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reduce the estimation bias to a term of order 1/T2. The small sample performance of 
bias corrected estimators is investigated in a Monte Carlo simulation study. The 
simulation results show that the bias of the maximum likelihood estimator is 
substantially corrected for designs that are broadly calibrated to the PSID. The 
empirical analysis is conducted on data drawn from the 1968-1993 PSID. I find that it is 
important to account for individual unobserved heterogeneity and dynamics in the 
variance, and that the latter is driven by job mobility. I also find that the model explains 
the non-normality observed in logwage data. 
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1 Introduction

Estimates of individual earnings processes are useful for a variety of purposes, which include testing

between different models of the determinants of earnings distributions, building predictive earnings dis-

tributions, or calibrating consumption and saving models.

While several papers have focused on modelling the heterogeneity and time series properties of the

conditional mean of earnings given its past (Lillard and Willis, 1978; MaCurdy, 1982; Abowd and Card,

1982, among others), the modelling of the conditional variance has been mostly neglected. However, in

many applications it is important to understand the behavior of higher order moments of the process.

This would be the case if we consider an individual trying to forecast her future earnings, in order to

guide savings or other decisions. As the individual faces various sorts of uncertainty, she will be interested

in forecasting not only the level of earnings but also its variance. The properties of the variance would be

important for describing wage profiles over time and for better understanding what drives fluctuations

in them. A richer specification can contribute also to modelling choices in models that use the earnings

process as an input. In fact, recent studies stress the relevance of considering a variance that varies over

time and across individuals (Meghir and Windmeijer, 1999; Chamberlain and Hirano, 1999; Meghir and

Pistaferri, 2004; Albarrán, 2004; Alvarez and Arellano, 2004).

There are also many papers that study the increase in the cross-sectional variance of earnings in the

American economy since the 70’s until today (see Katz and Autor, 1999). This growth in the aggregate

variance is associated with an increase in inequality. Much less is known about the behaviour of the

conditional variance given observed and unobserved individual characteristics.

In this paper, I propose a likelihood-based panel data model for the heterogeneity and dynamics of

the conditional mean and the conditional variance of individual wages. In particular, I build a dynamic

panel data model with linear individual effects in the mean and multiplicative individual effects in the

conditional ARCH type variance function. Therefore, with this model, we can say to what extent the time

evolution of the variance is determined by permanent individual heterogeneity or by state dependence

effects. This distinction would be crucial, for instance, in the case of precautionary savings as the

consumer would behave very differently if she knows that the risk she suffers is permanently higher, than

if it is only due to a period of higher volatility.
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It is well known that failure to control for individual unobserved heterogeneity can lead to misleading

conclusions. This problem is particularly severe when the unobserved heterogeneity is correlated with

explanatory variables. Such a situation arises naturally in a dynamic context. Here, I adopt a fixed

effects perspective leaving the distribution for the unobserved heterogeneity completely unrestricted and

treating each effect as one different parameter to be estimated.

There is an extensive literature on how to estimate linear panel data models with fixed effects (see

Chamberlain, 1984, and Arellano and Honoré, 2001, for references), but there are no general solutions

for non-linear cases. If the number of individuals N goes to infinity while the number of time periods

T is held fixed, estimation of non-linear models with fixed effects by maximum likelihood suffers from

the so-called Incidental Parameters Problem (Neyman and Scott, 1948). This problem arises because

the unobserved individual characteristics are replaced by inconsistent sample estimates, which biases

estimates of model parameters. In particular, the bias of the maximum likelihood estimator is of order

1/T . The number of periods available for many panel data sets is such that it is not less natural to

talk of time-series finite sample bias than of fixed-T inconsistency or underidentification. In this light, an

alternative reaction to the fact that micro panels are short is to ask for approximately unbiased estimators

as opposed to estimators with no bias at all. This approach has the potential of overcoming some of the

fixed-T identification difficulties and the advantage of generality. Methods of estimation of nonlinear fixed

effects panel data models with reduced bias properties have been recently developed (see Arellano and

Hahn, 2006a, for a review). There are automatic methods based on simulation (Hahn and Newey, 2004),

bias correction based on orthogonalization (Cox and Reid, 1987; Lancaster, 2002) and their extensions

(Woutersen, 2002; Arellano, 2003), analytical bias correction of estimators (Hahn and Newey, 2004; Hahn

and Kuersteiner, 2004), bias correction of the moment equation (Carro, 2006; Fernández-Val, 2005) and

bias corrections for the concentrated likelihood (DiCiccio and Stern, 1993; Severini, 1998a; Pace and

Salvan, 2005).

Following this perspective, I build a modified likelihood function for estimation and inference. Using

a bias-corrected concentrated likelihood makes it possible to reduce the estimation bias to a term of

order 1/T 2, without increasing its asymptotic variance. This is very encouraging since the goal is not

necessarily to find a consistent estimator for fixed T , but one with a good finite sample performance and

a reasonable asymptotic approximation for the samples used in empirical studies.
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The contributions of the paper are twofold. First, I develop several versions of the modified likelihood

based on DiCiccio and Stern (1993), Severini (1998a), Pace and Salvan (2005), and Arellano and Hahn

(2006b) adapted to a dynamic conditional variance model. Second, I show how this approach works in

practice for a specific empirical setting. The small sample performance of bias corrected estimators is

investigated in a Monte Carlo study. The simulation results show that the bias of the maximum likelihood

estimator is substantially corrected for samples designs that are broadly calibrated to the one used in

the empirical application. The empirical analysis is conducted on data drawn from the 1968-1993 Panel

Study of Income Dynamics (PSID). These models and data are interesting because we do not know much

how the volatilities of individual wages behave in a period of increasing aggregate inequality. I find that

it is important to account for individual unobserved heterogeneity and dynamics in the variance, and

that the latter is driven by job mobility. I also find that the model explains the non-normality observed

in logwage data.

In a similar sample for male earnings, Meghir and Pistafferi (2004) find strong evidence of state

dependence effects as well as evidence of unobserved heterogeneity in the variances1. They also propose

an autoregressive conditional heteroskedasticity panel data model of earnings dynamics, but they separate

into a permanent component and a transitory component of earnings shocks. This can be appropriate

in models where the author makes assumptions about the nature of the different shocks that affect the

income process. Nevertheless, a model with a permanent component I(1) imposes a unit root, i.e., a

value for the autoregressive coefficient in the mean equal to one, whereas recent evidence suggests a value

for this coefficient around 0.4 − 0.5 (Alvarez and Arellano, 2004). I use a single-shock, multiple effects

model instead2. This parsimonious specification would be useful for describing and estimating wage

distributions (Chamberlain and Hirano, 1999). Meghir and Pistaferri recover orthogonality conditions

for the estimation. Their method depends critically on the linear specification for the variance. But even

in this case, they recognize that they cannot do fixed-T consistent GMM estimation because they have

weak instruments. So, they implement a WG-GMM estimator which is only consistent when T → ∞.

What is specially worrying about this is that they have a bias of order 1/T as opposed to my estimator

1Also Lin (2005), using a subsample of the dataset considered by Meghir and Pistaferri (2004), finds statistically sig-
nificant evidence of ARCH effects in earnings dynamics. He considers an ARCH-fixed effects estimator in a “quasi-lineal”
setting. Here we consider a different econometric framework, which let us handle models with multiple effects and estimators
without being constrained to the availability of differencing schemes.

2Meghir and Windmeijer (1999) and Albarrán (2004) use single-shock models as well but they do not have an application
to data.
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which has a bias of order 1/T 2. This difference is very important, as we will see in the simulations with

respect to the MLE which also has a bias of order 1/T . Even worse, because the WG-GMM estimator

use arbitrary moment conditions it is thus less efficient than MLE. I choose an exponential specification

that implies a conditional variance that is always nonnegative regardless of the parameter values, and

in addition it has a known steady-state distribution (Nelson, 1992). What is interesting is that the

estimation method does not depend on tricks applicable to the particular specification. It could also be

used without major changes considering a quadratic specification as the one of Meghir and Pistaferri, or

in other models.

Two limitations of the current analysis are the following: (i) so far there is not adjustment for

measurement error; and (ii) there is not explicit treatment of job changes. It is known that measurement

error is important for PSID wages and that part of the variance in wages may be due to job mobility, so

these issues need to be addressed in further work.

The rest of the paper is organised as follows. Section 2 presents the panel nonlinear dynamic model

and the likelihood function. Section 3 reviews the alternative approaches for correcting the concentrated

likelihood adapted to this particular setting. Section 4 shows some simulations to study the finite sample

performance of the bias corrections for the concentrated likelihood. In Section 5, I present the empirical

application on individual wages and in Section 6 the implications of the model for consumption growth.

Section 7 concludes with some remarks on a future research agenda.

2 The Model and the Likelihood Function

2.1 The Model

I consider the following model of standardized logwages where i and t index individuals and time, respec-

tively:3

yit = αyit−1 + ηi + eit = αyit−1 + ηi + h
1/2
it ²it; (i = 1, ..., N ; t = 1, ..., T )

with

E
¡
yit|yt−1i ,Θi

¢
= αyit−1 + ηi,

3In the sequel, for any random variable (or vector of variables) Z, zit denotes observation for individual i at period t,
and zti = {zi0, ..., zit}, i.e. the set of observations for individual i from the first period to period t.
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and

hit = V ar
¡
yit|yt−1i ,Θi

¢
= E

¡
e2it|yt−1i ,Θi

¢
= exp (ψi + β [|²it−1|−E (|²it−1|)])

= h (²it−1,ψi) .

In these expressions, {yi0, ..., yiT }Ni=1 are the observed data4, Θi = (ηi,ψi)
0 are the individual un-

observed fixed effects, eit is an ARCH process, and {²it} is an i.i.d. sequence with zero mean and unit

variance5. The log formulation implies that hit is always nonnegative, regardless of the parameter values

(Nelson, 1992). Finally, I denote the vector of common parameters as Γ = (α,β)0.

For the conditional mean, I consider an autoregressive specification where the parameter α measures

the persistence on the level of wages to shocks, ηi describe permanent unobserved heterogeneity and eit

reflects shocks that individuals receive every period6. Departing for the classical AR(1) process, I permit

that the variances, given past observations, change over time and across individuals. This particular

ARCH type specification allows me to capture two patterns of wage volatility. The first one is individual

heterogeneity, ψi: wage volatilities of different individuals can vary differently. For instance, there can

be different variances of wages between civil servants and workers of a sales department and also between

workers of sales departments in big and small firms. The second one is dynamics, β, reflecting the

persistence on the volatility of wages to shocks.

