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1 Introduction

Mean-variance analysis is widely regarded as the cornerstone of modern investment theory.

Despite its simplicity, and the fact that more than five and a half decades have elapsed since

Markowitz published his seminal work on the theory of portfolio allocation under uncertainty

(Markowitz (1952)), it remains the most widely used asset allocation method. A portfolio with

excess returns rMt is mean-variance efficient with respect to a given set of N assets with excess

returns rt if it is not possible to form another portfolio of those assets and rMt with the same

expected return as rMt but a lower variance. Despite the simplicity of this definition, testing

for mean-variance efficiency is of paramount importance in many practical situations, such as

mutual fund performance evaluation (see De Roon and Nijman (2001) for a recent survey),

gains from portfolio diversification (Errunza, Hogan and Hung (1999)), or tests of linear factor

asset pricing models, including the CAPM and APT, as well as other empirically oriented asset

pricing models (see e.g. Campbell, Lo and MacKinlay (1996) or Cochrane (2001) for advanced

textbook treatments).

As is well known, rMt will be mean-variance efficient with respect to rt in the presence of a

riskless asset if and only if the intercepts in the theoretical least squares projection of rt on a

constant and rMt are all 0 (see Jobson and Korkie (1982), Gibbons, Ross and Shanken (1989)

and Huberman and Kandel (1987)). Therefore, it is not surprising that this early literature

resorted to ordinary least squares (OLS) to test those theoretical restrictions empirically. If

the distribution of rt conditional on rMt (and their past) were multivariate normal, with a

linear mean a+ brMt and a constant covariance matrix Ω, then OLS would produce efficient

estimators of the regression intercepts a, and consequently, optimal tests of the mean-variance

efficiency restrictions H0 : a = 0. In addition, it is possible to derive an F version of the

test statistic whose sampling distribution in finite samples is known under exactly the same

restrictive distributional assumptions (see Gibbons, Ross and Shanken (1989)). In this sense,

this F -test generalises the t-test proposed by Black, Jensen and Scholes (1972) in univariate

contexts.

However, many empirical studies with financial time series data indicate that the distribu-

tion of asset returns is usually rather leptokurtic. For that reason, MacKinlay and Richardson

(1991) proposed alternative tests based on the generalised method of moments (GMM) that

are robust to non-normality, unlike traditional OLS test statistics.
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More recently, Hodgson, Linton, and Vorkink (2002; hereinafter HLV) developed a semi-

parametric estimation and testing methodology that enabled them to obtain optimal mean-

variance efficiency tests under the assumption that the distribution of rt conditional on rMt

(and their past) is elliptically symmetric. Specifically, HLV showed that their proposed esti-

mators of a and b are adaptive under the aforementioned assumptions of linear conditional

mean and constant conditional variance, which means that they are as efficient as infeasible

maximum likelihood estimators that use the correct parametric elliptical density with full

knowledge of its shape parameters. Elliptical distributions are very attractive in this con-

text because they guarantee that mean-variance analysis is fully compatible with expected

utility maximisation regardless of investors’ preferences (see e.g. Chamberlain (1983), Owen

and Rabinovitch (1983) and Berk (1997)). Moreover, they generalise the multivariate normal

distribution, but at the same time they retain its analytical tractability irrespective of the

number of assets.

Nevertheless, the finite sample performance of such semiparametric inference procedures

may not be well approximated by the first-order asymptotic theory that justifies them. For that

reason, an alternative approach worth considering is a feasible maximum likelihood estimator

based on the correct elliptical distribution, but which includes the unknown shape parameters

as additional arguments in the maximisation algorithm (see e.g. Kan and Zhou (2006)).

However, unless we are careful, this last approach may provide misleading inference if the

relevant conditional distribution does not coincide with the assumed one, even if both are

elliptical. Similarly, the HLV approach may also lead to erroneous inferences if the true

conditional distribution is either heteroskedastic or asymmetric.

The purpose of our paper is to shed some light on these efficiency-consistency trade-offs in

the context of mean-variance efficiency tests. To do so, we derive the asymptotic properties

of tests based on GMM, HLV and elliptically-based parametric ML estimators under correct

specification and under several potentially relevant forms of misspecification. In particular,

we study those situations in which the distribution of the innovations is (i) i.i.d. elliptical but

different from the one assumed for estimation purposes, (ii) i.i.d. but asymmetric, and (iii)

elliptical but conditionally heteroskedastic. In addition, given that it is far from trivial to

obtain exact finite sample distributions once we abandon the Gaussianity assumption, we also

analyse the reliability of the usual asymptotic approximations by Monte Carlo methods.1

1See Beaulieu, Dufour and Khalaf (2007) for a method to obtain the exact distribution of the Gibbons,
Ross and Shanken (1989) F -statistic conditional on the full sample path of rMt when the innovations are i.i.d.
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Finally, we apply those different procedures to test the mean-variance efficiency of the US

aggregate stock market portfolio with respect to industry portfolios, and the book-to-market

sorted portfolios popularised by Fama and French (1993). We do so using monthly data over

the period July 1962 to June 2007. Importantly, we also compute specification tests to assess

the adequacy of our parametric distributional assumptions.

The rest of the paper is organised as follows. In section 2, we introduce the model and

the three aforementioned estimation procedures, and obtain their asymptotic distributions

under the assumption that the innovations are i.i.d. elliptical. Then in section 3 we derive the

asymptotic properties of mean-variance efficiency tests in alternative misspecified contexts. An

extensive Monte Carlo evaluation of the different parameter estimators and testing procedures

can be found in Section 4, while Section 5 reports our empirical results. Finally, we present our

conclusions and suggestions for future work in section 6. Proofs are gathered in the Appendix.

2 Econometric methods

2.1 Model description

Consider the following multivariate, conditionally homoskedastic, linear regression model

rt = a+ brMt + ut = a+ brMt +Ω1/2ε∗t , (1)

where Ω1/2 is an N × N “square root” matrix such that Ω1/2Ω1/2 = Ω, ε∗t is a stan-

dardised vector martingale difference sequence satisfying E(ε∗t |rMt, It−1;γ0,ω0) = 0 and

V (ε∗t |rMt, It−1;γ0,ω0) = IN , γ 0 = (a0,b0), ω = vech(Ω), the subscript 0 refers to the true

values of the parameters, and It−1 denotes the information set available at t− 1, which con-

tains at least past values of rMt and rt. To complete the conditional model, we need to

specify the distribution of ε∗t . We shall initially assume that conditional on rMt and It−1, ε∗t

is independent and identically distributed as some particular member of the elliptical family

with a well defined density, or ε∗t |rMt, It−1;γ0,ω0,η0 ∼ i.i.d. s(0, IN ,η0) for short, where η

are some q additional parameters that determine the shape of the distribution of ς t = ε∗0t ε
∗
t .
2

The most prominent example is the spherical normal distribution, which we denote by η = 0.

Another popular example is a standardised multivariate t with ν0 degrees of freedom, or i.i.d.

2If ε∗t is distributed as a spherically symmetric multivariate random vector, then we can write ε∗t = etut,
where ut is uniformly distributed on the unit sphere surface in RN , and et =

p
ε∗0t ε

∗
t is a nonnegative random

variable that is independent of ut. Assuming that E
£
e2t
¤
< ∞, then ε∗t can be standardised by setting

E
£
e2t
¤
= N , so that E [ε∗t ] = 0 and V [ε∗t ] = IN .
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t(0, IN , ν0) for short. As is well known, the multivariate student t approaches the multivariate

normal as ν0 →∞, but has generally fatter tails. For that reason, we define η as 1/ν, which

will always remain in the finite range [0,1/2) under our assumptions. As in Zhou (1993) we

also consider two other illustrative examples: a Kotz distribution and a discrete scale mixture

of normals.

The original Kotz distribution (see Kotz (1975)) is such that ς t is a gamma random variable

with mean N and variance N [(N + 2)κ0 + 2], where

κ = E(ς2t |η)/[N(N + 2)]− 1

is the coefficient of multivariate excess kurtosis of ε∗t (see Mardia (1970)). The Kotz distribu-

tion nests the multivariate normal distribution for κ = 0, but it can also be either platykurtic

(κ < 0) or leptokurtic (κ > 0). However, the density of a leptokurtic Kotz distribution has a

pole at 0, which is a potential drawback from an empirical point of view.

For that reason, we also consider a standardised version of a two-component scale mixture

of multivariate normals, which can be generated as

ε∗t =
st + (1− st)

√
κp

π + (1− π)κ
· ε◦t , (2)

where ε◦t is a spherical multivariate normal, st is an independent Bernoulli variate with P (st =

1) = π and κ is the variance ratio of the two components. Not surprisingly, ς t will be a two-

component scale mixture of χ20Ns. As all scale mixtures of normals, the distribution of ε
∗
t is

leptokurtic, so that

κ =
π(1− π)(1− κ2)
[π + (1− π)κ]2

≥ 0,

with equality if and only if either κ = 1, π = 1 or π = 0, when it reduces to the spherical

normal. In general, though, we require at least sixth moments to globally identify η = (π,κ)0.3

In this sense, a noteworthy property of all discrete mixtures of normals is that their density

and moments are always bounded.

Figure 1 plots the densities of a normal, a student t, a platykurtic Kotz distribution and

a discrete scale mixture of normals in the bivariate case, as well as their contours. Although

they all have circular contours because we have standardised and orthogonalised the two com-

ponents, their densities can differ substantially in shape, and in particular, in the relative

importance of the centre and the tails. They also differ in the degree of cross-sectional “tail

3Since the labels of the components are arbitrary, we also need to impose either 0 ≤ κ ≤ 1 or π ≥ 1
2 .
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dependence” between the components, the normal being the only example in which lack of cor-

relation is equivalent to stochastic independence. Allowing for dependence beyond correlation

is particularly important in the context of multiple financial assets, in which the probability of

the joint occurrence of several extreme events is regularly underestimated by the multivariate

normal distribution.

2.2 Parameter estimation

2.2.1 Maximum likelihood estimators

Let φ = (γ 0,ω0,η)0 ≡ (θ0,η)0 denote the 2N + N(N + 1)/2 + q parameters of interest,

which we assume variation free. The log-likelihood function of a sample of size T based on

a particular parametric spherical assumption will take the form LT (φ) =
PT

t=1 lt(φ), with

lt(φ) = dt(θ) + c(η) + g [ς t(θ),η], where dt(θ) = −12 ln |Ω| corresponds to the Jacobian, c(η)

to the constant of integration of the assumed density, and g [ς t(θ),η] to its kernel, where

ςt(θ) = ε∗0t (θ)ε
∗
t (θ), ε

∗
t (θ) = Ω−1/2εt(θ) and εt(θ) = yt − a− brMt.4

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into three blocks, sγt(φ),

sωt(φ), and sηt(φ), whose dimensions conform to those of γ, ω and η, respectively. A straight-

forward application of expression (2) in Fiorentini and Sentana (2007) implies that

sγt(φ) =

µ
1
rMt

¶
⊗ δ[ς t(θ),η]Ω

−1εt(θ), (3)

sωt(φ) =
1

2
D0

N

£
Ω−1 ⊗Ω−1

¤
vec {δ[ςt(θ),η]εt(θ)ε0t(θ)−Ω} , (4)

where DN is the duplication matrix of order N such that vec(Ω) = DNvech(Ω) (see Magnus

and Neudecker (1989)), while the scalar

δ[ς t(θ),η] = −2∂g[ς t(θ),η]/∂ς

reduces to

(Nη + 1)/[1− 2η + ης t(θ)]

in the student t case, to

[N(N + 2)κς−1t (θ) + 2]/[(N + 2)κ+ 2]

4Fiorentini, Sentana and Calzolari (2003) provide expressions for c(η) and gt [ςt(θ), η] in the multivariate
student case, which under normality collapse to −(N/2) log π and −12 ςt(θ), respectively.
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in the case of the Kotz distribution, to

[π + (1− π)κ] ·
π + (1− π)κ−(N/2+1) exp

h
− [π+(1−π)κ](1−κ)

2κ ςt(θ)
i

π + (1− π)κ−N/2 exp
h
− [π+(1−π)κ](1−κ)

2κ ςt(θ)
i (5)

for the two-component mixture, and to 1 under Gaussianity.5

Given correct specification, the results in Crowder (1976) imply that the score vector st(φ)

evaluated at the true parameter values has the martingale difference property. His results also

imply that, under suitable regularity conditions, which typically require that both rMt and

r2Mt are strictly stationary process with absolutely summable autocovariances, the asymptotic

distribution of the feasible ML estimator will be given by the following expression

√
T
³
φ̂ML −φ0

´
−→ N

£
0,I−1(φ0)

¤
where I(φ0) = E[It(φ0)|φ0],

It(φ) = V [st(φ)|rMt, It−1;φ] = −E [ht(φ)|rMt, It−1;φ] ,

and ht(φ) denotes the Hessian function ∂st(φ)/∂φ
0 = ∂2lt(φ)/∂φ∂φ

0. These expressions

adopt particularly simple forms for our model of interest:

Proposition 1 If ε∗t |rMt, It−1;φ in (1) is i.i.d. s(0, IN ,η) with density exp[c(η) + g(ςt,η)],

then the only non-zero elements of It(φ0) will be:

Iγγt(φ) = mll(η)

µ
1 rMt

rMt r2Mt

¶
⊗Ω

−1
,

Iωωt(φ) =
mss(η)

2
D0

N

£
Ω−1 ⊗Ω−1

¤
DN +

mss(η)− 1
4

D0
N

£
vec(Ω−1)vec0(Ω−1)

¤
DN ,

Iωηt(φ) =
1

2
msr(η)D

0
Nvec(Ω

−1),

Iηηt(φ) = V [ sηt(φ)|φ] = −E[hηηt(φ)|φ],

where

mll(η) = E

½
δ2[ς t(θ),η]

ςt(θ)

N

¯̄̄̄
φ

¾
= E

½
2∂δ[ςt(θ),η]

∂ς

ς t(θ)

N
+ δ[ς t(θ),η]

¯̄̄̄
φ

¾
,

mss(η) =
N

N + 2

h
1 + V

n
δ[ς t(θ),η]

ς t
N

¯̄̄
φ
oi
= E

½
2∂δ[ςt(θ),η]

∂ς

ς2t (θ)

N(N + 2)

¯̄̄̄
φ

¾
+ 1,

msr(η) = E

∙½
δ[ςt(θ),η]

ς t(θ)

N
− 1
¾
e0rt(φ)

¯̄̄̄
φ

¸
= −E

½
ς t(θ)

N

∂δ[ςt(θ),η]

∂η0

¯̄̄̄
φ

¾
.

5See Fiorentini, Sentana and Calzolari (2003) for numerically reliable expressions for sθt(φ) and sηt(φ) in
the multivariate t case.
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In the multivariate standardised student t case, in particular:

mll(η) =
ν (N + ν)

(ν − 2) (N + ν + 2)
,

mss(η) =
(N + ν)

(N + ν + 2)
,

msr(η) = − 2 (N + 2) ν2

(ν − 2) (N + ν) (N + ν + 2)
,

which under normality reduce to 1, 1 and 0, respectively (see Fiorentini, Sentana and Calzolari

(2003)).

