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1 Introduction

On March 21, 2004, an article on the front page of the New York Times presented
a picture of allegedly questionable practices in some state-run pension funds.
Among the allegations were that these funds often make unduly risky invest-
ments, recommended by consultants who are interested parties. The concept of
“risky investment” is commonplace in financial discussions, and seems to have
clear conceptual content. But when one thinks about it carefully and tries to
pin it down, it is elusive. Can one measure riskiness objectively—independently
of the person or entity taking the risk?

Conceptually, whether or not a person takes a gamble depends on two dis-
tinct considerations (Diamond and Stiglitz 1974):
(i) the attributes of the gamble, and in particular, how risky it is; and
(ii) the attributes of the person, and in particular, how averse he is to risk.

The classic contributions of Arrow (1965, 1971) and Pratt (1964) address
item (ii) by defining risk aversion, which is a personal, subjective concept, de-
pending on the utility function of the individual in question. But they do not
define riskiness; they do not address item (i). It is like speaking about subjec-
tive time perception (“this movie was too long”) without having an objective
measure of time (“three hours”), or about heat or cold aversion (“it’s too cold
in here”) without an objective measure of temperature (“20◦ F”).

This paper addresses item (i); it develops an index of riskiness of gambles.
The concept is based on that of risk aversion: We think of riskiness as a kind
of “dual” to risk aversion—specifically, as that aspect of a gamble to which a
risk-averter is averse. So on the whole, we expect individuals who are less risk
averse to take riskier gambles. As Machina and Rothschild (1987) put it, “risk
is what risk-averters hate.”

Unlike some other riskiness indices that have been proposed in disciplines
such as finance, statistics, and psychology (Section 7), ours is based on eco-
nomic, decision-theoretic ideas, such as the duality principle roughly enunci-
ated above, and respect for first- and second-order stochastic dominance (Sec-
tion 4.3). Clearly, riskiness is related to dispersion, so a good riskiness measure
should be monotonic with respect to (w.r.t.) second-order stochastic dominance.
Less well understood, perhaps, is that riskiness should also relate to location,
and thus be monotonic w.r.t. first-order stochastic dominance; in particular,
that a gamble that is sure to yield more than another should be considered less
risky. Both stochastic dominance criteria are uncontroversial, and one advan-
tage of our index is that it completes the partial ordering on gambles that they
induce.

The plan of the paper is as follows: Section 2 discusses the purpose and
potential uses of the proposed index—what it is we are seeking. Section 3 is
devoted to the basic axiomatic definition of the index, and its numerical charac-
terization. Section 4 relates our index to Arrow-Pratt risk aversion. Specifically,
it carefully discusses our basic axiom, “Duality,” in its own right as well as in
relation to Arrow-Pratt (Section 4.1); and it characterizes our index in terms
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of Arrow-Pratt constant absolute risk-aversion—CARA—as outlined in the ab-
stract (Section 4.2). Section 5 sets forth some desirable properties of the index
(in addition to the axioms) such as continuity, respect for stochastic dominance,
subadditivity, its dimension (dollars), its behavior for normal gambles, for inde-
pendent gambles, for “diluted” gambles, and for compound gambles, its ordinal
characterization, its interpretation in terms of CRRA—constant relative risk
aversion, and the relatively greater weight it puts on losses vis-a-vis gains. Sec-
tion 6 discusses some numerical examples, meant to give an intuitive feel for
the index. Section 7 reviews the literature, and Section 8 is devoted to proofs
(throughout, assertions that are not proved on the spot and are not immediate
are proved there). Section 9 concludes.

2 The Concept and its Uses

As remarked above, the concept of “riskiness” is ubiquitous in financial discus-
sions. Investors are told that one investment may hold an opportunity for high
returns but be “risky,” whereas another may be “safer” but yield lower returns.
Mutual funds are characterized as “safe” or “venture capital” or “blue chip”
or “volatile;” bonds are rated AAA, AA, etc.; and so on. We repeatedly hear
that an investment that is appropriate for one investor may be “too risky” for
another. Or that a pension fund makes “unduly risky” investments.

Here we propose to quantify riskiness—describe it with numbers, rather than
adjectives or letter “ratings.” The main purpose of such a quantification is the
same as that of the adjectives and the letter ratings—to help investors and other
decision makers make their decisions. For example, the investments of pension
funds could be required not to exceed a stated level of riskiness. Or an investor,
on being told the riskiness index of an investment, could say “well, that’s too
risky for me,” or “that’s a little risky but I’ll go for it,” or “hey, that sounds
just right for me.” Or an advisor could say, if you’re living on a pension you
should not accept gambles that exceed such and such a riskiness, but if you’re
young and have plenty of opportunities, you could up that by so-and-so much.

From this viewpoint it is clear that if the gamble g is sure to yield more
than h, it cannot be considered riskier. We are considering risk-averse decision
makers—those for whom risks are undesirable—who, “all other things being
equal,” prefer less risky alternatives.

But riskiness and desirability are not opposites; a less risky gamble is not
always more desirable. That depends on the decision maker, and on other para-
meters in addition to riskiness, such as the mean, maximum loss, opportunities
for gain, and so on; indeed, on the whole distribution. Desirability is subjective,
depending on the decision maker; one may prefer gamble g to gamble h, while
another prefers h to g. Riskiness, on the other hand, is objective; it is the same
for all individuals. Given two gambles, a more risk-averse individual may well
prefer the less risky gamble, while a less risk-averse individual may find that the
opportunities afforded by the riskier gamble outweigh the risk involved.

Like any index or summary statistic—the Gini index of inequality, parame-
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ters of distributions (mean, median, variance, ...), the Shapley value of a game,
market indices (Dow Jones, S&P 500, ...), cost-of-living indices, difficulty rat-
ings of rock climbs (3, 4, 5.1-5.13; I, II, II) and ski runs (green, blue, red, black),
and so on—the riskiness index summarizes a complex, high-dimensional object
by a single number. Needless to say, no index captures all the relevant aspects
of the situation being summarized. But once accepted, it takes on a life of its
own; its “consumers” internalize its content through repeated use.