2.2 The Likelihood Function

Under the assumption that ²it ∼ N(0, 1), that is, ²it|yt−1i ,Θi ∼ N(0, 1) then, conditional on the past, the

model is normal heteroscedastic

yit|yt−1i ,Θi ∼ N(αyit−1 + ηi, hit),

and the individual likelihood, conditioned on initial observations, and fixed effects, is

f (yi1, ..., yiT |yi0,Θi0) =
TY
t=1

f (yit|yit−1,Θi0,Γ0) .

4I assume that yi0 is observed for notational convenience, so that the actual number of waves in the data is T + 1.
5In the empirical analysis, I approximate the absolute value function by means of a differentiable function.
6I focus on a first-order process to simplify the presentation and because this specification turns out to be a good

description of the data used in the empirical analysis.
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The log-likelihood for one observation, `it, differs from the linear model with normal errors through the

time-dependence of the conditional variance. For any individual i and t > 1, we can write

ln f (yit|yit−1,Θi,Γ) = `it (Γ,Θi) ∝ −
1

2
ln (h (²it−1,ψi))−

1

2

(yit − αyit−1 − ηi)
2

h (²it−1,ψi)
.

Initial conditions. Evaluation of the likelihood at t = 1 requires pre-sample values for ²2it and hit. For

t = 1,

yi1 = αyi0 + ηi + [h (²i0,ψi)]
1/2 ²i1,

where h (²i0,ψi) = h (yi0, yi,−1, yi,−2, ...) . This is a model for f
¡
yi1|yi0, yi(−1), yi(−2), ...,Θi0

¢
or for

f (yi1|yi0, ²i0,Θi0) where ²i0 resumes all the past values of yit, but what we would need is f (yi1|yi0,Θi0) .

Since,

E (yi1|yi0,Θi0) = E (yi1|yi0, ²i0,Θi0) = αyi0 + ηi,

and

V ar (yi1|yi0,Θi0) = E (h (²i0,ψi) |yi0,Θi0) + V ar (αyi0 + ηi|yi0,Θi0)

= E (h (²i0,ψi) |yi0,Θi0) + V ar (ηi|yi0,Θi0)

= ϕ (ηi,ψi,Γ) .

Thus, f (yi1|yi0,Θi0) would be a mixture given that:

f (yi1|yi0,Θi0) =
Z
f (yi1|yi0, ²i0,Θi0) dG (²i0|yi0,Θi0) .

For simplicity, I consider an approximate model where yi1|yi0,Θi0 ∼ N (αyi0 + ηi, hi1) and, as suggested

by Bollerslev (1986), I use the mean of the squared residuals as an estimate for hi1 =
1
T

TP
t=1
e2it.

7 As

T →∞, hi1 is the steady-state unconditional variance of eit given fixed effects, that is,

ϕ (ηi,ψi,Γ) = p lim
T→∞

1

T

TX
t=1

(yit − αyit−1 − ηi)
2
.

Let the individual likelihood function be

£i (Γ,Θi) =
TY
t=2

1

[h (²it−1,ψi)]
1/2

φ

Ã
yit − αyit−1 − ηi

[h (²it−1,ψi)]
1/2

!
· 1

[hi1]
1/2

φ

Ã
yi1 − αyi0 − ηi

[hi1]
1/2

!
,

7Another alternative would be adding the missing variances as parameters to be estimated.
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and the log-likelihood of each observation

`it (Γ,Θi) = −
1

2
ln (hit)−

1

2

(yit − αyit−1 − ηi)
2

hit
,

where

hit =

⎧⎨⎩ 1
T

TP
t=1
e2it if t = 1,

exp (ψi + β [|²it−1|−E (|²it−1|)]) if t > 1.

3 Correcting the Likelihood Function

In this section, I adopt a likelihood-based approach that allows me to deal with dynamics and multiple

fixed effects in the estimation. The MLE of Γ, concentrating out the Θi, is the solution to

bΓ ≡ argmax
Γ

1

NT

NX
i=1

TX
t=1

`it

³
Γ, bΘi (Γ)´ ; bΘi (Γ) ≡ argmax

Θ

1

T

TX
t=1

`it (Γ,Θ) .

Incidental Parameters Problem. In this context, fixed effects MLE suffers from the incidental pa-

rameters problem noted by Neyman and Scott (1948). In this case, the incidental parameters would be

the individual effects. The problem arises because the unobserved individual effects Θi are replaced by

sample estimates bΘi (Γ): as only a finite number T of observations are available to estimate each Θi, the
estimation error of bΘi (Γ) does not vanish as the sample size N grows, and this error contaminates the

estimates of common parameters in nonlinear models. Let

L (Γ) ≡ lim
N→∞

1

N

NX
i=1

E

"
TX
t=1

`it

³
Γ, bΘi (Γ)´# .

Then, from the usual maximum likelihood properties, for N →∞ with T fixed, bΓT = ΓT + op (1) , where
ΓT ≡ argmaxΓ L (Γ) . In general, ΓT 6= Γ0, but ΓT → Γ0 as T →∞.

Due to the noise in estimating bΘi (Γ), the expectation of the concentrated likelihood is not maximized
at the true value of the parameter. This problem can be avoided by correcting the concentrated likelihood.

The bias in the expected concentrated likelihood at an arbitrary Γ can be expanded in orders of

magnitude of T

E

"
1

T

TX
t=1

`it

³
Γ, bΘi (Γ)´− 1

T

TX
t=1

`it
¡
Γ, Θ̄i (Γ)

¢#
=
bi (Γ)

T
+ o

µ
1

T

¶
,

where Θ̄i (Γ) maximizes limT→∞E
h
T−1

PT
t=1 `it (Γ,Θ)

i
. As it is shown in Appendix A, the form of the

approximate bias of the concentrated likelihood is:

bi (Γ)

T
≈ 1
2
tr
³
Hi (Γ)V ar

hbΘi (Γ)i´ = 1

2T
tr
¡
H−1i (Γ)Υi (Γ)

¢
,
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where

Hi (Γ) = − lim
T→∞

E

"
∂2`i

¡
Γ,Θi (Γ)

¢
∂Θi∂Θ0i

#
,

Υi (Γ) = lim
T→∞

TE

"
∂`i
¡
Γ,Θi (Γ)

¢
∂Θi

·
∂`i
¡
Γ,Θi (Γ)

¢
∂Θ0i

#
,

and

`i (Γ,Θi) =
1

T

TX
t=1

`it (Γ,Θ) .

For further discussion on the estimation method and a formal analysis of the asymptotic properties of

the bias-corrected estimators when N and T grow at the same rate see Arellano and Hahn (2006b).

In this paper, I consider three alternative estimators of Γ which maximize a bias-corrected concentrated

likelihood function like:

eΓ = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ)´

= argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bΘi (Γ)´− 1

T
b̂i (Γ)

#
.

Letting b̂i (Γ) be an estimated bias, eΓ is expected to be less biased than the MLE bΓ.
Trace Based Approach. An estimator for the bias term in the modified likelihood would be

bbi (Γ) = 1

2
tr
³ bH−1i (Γ) bΥi (Γ)´ .

Determinant Based Approach. In a likelihood context, it is appropriate to consider a local version

of the estimated bias using that at the truth H−1i (Γ0)Υi (Γ0) = 1 (Pace and Salvan, 2005). As it is

shown at the end of Appendix A, this local version of bbi (Γ) gives
bbi (Γ) = −1

2
ln det bHi (Γ) + 1

2
ln det bΥi (Γ) ,

or bbi (Γ)
T

=
1

2
ln det bHi (Γ) + 1

2
ln detdV ar hbΘi (Γ)i .

In practice, for estimating the bias I need to estimate the hessian term, Hi (Γ) , and the expected

outer product term, Υi (Γ) . For estimating the first one I use its sample counterpart:

bHi (Γ) = − 1
T

TX
t=1

∂2`it

³
Γ, bΘi (Γ)´

∂Θi∂Θ0i
.
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With regard to Υi (Γ), note that since

1

T

XT

t=1

∂`it

³
Γ, bΘi (Γ)´
∂Θi

= 0,

also

1

T

XT

t=1

XT

s=1

∂`it

³
Γ, bΘi (Γ)´
∂Θi

·
∂`is

³
Γ, bΘi (Γ)´
∂Θ0i

= 0,

so that using the observed quantities evaluated at bΘi (Γ) will not work. The three different corrections,
presented below, are based on three different estimators for this second term of the bias.

3.1 Trace Based Approach for Pseudo Likelihoods

Since Υi

³
Γ, bΘi (Γ)´ = 0, a trimmed version of Υi (Γ) might work. That is,

bΥi (Γ) = Ω0 + rX
l=1

(Ωl +Ω
0
l) ,

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶ ∂`it

³
Γ, bΘi (Γ)´
∂Θ

·
∂`it−l

³
Γ, bΘi (Γ)´
∂Θ0

.

In principle r could be chosen as a suitable function of T to ensure bias reduction but, given that in

practice T will be small and that the procedure is known to fail for values of r at both ends of the

admissible range (r = 0 and r = T − 1), in practice r will be chosen equal to 2 or 3.

The trace based approach can be regarded as an objective-function counterpart to the bias-corrected

estimator in Hahn and Kuersteiner (2004).

3.2 Determinant Based Approach Using Expected Quantities

This approach is based on the expectation

Ῡi (Γ,Θi;Γ0,Θi0)

≡ TE{Γ0,Θi0}

∙∙
∂`i (Γ,Θi)

∂Θi
−E

µ
∂`i (Γ,Θi)

∂Θi

¶¸
·
∙
∂`i (Γ,Θi)

∂Θ0i
−E

µ
∂`i (Γ,Θi)

∂Θ0i

¶¸¸
obtained using the true density f (yi|yi0,Γ0,Θi0) . Notice that in this case (for an arbitrary (Γ,Θi)),

centering the expected outer product term is crucial because only for E

µ
∂`i(Γ,Θi(Γ))

∂Θi

¶
this expectation

is equal to zero. Also it is important to note that this expected quantity can be obtained for given values

of (Γ,Θi) and (Γ0,Θi0), analytically or numerically, because in the likelihood context the density of the

data is available. However, it cannot be calculated at (Γ0,Θi0) because true values are unknown. The
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estimator solves this problem replacing (Γ0,Θi0) by their ML estimates
³bΓ, bΘi´. This give us the useful

quantity: Ῡi

³
Γ, bΘi (Γ) ; bΓ, bΘi´ .