As for the Kotz distribution, we can combine the moments of the gamma and reciprocal

gamma random variables to show that

mll(κ) =
1

[(N + 2)κ+ 2]2

½
N(N + 2)2κ2

N − [(N + 2)κ+ 2]
+ 4[(N + 2)κ+ 1]

¾
, (6)

as long as κ < (N − 2)/(N + 2) when κ 6= 0,

mss(κ) =
1

[(N + 2)κ+ 2]2

½
(N + 2)2κ2 +

4

N
[N + (N + 2)κ+ 2] + 4(N + 2)κ

¾
,

and msr(κ) = 0 ∀κ, as in the Gaussian case.

Finally, we provide the relevant expressions for the case of the two-component scale mixture

of normals in Appendix D.

The next result follows directly from Proposition 1

Corollary 1 If ε∗t |rMt, It−1;φ0 in (1) is i.i.d. s(0, IN ,η0) with density exp[c(η) + g(ς t,η)]

such that mll(η0) <∞, and both rMt and r2Mt are strictly stationary processes with absolutely

summable autocovariances, then
√
T (âML − a0)→ N [0,Iaa(φ0)], (7)

where

Iaa(φ) = [Iaa(φ)− Iab(φ)I−1bb(φ)I 0ab(φ)]−1 =
1

mll(η)

µ
1 +

μ2M
σ2M

¶
Ω,

μM = E(rMt|φ) and σ2M = V (rMt|φ), so that μ2M/σ2M is the square Sharpe ratio of the reference

portfolio.

Importantly, expression (7) is valid regardless of whether or not the shape parameters η

are fixed to their true values η0, as in the infeasible ML estimator, âIML say, or jointly esti-

mated with θ, as in the feasible one, âFML say. The reason is that the scores corresponding

to the mean parameters, sγt(φ0), and the scores corresponding to variance and shape parame-

ters, sωt(φ0) and sηt(φ0), respectively, are asymptotically uncorrelated under our sphericity

assumption in view of Proposition 1.
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2.2.2 GMM estimators

MacKinlay and Richardson (1991) developed a robust test of mean-variance efficiency

by using Hansen’s (1982) GMM methodology. If we call R0
t ≡ (rMt, r

0
t), the orthogonality

conditions that they considered are

E [mU (Rt;γ)] = 0,

mU (Rt;γ) =

µ
1
rMt

¶
⊗ εt(γ). (8)

The advantage of working within a GMM framework is that under fairly weak regularity

conditions inference can be made robust to departures from the assumption of normality,

conditional homoskedasticity, serial independence or identity of distribution. But since the

above moment conditions exactly identify γ, the unrestricted GMM estimators coincide with

the Gaussian pseudo ML estimators, which in turn coincide with the equation by equation

OLS estimators in the regression of each element of rt on a constant and rMt. An alternative

way of reaching the same conclusion is by noticing that the influence function mU (Rt;γ)

is a full-rank linear transformation with time-invariant weights of the Gaussian pseudo-score

sγt(θ,η = 0).6

It is convenient to derive an expression for the asymptotic covariance matrix of γ̂GMM

under i.i.d. innovations:

Proposition 2 If ε∗t |rMt, It−1;φ in (1) is i.i.d. (0, IN) with density function f(ε∗t ;%), where

% are some shape parameters, and both rMt and r2Mt are strictly stationary processes with

absolutely summable autocovariances, then

√
T (γ̂GMM − γ0)→ N [0, Cγγ(φ0)] , (9)

where

Cγγ(φ) = A−1γγ(φ)Bγγ(φ)A−1γγ(φ),

Aγγ(φ) = −E [hγγt(θ,0)|φ] = E [Aγγt(φ)|φ] ,

Aγγt(φ) = −E[hγγt(θ;0)| rMt, It−1;φ] =

µ
1 rMt

rMt r2Mt

¶
⊗Ω−1,

Bγγ(φ) = V [sγt(θ,0)|φ] = E [Bγγt(φ)|φ] ,

Bγγt(φ) = V [sγt(θ;0)| rMt, It−1;φ] = Aγγt(φ),

6The obvious GMM estimator of ω is given by Ω̂GMM = 1
T

PT
t=1 εt(γ̂GMM )ε

0
t(γ̂GMM ), which is the sample

analogue to the residual covariance matrix.
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so that

Cγγ(φ0) =
µ
(1 + μ2M0/σ

2
M0) −μM0/σ

2
M0

−μM0/σ
2
M0 1/σ2M0

¶
⊗Ω0.

Importantly, note that Cγγ(φ0) does not depend on the specific distribution for the inno-

vations that we are considering, regardless of whether or not the conditional distribution of

ε∗t is spherical, as long as it is i.i.d.
7

2.2.3 HLV elliptically symmetric semiparametric estimators

HLV proposed a semiparametric estimator of multivariate linear regression models that

updates θ̂GMM (or any other root-T consistent estimator) by means of a single scoring itera-

tion without line searches. The crucial ingredient of their method is the so-called elliptically

symmetric semiparametric efficient score (see Proposition 7 in Fiorentini and Sentana (2007)):

s̊θt(φ0)= sθt(φ0)−Ws(φ0)

½∙
δ[ςt(θ0),η0]

ς t(θ0)

N
− 1̧ − 2

(N+2)κ0+2

∙
ς t(θ0)

N
− 1̧

¾
,

where

W0
s(φ) =

£
0 0 1

2
vec0(Ω−1)DN

¤
in the case of model (1). In fact, the special structure ofWs(φ) implies that we can update

the GMM estimator of γ by means of the following simple BHHH correction:"
TX
t=1

sγt(φ0)s
0
γt(φ0)

#−1 TX
t=1

sγt(φ0), (10)

which does not require the computation of s̊ωt(φ0). In practice, of course, sγt(φ0) has to be

replaced by a semiparametric estimate obtained from the joint density of ε∗t . However, the

elliptical symmetry assumption allows one to obtain such an estimate from a nonparametric es-

timate of the univariate density of ς t, h (ςt;η), avoiding in this way the curse of dimensionality

(see appendix B1 in Fiorentini and Sentana (2007) for details).

Proposition 7 in Fiorentini and Sentana (2007) shows that the elliptically symmetric semi-

parametric efficiency bound will be given by:

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
0
s(φ0) ·

½∙
N + 2

N
mss(η0)− 1

¸
− 4

N [(N + 2)κ0 + 2]

¾
,

which implies that S̊γγ(φ0) = Iγγ(φ0) in our case in view of the structure ofWs(φ0). This

result confirms that the HLV estimator of γ is adaptive.8

7The asumption of constant conditional third and fourth moments implicit in the assumption of i.i.d.
innovations also implies that the optimal GMM estimators of Meddahi and Renault (1998) do not offer any
asymptotic efficiency gains over âGMM .

8HLV also consider alternative estimators that iterate the semiparametric adjustment (10) until it becomes
negligible. However, since they have the same asymptotic distribution, we shall not discuss them separately.
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3 Asymptotic comparison of test procedures

3.1 Correctly specified innovation distributions

Let â denote any of the asymptotically normal, root-T estimators of a analysed in the

previous section, and denote its asymptotic covariance matrix by V (â). To test H0 : a = 0,

we can in principle use any of the trinity of classical hypothesis tests, namely, Wald (WT ),

Lagrange Multiplier (LMT ) and Likelihood Ratio/Distance Metric test (LRT ). For the sake

of concreteness, though, we shall centre our discussion around the Wald test, which examines

whether the homogeneity constraints imposed by H0 are approximately satisfied by â.9 More

formally,

WT = T · â0V −1(â)â.

As is well known, WT will be asymptotically distributed as a χ2 with N degrees of freedom

under the null, and as a non-central χ2 with the same degrees of freedom and non-centrality

parameter δ0V −1(â)δ under the Pitman sequence of local alternatives Hl : a = δ/
√
T (see

Newey and MacFadden (1994)). In contrast, WT will diverge to infinity for fixed alternatives

of the form Hf : a = δ, which makes it a consistent test. In that case, we can use Theorem 1

in Geweke (1981) to show that

p lim
1

T
WT = δ0V −1(â)δ

coincides with Bahadur’s (1960) definition of the approximate slope of the Wald test. This

expression differs from the non-centrality parameter in that the covariance matrix is no longer

evaluated under the null. However, since V (â) does not depend on a when the true distribution

is elliptical for any of the estimators considered in the previous section, both comparison

criteria coincide.

In addition, since V (âGMM) = Cγγ(φ0) in view of (9), while V (âIML) = V (âFML) =

V (âHLV ) =m−1ll (η0)Cγγ(φ0) in view of (7), we can use mll(η0) to measure the relative efficiency

of the GMM-based test procedure regardless of the value of δ.

In this sense, Proposition 9 in Fiorentini and Sentana (2007) implies that mll(η0) = 1 if

and only if the true conditional distribution is indeed normal. Otherwise, 0 ≤m−1ll (η0) < 1.

This means that while there is no asymptotic efficiency loss in estimating η when the true

conditional distribution is Gaussian, the efficiency gains could be potentially very large for

9Another advantage of the Wald test, shared with the LM test, is that it is easy to robustify with respect
to misspecification, unlike the LR test.
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other elliptical distributions. In the multivariate student t case with ν0 > 2, in particular, the

relative efficiency ratio becomes (ν0−2)(ν0+N +2)/[ν0(ν0+N)]. For any given N , this ratio

is monotonically increasing in ν0, and approaches 1 from below as ν0 →∞, and 0 from above

as ν0 → 2+. At the same time, this ratio is decreasing in N for a given ν0, which reflects the

fact that the student t information matrix is “increasing” in N . Figure 2a presents a plot of

this efficiency ratio as a function of η for several values of N . Similarly, Figure 2b presents the

efficiency ratio as a function of κ for different values of N in the case of the Kotz distribution,

where we have obtained m−1ll (κ) from (6). In this sense, it is worth mentioning that the excess

kurtosis coefficient of any elliptical distribution is bounded from below by −2/(N +2), which

is the excess kurtosis of a random vector that is uniformly distributed on the unit sphere.

This explains why the lower limit of admissible values for κ gets closer and closer to 0 from

below as N increases. Finally, Figure 2c contains the corresponding efficiency ratios for a

two-component scale mixture of normals in which π = 1
2
as a function of the relative variance

parameter κ. As expected, the GMM and ML/HLV estimators are equally efficient for κ = 1,

since in that case the mixture of normals is itself normal. Once again, though, the relative

efficiency of the ML/HLV estimators increases as we move away from normality, the more so

the bigger N is.

We can assess the power implications of such efficiency gains by computing the probability

of rejecting the null hypothesis when it is false as a function of a under the assumption

that the asymptotic non-central chi-square distributions of the Wald tests implied by (7) or

(9) provide reliable rejection probabilities in finite samples. The results for T = 500 at the

usual 5% level are plotted in Figure 3 under the fairly innocuous assumptions that Ω = IN ,
√
12μM/σM = 1

2
and a = acN , with c0N = (1, . . . , 1)

0 and a ∈ [0, .2]. We consider two examples

of elliptical distributions whose mll(η) correspond to those of a student t with 8 and 20 degrees

of freedom, respectively. Not surprisingly, the power of all tests increases as we depart from

the null. Similarly, their power also increases with the number of series due to the lack of

cross-sectional correlation of the regression residuals. More importantly, the power of the

efficient tests is always larger than the power of the GMM tests, although the differences are

unsurprisingly small when the true distribution is not too far away from the normal.

In empirical applications, it is customary to pay attention not only to the joint Wald test

of H0 : a = 0, but also to individual tests of the form H0 : ai = 0 for some i between 1 and N .

Given that the asymptotic power of such partial tests under either local or fixed alternatives

11



will depend on the non-centrality parameter a2i /V (âi), the discussion in the previous para-

graphs applies directly to those individual Wald tests too (see Sentana (2008) for a discussion

on the advantages and disadvantages of joint versus individual tests on these contexts).

3.2 Misspecified elliptical distributions for the innovations

In this section, we derive the asymptotic distribution of the infeasible and feasible ML

estimators introduced in section 2.2.1 when the true conditional distribution of rt given

rMt and their past is i.i.d. elliptical, but does not coincide with the distribution assumed

for estimation purposes. For the sake of concreteness, we assume in what follows that the

feasible and infeasible (pseudo) ML estimators are based on the erroneous assumption that

ε∗t |rMt, It−1;θ,η ∼ i.i.d. t(0, IN , ν0). Nevertheless, our results can be trivially extended to any

other spherically-based likelihood estimators, as the only advantage of the student t likelihood

four our purposes is the fact that its limiting relationship to the Gaussian distribution can be

made explicit. In this context, the “infeasible” t-based PML estimator should be understood

as the one that fixes the parameter η to some arbitrary value η̄ between 0 and 1
2
.

For simplicity, we shall also define the pseudo-true values of θ and η as consistent roots of

the expected t pseudo log-likelihood score, which under appropriate regularity conditions will

maximise the expected value of the t pseudo log-likelihood function. Specifically, if we define

the pseudo-true values of φ as the values of a,b,Ω, and η that will set to zero the expected

value of the score vector, st(φ0), where the expected value is taken with respect to the true

distribution of the data, then we can derive the following result, which particularises to our

context Proposition 15 in Fiorentini and Sentana (2007):

Proposition 3 If ε∗t |rMt, It−1;ϕ0 in (1) is i.i.d. s(0, IN ,%0) but not t and κ0 ≤ 0, where

ϕ0 = (γ0,ω0,%0), then:

1. The pseudo-true value of feasible student t-based ML estimator of φ = (γ,ω, η)0, φ∞, is

such that γ∞ and ω∞ are equal to their corresponding true values γ0 and ω0, respectively,

and η∞ = 0.

2.
√
T (γ̂FML − γ̂GMM) = op(1).

Intuitively, the reason is that since η must be estimated subject to the non-negativity

restriction η ≥ 0, the most platykurtic student t distribution that one can obtain is the

12



normal distribution, in which case the feasible student t-based PML estimator coincides with

the GMM one.

The following result derives the asymptotic distribution of the feasible t-based PML esti-

mator of θ in the more realistic case of leptokurtic disturbances. To keep the algebra simple,

we will reparametrise Ω as τΥ(υ), so that ϑ = (γ,υ, τ), where υ are N(N + 1)/2− 1 para-

meters that ensure that |Υ(υ)| = 1 ∀υ. In other words, our reparametrisation will be such

that

τ = |Ω|1/N (11)

and

Υ(υ) = Ω/|Ω|1/N . (12)

Nevertheless, the t-based ML estimator of γ will be unaffected by this change.

Proposition 4 If ε∗t |rMt, It−1;ϕ0 is i.i.d. s(0, IN ,%0) but not t with κ0 > 0, where ϕ0 =

(γ0,υ0, τ 0,%0), then:

1. The pseudo-true value of feasible student-t based ML estimator of φ = (γ,υ, τ , η)0, φ∞,

is such that γ∞ and υ∞ are equal to their corresponding true values γ0 and υ0.