In addition to these practical uses, a riskiness index could also be a use-
ful research tool. For example, Rabin (2000) asserts that most people would
reject a gamble yielding +$105 or −$100 with half-half probabilities. While
this sounds plausible on its face, it is difficult to verify empirically (as opposed
to “experimentally”), since such gambles are not readily available in the real
world. What one can ask is, do people accept gambles with a “similar” level of
riskiness? Once one has a measure of riskiness, one can approach that question
by looking at real-life gambles; e.g., insurance contracts.1

Early attempts to quantify riskiness were based on mean and variance only
(see Machina and Rothschild 1987). Defending this approach, Tobin (1969,
p.14) wrote that its critics “owe us more than demonstrations that it rests
on restrictive assumptions. They need to show us how a more general and
less vulnerable approach will yield the kind of comparative-static results that
economists are interested in.” That is what our index aims to do.

3 Axiomatic Characterization

In this paper, a utility function is a von Neumann-Morgenstern utility function
for money, strictly monotonic, strictly concave,2 twice continuously differen-
tiable, and defined over the entire real line. A gamble g is a random variable
with real values3—interpreted as dollar amounts—some of which are negative,
and that has positive expectation.

Say that an agent with utility function u accepts a gamble g at wealth w if
Eu(w+g) > u(w), where E stands for “expectation;” that is, if he prefers taking
the gamble at w to refusing it. Otherwise, he rejects it. Call agent i uniformly
no less risk-averse than agent j (written i D j) if whenever i accepts a gamble
at some wealth, j accepts that gamble at any wealth. Call i uniformly4 more
risk-averse than j (written i B j) if i D j and j 4 i.

Define an index as a positive real-valued function on gambles (to be thought
of as measuring riskiness). Given an index Q, say that “gamble g is riskier than
gamble h” if Q(g) > Q(h). We consider two axioms for Q, the first of which

1Rejecting insurance is like accepting a gamble. Since insurance usually has negative
expectation for the purchaser, rejecting it has positive expectation.

2Strict monotonicity means that the individual likes money; strict concavity, that he is
risk-averse—prefers the expected value of a gamble over the gamble itself.

3For simplicity, we assume for now that it takes finitely many values, each with positive
probability. This assumption will be relaxed in the sequel.

4See Section 4.1 for a discussion of this terminology.
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posits a kind of “duality” between riskiness and risk aversion; roughly, that less
risk-averse agents accept riskier gambles. The axioms are as follows:

Duality:5 If i B j, i accepts g at w, and Q(g) > Q(h), then j accepts h at w.

In words, duality says that if the more risk-averse of two agents accepts the
riskier of two gambles, then a fortiori the less risk-averse agent accepts the less
risky gamble.

Positive Homogeneity: Q(tg) = tQ(g) for all positive numbers t.

Positive Homogeneity embodies the cardinal nature of riskiness. If g is a
gamble, it makes sense to say that 2g is “twice as” risky as g, not just “more”
risky. Similarly, tg is t times as risky as g. Our main result is now as follows:

Theorem A: For each gamble g, there is a unique positive number R(g) with
(3.1) Ee−g/R(g) = 1.

The index R thus defined satisfies Duality and Positive Homogeneity; and, any
index satisfying these two axioms is a positive multiple of R.

We call R(g) the riskiness of g. Both axioms are essential: omitting either
admits indices that are not positive multiples of R. But Duality is by far the
more central: Together only with certain weak conditions of continuity and
monotonicity—but not Positive Homogeneity—it already implies that the index
is ordinally equivalent to R (Section 5.9).

4 Relation with Arrow-Pratt

4.1 Risk Aversion and Duality

To understand the concept of uniform comparitive risk aversion (Section 3) that
underlies our treatment, recall first that Arrow (1965, 1971) and Pratt (1964)
define the coefficient of absolute risk aversion (ARA) of an agent i with utility
function ui and wealth w as ρi(w) := ρ(w, ui) := −u′′

i (w)/u′
i(w). Now, call i

no less risk-averse than j if at any given wealth, j accepts any gamble that i
accepts.6 Then

(4.1.1) i is no less risk averse than j if and only if ρi(w) ≥ ρj(w) for all w.

Our concept of i D j—that i is uniformly no less risk-averse than j—is much
stronger. It says that if i accepts a gamble at some wealth, j also accepts it—not
only at that given wealth, but at any wealth. Parallel to (4.1.1), we then have

(4.1.2) i is uniformly no less risk averse than j if and only if ρi(wi) ≥ ρj(wj)
for all wi and wj (i.e., minw ρi(w) ≥ maxw ρj(w)).

5Throughout, the universal quantifier applies to variables that are not explicitly quantified
otherwise. For example, the duality axiom should be understood as being prefaced by: “For
all gambles g, h, agents i, j, and wealth w,”.

6Closely related—in view of (4.1.1)—is the concept of Diamond and Stiglitz (1974, p.346),
who call i more risk-averse than j if ρi(w) > ρj(w) for all w. But this has no straightforward
equivalent in terms of finite gambles.
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Arrow-Pratt risk-aversion is a “local” concept, in that it concerns i’s attitude
towards infinitesimally small gambles at a specified wealth only; in contrast, our
two concepts of comparitive risk-aversion are “global,” in two senses: (i) they
apply to gambles of arbitrary finite size, and (ii) the gambles may be taken at any
wealth. Thus our concepts seem more direct, straightforward, and natural; no
limiting process is involved—one deals directly with real gambles. On the other
hand, we get only partial orders, whereas Arrow and Pratt define a numerical
index (and so a total order). The three concepts are related by (4.1.1) and
(4.1.2).

For one agent to be uniformly more risk-averse than another—i B j—is a
very strong requirement. It is precisely this strength that makes the duality ax-
iom highly acceptable: Since this strong requirement appears in the hypothesis
of the axiom, the axiom as a whole calls for very little, and what it does call for
is eminently reasonable.

4.2 CARA

An agent i is said to have constant absolute risk aversion (CARA) if his ARA
is a constant α that does not depend on his wealth. In that case, i is called a
CARA agent, and his utility u a CARA utility, both with parameter α. There is
an essentially7 unique CARA utility with parameter α, given by u(w) = −e−αw.
While defined in terms of the local concept of risk aversion, CARA may in fact
be characterized (or equivalently, defined) in global terms, as follows:

(4.2.1) An agent i has CARA if and only if for any gamble g and any two wealth
levels, i either accepts g at both levels, or rejects g at both levels.

