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Abstract 
 
 
 
We discuss a modified objective function strategy to obtain estimators without bias to 
order 1/T in nonlinear dynamic panel models with multiple effects. Estimation proceeds 
from a bias corrected objective function relative to some target infeasible criterion. We 
consider a determinant based approach for likelihood settings, and a trace based 
approach, which is not restricted to the likelihood setup. Both approaches depend 
exclusively on the Hessian and the outer product of the scores of the fixed effects. 
They produce simple and transparent corrections even in models with multiple effects. 
We analyze the asymptotic properties of both types of estimators when n and T grow at 
the same rate, and show that they are asymptotically normal and centered at the truth. 
Our strategy is to develop a theory for general bias corrected estimating equations, so 
that we can obtain asymptotic results for a specific bias correction method using the 
first order conditions. 
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1 Introduction

There is a body of well understood nonlinear models in econometrics, which are routinely estimated

by maximum likelihood or related methods using cross-sectional or time series data. These include,

to name a few, discrete choice, conditional volatility, or duration models. In panel data applications

of these models, a leading motivation is to exploit the time series variability to allow for heterogeneity

in some of the coefficients, which is a powerful way of addressing endogeneity concerns.

Unfortunately, when the time series dimension T is small relative to the cross-sectional dimension

n, ML estimates of the common parameters or other average effects can be severely biased, specially

in dynamic models. This is reflected in asymptotic results such as the fixed-T inconsistency of the

ML estimator for some models, or the lack of identification of the model’s parameters in a large n

fixed-T population for others. Sometimes it is possible to obtain fixed T large n consistent estimators

of certain common parameters, based on features of the distribution of the data that do not depend

on individual-specific parameters. Nevertheless, situations of this type are more the exception than

the rule from the point of view of the needs of applied work.

A useful question is to ask how much heterogeneity can be given empirical content in a particular

panel model and data set. One could, for example, expect time series of size 10 to 20 to be statistically

informative for up to two or three different coefficients for certain processes. From this perspective, it

is natural to choose a population framework that does not rule out the possibility of statistical learning

from individual time series in panel data, so that both T and n tend to infinity. If T is statistically

informative but much smaller than n, as is often the case with micropanels, this should be reflected

in the choice of methods of estimation and inference. For example, by seeking estimators with biases

of order 1/T 2 or less as opposed to the standard magnitude of 1/T , and asymptotic approximations

where n/T or n/T 3 converge to a constant.

Such is the goal of the recent literature on bias-adjusted estimation methods for nonlinear panel

data models with fixed effects. Three different approaches can be distinguished in this literature. One

approach is to construct and analytical or numerical bias correction of a fixed effects estimator. Hahn

and Newey (2002) considered corrections of this type for static nonlinear panel data models when n

and T increase at the same rate, and Hahn and Kuersteiner (2004) provided a similar analysis for

dynamic models. A second approach is to consider estimators from bias corrected moment equations.

Estimators of this type have been discussed in Woutersen (2002), Arellano (2003), Carro (2004), and

Fernandez-Val (2005), amongst others. Finally, a third approach is to consider estimation from a bias

corrected objective function relative to some target criterion. Adjustments of this type were discussed

in Pace and Salvan (2005) for a generic concentrated likelihood with independent observations, and in

Arellano and Hahn (2006) for static nonlinear panel models.1

In this paper we consider a modified objective function strategy to obtain estimators without bias
1See also Arellano and Hahn (2006) for a review of the literature.
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to order 1/T in nonlinear dynamic panel models with multiple effects. We consider two approaches

to bias correct the objective function, both of which depend on a Hessian term and an outer product

of score term, the latter depending on the dynamic dependence of the score. One approach uses a

determinant based correction, which we argue later is appropriate in likelihood settings. When the

model fully specifies the distribution of the data, it is possible to obtain the expected outer product

term and we discuss this possibility. The other approach uses a trace based correction, which we show

later is not restricted to the likelihood setup, and is based on a trimmed outer product matrix of the

sample score vector. The trace based approach has been independently discussed in a recent paper by

Bester and Hansen (2005) as the integral of a bias-corrected moment equation.

Aside from being criterion based, an advantage of these estimators is the great simplicity and

transparency of the required corrections by comparison with bias corrections of estimators or moment

equations, specially in models with multiple effects. Another benefit of our approach is that bias

corrected objective functions can be related to various modifications of the concentrated likelihood

suggested in the statistical literature as approximations to conditional or marginal likelihood functions.

For example, the determinant based approach is analogous to the Cox and Reid (1987)’s adjusted

profile likelihood approach when fixed effects are information orthogonal to common parameters.

We analyze the asymptotic properties of both trace based and determinant based estimators when

n and T grow at the same rate, and show that they are asymptotically normal and centered at the

truth. Our strategy is to develop a theory for general bias corrected estimating equations, so that we

can obtain asymptotic results for a specific bias correction method using the first order conditions.

The paper is organized as follows. Section 2 explains how bias correction of the objective function

works. Section 3 presents some examples. Section 4 gives the asymptotic theory. Finally, a brief

conclusion is in Section 5. Proofs and technical details are given in the Appendix.

2 Correcting the Objective Function

Let the data be denoted by xit (t = 1, ..., T ; i = 1, ..., n). Suppose that we are given a panel data model

with a common parameter of interest θ0 and potentially vector-valued individual specific fixed effects

γi0, i = 1, . . . , n. We consider a maximization estimator defined by³bθ,bγ1, . . . , bγn´ ≡ argmax
θ,γ1,...,γn

nX
i=1

TX
t=1

ψ (xit; θ, γi) (1)

for some criterion function ψ (·) that does not depend on T . Here, ψ is a sensible function in the sense
that, if n is fixed, and T →∞, the estimator

³bθ,bγ1, . . . ,bγn´ is consistent for (θ0, γ10, . . . , γn0).
In a likelihood setup, we assume that xit = (yit, yi,t−1, . . . , yi,t−q) and

ψ (xit; θ, γi) = ln pc (yit | yi,t−1, . . . , yi,t−q; θ, γi) ,
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where pc denotes the conditional density of yit.2

Letting bγi (θ) ≡ argmaxaPT
t=1 ψ (xit; θ, a), we can characterize bθ as the estimator that maximizes

the concentrated objective function

bθ = argmax
θ

1

n

nX
i=1

ψi (θ,bγi (θ))
where

ψi (θ, γi) ≡
1

T

TX
t=1

ψ (xit; θ, γi) .

Now let θT be the value that maximizes the limiting expected concentrated objective function for

fixed T :

θT ≡ argmax
θ

lim
n→∞

1

n

nX
i=1

E
£
ψi (θ,bγi (θ))¤ .

Due to the noise in estimating bγi (θ), in general θT 6= θ0 (Neyman and Scott (1948)’s incidental

parameters problem). This problem would not occur if the quantities bγi (θ) were replaced by γi (θ)

defined as3

γi (θ) ≡ argmax
c

lim
T→∞

1

T

TX
t=1

E [ψ (xit; θ, c)] . (2)

So we could think of the infeasible concentrated objective function
Pn
i=1 ψi (θ, γi (θ)) /n as a target

criterion and
Pn
i=1 ψi (θ,bγi (θ)) /n as a plug-in estimate with a bias of order 1/T . The source of

incidental parameter bias is that the concentrated objective function is itself a biased estimate of the

target criterion. This suggests maximizing a modified objective function that has no bias up to a

certain order in T .

For smooth objective functions, the bias in the expected concentrated function at an arbitrary θ

can be usually expanded in orders of magnitude of T :

lim
n→∞E

"
1

n

nX
i=1

ψi (θ, bγi (θ))− 1n
nX
i=1

ψi (θ, γi (θ))

#
=
1

T
B (θ) + o

µ
1

T

¶
(3)

for some B (θ).

A bias corrected concentrated objective function is to plug into the formula for B (θ) estimators of

its unknown components to construct bB (θ), and then obtain an estimator that maximizes the adjusted
criterion:

eθ ≡ argmax
θ

Ã
1

n

nX
i=1

ψi (θ, bγi (θ))− 1

T
bB (θ)! . (4)

2We abstract away from strictly exogenous regressors. For shortness we may write ψit (θ, γi) = ψ (xit; θ, γi).
3Note that γi (θ0) = γi0 and that in the likelihood setup γi (θ) is fully determined by θ and the true values, θ0 and

γi0.
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The resulting estimator removes the leading term of the incidental parameters bias and, unlike bθ, it
may give correct asymptotic confidence intervals when T grows as fast as n.

To see this, consider an expansion for the first order conditions around the truthÃ
−1
n

nX
i=1

∂2

∂θ∂θ0
ψi (θ0,bγi (θ0))

!√
nT
³eθ − θ0

´
≈
√
nT
1

n

nX
i=1

∂

∂θ
ψi (θ0,bγi (θ0))−rn

T

∂ bB (θ0)
∂θ

,

and suppose that n/T tends to a constant,
√
nT
Pn
i=1 (∂/∂θ)ψi (θ0, γi (θ0)) /n

d→ N (0,Ω),
√
nT
1

n

nX
i=1

∂

∂θ
ψi (θ0,bγi (θ0)) = √nT 1n

nX
i=1

∂

∂θ
ψi (θ0, γi (θ0)) +

r
n

T

∂B (θ0)

∂θ
+ op (1)

and that

∂ bB (θ0)
∂θ

=
∂B (θ0)

∂θ
+ op (1) .

Thus, also

√
nT
1

n

nX
i=1

∂

∂θ
ψi (θ0,bγi (θ0))−rn

T

∂ bB (θ0)
∂θ

d→ N (0,Ω) ,

which suggests that as n, T → ∞, √nT
³eθ − θ0

´
is asymptotically normal with zero mean and the

same asymptotic variance as the fixed effects estimator. We will give precise conditions for this result

to hold.

2.1 Formulae for the Bias Correction

Let us introduce the notation:

V i (θ, γi) ≡
∂ψi (θ, γi)

∂γi
,

Hi (θ) ≡ − lim
T→∞

E

∙
∂V i (θ, γi (θ))

∂γ0i

¸
,

Υi (θ) ≡ lim
T→∞

TE
£
V i (θ, γi (θ))V i (θ, γi (θ))

0¤ .
A first-order stochastic expansion for an arbitrary fixed θ gives

bγi (θ)− γi (θ) = Hi (θ)
−1 V i (θ, γi (θ)) +Op

µ
1

T

¶
.

Next, expanding ψi (θ,bγi (θ)) around γi (θ) for fixed θ we get

ψi (θ,bγi (θ))− ψi (θ, γi (θ)) = V i (θ, γi (θ))
0 [bγi (θ)− γi (θ)]

−1
2
[bγi (θ)− γi (θ)]

0Hi (θ) [bγi (θ)− γi (θ)] +Op

µ
1

T 3/2

¶
,
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and combining the two expansions,

ψi (θ,bγi (θ))− ψi (θ, γi (θ)) =
1

2
V i (θ, γi (θ))

0Hi (θ)
−1 V i (θ, γi (θ)) +Op

µ
1

T 3/2

¶
.

Finally, taking expectations and assuming that the expectations operator and the stochastic order

symbols can be interchanged, we obtain

E
£
ψi (θ,bγi (θ))− ψi (θ, γi (θ))

¤
=
1

T
βi (θ) +O

µ
1

T 3/2

¶
where

βi (θ) ≡
1

2
trace

h
Hi (θ)

−1Υi (θ)
i
=
1

2
trace

n
Hi (θ)Var

³√
T [bγi (θ)− γi (θ)]

´o
. (5)

In the likelihood setup the information identity is satisfied at the truth so that Hi (θ0)
−1Υi (θ0) =

I. Moreover, Vi (xit; θ0, γi (θ0)) is a martingale sequence with the implication that

Υi (θ0) = lim
T→∞

1

T

TX
t=1

E
£
Vi (xit; θ0, γi0)Vi (xit; θ0, γi0)

0¤ .
When evaluated at other values of θ, the score vector Vi (xit; θ, γi (θ)) still has zero mean but in general

it will be serially correlated:

Υi (θ) =
∞X

l=−∞
Γl (θ)

where Γl (θ) denotes the steady-state covariance matrix between Vi (xit; θ, γi (θ)) and Vi (xit−l; θ, γi (θ)):

Γl (θ) ≡ lim
T→∞

1

T

TX
t=l+1

E
£
Vi (xit; θ, γi (θ))Vi (xit−l; θ, γi (θ))

0¤ l > 0.

2.2 Estimation of the Bias

An estimator for the bias term in the modified concentrated likelihood (4) can be formed using bB (θ) =Pn
i=1
bβi (θ) /n, where bβi (θ) is a sample counterpart of the previous formulae.

Trace Based Approach One possibility is

bβi (θ) = 1

2
trace

h
Hi (θ,bγi (θ))−1Υi (θ, bγi (θ))i (6)

where

Hi (θ, γ) ≡ − 1
T

TX
t=1

∂2ψit (θ, γ)

∂γ∂γ0
(7)

Υi (θ, γ) ≡
Pm
l=−mwT,lΓl (θ, γ) (8)

Γl (θ, γ) ≡ 1

T

min(T,T+l)P
t=max(1,l+1)

∂ψit (θ, γ)

∂γi

∂ψit−l (θ, γ)
∂γ0i

. (9)
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The quantity m is a bandwidth parameter and wT,l denotes a weight that guarantees positive definite-

ness of Υi (θ, γ), e.g., a Bartlett kernel weight such that wT,l = 1− l
m+1 .