2. O(φ∞;ϕ0) = E[Ot(φ∞;ϕ0)|ϕ0] and H(φ∞;ϕ0) = E[Ht(φ∞;ϕ0)|ϕ0] will be block diag-

onal between (γ,υ) and (τ , η), where both

Ot(φ∞;ϕ0) = V [st(φ∞)|rMt, It−1;ϕ0]

and

Ht(φ∞;ϕ0) = −E[ht(φ∞)|rMt, It−1;ϕ0]

will share the structure of It(φ∞;ϕ0) in Proposition 1, with

mO
ll (φ;ϕ) = E

©
δ2[ς t(ϑ), η] · [ςt(ϑ)/N ]

¯̄
ϕ
ª

mO
ss(φ;ϕ) = N(N + 2)−1 [1 + V {δ[ςt(γ,υ, τ), η] · [ςt(ϑ)/N ]|ϕ}] ,

mO
sr(φ;ϕ) = E [{δ[ς t(ϑ), η] · [ςt(ϑ)/N ]− 1} sηt(φ)|ϕ] ,

Oηη(φ;ϕ) = V [ sηt(φ)|ϕ],

mH
ll (φ;ϕ) = E {2∂δ[ς t(ϑ), η]/∂ς · [ςt(ϑ)/N ] + δ[ς t(θ), η]|ϕ} ,

mH
ss(φ;ϕ) = E

©
2∂δ[ςt(ϑ), η]/∂ς · ς2t (ϑ)/[N(N + 2)]

¯̄
ϕ
ª
+ 1,

mH
sr(φ;ϕ) = −E {[ς t(ϑ)/N ] · ∂δ[ςt(ϑ), η]/∂η|ϕ} ,

Hηη(φ;ϕ) = −E[ hηηt(φ)|ϕ].
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Intuitively, what this proposition shows is that

E {sγt[γ0,υ0, τ∞(η), η]|γ0,υ0, τ 0,%0} = 0,

E {sυt[γ0,υ0, τ∞(η), η]|γ0,υ0, τ 0,%0} = 0,

for any elliptical distribution for the innovations, which implies in particular that the t-based

PML estimators of a and b will be consistent. In contrast, when κ > 0 we cannot find any

distribution for ε∗t other than the multivariate t for which

E [sτt(φ)|ϕ0] = 0,

E [sηt(φ)|ϕ0] = 0,

which means that the overall scale parameter τ will be inconsistently estimated.

The asymptotic distribution of the feasible t-based PML estimator of γ follows immediately

from Proposition 4:

Corollary 2 If ε∗t |rMt, It−1;ϕ0 is i.i.d. s(0, IN ,%0) but not t with κ0 > 0, where ϕ0 =

(γ0,υ0, λ0,%0), then:

√
T (γ̂FML − γ0)→ N

"
0,

mO
ll (φ∞;ϕ0)

λ∞ [mH
ll (φ∞;ϕ0)]

2 · Cγγ(ϕ0)
#
, (13)

where λ∞ = τ 0/τ∞.

The analysis of the “infeasible” t-based PML estimator, which fixes η to some value η̄,

is entirely analogous, except for the fact that the pseudo-true value of τ becomes τ∞(η̄), as

opposed to τ∞ = τ∞(η∞).

A natural question in this context is a comparison of the efficiency of the t-based pseudo

ML estimator and the GMM estimator when the distribution is elliptical but not t.We answer

this question by assuming that the conditional distribution is either normal, Kotz, or the two-

component scale mixture of normals discussed in section 2.1. It turns out that in all three cases

we can obtain analytical expressions for the inefficiency ratio mO
ll (φ∞;ϕ0)/{λ∞[mH

ll (φ∞;ϕ0)]
2}

(see Appendix B).

The top panels of Figure 4 present the relative efficiency of these two estimators of γ

as a function of η̄ for four cross-sectional dimensions, while the bottom panels contain the

corresponding pseudo-true values of λ∞(η̄) = τ 0/τ∞(η̄). In addition, the straight lines indicate

the position of the pseudo-true values when we also estimate η. As expected, if the true
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conditional distribution is Gaussian (Figure 4a), then the “infeasible” ML estimator that

makes the erroneous assumption that it is a student t with η̄−1 degrees of freedom is inefficient

relative to the GMM estimator, the more so the larger the value of η̄. Nevertheless, this

inefficiency becomes smaller and less sensitive to η̄ as the number of assets increases. But

of course η∞ = 0 in this case in view of Proposition 3, which suggests that estimating η

is clearly beneficial under misspecification. In fact, the “infeasible” t-based PML estimator

seems to be strictly more efficient than the GMM one at the pseudo-true value of η when

the true conditional distribution is leptokurtic. This is indeed true for any value of η̄ for

a Kotz distribution with κ0 = 1/8 (Figure 4c), which is equal to the excess kurtosis of a t

with 20 degrees of freedom, as well as for a two-component mixture of normals with π = 1/2

and κ0 = 1/4 (Figure 4e), which coincides with the excess kurtosis of the more empirically

realistic t distribution with 12 degrees of freedom. It is notheworthy that as N increases the

“infeasible” t-based PML estimator tends to achieve the full efficiency of the ML estimator

for any η̄ > 0.10 Whether such efficiency gains always accrue when η is estimated is left for

future research.11

3.3 Asymmetric innovations

To focus our discussion, we assume in this section that ε∗t is distributed as an i.i.d. multi-

variate asymmetric t. Following Mencía and Sentana (2008), if we choose

ε∗t = β
£
ξ−1t − c(β,η)

¤
+

s
ζt
ξt
Ξ1/2ut (14)

where ut is uniformly distributed on the unit sphere in RN , ζt is a χ
2 random variable with

N degrees of freedom, ξt is Gamma random variable with parameters (2η)−1 and δ2/2 with

δ = (1 − 2η)η−1c(β,η), β is a N × 1 parameter vector, and Ξ is a N × N positive definite

matrix given by

Ξ =
1

c(β,η)

∙
IN +

c(β,η)− 1
β0β

ββ0
¸
,

with

c(β,η) =
− (1− 4η) +

q
(1− 4η)2 + 8β0β (1− 4η) η
4β0βη

,

10The values corresponding to N =∞ in Figures 4 and 5 are intended to reflect the maximum efficiency gains
that could be obtained by increasing the number of series; and hence, they are derived under sequential limits,
i.e., T converges to infinity with a fixed N and then N converges to infinity. In this sense, limN→∞mll(η) = (1−
κ)−1 in the case of Kotz innovations and discrete scale mixture of normals innovations.
11Another pending issue is whether η∞ is always larger than max(0, κ0)/[4max(0, κ0)+2], which is the value

of η that matches the excess kurtosis of the t distribution with the excess kurtosis of the true distribution, as
Figures 4b and 4c seem to suggest.
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then E [ε∗t ] = 0 and V [ε∗t ] = IN . In this sense, note that limβ0β−→0 c(β,η) = 1, so that the

above distribution collapses to the usual multivariate symmetric t when β = 0. Therefore, we

allow for asymmetries by introducing the vector of parameters β.

To study the consistency of the symmetric t-based PML estimator when the DGP is asym-

metric, it is once again convenient to look at its score. Specifically, given the definition of

(14), we can write

sat(γ0,ω0, η) = Ω
−1/2
0

Nη + 1

1− 2η + η(ζt/ξt)

(
β
£
ξ−1t − c(β,η)

¤
+

s
ζt
ξt
Ξ1/2ut

)
(15)

The expected value of ε∗t in (14) is clearly zero by construction. Similarly, the expected

value of (15) is also zero when β0 = 0 since ut and (ζt/ξt) are independent. But when β0 6= 0,

the expected value of (15) will be generally different from zero because ξ−1t appears both in

the numerator and denominator. Consequently, the mean parameters a will be inconsistently

estimated. In contrast, b will be consistently estimated precisely because the estimator of a

will fully mop up the bias in the mean. More formally, re-write model (1) as

rt = Ω1/2δ + brMt + εt,

where Ω−1/2a = δ. This homeomorphic reparametrisation satisfies the conditions of Proposi-

tion 17 in Fiorentini and Sentana (2007), which implies the consistency of b. Unfortunately,

mean-variance efficiency tests are based on a, not b.

For analogous reasons, the HLV estimator of a also becomes inconsistent under asymmetry.

Intuitively, the problem is that it will not be true any more that the N-dimensional density of

ε∗t could be written as a function of ς t = ε∗0t ε
∗
t alone. Therefore, a semiparametric estimator of

sγt(φ0) that combines the elliptical symmetry assumption with a non-parametric specification

for δ[ςt(θ),η] will be contaminated by the skewness of the data.

In contrast, the GMM estimator always yields a consistent estimator of a, on the basis

of which we can develop a GMM-based Wald test with the correct asymptotic size since (9)

remains valid under asymmetry.

3.4 Elliptical distributions for returns

In this section we explicitly study the framework analysed by MacKinlay and Richardson

(1991) and Kan and Zhou (2006), who considered a joint distribution of excess returns for

the N assets rt and the reference portfolio, rMt. When the joint distribution of Rt is i.i.d.
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Gaussian, the distribution of rt conditional on rMt must also be normal, with a mean a+brMt

that is a linear function of rMt, and a covariance matrix Ω that does not depend on rMt.

However, while the linearity of the conditional mean will be preserved when Rt is elliptically

distributed but non-Gaussian, the conditional covariance matrix will no longer be independent

of rMt. For instance, if we assume that Σ−1/2(ρ)[Rt − μ(ρ)] ∼ i.i.d. t(0, IN+1, η), where

μ(ρ) =

µ
μM

a+ bμM

¶
, (16)

Σ(ρ) =

µ
σ2M σ2Mb

0

σ2Mb σ2Mbb
0 +Ω

¶
, (17)

and ρ0 = (a0,b0,ω0, μM , σ2M), then

E [rt|rMt;ρ, η] = a+ brMt,

V [rt|rMt;ρ, η] =

µ
ν − 2
ν − 1

¶"
1 +

(rMt − μM)
2

(ν − 2)σ2M

#
Ω ≡ Ψt(ρ,η),

which means that model (1) will be misspecified due to contemporaneous, conditionally het-

eroskedastic innovations. In other words, the variances and covariances of the regression

residuals will be a function of the regressor.

As MacKinlay and Richardson (1991) pointed out, the GMM estimator of γ remains

consistent in this case. In addition, we know from Lemma D3 in Peñaranda and Sentana

(2004) that if Rt is independently and identically distributed as an elliptical random vector

with mean μ(ρ), covariance matrix Σ(ρ), and bounded fourth moments, then the asymptotic

covariance matrix of
√
Tm̄U (Rt;γ0) will be given by

SU(γ0) =

µ
1 μM0

μM0 (κ0 + 1)σ
2
M0 + μ2M0

¶
⊗Ω0,

where m̄U (Rt;γ0) is the sample mean of mU (Rt;γ0) in (8). Hence,

V (âGMM) =

∙
1 +

μ2M0

σ2M0

(1 + κ0)

¸
Ω0. (18)

In this sense, note that the only difference with respect to (9) is that the square Sharpe

ratio of the reference portfolio μ2M0/σ
2
M0 is multiplied by the factor (1 + κ0). In practice, we

will estimate V (âGMM) by using heteroskedastic robust standard errors a la White (1980).

Specifically, we should use the sandwich expression Cγγ(φ) = A−1γγ(φ)Bγγ(φ)A−1γγ(φ), but this

time with

B̂γγ(φ) =
1

T

TX
t=1

sγt(θ;0)s
0
γt(θ;0) (19)
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while we will continue to use

Âγγ(φ) =
1

T

TX
t=1

µ
1 rMt

rMt r2Mt

¶
⊗Ω−1. (20)

At the other extreme of the efficiency range, we can consider the joint ML estimator

that makes the correct assumption that Σ−1/2(ρ)[Rt − μ(ρ)] ∼ i.i.d. s(0, IN+1,η), whose

asymptotic distribution can be obtained from the following result:

Proposition 5 Let ²∗t (ρ) = Σ−1/2(ρ)²t(ρ), where ²t(ρ) = Rt − μ(ρ), μ(ρ) and Σ(ρ) are

defined in (16) and (17), respectively, and ρ0 = (a0,b0,ω0, μM , σ2M). If ²
∗
t (ρ0)|It−1;ρ0,η0 ∼

i.i.d. s(0, IN+1,η0) with density exp[cN+1(η) + gN+1(ς t,η)], then the only non-zero elements

of the information matrix will be:

Iγγ(φ) =

∙
mll(η)

µ
1 μM
μM μ2M

¶
+mss(η0)

µ
0 0
0 σ2M

¶¸
⊗Ω−1,

Iωω(φ) =
mss(η)

2
D0

N

£
Ω−1 ⊗Ω−1

¤
DN +

mss(η)− 1
4

D0
N

£
vec(Ω−1)vec0(Ω−1)

¤
D0

N ,

IμMμM (φ) =
mll(η)

σ2M
,

Iσ2Mσ2M
(φ) =

3mss(η)− 1
4σ4M

,

Iωσ2M (φ) =
mss(η)− 1
4σ2M

D0
Nvec(Ω

−1),

Iωη(φ) =
msr(η)

2
D0

Nvec(Ω
−1),

Iσ2Mη(φ) =
msr(η)

2σ2M
,

Iηη(φ) = V [ sηt(φ)|φ] = −E[hηηt(φ)|φ],

where

mll(η) = E

½
δ2N+1[²

∗0
t (ρ)²

∗
t (ρ),η]

²∗0t (ρ)²
∗
t (ρ)

N + 1

¯̄̄̄
φ

¾
= E

½
2∂δN+1[²

∗0
t (ρ)²

∗
t (ρ),η]

∂ς

²∗0t (ρ)²
∗
t (ρ)

N + 1
+ δN+1[²

∗0
t (ρ)²

∗
t (ρ),η]

¯̄̄̄
φ

¾
,

mss(η) =
N + 1

N + 3

∙
1 + V

½
δN+1[²

∗0
t (ρ)²

∗
t (ρ),η]

²∗0t (ρ)²
∗
t (ρ)

N + 1

¯̄̄̄
φ

¾¸
= E

(
2∂δN+1[²

∗0
t (ρ)²

∗
t (ρ),η]

∂ς

[²∗0t (ρ)²
∗
t (ρ)]

2

(N + 1)(N + 3)

¯̄̄̄
¯φ
)
+ 1,

msr(η) = E

∙½
δN+1[²

∗0
t (ρ)²

∗
t (ρ),η]

²∗0t (ρ)²
∗
t (ρ)

N + 1
− 1
¾
e0rt(φ)

¯̄̄̄
φ

¸
= −E

½
ς t(θ)

N + 1

∂δN+1[²
∗0
t (ρ)²

∗
t (ρ),η]

∂η0

¯̄̄̄
φ

¾
,
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and the subscript N + 1 in δ emphasises the cross-sectional dimension.