In words, whether or not i accepts a gamble g depends only on g, not on the
wealth level. CARA utility functions thus constitute a kind of medium or con-
text in which gambles may be evaluated “on their own,” without reference to
wealth; in particular, one can speak of CARA agents “accepting” or “rejecting”
a gamble, without specifying the wealth. This kind of “wealth-free environ-
ment” is, of course, precisely what we want when seeking an objective riskiness
measure. We then have

(4.2.2) If a CARA agent accepts a gamble, then any CARA agent with a smaller
parameter also accepts the gamble. Equivalently, if a CARA agent rejects a
gamble, then any CARA agent with a larger parameter also rejects the gamble.

From (4.2.2) it follows that for each gamble g, there is precisely one “cut-off”
value of the parameter, such that g is accepted by CARA agents with smaller
parameter, and rejected by CARA agents with larger parameter. The larger the
parameter, the more risk-averse the agent; so the duality principle—that less
risk-averse agents accept riskier gambles—indicates that this cut-off might be a
good inverse measure of riskiness. And indeed, we have

7Up to an additive and a positive multiplicative constant.
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Theorem B: The riskiness R(g) of a gamble g is the reciprocal of the number
α such that a CARA person with parameter α is indifferent between taking and
not taking the gamble.
Proof: Follows from (3.1) and the form of CARA utilities.

Note that Theorem B goes a little beyond Theorem A in characterizing risk-
iness; it actually fixes the index numerically, not just within a positive constant.
Note, too, that while Theorem B might not unreasonably have served as a de-
finition of riskiness, it is, in fact, not a definition; it is a theorem—a proven
consequence of our axioms (Section 3).

5 Some Properties of Riskiness

5.1 The Parameters of Riskiness

The riskiness of a gamble depends on the gamble only—indeed, on its distrib-
ution only—and not on any other parameters, such as the utility function of
the decision maker or his wealth.

5.2 Dimension

Riskiness is measured in dollars. For an “operational” interpretation of the
dollar amount, see Section 5.10.

5.3 Monotonicity w.r.t. Stochastic Dominance

The most uncontroversial, widely accepted notions of riskiness are provided by
the concept of stochastic dominance (Hadar and Russell (1969), Hanoch and
Levy (1969), Rothschild and Stiglitz (1970)). Say that a gamble g first-order
dominates (FOD) g∗ if g ≥ g∗ for sure, and g > g∗ with positive probability; and
g second-order dominates (SOD) g∗ if g∗ may be obtained from g by “mean-
preserving spreads”—by replacing some of g’s values with random variables
whose mean is that value. Say that g stochastically dominates g∗ (in either
sense) if there is a gamble distributed like g that dominates g∗ (in that sense).

An index Q is called first- (second-) order monotonic if Q(g) < Q(g∗) when-
ever g F(S)OD g∗. First- and second-order dominance constitute partial orders.
One would certainly expect any reasonable notion of riskiness to extend these
partial orders—i.e., to be both first- and second-order monotonic. And indeed,
the riskiness index R is monotonic in both senses.

5.4 Continuity

Call an index Q continuous if Q(gn) → Q(g) whenever the gn are uniformly
bounded and converge to g in probability.8 With this definition, the riski-
ness index R is continuous; in words, when two gambles are likely to be close,

8I.e., for every ε > 0, there is an N such that Prob{|gn − g| > ε} < ε for all n > N.
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their riskinesses are close. Therefore, it is also continuous in weaker senses; e.g.,
R(gn) → R(g) whenever the gn converge to g uniformly.9

5.5 Diluted Gambles

If g is a gamble, p a number strictly between 0 and 1, and gp a compound
gamble that yields g with probability p and 0 with probability 1 − p, then
R(gp) = R(g).
Though at first this may sound counterintuitive, on closer examination it is very
reasonable; indeed, any expected utility maximizer—risk averse or not—accepts
gp if and only if he accepts g.

5.6 Compound Gambles

If two gambles g and h have the same riskiness r, then a compound gamble
yielding g with probability p and h with probability 1 − p also has riskiness r.

More generally,
(5.6.1) the riskiness of a compound of two gambles lies between their riskinesses.

5.7 Normal Gambles

If the gamble g has a normal distribution,10 then
R(g) =Varg/2Eg,

where Var stands for “variance.” Indeed, set Varg =: σ2 and Eg =: µ. The
density of g’s distribution is e−(x−µ)2/2σ2

/σ
√

2π, so

E e−g/(σ2/2µ) = 1
σ
√

2π

∫ ∞
−∞ e−(x−µ)2/2σ2

e−x/(σ2/2µ)dx

= 1
σ
√

2π

∫ ∞
−∞ e−[(x2−2µx+µ2)+(4µx)]/2σ2

dx

= 1
σ
√

2π

∫ ∞
−∞ e−(x+µ)2)/2σ2

dx = 1.

So (3.1) holds with R(g) := σ2/2µ, so that is indeed the riskiness of g.

5.8 Sums of Gambles

If g and h are independent identically distributed (i.i.d.) gambles with riski-
ness r, then g + h also has riskiness r. Indeed, the hypothesis yields Ee−g/r =
Ee−h/r = 1. Since g and h are independent, so are e−g/r and e−h/r, so 1 =
Ee−g/r Ee−h/r = E(e−g/re−h/r) = E(e−(g+h)/r), so R(g + h) = r.

It follows that the sum of n i.i.d. gambles has the same riskiness as each
one separately. This contrasts with the expectation—and the variance—of such
a sum, which is n times the corresponding quantity for a single gamble. In

9I.e., for every ε > 0, there is an N such that sup |gn − g| < ε for all n > N. In words,
when two gambles are always close, their riskinesses are close.

10As defined in Section 3, a gamble has only finitely many values; so strictly speaking,
its distribution cannot be normal. We therefore redefine a “gamble” as a random variable g
(Borel-measurable function on a probability space) for which Ee−αg exists for all positive α.
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the case of riskiness, one might say that location and dispersion considerations,
which act in opposite directions, cancel each other out, and the result is that
the riskiness stays the same.

More generally,
(5.8.1) if g and h are independent, then the riskiness of g+h lies between those
of g and h.

An interesting consequence is that a person—or entity like a pension fund—that
does not want its portfolio to exceed a certain level of riskiness need only see to
it that each of the independent investments it makes does not exceed that level.