4 Note that with m = T − 1
and wT,l = 1, Υi (θ, γ) ≡ V i (θ, γi (θ))V i (θ, γi (θ))0, so that in such case Υi (θ,bγi (θ)) ≡ 0.

The adjustment term bβi (θ) does not depend on the likelihood setting, and so it is valid for any
fixed effects estimation problem based on the objective function

Pn
i=1

PT
t=1 ψ (xit; θ, γi). The trace-

based approach can be regarded as an objective-function and estimating equation counterpart to the

approach of bias-correction of the estimator in Hahn and Kuersteiner (2004).

Determinant Based Approach In the likelihood setting we can consider a local version of the

estimated bias constructed as an expansion of bβi (θ) at θ0 using that at the truthHi (θ0)
−1Υi (θ0) = I.

To see this, note that

bβi (θ) = 1

2

pX
j=1

hbλj (θ)− 1i+ 1
2
p =

1

2

pX
j=1

ln bλj (θ) + 1
2
p+O

µ
1

T

¶

where bλj (θ) denotes the j-th eigenvalue of Hi (θ, bγi (θ))−1Υi (θ,bγi (θ)) and p = dim(θ). SincePp
j=1 ln

bλj (θ) = lndet
h
Hi (θ,bγi (θ))−1Υi (θ, bγi (θ))i, discarding constants, we can consider the al-

ternative adjustment

eβi (θ) = −12 ln det [Hi (θ,bγi (θ))] + 12 ln det [Υi (θ, bγi (θ))] . (10)

The resulting modified concentrated likelihood function is

LD (θ) =
nX
i=1

TX
t=1

ψ (xit; θ,bγi (θ)) + 12
nX
i=1

ln det [Hi (θ,bγi (θ))]− 12
nX
i=1

ln det [Υi (θ, bγi (θ))] (11)

where ψ (xit; θ, γi) = lnpc (yit | yi,t−1, . . . , yi,t−q; θ, γi).
The criterion LD (θ) is a multivariate and dynamic version of the adjusted concentrated likelihood

considered by DiCiccio and Stern (1993), and DiCiccio, Martin, Stern, and Young (1996).

Using the arguments in Pace and Salvan (2005), it can be related to the adjusted profile likelihood

considered by Cox and Reid (1987) as an approximation to the likelihood conditioned on the ML

estimates of the fixed effects. In a model with independent observations, Ferguson, Reid, and Cox

(1991) showed that such a modification led to bias reduction when the nuisance parameters were

information orthogonal to the parameters of interest.

In our context, the Cox—Reid approach maximizes

LCR (θ) =
nX
i=1

TX
t=1

ψ (xit; θ,bγi (θ))− 12
nX
i=1

ln det [Hi (θ, bγi (θ))] ,
4For simplicity of exposition, we will assume that the wT,l are indeed Bartlett weights throughout the rest of the

paper.

6



and the connection with LD (θ) can be expressed as

LD (θ) = LCR (θ)− 1
2

nX
i=1

ln detdVar h√nT (bγi (θ)− γi (θ))
i

where the variance term is given by the sandwich formula

dVar h√nT (bγi (θ)− γi (θ))
i
= [Hi (θ,bγi (θ))]−1Υi (θ,bγi (θ)) [Hi (θ,bγi (θ))]−1 .

The conclusion is that LD (θ) can be regarded as a generalized Cox—Reid function with an additional

term to account for non-orthogonality. Under orthogonality the extra term is not needed because the

variance of bγi (θ) does not change much with θ.

Determinant Approach Using Expected Quantities In the likelihood setting, an expected

outer product function can be calculated for given values of (θ, γi) and (θ0, γi0) analytically or numer-

ically, because the density of the data is available. Specifically, we may consider

ΥTi (θ, γ; θ0, γi0) ≡
Pm
l=−mwT,lΓT l (θ, γ; θ0, γi0) (12)

where, for l > 0, we have

ΓT l (θ, γ; θ0, γi0) =
1

T − l
TX

t=l+1

Eθ0,γi0

£
Vi (xit; θ, γ)Vi (xit−l; θ, γ)0

¤
. (13)

Alternatively, a centered covariance could be calculated:

Γ∗T l (θ, γ; θ0, γi0) = ΓTl (θ, γ; θ0, γi0)− µT0 (θ, γ; θ0, γi0)µT l (θ, γ; θ0, γi0)0 (14)

where µTl (θ, γ; θ0, γi0) = (T − l)−1PT
t=l+1Eθ0,γi0 [Vi (xit−l; θ, γ)]. Note that when evaluated at γ =

γi (θ) for arbitrary θ we have µT l (θ, γi (θ) ; θ0, γi0) = 0, so that centered and non-centered quantities

coincide.

This leads to an alternative modified concentrated likelihood of the form

LED

³
θ;bθ´ = nX

i=1

TX
t=1

ψ (xit; θ,bγi (θ))+12
nX
i=1

ln detHi (θ,bγi (θ))−12
nX
i=1

ln detΥTi
³
θ,bγi (θ) ;bθ,bγi ³bθ´´ .

(15)

Iterated Adjusted Likelihood Estimation An undesirable feature of the estimator bθ1 =
argmaxθ LED

³
θ;bθ´ is its dependence on bθ, which may have a large bias. This problem can be

avoided by considering an iterative procedure. That is, once we have bθ1, we use it to evaluate the
expectations required in calculating a new estimate. Pursuing the iteration

bθK = argmax
θ
LED

³
θ;bθK−1´ (16)
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until convergence, we obtain an estimator bθ∞ that solves

SED

³bθ∞;bθ∞´ = 0 (17)

where SED (θ; θ∗) denotes the score of LED (θ; θ∗) for fixed θ∗. Note that, in contrast with the iterated

procedure, a continuously updated method will not work in this case (that is, maximizing a criterion

of the form LED (θ; θ)).

Discussion Both likelihood and pseudo likelihood settings are important in applications. For

example, there are nonlinear likelihood models whose parameters are no longer interpretable when the

likelihood is only regarded as a pseudo likelihood.

In a likelihood situation it seems natural to use the determinant form of the correction, but also an

expectation based estimate of the outer product term, specially if an analytical calculation is available,

hence avoiding semiparametric kernel estimation. However, if expectations need to be evaluated by

simulation, the conceptual advantage of the expectation—based adjustment is less clear, because the

number of simulations to be chosen is an issue.

In contrast, in a pseudo likelihood or incomplete model setting it is natural to use the trace form

of the correction and a kernel—based estimate of Υi (θ), which is the only possibility available.

3 Examples

We consider three examples. The first one is static and linear, but illustrates the differences between

the two approaches in a familiar context. The second is a conditional volatility model, and the last

one is a dynamic binary choice formulation.

Example 1 Consider a simple multivariate model for an unconditional covariance structure with

heterogeneous means, where

ψ (xit; θ, γi) = C −
1

2
ln detΩ (θ)− 1

2
(xit − γi)

0Ω (θ)−1 (xit − γi) .

If Ω (θ) is unrestricted then θ = vech [Ω (θ)]. We have bγi (θ) = xi and
∂ψ (xit; θ, γi)

∂γi
= Ω (θ)−1 (xit − γi) ,

∂2ψ (xit; θ, γi)

∂γi∂γ
0
i

= −Ω (θ)−1

Hi (θ, γ) ≡ − 1
T

TX
t=1

∂2ψit (θ, γ)

∂γ∂γ0
= Ω (θ)−1

Υi (θ,bγi (θ)) ≡ Pm
l=−mwT,lΓl (θ,bγi (θ))

Γl (θ,bγi (θ)) ≡ Ω (θ)−1
"
1

T

min(T,T+l)P
t=max(1,l+1)

(xit − xi) (xit−l − xi)0
#
Ω (θ)−1 .
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The determinant approach with m = 0 gives

LD (θ) = C − nT
2
ln detΩ (θ)− 1

2

nX
i=1

TX
t=1

(xit − xi)0Ω (θ)−1 (xit − xi)

+
n

2
lndet

h
Ω (θ)−1

i
− 1
2
ln det

Ã
Ω (θ)−1

1

T

nX
i=1

TX
t=1

(xit − xi) (xit − xi)0Ω (θ)−1
!
.

Finally, collecting terms and discarding constants we get

LD (θ) = C − n (T − 1)
2

ln detΩ (θ)− nT
2
trace

h
Ω (θ)−1 bΩi

where bΩ is the unrestricted fixed effects estimate:
bΩ = 1

nT

nX
i=1

TX
t=1

(xit − xi) (xit − xi)0 .

Thus, the information adjustment performs the required degrees of freedom correction (i.e. the cor-

rected unrestricted estimate is eΩ = T
T−1 bΩ).

The trace-based approach should provide bias reduction in the presence of neglected serial corre-

lation. It gives

bβi (θ) = 1

2
trace

heΓiΩ (θ)−1i
where

eΓi = 1

T

Pm
l=−mwT,l

min(T,T+l)P
t=max(1,l+1)

(xit − xi) (xit−l − xi)0 .

Letting eΓ = n−1Pn
i=1
eΓi, we obtain

LTR (θ) = C − nT
2
ln detΩ (θ)− nT

2
trace

h
Ω (θ)−1 bΩi− n

2
trace

h
Ω (θ)−1 eΓi .

Note that with m = 0, eΓ = bΩ, so that in this case the corrected unrestricted estimate is eΩTR =
T+1
T
bΩ, which removes the bias of order T−1, but is not fully unbiased. In general, the trace-based

unrestricted estimate is given by

eΩTR = bΩ+ 1

T
eΓ.

Example 2 The next example is a heteroskedastic autoregressive model with two fixed effects,

one in the conditional mean and another in the conditional variance. Letting θ = (θ1, θ2) and γi =

(γ1i, γ2i), we have

ψ (xit; θ, γi) = −
1

2
lnh (yit−1, γ2i)−

1

2

(yit − θ1yit−1 − γ1i)
2

h (yit−1, γ2i)

9



where

h (yit−1, γ2i) = (γ2i + θ2yit−1)2 .

A model of this type, but with an exponential ARCH formulation of the conditional variance, is devel-

oped in Hospido (2006), where some of the estimators considered in this paper, as well as simulation-

based alternatives, are implemented and applied to study individual wage dynamics.

Example 3 A third example is an autoregressive binary formulation of the form

ψ (xit; θ, γi) = yit lnΛ (γ1i + γ2iyit−1 + θyit−2) + (1− yit) ln [1− Λ (γ1i + γ2iyit−1 + θyit−2)]

where Λ (r) is the logit or probit cdf.

This model was suggested in Chamberlain (1985) as a framework for testing duration dependence

from binary panel data, by testing the restriction θ = 0. Chamberlain showed that, in the absence of

exogenous variables, a simple fixed-T consistent estimator for θ is available for the logistic specification

of this model. A random effects formulation of a model of this type has been recently applied by Card

and Hyslop (2005) to study the effects of earnings subsidies on welfare participation.

4 Asymptotic Theory

We first consider general conditions for a bias corrected estimating equation to deliver an asymptotic

normality theorem for the estimation error centered at the truth.

Notation 1 We use the following additional notation throughout:

Ui (xit; θ, γi) ≡
∂ψ (xit; θ, γi)

∂θ
− ρi0 ·

∂ψ (xit; θ, γi)

∂γi
, Vi (xit; θ, γi) ≡

∂ψ (xit; θ, γi)

∂γi
,

ρi0 ≡ E
∙
∂2ψ (xit; θ0, γi0)

∂θ∂γ0i

¸µ
E

∙
∂2ψ (xit; θ0, γi0)

∂γi∂γ
0
i

¸¶−1
, Ii ≡ −E

∙
∂Ui (xit; θ0, γi0)

∂θ0

¸
,

eVit ≡ −µE ∙∂Vi
∂γ0i

¸¶−1
Vit.

For simplicity of notation, we will occasionally write Uit ≡ Ui (xit; θ0, γi0) and Vit ≡ Vi (xit; θ0, γi0).
We will denote by Uγi

it ≡ ∂Uit/∂γ0i and U
γiγi
it ≡ ∂2Uit

±
(∂γ0i ⊗ ∂γ0i) the first and second derivatives of

Uit with respect to γi. Likewise, we will denote by V
γi
it the derivative ∂Vit/∂γ

0
i of Vit with respect to

γi.

Using this notation, we can characterize bθ as the solution to the first order condition
0 =

Pn
i=1

PT
t=1Ui

³
xit;bθ,bγi ³bθ´´ .
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The normalized score 1
nT

Pn
i=1

PT
t=1U (xit; θ0, bγi (θ0)) has an asymptotic bias, which renders the fixed

effects estimator bθ biased. The asymptotic bias of the normalized score can be shown5 to be equal to
1
T times Ψ0 (θ0, {γ10, γ20, . . .}), where

Ψ0 (θ0, {γ10, γ20, . . .}) = plim
1

n

nX
i=1

Ã
1√
T

TX
t=1

U
γi
it

!Ã
1√
T

TX
t=1

eVit!