Specifically, we can use this Proposition to extend the result in equation (31) in Kan and

Zhou (2006) and show that

V (âJML) =
1

mll(η0)

∙
1 +

mll(η0)

mss(η0)

μ2M0

σ2M0

¸
Ω0, (21)

where θ̂JML denotes the joint ML estimator that makes the correct assumption thatΣ−1/2(ρ)[Rt−

μ(ρ)] ∼ i.i.d. s(0, IN+1,η), and bothmll(η0) andmss(η0) correspond to this (N+1)-dimensional

distribution. However, âJML assumes omniscience on the part of the researcher, which is un-

realistic.

The following proposition shows the consistency of the t-based estimators which make the

erroneous assumption that V [rt|rMt] = τΥ(υ), where τ and Υ(υ) are defined in (11) and

(12), and provides expressions for the conditional variance of the score and expected Hessian

matrix under such misspecification:

Proposition 6 If Σ−1/2(ρ)[Rt−μ(ρ)]|It−1;ϕ0 ∼ i.i.d. s(0, IN+1,%0) with κ0 > 0, where μ(ρ)

and Σ(ρ) are defined in (16) and (17) respectively, ρ0 = (a0,b0,ω0, μM , σ2M) and ϕ = (ρ
0,%0)0,

then:

1. The pseudo-true value of feasible student-t based PML estimator of φ = (γ,υ, τ , η)0,

φ∞, is such that γ∞ and υ∞ are equal to their corresponding true values γ0 and υ0.

2. O(φ∞;ϕ0) = E[Ot(φ∞;ϕ0)|ϕ0] and H(φ∞;ϕ0) = E[Ht(φ∞;ϕ0)|ϕ0] will be block diag-

onal between (γ,υ) and (τ , η), where both

Ot(φ∞;ϕ0) = V [st(φ∞)|rMt, It−1;ϕ0]

and

Ht(φ∞;ϕ0) = −E[ht(φ∞)|rMt, It−1;ϕ0]
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will share the structure of It(φ∞;ϕ0) in Proposition 1, with

mO
ll (φ;ϕ) = E

©
δ2[ς t(ρ), η] · [ςt(ρ)/N ]

¯̄
ϕ
ª

mO
ss(φ;ϕ) = N(N + 2)−1 [1 + V {δ[ς t(ρ), η] · [ς t(ρ)/N ]|ϕ}] ,

mO
sr(φ;ϕ) = E [{δ[ς t(ρ), η] · [ςt(ρ)/N ]− 1} sηt(φ)|ϕ] ,

Oηη(φ;ϕ) = V [ sηt(φ)|ϕ],

mH
ll (φ;ϕ) = E {2∂δ[ς t(ρ), η]/∂ς · [ςt(ρ)/N ] + δ[ςt(θ), η]|ϕ} ,

mH
ss(φ;ϕ) = E

©
2∂δ[ςt(ρ), η]/∂ς · ς2t (ρ)/[N(N + 2)]

¯̄
ϕ
ª
+ 1,

mH
sr(φ;ϕ) = −E {[ς t(ρ)/N ] · ∂δ[ςt(ρ), η]/∂η|ϕ} ,

Hηη(φ;ϕ) = −E[ hηηt(φ)|ϕ].

The top panel of Figure 5 presents the efficiency of the t-based PML estimators of γ in

relation to the corresponding GMM estimator as a function of η̄ when Rt is distributed as

a multivariate t with 8 degrees of freedom (η0 = .125) for three cross-sectional dimensions,

while the bottom panel contains the corresponding pseudo-true values of λ∞(η̄) = τ 0/τ∞(η̄).

In addition, the vertical straight lines in the top panel indicate the position of the pseudo-

true values η∞ when we also estimate this parameter, while the horizontal ones describe the

efficiency of the GMM estimator of γ in (18) relative to that of the joint ML estimator in

(21).12 As in Figures 4b and 4c, the “infeasible” t-based PML estimator of γ is more efficient

than the GMM estimator for all values of η̄, the more so the larger N is. Furthermore, the

feasible t-based PML estimator that also estimates η gets close to achieving the full efficiency

of the joint ML estimator, especially for large N . Finally, another noteworthy fact is the very

small asymptotic bias of the t-based PML estimator of η.

In principle, Proposition 6, and in particular the block diagonal structure ofO(φ∞;ϕ0) and

H(φ∞;ϕ0) will continue to hold if we replace the t-based ML estimator by any other estimator

based on a specific i.i.d. elliptical distribution for rt|rMt. But since the HLV estimator is

asymptotically equivalent to a parametric estimator that uses a flexible elliptical distribution

as we increase the number of parameters, Proposition 6 suggests that the HLV estimator of γ

will continue to be consistent. In fact, an argument analogous to the one made by Hodgson

(2000) in a closely related univariate context would imply that the HLV estimator is as efficient

as the parametric estimator that used the true unconditional distribution of the innovations
12These graphs are based on the expressions in Proposition 6, with the relevant expectations computed by

Monte Carlo integration with 106 drawings.
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εt = rt − a0 − b0rMt. Nevertheless, inferences about a and b would have to be adjusted to

reflect the contemporaneous conditional heteroskedasticity of εt.

4 Monte Carlo analysis

In this section we assess the finite sample size and power properties of the GMM, HLV and

feasible t-based ML test statistics of the null hypothesis H0 : a = 0 for six different distrib-

utional assumptions for the innovations, namely Gaussian, student-t with 8 and 4 degrees of

freedom, Kotz with κ = 1/8, two-component scale mixture of normals with the same kurto-

sis, and asymmetric-t innovations.13 We also consider a t8 and t4 distributional assumptions

for the returns, Rt. In all cases, we carry out 10,000 replications with T = 500, N = 5,

Ω = 4σ2M × I5,
√
12μM/σM = 1

2
and b = 0 both under the null hypothesis, and under the

alternative that a = 4μM × c5.14

We sample Gaussian and Student t random numbers using standard MATLAB routines.

To sample the Kotz innovations, we exploit the fact that ε∗t =
p
ξtut, where ξt is a univariate

Gamma with meanN and varianceN [(N+2)κ+2]. Similarly, we use (2) to sample the discrete

mixture of normals. Finally, to draw asymmetric t innovations we first generate a univariate

Gamma and N independent standard Gaussian variates, and then use the decomposition

presented in (14).

As mentioned in section 2.2.2, the GMM estimators of γ coincide with the equation by

equation coefficient estimates in the OLS regression of rit on a constant and rMt. Similarly, a

GMM estimator of Ω can be easily obtained from the covariance matrix of the OLS regression

residuals, as explained in footnote 5. We use the expressions in Proposition 2 to compute

its covariance matrix under the maintained assumption of i.i.d. innovations. In contrast, we

combine (19) with (20) to obtain heterokedasticity robust standard errors.

Following Fiorentini, Sentana and Calzolari (2003), we obtain a consistent estimator of the

reciprocal degrees of freedom parameter η on the basis of the GMM estimators as

η̂SMM =
max[0, κ̄T (θ̂GMM)]

4max[0, κ̄T (θ̂GMM)] + 2
, (22)

13In these cases, a sample of rMt is drawn from a Gaussian distribution for each replication.
14The value of b does not affect the asymptotic distribution of the different estimators of a and the corre-

sponding test procedures, while the value of σM simply scales up or down all the return series, and consequently
Ω, μM and a.
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where

κ̄T (θ̂GMM) =
T−1

PT
t=1 ς

2
t (θ̂GMM)

N(N + 2)
− 1

is Mardia’s (1970) sample coefficient of multivariate excess kurtosis of the estimated standard-

ised residuals. Then, we use η̂SMM as initial value to obtain the sequential ML estimator of

η proposed by Fiorentini and Sentana (2007), η̂SML say, which maximises the t-based log-

likelihood function with respect to η keeping θ fixed at θ̂GMM .

Having obtained θ̂GMM and η̂SML, we compute a one-step ML estimator of θ by means of

the BHHH correction "
TX
t=1

sγt(θ)s
0
γt(θ)

#−1 TX
t=1

sγt(θ), (23)

with the analytical expressions for the t-score derived in section 2.2.1.15 Next, we carry out

a few EM iterations over θ using this one-step ML estimator as initial value (see Appendix

C), and finally switch to a quasi-Newton procedure until convergence. The (non-robust)

asymptotic covariance matrix is computed using the expressions in Proposition 1, while for

the robust standard errors we use the expressions in Proposition 4.

As for the HLV estimator and its asymptotic covariance matrix, we follow the computa-

tional approach described in Appendix B1 of Fiorentini and Sentana (2007).

4.1 Sampling distribution of the different estimators

Although we are mostly interested in the test statistics, it is convenient to study first the

finite sample distributions of the estimators of a, which are not affected by the estimation of

their asymptotic covariances matrices.

In this sense, Figure 6 presents box-plots of the feasible t-based PML, HLV and GMM

estimators for the eight different DGP’s that we have considered. As usual, the central boxes

describe the first and third quartiles of the sampling distributions, as well as their median.

The maximum length of the whiskers is one interquartile range.

By and large, the behaviour of the different estimators is in accordance to what the as-

ymptotic results would suggest. The only “surprises” are the fact that the dispersion of the

distribution of the HLV estimator is systematically larger than the distribution of the ML

estimator under correct specification of the latter, and that this result continues to hold even

when the innovations follow a discrete mixture of normals. The other interesting results occur

15This one-step ML estimator is asymptotically equivalent to γ̂ML. An alternative asymptotically equivalent
estimator of γ̂ML will update the whole of θ̂GMM by means of a simple BHHH correction based on sθt.
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when the joint distribution of rt and rMt is elliptical, so that the conditional mean of rt given

rMt continues to be linear in rMt but the conditional variance is no longer constant. In this

case not only the HLV and ML estimators of a remain consistent despite this misspecification,

as we discussed in section 3.4, but they are also more efficient than the GMM estimator.

4.2 Sampling distribution of the associated test statistics

The first question that we need to address is whether the asymptotic distribution under

the null attributed to the joint and individual Wald test statistics introduced in section 3.1

is reliable in finite samples. To do so, we employ the p-value discrepancy plots proposed by

Davidson and MacKinnon (1998). Let wj denote the simulated value of a given test statistic,

and let pj be the asymptotic p-value of wj, that is the probability of observing a value of the

test statistic at least as large as wj according to its asymptotic distribution under the null. Let

also F̂ (x) for x ∈ (0, 1) be the empirical distribution function of pj i.e. the sample proportion

of p0js which are not greater than x. A p-value discrepancy plot is a plot of [F̂ (x)− x] against

x, i.e. a plot of the difference between actual and nominal size for a range of nominal sizes.

If the candidate distribution for wj is correct, then the p-value discrepancy should be close to

zero.

The top left panels of Figures 7a-7h show p-value discrepancy plots of the joint tests

of H0 : a = 0 for the eight DGPs that we have considered (“Wald statistics”), while the

bottom left panels show the corresponding plots for the individual tests of H0 : ai = 0 (“t

statistics”). The most striking fact that we find is that the HLV-based joint and individual

tests have systematically the largest size distortions irrespective of whether the assumptions

that justify them are correct. In contrast, the GMM tests that use expression (9) to compute

the asymptotic weighting matrix have finite sample sizes that are close to their asymptotically

equivalent in all cases, including when the correct expression should be (18). As for the tests

that use the t-based PML estimator, there is also little to choose between the robust and

non-robust versions, which are both well behaved even when the conditional distribution is

heteroskedastic. The only exception seems to be the discrete mixture of normals example

(Figure 7e), in which case the non-robust test is surprisingly better behaved than the robust

one. As expected, though, when the distribution of the innovations is asymmetric (Figure 7f),

the HLV and ML tests present considerable size distortions.

We can complement our finite sample analysis with size-power curves, which is another
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graphical method proposed by Davidson and MacKinnon (1998) to display the simulation

evidence on the power of the different tests. We can define F̂ ∗(x) for x ∈ (0, 1) as the

empirical distribution function of the asymptotic p-values under the null when the data are

generated under the alternative. A size-power curve is a plot of test power versus actual test

size for a range of test sizes.

The right panels of Figures 7a-7h show size-power curves for the same eight DGPs. Not

surprisingly, the size-adjusted powers of the robust tests are very close to the corresponding

non-robust tests in all cases. Contrary to the asymptotic results, though, GMM tests seem to

have more power than the others under Gaussian innovations. In all other cases, in contrast,

the HLV-based tests are more powerful than the GMM ones, but less so that the ones that

use the feasible t-based PML estimator. In addition, the differences in power between HLV

and t-based PML tests are very small in the case of Kotz and discrete mixture of normals

innovations, despite the fact that the t-based estimator is suboptimal.

5 Empirical application

In this section we use the alternative estimators previously discussed to test the mean-

variance efficiency of the US aggregate stock market portfolio using monthly data over the

period July 1962 to June 2007 (540 observations). As for rt, we consider two different

sets of N = 5 portfolios from Ken French’s Data Library: one grouped by industry, and

another one sorted by their book-to-market ratio. Specifically, each NYSE, AMEX, and

NASDAQ stock is assigned to an industry portfolio at the end of June of year t based on

its four-digit SIC code at the time.16 Similarly, quintile portfolios are formed on BE/ME

at the end of each June using NYSE breakpoints. The BE used in June of year t is the

book equity for the last fiscal year end in t − 1, while ME is price times shares outstand-

ing at the end of December of t − 1. The excess return on the market portfolio corre-

sponds to the value weighted return measure on all NYSE, AMEX and NASDAQ stocks

in CRSP, while the safe asset is the 1-month TBill return from Ibbotson and Associates

(see <http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html> for fur-

ther details).

16Industry definitions: Cnsmr: Consumer Durables, NonDurables, Wholesale, Retail, and Some Services
(Laundries, Repair Shops). Manuf: Manufacturing, Energy, and Utilities. HiTec: Business Equipment, Tele-
phone and Television Transmission. Hlth: Healthcare, Medical Equipment, and Drugs. Other: Other — Mines,
Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance.
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The most obvious characteristic of these portfolios for our purposes is their leptokurtosis.

The LM test of normality against the alternative of multivariate student t proposed by Fioren-

tini, Sentana and Calzolari (2003) yields a value of 3173.71 for the industry portfolios residuals

from (1), and 1997.83 for the book to market ones. This confirms our empirical motivation

for estimation and testing procedures that exploit such a prevalent feature of the data.

Table 1a presents the parameter estimates and (asymptotic) robust standard errors for the

GMM, HLV and t-based ML estimators of model (1), while Table 1b reports the corresponding

joint tests of H0 : a = 0. The results for industry portfolios indicate that the Student t-based

test clearly rejects the efficiency of the market portfolio. They also show that the GMM test is

borderline, while the HLV-based test fails to reject, which is in line with the results reported

by Vorkink (2003).