Even without independence, we still have subadditivity:11

(5.8.2) R(g + h) ≤ R(g) + R(h)
for any gambles g and h. Moreover, equality in (5.8.2) obtains when g is a
positive multiple of h (that follows from homogeneity), and only then. We
thus get a spectrum of circumstances, which is most transparent when the two
gambles are identically distributed, and so have the same riskiness r: When
the gambles are “totally” positively correlated—i.e., equal—the risks reinforce
each other, and the sum has riskiness precisely 2r. When they are independent,
the risks neither reinforce nor hinder each other, and the sum has the same
riskiness r as each of the gambles separately. When they are “totally” negatively
correlated, the risk is minimal—but need not vanish.

5.9 Ordinality

If we are looking only for an ordinal index—i.e., wish to define “riskier,” with-
out saying how much riskier—then we can replace the homogeneity axiom by
conditions of monotonicity and continuity.

An index Q for which Q(g) > Q(h) if and only if R(g) > R(h) is called
ordinally equivalent to R. We have already seen that the riskiness index R
satisfies the duality axiom (Theorem A), is continuous (Section 5.4), and is
both first- and second-order monotonic (Section 5.3). In the opposite direction,
any continuous and first-order monotonic index that satisfies the duality axiom
is ordinally equivalent to R. Moreover, continuity, monotonicity and duality are
essential for this result; without any one of them, it fails.

5.10 An “Operational” Interpretation in Terms of CRRA

An agent i is said to have constant relative risk aversion (CRRA) if his ARA
is inversely proportional to his wealth w; i.e., if wρi(w) is a constant, called the
CRRA parameter. CRRA is an expression of the idea that wealthier people
are less risk-averse. Here wealth is assumed positive, so unlike in the rest of this
paper, we here discuss utility functions defined on the positive reals only.

Like with CARA, there is an essentially unique CRRA utility with a given
parameter. For parameter 1, it is the classic logarithmic utility, log w, where

11We thank Sergiu Hart for this observation, and for its proof.
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“log” denotes the natural logarithm (i.e., to base e), originally proposed by
Daniel Bernoulli (1731).12 In terms of this utility, one can lend operational
meaning to the riskiness R(g) of a gamble g as follows:

(5.10.1) An agent with logarithmic utility and initial wealth w accepts a gamble
g if w + min g > R(g), and rejects it if w + max g < R(g).

That is, g is accepted if taking the gamble necessarily results in a wealth greater
than R(g), and rejected if it necessarily results in a wealth smaller than R(g).
Thus when the range of g is small compared to its riskiness, the riskiness rep-
resents an approximate cut-off; the gamble is accepted if the initial wealth is
considerably greater than the riskiness, and is rejected if it is considerably less.

(5.10.1) is an immediate consequence of the following proposition, which is
of interest in its own right, and does not assume CRRA:

(5.10.2) If ρi(x) < 1/R(g) for all x between w + min g and w + max g, then i
accepts g at w; if ρi(x) > 1/R(g) for all such x, then i rejects g at w.

5.11 Extending the Domain

So far, riskiness is defined on the domain of “gambles:” random variables g with
some negative values and Eg > 0. On this domain, the range of the riskiness
ranges is the positive reals; i.e., strictly between 0 and ∞. Outside of this
domain, the basic relation that determines riskiness—Equation (3.1)—has no
solution. The domain may be extended by defining R(g) := 0 when there are
no negative values, and R(g) := ∞ when Eg ≤ 0. Intuitively, this makes good
sense: When there are no negative values, there is no risk, and when Eg ≤ 0, no
risk-averse agent will accept g. When g vanishes identically, we have a “singular
point,” where the riskiness remains undefined.

With these definitions, the properties of the index continue to apply. Thus
it still respects first- and second-order stochastic dominance, though now only
weakly.13 It is also “continuous,” under the usual meaning of “→ ∞.” The
other properties also apply, mutatis mutandis.

5.12 Emphasis on Losses

As we shall see in Section 6, the riskiness index R is much more sensitive to
the loss side of a gamble than to its gain side. Technically, that is because the
exponential on the right side of (3.1) has a positive exponent if and only if the
value of g is negative. Conceptually, too, the idea of “risk” is usually associated
with possible losses rather than with gains; one speaks more of risking losses
than of risking smaller gains.

Many of the indices discussed in the literature (see Sections 7.3 - 7.5) also
emphasize loss. But there, the emphasis is built in; the definitions explicitly
put more weight on the loss side. With the index R, the definition as such does

12Alternatively characterized by marginal utility being inversely proportional to wealth.
13When gFODg∗ or gSODg∗, one can now conclude only the weak inequality R(g) ≤ R(g∗).
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not distinguish between losses and gains, and indeed there is no sharp division
between them; the distinction emerges naturally from the analysis.

6 Some Numerical Examples

6.1 A Benchmark

A gamble that results in a loss of l with probability 1/e, and a “very large” gain
with the remaining probability, has riskiness l. Formally, if gM,l yields −l and
M with probabilities 1/e and 1− (1/e) respectively, then limM→∞ R(gM,l) = l.

By Positive Homogeneity, one may think of this as “calibrating” the unit of
riskiness: Any gamble with riskiness $1 is “as risky” as one in which the possible
loss is $1 and the possible gain is “very large,” where the loss probability is
1/e—the probability of “no success” in a Poisson distribution with mean 1.

6.2 Some Half-Half Gambles

We have just seen that the riskiness of a gamble yielding a loss of 1 with prob-
ability 1/e, and a large gain with the remaining probability, is close to 1. If the
probabilities are half-half, the riskiness goes up to 1/ log 2 ≈ 1.44. If the gain
decreases to 3 (so the expectation decreases from ∞ to 1), the riskiness goes up
again, but not by much—only to 1.64. If the gain decreases to 1.1—so the expec-
tation is only 0.05—the riskiness jumps to 11.01. As the gain approaches 1—i.e.,
the expectation approaches 0—the riskiness approaches ∞. The riskiness of a
half-half gamble yielding -$100 or $105 (Rabin 2000) is $2, 100.

6.3 Insurance

To buy insurance is to reject a gamble. For example, suppose you insure a
risk of losing $20, 000 with probability 0.001 for a premium of $100—like when
buying loss damage waiver in a car rental. Thus you end up with −$100 for
sure. If you decline the insurance, you are faced with a gamble that yields
−$20, 000 with probability .001, and 0 with probability 0.999. If we normalize14

so that rejecting the gamble is worth 0, then the gamble yields −$19, 900 with
probability .001, and $100 with probability 0.999. The riskiness of this gamble
is $7, 491.

