distribution of εt conditional on It−1 and the past, present and

future of r1t is i.i.d.(0,Ω,ρ).21

Notice, though, that like in the case of the mean-variance frontier without a riskless

asset, the fact that a portfolio is mean-variance-skewness efficient does not imply that

any particular agent would be interested in investing in it. An obvious example is the

mean-variance efficient portfolio. The properties of the mean-variance frontier imply

that such a portfolio will trivially satisfy (30) with τ s = 0. However, only those agents

that do not care about skewness will choose it.

Therefore, from an investors’ point of view it may be more interesting to consider

mean-variance-skewness spanning tests. The problem with those tests is that in general

the mean-variance-skewness frontier is not generated by any finite number of assets.

Nevertheless Mencia and Sentana (2008) study one important case in which this frontier

will be spanned by the safe asset and two other funds, which respectively span the

mean-variance frontier and the skewness-variance frontier.

Specifically, they make mean-variance-skewness analysis fully operational by working

with a rather flexible family of multivariate asymmetric distributions, known as location-

scale mixtures of normals (LSMN), which nest as particular cases several important

elliptically symmetric distributions, such as the Gaussian or the Student t, and also some
20Sánchez-Torres and Sentana (1998) proposed a moment test of the restriction E(r1t − µ1)

3 = 0 to
assess the asymmetry of the distribution of r1t. The advantage of their test relative to the skewness
component of the usual Jarque-Bera (1981) test is that it can be made robust to non-normality, het-
eroskedasticity and serial correlation (see also Bai and Ng (2005) and Bontempts and Meddahi (2005)
for closely related approaches).
21In addition, they explicitly consider the more general case in which a riskless asset is not available.
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well known asymmetric distributions like the Generalised Hyperbolic (GH ) introduced

by Barndorff-Nielsen (1977). The GH distribution in turn nests many other well known

distributions, such as symmetric and asymmetric versions of the Hyperbolic, Normal

Gamma, Normal Inverse Gaussian or Multivariate Laplace, whose empirical relevance

has already been widely documented in the literature (see e.g. Madan and Milne (1991),

Chen, Hardle and Jeong (2004), Aas, Dimakos and Haff (2005) and Cajigas and Urga

(2007)). In addition, LSMN nest other interesting examples, such as finite mixtures

of normals, which have been shown to be a flexible and empirically plausible device to

introduce non-Gaussian features in high dimensional multivariate distributions (see e.g.

Kon (1984)), but which at the same time remain analytically tractable.

Formally, a random vector r of dimension N follows a LSMN if it can be generated

as:

r = υ + ξ−1Υδ + ξ−1/2Υ1/2εo, (33)

where υ and δ are N-dimensional vectors, Υ is a positive definite matrix of order N ,

εo ∼ N(0, IN), and ξ is an independent positive mixing variable whose distribution

function depends on a vector of q shape parameters %. Since r given ξ is Gaussian with

conditional mean υ+Υδξ−1 and covariance matrix Υξ−1, it is clear that υ and Υ play

the roles of location vector and dispersion matrix, respectively. The parameters % allow

for flexible tail modelling, while the vector δ introduces skewness in this distribution. For

ease of interpretation, Mencia and Sentana (2008) re-write the data generation process

for returns as

r = µ+Σ1/2ε∗, (34)

where ε∗ is a standardised LSMN vector that is obtained as in (33) but with

υ = −c(δ,%)δ
Υ =

1

π1(%)

∙
IN +

c(δ0δ, τ )− 1
δ0δ

δδ0
¸
,

c(x, τ ) =
−1 +p1 + 4xc2v(%)

2xc2v(%)
,

cv(%) =

p
π2(%)− π21(%)

π1(%)
,

and

πk(%) = E
¡
ξ−k
¢
, k = 1, 2,
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which they assume bounded. In addition, they choose

δ = Σ−1/2d (35)

in order to make the distribution of r independent of the particular factorisation of Σ in

(34).

In terms of portfolio allocation, Mencia and Sentana (2008) show that if the dis-

tribution of asset returns can be expressed as a LSMN , then the distribution of any

portfolio that combines those assets will be uniquely characterised by its mean, variance

and skewness. Therefore, for investors who like high means and positive asymmetry but

dislike high variances, optimal portfolios will be located on the mean-variance-skewness

frontier, which they are able to obtain in closed form. In this sense, their result extends

previous results by Chamberlain (1983), Owen and Rabinovitch (1983) and Berk (1997),

which justify the use of mean-variance analysis with elliptically distributed returns.

Furthermore, Mencia and Sentana (2008) show that the efficient part of this frontier

can be spanned by three funds: the fund that together with the safe asset generates

the usual mean-variance frontier, whose weights are proportional to ϕ+ = Σ−1µ, plus

an additional fund that spans the skewness-variance frontier, whose weights are given

by the vector d in (35). Consequently, any portfolio in the efficient part of the mean-

variance-skewness frontier will be of the type wrϕ
+ + wsd, where wr and ws are two

scalars.