Given the expressions for the test statistics in sections 2 and 3, the contradicting conclusions

obtained with the ML and HLV tests must be due to three causes. First, the point estimates of

a are somewhat different. Second, the point estimates of the idiosyncratic covariance matrix

Ω also differ, although even less so. More importantly, the scalar factors that multiplyΩ−1 are

noticeably different too. In particular, they are 1.87 and 1.98 for the robust and non-robust

versions of the ML tests, but only 1.43 for the HLV test. Both our Monte Carlo results and

the results reported in Fiorentini and Sentana (2007) indicate the unreliable nature of the

non-parametric estimates of mll in finite samples.

In contrast, all three tests reject the mean-variance efficiency of the market portfolio rel-

ative to the book-to-market sorted portfolios of Fama and French (1993). Still, we also find

important differences in the estimates of the scalar factors mentioned in the previous para-

graph.

As we saw in section 3.3, though, both parametric and semiparametric elliptically-based

procedures are sensitive to the assumption of elliptical symmetry. For that reason, we follow

Mencía and Sentana (2008), and test the null hypothesis of multivariate student t innovations

against Generalised Hyperbolic (GH) alternatives, which include the multivariate asymmetric t

distribution in (14) as a special case. In fact, the only difference between a GH distribution and

an asymmetric t distribution is that in the second case the scalar mixing variable ξt can be any

Generalised Inverse Gaussian (GIG) with parameters ν/2, γ and 1, or ξt ∼ GIG(ν/2, γ, 1) for

short (see Jørgensen (1982)). In this sense, a multivariate t distribution is obtained precisely

when ξt is a Gamma random variable with parameters (2η)−1 and δ2/2.
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Mencía and Sentana (2008) proposed joint LM tests, as well as tests for asymmetry and

kurtosis separately. Their kurtosis statistic tests that (1 + γ)−1 ≡ ψ = 1 under the maintained

hypothesis of β = 0, where γ is the second tail shape parameter of the GIG distribution and

β is the N × 1 vector of coefficients that appears in (14). In effect, this amounts to testing

that the tail behavior of the multivariate t distribution adequately reflects the kurtosis in the

data. In turn, the asymmetry statistic tests that β = 0 under the maintained assumption

that ψ = 1.

However, since the ML estimates of η, which is the reciprocal of the degrees of freedom of

the multivariate t distribution, in the two data sets that we consider are above .25, we must

use the modified expressions that Mencia and Sentana (2008) suggest for this case.

Table 2 reports the values of the tests statistics for the industry and book-to-market sorted

portfolios, together with their p-values. As can be seen, we cannot reject the null hypothesis

that the distribution of rt conditional on rMt is multivariate student t at conventional levels.

Finally, we perform a simple conditional homoskedasticity test by regressing the squared

OLS residuals from the regression of rit on a constant and rMt, ε̂2it say, on a constant, the

market excess return rMt and its squared r2Mt for i = 1, . . . , N (see White (1980)). The

results in Table 3 suggest that the distribution of the innovations conditional on rMt is rather

heteroskedastic, as we reject the null hypothesis at 5% significance level in almost all cases.

This result confirms the need to use the robust estimates of the asymptotic covariance matrix

of the t-based ML procedures in Proposition 6, as well as the problems that the HLV standard

errors face, since they are based on Proposition 1 instead.

6 Conclusions

In this paper we study the efficiency-consistency trade-offs of three approaches to test the

mean-variance efficiency of a candidate portfolio with returns rMt in excess of the riskless

asset with respect to a set of N assets with excess returns rt. In particular, we consider tests

based on the GMM approach advocated by MacKinlay and Richardson (1991), the elliptically

symmetric semiparametric methods proposed by HLV, and a feasible parametric procedure

that makes the assumption that, conditional on the reference portfolio, the excess returns of

the original assets are independent and identically distributed as a multivariate t.

We would like to emphasise, though, that most of our results apply not only to the mul-

tivariate t, but also to any other elliptically-based likelihood estimator. The main advantage
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of the student t for our purposes is that we can make explicit its limiting relationship to the

Gaussian distribution.

Our main asymptotic results are:

1. Under correct specification, the feasible parametric and HLV procedures are adaptive,

in the sense that they are as efficient as if one had full knowledge of the true conditional

distribution, including its shape parameters.

2. The t-based PML estimator provides asymptotically valid mean-variance efficiency tests

when the conditional distribution is i.i.d. elliptical but not t, or when it is elliptical

but heteroskedastic, although in both cases the asymptotic covariance matrices have to

be adjusted appropriately. The same seems to be true of the HLV procedure, which

confirms related results by Hodgson (2000) in a univariate context.

3. Test procedures that use the t-based PML estimators seem to be systematically more

efficient from an asymptotic point of view than those based on the GMM estimators

when the conditional distribution of rt given rMt is elliptical, irrespective of whether or

not it is t or conditionally homoskedastic.

4. Only the GMM estimator provides reliable inferences in the presence of asymmetries.

Although our Monte Carlo results are broadly in line with these theoretical conclusions,

they also point out two interesting facts. First, we find that the HLV tests typically have

much larger size distortions in finite samples than the other tests. Secondly, they have smaller

size-adjusted power than the t-based PML tests, although the differences are very small when

the latter are asymptotically suboptimal.

Finally, we apply these different procedures to test the mean-variance efficiency of the

US aggregate stock market portfolio using monthly data over the period July 1962 to June

2007. The results that we obtain for industry portfolios indicate that the student t-based test

clearly rejects the efficiency of the market portfolio, while the GMM test is borderline, and the

HLV based test fails to reject. Given our Monte Carlo results, this contradicting behaviour

is probably due to the lack of reliability of the nonparametric estimates of the asymptotic

covariance matrix implicit in the HLV procedure. In contrast, all three tests reject the mean-

variance efficiency of the market portfolio relative to the book-to-market sorted portfolios of

Fama and French (1993). Importantly, we also find that while the assumption of Gaussianity
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is overwhelmingly rejected in both data sets, the evidence against a multivariate t distribution

for the innovations is weak.

The fact that the number of assets that we consider in our Monte Carlo experiments

and in our empirical application is fairly small probably means that they are unaffected by

the criticism raised by Gibbons, Ross and Shanken (1989) in relation to the sensitivity of the

asymptotic (in T ) distribution of mean-variance efficiency tests to the cross-sectional dimension

N . However, situations in which N/T cannot be regarded as negligible would require different

asymptotic approximations to the one used in this paper.

A tedious, but rather trivial extension of our results would be to consider a situation in

which we want to test the mean-variance efficiency of several reference portfolios simulta-

neously. As Gibbons, Ross and Shanken (1989) show, in a classical Gaussian log-likelihood

context, such a test would simply assess the significance of the intercept in the regression of

rt on the vector of reference portfolios rMt.

Similarly, we could also allow both a and b to linearly depend on a vector of predictor

variables known at time t − 1, xt−1 say, and in this way test for conditional mean variance

efficiency, as discussed in Beaulieu, Dufour and Khalaf (2007) and others.

Hodgson, Linton and Vorkink (2006) consider the application of the elliptically symmetric

semiparametric inference method developed in HLV to testing whether forward exchange rates

provide unbiased forecasts of future changes in spot exchange rates. In the case of a single

currency and contract period, the unbiased hypothesis implies that the slope is 1 and the

intercept is 0 in the regression of future exchange rate movements on a constant and the current

forward premium. It would be interesting to extend our analysis to cover that situation as

well.

A closely related application would be spanning tests (see De Roon and Nijman (2001) for

a recent survey), in which the null hypothesis also involves restrictions on both intercepts and

slopes of a multivariate regression model (see Peñaranda and Sentana (2004) for a comparison

of alternative GMM procedures).

We could increase the efficiency of the GMM estimator of a discussed in section 2.2.2 and

the power of the associated test procedures by including additional moment restrictions that

exploit the elliptical distribution of the innovations. For instance, we could follow Renault

and Sentana (2003), and consider moment conditions of the form:

E {εt(γ)⊗ vech[εt(γ)ε
0
t(γ)]} = 0. (24)
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GMM estimators that combine (8) with this moment condition will typically have a lower

asymptotic variance than âGMM . In fact, we could regard the HLV estimator as a GMM

estimator that optimally exploits the ellipticity of ε∗t , which means that in principle such

augmented GMMprocedures could achieve the elliptically symmetric semiparametric efficiency

bound Iγγ(φ0). Like the HLV estimator, though, such GMM estimators will also become

inconsistent if (24) does not hold, but their main advantage is that GMM integrates estimation

and testing.

To test the validity of the specific distributional assumption for ε∗t made for the purposes

of obtaining âML in our empirical application, we have used the LM specification tests of

Mencia and Sentana (2008), who use the generalised hyperbolic family as the nesting dis-

tribution. And although there are many other tests of ellipticity in the statistical literature

(see e.g. Beran (1979)), for the purposes of testing mean-variance efficiency we could also use

the Hausman specification tests proposed by Fiorentini and Sentana (2007), which compare

the consistent but inefficient estimator âGMM with the efficient but potentially inconsistent

estimators âHLV and âML. An alternative procedure would be a moment test that checks

whether the information matrix equality for mll implicit in Proposition 1 holds, as suggested

by Fiorentini and Sentana (2007).

All these issues constitute interesting avenues for further research.
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Appendix

A Proofs
Proposition 1:

The result follows directly from Proposition 1 in Fiorentini and Sentana (2007) by using

the fact that in the case of model (1)

Z0lt(θ) = Ω−1/2
∂(a+ brMt)

∂θ0
= Ω−1/2

£
(1, rMt)⊗ IN 0

¤
(A1)

and

Z0st(θ) =
1

2
(Ω−1/2 ⊗Ω−1/2)∂vec(Ω)

∂θ0
=
1

2
(Ω−1/2 ⊗Ω−1/2)

¡
0 DN

¢
. (A2)

Corollary 1

The asymptotic normality of the ML estimator of a follows from standard arguments by

combining a central limit theorem for the score with a uniform law of large numbers for the

Hessian matrix under the explicit assumptions that ε∗t is i.i.d. and both rMt and r2Mt are

strictly stationary process with absolutely summable autocovariances. The expression for the

asymptotic covariance matrix is a direct product of the partitioned inverse formula.

Proposition 2

The expressions for the matrices Aγγt(φ), Bγγt(φ) and Cγγt(φ) follow directly from re-

placing (A1) and (A2) in Proposition 2 in Fiorentini and Sentana (2007). The asymptotic

normality of the GMM estimator of γ can be obtained using the arguments in the proof of

Corollary 1.

Proposition 3

The first part of the Proposition follows directly from the first part of Proposition 15 in

Fiorentini and Sentana (2007). The second part of the distribution also follows directly from

the second and third parts of the same proposition because mesokurtic elliptical distributions

satisfy their condition (39), as Fiorentini and Sentana (2007) explain in their proof.

Proposition 4

The first part of the Proposition follows directly from the first part of Proposition 16 in

Fiorentini and Sentana (2007). Specifically, let us initially keep η fixed to some positive value.
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Since εt is elliptical, it can be written as ε∗t =
√
ςtut where ut is uniformly distributed on the

unit sphere surface in RN and ς t is a non-negative random variable independent of ut. Since

ςt(γ0,υ0, τ) =
1

τ
ε0t(γ0)Υ

−1(υ0)εt(γ0) =
τ 0
τ
ς t

where ς t = ςt(γ0,υ0, τ 0), we can write the blocks of the score corresponding to γ, υ and τ as

sγt(γ0,υ0, τ , η) =

µ
1
rMt

¶
⊗ 1√

τ
Υ−1/2(υ0)δ [(τ 0/τ)ς t, η]

p
(τ 0/τ)

√
ς tut (A3)

sυt(γ0,υ0, τ , η) =
1

2

∂vec0[Υ(υ0)]

∂υ

h
Υ(υ0)

−1/2 ⊗Υ(υ0)
−1/2

i
(A4)

×vec
n
δ [(τ 0/τ)ς t, η]

τ 0
τ
ς tutu

0
t − IN

o
and

sτt(γ0,υ0, τ , η) =
1

2τ
vec0(IN)vec

n
δ [(τ 0/τ)ς t, η]

τ 0
τ
ς tutu

0
t − IN

o
. (A5)

Then, it follows that E [sγt(γ0,υ0, τ , η)|rMt, It−1;ϕ0] = 0 regardless of τ and η because of the

serial and mutual independence of ς t and ut, and the fact that E(ut) = 0.

If we define τ∞(η) as the value that solves the implicit equation

E

∙
Nη + 1

1− 2η + η(τ 0/τ)ς t

τ 0
τ

ς t
N
− 1
¯̄̄̄
ϕ0

¸
= 0 (A6)

then it is straightforward to show that

E [sυt(γ0,υ0, τ∞(η), η)|rMt, It−1;ϕ0] = 0

E [sτt(γ0,υ0, τ∞(η), η)|rMt, It−1;ϕ0] = 0.

by using the fact that E(utu0t) = N−1IN .

If we choose η∞ as the solution to the implicit equation

E [sηt(γ0,υ0, τ∞(η), η)|ϕ0] = 0, (A7)

then it is clear that υ0, τ∞(η∞) and η∞ will be the pseudo true values of the parameters.

To obtain the variance of the t-score and the expected value of the t-hessian under mis-

specification it is convenient to rewrite the score as

sϑt(ϑ, η) =

∙
Zγt(ϑ) Zυt(ϑ)
0 Zτt(ϑ)

¸
× [elt(ϑ, η), est(ϑ, η)]
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where

Zγt(ϑ) =

µ
1
rMt

¶
⊗ 1√

τ
Υ−1/2(υ)

Zυt(ϑ) =
1

2

∂vec0[Υ(υ)]

∂υ

h
Υ(υ)−1/2 ⊗Υ(υ)−1/2

i
Zτt(ϑ) =

1

2

1

τ
vec0(IN)

and

elt(ϑ, η) = δ [ς t(ϑ), η]
p
ς t(ϑ)ut

est(ϑ, η) = vec {δ [ς t(ϑ), η] ςt(ϑ)utu0t − IN} .

Then, we can follow exactly the same steps as in the proof of Proposition 1 in Fiorentini and

Sentana (2007) by exploiting that (A6) and (A7) hold at the pseudo-true parameter values

φ∞.

Finally, tedious algebraic manipulations show thatO(φ∞;ϕ0) andH(φ∞;ϕ0) will be block

diagonal between (γ,υ) and (τ , η) if E[∂dt(ϑ)/∂υ|ϕ0] = 0. But this trivially holds in our

parametrization because |Υ(υ)| = 1 for all υ.

Proposition 5

If we use the subscript J to denote the joint log-likelihood function of Rt, expression (2) in

Fiorentini and Sentana (2007) implies that

sJρt(ρ,η) =
∂μ0t(ρ)

∂ρ
Σ−1t (ρ)δN+1[²

∗0
t (ρ)²

∗
t (ρ),η] · ²t(ρ)

+
1

2

∂vec0 [Σt(ρ)]

∂ρ
[Σ−1t (ρ)⊗Σ−1t (ρ)]

×vec {δN+1[²∗0t (ρ)²
∗
t (ρ),η] · ²t(ρ)²0t(ρ)−Σt(ρ)} .