This approach can be regarded as a dynamic version of Severini (1998a) or DiCiccio and Stern (1993)

approximations to the modified profile likelihood.

Iterated Bias-Corrected Likelihood Estimation. An undesirable feature of this approach is its

dependence on bΓ, which may have a large bias. This problem can be avoided by considering an iterative

procedure. That is, once a first corrected estimate is available,

eΓI = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ) ; bΓ, bΘi´ ,

I could use it to calculate a second one:

eΓII = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ) ; eΓI , bΘi ³eΓI´´ .

Pursuing the iteration,

eΓK = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ) ; eΓK−1, bΘi ³eΓK−1´´ ,

until convergence, it would be possible to obtain an estimator eΓ∞ that solves

NX
i=1

qmi

³
Γ, bΘi (Γ) ;Γ, bΘi (Γ)´ = 0,

where qmi (Γ,Θi;Γ0,Θi0) denotes the score of `mi (Γ,Θi;Γ0,Θi0) for fixed Γ0 and Θi0.

3.3 Determinant Based Approach Using Bootstrap

The first step consists in generating parametric bootstrap samples {ymi1 , ..., ymiT}
N
i=1 with (m = 1, ...,M)

from the model
nQT

t=1 f
³
yit|yi0, bΓ, bΘi´oN

i=1
and, then, in obtaining the corresponding fixed effects

estimates
nbΘmi (Γ)oM

m=1
. This approach, close to Pace and Salvan (2005), is based on using a bootstrap

estimate of V ar
hbΘi (Γ)i given by

dV ar hbΘi (Γ)i = 1

M

MX
m=1

hbΘmi (Γ)− bΘi (Γ)i2 .
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4 Monte Carlo Evidence

The practical importance of these bias corrections depends on how much bias is removed for the relatively

small T that is often relevant in econometric applications.

In this section, I provide some simple versions of the model showing that these corrections can remove

a large part of the bias even with small T .

4.1 The linear dynamic panel model with fixed effects

Consistent estimates of α for fixed T are available in the AR(1) case. I consider this model first to

compare the bias correcting estimators described above with the one proposed by Lancaster (2002).

The model design is

yit = αyit−1 + ηi + ²it, (t = 1, ..., T ; i = 1, ..., N)

²it ∼ N(0, 1), ηi ∼ N(0, 1),

yi0 ∼ N

µ
ηi

(1− α)
,

1

(1− α2)

¶
.

The data are generated for T = 8 and 16, N = 500 and 1000, and for α = 0.5, and 0.8. I have simulated

samples for different samples sizes because I expect the modified MLE to improve much more with T

than with N. And I have also simulated samples for different values of α because the larger the α the

greater the serial correlation of yit, thus I expect that the estimator performs worse.

Here the MLE of α is

α̂ ≡ argmax
α

1

N

NX
i=1

"
1

T

TX
t=1

`it (α, η̂i (α))

#
=

PN
i=1

PT
t=1 ỹitỹit−1PN

i=1

PT
t=1 ỹ

2
it−1

,

where

η̂i (α) ≡ argmax
η

1

T

TX
t=1

`it (α, η) = ȳi − αȳi(−1),

and ȳi =
1
T

TP
t=1
yit, ȳi(−1) =

1
T

TP
t=1
yit−1, ỹit = yit − ȳi, ỹit−1 = yit−1 − ȳi(−1). I also consider several bias-

correcting estimators of α that are obtained by maximization of a modified concentrated log likelihood

like

eα ≡ argmax
α

1

N

NX
i=1

`mi (α,bηi (α)) .

11



- Trace Based Approach with Trimming: this approach uses a trimmed version of Υi (α) , that is,

bΥi (α) = Ω0 + 2 rX
l=1

Ωl,

where

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶
∂`it
∂ηi

· ∂`it−l
∂ηi

,

for r small. So,

`mi (α, η̂i (α)) = −
1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2 − 1

2T

³ bH−1i (α) bΥi (α)´ .
- Determinant Based Approach Using Expected Quantities: in this case,

bHi (α) = − 1
T

TX
t=1

∂2`it (α,bηi (α))
∂η2

= 1,

Ῡi (α, ηi;α0, ηi0) = TE0

"∙
∂`i (α, η)

∂ηi
−E

µ
∂`i (α, η)

∂ηi

¶¸2 ¯̄̄̄¯ yi0
#

= TV ar0

∙
∂`i (α, η)

∂ηi

¯̄̄̄
yi0

¸
= TV ar [v̄i|yi0] .

where v̄i =
1
T

TP
t=1

∂`it(α,η)
∂η , 8 and as it is shown in Appendix B

Ῡi (α, η;α0, η0) = 1 + T (α0 − α)2 ωT (α0) + 2T (α0 − α)ψT (α0) ,

with

ωT (α0) =
1

T 2

h
1 + (1 + α0)

2 +
¡
1 + α0 + α20

¢2
+ . . .+

¡
1 + α0 + . . .+ αT−20

¢2i
,

ψT (α0) =
1

T 2
£¡
1 + α0 + . . .+ αT−20

¢
+
¡
1 + α0 + . . .+ αT−30

¢
+ . . .+ 1

¤
.

Thus

Ῡi (α,bηi (α) ; α̂, η̂i) = 1 + T (α̂− α)2 ωT (α̂) + 2T (α̂− α)ψT (α̂) .

It follows that in this case

`mi (α, η̂i (α) ; α̂, η̂i) = −
1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2 − 1

2T
ln Ῡi (α, η̂i (α) ; α̂, η̂i) .

- Determinant Based Approach Using a Parametric Bootstrap Estimate of V ar [η̂i (α)]: now

`mi (α, η̂i (α)) = −
1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2 − 1

2
lndV ar [η̂i (α)] ,

8In what follows I omit the argument in `it for notational simplicity.
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where

dV ar [η̂i (α)] = 1

M

MX
m=1

[η̂mi (α)− η̂i (α)]
2
,

and m indexes the simulated samples by parametric bootstrap.

- Following Lancaster (2002), I consider the Approximate Conditional Likelihood:

`mi (α, η̂i (α)) = −
1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2 +

bT (α)

T
,

where

bT (α) =
1

T

"
T−1X
t=1

µ
T − t
t

¶
αt

#
.

Before presenting the results I want to mention that I use Individual Block-Bootstrap, that is, fixed-T

large-N non parametric bootstrap for calculating the standard errors of the estimates. The assumption

of independence across individual allows me to draw complete time series for each individual to capture

the time series dependence, that is, I draw yi = (yi1, ..., yiT )
0
S times to obtain the simulated datan

y
(s)
i , y

(s)
i(−1)

oS
s=1

. For each sample I obtain the corresponding estimates of α0,
³
α̂(1), ..., α̂(S)

´
, and the

empirical distribution as an approximation of the distribution of α̂.9

Table 1 reports estimates, based on 300 Monte Carlo runs, for T = 8 and N = 500.

Table 1. Properties of α̂ (T = 8)

α = 0.5 α = 0.8
Estimator of α Mean SD Mean SE Mean SD Mean SE

MLE 0.2947 0.0173 0.0160 0.5263 0.0163 0.0156
Trimming 0.3782 0.0177 0.0197 0.5986 0.0158 0.0165
Expected Quantities 0.4365 0.0149 0.0151 0.6541 0.0146 0.0143
Bootstrap Variance 0.4745 0.0213 0.0193 0.7158 0.0182 0.0170
Lancaster 0.5006 0.0205 0.0197 0.7989 0.0240 0.0240
Note: N=500; simulations=300; parametric bootstrap samples=300; non parametric bootstrap

samples=100; trimming=2. SD: Sample standard deviation. Mean SE: Mean of estimated standard

errors by individual block-bootstrap.

I find some differences in the performance between these four types of bias corrections. I have also

found that iterating bias correction, in the case of the first two corrections, improves a bit the estimation

but for brevity I do not report here these results. An example of that is included in the next subsection.

We see in the table that the fixed effects MLE is downward biased by around 35-40 percent in both

cases. Bias corrections, except the one proposed by Lancaster (2002) that is consistent for fixed T , all

9Notice that, opposite to the block bootstrap procedure used in time-series literature (Hall and Horowitz, 1996; Horowitz,
2003), here I do not need to choose any bandwidth.
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perform better when α = 0.5. In this latter case, the corrections reduce the bias for at least a half. In

addition, we can see that the mean of the standard errors estimated by individual block-bootstrap is a

good approximation to the Monte Carlo standard deviation.

Table 2 presents estimates for T = 16 and N = 500.

Table 2. Properties of α̂ (T = 16)

α = 0.5 α = 0.8
Estimator of α Mean SD Mean SE Mean SD Mean SE

MLE 0.4008 0.0109 0.0106 0.6653 0.0097 0.0093
Expected Quantities 0.4589 0.0109 0.0111 0.7093 0.0096 0.0093
Bootstrap Variance 0.4962 0.0119 0.0115 0.7781 0.0106 0.0104
Trimming 0.4577 0.0106 0.0101 0.7093 0.0092 0.0089
Lancaster 0.4999 0.0119 0.0117 0.7993 0.0124 0.0119
Note: N=500; simulations=300; parametric bootstrap samples=200; non parametric bootstrap

samples=100; trimming=2. SD: Sample standard deviation. Mean SE: Mean of estimated standard

errors by individual block-bootstrap.

We can see that for α = 0.5, the MLE has still an important bias, but the modified MLEs are closer

to the true value. As before, corrections perform worse when α = 0.8.

I do not report here the results for N = 1000, because increasing the number of individuals from

N = 500 to N = 1000 has little effect on the magnitude of the estimated bias (much less effect that

increasing T ).

4.2 The linear dynamic panel model with multiple fixed effects

One of the advantages of the bias-correcting estimators with respect to the estimator proposed by Lan-

caster is their generality. With only a slight modification of the previous expressions it is possible to deal

with a more complex model, as an AR(1) model with fixed effects in the conditional mean, ηi, and in the

conditional variance, σ2i .

Now the model design is

yit = αyit−1 + ηi + eit = αyit−1 + ηi + σi²it, (t = 1, ..., T ; i = 1, ..., N)

²it ∼ N(0, 1), ηi ∼ N(0, 1), ψi = log σ2i ∼ N (−3.0, 0.8) ,

yi0 ∼ N

µ
ηi

(1− α)
,

σ2i
(1− α2)

¶
.