+plim
1

2

1

n

nX
i=1

E
£
U

γiγi
i

¤ "Ã 1√
T

TX
t=1

eVit!⊗Ã 1√
T

TX
t=1

eVit!# .
Note that γi0 ≡ argmaxcE [ψ (xit; θ0, c)]. Therefore, using γi (θ) ≡ argmaxcE [ψ (xit; θ, c)], we can

write

Ψ0 (θ0, {γ10, γ20, . . .}) = Ψ0 (θ0, {γ1 (θ0) , γ2 (θ0) , . . .}) ,

which can be regarded as a function in θ0. Such function will be written as Ψ0 (θ) without loss of

generality. We will approximate it by Ψn (θ0) ≡ Ψ0 (θ0, {bγ1 (θ0) ,bγ2 (θ0) , . . .}). Letting Sn (θ0) denote
some sample counter-part of Ψn (θ0), we may consider solving

0 =
1

nT

Pn
i=1

PT
t=1 U

³
xit;eθ, bγi ³eθ´´− 1

T
Sn

³eθ´ (18)

instead. We will assume that there exists some Bn such that Sn (θ) = ∂Bn (θ)/∂θ, in which case our

estimator eθ can be understood as a solution to
argmax
θ,γ1,...,γn

1

nT

nX
i=1

TX
t=1

ψ (xit; θ, γi)−
1

T
Bn (θ) (19)

We impose the following conditions:

Condition 1 Pr
£
supθ

¯̄
1
TBn (θ)

¯̄ ≥ η
¤
= o

¡
T−1

¢
for every η > 0.

Condition 2 supθ
1
T

¯̄
∂Sn (θ)/∂θ

0¯̄ = op (1).
Condition 3

Sn (θ0) =
1

n

nX
i=1

∞X
l=−∞

E
h
U

γi
it
eVit−li

+
1

2

1

n

nX
i=1

E
£
U

γiγi
i

¤
vec

Ã ∞X
l=−∞

E
heViteV 0it−li

!
+ op (1) .

Under these conditions and the regularity conditions in Appendix A, we can obtain the asymptotic

distribution of eθ as n and T grow at the same rate.
5This is a standard result, but we do provide a rigorous derivation in Supplementary Appendix, which is available

upon request.
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Theorem 2 Assume that Conditions 1, 2, and 3 hold. Further assume that the regularity conditions

in Appendix A hold. Finally, assume that n/T → κ, where 0 < κ <∞. Then
√
nT
³eθ − θ0

´
⇒ N

³
0, I−1Ω ¡I0¢−1´

Proof. See Appendix B.

4.1 Determinant Based Approach

We now assume that xit = (yit, yi,t−1, . . . , yi,t−q) and ψ (xit; θ, γi) = ln pc (yit| yi,t−1, . . . , yi,t−q; θ, γi),
where pc here denotes the conditional density of yit. We propose to estimate θ0 by

eθ = argmax
θ

nX
i=1

TX
t=1

ψ (xit; θ,bγi (θ)) + 12
nX
i=1

ln detHi (θ,bγi (θ))− 12
nX
i=1

ln detΥi (θ,bγi (θ)) (20)

where Hi (θ, γ) and Υi (θ, γ) are as defined in (7)—(9).

Comparing (20) with (19), we obtain

Bn (θ) = − 1
2n

nX
i=1

ln detHi (θ,bγi (θ)) + 1

2n

nX
i=1

ln detΥi (θ,bγi (θ)) (21)

By differentiating Bn, we obtain Sn (θ0). It can be shown that6

Theorem 3 Assume that the regularity conditions in Appendix A hold. Then, the Bn (θ) as defined

in (21) satisfies Condition 1.

Theorem 4 Assume that the regularity conditions in Appendix A hold. Further assume that m =

o
¡
T 1/2

¢
. Then, the Bn (θ) as defined in (21) satisfies Condition 2.

Theorem 5 Assume that the model is given by the likelihood. Also assume that the regularity con-

ditions in Appendix A hold. Further assume that m = o
¡
T 2/5

¢
. Then, the Bn (θ) as defined in (21)

satisfies Condition 3.

Proof. See Appendix C.

Remark 1 Proof of Theorem 5 uses the information equality, as discussed in Appendix on page 18.

This explains why the likelihood setup is required here.

Conclusion 1 Theorems 3, 4, and 5 imply that Theorem 2 applies to our new estimator.

6The proofs of Theorems 3 and 4 are in Supplementary Appendix, which is available upon request.
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4.2 Expectation-based Determinant Approach

We now consider a variant of the above estimator where instead of Υi (θ, γ) we use

Υi (θ, γ) ≡
Pm
l=−mwT,lEbθ,bγi

∙
∂ψit (θ, γ)

∂γ

∂ψit−l (θ, γ)
∂γ0

¸
. (22)

Here, Ebθ,bγi [·] denotes an expectation taken with respect to the density evaluated at
³bθ,bγi´. Note that

Bn (θ) is defined similarly as in (21). As before, Bn, we obtain Sn (θ0) by differentiating Bn. It can

be shown that7

Theorem 6 Assume that the regularity conditions in Appendix A hold. Then the Bn (θ) based on (22)

satisfies Condition 1 as long as m→∞ such that m = o
¡
T 2/5

¢
. The same result hold even when the

preliminary estimates
³bθ,bγi´ in (22) are replaced by some (θ∗, γ∗i ) such that kθ∗ − θk = Op

¡
T−2/5

¢
and supi kγ∗i − γi0k = Op

¡
T−2/5

¢
.

Theorem 7 Assume that the regularity conditions in Appendix A hold. Further assume that m =

o
¡
T 2/5

¢
. Then, the Bn (θ) based on (22) satisfies Condition 2. The same result hold even when the

preliminary estimates
³bθ,bγi´ in (22) are replaced by some (θ∗, γ∗i ) such that kθ∗ − θk = Op

¡
T−2/5

¢
and supi kγ∗i − γi0k = Op

¡
T−2/5

¢
.

Theorem 8 Assume that the model is given by the likelihood. Also assume that the regularity con-

ditions in Appendix A hold. Further assume that m = o
¡
T 2/5

¢
. Then, the Bn (θ) as defined in (21)

satisfies Condition 3. The same result hold even when the preliminary estimates
³bθ,bγi´ in (22) are

replaced by some (θ∗, γ∗i ) such that kθ∗ − θk = Op
¡
T−2/5

¢
and supi kγ∗i − γi0k = Op

¡
T−2/5

¢
.

Proof. See Appendix G.

Remark 2 Proof of Theorem 5 uses the information equality, as discussed in Supplementary Appendix

on page 22. This explains why we required the likelihood setup.

Conclusion 2 Theorems 6, 7, and 8 imply that Theorem 2 applies to our new estimator, even when the

preliminary estimates
³bθ,bγi´ in (22) are replaced by some (θ∗, γ∗i ) satisfying some regularity condition.

4.3 Trace Based Approach

We now consider a slightly different approach where we set

Bn (θ) =
1

2n

nX
i=1

trace
³
Hi (θ,bγi (θ))−1Υi (θ, bγi (θ))´ (23)

It can be shown that8

7The proof of Theorem 6 is in Supplementary Appendix, which is available upon request. The proof of Theorem 7 is

similar to that of Theorem 4, and is omitted.
8The proof of Theorem 9 is similar to those of Theorems 3 and 4, and is omitted.
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Theorem 9 Assume that the regularity conditions in Appendix A hold. Further assume that m =

o
¡
T 1/2

¢
. Then, the Bn (θ) as defined in (23) satisfies Conditions 1 and 2.

Theorem 10 Assume that the regularity conditions in Appendix A hold. Further assume that m =

o
¡
T 1/2

¢
. Then, the Bn (θ) as defined in (23) satisfies Condition Condition 3.

Proof. See Appendix D.

Remark 3 Proof of Theorem 10 does not use the information equality. We therefore do not require

the likelihood setup here.

5 Concluding Remarks

We discussed a modified objective function strategy to obtain estimators without bias to order 1/T

in nonlinear dynamic panel models with multiple effects. Estimation proceeds from a bias corrected

objective function relative to some target infeasible criterion. We considered a determinant based

approach for likelihood settings, and a trace based approach, which is not restricted to the likelihood

setup. Both approaches depend exclusively on the Hessian and the outer product of the scores of the

fixed effects. They produce simple and transparent corrections even in models with multiple effects.

We analyzed the asymptotic properties of the new estimators when n and T grow at the same rate,

and showed that they are asymptotically normal and centered at the truth.

These approaches are likely to be useful in applications where the value of T is not negligible

relative to n, as is the case with many household, firm, and country-level panels. However, if T/n is

too small, further refinements may be required, because the sampling standard deviation of the 1/T

bias-corrected estimators will be small by comparison with the bias.

Existing Monte Carlo results and empirical estimates for binary choice and conditional volatility

models are very encouraging, but more needs to be known about the properties of the new methods

for other models and datasets.

14



Appendix

A Regularity Conditions

Assumption 1 For each η > 0, infi
h
G(i) (θ0, γi0)− sup{(θ,γ):|(θ,γ)−(θ0,γi0)|>η}G(i) (θ, γ)

i
> 0.

Assumption 2 n, T →∞ such that nT → κ, where 0 < κ <∞.

Assumption 3 (i) For each i, {xit, t = 1, 2, . . .} is a stationary mixing sequence; (ii) {xit, t = 1, 2, ...}
are independent across i; (iii) supi |αi (m)| ≤ Cam for some a such that 0 < a < 1 and some C > 0,

where Ait ≡ σ (xit, xit−1, xit−2, ...), Bit ≡ σ (xit, xit+1, xit+2, ...), and

αi (m) ≡ supt supA∈Ait,B∈Bit+m |P (A ∩B)− P (A)P (B)|.

Assumption 4 Let ψ (xit,φ) be a function indexed by the parameter φ = (θ, γ) ∈ intΦ, where Φ is a
compact, convex subset of Rp, p ≡ dim (φ), and R = dim(θ). Let ν = (ν1, ..., νk) be a vector of non-
negative integers vi, |v| =

Pk
j=1 vj andD

vψ (xit,φ) = ∂|ν|ψ (xit,φ)
±¡

∂φv11 ...∂φ
νk
k

¢
. There exists a func-

tion M (xit) such that |Dvψ (xit,φ1)−Dvψ (xit,φ2)| ≤M (xit) kφ1 − φ2k for all φ1,φ2 ∈ Φ and |v| ≤
5. The function M(xit) satisfies supφ∈Φ kDvψ (xit,φ)k ≤ M (xit) and supiE

h
|M(xit)|10q+12+δ

i
<∞

for some integer q ≥ p/2 + 2 and for some δ > 0.

Assumption 5 Let λiT denote the smallest eigenvalue of ΣiT = Var
³
T−1/2

PT
t=1 Ui (xit; θ, γi)

´
. We

assume that infi infT λiT > 0.

Assumption 6 (i) infi infθ,γi
¯̄
E
£
∂2ψ (xit; θ, γi)

±
∂γi∂γ

0
i

¤¯̄
> 0;

(ii) infi infθ,γi
P∞
l=−∞E [(∂ψ (xit; θ, γi)/∂γi) (∂ψ (xit−l; θ, γi)/ ∂γ

0
i)] > 0.

Remark 4 Assumption 6 is stronger than the one assumed in Hahn and Kuersteiner (2004).

Assumption 7 Let µi1 ≤ ... ≤ µik ≤ ... ≤ µiR be the eigenvalues of Ii in ascending order. We have
(i) 0 < infi µi1 ≤ supi µiR <∞; (ii) limn→∞ n−1

Pn
i=1 Ii exists; (iii) letting I ≡ limn→∞ n−1

Pn
i=1 Ii,

we assume that I is positive definite.

Assumption 8 sup(θ,γ)∈Φ suplEθ,γ [M (xit)M (xit−l)] <∞.

B Proof of Theorem 2

We focus on asymptotic normality here, taking consistency result as given. (The consistency re-

sult is available in a Supplementary Appendix, which is available upon request.) Because 0 =PT
t=1 V

³
xit;eθ,bγi ³eθ´´ by definition, eθ can be given the alternative characterization

0 =
1

nT

nX
i=1

TX
t=1

U
³
xit;eθ,bγi ³eθ´´− 1

T
Sn
³eθ´ .
15



By the Taylor series expansion, we obtain

0 =
1

nT

nX
i=1

TX
t=1

U (xit; θ0,bγi (θ0))− 1

T
Sn (θ0)

+

Ã
1

nT

nX
i=1

TX
t=1

Uθ
¡
xit; θ,bγi ¡θ¢¢

!³eθ − θ0

´
− 1

T

∂Sn
¡
θ
¢

∂θ0
³eθ − θ0

´
for some θ on the line segment adjoining θ0 and eθ. Because Ii ≡ −E h∂Ui(xit;θ0,γi0)∂θ0

i
, we may define

Ii ≡ − 1
T

PT
t=1U

θ
¡
xit; θ,bγi ¡θ¢¢, which yields

√
nT
³eθ − θ0

´
=

Ã
1

n

nX
i=1

Ii + 1

T

∂Sn
¡
θ
¢

∂θ0

!−1Ã
1√
nT

nX
i=1

TX
t=1

U (xit; θ0,bγi (θ0))−rn

T
Sn (θ0)

!
(24)

It can be shown9 that 1
n

Pn
i=1 Ii = I + op (1). By Condition 2, we also have 1

T ∂Sn
¡
θ
¢±

∂θ0 = op (1).