In our case,

∂μt(ρ)

∂ρ0
=

∂

∂ρ0

µ
μM

a+ bμM

¶
=

µ
0 00 00 1 0
IN μMIN 0 0 0

¶
.

As for
∂vec [Σt(ρ)]

∂ρ0
=

∂vec

∂ρ0

µ
σ2M σ2Mb

0

σ2Mb σ2Mbb
0 +Ω

¶
,

it is more convenient to obtain its elements by blocks, so that

∂

∂ρ0

µ
σ2M
σ2Mb

¶
=

µ
0 00 00 0 1
0 σ2MIN 0 0 b

¶
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and
∂vec(σ2Mbb

0 +Ω)

∂ρ0
=
£
0 (IN2 +KNN)(σ

2
Mb⊗ IN) DN 0 (b⊗ b)

¤
,

and then re-arrange them appropriately.

It is also easy to see that

Σ−1(ρ) =

µ
σ−2M + b0Ω−1b −b0Ω−1
−Ω−1b Ω−1

¶
,

by exploiting the Cholesky decomposition of Σ(ρ) in (A8).

We can also tediously prove that£
Σ−1(ρ)⊗Σ−1(ρ)

¤ ∂vec(Σ(ρ))
∂σ2M

=

∙
1/σ4M
0

¸
,

and
∂vec0[Σ(ρ)]

∂b

£
Σ−1(ρ)⊗Σ−1(ρ)

¤
=
¡
−2Ω−1b Ω−1 ⊗ e1,N+1

¢
where e1,N+1 is a vector whose first element is one and has zeros in its remaining N positions.

On this basis, we can write

sJγt(ρ,η) =

∙µ
1
μM

¶
⊗Ω−1

¸
δN+1[²

∗0
t (ρ)²

∗
t (ρ), η]

£
−b IN

¤
²t(ρ)

+

µ
0 0

−2Ω−1b Ω−1 ⊗ e1,N+1

¶
vec

©
δN+1[²

∗0
t (ρ)²

∗
t (ρ), η]²t(ρ)²

0
t(ρ)−Σ(ρ)

ª
.

and

sJωt(ρ,η) =
1

2
D0

N

£
Ω−1 ⊗Ω−1

¤
vec

©
δN+1[²

∗0
t (ρ)²

∗
t (ρ),η]²rt(ρ)²

0
rt(ρ)−Ω

ª
,

where ²rt(ρ) = rt − a− bμM .

In addition,

sJμM (ρ,η) =
1

2σ2M
δN+1[²

∗0
t (ρ)²

∗
t (ρ),η]�t(μM),

and

sJσ2M (ρ,η) =
1

2σ4M

©
δN+1[²

∗0
t (ρ)²

∗
t (ρ),η]�

2
t (μM)− σ2M

ª
,

where �Mt(μM) = rMt − μM .

Finally, the result follows tediously from Proposition 1 in Fiorentini and Sentana (2007) if

we exploit the fact that
∂vec0[Σ(ρ)]

∂b
vec[Σ−1(ρ)] = 0

and
∂vec0[Σ(ρ)]

∂σ2M
vec[Σ−1(ρ)] =

1

σ2M
.
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Interestingly, note that under Gaussianity Iωσ2M (φ) = 0, which confirms that the estima-

tors of the parameter of the marginal model for rMt and the conditional model for rt will be

independent.

Proposition 6

Since Σ−1/2(ρ)[Rt − μ(ρ)]|It−1;ϕ0 ∼ i.i.d. s(0, IN+1,%0), we can write

Σ−1/2(ρ)[Rt − μ(ρ)] = et

µ
u0tp

1− u20tũt

¶
where et is a positive random variable such that E(e2t ) = N +1, u20t is a beta random variable

with parameters (1/2, N/2) and ũt is an independent uniform on the unit sphere surface in

RN .

Given that the Cholesky decomposition of Σ(ρ) can be written as

Σ1/2(ρ) =

µ
σM 0
bσM Ω1/2

¶
(A8)

with Ω1/2 denoting the Cholesky decomposition of Ω, we can write

Rt − μ(ρ) =
µ

σM0etu0t
b0σM0etu0t +Ω

1/2
0 et

p
1− u20tũt

¶
,

where u0t is a random variable on (−1, 1) with density (1−u20t)N/2−1/B(1/2, N/2). This follows

from the symmetry of u0t and the fact that the density of |u0t| is 2(1−u20t)
N/2−1/B(1/2, N/2)

because the density of u20t is (u
2
0t)
−1/2(1 − u20t)

N/2−1/B(1/2, N/2). As a result, εt(γ0;Rt) =

rt − a0 − b0rMt = Ω
1/2
0 et

p
1− u20tũt and

ε0t(γ0;Rt)Ω
−1
0 εt(γ0;Rt) = e2t (1− u20t)

because ũ0tũt = 1.

Let’s now consider the following misspecified model

Ω−1/2(rt − a− brMt)|rMt,φ ∼ i.i.d.t(0, IN , η)

and assume ς t(γ0,υ0, τ) = ε0t(γ0)τ
−1Υ−1(υ0)εt(γ0) = (τ 0/τ)e

2
t (1 − u20t). Hence, the blocks

of the score corresponding to γ, υ and τ are given by (A3), (A4) and (A5) with e2t (1 − u20t)

replacing ςt. Then, the first part of this proposition can be obtained using the arguments in

the proof of the first part of Proposition 4.

The proof of the second part is analogous to the proof of the second part of Proposition 4.

Note, in particular, that having contemporaneous, conditionally heteroskedastic innovations is
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innocuous to obtain the relevant expressions since all the scalar termsmj
i (φ;ϕ) =E

©
f ji [ςt(ρ)]

¯̄
ϕ
ª

appearing in Ot(φ∞;ϕ0) and Ht(φ∞;ϕ0) satisfy

E
©
f ji [ς t(ρ)]

¯̄
ϕ,rMt

ª
= E

©
f ji [ς t(ρ)]

¯̄
ϕ
ª
.

Finally, our parametrization implies that O(φ∞;ϕ0) andH(φ∞;ϕ0) will be block diagonal

between (γ,υ) and (τ , η), as in Proposition 4.
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Table 1

Table 1.a: Parameter estimates: rt = a+ brMt + ut
Industry portfolios

GMM HLV t ML
Category a b a b a b

Cnsmr 0.099 0.954 0.026 1.018 0.023 1.041
(0.091) (0.030) (0.076) (0.017) (0.056) (0.013)

Manuf 0.134 0.870 0.069 0.922 0.123 0.910
(0.076) (0.022) (0.063) (0.014) (0.064) (0.015)

SHiTec −0.086 1.124 −0.064 1.054 −0.146 1.017
(0.117) (0.035) (0.097) (0.022) (0.099) (0.022)

Hlth 0.205 0.875 0.072 0.947 0.092 0.954
(0.146) (0.048) (0.123) (0.028) (0.135) (0.031)

Other 0.088 1.066 0.016 1.132 0.003 1.120
(0.087) (0.024) (0.073) (0.017) (0.085) (0.019)
Book-to-market sorted portfolios
GMM HLV t ML

Quintile a b a b a b

1 −0.108 1.072 −0.111 1.076 −0.121 1.066
(0.062) (0.018) (0.053) (0.012) (0.035) (0.008)

2 0.040 0.992 −0.068 1.027 0.018 1.024
(0.060) (0.019) (0.050) (0.012) (0.049) (0.011)

3 0.151 0.892 0.019 0.930 0.116 0.924
(0.073) (0.024) (0.061) (0.014) (0.062) (0.014)

4 0.328 0.848 0.105 0.913 0.215 0.909
(0.087) (0.031) (0.073) (0.017) (0.064) (0.015)

5 0.430 0.936 0.221 0.984 0.308 0.985
(0.109) (0.039) (0.093) (0.021) (0.111) (0.025)

Table 1.b: Mean-variance efficiency tests (H0 : a = 0)
Industry portfolios

GMM GMM robust HLV t ML t ML robust
Statistic 12.056 10.911 2.194 15.226 14.365
p-value 0.034 0.053 0.822 0.009 0.013

Book-to-market sorted portfolios
GMM GMM robust HLV t ML t ML robust

Statistic 21.350 21.417 12.837 21.846 19.772
p-value 0.001 0.001 0.025 0.001 0.001

Notes: Sample: July:1962-June:2007. Industry definitions: Cnsmr: Consumer Durables, Non-
Durables, Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufacturing,
Energy, and Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth:
Healthcare, Medical Equipment, and Drugs. Other: Other — Mines, Constr, BldMt, Trans, Hotels,
Bus Serv, Entertainment, Finance.



Table 2: Student t tests

Industry portfolios
Test Statistic p-value

Kurtosis (τmkT (φ̂)) 0.033 0.974

Skewness (τaT (φ̂)) 10.003 0.075

Kurtosis & skewness (τmgT (φ̂)) 10.036 0.123

Book-to-market sorted portfolios
Test Statistic p-value

Kurtosis (τmkT (φ̂)) 0.037 0.970

Skewness (τaT (φ̂)) 9.880 0.079

Kurtosis & skewness (τmgT (φ̂)) 9.917 0.128

Notes: July:1962-June:2007. ‘Kurtosis’ is a two-sided test of the null hypothesis of Student t
innovations versus the alternative hypothesis of symmetric Generalized Hyperbolic innovations; the
test statistic is distributed as a N(0, 1) under the null. ‘Skewness’ refers to a test of the same null
hypothesis versus asymmetric t innovations as alternative hypothesis; the test statistic is distributed
as a χ2N under the null. ‘Kurtosis & skewness’ is a two-sided test of the null hypothesis of Student t
innovations versus the alternative hypothesis of Generalized Hyperbolic innovations; the test statistic
is distributed as a χ2N+1 under the null. The test statistics are defined in Mencía and Sentana (2005).

Table 3: Conditional heteroskedasticity test

Industry portfolios
Category Cnsmr Manuf HiTec Hlth Other
Statistic 45.026 9.633 14.635 48.257 4.866
p-value 0.000 0.008 0.001 0.000 0.088

Book-to-market sorted portfolios
Quintile 1 2 3 4 5
Statistic 24.070 11.748 27.480 41.262 62.098
p-value 0.000 0.003 0.000 0.000 0.000

Notes: July:1962-June:2007. Based on the statistical significance of δi = (δ1i, δ2i)
0 in ε̂2it =

ci + δ1irMt + δ2ir
2
Mt + vit, where ε̂it’s are the OLS residuals from a regression of rit on a constant

and rMt. The test statistic, nR2 —where R2 is the coefficient of determination of the regression—, is
distributed as a χ22 under the null hypothesis of conditional homoskedasticity.



Figure 1a: Standardized bivariate normal Figure 1b: Contours of a standardized
density bivariate normal density
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Figure 1c: Standardized bivariate Student t Figure 1d: Contours of a standardized
density with 8 degrees of freedom bivariate Student t density with 8 degrees
(η = 0.125) of freedom (η = 0.125)
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Figure 1e: Standardized bivariate Kotz Figure 1f: Contours of a standardized
density with multivariate excess kurtosis bivariate Kotz density with multivariate
κ = −0.15 excess kurtosis κ = −0.15
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Figure 1g: Standardized bivariate Discrete Figure 1h: Contours of a standardized
scale mixture of normals density with bivariate Discrete scale mixture of normals
multivariate excess kurtosis κ = 0.125 density with multivariate excess kurtosis
(π = 0.5) κ = 0.125 (π = 0.5)
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Figure 2: Relative e ciency ML/HLV vs Gaussian PML

innovations
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Kotz innovations
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Discrete mixture of normals innovations ( = 0 5)
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Notes: The e ciency ratio is measured by m 1( ). For innovations with degrees
of freedom, = 1 . For Kotz innovations, denotes the coe cient of multivariate
excess kurtosis. is the variance ratio of the two components in the Discrete scale
mixture of normals.



Figure 3a: Power of the ML-based and Gaussian-PML-based Wald
tests for elliptical innovations with m ( ) corresponding to 8
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Figure 3b: Power of the ML-based and Gaussian-PML-based Wald
tests for elliptical innovations with m ( ) corresponding to 20
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Notes: Results at the 5% level. = 500 = I , 12 = 1
2
, and a = ,

with = (1 1)0 and [0 2].



Figure 4a: Relative e ciency of PML vs Gaussian PML / ML
for Gaussian innovations

0 0.1 0.2 0.3 0.4 0.5

1

1.05

1.1

1.15

1.2

1.25

η

 E
ff

ic
ie

nc
y 

R
at

io
 

Figure 4b: Pseudo-true value of (¯) = 0 (¯) for
Gaussian innovations
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Notes: The e ciency ratio is measured by m ( ; 0) { [m ( ; 0)]
2}. Vertical

lines in the top panel and horizontal lines in the bottom panel indicate the the pseudo-
true values of and when is also estimated. Horizontal lines in the top panel indicate
the relative e ciency of the ML estimator: 1 m ( 0).



Figure 4c: Relative e ciency of ML / PML vs Gaussian PML for
Kotz innovations ( = 0 125)
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Figure 4d: Pseudo-true value of (¯) = 0 (¯) for Kotz
innovations ( = 0 125)
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Notes: The e ciency ratio is measured by m ( ; 0) { [m ( ; 0)]
2}. Vertical

lines in the top panel and horizontal lines in the bottom panel indicate the the pseudo-
true values of and when is also estimated. Horizontal lines in the top panel indicate
the relative e ciency of the ML estimator: 1 m ( 0). is the coe cient of multivariate
excess kurtosis.



Figure 4e: Relative e ciency of ML / PML vs Gaussian PML for
Discrete mixture of normals innovations ( = 0 5, = 0 25)
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Figure 4f: Pseudo-true value of (¯) = 0 (¯) for
Discrete mixture of normals innovations ( = 0 5, = 0 25)
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Notes: The e ciency ratio is measured by m ( ; 0) { [m ( ; 0)]
2}. Vertical

lines in the top panel and horizontal lines in the bottom panel indicate the the pseudo-
true values of and when is also estimated. Horizontal lines in the top panel indicate
the relative e ciency of the ML estimator: 1 m ( 0). is the coe cient of multivariate
excess kurtosis and characterizes the Bernoulli mixture variate.



Figure 5a: Relative e ciency of ML / PML vs Gaussian PML
for returns ( = 8)
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Figure 5b: Pseudo-true value of (¯) = 0 (¯) for
returns ( = 8)
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Notes: The e ciency ratio is measured by m ( ; 0) { [m ( ; 0)]
2}. Vertical

lines in the top panel and horizontal lines in the bottom panel indicate the the pseudo-
true values of and when is also estimated. Horizontal lines in the top panel indicate
the relative e ciency of the joint ML estimator described in Section 3.4.



Figure 6. Monte Carlo distributions of estimators of a

Gaussian innovations 8 innovations
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B Computation of the asymptotic efficiency of the t-
based PML estimator when the true distribution of
the innovations is elliptical

To compute the efficiency of the t-basedML estimator relative to the GMM estimator under

ellipticity of the innovations, we first need to compute the pseudo-true values of the parameters.

