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Abstract 
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They won’t have an excuse any more. This report explains the mechanics of CDOs: 
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of its simplicity and the insights it provides regarding the pricing of CDOs. Additionally, 
we provide an extensive and updated review of the literature which extends the 
Vasicek model by relaxing its, somehow restrictive, assumptions in order to build more 
realistic and, as a consequence, more complicated CDO pricing models. 
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“there is a minority of investors - perhaps 10 per cent - who do
not fully understand what they are getting into.”

Michael Gibson, head of trading risk analysis at the US Federal Reserve
(Financial Times, 2005a).

“Understanding the credit risk profile of CDO tranches poses
challenges even to the most sophisticated participants.”

Alan Greenspan, chairman of the US Federal Reserve (Financial Times,
2005b).

The “sharp increase in the complexity of credit derivative products being
traded in the past couple of years ... may also mean that investors do
not fully understand what they are purchasing in areas such
as collateralised debt obligations (CDOs) - or pools of debt linked
securities.”

(Financial Times, 2005c).

“Last month, Bank of America and Italian bank Banca Popolare di Intra
(BPI) settled their 40 million euro lawsuit, in which BPI claims it was mis-
sold several CDO investments by Bank of America. ... It would be naive
to think that this is the last court case that will emerge. A number of
investors and regulators have already voiced concern about the
level of complexity in some investment products. With something
as complicated as CDO-squared, it’s not hard to imagine more investors
claiming they were mis-sold investments if the credit cycle takes a turn
for the worse.”

Nick Sawyer, Editor (Risk, 2005).



1 Introduction

Imagine a pool of defaultable instruments (bonds, loans, credit default swaps CDSs,

...) from different firms is put together. The losses on the initial portfolio value

due to the default of the underlying firms depend on the default probability of each

firm and the losses derived from each default (losses given default). Additionally, the

degree of dependence between the firms’ default probability, usually known as default

correlation, plays an important role on the timing of the firms’ defaults (whether they

tend to cluster or they are independent) and, as a consequence, on the distribution

of the portfolio losses.

Next, imagine we, the owners of the portfolio, decide to buy protection against

the possible losses due to the defaults of the underlying firms, but we can not sell the

portfolio. One way to do it is buying Credit Default Swaps (CDSs) of each firm, but

that’s not the way we are interested in here. We can sell the portfolio in tranches, i.e.

we can buy protection for those losses in tranches. A Collateralized Debt Obligation

(CDO) consists on tranching and selling the credit risk of the underlying portfolio.

For example, a tranche with attachment points [KL,KU ] will bear the portfolio losses

in excess of KL percent of the initial value of the portfolio, up to a KL percent. The

tranche absorbing the first losses, called equity tranche, is characterized by KL = 0

and KU > 0. The holders of a tranche characterized by attachment points [KL, KU ]

won’t suffer any loss as long as the total portfolio loss is lower than KL percent of its

initial value. When the total portfolio loss goes aboveKL percent, the tranche holders

are responsible for the losses exceeding KL percent, up to KU percent. Losses above

KU percent of the initial portfolio value do not affect them. The lower attachment

point KL of each tranche corresponds to the upper attachment point KU of the

previous (more junior) tranche.

Obviously, the holders of each tranche (sellers of credit risk protection) have to

be compensated for bearing those losses: they receive a periodic fee, called premium,

until the maturity of the CDO (point in which they also stop being responsible for
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future losses in the portfolio.) The premium of the equity tranche will be the highest

because its holders absorb the first losses of the portfolio. In order for the holders

of more senior tranches to start suffering losses, the holders of more junior tranches

would have already born all losses they were exposed to (KU − KL percent of the

initial portfolio value). As a consequence, the higher the seniority of the tranche the

lower the premiums holders receive.

The whole problem lies in determining the tranches’ premiums. They have to

compensate tranche holders for the expected losses they will suffer and, therefore,

they depend on the distribution of the portfolio losses which, as we argued above,

depends on the underlying firms’ default probabilities, default correlations, and losses

given default.

Our review of CDO pricing models focus on a particular branch of this litera-

ture: the ones based on structural models. The main distinguishing characteristic of

such models with respect to the other credit risk modelling alternative, reduced form

models, is the link they provide between the probability of default and the firms’

fundamental financial variables: assets and liabilities. The way structural models

incorporate the dependence between the firms’ default probabilities (which is a key

ingredient for CDO pricing) is by making such fundamental variables depend on a set

of, generally unobserved, common factors.

In contrast, reduced form models rely on market prices of the firms’ defaultable

instruments to extract both their default probabilities and their credit risk dependen-

cies. These models rely on the market as the only source of information regarding

the firms’ credit structure and do not consider any information coming from their

balance sheets. Although easier to calibrate, reduced form models lack the link be-

tween credit risk and the firms’ financial situation incorporated in their assets and

liabilities. Anyway, reduced form models provide an alternative way of pricing CDOs

which one shouldn’t forget, besides their lower popularity in this area.1 In fact, these
1See, among others, Chava and Jarrow (2004), Driessen (2005), and Elizalde (2005d) for intensity

models incorporating the correlation structure across firms, and Galiani (2003), Duffie and Garleanu
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models provide the dynamics needed to price some of the recent exotic CDO products

which we review in Section 4.5.4.