The data are generated for T = 8 and 16, N = 500, and for α = 0.5. I denote as Θi =
¡
ηi,σ

2
i

¢0
the vector
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of fixed effects. The MLE of α is

α̂ ≡ argmax
α

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
α, bΘi (α)´#

= argmax
α

1

N

NX
i=1

"
−1
2
ln σ̂2i (α)−

1

2T

TX
t=1

(yit − αyit−1 − η̂i (α))
2

σ̂2i (α)

#
,

where

bΘi (α) = µ η̂i (α)

σ̂2i (α)

¶
=

⎛⎝ ȳi − αȳi(−1)

1
T

TP
t=1
(yit − αyit−1 − (ȳi − αx̄i))

2

⎞⎠ ,
and ȳi =

1
T

TP
t=1
yit, ȳi(−1) =

1
T

TP
t=1
yit−1, ỹit = yit − ȳi, ỹit−1 = yit−1 − ȳi(−1).

Again, I consider several bias-correcting estimators of α that are obtained by maximization of a

modified concentrated log likelihood like

eα ≡ argmax
α

1

N

NX
i=1

`mi

³
α, bΘi (α)´ .

- Trace Based Approach with Trimming: this approach uses a trimmed version of Υi (α) , that is,

bΥi (α) = Ω0 + rX
l=1

(Ωl +Ω
0
l) ,

where

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶
∂`it
∂Θi

· ∂`it−l
∂Θ0i

,

for r small. So,

`mi

³
α, bΘi (α)´ = 1

T

TX
t=1

`it

³
α, bΘi (α)´− 1

2T
tr
³ bH−1i (α) bΥi (α)´ .

- Determinant Based Approach Using Expected Quantities: now

Hi (α) = − 1
T

TX
t=1

Ã
∂2`it
∂η2

∂2`it
∂η∂σ2

∂2`it
∂σ2∂η

∂2`it
∂(σ2)2

!

=
1

T

TX
t=1

⎛⎝ 1
σ2i

(yit−αyit−1−ηi)
σ4i

(yit−αyit−1−ηi)
σ4i

³
(yit−αyit−1−ηi)2

σ6i

´
− 1

2σ4i

⎞⎠ ,
and

Ῡi (α,Θi;α0,Θi0)

= TE0

½∙
∂`i (α,Θi)

∂Θi
−E

µ
∂`i (α,Θi)

∂Θi

¶¸ ∙
∂`i (α,Θi)

∂Θ0i
− E

µ
∂`i (α,Θi)

∂Θ0i

¶¸¯̄̄̄
yi0

¾
.
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Now, I obtain Ῡi

³
α, bΘi (α) ; α̂, bΘi´ as a mean of {Υmi (α)}Mm=1 calculated in data simulated asnQT

t=1 f
³
yit|yi0, α̂, bΘi´oN

i=1
. That is,

Ῡi

³
α, bΘi (α) ; α̂, bΘi´ = 1

M

MX
m=1

Υmi (α) ,

where

Υmi (α) =
1

T

TX
t=1

TX
s=1

("
∂`it
∂Θi

−
Ã
1

T

TX
r=1

∂`ir
∂Θi

!#
·
"
∂`is
∂Θ0i

−
Ã
1

T

TX
r=1

∂`ir
∂Θ0i

!#)
,

and

∂`it
∂Θi

=

µ ∂`it
∂η
∂`it
∂σ2

¶
=

⎛⎝ (yit−αyit−1−η̂i(α))
σ̂2i (α)

(yit−αyit−1−η̂i(α))2−σ̂2i (α)
2(σ̂2i (α))

2

⎞⎠ .
This leads to

`mi

³
α, bΘi (α) ; α̂, bΘ´ =

1

T

TX
t=1

`it

³
α, bΘi (α)´+ 1

2T
ln det bHi (α)

− 1

2T
ln det Ῡi

³
α, bΘi (α) ; α̂, bΘi´ .

- Determinant Based Approach Using a Bootstrap Estimate of V ar
hbΘi (α)i: this approach is based

on using the bootstrap estimate

dV ar hbΘi (α)i = 1

M

MX
m=1

hbΘmi (α)− bΘi (α)i hbΘmi (α)− bΘi (α)i0 ,
which leads to

`mi

³
α, bΘi (α)´ = 1

T

TX
t=1

`it

³
α, bΘi (α)´− 1

2
ln det

³ bHi (α)dV ar hbΘi (α)i´ .
Table 3 reports estimates for T = 8 and 16, and N = 500.

Table 3. Properties of α̂ for α = 0.5

T = 8 T = 16
Estimator of α Mean SD Mean SD

MLE 0.2575 0.0169 0.3904 0.0113
Expected Quantities (1st) 0.4214 0.0225 0.4862 0.0160
Expected Quantities (2nd) 0.5115 0.0243 0.5119 0.0157
Bootstrap Variance (1st) 0.3753 0.0442 0.4707 0.0167
Bootstrap Variance (2nd) 0.4336 0.0515 0.4925 0.0172
Trimming 0.3105 0.0467 0.4444 0.0121
Note: N=500; simulations=300; parametric bootstrap samples=300;

trimming=2. SD: Sample standard deviation.

We see in the table that the fixed effects MLE is downward biased in both cases. Here we can see

that iterating bias correction improves substantially the estimation. In fact, bias corrections reduce the

bias for at least a half and this bias practically disappears when I iterate the corrections.
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4.3 The AR(1)-EARCH(1) panel model with fixed effects

Now the model design is

yit = αyit−1 + eit = αyit−1 + h
1/2
it ²it, (t = 1, ..., T ; i = 1, ..., N)

hit = exp

µ
ψi + β

∙q
²2it−1 + Λ−

p
2/π

¸¶
= h (²it−1,ψi) ,

²it ∼ N(0, 1), ψi ∼ N (−3.0, 0.8) .

where Λ is a small positive number used to approximate the absolute value function by means of a rotated

hyperbola, and
p
2/π is an approximation for E

hq
²2it−1 + Λ

i
given that ²it−1 ∼ N(0, 1). The process

is started at yi0 = 0, then 700 time periods are generated before the sample is generated. I denote as

Γ = (α,β) . The data are generated for T = 8 and 16, N = 1000, α = 0.5, and β = 0.5. For each sample

I have estimated Γ by maximum likelihood and, at the moment, by the trimming modified maximum

likelihood.

The MLE of Γ is

bΓ ≡ argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bψi (Γ)´

#
,

where

bψi (Γ) ≡ argmax
ψ

1

T

TX
t=1

`it (Γ,ψ) .

Since here I can not get a explicit expression of the fixed effects estimators as functions of α and β, I do

a double maximization, strictly speaking N maximizations inside the one for Γ. I use a Quasi-Newton’s

Method algorithm to maximize the log likelihood function with respect to Γ, and in each step bψi (Γ) is
computed such that, for this given value of Γ, the individual log likelihood is maximized with respect to

ψ.

The MMLE is

eΓ = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bψi (Γ)´

= argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bψi (Γ)´− b̂i (Γ)T

#
,

where

b̂i (Γ) =
1

2

h bH−1i (Γ) bΥi (Γ)i ,
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for

bHi (Γ) = − 1
T

TX
t=1

∂2`it

∂ψ2
,

and a trimmed version of Υi (Γ) with r small

bΥi (Γ) = Ω0 + 2 rX
l=1

Ωl,

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶
∂`it
∂ψi

· ∂`it−l
∂ψi

.

In this case I calculate numerical first and second derivatives.

Table 4 reports estimates for T = 8 and 16, and N = 1000. In this case α̂ is not biased, and with the

trimming correction I correct an otherwise seriously biased MLE of β.

Table 4. Properties of α̂, β̂ for α = 0.5,β = 0.5

Estimator of T = 8 T = 16

(α,β)
0

Mean α̂ SD α̂ Mean β̂ SD β̂ Mean α̂ SD α̂ Mean β̂ SD β̂

MLE 0.4994 0.0126 −0.1022 0.0845 0.5009 0.0069 0.3670 0.0284
Trimming 0.5012 0.0136 −0.0252 0.0973 0.5009 0.0070 0.4596 0.0284
Note: N=1000; simulations=100; trimming=2. SD: Sample standard deviation. T=8: trimming: 95% successful

convergence. T=16: trimming: 100% successful convergence.

4.4 The AR(1)-EARCH(1) panel model with multiple fixed effects

Here the model design is

yit = αyit−1 + ηi + eit = αyit−1 + ηi + h
1/2
it ²it, (t = 1, ..., T ; i = 1, ..., N)

hit = exp

µ
ψi + β

∙q
²2it−1 + Λ−

p
2/π

¸¶
= h (²it−1,ψi) ,

²it ∼ N(0, 1); ηi ∼ N (0, 1) ; ψi ∼ N (−3.0, 0.8) .

The process is started at yi0 = 0, then 700 time periods are generated before the sample is generated. I

denote as Γ = (α,β) . The data are generated for T = 16, N = 1000, α = 0.5, and β = 0, and 0.5. For

each sample I have estimated Γ by maximum likelihood and, at the moment, by the trimming modified

maximum likelihood.

The MLE of Γ is

bΓ ≡ argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bΘi (Γ)´# ,
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where

bΘi (Γ) ≡ argmax
Θ

1

T

TX
t=1

`it (Γ,Θ) ,

and the MMLE is

eΓ = argmax
Γ

1

N

NX
i=1

`mi

³
Γ, bΘi (Γ)´

= argmax
Γ

1

N

NX
i=1

"
1

T

TX
t=1

`it

³
Γ, bΘi (Γ)´− b̂i (Γ)

T

#
,

where

b̂i (Γ) =
1

2
tr
h bH−1i (Γ) bΥi (Γ)i ,

for

bHi (Γ) = − 1
T

TX
t=1

∂2`it
∂Θ∂Θ0

,

and a trimmed version of Υi (Γ,Θ)

bΥi (Γ,Θ) = Ω0 + rX
l=1

(Ωl +Ω
0
l) ,

with

Ωl =
1

T − l

TX
t=l+1

µ
1− l

r + 1

¶
∂`it
∂Θ

· ∂`it−l
∂Θ0

.

Also in this case I calculate numerical first, second and cross derivatives.

Table 5 reports estimates for T = 16 and N = 1000. Again, I obtain estimates with less bias when I

use the modified maximum likelihood estimator.