For a fixed value of η > 0, we know that a∞(η) = a0, b∞(η) = b0 and Ω∞(η) = λ−1∞ (η)Ω0,

where λ∞(η) solves

E

∙
Nη + 1

1− 2η + ηλ∞(η)ς

λ∞(η)ς

N

¯̄̄̄
φ0

¸
= 1, (B9)

with the expectation computed with respect to the true distribution of ς. This implicit equa-

tion is equivalent to the moment condition

E
£
sωt(a0,b0, λ

−1
∞ (η)ω0, η)

¯̄
φ0
¤
= 0

(see e.g. proof of Proposition 16 in Fiorentini and Sentana (2007)).

If η is not fixed, though, we will also have to compute the pseudo-true value of η, η∞,

say. If the innovations are distributed as a platykurtic elliptical random vector, then we know

from Proposition 3 that η∞ = 0 and λ∞(0) = 1. But when the innovations are drawn from

a leptokurtic elliptical random vector instead, then under standard regularity conditions η∞

can be understood as the value that makes

E [sηt(θ∞, η∞)|φ0] = 0, (B10)

where

sηt(θ, η) =
∂c(η)

∂η
+

∂g [λ∞ςt, η]

∂η
.

Fiorentini, Sentana and Calzolari (2003) show that for η > 0 this derivative is given by

∂c(η)

∂η
=

N

2η(1− 2η) −
1

2η2

∙
ψ

µ
Nη + 1

2η

¶
− ψ

µ
1

2η

¶¸
,

∂g(ςt, η)

∂η
= − Nη + 1

2η(1− 2η)
ς t

1− 2η + ης t
+

1

2η2
log

∙
1 +

η

1− 2η ς t
¸
,

where ψ(.) is the di-gamma or Gauss’ psi function (see Abramovich and Stegun (1964)).

In general, the presence of a log term implies that we must compute (B10) by numerical

integration using recursive adaptive Simpson quadrature, where the required expectation is

taken with respect to the true distribution of ς.

1



Unfortunately, both ∂g(ςt, η)/∂η and especially ∂c(η)/∂η are numerically unstable for η

small, as documented by Fiorentini, Sentana and Calzolari (2003). For that reason, we follow

their advice, and evaluate these expressions by means of the (directional) Taylor expansions

around η = 0 in the following cases:

(i) if η < 0.0008, then use

∂c0(η)

∂η
=

N(N + 2)

4
− N(N + 2)(N − 5)

6
η +

N(N + 2)(N2 − 6N + 16)

8
η2

instead of ∂c(η)/∂η, and

(ii) if η < 0.03 or ηςt < 0.001, then use

∂g0(ς t, η)

∂η
= −N + 2

2
ςt +

1

4
ς2t

+

∙
−2(N + 2)ς t +

N + 4

2
ς2t −

1

3
ς3t

¸
η

+

∙
−12(N + 2)ςt + 6(N + 3)ς2t − (N + 6)ς3t +

1

8
ς4t

¸
η2

2

+

∙
−96(N + 2)ςt + 24(3N + 8)ς2t − 24(N + 4)ς3t

+3(N + 8)ς4t − 12
5
ς5t

¸
η3

6

+

∙
−960(N + 2)ς t + 600(2N + 5)ς2t − 1440(3N + 10)ς3t

+120(N + 5)ς4t − 12(N + 10)ς5t + 10ς
6
t

¸
η4

24
(B11)

instead of ∂g(ςt, η)/∂η. Consequently, we evaluate (B10) as the weighted average of this

expectation conditional on the complementary events ς t < 0.001η0 and ς t > 0.001η0 weighted

by the corresponding probabilities. In many cases, both the expected value of (B11) conditional

on ςt < 0.001η0 and P (ςt < 0.001η0|φ0) can be computed analytically.

Having obtained the pseudo-true values, then we need to compute

mH
II [η, λ∞(η)] = E

∙
Nη + 1

1− 2η + ηλ∞(η)ς t

µ
1 +

2η

1− 2η + ηλ∞(η)ςt

λ∞(η)ςt
N

¶¯̄̄̄
φ0

¸
(B12)

and

mO
II [η, λ∞(η)] = E

"µ
Nη + 1

1− 2η + ηλ∞(η)ς t

¶2
λ∞(η)ςt

N

¯̄̄̄
¯φ0

#
. (B13)

It turns out that we can obtain analytical expressions for these expectations in the two

examples that we consider in the paper.

B.1 Kotz innovations

As discussed in section 2.1, ς is Gamma distributed when the true innovations follow a

Kotz distribution. Consequently, (B9), (B12) and (B13) can be decomposed in terms of the

2



form

a · E
"µ

1

b+ dy

¶k

yh

#
,

where y = ας/N is distributed as a standardized Gamma with parameter α = N [(N + 2)κ+

2]−1, k and h are non-negative integers, and a, b > 0, and d > 0 are real constants. In fact

we only need to find an analytical expression for E
£
(1 + cy)−k

¤
for k = 1 and k = 2, where

c = d/b > 0, as
a

bk
E

"µ
1

1 + cy

¶k

yh

#
=

a

bk
Γ(α+ h)

Γ(α)
E

∙
1

(1 + cy∗)k

¸
,

where Γ(a) is the complete Gamma function and y∗ a standardized Gamma with parameter

α+ h.

To do so, we first compute the moment generating function of 1 + cy, which is given by

M1+cy(t) = E
£
et(1+cy)

¤
= etE

£
etcy
¤
=

et

(1− ct)α

since My(t) = E(ety) = (1− t)−α. Then, we can exploit the result in equation (3) in Cressie,

Davis, Folks and Policello (1981), which in our case yields

E

∙
1

(1 + cy)k

¸
=

1

Γ(k)

Z ∞

0

tk−1M1+cy(−t)dt

for any positive random variable y for which the above integral is well defined.

If we use the change of variable s = t+ c−1, so that t = s− c−1, cs = ct+ 1 and ds = dc,

then we obtain that for k = 1,

E

∙
1

(1 + cy)

¸
=

Z ∞

0

e−t

(1 + cy)α
dt =

ec
−1

cα

Z ∞

c−1

e−s

sα
ds =

ec
−1

cα
Γ(1− α, c−1).

where Γ(a, x) is the non-normalized incomplete Gamma function, which can be computed

using standard software such as Mathematica or Maple. Similarly, for k = 2 we end up with

E

∙
1

(1 + cy)2

¸
=

Z ∞

0

t
e−t

(1 + cy)α
dt

=

Z ∞

c−1
(s− c−1)

e−(s−c
−1)

(cs)α
ds

=
ec
−1

cα

∙Z ∞

c−1

e−s

sα−1
ds− c−1

Z ∞

c−1

e−s

sα
ds

¸
=

ec
−1

cα
£
Γ(2− α, c−1)− c−1Γ(1− α, c−1)

¤
=

ec
−1

cα
©£
(1− α)− c−1

¤
Γ(1− α, c−1)

ª
+ c−1.

3



Finally, note that the terms E[ςk|ς < 0.001η−10 ;φ0] that appear in the expectation of (??),

together with P [ς < 0.001η−10 |φ0] can be easily computed in terms of incomplete Gamma

functions too.

B.2 Two-component scale mixture of normals

Since in this case ς is Gamma(N/2, 1/2) conditional on the realization of the mixing

variable s, we can use exactly the same formulas as in the case of the Kotz distribution, and

then average across the two values of s. For instance,

mH
II [η, λ∞(η)] ≡ πE

∙
Nη + 1

1− 2η + ηλ∞(η)'y

µ
1 +

2η

1− 2η + ηλ∞(η)'y

λ∞(η)'y

N

¶¯̄̄̄
φ0, s = 1

¸
+(1− π)E

∙
Nη + 1

1− 2η + ηλ∞(η)'κy

µ
1 +

2η

1− 2η + ηλ∞(η)'κy
λ∞(η)'κy

N

¶¯̄̄̄
φ0, s = 0

¸
,

where 'αy/N is distributed as a standardised Gamma with parameter α = N/2.

C EM recursions for the multivariate t distribution

In this Appendix we specialise the expressions in Appendices B and D of Mencia and Sen-

tana (2008) to the conditionally homoskedastic multivariate regression model with symmetric

t innovations that we are considering. The rationale for using the EM algorithm comes from

the fact that the model rt = a+ brMt +Ω1/2ε∗t , with ε
∗
t |rMt, It−1;φ0 ∼ i.i.d. t(0, IN , ν0) can

be rewritten as

rt = a+ brMt +Ω1/2

s
ν0 − 2
ξt

ε◦t

where ε◦t |ξt, rMt, It−1;φ0 ∼ N(0, IN) and ξt|φ0 ∼ Gamma(ν0/2, 1/2).

Given that we know f(rt|ξt,rMt;φ), f(ξt|φ) and f(rt|rMt;φ), we can use Bayes theorem

to obtain the distribution of ξt conditional on rt and rMt. Specifically,

f(ξt|rt, rMt;φ) = f(rt|ξt, rMt;φ)f(ξt|φ)/f(rt|rMt;φ) ∝ f(rt|ξt, rMt;φ)f(ξt|φ).

Straightforward algebra shows that we can write

f(ξt|rt, rMt;φ) ∝ ξ
N/2
t exp

∙
−ς t
2

η

1− 2ηξt
¸
ξ
1
2η
−1

t exp

µ
−ξt
2

¶
∝ ξ

Nη+1
2η

−1
t exp

∙
−ξt
2

µ
ης t
1− 2η + 1

¶¸
where ς t = (rt − a− brMt)

0Ω−1(rt − a− brMt), so that

ξt|rt, rMt;φ ∼ Gamma

½
Nη + 1

2η
,
1

2

∙
1 +

ηςt
1− 2η

¸¾
.
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On this basis, we can show that the EM recursions with respect to a, b and ω will be

given byµ
a(i+1)

b(i+1)

¶
=

⎧⎨⎩
"

TX
s=1

ξ
(i)
s|s

µ
1 rMs

rMs r2Ms

¶#−1
⊗ IN

⎫⎬⎭
TX
t=1

½∙
ξ
(i)
t|t

µ
1
rMt

¶¸
⊗ rt

¾
and

ω(i+1) = vech

"
1

T

η̃(i)

1− 2η̃(i)
TX
t=1

ξ
(i)
t|t (rt − a− brMt)(rt − a− brMt)

0

#
,

where

ξ
(i)
t|t = E[ξt|rt, rMt; a

(i),b(i),ω(i), η̃(i)] =
Nη̃(i) + 1

η̃(i)

∙
η̃(i)ς t

1− 2η̃(i)
+ 1

¸−1
.

Although it is also possible to use the EM principle to update η, it involves numerical op-

timisation, so in practice it may be better to define η̃(i+1) = argmaxLT (θ̃
(i+1)

, η) using η̃(i)

as starting value. To initialise the EM recursions, we use the θ̂GMM and the sequential ML

estimator for η, η̂SML, which in turn we obtain using the MM estimator (22) as starting value.

D The information matrix for scale mixtures of normals

The density of ς when ε∗ is a two-component scale mixture of normals is

h(ς;η) =
(2')−N/2

Γ(N/2)
ςN/2−1

∙
π exp

µ
− 1

2'
ς

¶
+ (1− π)κ−N/2 exp

µ
− 1

2'κ
ς

¶¸
,

where ' = [π + κ(1− π)]−1. If we combine h(ς;η) with expression (2.21) in Fang, Kotz and

Ng (1990), then (5) follows. Hence,

mll(η) = E
h
δ2(ς;η)

ς

N

¯̄̄
φ
i

=

Z ∞

0

1

'2

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
×
½
π2 + 2π(1− π)κ−(N/2+1) exp

∙
−1− κ
2'κ

ς

¸
+ (1− π)2κ−(N+2) exp

∙
−1− κ

'κ
ς

¸¾
×(2')

−N/2

Γ(N/2)

ςN/2

N
exp

µ
− 1

2'
ς

¶
dς

= A1 +A2 +A3,

where

A1 =
(2')−N/2

'2Γ(N/2)
π2
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2

N
exp

µ
− 1

2'
ς

¶
dς,

5



A2 =
(2')−N/2

'2Γ(N/2)
2π(1− π)

Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
×κ−(N/2+1) ς

N/2

N
exp

µ
− 1

2'κ
ς

¶
dς

and

A3 =
(2')−N/2

'2Γ(N/2)
(1− π)2

Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
×κ−(N+2) ς

N/2

N
exp

∙
−2− x

2'κ
ς

¸
dς.

By analogy with Masoom and Nadarajah (2007), we can use the change of variable v =
1

2'κ (1− κ)ς, so that dς = 2'κ(1− κ)−1dv, whence we get

A1 =
(2')−N/2

'2Γ(N/2)

1

N
π

µ
2'κ
1− κ

¶N/2+1

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp (−v)

¾−1
vN/2 exp

µ
− κ
1− κv

¶
dv

=
1

'
π

µ
κ

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2,

N

2
+ 1,

κ
1− κ

¶
,

A2 =
(2')−N/2

'2Γ(N/2)
2(1− π)

κ−(N/2+1)

N

µ
2'κ
1− κ

¶N/2+1

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp (−v)

¾−1
vN/2 exp

µ
− 1

1− κv
¶
dv

=
1

'
2(1− π)

µ
1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2, N

2
+ 1,

1

1− κ

¶
and

A3 =
(2')−N/2

'2Γ(N/2)

(1− π)2

π

κ−(N+2)

N

µ
2'κ
1− κ

¶N/2+1

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp (−v)

¾−1
vN/2 exp

∙
−2− κ
1− κv

¸
dv

=
1

'

(1− π)2

π
[κ(1− κ)]−(N/2+1)z

µ
−1− π

π
κ−N/2,

N

2
+ 1,

2− κ
1− κ

¶
,

where z(z, s, r) denotes the Lerch function (see Erdelyi, 1981), which can be represented as

z(z, s, r) =
1

Γ(s)

Z ∞

0

vs−1 exp(−rv)
1− z exp(−v)dv.

This function can be accurately computed using standard software such as Mathematica.

6



Therefore,

mll(η) =
1

'
π

µ
κ

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2, N

2
+ 1,

κ
1− κ

¶
+
2

'
(1− π)

µ
1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2,

N

2
+ 1,

1

1− κ

¶
+
1

'

(1− π)2

π
[κ(1− κ)]−(N/2+1)z

µ
−1− π

π
κ−N/2, N

2
+ 1,

2− κ
1− κ

¶
.