On this basis, Mencia and Sentana (2008) develop a mean-variance-skewness spanning

test that jointly assesses whether ϕ+2 = 0 and d2 = 0. Given that they work within

a fully parametric framework, their test is based on the asymptotic distribution of the

ML estimator of the parameters of the LSMN model. In this regard, they provide

analytical expressions for the score by means of the EM algorithm, and explain how to

reliably evaluate the information matrix.22

9 Conclusions

This paper provides a survey of the econometrics of mean-variance efficiency tests.

Starting with the classic F test of Gibbons, Ross and Shanken (1989) and its generalised
22In principle, one could exploit the non-elliptical nature of the distribution of returns for the only

purpose of obtaining more efficient parameter estimates of the mean vector and covariance matrix of
returns, as in section 6. As we have just seen, though, mean-variance analysis is generally suboptimal
for asymmetric return distributions.
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method of moments version, I analyse the effects of the number of assets and portfolio

composition on test power. I then discuss asymptotically equivalent tests based on

mean representing portfolios and Hansen-Jagannathan frontiers, and study the trade-

offs between efficiency and robustness of using parametric and semiparametric likelihood

procedures that assume either elliptical innovations or elliptical returns. After reviewing

finite sample tests, I conclude with a discussion of mean-variance-skewness efficiency and

spanning tests.

A unifying theme of this survey is that empirical researchers must decide how much a

priori knowledge about the degree of inefficiency of the candidate portfolio, its exogeneity,

the pattern of the residual covariance matrix or the conditional distribution of asset

returns they want to use in order to obtain tests that are either more powerful or have

more reliable finite sample distributions. As usual, if they make the wrong a priori

assumptions they may inadvertently introduce potential biases in their conclusions. In

this sense, it is important that they are aware of and understand those biases, so that they

can robustify their inferences. However, it does not necessarily follow that they should

systematically rely on “asymptotically robust” procedures whose main justification is

based on first-order limiting results if they provide a poor approximation in finite samples.

In any case, there are many important issues that I have unfortunately not considered

in the interest of space. In particular, I have not looked at mean-variance efficiency tests

when a riskless asset is not available (as in e.g. Gibbons (1982), Kandel (1986), Shanken

(1985, 1986), Zhou (1991), Velu and Zhou (1999) and more recently Beaulieu, Dufour

and Khalaf (2005)), in which case the regression should be run in terms of returns instead

of excess returns, and the null hypothesis should become H0 : αi = '(1−PN1
j=1 bij) ∀i,

where ' is a scalar parameter representing the expected return of the so-called zero-beta

portfolio. As we mentioned before, in those circumstances it is important to distinguish

between mean-variance efficiency tests on the one hand, and spanning tests on the other

(see Huberman and Kandel (1987), and De Roon and Nijman (2001) for a recent survey),

in which the null hypothesis involves restrictions on both intercepts and slopes of the

multivariate regression model (5) (see Peñaranda and Sentana (2006) for a comparison

of alternative GMM procedures).

Similarly, I have ignored the effects of transaction costs and short sale constraints on

testing for mean-variance analysis, which are discussed in detail by De Roon, Nijman
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and Werker (2000). Short sale and additivity constraints are particularly relevant in

style analysis, which is often used in practice (see Sharpe (1992) for a definition and De

Roon, Nijman and Horst (2004) for a discussion of the econometric issues).

I have also disregarded the effects of using proxies of the true benchmark portfolios

r1t, which is particularly relevant in asset pricing applications in view of the so-called

Roll (1977) critique (see Shanken (1987a) and Kandel and Stambaugh (1987)).

There is also an extensive body of literature that looks at the two-pass procedures of

Fama and McBeth (1973), which continue to attract substantial attention from practi-

tioners (see Shanken (1992), Shanken and Zhou (2006) and Lewellen, Nagel and Shanken

(2007)), and also Cochrane (2001, p. 247) for a re-interpretation of their procedure in

cross-sectional and pooled regression contexts in which the estimated regression coeffi-

cients B̂ are held constant over the full sample period).

Similarly, there is a growing literature that discusses portfolio selection and its pric-

ing implications taking into account either fourth order moments of the distribution

of returns through expansions of general expected utility von Neumann-Morgenstern

preferences (see e.g. Dittmar (2002), Jondeau and Rockinger (2006), Guidolin and Tim-

mermann (2008) and Chabi-Yo, Ghysels and Renault (2008)), or a specific parametric

class of utility functions (see Gourieroux and Monfort (2005)).

Finally a very important issue that I have ignored is the effect of conditioning infor-

mation. One simple possibility is to allow both a and B to linearly depend on a vector

of predictor variables known at time t− 1, xt−1 say, and in this way test for conditional
mean variance efficiency, as suggested by Shanken (1996), Cochrane (2001), Beaulieu,

Dufour and Khalaf (2007) and others. More flexible alternatives are to work with ac-

tively managed portfolios such as rt⊗ xt−1, as suggested by Hansen and Richard (1987)
and others, or to use non-parametric procedures, as in Wang (2002, 2003) and Kayahan

and Stengos (2007).

All these issues constitute interesting avenues for further research.
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