Table 5. Properties of α̂, β̂ for α = 0.5 (T = 16)

Estimator

of (α,β)
0

Mean α̂ SD α̂ Mean β̂ SD β̂

β = 0.5
MLE 0.3958 0.0092 0.4308 0.0388
Trimming 0.4308 0.0388 0.4819 0.0643

β = 0.0
MLE 0.3823 0.0175 −0.0465 0.0077
Trimming 0.4426 0.0210 −0.0286 0.0477
Note: N=1000; simulations=20; trimming=2; trimming β = 0.5 :
85% successful convergence; trimming β = 0.0 : 70% successful

convergence. SD: Sample standard deviation.
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5 Estimation Results

In this section I use the modified maximum likelihood method to estimate an empirical model for the

conditional mean and the conditional variance of male wages. As Meghir and Pistafferi (2004), I use

data on 2,066 individuals for the period 1968-1993 of the PSID. It is an unbalanced panel with 32,066

observations. I select male heads aged 25 to 55 with at least nine years of usable wages data. Step-by-step

details on sample selection are reported in Appendix C. Sample composition by year and by education,

and demographic characteristics are presented in Appendix D.1.

The dependent variable is annual real wages of the heads, so I exclude other components of money

income for labour as labour part of farm income, business income, overtime, commissions, etc. Figures

1 and 2, at the end of the document, plot the mean and the variance of log real wages against time for

education group and for the whole sample. These figures look very similar to the ones in Meghir and

Pistaferri (2004, pp. 4-5) and, as they say, reproduce well known facts about the distribution of male

earnings in the U.S. (Levy and Murnane, 1992).

5.1 Estimation of the Model

The dependent variable that I use in the estimation, yit, is log wages residuals from first stage regressions

on year dummies, education, a quadratic in age, dummies for race (white), region of residence, and

residence in a SMSA10. In this version of the model, I deal with aggregate effects in the variance by

regarding yit as standardized wages
11.

The equation estimated is

yit = αyit−1 + ηi + eit = αyit−1 + ηi +
p
hit²it, (i = 1, ..., N ; t = 0, ..., T )

with

hit = exp

µ
ψi + β

∙q
²2it−1 + Λ−

p
2/π

¸¶
= h (²it−1,ψi) .

Table 6 presents the estimation results by MLE and by maximization of the trimmed corrected

concentrated likelihood.

10In earnings dynamics research it is standard to adopt a two step procedure. In the first stage regression, the log of
real wages is regressed on control variables and year dummies to eliminate group heterogeneities and aggregate time effects.
Then, in the second stage, the unobserved heterogeneity and dynamics of the residuals are modelled. Given the large
samples that are used to form the residuals, the fact that the estimation is performed in two stages is of little consequence.
11For each year I calculate the sample wage variance and I take (logwit − µ̂t) /σ̂t.
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Table 6. α and β estimates

Estimator of (α,β)0 bα bβ
MLE 0.4822 0.4832

(0.0114) (0.0541)
Trimming (r = 2) 0.5690 0.5790

(0.0397) (0.0915)
Note: Mean of estimated standard errors by individual

block-bootstrap in brackets.

As expected, I obtain that the maximum likelihood estimate is below the trimming estimate. In

fact, after applying the bias correction, I obtain estimates of both parameters above 0.5. Not only the

persistence in the mean is significant. Also the state dependence effects in the volatility of wages seem

important.

5.1.1 Correlations between unobserved individual heterogeneity and observed outcomes

One important advantage of the fixed effects perspective adopted here is that I also obtain estimates of the

unobserved individual heterogeneity and, therefore, I can evaluate the relation between those individual

effects in the volatilities of wages and measurable outcomes.

Table 7 shows that being married, older, and white, are negatively associated with individual fixed

effects in the variance. Also, being a technical worker, a manager, or having large values of tenure. On

the other hand, being a sales or a services worker, moving from one job to other at least once, or having

a low educational degree, are associated with higher volatility. The direction of the association is the one

that we could expect.
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Table 7. Correlations with observed variables

Dependent variable: ψ̂i [1] [2] [3] [4] [5]

Constant −0.6933 −0.7242 −1.6997 −1.2663 −1.0868
(0.1784) (0.1834) (0.1935) (0.2142) (0.2211)

Married −0.4657 −0.4168 −0.4415 −0.3634 −0.3476
(0.0683) (0.0673) (0.0649) (0.0640) (0.0632)

Age −0.0138 −0.0146 −0.0054 −0.0052 −0.0042
(0.0038) (0.0037) (0.0037) (0.0040) (0.0039)

White −0.5984 −0.4237 −0.4409 −0.5229 −0.4337
(0.0632) (0.0651) (0.0631) (0.0609) (0.0617)

Technical Workers −0.4394 −0.4905 −0.4467
(0.0912) (0.0881) (0.0974)

Administrators −0.4222 −0.4751 −0.4743
(0.0943) (0.0911) (0.0932)

Sales workers 0.2137 0.2325 0.1712
(0.1076) (0.1038) (0.1015)

Services workers 0.3212 0.2837 0.1761
(0.0983) (0.0949) (0.0921)

Operatives workers 0.0812 0.0919 0.0357
(0.0886) (0.0854) (0.0828)

Movers 0.8177 0.5579 0.5734
(0.0658) (0.0686) (0.0678)

Dropout 0.5319 0.1707
(0.0872) (0.1019)

Graduate 0.2260 −0.0511
(0.0687) (0.0790)

Tenure: 1-2 years 0.0132 −0.0009
(0.1493) (0.1474)

Tenure: 2-3 years −0.1695 −0.1364
(0.1175) (0.1163)

Tenure: 4-9 years −0.4308 −0.3991
(0.0978) (0.0969)

Tenure: 9-19 years −0.8309 −0.7984
(0.0929) (0.0919)

Tenure: 20 years or more −0.9530 −0.9001
(0.1008) (0.1002)

R2 0.0822 0.1192 0.1808 0.2155 0.2389
Note: Number of observations=2066 individuals. Standard errors in brackets. Omitted group:

Craftsman workers, Stayers, Education College, Tenure less than a year.

The ψ̂
0
is capture the unobserved heterogeneity in a very robust way. If we were able to observe the

individual heterogeneity this would be much better but, if we look at the R2 of the regression, we can

see that with only the observed covariates we can not explain much of the variation across individuals.

5.1.2 Generality of the estimation method

I have also estimated a version of the model similar to Meghir and Windmeijer (1999). It is a convenient

specification but more difficult to interpret because the conditional variance of eit, git, it is a function
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of the past values of the dependent variable instead of the past values of the error. The model is the

following

yit = αyit−1 + ηi + eit = αyit−1 + ηi +
√
git²it; (i = 1, ..., N ; t = 1, ..., T )

with

git = exp

µ
ψi + β

∙q
y2it−1 + Λ

¸¶
= g (yit−1,ψi) .

Table 8 presents the corresponding results of the estimation of this model by MLE and by maximization

of the trimmed corrected concentrated likelihood. Although the estimates of β are a bit different, the

main results do not change.

Table 8. α and β estimates

Estimator of (α,β)
0 bα bβ

MLE 0.4904 0.3713
(0.0099) (0.0313)

Trimming (r = 2) 0.5432 0.4145
(0.0095) (0.0337)

Note: Mean of estimated standard errors by individual

block-bootstrap in brackets.

5.2 Checking for Nonnormality

The assumption of normality is not necessary for the validity of the estimation method used on the

empirical application, but checking this distributional assumption can be useful for other purposes. The

distribution of the errors are nonparametrically identified and can be estimated using deconvolution

tecniques as in Horowitz and Markatou (1996). A normal probability plot of residuals in first-differences

(Figure 3) indicates that the tails of the distribution of errors are thicker than those of the normal

distribution. However the same plot but for the standardized residuals in first-differences (Figure 4) is

almost a straight line, meaning no deviation from normality12.

12Estimated residuals and estimated standardized residuals respectively defined as

êit = yit − α̂yit−1 − η̂i.

and

²̂it =
yit − α̂yit−1 − η̂i

h
1/2
it

³
ψ̂i, ²̂it−1

´ ,
where

hit
³
ψ̂i, ²̂it−1

´
= exp

n
ψ̂i + β̂

h
|̂²it−1|−

p
2/π

io
.
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5.2.1 Fit of the model

Given the distributional assumption, parameter estimates, α̂T , β̂T , η̂i, ψ̂i, and initial conditions, yi0,
chi1,

I simulate an unbalanced panel of standardized logwages observations with the same dimensions as the

PSID sample. The first thing that I evaluate with this simulated panel is the fit of the model. Figure 5

shows the kernel densities of logwages in the data and according to the model13. It seems that the model

performs well.

5.2.2 Individual Heterogeneity

Then, for evaluating the existence of individual heterogeneity on the data, I calculate several counter-

factuals in an analogous way. Counterfactual 1 is obtained using the model, the parameter estimates,

α̂T , β̂T , ψ̂i, and initial conditions, yi0,
chi1, but now ηi = η̄,∀i, where η̄ = N−1

PN
i=1 η̂i. Similarly, counter-

factual 2 is obtained using the model, the parameter estimates, α̂T , β̂T , η̂i, and initial conditions, yi0,
chi1,

but now ψi = ψ̄,∀i, where ψ̄ = N−1
PN
i=1 ψ̂i. When I plot the individual means and individual logvari-

ances of logwages (Figures 6 and 7, and Table 9 for some descriptive statistics of those distributions)

we can see that there is variation across individuals not only in the means but also in the variances. In

addition we can see that the model captures this variation successfully.

Table 9. Descriptive Statistics

Individual means Data Model Counterfactual 1

Mean -0.0180 -0.0059 -0.0086
Standard deviation 0.7848 0.8404 0.3876
Individual logvariances Data Model Counterfactual 2

Mean -1.5980 -1.7054 -1.6703
Standard deviation 1.2762 1.4346 0.7890

Using these counterfactuals I can say how much of the variance in logwages is due to individual

heterogeneity in the mean and how much due to individual heterogeneity in the variance according to the

model. In particular, for the counterfactual 2, the sample variance of logwages is equal to 0.8581. That

is, variation in ψ̂i accounts for by 14 per cent of the total variation in log wages.