Similarly, we can use

∂δ(ς;η)

∂ς
= −1− κ

2'2κ

½
π + (1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸¾−1
×(1− π)κ−(N/2+1) exp

∙
−(1− κ)
2'κ

ς

¸
+
1− κ
2'2κ

½
π + (1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸¾−2
×
½
π + (1− π)κ−N/2+1 exp

∙
−(1− κ)
2'κ

ς

¸¾
×(1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸
to compute mss(η) from

mss(η) = E

∙
2∂δ[ςt(θ);η]

∂ς

ς t(θ)

N

¯̄̄̄
φ

¸
+ 1,

with

E

∙
2∂δ[ς;η]

∂ς

ς2

N(N + 2)

¯̄̄̄
φ

¸
=

Z ∞

0

ς2

N(N + 2)

(½
π + (1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸¾−1
×(1− κ)

'2κ
(1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸
×
½
π + (1− π)κ−(N/2+1) exp

∙
−(1− κ)
2'κ

ς

¸¾
− (1− κ)

'2κ
(1− π)κ−(N/2+1) exp

∙
−(1− κ)
2'κ

ς

¸¾
×(2')

−N/2

Γ(N/2)
ςN/2−1 exp

µ
− 1

2'
ς

¶
dς

= B1 +B2 +B3

where

B1 = − (2')−N/2

(N + 2)Γ(N/2)

1

N'2
(1− π)(1− κ)κ−(N/2+2)

Z ∞

0

ςN/2+1 exp

∙
− 1

2'κ
ς

¸
dς

= − (2')−N/2

(N + 2)Γ(N/2)

1

N'2
(1− π)(1− κ)κ−(N/2+2)(2'κ)(N/2+2)Γ

µ
N

2
+ 2

¶
= −(1− π)(1− κ)
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B2 =
(2')−N/2

(N + 2)Γ(N/2)

1

N'2
π(1− π)(1− κ)κ−(N/2+1)

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸¾−1
ςN/2+1 exp

∙
− 1

2'κ
ς

¸
dς

=
(2')−N/2

(N + 2)Γ(N/2)

1

N'2
(1− π)(1− κ)κ−(N/2+1)

µ
2'κ
1− κ

¶N/2+2

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2+1 exp

∙
− 1

1− κv
¸
dv

= (1− π)κ
µ

1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2,

N

2
+ 2,

1

1− κ

¶
and

B3 =
(2')−N/2

(N + 2)Γ(N/2)

1

N'2
(1− π)2(1− κ)κ−(N+2)

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸¾−1
ςN/2+1 exp

∙
−2− κ
2'κ

ς

¸
dς

=
(2')−N/2

(N + 2)Γ(N/2)

1

N'2

(1− π)2

π
(1− κ)κ−(N+2)

µ
2'κ
1− κ

¶N/2+2

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2+1 exp

∙
−2− κ
1− κv

¸
dv

=
(1− π)2

π
κ−N/2

µ
1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2,

N

2
+ 2,

2− κ
1− κ

¶
.

Hence,

mss(η) = −(1− κ)(1− π)

+(1− π)

µ
1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2,

N

2
+ 2,

1

1− κ

¶
+
(1− π)2

π
κ−N/2

µ
1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2, N

2
+ 2,

2− κ
1− κ

¶
.

Finally, we can use

∂δ(ς;η)

∂π
= '(1− κ)δ(ς;η)

+
1

'

½
π + (1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸¾−1
½
1 +

h ς
2
(1− π)(1− κ)2κ−(N/2+2) − κ−(N/2+1)

i
exp

∙
−(1− κ)
2'κ

ς

¸¾
− 1
'

½
1 +

h ς
2
(1− π)(1− κ)2κ−(N/2+1) − κ−N/2

i
exp

∙
−(1− κ)
2'κ

ς

¸¾
×
½
π + (1− π)κ−N/2 exp

∙
−(1− κ)
2'κ

ς

¸¾−2
×
½
π + (1− π)κ−(N/2+1) exp

∙
−(1− κ)
2'κ

ς

¸¾
8



and

∂δ(ς;η)

∂κ
= '(1− π)δ(ς;η)

−
∙µ

N

2
+ 1

¶
(1− π)κ−(N/2+2) +

ς

2

£
1− π(1− κ−2)

¤
(1− π)κ−(N/2+1)

¸
× 1
'

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
exp

∙
−1− κ
2'κ

ς

¸
+

∙
N

2
(1− π)κ−(N/2+1) +

ς

2

£
1− π(1− κ−2)

¤
(1− π)κ−N/2

¸
× 1
'

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−2
×
½
π + (1− π)κ−(N/2+1) exp

∙
−1− κ
2'κ

ς

¸¾
exp

∙
−1− κ
2'κ

ς

¸
to compute

msr(η) = −E
∙
ςt(θ)

N

∂δ[ς t(θ);η]

∂η0

¯̄̄̄
φ

¸
= −E

∙
ςt(θ)

N

µ
∂δ[ς t(θ);η]

∂π
,
∂δ[ς t(θ);η]

∂κ

¶¯̄̄̄
φ

¸
.

We then need

E

∙
ς

N

∂δ(ς,η)

∂π

¯̄̄̄
φ

¸
=

Z ∞

0

ς

N

½
(1− κ)

∙
π + (1− π)κ−(N/2+1) exp

∙
−1− κ
2'κ

ς

¸¸
+
1

'

½
1 +

h ς
2
(1− π)(1− κ)2κ−(N/2+2) − κ−(N/2+1)

i
exp

∙
−1− κ
2'κ

ς

¸¾
−
½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
× 1
'

½
1 +

h ς
2
(1− π)(1− κ)2κ−(N/2+1) − κ−N/2

i
exp

∙
−1− κ
2'κ

ς

¸¾
×
∙
π + (1− π)κ−(N/2+1) exp

∙
−1− κ
2'κ

ς

¸¸¾
×(2')

−N/2

Γ(N/2)
ςN/2−1 exp

µ
− 1

2'
ς

¶
dς

= C1 +C2 +C3 +C4 +C5 +C6 +C7 +C8

where

C1 =
(2')−N/2

Γ(N/2)

1

N

∙
(1− κ)π + 1

'

¸Z ∞

0

ςN/2 exp

µ
− 1

2'
ς

¶
dς

=
(2')−N/2

Γ(N/2)

(2')N/2+1

N

∙
(1− κ)π + 1

'

¸
Γ

µ
N

2
+ 1

¶
= 'π(1− κ) + 1
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C2 =
(2')−N/2

Γ(N/2)

1

N'
['(1− π)(1− κ)− 1]κ−(N/2+1)

Z ∞

0

ςN/2 exp

µ
− 1

2'κ
ς

¶
dς

=
(2')−N/2

Γ(N/2)

(2')N/2+1

N'
['(1− π)(1− κ)− 1]Γ

µ
N

2
+ 1

¶
= '(1− π)(1− κ)− 1

C3 =
(2')−N/2

Γ(N/2)

1

2N'
(1− π)(1− κ)2κ−(N/2+2)

Z ∞

0

ςN/2+1 exp

µ
− 1

2'κ
ς

¶
dς

=
(2')−N/2

Γ(N/2)

1

2N'
(1− π)(1− κ)2 (2')N/2+2 Γ

µ
N

2
+ 2

¶
= '(1− π)(1− κ)2

µ
N

2
+ 1

¶

C4 = −(2')
−N/2

Γ(N/2)

π

N'

Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2 exp

µ
− 1

2'
ς

¶
dς

= −(2')
−N/2

Γ(N/2)

1

N'

µ
2'κ
1− κ

¶N/2+1

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2 exp

µ
− κ
1− κv

¶
dv

= −
µ

κ
1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2, N

2
+ 1,

κ
1− κ

¶

C5 = −(2')
−N/2

Γ(N/2)

1

N'
[(1− π)− πκ]κ−(N/2+1)

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2 exp

∙
− 1

2'κ
ς

¸
dς

= −(2')
−N/2

Γ(N/2)

1

N'

∙
1− π

π
− κ

¸
κ−(N/2+1)

µ
2'κ
1− κ

¶N/2+1

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2 exp

∙
− 1

1− κv
¸
dv

= −
∙
1− π

π
− κ

¸µ
1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2, N

2
+ 1,

1

1− κ

¶
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C6 = −(2')
−N/2

Γ(N/2)

1

N'

π(1− π)

2
κ−(N/2+1)(1− κ)2

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2+1 exp

∙
− 1

2'κ
ς

¸
dς

= −(2')
−N/2

Γ(N/2)

1

N'

(1− π)

2
κ−(N/2+1)(1− κ)2

µ
2'κ
1− κ

¶N/2+2

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2 exp

∙
− 1

1− κv
¸
dv

= −'(1− π)κ
µ

1

1− κ

¶N/2µ
N

2
+ 1

¶
z
µ
−1− π

π
κ−N/2,

N

2
+ 2,

1

1− κ

¶

C7 =
(2')−N/2

Γ(N/2)

1

N'
(1− π)κ−(N+1)

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2 exp

∙
−2− κ
2'κ

ς

¸
dς

=
(2')−N/2

Γ(N/2)

1− π

π

κ−(N+1)

N'

µ
2'κ
1− κ

¶N/2+1

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2 exp

∙
−2− κ
1− κv

¸
dv

=
1− π

π
κ−N/2

µ
1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2,

N

2
+ 1,

2− κ
1− κ

¶
;

C8 = −(2')
−N/2

Γ(N/2)

1

2N'
(1− π)2(1− κ)2κ−(N+2)

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2+1 exp

∙
−2− κ
2'κ

ς

¸
dς

= −(2')
−N/2

Γ(N/2)

1

2N'

(1− π)2

π
(1− κ)2κ−(N+2)

µ
2'κ
1− κ

¶N/2+2

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2+1 exp

∙
−2− κ
1− κv

¸
dv

= −' (1− π)2

π
κ−N/2

µ
1

1− κ

¶N/2µ
N

2
+ 1

¶
z
µ
−1− π

π
κ−N/2,

N

2
+ 2,

2− κ
1− κ

¶
;
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and

E

∙
ς t(θ)

N

∂δ[ς t(θ);η]

∂κ

¯̄̄̄
φ

¸
=

Z ∞

0

ς

N

½
(1− π)

∙
π + (1− π)κ−(N/2+1) exp

∙
−1− κ
2'κ

ς

¸¸
−
∙µ

N

2
+ 1

¶
(1− π) +

ς

2

£
1− π(1− κ−2)

¤
κ
¸

× 1
'
κ−(N/2+2) exp

∙
−1− κ
2'κ

ς

¸
+

∙
N

2
(1− π) +

ς

2

£
1− π(1− κ−2)

¤
(1− π)κ

¸
κ−(N/2+1)

'

×
½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
×
½
π + (1− π)κ−(N/2+1) exp

∙
−1− κ
2'κ

ς

¸¾
exp

∙
−1− κ
2'κ

ς

¸¾
×(2')

−N/2

Γ(N/2)
ςN/2−1 exp

µ
− 1

2'
ς

¶
dς

= D1 +D2 +D3 +D4 +D5 +D6 +D7

where

D1 =
(2')−N/2

Γ(N/2)

(1− π)π

N

Z ∞

0

ςN/2 exp

µ
− 1

2'
ς

¶
dς

=
(2')−N/2

Γ(N/2)

(1− π)π

N
(2')N/2+1Γ

µ
N

2
+ 1

¶
= '(1− π)π

D2 = −(2')
−N/2

Γ(N/2)

κ−(N/2+2)

N
(1− π)

∙
1

'

µ
N

2
+ 1

¶
− (1− π)κ

¸ Z ∞

0

ςN/2 exp

µ
1

2'κ
ς

¶
dς

= −(2')
−N/2

Γ(N/2)

κ−(N/2+2)

N
(1− π)

∙
1

'

µ
N

2
+ 1

¶
− (1− π)κ

¸
(2'κ)N/2+1Γ

µ
N

2
+ 1

¶
= −(1− π)

1

κ

∙µ
N

2
+ 1

¶
− (1− π)κ'

¸

D3 = −(2')
−N/2

Γ(N/2)

1

2N'

£
1− π(1− κ−2)

¤
(1− π)κ−(N/2+1)

Z ∞

0

ςN/2+1 exp

µ
1

2'κ
ς

¶
dς

= −(2')
−N/2

Γ(N/2)

1

2N'

£
1− π(1− κ−2)

¤
(1− π)κ−(N/2+1)(2'κ)N/2+2Γ

µ
N

2
+ 2

¶
= −

µ
N

2
+ 1

¶
'(1− π)κ

£
1− π(1− κ−2)

¤
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D4 =
(2')−N/2

Γ(N/2)

1

2'
(1− π)πκ−(N/2+1)

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2 exp

∙
− 1

2'κ
ς

¸
dς

=
(2')−N/2

Γ(N/2)

1

2'
(1− π)κ−(N/2+1)

µ
2'κ
1− κ

¶N/2+1

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2 exp

∙
− 1

1− κv
¸
dv

=
N

2
(1− π)

µ
1

1− κ

¶N/2+1

z
µ
−1− π

π
κ−N/2,

N

2
+ 1,

1

1− κ

¶
,

D5 =
(2')−N/2

Γ(N/2)

1

2N'
π(1− π)

£
1− π(1− κ−2)

¤
κ−N/2

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2+1 exp

∙
− 1

2'κ
ς

¸
dς

=
(2')−N/2

Γ(N/2)

1

2N'
(1− π)

£
1− π(1− κ−2)

¤
κ−N/2

µ
2'κ
1− κ

¶N/2+2

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2+1 exp

∙
− 1

1− κv
¸
dv

= '(1− π)
£
1− π(1− κ−2)

¤µ κ
1− κ

¶2µ
1

1− κ

¶N/2

×
µ
N

2
+ 1

¶
z
µ
−1− π

π
κ−N/2, N

2
+ 2,

1

1− κ

¶
,

D6 =
(2')−N/2

Γ(N/2)

1

'

1

2
(1− π)2κ−(N+2)

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2 exp

∙
−2− κ
2'κ

ς

¸
dς

=
(2')−N/2

Γ(N/2)

1

2'

(1− π)2

π
κ−(N+2)

µ
2'κ
1− κ

¶N/2+1

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2 exp

∙
−2− κ
1− κv

¸
dv

=
N

2

(1− π)2

π
[κ(1− κ)]−(N/2+1)z

µ
−1− π

π
κ−N/2,

N

2
+ 1,

2− κ
1− κ

¶
,
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and

D7 =
(2')−N/2

Γ(N/2)

1

2N'

£
1− π(1− κ−2)

¤
(1− π)2κ−(N+1)

×
Z ∞

0

½
π + (1− π)κ−N/2 exp

∙
−1− κ
2'κ

ς

¸¾−1
ςN/2+1 exp

∙
−2− κ
2'κ

ς

¸
dς

=
(2')−N/2

Γ(N/2)

1

2N'

(1− π)2

π

£
1− π(1− κ−2)

¤
κ−(N+1)

µ
2'κ
1− κ

¶N/2+2

×
Z ∞

0

½
1 +

1− π

π
κ−N/2 exp [−v]

¾−1
vN/2+1 exp

∙
−2− κ
1− κv

¸
dv

=

µ
N

2
+ 1

¶
'
(1− π)2

π

£
1− π(1− κ−2)

¤
κ−(N/2−1)

µ
1

1− κ

¶N/2+2

×z
µ
−1− π

π
κ−N/2, N

2
+ 2,

2− κ
1− κ

¶
,
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