We therefore have

1

n

nX
i=1

Ii + 1

T

∂Sn
¡
θ
¢

∂θ0
= I + op (1) (25)

By applying a second order Taylor series approximation to 1
nT

Pn
i=1

PT
t=1U (xit; θ0,bγi (θ0)) around

γi0, and noting that bγi (θ0)− γi0 = −
³
E
h
∂Vi
∂γ0i

i´−1 ³
1
T

PT
t=1 Vit

´
+ op

³
1√
T

´
= 1

T

PT
t=1

eVit + op ³ 1√
T

´
,

we can anticipate that10

1√
nT

nX
i=1

TX
t=1

U (xit; θ0,bγi (θ0))
=

1√
nT

nX
i=1

TX
t=1

Uit +

r
n

T

1

n

nX
i=1

Ã
1√
T

TX
t=1

U
γi
it

!Ã
1√
T

TX
t=1

eVit!

+

r
n

T

1

2

1

n

nX
i=1

E
£
U

γiγi
i

¤ "Ã 1√
T

TX
t=1

eVit!⊗Ã 1√
T

TX
t=1

eVit!#+ op (1) (26)

It can be shown that by using the same argument as in Hahn and Kuersteiner (2004) that

1

2

1

n

nX
i=1

E
£
U

γiγi
i

¤ "Ã 1√
T

TX
t=1

eVit!⊗Ã 1√
T

TX
t=1

eVit!#+ 1

n

nX
i=1

Ã
1√
T

TX
t=1

U
γi
it

!Ã
1√
T

TX
t=1

eVit!

=
1

n

nX
i=1

∞X
l=−∞

E
h
U

γi
i
eVit−li+ 1

2

1

n

nX
i=1

E
£
U

γiγi
i

¤
vec

Ã ∞X
l=−∞

E
heViteV 0it−li

!
+ op (1)

which, when combining (24), (25), (26) and Condition 3, yields

√
nT
³eθ − θ0

´
= I−1

Ã
1√
nT

nX
i=1

TX
t=1

U (xit; θ0, γi0)

!
+ op (1)

from which the conclusion follows.
9See Lemma 6 in Supplementary Appendix A.
10 In Supplementary Appendix C, we provide a rigorous proof of the expansion (26).
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C Proof of Theorem 5

By differentiating Bn, we obtain that Sn (θ) = [2] + · · ·+ [5], where

[2] ≡ −1
2

1

n

nX
i=1

Ã
1

T

TX
t=1

∂3ψit
∂θ (∂γ0 ⊗ ∂γ0)

!
vec

⎛⎝Ã 1
T

TX
t=1

∂2ψit
∂γ∂γ0

!−1⎞⎠
[3] ≡ −1

2

1

n

nX
i=1

∂bγ0i (θ)
∂θ

Ã
1

T

TX
t=1

∂3ψit
∂γ (∂γ0 ⊗ ∂γ0)

!
vec

⎛⎝Ã 1
T

TX
t=1

∂2ψit
∂γ∂γ0

!−1⎞⎠

[4] ≡ 1

2

1

n

nX
i=1

"
1

T

Pm
l=−mwT,l

Ã
min(T,T+l)P
t=max(1,l+1)

∂

∂θ

µµ
∂ψit
∂γ0

¶
⊗
µ
∂ψit−l
∂γ0

¶¶!#

·vec
⎛⎝Ã 1

T

Pm
l=−mwT,l

Ã
min(T,T+l)P
t=max(1,l+1)

∂ψit
∂γ

∂ψit−l
∂γ0

!!−1⎞⎠
and

[5] ≡ 1

2

1

n

nX
i=1

∂bγ0i (θ)
∂θ

"
1

T

Pm
l=−mwT,l

Ã
min(T,T+l)P
t=max(1,l+1)

∂

∂γ

µµ
∂ψit
∂γ0

¶
⊗
µ
∂ψit−l
∂γ0

¶¶!#

·vec
⎛⎝Ã 1

T

Pm
l=−mwT,l

Ã
min(T,T+l)P
t=max(1,l+1)

∂ψit
∂γ

∂ψit−l
∂γ0

!!−1⎞⎠
We will often use the first order condition for bγi (θ), which implies that

∂bγ0i (θ)
∂θ

= −
Ã

TX
t=1

∂2ψit (θ,bγi (θ))
∂θ∂γ0

!Ã
TX
t=1

∂2ψit (θ,bγi (θ))
∂γ∂γ0

!−1
. (27)

In the discussion below, all the terms [2] , · · · , [5] will be evaluated at θ0. We first take care of the
expansion of [2] + [3]. Note first that, by definition of Uit (θ, γi), we have

∂3ψit(θ,γ)
∂θ(∂γ0⊗∂γ0) = U

γγ
it + ρiV

γγ
it ,

where V γγ
it (θ, γi) =

∂2Vit(θ,γi)
∂γ0⊗∂γ0 . It turns out that all the averages over t on the RHS of [2] is uniformly

consistent over i.11 We therefore obtain

[2] = −1
2

1

n

nX
i=1

(E [Uγγ
it ] + ρiE [V

γγ
it ]) vec

³
(E [V γ

it ])
−1´

+ op (1) (28)

The uniform consistency over i combined with (27) also implies that

max
i

¯̄̄̄
∂bγ0i (θ)
∂θ

+ ρi

¯̄̄̄
= op (1) (29)

Using the uniform consistency and equation (29), we obtain

[3] =
1

2

1

n

nX
i=1

ρiE [V
γγ
it ] vec

³
(E [V γ

it ])
−1´

+ op (1) (30)

11See Lemma 6 in Supplementary Appendix.
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Combining (28) and (30), we obtain

[2] + [3] = −1
2

1

n

nX
i=1

E [Uγγ
it ] vec

³
(E [V γ

it ])
−1´

+ op (1) (31)

We now take care of the expansion of [4] + [5]. Note that

∂

∂θ

µµ
∂ψit (θ, γ)

∂γ0

¶
⊗
µ
∂ψit−l (θ, γ)

∂γ0

¶¶
=

µ
∂2ψit (θ, γ)

∂θ∂γ0

¶
⊗
µ
∂ψit−l (θ, γ)

∂γ0

¶
+

µ
∂ψit (θ, γ)

∂γ0

¶
⊗
µ
∂2ψit−l (θ, γ)

∂θ∂γ0

¶
= (Uγ

it + ρiV
γ
it )⊗ V 0it−l + V 0it ⊗

¡
Uγ
it−l + ρiV

γ
it−l
¢

and

∂

∂γ

µµ
∂ψit (θ, γ)

∂γ0

¶
⊗
µ
∂ψit (θ, γ)

∂γ0

¶¶
= V γ

it ⊗ V 0it−l + V 0it ⊗ V γ
it−l

we can write

[4] + [5] =
1

2

1

n

nX
i=1

"
1

T

Pm
l=−mwT,l

min(T,T+l)P
t=max(1,l+1)

Ã
Uγ
it (θ0,bγi (θ0))⊗ Vit−l (θ0, bγi (θ0))0

+Vit (θ0,bγi (θ0))0 ⊗ Uγ
it−l (θ0,bγi (θ0))

!#

·vec
⎛⎝Ã 1

T

Pm
l=−mwT,l

min(T,T+l)P
t=max(1,l+1)

Vit (θ0,bγi (θ0))Vit−l (θ0,bγi (θ0))0
!−1⎞⎠+ op (1)

Using Lemma 5 in Supplementary Appendix, we obtain

max
i

¯̄̄̄
¯ 1T Pm

l=−mwT,l
min(T,T+l)P
t=max(1,l+1)

Vit (θ0, bγi (θ0))Vit−l (θ0,bγi (θ0))0 −P∞
l=−∞E

£
VitV

0
it−l
¤¯̄̄̄¯ = op (1)

Furthermore, if the conditional likelihood is properly defined, then we should have Vit serially uncor-

related, which implies that

max
i

¯̄̄̄
¯ 1T Pm

l=−mwT,l
min(T,T+l)P
t=max(1,l+1)

VitV
0
it−l −E

£
VitV

0
it

¤¯̄̄̄¯
= max

i

¯̄̄̄
¯ 1T Pm

l=−mwT,l
min(T,T+l)P
t=max(1,l+1)

VitV
0
it−l +E [V

γ
it ]

¯̄̄̄
¯ = op (1)

where the first equality is based on the information equality. Therefore, we obtain

[4] + [5]

= −1
2

1

n

nX
i=1

"
1

T

Pm
l=−mwT,l

min(T,T+l)P
t=max(1,l+1)

Ã
Uγ
it (θ0,bγi (θ0))⊗ Vit−l (θ0,bγi (θ0))0

+Vit (θ0,bγi (θ0))0 ⊗ Uγ
it−l (θ0, bγi (θ0))

!#
· vec

³
E [V γ

it ]
−1´

+ op (1)
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Using Lemma 5 again, we obtain

[4] + [5] = −1
2

1

n

nX
i=1

P∞
l=−∞E

£
Uγ
it ⊗ V 0it−l + V 0it ⊗ Uγ

it−l
¤
vec

³
E [V γ

it ]
−1´+ op (1)

=
1

2

1

n

nX
i=1

P∞
l=−∞E

h
Uγ
it
eVit−l + Uγ

it−l eViti+ op (1)
=

1

n

nX
i=1

P∞
l=−∞E

h
Uγ
it
eVit−li+ op (1) (32)

Combining (31) and (32), we obtain

Sn (θ0) = −1
2

1

n

nX
i=1

E [Uγγ
it ] vec

³
(E [V γ

it ])
−1´+ 1

n

nX
i=1

P∞
l=−∞E

h
Uγ
it
eVit−li+ op (1) (33)

Now, we note that, under correct specification of conditional likelihood, the eVit would have zero serial
correlation and we would therefore have

P∞
l=−∞E

heViteV 0it−li = E heViteV 0iti = (E [V γ
i ])

−1
E [VitV

0
it] (E [V

γ
i ])

−1.

Furthermore, we have E [VitV 0it] = −E [V γ
i ] by the information equality. It follows that

Sn (θ0) =
1

2

1

n

nX
i=1

E
£
U

γiγi
i

¤
vec

Ã ∞X
l=−∞

E
heViteV 0it−li

!
+
1

n

nX
i=1

P∞
l=−∞E

h
Uγ
it
eVit−li+ op (1)

D Proof of Theorem 10

We have

Sn (θ) =
1

2n

nX
i=1

Ã
1

T

TX
t=1

∂3ψit
∂θ (∂γ0 ⊗ ∂γ0)

!
vec

¡
H−1i ΥiH

−1
i

¢
+
1

2n

nX
i=1

∂bγ0i (θ)
∂θ

Ã
1

T

TX
t=1

∂3ψit
∂γ (∂γ0 ⊗ ∂γ0)

!
vec

¡
H−1i ΥiH

−1
i

¢
+
1

2n

nX
i=1

Ã
1

T

Pm
l=−m

min(T,T+l)P
t=max(1,l+1)

∂

∂θ

µµ
∂ψit
∂γ0

¶
⊗
µ
∂ψit−l
∂γ0

¶¶!
vec

¡
H−1i

¢
+
1

2n

nX
i=1

∂bγ0i (θ)
∂θ

Ã
1

T

Pm
l=−m

min(T,T+l)P
t=max(1,l+1)

∂

∂γ

µµ
∂ψit
∂γ0

¶
⊗
µ
∂ψit−l
∂γ0

¶¶!
vec

¡
H−1i

¢
Proceeding as in Section C, we can obtain that

Sn (θ0) =
1

2n

nX
i=1

E [Uγγ
it ] vec

³
(E [V γ

it ])
−1 ¡P∞

l=−∞E
£
VitV

0
it−l
¤¢
(E [V γ

it ])
−1´

− 1
2n

nX
i=1

P∞
l=−∞E

£
Uγ
it ⊗ V 0it−l + V 0it ⊗ Uγ

it−l
¤
vec

³
(E [V γ

it ])
−1´+ op (1)

=
1

2n

nX
i=1

E [Uγγ
it ] vec

³P∞
l=−∞E

heViteV 0it−li´+ 1

2n

nX
i=1

P∞
l=−∞E

h
Uγ
it
eVit−l + Uγ

it−l eViti+ op (1)
=

1

2n

nX
i=1

E [Uγγ
it ] vec

³P∞
l=−∞E

heViteV 0it−li´+ 1

n

nX
i=1

P∞
l=−∞E

h
Uγ
it
eVit−li+ op (1)
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A Some Auxiliary Lemmas

Throughout this appendix, we will let F ≡ (F1, . . . , Fn) denote the collection of (marginal) distribution
functions of xit and bF ≡ ³ bF1, . . . , bFn´, where bFi denotes the empirical distribution function for the
i-th observation. Define F (²) ≡ F + ²√T

³ bF − F´ for ² ∈ £0, T−1/2¤, and ∆iT ≡ √T ³ bFi − Fi´. We
first provide a different version of Lahiri’s (1992) Lemma 5.1, which is stated for bounded zero mean

random variables.

Lemma 1 (Hahn and Kuersteiner, 2004) Assume that {Wt, t = 1, 2, . . .} is a stationary, mixing
sequence with E [Wt] = 0 and E

h
|Wt|2r+δ

i
<∞ for any positive integer r, some δ > 0 and all t. Let

At = σ (Wt,Wt−1,Wt−2, ...), Bt = σ (Wt,Wt+1,Wt+2, ...), and

α (m) = supt supA∈At,B∈Bt+m |P (A ∩B)− P (A)P (B)|. Then, for any m such that 1 ≤ m < C(r)n,

E
h
(
Pn
i=1Wi)

2r
i
≤ C (r)E

h
|Wi|2r+δ

i h
nrm2r + n2rα (m)

δ
2r+δ

i
where C (r) is a constant that depends on r.