6.4 Riskiness, Desirability, and Acceptance

A riskier gamble need not be less desirable, even when both gambles have the
same mean. For example, let g be a 1/2—1/2 gamble yielding −3 or 5, and
let h be a 7/8—1/8 gamble yielding −1 or 15. The respective riskinesses of g

14You cannot “stay where you are;” you must either pay the premium, which means moving
to your current wealth w less $100, or decline the insurance, which means moving to w−$100
plus the gamble g described in this sentence. That is like choosing between g and $0, from
what your vantage point would be if your current wealth were w − $100.
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and h—both of which have mean 1—are 7.7 and 9.2, but a CARA agent i with
sufficiently high parameter α will prefer the riskier gamble h; he will essentially
disregard the gains in both gambles, and will prefer a loss that though more
likely, is smaller in magnitude. Indeed, i’s utilities for g and h are, respectively,
− 1

2e3α(1+o(1)) and − 7
8eα(1+o(1)); for sufficiently high α, the second is higher

than the first.
Moreover, there are even agents who accept the riskier gamble h and reject

the less risky one g. For example, that is so at wealth 0 for an agent with
utility function u(x) := min(2x, x). To be sure, the function u is not twice
continuously differentiable; but it can easily be modified so that it will be,
without substantially affecting the example.

On the other hand, such an agent cannot be CARA. Indeed, as we have seen
(4.2.2), if a CARA agent rejects a gamble, then he rejects any riskier gamble.

7 The Literature

This section reviews other indices, and compares them to ours. A prominent
feature of many is that they are not monotonic w.r.t. first-order dominance;
indeed, they may rate a gamble g riskier than h even though h is sure to yield
more than g. The review is not exhaustive; we content ourselves with discussing
some of the indices, and briefly mentioning some others.

7.1 Measures of Dispersion

Pure measures of dispersion like standard deviation, variance, mean absolute
deviation (E|g−Eg|), and interquartile range15 have been suggested as indices
of riskiness; see the survey of Machina and Rothschild (1987). These indices
measure only dispersion, taking little account of the gamble’s actual values.
Thus if g and g+c are gambles, where c is a positive constant, then any of these
indices rate g + c precisely as risky as g, in spite of it’s being sure to yield more
than g. An even stranger index (op. cit.) is entropy,16 which totally disregards
the values of the gamble, taking into account only their probabilities; thus a
gamble with three equally probable (but different) values has entropy log2 3, no
matter what its values are. It seems obvious that such measures of dispersion
cannot embody the economic, decision-making notion of riskiness set forth in
Section 3. As Hanoch and Levy (1970, p.344) put it, “The identification of
riskiness with variance, or with any other single measure of dispersion, is clearly
unsound. There are many obvious cases where more dispersion is desirable, if
it is accompanied by an upward shift in the locations of the distribution, or by
an increasing positive asymmetry.”

15The difference between the first and third quartiles of the gamble’s distribution. So, if g
yields -$100, -$1, $2, and $1000 with probability 1/4 each, then the interquartile range is $3.

16− k pk log2 pk, where the pk range over the probabilities of the gamble’s different values.
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7.2 Standard Deviation/Mean

Standard deviation/mean is related to the Sharpe Ratio, a measure of “risk-
adjusted returns” frequently used to evaluate portfolio selection; see, e.g., Bodie,
Kane and Marcus (2002) and Welch (2005). Specifically, any portfolio is associ-
ated with a gamble g; the Sharpe ratio of the portfolio is defined17 as µ/σ, where
µ is the mean of g, and σ its standard deviation. Portfolios with a smaller Sharpe
ratio are considered riskier, so σ/µ—the reciprocal of the Sharpe ratio—might
be considered an index of riskiness of the portfolio.

This index violates M-FOD. Indeed, let g be a gamble yielding −1 with
probability 0.02 and 1 with probability 0.98, and h a gamble that yields −1 with
probability 0.02, yields 1 with probability 0.49, and yields 2 with probability
0.49. Then g has µ = 0.96 and σ = 0.28, so σ/µ = 7/24 ≈ 0.29. For h, the
numbers are µ = 1.45 and σ = 7

√
3/20, so σ/µ = 7

√
3/29 ≈ 0.42. Thus h

is rated more risky than g, though hFODg. Moreover, when ε is positive but
small, h + ε is sure to yield more than g, but is nevertheless rated riskier.

A final remark, regarding normal gambles, is of interest. As we said, the
Sharpe ratio is viewed as a measure of risk-adjusted returns. If one takes the
ratio of the mean µ to the riskiness index—which in this case = σ2/µ, by
Section 5.7—the result is 2µ2/σ2, which is ordinally equivalent to the Sharpe
ratio. Thus, the Sharpe ratio ranks normal gambles by their riskiness-adjusted
expected returns. Matters are different for non-normal gambles.

7.3 Value at Risk

Another index used extensively by banks and finance professionals in portfolio
risk management is value at risk (VaR). This depends on a parameter called
a confidence level. At a 95% confidence level, the VaR of a gamble g is the
absolute value of its fifth percentile, when that is non-positive, and 0 otherwise.
In words, it is the greatest possible loss, ignoring losses with probability less
than 5%. Thus a gamble yielding -$1,000,000, -$1, and $100,000 with respective
probabilities of 0.04, 0.02, and 0.94 has a 95% VaR of $1, and so does the gamble
yielding -$1 and $100,000 with 0.06 and 0.94 probabilities.

This index depends on a parameter—the confidence level—whose “appropri-
ate” value is not clear. Also, it ignores completely the gain side of the gamble;
in particular, it violates M-FOD. And even on the loss side, it concentrates only
on that loss that “hits” the confidence level.

7.4 “Coherent” Measures of Risk

Artzner, Delbaen, Eber, and Heath (1999) call an index Q coherent if it satisfies
five axioms: (i) Positive Homogeneity, (ii) Subadditivity, (iii) Weak First-Order
Monotonicity, (iv) “Relevance,” and (v) “Translation invariance.” Axiom (i) is
as in our Section 3; (ii) is our (5.8.2) (except that with us it follows from the
axioms, whereas they assume it). Their (iii) says that if g ≥ h identically, then

17The standard definition looks more complicated, but boils down to this.
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Q(g) ≥ Q(h), which for us follows from first-order monotonicity (Section 5.3).
Thus our index obeys their first three axioms. Their (iv) concerns “gambles”
with no positive values, which we exclude.18 Their Axiom (v) says that if c is a
constant, then Q(g + c) = Q(g) − c, which is not the case for our index.