5.2.3 Dynamics: Quantiles of log normal wages

Regarding the dynamics, with a model like the one considered in this paper I can say how is the effect of

lagged values at different parts of the wage distribution. In a general setting, let logwages y = log(w) ∼
13The bandwidth is equal to 0.10 for all kernels in this section.
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N(µ,σ2) with cdf

Pr(logw ≤ r) = Φ
µ
r − µ
σ

¶
.

The τth quantile of logw, Qτ (logw), is the value of r such that

Φ

µ
Qτ (logw)− µ

σ

¶
= τ ,

so that

Qτ (logw)− µ
σ

= Φ−1 (τ) ≡ qτ ,

where qτ is the τth quantileof the N (0, 1) distribution, and

Qτ (logw) = µ+ qτσ.

To get quantiles for w, as opposed to logw, note that

Pr(logw ≤ r) = Pr(w ≤ exp r),

so that

Pr(logw ≤ Qτ (logw)) = Pr(w ≤ expQτ (logw)) = τ .

Therefore,

Qτ (w) = expQτ (logw) = exp (µ+ qτσ) .

Function of logwit−1. In the conditional case, regarding µ and σ as functions of logwit−1,

∂ logQτ (wit)

∂ logwit−1
=

∂µ

∂ logwit−1
+ qτ

∂σ

∂ logwit−1
.

In particular, for the model considered here

µit = αyit−1 + ηi,

σit = hit (ψi, ²it−1)
1/2 = exp

µ
ψi
2
+

β

2

∙q
²2it−1 + Λ−

p
2/π

¸¶

= exp

⎛⎜⎝ψi
2
+

β

2

⎡⎢⎣
vuutÃyit−1 − αyit−2 − ηi

hit−1 (ψi, ²it−2)
1/2

!2
+ Λ−

p
2/π

⎤⎥⎦
⎞⎟⎠ ,

and

∂µit
∂yit−1

= α,
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∂σit
∂yit−1

= σit ×
β

2
× 1£

²2it−1 + Λ
¤1/2 ×

Ã
yit−1 − αyit−2 − ηi

hit−1 (ψi, ²it−2)
1/2

!
× ∂²it−1

∂yit−1

= σit ×
β

2
× ²it−1£

²2it−1 + Λ
¤1/2 × 1

hit−1 (ψi, ²it−2)
1/2
.

Thus I can calculate a mean elasticity at different parts of the wage distribution as

ετ (logwit−1) =
1

NT

NX
i=1

TX
t=1

∙
∂ logQτ (wit)

∂ logwit−1

¸
.

The first column in Table 10 shows that those elasticities increase with the quantiles. That is, there

are different elasticities below and above the median, where the mean elasticity is just equal to the

corrected estimate of alpha, α̂T . In Table 10, and graphically in Figure 8, we can see that this pattern

is very different for individuals with low (second column) or high (third column) values of the estimated

fixed effects in the variance.

Table 10. Mean elasticities with respect to yit−1 at different quantiles

τ All individuals ψ̂i under the mean ψ̂i above the mean

0.10 0.5595 0.5752 0.5421
0.20 0.5628 0.5731 0.5513
0.30 0.5651 0.5715 0.5580
0.40 0.5671 0.5702 0.5637
0.50 0.5690 0.5690 0.5690
0.60 0.5709 0.5678 0.5743
0.70 0.5729 0.5665 0.5800
0.80 0.5752 0.5649 0.5867
0.90 0.5785 0.5628 0.5959

Impulse-response function: functions of ²it−s Now,

Qτ (logw) = µ+ qτσ.

and in the conditional case, regarding µ and σ as functions of ²it−1,

∂Qτ (logwit)

∂²it−1
=

∂µ

∂²it−1
+ qτ

∂σ

∂²it−1
.

In particular, for the model considered here

µit = αyit−1 + ηi = α
³
αyit−2 + ηi + hit−1 (ψi, ²it−2)

1/2
²it−1

´
+ ηi

σit = exp

µ
ψi
2
+

β

2

∙q
²2it−1 + Λ−

p
2/π

¸¶
,
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and

∂µit
∂²it−1

= αhit−1 (ψi, ²it−2)
1/2
,

∂σit
∂yit−1

= σit ×
β

2

Ã
²it−1£

²2it−1 + Λ
¤1/2

!
.

Thus I can calculate a mean marginal effect at different parts of the logwage distribution as

bEµ∂Qτ (logwit)

∂²it−1

¶
=

1

NT

NX
i=1

TX
t=1

∙
∂Qτ (logwit)

∂²it−1

¸
.

Notice that

∂Qτ (logwit)

∂²it−1
=

∂ logQτ (wit)

∂ logwit−1
×
h
hit−1 (ψi, ²it−2)

1/2
i
.

Now, for

∂Qτ (logwit)

∂²it−2
=

∂µ

∂²it−2
+ qτ

∂σ

∂²it−2
.

In particular, for the model considered here and

µit = α2
³
αyit−3 + ηi + hit−2 (ψi, ²it−3)

1/2 ²it−2
´
+ (1 + α) ηi + αhit−1 (ψi, ²it−2)

1/2 ²it−1

= α3yit−3 +
¡
1 + α+ α2

¢
ηi + αhit−1 (ψi, ²it−2)

1/2 ²it−1 + α2hit−2 (ψi, ²it−3)
1/2 ²it−2,

σit = exp

µ
ψi
2
+

β

2

∙q
²2it−1 + Λ−

p
2/π

¸¶

= exp

⎛⎜⎝ψi
2
+

β

2

⎡⎢⎣
vuutÃyit−1 − αyit−2 − ηi

hit−1 (ψi, ²it−2)
1/2

!2
+ Λ−

p
2/π

⎤⎥⎦
⎞⎟⎠ ,

and

∂µit
∂²it−2

= α2hit−2 (ψi, ²it−3)
1/2 +

1

2
αβhit−1 (ψi, ²it−2)

1/2 ²it−1²it−2q
²2it−2 + Λ

,

∂σit
∂²it−2

= σit
β

2

Ã
²it−1£

²2it−1 + Λ
¤1/2

!
× σit−1

β

2

Ã
²it−2£

²2it−2 + Λ
¤1/2

!
.

The first panel in Table 11 shows the mean marginal effects with respect to ²it−1 over different

quantiles of the logwage distribution and the second panel, the case with respect to ²it−2. In Figure 9 we

can see that past shocks seem to have effect over logwages even two periods apart.
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Table 11. Mean marginal effects with respect to past shocks at different quantiles

τ All individuals ψ̂i under the mean ψ̂i above the mean

With respect to ²it−1
0.10 0.2543 0.1349 0.3866
0.20 0.2589 0.1346 0.3966
0.30 0.2622 0.1344 0.4039
0.40 0.2650 0.1342 0.4101
0.50 0.2677 0.1340 0.4158
0.60 0.2703 0.1338 0.4216
0.70 0.2732 0.1336 0.4278
0.80 0.2765 0.1334 0.4351
0.90 0.2811 0.1331 0.4451

With respect to ²it−2
0.10 0.1455 0.0726 0.2262
0.20 0.1452 0.0725 0.2258
0.30 0.1451 0.0725 0.2255
0.40 0.1449 0.0724 0.2253
0.50 0.1448 0.0724 0.2251
0.60 0.1447 0.0723 0.2248
0.70 0.1445 0.0723 0.2246
0.80 0.1444 0.0722 0.2243
0.90 0.1441 0.0721 0.2239

5.2.4 Dynamics: Job changes

It is important taking into account that in a model where individual heterogeneity is treated as fixed

effects we abstract for job changes. A specification like this

yit = αyit−1 + ηi + eit,

works worse if there are many job changes in the sample because ηi is fixed. In order to evaluate this

concern, I consider a sample where individuals in different jobs are treated as different individuals. That

is, for each individual

yit = αyit−1 + ηi1 + eit; individual i in job 1,

yit = αyit−1 + ηi2 + eit; individual i in job 2.

I use data on 1,346 and 17,485 observations. I do the same sample selection as before. Sample composition

by year and by education, and demographic characteristics are presented in Appendix D.2.

Results are reported in Table 12. We can see that the significant ARCH effects in the variance

disappears as soon as we consider a sample without job changes.
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Table 12. α and β estimates

Estimator of (α,β)
0 bα bβ

MLE 0.3768 0.0642
(0.0158) (0.0846)

Trimming (r = 2) 0.4569 0.0757
(0.0361) (0.0592)

Note: Mean of estimated standard errors by individual

block-bootstrap in brackets.

5.3 Attrition

A final issue is the extent to which attrition from the PSID has biased the results. In this paper, I

assume that attrition is all accounted for by the permanent characteristics in the individual fixed effects.

To provide some evidence for this I compare the estimates in my sample to those obtained using only

individuals who are 16 or more years in the sample (921 individuals). This kind of selection mimics

attrition bias since it eliminates individuals observed for a shorter time period. The estimates based on

this sample are included in Table 13. The main conclusion is that the corrected estimates are not very

different to those reported in Table 6.

Table 13. α and β estimates

Estimator of (α,β)0 bα bβ
MLE 0.5659 0.5245

(0.0114) (0.0412)
Trimming (r = 2) 0.6056 0.5693

(0.0347) (0.0717)
Note: Mean of estimated standard errors by individual

block-bootstrap in brackets.

6 Implications for Consumption Growth

Given the results above I provide now an example that illustrates the effects that individual risk can have

in explaining precautionary saving, that is, additional saving that results from the knowledge that the

future is uncertain. Here, I follow most of the literature and I consider that additional saving is achieved

by consuming less.

Over the last 30 years there has been a well-documented increase in cross-sectional income inequality

in the US, and some authors have suggested that households are now exposed to more earnings instability

than they were (Gottschalk and Moffitt, 1994). This figure suggests that precautionary saving motives

associated with an increase in income risk could have become more important.
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In the presence of complete insurance, either formal or informal, it should only be the component of

risk that is common to all individuals in an economy that affects consumption. Banks, Blundell, and

Brugiavini (2001) find that it is not the common component of risk, but instead the cohort-specific risks

which dominate consumption growth. Their results corroborate the notion that if income uncertainty has

been growing over the recent past then the failure of insurance between agents makes the precautionary

motive for saving an increasingly important self-insurance mechanism. They use series of repeated cross

sections of British households data, but they can not consider individual-specific risk due to the lack of

panel data. Here, I evaluate the independent role of individual wage risk in consumption growth.