Lemma 2 (Hahn and Kuersteiner, 2004) Suppose that, for each i, {ξit, t = 1, 2, . . .} is a mixing
sequence with E [ξit] = 0 for all i, t. Let Ait = σ

¡
ξit, ξit−1, ξit−2, ...

¢
, Bit = σ

¡
ξit, ξit+1, ξit+2, ...

¢
, and

αi (m) = supt supA∈Ait,B∈Bit+k |P (A ∩B)− P (A)P (B)|. Assume that supi |αi (m)| ≤ Ca
m for some a

such that 0 < a < 1 and some 0 < C <∞. We assume that {ξit, t = 1, 2, 3, ...} are independent across
i. We also assume that n = O (T ). Finally, assume that E

h
|ξit|6+δ

i
<∞ for some δ > 0. We then

have

Pr

∙
max
1≤i≤n

¯̄̄̄
1

T

PT
t=1 ξit

¯̄̄̄
> η

¸
= o

¡
T−1

¢
for every η > 0. Now assume that E

h
|ξit|10q+12+δ

i
< ∞ for some δ > 0 and some integer q ≥ 1.

Then,

Pr

∙
max
1≤i≤n

¯̄̄̄
1√
T

PT
t=1 ξit

¯̄̄̄
> ηT

1
10
−υ
¸
= o

¡
T−q

¢
for every η > 0 and 0 < υ < (100q + 120)−1.

Lemma 3 (Hahn and Kuersteiner, 2004) Let ξ (xit,φ) be a function indexed by the parameter

φ ∈ Φ where Φ is a convex subset of Rp with E [ξ (xit,φ)] = 0 for all i, t and φ ∈ Φ. Assume that
there exists a functionM (xit) such that |ξ (xit,φ1)− ξ (xit,φ2)| ≤M (xit) kφ1 − φ2k for all φ1,φ2 ∈ Φ
and supφ |ξ (xit,φ)| ≤ M(xit). For each i, let xit be a α-mixing process with exponentially decaying

mixing coefficients αi (m) satisfying supi |αi (m)| ≤ Cam for some a such that 0 < a < 1 and some

0 < C < ∞. Let q denote a positive integer such that q ≥ p+4
2 , where p = dimφ. We also assume

that E
h
|M (xit)|10q+12+δ

i
< ∞ for some δ > 0. Finally, assume that n = O (T ). We then have

1



Pr
h
maxi

¯̄̄
1√
T

PT
t=1 ξ (xit,φi)

¯̄̄
> T

1
10
−υ
i
= o

¡
T−1

¢
for 0 < υ < (100q + 120)−1. Here, {φi} is an

arbitrary nonstochastic sequence in Φ.

Lemma 4 (Hahn and Kuersteiner, 2004) Assume that xit satisfies Assumption 3, and let ξ (xit,φ)

be a function indexed by the parameter φ ∈ intΦ, where Φ is a convex subset of Rp. For any sequence
φi ∈ intΦ, assume E [ξ (xit,φi)] = 0. Further assume that supφ kξ (xit,φ)k ≤M (xit) for someM (xit)

such that E
h
M (xit)

4
i
<∞. Let ΣnT =

Pn
i=1Σ

ξξ
iT with Σ

ξξ
iT = Var

³
1√
T

PT
t=1 ξ (xit,φi)

´
. Denote the

smallest eigenvalue of ΣξξiT by λ
ξ
iT , and assume that infi infT λ

ξ
iT > 0. Then,

1√
nT

nX
i=1

TX
t=1

ξ (xit,φi)⇒ N
³
0, fξξ

´
, and sup

i

°°°Σξξ
iT − fξξi

°°°→ 0,

where fξξ ≡ limn−1Pn
i=1 f

ξξ
i and fξξi ≡

P∞
j=−∞E

£
ξ (xit,φi) ξ (xit−j,φi)

0¤.
Lemma 5 Let kit = k (xit; θ, γi (θ)) and bkit = k (xit; θ,bγi (θ)) where xit satisfies Assumption 3, k
satisfies Assumption 4 and bθ, bγi are defined in (1). Assume that E [kit] = 0 for i, t. Let fkki ≡P∞
l=−∞E

£
kitk

0
it−l
¤
and fkk ≡ limn→∞ n−1

Pn
i=1 f

kk
i . Then,

sup
θ

¯̄̄̄
¯̄ 1n

nX
i=1

⎛⎝ 1
T

mX
l=−m

wT,l

min(T,T+l)X
t=max(1,l)

bkitbk0it−l
⎞⎠− fkk

¯̄̄̄
¯̄ = op(1),

where m,T →∞ such that m = o
¡
T 2/5

¢
.

Proof. The proof is almost identical to a similar result found in Hahn and Kuersteiner (2004).

Let r1 = max(1, l) and r2 = min(T, T + l) and define Ki,m = 1
T

Pm
l=−mwT,l

Pr2
t=r1

kitk
0
it−l.

We first show that 1
n

Pn
i=1Ki,m − fkk = op(1). This follows if 1n

Pn
i=1E [Ki,m]− fkk = o(1) and

Var
¡
1
n

Pn
i=1Ki,m

¢
= o(1). Since fkk − n−1Pn

i=1 f
kk
i = o(1) by definition, we first consider°°°E [Ki,m]− fkki °°°

≤ Pm
l=−m

¯̄̄̄
r2 − r1 + 1

T
wT,l − 1

¯̄̄̄ °°E £kitk0it−l¤°°+P|l|>m
°°E £kitk0it−l¤°°

=
Pm
l=−m

¯̄̄̄
T − |l|
T

− T − |l|
T

(1−wT,l)− 1
¯̄̄̄ °°E £kitk0it−l¤°°+P|l|>m

°°E £kitk0it−l¤°°
=

Pm
l=−m

¯̄̄̄
1− |l|
T
− T − |l|

T

|l|
m+ 1

¯̄̄̄ °°E £kitk0it−l¤°°+P|l|>m
°°E £kitk0it−l¤°°

≤ Pm
l=−m

µ |l|
T
+
T − |l|
T

|l|
m+ 1

¶°°E £kitk0it−l¤°°+P|l|>m
°°E £kitk0it−l¤°°

≤ Pm
l=−m

µ
1

T
+
1

m

¶
|l|°°E £kitk0it−l¤°°+P|l|>m

°°E £kitk0it−l¤°°
≤ Pm

l=−m c1
µ
1

T
+
1

m

¶
|l|
³
a

δ
2+δ

´|l|
+
³
a

δ
2+δ

´m
c2
P
l=1

³
a

δ
2+δ

´l → 0 as m,T →∞
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where the last inequality follows from Condition 3 and the fact that

|E [kit,j1kit−l,j2]| ≤ 8
³
E
h
|kit,j1|2+δ

i´ 1
2+δ
³
E
h
|kit−l,j2 |2+δ

i´ 1
2+δ
³
a

δ
2+δ

´|l|
for any two elements kit,j1and kit−l,j2 of kit and kit−l for some δ > 0, which can be proved by Corollary

A.2 of Hall and Heyde (1980). Since the bound on
°°E [Ki,m]− fkki °° is uniform it therefore follows

that 1n
Pn
i=1E [Ki,m]− fkk = o (1).

Next we show that°°°°Varµ1nPn
i=1Ki,m

¶°°°° ≤ 1

n2
Pn
i=1 kVar (Ki,m)k = o (1) .

To show this we may assume without loss of generality that kit is scalar. The variance can then be

evaluated as

Var (Ki,m)

=
1

T 2
Pm
l1,l2=−mwT,l1wT,l2

Pr2
t1,t2=r1

(E [kit1kit−l1kit2kit2−l2 ]−E [kit1kit−l1 ]E [kit2kit2−l2 ])

=
1

T 2
Pm
l1,l2=−mwT,l1wT,l2

Pr2
t1,t2=r1

(E [kit1kit2]E [kit−l1kit2−l2 ] +E [kit1kit2−l2 ]E [kit2kit−l1 ])

+
1

T 2
Pm
l1,l2=−mwT,l1wT,l2

Pr2
t1,t2=r1

Cum(kit1kit−l1kit2kit2−l2)

= O(1)

such that Var (Ki,m) is uniformly bounded in i. It now follows that 1
n

Pn
i=1Ki,m − fkk = op(1) by

Markov’s inequality.

Next we turn to showing that

1

n

Pn
i=1

1

T

Pm
l=−mwT,l

Pr2
t=r1

³bkitbk0it−l − kitk0it−l´ = op(1).
We use the decomposition

1

T

Pm
l=−mwT,l

Pr2
t=r1

³bkitbk0it−l − kitk0it−l´
=

1

T

Pm
l=−mwT,l

Pr2
t=r1

³bkit − kit´³bkit−l − kit−l´0
+
1

T

Pm
l=−mwT,l

Pr2
t=r1

kit

³bkit−l − kit−l´0 + 1

T

Pm
l=−mwT,l

Pr2
t=r1

³bkit − kit´k0it−l
We first consider the term 1

T

Pm
l=−mwT,l

Pr2
t=r1

³bkit − kit´k0is. Use a first order Taylor approximation
to

bkit − kit = kθit ³bθ − θ
´
+ kγit (bγi − γi0)

where kθit = ∂k
³
xit; θ̃, γ̃i

´
/∂θ0 and kγit = ∂k

³
xit; θ̃

0
, γ̃0i
´
/∂γ with θ̃, γ̃i, θ̃

0
, γ̃0i such that

°°°θ̃ − θ0

°°° ≤°°°bθ − θ0

°°° , °°°θ̃0 − θ0

°°° ≤ °°°bθ − θ0

°°° , etc. by the multivariate version of the mean value theorem. Note
3



that each row of ∂k
³
xit; θ̃, γ̃i

´
/∂θ0 needs to be evaluated at a different θ̃ but in slight abuse of notation

we do not make this explicit. Then

1

T

Pm
l=−mwT,l

Pr2
t=r1

vec
h³bkit − kit´k0it−1i (34)

=
1

T

Pm
l=−mwT,l

Pr2
t=r1

³
kit−l ⊗ kθit

´³bθ − θ
´

+
(bγi − γi0)

T

Pm
l=−mwT,l

Pr2
t=r1

vec
£
kγitk

0
it−l
¤

and consider 1
T

Pm
l=−mwT,l

Pr2
t=r1

¡
kit−l ⊗ kθit

¢
. Without loss of generality assume that

¡
kit−l ⊗ kθit

¢
is

a scalar. Then by the Cauchy-Schwartz inequality¯̄̄̄
1

T

Pr2
t=r1

kit−lkθit

¯̄̄̄
≤

µ
1

T

PT
t=1 k

2
it−l

¶1/2Ã 1
T

PT
t=1 sup

θ,γ

¡
∂k (xit; θ, γ) /∂θ

0¢2!1/2

≤
µ
1

T

PT
t=1M(xit−l)

2

¶1/2µ 1
T

PT
t=1M(xit)

2

¶1/2
such that E

£¯̄
1
T

Pr2
t=r1

kit−lkθit
¯̄¤ ≤ ³ 1T PT

t=1E
h
M (xit−l)2

i´1/2 ³
1
T

PT
t=1E

h
M (xit)

2
i´1/2

= O(1) uni-

formly in i. It thus follows from the Markov inequality that

1

n

Pn
i=1

1

T

Pm
l=−mwT,l

Pr2
t=r1

³
kit−l ⊗ kθit

´³bθ − θ
´
= Op(m/T ).

We now turn to the second term in (34). Noting that

T 2/5max
i
|bγi − γi0| = op (1)

by Lemma (7), we obtain¯̄̄̄
1

n

Pn
i=1

(bγi − γi0)

T

Pm
l=−mwT,l

Pr2
t=r1

vec
£
kγitk

0
it−l
¤¯̄̄̄

≤ 1

T 7/5
T 2/5max

i
|bγi − γi0| ·

1

n

Pn
i=1

Pm
l=−mwT,l

Pr2
t=r1

°°vec £kγitk0it−l¤°°
≤ op

³
T−7/5

´
· 1
n

Pn
i=1

Pm
l=−mwT,l

Pr2
t=r1

vec
£
MitM

0
it−l
¤

= op

³
T−7/5

´Pm
l=−m

µ
1− |l|

m+ 1

¶
(T − |l|)

= op

³
T−7/5

´
O (Tm)

= op

³ m

T 2/5

´
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We now turn to

1

T

Pm
l=−mwT,l

Pr2
t=r1

vec
³bkit − kit´³bkit−l − kit−l´0

=
1

T

Pm
l=−mwT,l

Pr2
t=r1

³
kθit−l ⊗ kθit

´
vec

³bθ − θ
´³bθ − θ

´0
+
1

T

Pm
l=−mwT,l

Pr2
t=r1

³
kθit−l ⊗ kγit

´
(bγi − γi0) vec

³bθ − θ
´0

+
1

T

Pm
l=−mwT,l

Pr2
t=r1

³
kγit−l ⊗ kθit

´³bθ − θ
´
(bγi − γi0)

+
1

T

Pm
l=−mwT,l

Pr2
t=r1

(bγi − γi0)
2 vec

³
kγitk

γ0
it−l
´

All the terms on the RHS are op
¡
m/T 2/5

¢
by similar arguments.