Like ours, their indices measure risk in dollars. But their five axioms are very
far from determining the index. Indeed, for any family of probability measures
µ on the underlying probability space, the supremum of Eµ(−g) over the family
is a coherent index. One example is |min g|, which violates first and second
order monotonicity and also continuity; but there are very many others. All
these indices violate our duality axiom.

7.5 Additional Indices

Brachinger (2002) and Brachinger and Weber (1997) are good surveys of the
psychological literature. Like VaR and the “coherent” measures, these measures
of perceived risk take the form of families rather than proposing a single index.
The studies include Coombs (1969), Pollatsek and Tversky (1970), Fishburn
(1977, 1982, 1984), Luce (1980), Sarin (1987), Luce and Weber (1988), and Jia,
Dyer and Butler (1999).

Of all these, Sarin’s measure S(g) := Ee−g is the closest to our index R.
This is monotonic w.r.t. FOD, so it must violate duality. Indeed, let g be the
gamble that assigns probability 0.01 to a loss of 1 and probability 0.99 to a gain
of 2. Then S(2g) = 0.09 < 0.16 = S(g). In contrast, R(2g) = 2R(g) > R(g).
To see that S violates duality, set α := 1/R(g). By (3.1), a CARA agent i with
parameter 5

6α accepts g, while a CARA agent j with parameter 2
3α—who is

less risk-averse than i—rejects 2g, which is rated less risky than g by S. So S
violates Duality. It also violates Positive Homogeneity.

8 Proofs

8.1 Preliminaries

In this section, agents i and j have utility functions ui and uj , and Arrow-Pratt
coefficients ρi and ρj of absolute risk aversion. Since utilities may be modified
by additive and positive multiplicative constants, we may—and do—assume
throughout the following that
(1) ui(0) = uj(0) = 0 and u′

i(0) = u′
j(0) = 1.

Lemma 2: For some δ > 0, suppose that ρi(w) > ρj(w) at each w with |w| < δ.
Then ui(w) < uj(w) whenever |w| < δ and w 6= 0.

Proof: Let |y| < δ. If y > 0, then by (1),
log u′

i(y) = log u′
i(y) − log u′

i(0) =
∫ y

0
(log u′

i(z))′dz =
∫ y

0
(u′′

i (z)/u′
i(z))dz

=
∫ y

0
−ρi(z)dz <

∫ y

0
−ρj(z)dz = log u′

j(y).

18Unless the domain is extended (Section 5.11), when the riskiness is +∞.
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If y < 0, the reasoning is similar, but the inequality is reversed, because then∫ y

0
= −

∫ |y|
0

. Thus log u′
i(y) ≶ log u′

j(y) when y ≷ 0, so also u′
i(y) ≶ u′

j(y) when
y ≷ 0.

So if w > 0, then by (1), ui(w) =
∫ w

0 u′
i(y)dy <

∫ w

0 u′
j(y)dy = uj(w), and if

w < 0, then ui(w) = −
∫ |w|
0 u′

i(y)dy < −
∫ |w|
0 u′

j(y)dy = uj(w), q.e.d.

Corollary 3: If ρi(w) ≤ ρj(w) for all w, then ui(w) ≥ uj(w) for all w.

Proof: Similar to that of Lemma 2, with i and j interchanged, strict inequal-
ities replaced by weak inequalities, and the restriction to |w| < δ eliminated.

Lemma 4: If ρi(wi) > ρj(wj), then there is a gamble g that j accepts at wj

and i rejects at wi.

Proof: W.l.o.g.19 wi = wj = 0, so ρi(0) > ρj(0). Since ui and uj are twice
continuously differentiable, it follows that there is a δ > 0 such that ρi(w) >
ρj(w) at each w with |w| < δ. So by Lemma 2,
(5) ui(w) < uj(w) whenever |w| < δ and w 6= 0.

Choose ε with 0 < ε < δ/2. For 0 ≤ x ≤ ε, and k = i, j, set fk(x) :=
1
2uk(−ε + x) + 1

2uk(ε + x). By (5),
(6) fi(x) < fj(x) for all x.

By (6), concavity, and (1), fi(0) < fj(0) ≤ uj(0) = 0. By monotonicity of the
utilities, fi(ε) = 1

2ui(2ε) > 1
2ui(0) = 0. So fi(y) = 0 for some y between 0 and

ε, since fi is continuous. So by (6), fj(y) > 0. So if η > 0 is sufficiently small,
then fj(y−η) > 0 > fi(y−η). So if g is the half-half gamble yielding −ε+y−η
or ε + y − η, then Euj(g) = fj(y − η) > 0 > fi(y − η) = Eui(g). So j accepts g
whereas i rejects it, q.e.d.

8.2 Proof20 of (4.1.1)

“Only if”: Assume i no less risk-averse than j; we must show
(7) ρi(w) ≥ ρj(w) for all wealth levels w.

If not, then there is a w with ρi(w) < ρj(w). So by Lemma 4, there is a gamble
that i accepts at w and j rejects at w, contradicting i being less risk-averse than
j. So (7) is proved.

“If”: Assume (7); we must show that for each wealth level w and gamble g,
if i accepts g at w, then j accepts g at w. W.l.o.g. w = 0, so we must show that
(8) if i accepts g at 0, then j accepts g at 0.

From (1), (7), and Corollary 3 (with i and j reversed), we conclude uj(w) ≥
ui(w) for each w. So Euj(g) ≥ Eui(g), which yields (8), q.e.d.

19“Without loss of generality.” For arbitrary wi and wj , define u∗
i (x) := (ui(x + wi) −

ui(wi))/u′
i(wi) and u∗

j similarly, and apply the current reasoning to u∗
i and u∗

j .
20(4.1.1) and (4.1.2) are needed in the proof of Theorem A, so we prove them first.
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8.3 Proof of (4.1.2)

(4.1.2) follows from (4.1.1) by shifting the independent variable on one of the
utilities to make wi = wj .