6.1 Consumption Model

Let us consider the following intertemporal consumption model14 (Browning and Lusardi, 1996), where

individuals choose consumption so as to maximize an intertemporal utility function subject to the in-

tertemporal budget constraint:

max
{Ct+k}T−tk=0

Et

T−tX
k=0

h
(1 + δ)−k U (Ct+k,Dt+k)

i
s.t. At+1+k = (1 + rt+k) · (At+k + Yt+k − Ct+k)

AT+1 ≥ 0 (k = 0, ..., T − t)

where, for each period s, Cs is consumption, Ys labour income or earnings, rs real interest rate, As

financial wealth (at the beginning of the period), δ subjective intertemporal rate, and Ds demographic

characteristics. I assume the date of death is known and there are not explicit liquidity constraints.

The optimal intertemporal allocation of consumption verifies the Euler equation, that is,

Et

∙
1 + rt
1 + δ

· UC (Ct+1,Dt+1)
UC (Ct,Dt)

¸
= 1

where Uc (·) denotes the first derivative of the utility function with respect to consumption.

I assume a CRRA utility function:

U (Ct,Dt) =
1

1− ρ
exp (ϕ0Dt) · C1−ρt

where ρ > 0 is the relative risk aversion coefficient. So,

1 + rt
1 + δ

· exp (ϕ0∆Dt+1) ·
µ
Ct+1
Ct

¶−ρ
= 1 + ξt+1,

14I omit the individual index for simplicity.
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where Et
£
ξt+1

¤
= 0. Taking logs and using the usual approximation for logs I obtain the linearized Euler

equation:

∆ lnCt+1 =
1

ρ
ln (rt − δ) +

1

ρ
ϕ0∆Dt+1 +

1

2ρ
V art

£
ξt+1

¤
+ vt+1.

The first term on the RHS of the equation takes into account the intertemporal substitution effect: an

increase in rt, opportunity cost of current consumption, implies a higher growth of future consumption.

The second term considers how different stages of the life cycle are reflected on the consumption profile,

by changes in circumstances implicit in demographic variables. Finally, the third term on the RHS of

the equation captures precautionary saving. A rise in the expected variance of earnings innovations

represents an increase in earnings risk and should depress period t consumption hence increasing the

growth of consumption between t and t + 1. In other words, a positive parameter implies that risk

induces a delay in spending and current consumption is therefore reduced.

Notice that V art
£
ξt+1

¤
reflects uncertainty regarding future realizations of any uninsurable variable

relevant for consumption. Thus, it is not sufficient to enter the wage risk term alone. A scaling term is

required by which “poorer” individuals are more responsive to changes in earnings risk, πt =
³
Yt−1
Ct−1

´2
.

In consequence,

∆ lnCt+1 =
1

ρ
ln (rt − δ) +

1

ρ
ϕ0∆Dt+1 + γπtσ

2
t+1 + vt+1

where σ2t+1 is a measure of the conditional variance of the wage shock.

6.2 Estimation and results

I use food consumption data from the PSID (1974-1987). In my sample15, I estimate by OLS16 the

following empirical equation:

∆ lnCit+1 = δt + β0∆Dit+1 + γπitσ
2
it+1 + vit+1,

where σ2it+1 is replaced by

σ̂2it+1 = hit+1

³
²̂it; Γ̂, Θ̂i, initial conditions

´
.

15The sample includes 1,191 individuals and 15,192 observations.
16It would be interesting to follow the same approach as before considering a complete likelihood function:

Lnow = Lbefore +
X
i,t

½
−1
2
lnσ2v −

1

2σ2v

h
∆ ln Ĉt+1 − γπtσ

2
t+1

i2¾

where ∆ ln Ĉt+1 is obtained from first stage regressions of ∆ lnCt+1 on δt and ∆Dt+1.
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Looking at the estimate for the γ parameter in Table 14, column 2, I obtain a significant and positive

effect of this term on the consumption growth. As stated above, an increase in individual risk induces

a reduction in current consumption and, therefore, an increase in the growth of consumption between t

and t+ 1.

Table 14. Consumption Growth Equation
[1] [2] [3] [4] Total effect

Age −0.0004 −0.0003 −0.0003
(0.0008) (0.0008) (0.0008)

∆Children 0.1513 0.1527 0.1527
(0.0100) (0.0101) (.0101049)

∆Adults 0.1593 0.1594 0.1592
(0.0119) (0.0119) (0.0119) Dropout

π2itσ
2
it+1 0.0801 0.1267 0.127 [0.009]

(0.0308) (0.0485) Graduate
π2itσ

2
it+1× −0.0714 0.055 [0.082]

Graduate (0.0597) College
π2itσ

2
it+1× −0.1089 0.018 [0.905]

College (0.1562)
# Obs. 13, 723
Note: clustered standard errors in brackets. Time and cohort dummies included.

t-ratios in squared brackets.

Regarding the interactions with education (columns 3 and 4), we can see that this positive effect is

more important for the less educated people, slightly significant for the graduate and insignificant for the

college educated. This result goes in line with the idea that there are more insurance possibilities for

these latter.

7 Conclusions

In this paper I propose a model for the conditional mean and the conditional variance of individual

wages. It is a non linear dynamic panel data model with multiple individual fixed effects. For estimating

the parameters of the model I assume a distribution for the shocks and apply bias corrections to the

concentrated likelihood. This corrects the bias of the estimated parameters from O
¡
T−1

¢
to O

¡
T−2

¢
,

so the estimator has a good finite sample performance and a reasonable asymptotic approximation for

moderate T . In fact, Monte Carlo results show that the bias of the MLE is substantially corrected for

samples designs that are broadly calibrated to the PSID dataset.

The main advantage of this approach is its generality. As we have seen, the method is generally

applicable to take into account dynamics and multiple fixed effects. Another advantage is that the fixed
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effects are estimated as part of the estimation process.

The empirical analysis is conducted on data drawn from the 1968-1993 PSID dataset. In line with

previous literature, I find a corrected estimate for the autoregressive coefficient in the mean around 0.5

(Alvarez and Arellano, 2004), and positive ARCH effects for the variance (Meghir and Pistafferri, 2004).

Job changes are driving this dynamics in the variance. I also find important fixed differences across

individuals in the variance. In addition, it turns out that this located-scaled model explains the non-

normality observed in logwage data. I then illustrate some implications that ARCH effects may have in

the field of savings.

Finally there are three issues, at least, that require further research: measurement error in PSID

wages, a more comprehensive model that include job changes, and the comparison with female workers

in terms of wage profiles.
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A First Order Bias of the Concentrated Likelihood at an arbi-
trary value of the common parameter Γ

Following Arellano and Hahn (2006a, 2006b), let us obtain the expression for the First Order Bias

of the Concentrated Likelihood at an arbitrary value of the common parameter Γ. Let `i (Γ,Θi) =PT
t=1 `it (Γ,Θi) /T where `it (Γ,Θi) = ln f (yit|yit−1,Γ,Θi) denotes the log likelihood of one observation.

Let

Θi (Γ) = argmax
Θi

plimT→∞`i (Γ,Θi) ,

and

bΘi (Γ) = argmax
Θi

`i (Γ,Θi) ,

so that under regularity conditions Θi (Γ0) = Θi0.

Following Severini (2000) and Pace and Salvan (2005), the concentrated likelihood for unit i

ˆ̀
i (Γ) = `i

³
Γ, bΘi (Γ)´ ,

can be regarded as an estimate of the unfeasible concentrated log likelihood

¯̀
i (Γ) = `i

¡
Γ,Θi (Γ)

¢
.

Now, define

uit (Γ,Θi) =
∂`it (Γ,Θi)

∂Γ
, vit (Γ,Θi) =

∂`it (Γ,Θi)

∂Θi
,

ui (Γ,Θi) =
1

T

TX
t=1

uit (Γ,Θi) , vi (Γ,Θi) =
1

T

TX
t=1

vit (Γ,Θi) ,

Hi (Γ) = − lim
T→∞

E

"
∂vi

¡
Γ,Θi (Γ)

¢
∂Θ0i

#
.

When Θi0 is a vector of fixed effects, the Nagar expansion for bΘi (Γ)−Θi (Γ) takes the form
bΘi (Γ)−Θi (Γ) = H−1i (Γ) vi

¡
Γ,Θi (Γ)

¢
+
1

T
Bi (Γ) +Op

µ
1

T 3/2

¶
, (A.1)

where

Bi (Γ) = H−1i (Γ)
£
Ξi (Γ) vec

¡
H−1i (Γ)

¢
+
1

2
E

Ã
∂

∂Θ0
vec

∂vi
¡
Γ,Θi (Γ)

¢
∂Θ0

!0 ¡
H−1i (Γ)⊗H−1i (Γ)

¢
vec (Υi (Γ))

#
,

34



and

Υi (Γ) = Υi (Γ;Γ0,Θi0) = lim
T→∞

TE
h
vi
¡
Γ,Θi (Γ)

¢
vi
¡
Γ,Θi (Γ)

¢0i
,

Ξi (Γ) = Ξi (Γ;Γ0,Θi0) = lim
T→∞

TE

"
∂vi

¡
Γ,Θi (Γ)

¢
∂Θ0

⊗ vi
¡
Γ,Θi (Γ)

¢0#
.

Next, expanding `i

³
Γ, bΘi (Γ)´ around Θi (Γ) for fixed Γ,
`i

³
Γ, bΘi (Γ)´− `i ¡Γ,Θi (Γ)¢

=
∂`i
¡
Γ,Θi (Γ)

¢
∂Θ0

³bΘi (Γ)−Θi (Γ)´
+
1

2

³bΘi (Γ)−Θi (Γ)´0 ∂2`i ¡Γ,Θi (Γ)¢
∂Θ∂Θ0

³bΘi (Γ)−Θi (Γ)´+Opµ 1

T 3/2

¶

=
∂`i
¡
Γ,Θi (Γ)

¢
∂Θ0

³bΘi (Γ)−Θi (Γ)´
+
1

2

³bΘi (Γ)−Θi (Γ)´0EÃ∂2`i
¡
Γ,Θi (Γ)

¢
∂Θ∂Θ0

!³bΘi (Γ)−Θi (Γ)´+Opµ 1

T 3/2

¶

= vi
¡
Γ,Θi (Γ)

¢0 ³bΘi (Γ)−Θi (Γ)´
−1
2

³bΘi (Γ)−Θi (Γ)´0Hi (Γ)³bΘi (Γ)−Θi (Γ)´+Opµ 1

T 3/2

¶
.