Lemma 6 Under Assumptions 1, 2, 3, 4, 5, 6, and 7, we have

(i) n−1
Pn
i=1 Ii − I = op(1);

(ii) maxi
°°° 1T PT

t=1 V
γi
it (θ0,bγi (θ0))−E £V γi

i

¤°°° = op (1);
(iii) maxi

°°° 1T PT
t=1 V

θ
it (θ0,bγi (θ0))−E £V θ

i

¤°°° = op (1);
(iv) maxi

°°° 1T PT
t=1U

γiγi
it (θ0,bγi (θ0))−E £Uγiγi

i

¤°°° = op (1);
(v) maxi

°°° 1T PT
t=1 V

γiγi
it (θ0, bγi (θ0))−E £V γiγi

i

¤°°° = op (1).
Proof. We only prove the first result. The rest can be proved using the same argument as in

Hahn and Kuersteiner (2004). Note that

max
i

°°Ii − Ii°° ≤ sup
i
E [kM(xit)k]

µ°°θ − θ
°°+max

i
|bγi − γi0|

¶
+ op (1) .

Since

|bγi − γi0| ≤
1√
T
|bγ²i (0)|+ 1

2T
|bγ²²i (²̃)|

withmaxi T−
1
10 |bγ²i (0)| = op(1) andmaxi T− 2

10 |bγ²²i (²̃)| = op(1) by Lemma 14, it follows thatmaxi °°Ii − Ii°° =
op(1) such that

n−1
nX
i=1

Ii − I = op(1).

Lemma 7 (Hahn and Kuersteiner, 2004) Let Assumptions 1, 2, 3, 4 and 5 be satisfied. Then

Pr
h
maxi

¯̄̄√
T (bγi − γi0)

¯̄̄
> T 1/10−υ

i
= o

¡
T−1

¢
for 0 < υ < (100q + 120)−1.

Lemma 8 Let Assumptions 1, 2, 3, 4 and 5 be satisfied. Then Pr
h
maxi

¯̄̄√
T (bγi (θ0)− γi0)

¯̄̄
> T 1/10−υ

i
=

o
¡
T−1

¢
for 0 < υ < (100q + 120)−1.
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Proof. It can be proved in the same way as in Hahn and Kuersteiner (2004), and is omitted.

Lemma 9 Let kit = k (xit; θ0, γi0) and bkit = k (xit; θ0,bγi (θ0)) where xit satisfies Assumption 3, kit
satisfies Assumption 4 and bθ, bγi are defined in (1). Assume that E [kit] = 0 for i, t. Let fkki =P∞
l=−∞E

£
kitk

0
it−l
¤
. Then, supi

°°°Pm
l=−mwT,lEbθ,bγi

hbkitbk0it−li− fkk°°° = op(1), where m,T → ∞ such

that m = o
¡
T 2/5

¢
.

Proof. For notational simplicity, we may assume without loss of generality that kit is scalar. Let

Ki,m =
Pm
l=−mwT,lE [kitkit−l]. We first consider°°°Ki,m − fkki °°°

≤ Pm
l=−m

¯̄̄̄
r2 − r1 + 1

T
wT,l − 1

¯̄̄̄
kE [kitkit−l]k+

P
|l|>m kE [kitkit−l]k

≤ Pm
l=−m

µ
1

T
+
1

m

¶
|l| kE [kitkit−l]k+

P
|l|>m kE [kitkit−l]k

≤ Pm
l=−m c1

µ
1

T
+
1

m

¶
|l|
³
a

δ
2+δ

´|l|
+
³
a

δ
2+δ

´m
c2
P
l=1

³
a

δ
2+δ

´l → 0 as m,T →∞

where the last inequality follows from Assumption 3 and the fact that, for any two elements kit,j1and

kit−l,j2 of kit and kit−l, it follows from Corollary A.2 of Hall and Heyde (1980) that

|E [kit,j1kit−l,j2]| ≤ 8
³
E
h
|kit,j1|2+δ

i´ 1
2+δ
³
E
h
|kit−l,j2 |2+δ

i´ 1
2+δ
³
a

δ
2+δ

´|l|
for some δ > 0. It follows that

sup
i

°°°Ki,m − fkki °°° = o (1) .
Now, let

bKi,m = mX
l=−m

wT,lEbθ,bγi
hbkitbkit−li = mX

l=−m
wT,l

Z bkitbkit−lbpi,t,ld (xit, xit−l) .
where

bkit ≡ kit (xit; θ0,bγi (θ0))bpi,t,l ≡ pi,t,l

³
xit, xit−l;bθ, bγi´

Here, pi,t,l (xit, xit−l; θ, γi) denotes the joint density of (xit, xit−l). Consider bKi,m −Ki,m
bKi,m −Ki,m = mX

l=−m
wT,l

Z ³bkitbkit−lbpit − kitkit−lpit´ d (xit, xit−l)

6



We use the mean value theorem and write

bkitbkit−lbpit − kitkit−lpit = ekγitekit−lepit (bγi (θ0)− γi0) +
ekitekγit−lepit (bγi (θ0)− γi0)

+ekitekit−lepθit ³bθ − θ
´
+ ekitekit−lepγit (bγi − γi0)

where ekθit = ∂k
³
xit; θ̃, γ̃i

´
/∂θ, etc. Note that we may write epθit = euθitepit and efγit = evθitepit. By Assump-

tions 4 and 8, we obtain°°° bKi,m −Ki,m°°° ≤ mMµ
sup
i
kbγi (θ0)− γi0k+

°°°bθ − θ
°°°+ sup

i
kbγi − γi0k

¶
for some finite constantM, or

max
i

°°° bKi,m −Ki,m°°° = Op ³ m

T 2/5

´
by Lemmas 7 and 8.

Lemma 10 Let kit = k (xit; θ0, γi0) and bkit = k (xit; θ0, bγi (θ0)) where xit satisfies Assumption 3,
kit satisfies Assumption 4 and θ∗, γ∗i are such that kθ∗ − θk = Op

¡
T−2/5

¢
and supi kγ∗i − γi0k =

Op
¡
T−2/5

¢
. Then, supi

°°°Pm
l=−mwT,lEθ∗,γ∗i

hbkitbk0it−li− fkk°°° = op(1), where m,T → ∞ such that

m = o
¡
T 2/5

¢
.

Proof. Similar to the proof of Lemma 9, and omitted.

Lemma 11 (Hahn and Kuersteiner, 2004) Pr
∙
max1≤i≤nmax0≤²≤ 1√

T

|bγi (²)− γi0| ≥ η

¸
= o

¡
T−1

¢
for every η > 0.

Lemma 12 Suppose that Ki (·; θ0, γi (θ0, ²)) is equal to
∂m1+m2ψ (xit; θ0, γi (θ0, ²))

∂γmi

for some m ≤ 1, . . . , 5. Then, for any η > 0, we have

Pr

"
max

0≤²≤ 1√
T

¯̄̄̄
¯ 1n

nX
i=1

Z
Ki (·; θ0, γi (θ0, ²)) dFi (²)−

1

n

nX
i=1

E [Ki (xit; θ0, γi0)]

¯̄̄̄
¯ > η

#
= o

¡
T−1

¢
and

Pr

"
max
i

max
0≤²≤ 1√

T

¯̄̄̄Z
Ki (·; θ0, γi (θ0, ²)) dFi (²)−E [Ki (xit; θ0, γi0)]

¯̄̄̄
> η

#
= o

¡
T−1

¢
.

Also,

Pr

"
max
i

max
0≤²≤ 1√

T

¯̄̄̄Z
Ki (·; θ0, γi (θ0, ²)) d∆iT

¯̄̄̄
> CT

1
10
−υ
#
= o

¡
T−1

¢
for some constant C > 0 and 0 < υ < (100q + 120)−1.
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Proof. Note that we may write°°°°Z Ki (·; θ0, γi (θ0, Fi (²)))dFi (²)−
Z
Ki (·; θ0, γi0) dFi

°°°°
≤

°°°°Z Ki (·; θ0, γi (θ0, Fi (²)))dFi (²)−
Z
Ki (·; θ0, γi0) dFi (²)

°°°°
+

°°°°Z Ki (·; θ0, γi0)dFi (²)−
Z
Ki (·; θ0, γi0) dFi

°°°°
≤

Z
M(xit) (|γi (θ0, Fi (²))− γi0|)d |Fi (²)|

+²
√
T

°°°°Z Ki (·; θ0, γi0) d
³ bFi − Fi´°°°° .

Therefore, we have°°°°°1n
nX
i=1

Z
Ki (·; θ0, γi (θ0, Fi (²)))dFi (²)−

Z
Ki (·; θ0, γi0) dFi

°°°°°
≤

Ã
1

n

nX
i=1

(γi (θ0, Fi (²))− γi0)
2

!1/2⎛⎝1
n

nX
i=1

Ã
E [M (xit)] +

1

T

TX
t=1

M (xit)

!2⎞⎠1/2

+

°°°°°1n
nX
i=1

Ã
1

T

TX
t=1

Ki (xit; θ0, γi0)−E [Ki (xit; θ0, γi0)]
!°°°°° ,

the RHS of which can be bounded by using Lemmas 2 and 11 in absolute value by some η > 0 with

probability 1− o ¡T−1¢.
Because ¯̄̄̄Z

Ki (·; θ0, γi (θ0, Fi (²)))dFi (²)−E [Ki (xit; θ0, γi0)]
¯̄̄̄

≤ |γi (θ0, Fi (²))− γi| ·
Ã
E [M (xit)] +

1

T

TX
t=1

M (xit)

!

+

¯̄̄̄
¯ 1T

TX
t=1

M (xit)−E [M (xit)]

¯̄̄̄
¯ ,

we can bound

max
i

max
0≤²≤ 1√

T

¯̄̄̄Z
Ki (·; θ0, γi (θ0, Fi (²))) dFi (²)−E [Ki (xit; θ0, γi0)]

¯̄̄̄
in absolute value by some η > 0 with probability 1− o ¡T−1¢.

Using Lemmas 3, we can also show that

max
i

¯̄̄̄Z
Ki (·; θ0, γi (θ0, Fi (²))) d∆iT

¯̄̄̄
can be bounded by in absolute value by CT

1
10
−υ for some constant C > 0 and υ such that 0 ≤ υ < 1

160

with probability 1− o ¡T−1¢.
8



B Consistency

Let

bG(i) (θ, γ) ≡ 1

T

TX
t=1

ψ (xit; θ, γ) , G(i) (θ, γ) ≡ E [ψ (xit; θ, γ)]

where bγi (θ) ≡ argmaxaPT
t=1 ψ (xit; θ, a).

Lemma 13 (Hahn and Kuersteiner, 2004) For all η > 0, it follows that

Pr

"
max
1≤i≤n

sup
(θ,γ)

¯̄̄ bG(i) (θ, γ)−G(i) (θ, γ)¯̄̄ ≥ η

#
= o

¡
T−1

¢
Recall now that eθ is a solution to (19).

Theorem 11 Pr
h¯̄̄eθ − θ0

¯̄̄
≥ η

i
= o

¡
T−1

¢
for every η > 0.

Proof. Let η be given, and let ε ≡ infi
h
G(i) (θ0, γi0)− sup{(θ,γ):|(θ,γ)−(θ0,γi0)|>η}G(i) (θ, γ)

i
> 0.

Because of Condition 1, we have¯̄̄̄
1

T
Bn (θ)

¯̄̄̄
≤ 1
6
ε

with probability equal to 1− o ¡ 1T ¢. Also, because of Lemma 13, we have
max
1≤i≤n

sup
(θ,γ)

¯̄̄ bG(i) (θ, γ)−G(i) (θ, γ)¯̄̄ ≤ 16ε
with probability equal to 1− o ¡ 1T ¢. It follows that

max
|θ−θ0|>η,γ1,...,γn

n−1
nX
i=1

bG(i) (θ, γi)− 1

T
Bn (θ)

≤ max
|(θ,γi)−(θ0,γi0)|>η

n−1
nX
i=1

bG(i) (θ, γi)− 1

T
Bn (θ)

≤ max
|(θ,γi)−(θ0,γi0)|>η

n−1
nX
i=1

bG(i) (θ, γi) + 16ε
≤ max

|(θ,γi)−(θ0,γi0)|>η
n−1

nX
i=1

G(i) (θ, γi) +
1

3
ε

≤ n−1
nX
i=1

G(i) (θ0, γi0)−
2

3
ε

≤ n−1
nX
i=1

bG(i) (θ0, γi0)− 1

T
Bn (θ0)− 1

3
ε

9



Because

max
θ,γ1,...,γn

n−1
nX
i=1

bG(i) (θ, γi)− 1

T
Bn (θ) ≥ n−1

nX
i=1

bG(i) (θ0, γi0)− 1

T
Bn (θ0)

by definition, we can conclude that Pr
h¯̄̄eθ − θ0

¯̄̄
≥ η

i
= o

¡
T−1

¢
.

Theorem 12 (Hahn and Kuersteiner, 2004) Pr [max1≤i≤n |bγi − γi0| ≥ η] = o
¡
T−1

¢
Theorem 13 Let θ be such that Pr

£¯̄
θ − θ0

¯̄ ≥ η
¤
= o

¡
T−1

¢
for every η > 0. Then,

Pr

∙
max
1≤i≤n

¯̄bγi ¡θ¢− γi0
¯̄ ≥ η

¸
= o

¡
T−1

¢
for every η > 0.