8.4 Proof of Theorem A

For α > 0, let uα(x) = (1 − e−αx)/α; this is a CARA utility function with
parameter α. The functions uα satisfy (1), so by Lemma 2 (with δ arbitrarily
large), their graphs are “nested;” that is,
(9) if α > β, then uα(x) < uβ(x) for all x 6= 0.

To see that there is a unique R(g) > 0 satisfying (3.1), set f(α) := Ee−αg−1,
and note that f is convex, f (0) = 0, f ′(0) = −Eg < 0, and f(M) > 0 for
M sufficiently large. So there is a unique γ > 0 with f(γ) = 0, and we set
R(g) := 1/γ.

To see that R satisfies the duality axiom, let i, j, g, h, w, be as in the hypoth-
esis of that axiom; w.l.o.g. w = 0. Set γ := 1/R(g), η := 1/R(h), αi := inf ρi,
αj := sup ρj . Thus
(10) Euγ(g) = (1− Ee−γg)/γ = 0 and Euη(h) = (1− Ee−ηh)/η = 0.

By hypothesis, R(g) > R(h), so η > γ. By Corollary 3,
(11) ui(x) ≤ uαi(x) and uαj (x) ≤ uj(x) for all x.

Now assume Eui(g) > 0; we must prove that Euj(h) > 0. From Eui(g) > 0
and (11) it follows that Euαi(g) > 0. So by (10), Euγ(g) = 0 < Euαi(g). So by
(9), γ > αi. By (4.1.2), αi ≥ αj , so η > γ yields αj < η. Then (10), (9) and
(11) yield 0 = Euη(h) < Euαj (h) < Euj(h), so indeed, R satisfies the duality
axiom. That R is positively homogeneous is immediate, so indeed, R satisfies
the axioms.

In the opposite direction, let Q be an index that satisfies the axioms. We
first show that
(12) Q is ordinally equivalent to R.

If this is not true, then there must exist g and h that are ordered differently by
Q and R. This means that either the respective orderings are reversed, i.e.,
(13) Q(g) > Q(h) and R(g) < R(h),
or that equality holds for exactly one of the two indices; i.e.,
(14) Q(g) > Q(h) and R(g) = R(h)
or
(15) Q(g) = Q(h) and R(g) > R(h).
If either (14) or (15), then by homogeneity, replacing g by (1−ε)g for sufficiently
small positive ε leads to reversed inequalities. So w.l.o.g. we may assume (13).

Now let γ := 1/R(g), η := 1/R(h); then (10) holds. By (13), γ > η. Choose
µ and ν so that γ > µ > ν > η. Then uγ(x) < uµ(x) < uν(x) < uη(x) for all
x 6= 0. So by (10), Euµ(g) > Euγ(g) = 0 and Euν(h) < Euη(h) = 0. So if i and
j have utility functions uµ and uν respectively, then i accepts g and j rejects
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h. But from µ > ν and (4.1.2), it follows that i D j, contradicting the duality
axiom for Q. So (12) is proved.

To see that Q is a positive multiple of R, let g0 be an arbitrary but fixed
gamble, and set λ := Q(g0)/R(g0). If g is any gamble, and t := Q(g)/Q(g0),
then Q(tg0) = tQ(g0) = Q(g), so tR(g0) = R(tg0) = R(g) by the ordinal equiv-
alence between Q and R, so R(g)/R(g0) = t = Q(g)/Q(g0), so Q(g)/R(g) =
Q(g0)/R(g0) = λ, so Q(g) = λR(g). This completes the proof of Theorem A.

Needless to say, both duality and positive homogeneity are essential to The-
orem A. Indeed, the mean Eg is positively homogeneous, but violates duality,
and the index [R(g)], where [x] denotes the integer part of x, satisfies duality,
but is not positively homogeneous. Neither Eg nor [R(g)] are even ordinally
equivalent to R.

8.5 Proof of (4.2.1)

“Only if:” All CARA utility functions have the form −e−αx. Thus i accepts g
at wealth w if and only if −Ee−α(g+w) > −e−αw, i.e., if and only if Ee−αg < 1;
and this condition does not depend21 on w.

“If:” Suppose i’s Arrow-Pratt index of absolute risk aversion is not constant,
say ρ(w) > ρ(w∗). Consider a gamble yielding ±δ with probabilities p and 1− p
respectively, and let pδ(w) be that p for which i is indifferent at w between taking
and not taking the gamble. Then22 ρ(w) = limδ→0(pδ(w)− 1

2 )/δ; i.e., noting that
even-money 1

2 −
1
2 bets are always rejected by risk-averse utility maximizers, the

Arrow-Pratt index is the probability premium over 1
2 , per dollar, that is needed

for i to be indifferent between taking and not taking a small even-money gamble.
So, if δ is sufficiently small, q − 1

2 lies half-way between ρ(w) and ρ(w∗), and g
is an even money gamble yielding ±δ with probabilities q and 1−q respectively,
then i accepts g at w∗ and rejects it at w; this proves the contrapositive of “if,”
and so “if” itself.

8.6 Proof of (4.2.2)

Let g1 be a gamble, g2 a riskier gamble. For α ≥ 0 and i = 1, 2, set fi(α) :=
Ee−αgi − 1. We saw (near the start of the proof of Theorem A) that fi(0) = 0,
fi(α) < 0 when 0 < α < 1/R(gi), fi(1/R(gi)) = 0, and f(α) > 0 when α >
1/R(gi). So a CARA agent with parameter α accepts gi if and only if fi(α) < 0;
i.e., if and only if α ∈ (0, 1/R(gi)). Since 1/R(g2) < 1/R(g1), it follows that if
the agent rejects g1, then he also rejects g2, as was to be proved. This proves
the second sentence, and so the whole assertion.

21Pratt (1964, p.130) makes a similar argument for preferences between gambles.
22E.g., see Aumann and Kurz (1977), Section 6; but there may well be earlier sources.
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8.7 Proof of the Claims in Section 5.3

For α ≥ 0, set f(α) := Ee−αg, f∗(α) := Ee−αg∗ . If g FOD g∗, then f(α) < f∗(α)
whenever α > 0. From this and the proof that (3.1) has a unique positive root,23

it follows that the unique positive root of f∗ = 1 is smaller than that of f = 1,
so R(g∗) > R(g), as asserted.