Substituting (A.1)

`i

³
Γ, bΘi (Γ)´− `i ¡Γ,Θi (Γ)¢ = 1

2
vi
¡
Γ,Θi (Γ)

¢0
H−1i (Γ) vi

¡
Γ,Θi (Γ)

¢
+Op

µ
1

T 3/2

¶
.

Taking expectations

E
h
`i

³
Γ, bΘi (Γ)´− `i ¡Γ,Θi (Γ)¢i = 1

2T
tr
¡
H−1i (Γ)Υi (Γ)

¢
+Op

µ
1

T 3/2

¶
.

So the bias in the expected concentrated likelihood at an arbitrary Γ is

bi (Γ) =
1

2
tr
¡
H−1i (Γ)Υi (Γ)

¢
=
1

2
tr
³
Hi (Γ)V ar

³√
T
hbΘi (Γ)−Θi (Γ)i´´ .

Thus,
NX
i=1

TX
t=1

`it

³
Γ, bΘi (Γ)´− NX

i=1

bbi (Γ) ,
is expected to be a closer approximation to the target likelihood than

PN
i=1

PT
t=1 `it

³
Γ, bΘi (Γ)´ .

Moreover, in the likelihood context, it is appropriate to consider a local version of the estimated bias

(Pace and Salvan 2005) constructed as an expansion of bbi (Γ) at Γ0 using that at the truth
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H−1i (Γ0)Υi (Γ0) = 1.

Taking bbi (Γ) = 1
2 tr

³ bH−1i (Γ) bΥi (Γ)´ also
bbi (Γ) = 1

2
p+

1

2

pX
j=1

h
λj

³ bH−1i (Γ) bΥi (Γ)´− 1i ,
where λj

³ bH−1i (Γ) bΥi (Γ)´ denotes the j-th eigenvalue of bH−1i (Γ) bΥi (Γ) and p is the dimension of Γ.
Thus a local version of bbi (Γ) gives

bbi (Γ) = 1

2
p+

1

2

pX
j=1

h
λj

³ bH−1i (Γ) bΥi (Γ)´i+Opµ 1
T

¶
.

Moreover

1

2

pX
j=1

h
λj

³ bH−1i (Γ) bΥi (Γ)´i =
1

2
ln det

³ bH−1i (Γ) bΥi (Γ)´
= −1

2
ln det bHi (Γ) + 1

2
ln det bΥi (Γ) ,

which provided justification for the bias-corrected concentrated that I have used.

B Analytical expression for Ῡi (α,bηi (α) ; α̂, η̂i) in the AR(1) model
Let us obtain an expression for Ῡi (α,bηi (α) ; α̂, η̂i) in the dynamic panel example:

yit = αyit−1 + ηi + ²it,

where ²it ∼ iidN (0, 1). Then

`it (α, η) = C − 1
2
(yit − αyit−1 − ηi)

2
,

∂`it (α, η)

∂η
= yit − αyit−1 − ηi ≡ vit (α, η) ≡ vit,

v̄i =
1

T

TX
t=1

vit,

and

Ῡi (α, η;α0, η0) = TV ar0 (vi|yi0) .
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Note that

vit = ²it + (α0 − α) yit−1 + (ηi0 − ηi) ,

v̄i = ²̄i + (α0 − α) ȳi(−1) + (ηi0 − ηi) ,

V ar0 (v̄i|yi0) =
1

T
+ (α0 − α)2 V ar0

¡
ȳi(−1)|yi0

¢
+ 2 (α0 − α)Cov0

¡
ȳi(−1), ²̄i|yi0

¢
,

where ȳi(−1) =
1
T

TP
t=1
yit−1. Since

ȳi(−1) = hT (α0) ηi0 + cT (α0) yi0 +

1

T

£¡
1 + α0 + . . .+ αT−20
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¤
,

where

hT (α0) =
1

T

£
1 + (1 + α0) +

¡
1 + α0 + α20

¢
+ . . .+

¡
1 + α0 + . . .+ αT−20

¢¤
,

cT (α0) =
1

T

¡
1 + α0 + . . .+ αT−10

¢
.

Thus

V ar0
¡
ȳi(−1)|yi0

¢
=

1

T 2

h
1 + (1 + α0)

2 + . . .+
¡
1 + α0 + . . .+ αT−20

¢2i ≡ ωT (α0) ,

Cov0
¡
ȳi(−1), ²̄i|yi0

¢
=

1

T 2
£¡
1 + α0 + . . .+ αT−20

¢
+ . . .+ 1

¤
≡ ψT (α0) ,

V ar0 (v̄i|yi0) =
1

T
+ (α0 − α)

2
ωT (α0) + 2 (α0 − α)ψT (α0) ,

and

Ῡi (α, η;α0, η0) = 1 + T (α0 − α)2 ωT (α0) + 2T (α0 − α)ψT (α0) .

Thus

Ῡi (α,bηi (α) ; α̂, η̂i) = 1 + T (α̂− α)2 ωT (α̂) + 2T (α̂− α)ψT (α̂) .

C Sample Selection

Starting point: PSID 1968-1993 Family and Individual - merged files (53,005 individuals).

1. Drop members of the Latino sample (10,022 individuals) and those who are never heads of their

households (26,945 individuals).

= Sample (16,038 individuals)

37



2. Keep only those who are continuously heads of their households, keep only those who are in the

sample for 9 years or more, and keep only those aged 25 to 55 over the period.

= Sample (5,247 individuals)

3. Drop female heads.

= Sample (4,036 individuals)

4. Drop those with a spell of self-employment, drop those with missing earnings, and drop those with

zero or top-coded earnings data.

= Sample (2,205 individuals)

5. Drop those with missing education and race records, and those with inconsistent education records.

= Sample (2,148 individuals)

6. Drop those with outlying earnings records, that is, a change in log earnings greater than 5 or less

than -3 and those with noncontinuous data.

= FINAL SAMPLE (2,066 individuals and 32,066 observations).

Table C1. My sample vs. Meghir and Pistaferri (2004)
Number of individuals Meghir & Pistaferri (2004) Hospido (2006) Difference

Starting point 53, 013 53, 005 8
Latino subsample (10, 022) 42, 991 (10, 022) 42, 983 8
Never Heads (26, 962) 16, 029 (26, 945) 16, 038 −9
Heads, Age, N>9 (11, 490) 4, 539 (10, 791) 5, 247 −708
Female (876) 3, 663 (1, 211) 4, 036 −373
Self-employment, missing wages (1323) 2, 340 (1, 831) 2, 205 135
Missing education and race (187) 2, 153 (57) 2, 148 5
Outlying wages (84) 2, 069 (82) 2, 066 3
FINAL SAMPLE: Individuals 2, 069 2, 066
FINAL SAMPLE: Observations 31, 631 32, 066

38



D Sample composition and descriptive statistics

D.1 Sample 1

Table D1.1. Distribution of observations by year
Year Number of Year Number of

observations observations

1968 655 1981 1419
1969 694 1982 1464
1970 738 1983 1506
1971 780 1984 1559
1972 856 1985 1626
1973 943 1986 1583
1974 1018 1987 1536
1975 1098 1988 1486
1976 1178 1989 1434
1977 1229 1990 1392
1978 1263 1991 1348
1979 1310 1992 1315
1980 1380 1993 1256

Table D1.2. Distribution of observations by education
Number of Individuals

Number Whole High School High School College
of Years sample Dropout Graduate Graduate

9 212 52 128 32
10 200 43 122 35
11 155 43 82 30
12 143 36 81 26
13 143 34 87 22
14 147 35 86 26
15 145 38 82 25
16 118 26 71 21
17 127 30 76 21
18 87 20 48 19
19 97 21 57 19
20 91 19 54 18
21 91 25 48 18
22 78 19 44 15
23 52 12 33 7
24 46 15 19 12
25 42 12 27 3
26 52 26 46 20
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Table D1.3. Descriptive Statistics
1968 1980 1993

Age 36.99 36.61 41.45
(6.58) (9.22) (5.74)

HS Dropout 0.44 0.25 0.12
HS Graduate 0.41 0.55 0.60

Hours 2272 2153 2135
(573) (525) (560)

Married 0.84 0.83 0.83
White 0.68 0.66 0.69
Children 2.80 1.39 1.36

(2.06) (1.28) (1.23)
Family Size 4.90 3.53 3.51

(2.01) (1.58) (1.45)
North-East 0.18 0.16 0.16
North-Central 0.27 0.25 0.23

South 0.39 0.42 0.44
SMSA 0.68 0.67 0.53

Note: Standard deviations of non-binary variables

in parentheses.

D.2 Sample 2

Table D2.1. Distribution of observations by year
Year Number of Year Number of

observations observations

1968 366 1981 708
1969 414 1982 767
1970 446 1983 809
1971 475 1984 858
1972 509 1985 921
1973 543 1986 894
1974 580 1987 866
1975 613 1988 837
1976 645 1989 808
1977 630 1990 766
1978 627 1991 734
1979 644 1992 696
1980 676 1993 653
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Table D2.2. Distribution of observations by education
Number of Individuals

Number Whole High School High School College
of Years sample Dropout Graduate Graduate

9 264 78 133 53
10 182 42 103 37
11 150 31 87 32
12 150 33 88 29
13 131 44 69 18
14 97 29 56 12
15 85 27 43 15
16 64 18 34 12
17 54 13 31 10
18 25 6 13 6
19 38 9 19 10
20 21 4 14 3
21 18 7 8 3
22 20 4 15 1
23 14 4 7 3
24 6 2 3 1
25 17 5 10 2
26 10 3 5 2

Table D2.3. Descriptive Statistics
1968 1980 1993

Age 38.18 39.34 42.60
(6.35) (9.24) (5.65)

HS Dropout 0.43 0.31 0.13
HS Graduate 0.41 0.51 0.62

Hours 2252 2146 2130
(514) (483) (521)

Married 0.83 0.84 0.86
White 0.69 0.66 0.67
Children 2.88 1.39 1.37

(2.06) (1.28) (1.28)
Family Size 5.03 3.65 3.60

(2.00) (1.64) (1.47)
North-East 0.17 0.16 0.16
North-Central 0.29 0.27 0.24

South 0.38 0.45 0.45
SMSA 0.68 0.64 0.52

Note: Standard deviations of non-binary variables

in parentheses.
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Figure 1. The mean of log wages.
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Figure 2. The variance of log wages.
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Figure 4. Distribution of Standarized Residuals in First Differences.
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