Proof. We first prove that

T Pr

∙
max
1≤i≤n

sup
γ

¯̄̄ bG(i) ¡θ, γ¢−G(i) (θ0, γ)¯̄̄ ≥ η

¸
= o (1) (35)

for every η > 0. Note that

max
1≤i≤n

sup
γ

¯̄̄ bG(i) ¡θ, γ¢−G(i) (θ0, γ)¯̄̄
≤ max

1≤i≤n
sup
γ

¯̄̄ bG(i) ¡θ, γ¢−G(i) ¡θ, γ¢¯̄̄+ max
1≤i≤n

sup
γ

¯̄
G(i)

¡
θ, γ
¢−G(i) (θ0, γ)¯̄

≤ max
1≤i≤n

sup
(θ,γ)

¯̄̄ bG(i) (θ, γ)−G(i) (θ, γ)¯̄̄+ max
1≤i≤n

E [M (xit)] ·
¯̄
θ − θ0

¯̄
.

Therefore,

T Pr

∙
max
1≤i≤n

sup
γ

¯̄̄ bG(i) ¡θ, γ¢−G(i) (θ0, γ)¯̄̄ ≥ η

¸
≤ T Pr

"
max
1≤i≤n

sup
(θ,γ)

¯̄̄ bG(i) (θ, γ)−G(i) (θ, γ)¯̄̄ ≥ η

2

#

+T Pr

∙¯̄
θ − θ0

¯̄ ≥ η

2 (1 +max1≤i≤nE [M (xit)])

¸
= o (1)

by Lemma 13 and Theorem 11.

We now get back to the proof of Theorem 13. It suffices to prove that

T Pr

∙
max
1≤i≤n

¯̄bγi ¡θ¢− γi0
¯̄ ≥ η

¸
= o (1)

for every η > 0. Let η be given, and let ε ≡ infi
h
G(i) (θ0, γi0)− sup{γi:|γi−γi0|>η}G(i) (θ0, γi)

i
> 0.

Condition on the event

max
1≤i≤n

sup
γ

¯̄̄ bG(i) ¡θ, γ¢−G(i) (θ0, γ)¯̄̄ ≤ 13ε,
10



which has a probability equal to 1− o ¡ 1T ¢ by (35). We then have
max

|γi−γi0|>η
bG(i) ¡θ, γi¢ < max

|γi−γi0|>η
G(i) (θ0, γi) +

1

3
ε < G(i) (θ0, γi0)−

2

3
ε < bG(i) ¡θ, γi0¢− 13ε

This is inconsistent with bG(i) ¡θ,bγi ¡θ¢¢ ≥ bG(i) ¡θ, γi0¢, and therefore, ¯̄bγi ¡θ¢− γi0
¯̄ ≤ η for every i.

Corollary 1 Pr
h
max1≤i≤n

¯̄̄bγi ³eθ´− γi0

¯̄̄
≥ η

i
= o

¡
T−1

¢
.

Proof. It follows from Theorem 13 above.
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C Justification of (26)

We analyze the asymptotic distribution of

1

nT

nX
i=1

TX
t=1

U (xit; θ0,bγi (θ0)) (36)

Let F ≡ (F1, . . . , Fn) denote the collection of (marginal) distribution functions of xit. Let bF ≡³ bF1, . . . , bFn´, where bFi denotes the empirical distribution function for the observation i. Define

F (²) ≡ F + ²√T
³ bF − F´ for ² ∈ £0, T−1/2¤. For each fixed θ and ², let γi (θ, Fi (²)) be the solution

to the estimating equation

0 =

Z
Vi [θ, γi (θ, Fi (²))] dFi (²) ,

and let µ (F (²)) be the solution to the estimating equation

0 =
nX
i=1

Z
(Ui (xit; θ0, γi (θ0, Fi (²)))− µ (F (²))) dFi (²) .

Note that µ (F (0)) = 0, and

µ
³ bF´ ≡ µ

µ
F

µ
1√
T

¶¶
=
1

n

nX
i=1

Ui

µ
xit; θ0, γi

µ
θ0, Fi

µ
1√
T

¶¶¶

=
1

nT

nX
i=1

TX
t=1

U (xit; θ0,bγi (θ0)) .
By a Taylor series expansion, we have

µ
³ bF´− µ (F ) = 1√

T
µ² (0) +

1

2

µ
1√
T

¶2
µ²² (0) +

1

6

µ
1√
T

¶3
µ²²² (e²) , (37)

where µ² (²) ≡ dµ (F (²))/d², µ²² (²) ≡ d2µ (F (²))
±
d²2, ..., and e² is somewhere in between 0 and

T−1/2. It is shown later in Appendix C.2 that the last term is of order op (1). We will therefore work

with the expansion

√
nT
³
µ
³ bF´− µ (F )´ = √nT 1√

T
µ² (0) +

√
nT
1

2

µ
1√
T

¶2
µ²² (0) + op (1) . (38)

The expansion (26) follows from combining (38) with (44) and (47) below.

C.1 Details of Expansion (37)

C.1.1 µ² (0)

In order to obtain (44) and (47), we let

hi (·, ²) ≡ Ui (·; θ0, γi (θ0, Fi (²)))− µ (F (²)) (39)

12



The first order condition may be written as

0 =
1

n

nX
i=1

Z
hi (·, ²)dFi (²) (40)

Differentiating repeatedly with respect to ², we obtain

0 =
1

n

nX
i=1

Z
dhi (·, ²)
d²

dFi (²) +
1

n

nX
i=1

Z
hi (·, ²) d∆iT (41)

0 =
1

n

nX
i=1

Z
d2hi (·, ²)
d²2

dFi (²) + 2
1

n

nX
i=1

Z
dhi (·, ²)
d²

d∆iT (42)

0 =
1

n

nX
i=1

Z
d3hi (·, ²)
d²3

dFi (²) + 3
1

n

nX
i=1

Z
d2hi (·, ²)
d²2

d∆iT (43)

where ∆iT ≡
√
T
³ bFi − Fi´.

Equation (41) can be rewritten as

0 =
1

n

nX
i=1

Z ¡
U

γi
i (·; θ0, γi (θ0, Fi (²)))γ²i (θ0, Fi (²))− µ² (F (²))

¢
dFi (²)

+
1

n

nX
i=1

Z
(Ui (·; θ0, γi (θ0, Fi (²)))− µ (F (²)))d∆iT

Evaluating this expression at ² = 0, and noting that E
£
U

γi
i

¤
= 0, we obtain

µ² (0) =
1

n

nX
i=1

Z
Uid∆iT (44)

C.1.2 γ²i

In the ith observation, γi (θ0, Fi (²)) solves the estimating equationZ
Vi (·; θ0, γi (θ0, Fi (²))) dFi (²) = 0 (45)

Differentiating the LHS with respect to ², we obtain

0 =

µZ
∂Vi (·, θ, ²)

∂γ0i
dFi (²)

¶
∂γi (θ, Fi (²))

∂²
+

Z
Vi (·, θ, ²)d∆iT .

Evaluating the expression at ² = 0, we obtain gives

γ²i ≡
∂γi (θ0, Fi (0))

∂²
= −

µ
E

∙
∂Vi
∂γ0i

¸¶−1Ã 1√
T

TX
t=1

Vit

!
. (46)
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C.1.3 µ²² (0)

Equation (42) can be rewritten as

0 = − 1
n

nX
i=1

Z
µ²² (F (²))dFi (²)

+
1

n

nX
i=1

Z ¡
U

γiγi
i (·; θ0, γi (θ0, Fi (²))) (γ²i (θ0, Fi (²))⊗ γ²i (θ0, Fi (²)))

¢
dFi (²)

+
1

n

nX
i=1

Z ¡
U

γi
i (·; θ0, γi (θ0, Fi (²)))γ²²i (θ0, Fi (²))

¢
dFi (²)

+
2

n

nX
i=1

Z ¡
U

γi
i (·; θ0, γi (θ0, Fi (²)))γ²i (θ0, Fi (²))− µ² (F (²))

¢
d∆iT

where Uγiγi
i ≡ ∂2Ui

±
(∂γi ⊗ ∂γi). Evaluating at ² = 0, and noting that E

£
U

γi
i

¤
= 0, we obtain

µ²² (0) =
1

n

nX
i=1

E
£
U

γiγi
i

¤
(γ²i ⊗ γ²i) +

2

n

nX
i=1

µZ
U

γi
i (·; θ0, γi0) d∆iT

¶
γ²i (θ0, Fi (0))

=
1

n

nX
i=1

E
£
U

γiγi
i

¤Ãµ
E

∙
∂Vi
∂γ0i

¸¶−1Ã 1√
T

TX
t=1

Vit

!
⊗
µ
E

∙
∂Vi
∂γ0i

¸¶−1Ã 1√
T

TX
t=1

Vit

!!

− 2
n

nX
i=1

Ã
1√
T

TX
t=1

U
γi
it

!µ
E

∙
∂Vi
∂γ0i

¸¶−1Ã 1√
T

TX
t=1

Vit

!
or

µ²² (0) =
1

n

nX
i=1

E
£
U

γiγi
i

¤ "µ
E

∙
∂Vi
∂γ0i

¸¶−1
⊗
µ
E

∙
∂Vi
∂γ0i

¸¶−1#"Ã 1√
T

TX
t=1

Vit

!
⊗
Ã
1√
T

TX
t=1

Vit

!#

−2
n

nX
i=1

Ã
1√
T

TX
t=1

U
γi
it

!µ
E

∙
∂Vi
∂γ0i

¸¶−1Ã 1√
T

TX
t=1

Vit

!
(47)

C.1.4 γ²²i

Second order differentiation of (45) yields

0 =

µZ
∂Vi (·, θ, ²)

∂γi
dFi (²)

¶
∂2γi (θ, Fi (²))

∂²2

+

µZ
∂2Vi (·, θ, ²)
∂γi ⊗ ∂γi

dFi (²)

¶µ
∂γi (θ, Fi (²))

∂²
⊗ ∂γi (θ, Fi (²))

∂²

¶
+2

µZ
∂Vi (·, θ, ²)

∂γi
d∆iT

¶
∂γi (θ, Fi (²))

∂²
.

which characterizes γ²²i .
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C.2 Bounding Remainder Term in (37)

Lemma 14 below allows us to ignore the last term in equation (37).

Lemma 14

Pr

"
max
i

max
0≤²≤ 1√

T

|γ²i (²)| > CT
1
10
−υ
#
= o

¡
T−1

¢
(48)

Pr

"
max

0≤²≤ 1√
T

|µ² (²)| > CT 1
10
−υ
#
= o

¡
T−1

¢
(49)

Pr

"
max
i

max
0≤²≤ 1√

T

|γ²²i (²)| > C
³
T

1
10
−υ
´2#

= o
¡
T−1

¢
(50)

Pr

"
max

0≤²≤ 1√
T

|µ²² (²)| > C
³
T

1
10
−υ
´2#

= o
¡
T−1

¢
(51)

Pr

"
max
i

max
0≤²≤ 1√

T

|γ²²²i (²)| > C
³
T

1
10
−υ
´3#

= o
¡
T−1

¢
(52)

Pr

"
max

0≤²≤ 1√
T

|µ²²² (²)| > C
³
T

1
10
−υ
´3#

= o
¡
T−1

¢
for some constant C > 0 and 0 < υ < (100q + 120)−1.

Proof. Proof is almost identical to the argument in Hahn ad Kuersteiner (2004), and so only the

last equality is explicitly established here. From (43), we have

0 =
1

n

nX
i=1

Z
d3hi (·, ²)
d²3

dFi (²) +
3

n

nX
i=1

Z
d2hi (·, ²)
d²2

d∆iT

where

1

n

nX
i=1

Z
d3hi (·, ²)
d²3

dFi (²)

= −1
n

nX
i=1

Z
µ²²² (F (²)) dFi (²)

+
1

n

nX
i=1

Z
U

γiγiγi
i (·; θ0, γi (θ0, Fi (²))) (γ²i (θ0, Fi (²))⊗ γ²i (θ0, Fi (²))⊗ γ²i (θ0, Fi (²)))dFi (²)

+
1

n

nX
i=1

Z ¡
U

γiγi
i (·; θ0, γi (θ0, Fi (²))) (γ²²i (θ0, Fi (²))⊗ γ²i (θ0, Fi (²)))

¢
dFi (²)

+
1

n

nX
i=1

Z ¡
U

γiγi
i (·; θ0, γi (θ0, Fi (²))) (γ²²i (θ0, Fi (²))⊗ γ²²i (θ0, Fi (²)))

¢
dFi (²)

+
1

n

nX
i=1

Z ¡
U

γi
i (·; θ0, γi (θ0, Fi (²)))γ²²²i (θ0, Fi (²))

¢
dFi (²)
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and

3

n

nX
i=1

Z
d2hi (·, ²)
d²2

d∆iT

= −3
n

nX
i=1

Z
µ²² (F (²)) d∆iT

+
3

n

nX
i=1

Z ¡
U

γiγi
i (·; θ0, γi (θ0, Fi (²))) (γ²i (θ0, Fi (²))⊗ γ²i (θ0, Fi (²)))

¢
d∆iT

+
3

n

nX
i=1

Z ¡
U

γiγi
i (·; θ0, γi (θ0, Fi (²))) (γ²i (θ0, Fi (²))⊗ γ²i (θ0, Fi (²)))

¢
d∆iT

Combining Lemma 12 in Appendix A and (48)-(52), we can bound 1
n

Pn
i=1

R d2hi(·,²)
d²2 d∆iT byC

³
T

1
10
−υ
´3

with probability 1− o ¡T−1¢. Likewise, using Lemmas 12, and (48)-(52) again, we can conclude that
1
n

Pn
i=1

R d3hi(·,²)
d²3

dFi (²) is equal to−µ²²² (F (²)) plus terms that can all be bounded by 1
n

Pn
i=1

R d2hi(·,²)
d²2

d∆iT

by C
³
T

1
10
−υ
´3
with probability 1− o ¡T−1¢.
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D Proof of Theorem 3

Without loss of generality, we may write

2Bn (θ) = −1
n

nX
i=1

ln det

µ
1

T
Hi (θ,bγi (θ))¶+ 1

n

nX
i=1

ln det

µ
1

T
Υi (θ,bγi (θ))¶ (53)

We begin with the first component on the RHS of (53). By Assumption 4, each component of

Hi (θ, bγi (θ)) is bounded above by PT
t=1M (xit) such that supiE

h
|M(xit)|10q+12+δ

i
< ∞ for some

integer q ≥ (dim (θ) + dim(γ)) /2 + 2 and for some δ > 0.