If g SOD g∗, then, too, f(α) < f∗(α), because of the strict convexity of e−αx

as a function of x. The remainder of the proof is as before.

8.8 Proof of the Claim in Section 5.4

For α ≥ 0, set f(α) := Ee−αg, fn(α) := Ee−αgn ; denote the unique positive root
of f = 1 by γ, of fn = 1 by γn. We have fn → f, uniformly in any finite interval.
Now f(γ/2) < 1 and f(2γ) > 1. So for n sufficiently large, fn(γ/2) < 1 and
fn(2γ) > 1, so γ/2 < γn < 2γ. Suppose that the γn have a limit point γ∗ 6= γ;
arguing by contradiction, we may assume w.l.o.g. that it is the limit. For any
ε > 0, we have |fn(γn) − f(γn)| < ε for n sufficiently large, because of the
uniform convergence. Also |f(γn) − f(γ∗)| < ε, because of the continuity of f.
So |fn(γn) − f(γ∗)| < 2ε. So lim fn(γn) = f(γ∗) 6= 1, contradicting fn(γn) = 1;
q.e.d.

8.9 Proof of (5.6.1)

Denote by gp ⊕ h1−p the compound gamble that yields g with probability p
and h with probability 1 − p. By Theorem A, the riskiness R(gp ⊕ h1−p) is the
reciprocal of the unique positive root of f = 1, where f(α) := Ee−α(gp⊕h1−p) =
pEe−αg + (1 − p)Ee−αh. So if f(α) = 1, then it cannot be that both Ee−αg

and Ee−αh are > 1, and it cannot be that both Ee−αg and Ee−αh are < 1. So
Ee−αg ≤ 1 and Ee−αh ≥ 1, say. So 1/R(gp ⊕h1−p) = α ≤ 1/R(g) and similarly
1/R(gp ⊕ h1−p) = α ≥ 1/R(h). Thus R(g) ≤ R(gp ⊕ h1−p) ≤ R(h), as asserted.

8.10 Proof of (5.8.1)

By Theorem A, the riskiness R(g + h) is the reciprocal of the unique positive
root of f = 1, where f(α) := Ee−α(g+h). Because g and h are independent,
f(α) = Ee−αge−αh = Ee−αgEe−αh. So if f(α) = 1, then it cannot be that both
Ee−αg and Ee−αh are > 1, and it cannot be that both Ee−αg and Ee−αh are
< 1. So Ee−αg ≤ 1 and Ee−αh ≥ 1, say. So 1/R(g + h) = α ≤ 1/R(g) and
similarly 1/R(g +h) = α ≥ 1/R(h). Thus R(g) ≤ R(g +h) ≤ R(h), as asserted.

8.11 Proof of (5.8.2)

Set r := R(g), r′ := R(h), and λ := r/(r + r′) ∈ (0, 1). Then (g + h)/(r + r′) =

23Near the beginning of the proof of Theorem A.
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λ(g/r) + (1 − λ)(h/r′), so from (3.1) and the convexity of the exponential, we
get Ee−(g+h)/(r+r′) ≤ λEe−g/r + (1 − λ)Ee−h/r′

= 1, so r + r′ ≤ R(g + h) (see
the second paragraph in the proof of Theorem A), as asserted.

8.12 Proof of the Ordinal Characterization in Section 5.9

The proof of ordinal equivalence follows that of (12) above. If either (14) or
(15) holds, and Q is first-order monotonic, then replacing g by g − ε for suffi-
ciently small positive ε leads to reversed inequalities; this follows from first-order
monotonicity and continuity. The remainder of the proof of (12) is as above.

To see that first-order monotonicity is essential, define

Q(g) :=





R(g), when 0 < R(g) ≤ 1,
1, when 1 ≤ R(g) ≤ 2,
R(g) − 1, when 2 ≤ R(g).

Thus Q collapses the interval [1, 2] in the range of R to a single point. It may be
seen that it is continuous and satisfies the duality axiom, but is not first-order
monotonic; and there are g and h (in the “collapsed” region) satisfying (15), so
Q is not ordinally equivalent to R.

To see that continuity is essential, let A be a non-empty proper subset of
the set R−1(1) of all gambles with riskiness 1. Define

Q(g) :=
{

R(g), when R(g) < 1 or g ∈ A,
R(g) + 1, when R(g) > 1 or g ∈ R−1(1)\A.

One may think of Q as resulting from R by “tearing” along the “seam” R(g) = 1,
with the seam itself going partly to the upper fragment and partly to the lower
fragment. It may be seen that Q is first-order monotonic and satisfies the duality
axiom, but is not continuous; and there are g and h (on the “seam”) satisfying
(15), so Q is not ordinally equivalent to R.

Finally, as already argued at the end of Section 7, Sarin’s index S(g) is
continuous and first-order monotonic, but violates duality.

8.13 Proof of (5.10.2)

To prove the first sentence, let ui be i’s utility, and define a utility uj as follows:
when x is between w + min g and w + max g, define uj(x) := ui(x); when x ≤
w + min g, define uj(x) to equal a CARA utility with parameter ρi(w + min g)
and uj(w+min g) = ui(w+min g) and u′

j(w+min g) = u′
i(w+min g); when x ≥

w + max g, define uj(x) to equal a CARA utility with parameter ρi(w + max g)
and uj(w + max g) = ui(w + max g) and u′

j(w + max g) = u′
i(w + max g). Let

uk be a CARA utility with parameter (1/R(g))− ε. Then
(16) minx ρk(x) > maxx ρj(x)
for positive ε sufficiently small. By Theorem B (Section 4.2), a CARA person
with parameter 1/R(g) is indifferent between taking and not taking g. Therefore
k, who is less risk-averse, accepts g. So by (16) and (4.1.2), j also accepts g. But
between the minimum and maximum of w + g, the utilities of i and j are the
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same. So i accepts g at w. This proves the first sentence of (5.10.2); the proof
of the second sentence is similar.

9 Conclusion

We have defined a numerical index of the riskiness of a gamble with stated dollar
outcomes and stated probabilities. It is denominated in dollars, monotonic w.r.t.
first and second order stochastic dominance, continuous in about any sense
one wishes, positively homogeneous, and satisfies a duality condition that says,
roughly, that agents who are more risk-averse are less likely to accept gambles
that are riskier. Moreover, it is the only index satisfying these conditions.
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