Lemma 15 Suppose that A is an n× n matrix. Then

|det (A)| ≤ n! ·max (|aij|)n

Proof. By definition, we have

det (A) =
X

(−1)φ(j1,...,jn)
nY
i=1

aiji

where the summation is taken over all permutations (j1, . . . , jn) of the set of integers (1, . . . , n) and

φ (j1, . . . , jn) is the number of transpositions required change (1, . . . , n) into (j1, . . . , jn). Because the

number of all permutations is equal to n!, we obtain the desired conclusion.

Using Lemma 15, we then obtain that

ln det

µ
1

T
Hi (θ,bγi (θ))¶ ≤ ln r! + r ln

Ã
1

T

TX
t=1

M (xit)

!
where r = dim(γ). It follows that¯̄̄̄

¯−1n
nX
i=1

ln det

µ
1

T
Hi (θ,bγi (θ))¶

¯̄̄̄
¯ ≤ ln r! + r 1n

nX
i=1

¯̄̄̄
¯ln
Ã
1

T

TX
t=1

M (xit)

!¯̄̄̄
¯

By Lemma 2, we have

Pr

∙
max
1≤i≤n

¯̄̄̄
1

T

PT
t=1 (M (xit)−E [M (xit)])

¯̄̄̄
> η

¸
= o

¡
T−1

¢
from which we obtain12

Pr

∙
max
1≤i≤n

¯̄̄̄
ln

µ
1

T

PT
t=1M (xit)

¶
− ln (E [M (xit)])

¯̄̄̄
> η

¸
= o

¡
T−1

¢
It follows that

Pr

"¯̄̄̄
¯−1n

nX
i=1

ln det

µ
1

T
Hi (θ, bγi (θ))¶

¯̄̄̄
¯ > ln r! + r 1n

nX
i=1

ln (E [M (xit)]) + η

#
= o

¡
T−1

¢
12 In addition to the Condition 4, we need to impose that the minimum of E [M (xit)] is bounded away from zero to

make this inequality valid.
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from which we conclude that

Pr

"
1

T

¯̄̄̄
¯−1n

nX
i=1

ln det

µ
1

T
Hi (θ,bγi (θ))¶

¯̄̄̄
¯ > η

#
= o

¡
T−1

¢
for all η > 0.

We now take care of the second component on the RHS of (53). By Assumption 4, each component

of Υi (θ, bγi (θ)) is bounded above byPm
l=−mwT,l

³Pmin(T,T+l)
t=max(1,l+1)M (xit)M (xit−l)

´
. Using Lemma 15,

we can then conclude that

ln det

µ
1

T
Υi (θ,bγi (θ))¶ ≤ ln r! + r ln

Ã
1

T

Pm
l=−m

min(T,T+l)P
t=max(1,l+1)

M (xit)M (xit−l)

!

Using Lemma 2 again, we have

Pr

"
max
1≤i≤n

¯̄̄̄
¯ 1T min(T,T+l)P

t=max(1,l+1)

(M (xit)M (xit−l)−E [M (xit)M (xit−l)])

¯̄̄̄
¯ > η

#
= o

¡
T−1

¢
and we obtain

Pr

"
max
1≤i≤n

¯̄̄̄
¯ln
Ã
1

T

Pm
l=−m

min(T,T+l)P
t=max(1,l+1)

M (xit)M (xit−l)

!
− ln ¡Pm

l=−mE [M (xit)M (xit−l)]
¢¯̄̄̄¯ > mη

#
= o

¡
T−1

¢
It follows that

Pr

"
ln det

µ
1

T
Υi (θ, bγi (θ))¶ > ln r! + r 1n

nX
i=1

Pm
l=−mE [M (xit)M (xit−l)] +mη

#
= o

¡
T−1

¢

Because E [M (xit)M (xit−l)] ≤
r
E
h
M (xit)

2
i
E
h
M (xit−l)2

i
= E

h
M (xit)

2
i
, we have

Pr

"
ln det

µ
1

T
Υi (θ, bγi (θ))¶ > ln r! + 2m · r 1n

nX
i=1

E
h
M (xit)

2
i
+mη

#
= o

¡
T−1

¢
or

Pr

∙
1

T
ln det

µ
1

T
Υi (θ,bγi (θ))¶ > ln r!

T
+
2m

T
r sup

i
E
h
M (xit)

2
i
+
m

T
η

¸
= o

¡
T−1

¢
Therefore, we obtain

Pr

∙
1

T
ln det

µ
1

T
Υi (θ,bγi (θ))¶ > η

¸
= o

¡
T−1

¢
for all η > 0.
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E Proof of Theorem 4

We can verify by inspection that ∂Sn(θ)
∂θ can be expressed as a sum of terms, all of which are cross

section averages of some smooth functions of the form

1

T

TX
t=1

Dvψ (xit, θ,bγi (θ)) , 1

T

Pm
l=−mwT,l

min(T,T+l)P
t=max(1,l+1)

∂ψ (xit, θ,bγi (θ))
∂γ0

⊗Dvψ (xit−l, θ,bγi (θ)) ,Ã
1

T

TX
t=1

∂2ψ (xit, θ,bγi (θ))
∂γ∂γ0

!−1
,

Ã
1

T

Pm
l=−mwT,l

min(T,T+l)P
t=max(1,l+1)

∂ψ (xit, θ,bγi (θ))
∂γ

∂ψ (xit−l, θ, bγi (θ))
∂γ0

!−1
with |v| ≤ 4. Here, φ ≡ (θ, γ), and Dvψ (xit,φ) ≡ ∂|ν|ψ (xit,φ)

± ¡
∂φv11 ...∂φ

νk
k

¢
, where ν = (ν1, ..., νk)

be a vector of non-negative integers vi, and |v| =
Pk
j=1 vj . By Assumptions 4, 6, and Lemma 5, we

can see that all these terms are Op (1) uniformly over i and θ.
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F Proof of Theorem 6

Because of the result in the previous section, we only need to consider Υi (θ,bγi (θ)). By Assumption 4,
each component of Υi (θ, bγi (θ)) is bounded above byPm

l=−mEbθ,bγi [M (xit)M (xit−l)]. By Assumption

8, we have

sup
Pm
l=−mEbθ,bγi [M (xit)M (xit−l)] ≤ 2mK

where K = sup(θ,γ)∈Φ supl Eθ,γ [M (xit)M (xit−l)], and

ln det (Υi (θ,bγi (θ))) ≤ ln r! + 2rK lnm
It follows that

Pr [ln det (Υi (θ, bγi (θ))) > ln r! + 2rK lnm+ η] = o
¡
T−1

¢
Therefore, we obtain

Pr

∙
1

T
ln det

µ
1

T
Υi (θ,bγi (θ))¶ > η

¸
= o

¡
T−1

¢
for all η > 0 as long as lnmT = o (1).

We note that all the above results hold even when the preliminary estimates
³bθ,bγi´ are replaced

by some (θ∗, γ∗i ).
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G Proof of Theorem 8

By differentiating Bn, we obtain that

Sn (θ0) = [2] + [3] + [4]
0 + [5]0

where

[2] = −1
2

1

n

nX
i=1

Ã
1

T

TX
t=1

∂3ψit
∂θ (∂γ0 ⊗ ∂γ0)

!
vec

⎛⎝Ã 1
T

TX
t=1

∂2ψit
∂γ∂γ0

!−1⎞⎠

[3] = −1
2

1

n

nX
i=1

∂bγ0i (θ)
∂θ

Ã
1

T

TX
t=1

∂3ψit
∂γ (∂γ0 ⊗ ∂γ0)

!
vec

⎛⎝Ã 1
T

TX
t=1

∂2ψit
∂γ∂γ0

!−1⎞⎠

[4]0 =
1

2

1

n

nX
i=1

∙Pm
l=−mwT,lEbθ,bγi

∙
∂

∂θ

µµ
∂ψit
∂γ0

¶
⊗
µ
∂ψit−l
∂γ0

¶¶¸¸

· vec
ÃµPm

l=−mwT,lEbθ,bγi
∙
∂ψit
∂γ

∂ψit−l
∂γ0

¸¶−1!
and

[5]0 =
1

2

1

n

nX
i=1

∂bγ0i (θ)
∂θ

∙Pm
l=−mwT,lEbθ,bγi

∙
∂

∂γ

µµ
∂ψit
∂γ0

¶
⊗
µ
∂ψit
∂γ0

¶¶¸¸

· vec
ÃµPm

l=−mwT,lEbθ,bγi
∙
∂ψit
∂γ

∂ψit
∂γ0

¸¶−1!
We can see that [2] and [3] are identical to the ones in the previous section. Because we have already

established

[2] + [3] = −1
2

1

n

nX
i=1

E [Uγγ
it ] vec

³
(E [V γ

it ])
−1´+ op (1)

we will focus on [4]0 and [5]0 here.

Because

∂

∂θ

µµ
∂ψit (θ, γ)

∂γ0

¶
⊗
µ
∂ψit−l (θ, γ)

∂γ0

¶¶
= (Uγ

it + ρiV
γ
it )⊗ V 0it−l + V 0it ⊗

¡
Uγ
it−l + ρiV

γ
it−l
¢

∂

∂γ

µµ
∂ψit (θ, γ)

∂γ0

¶
⊗
µ
∂ψit (θ, γ)

∂γ0

¶¶
= V γ

it ⊗ V 0it−l + V 0it ⊗ V γ
it−l

and

∂bγ0i (θ)
∂θ

= −ρi + op (1)
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we can write

[4]0 + [5]0 =
1

2

1

n

nX
i=1

"Pm
l=−mwT,lEbθ,bγi

"
Uγ
it (θ0,bγi (θ0))⊗ Vit−l (θ0,bγi (θ0))0

+Vit (θ0,bγi (θ0))0 ⊗ Uγ
it−l (θ0,bγi (θ0))

##

·vec
µ³Pm

l=−mwT,lEbθ,bγi £Vit (θ0,bγi (θ0))Vit−l (θ0,bγi (θ0))0¤´−1
¶
+ op (1)

Using Lemma 9, we obtain

max
i

¯̄̄Pm
l=−mwT,lEbθ,bγi £Vit (θ0,bγi (θ0))Vit−l (θ0, bγi (θ0))0¤−P∞

l=−∞E
£
VitV

0
it−l
¤¯̄̄
= op (1)

Furthermore, if the conditional likelihood is properly defined, then we should have Vit serially uncor-

related, which implies that

max
i

¯̄̄Pm
l=−mwT,lEbθ,bγi £Vit (θ0,bγi (θ0))Vit−l (θ0,bγi (θ0))0¤−E £VitV 0it¤¯̄̄

= max
i

¯̄̄Pm
l=−mwT,lEbθ,bγi £Vit (θ0,bγi (θ0))Vit−l (θ0,bγi (θ0))0¤+E [V γ

it ]
¯̄̄
= op (1)

where the first equality is based on the information equality. Therefore, we obtain

[4]0 + [5]0

= −1
2

1

n

nX
i=1

"Pm
l=−mwT,lEbθ,bγi

Ã
Uγ
it (θ0, bγi (θ0))⊗ Vit−l (θ0,bγi (θ0))0

+Vit (θ0, bγi (θ0))0 ⊗Uγ
it−l (θ0,bγi (θ0))

!#
· vec

³
E [V γ

it ]
−1´

+ op (1)

Using Lemma 9 again, we obtain

[4]0 + [5]0 = −1
2

1

n

nX
i=1

P∞
l=−∞E

£
Uγ
it ⊗ V 0it−l + V 0it ⊗ Uγ

it−l
¤
vec

³
E [V γ

it ]
−1´

+ op (1)

Because we have13¡
Uγ
it ⊗ V 0it−l

¢
vec

³
E [V γ

it ]
−1´

= Uγ
itE [V

γ
it ]
−1
Vit−l = −Uγ

it
eVit−l¡

V 0it ⊗ Uγ
it−l
¢
vec

³
E [V γ

it ]
−1´

= Uγ
it−lE [V

γ
it ]
−1
Vit = −Uγ

it−l eVit
it follows that

[4]0 + [5]0 =
1

2

1

n

nX
i=1

P∞
l=−∞E

h
Uγ
it
eVit−l + Uγ

it−l eViti+ op (1)
=

1

n

nX
i=1

P∞
l=−∞E

h
Uγ
it
eVit−li+ op (1)

We note that, because of Lemma 10, all the above results hold even when the preliminary esti-

mates
³bθ,bγi´ are replaced by some (θ∗, γ∗i ) as long as kθ∗ − θ0k = Op

¡
T−2/5

¢
and supi kγ∗i − γi0k =

Op
¡
T−2/5

¢
.

13See, e.g., Magnus & Neudecker (1988, p. 31, eq. (3)).
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