The paper starts from the theoretical foundations of the Vasicek model. It presents,

in Section 2, a review of credit risk structural models, in order to understand the mo-

tivations behind such models. Section 3 describes in detail the Vasicek asymptotic

single risk factor model, which has become the market standard for CDO pricing, and

which is also referred to as the normal or Gaussian copula model, because that is the

dependence structure it implies for the firms’ default correlation.2

With all those tools in hand, Section 4 dives into CDOs: mechanics, types, pricing,

premium sensitivity to the model parameters, trading issues (implied and base corre-

lations), extensions of the Vasicek model and, finally, a few words on the calibration

of the reviewed models.

The assumptions of the Vasicek asymptotic single risk factor model about the

characteristics of the underlying portfolio (homogeneous infinitely large portfolio, ...)

simplify the analytical derivation of CDO premiums but are not very realistic. The

extensions we present relax these assumptions, making the model more suitable for

CDO pricing. Investment banks and rating agencies devote a large amount of effort

(and money) to fine tune and improve such models in order to benefit from the

increase in pricing accuracy.

The text ends with an Appendix describing the application of the Vasicek factor

model to bank capital regulation in Basel II, the brand new accord for banking su-

pervision and regulation. Although this is not directly related with the main topic of

the text, we include it because (i) it might interest some readers, (ii) it is the other

most popular application of the Vasicek model, and (iii) it is straightforward using

the material presented in Sections 2 and 3.

Throughout the text we provide an extensive list of references which the reader

(2004), and Willemann (2004) for applications of CDO pricing using intensity based methods via
Monte Carlo simulation of default times.

2See Nelsen (1999), Embrechts, McNeil and Straumann (2002), and Cherubini and Luciano (2004)
for an analysis of copula functions.
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further interested in any of the covered topics might find useful.

2 Structural model for credit risk: Merton (1974)

There are two primary types of models that attempt to describe default processes in

the credit risk literature: structural and reduced form models.3

Structural models use the evolution of firms’ structural variables, such as asset

and debt values, to determine the time of default. Merton’s model (1974) was the first

modern model of default and is considered the first structural model. In Merton’s

model a firm defaults if, at the time of servicing the debt, its assets are below its out-

standing debt. A second approach, within the structural framework, was introduced

by Black and Cox (1976). In this approach defaults occur as soon as firm’s asset

value falls below a certain threshold. In contrast to the Merton approach, default can

occur at any time.

Reduced form models do not consider the relationship between default and firm

financial situation in an explicit manner. In contrast to structural models, the time

of default in intensity models is not determined via the value of the firm, but it is

the first jump of an exogenously given jump process. The parameters governing the

default hazard rate are inferred from market data.

Structural default models provide a link between the credit quality of a firm and

the firm’s economic and financial conditions. Thus, defaults are endogenously gener-

ated within the model instead of exogenously given as in the reduced approach.

Merton (1974) makes use of the Black and Scholes (1973) option pricing model

to value corporate liabilities. As we shall see, this is an straightforward application

only if we adapt the firm’s capital structure and the default assumptions to the

requirements of the Black-Scholes model.

Assume that the dynamics of firm n’s asset value An,t follow a continuous-time

diffusion given, under the physical or real probability measure P, by the following
3For a literature review of credit risk models see Elizalde (2005b and c).
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geometric Brownian motion:

dAn,t
An,t

= µndt+ σndWn,t, (1)

where µn is the total expected return, σn is the asset’s (relative) instantaneous volatil-

ity, and Wn,t is a standard Brownian motion under P.

Let us assume that the capital structure of firm n is comprised by equity and by

a zero-coupon bond with maturity T and face value of Dn. The firm’s asset value

An,t is simply the sum of equity and debt values. Under these assumptions, equity

represents a call option on the firm’s assets with maturity T and strike price of Dn.

It is assumed that the firm defaults if, at maturity T the firm’s asset value An,T is not

enough to pay back the face value of the debt Dn to bondholders. As a consequence,

the probability at time t < T of the firm defaulting at T is given by

pn,t,T = P [An,T < Dn | An,t] . (2)

This approach assumes that default can only happen at the maturity of the zero-

coupon bond.

It can be shown using Itô’s lemma that the diffusion process (1) allows us to

express the asset value at time T as a function of the current asset value An,t as

follows

An,T = An,t exp

½µ
µn −

σ2n
2

¶
(T − t) + σn

√
T − tXn,t,T

¾
, (3)

where Xn,t,T is given by

Xn,t,T =
Wn,T −Wn,t√

T − t , (4)

and follows a standard normal distribution with zero mean and variance one.4

At time t, we can express the condition for firm n defaulting at time T in terms

of the random variable Xn,t,T :

An,T < Dn ⇔ Xn,t,T < Kn,t,T , (5)

4By definition of a Brownian motion, the difference Wn,T −Wn,t follows a normal distribution
with zero mean and standard deviation

√
T − t.
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where

Kn,t,T =
lnDn − lnAn,t −

³
µn − σ2n

2

´
(T − t)

σn
√
T − t . (6)

As a consequence we can rewrite (2) as

pn,t,T = Φ (Kn,t,T ) , (7)

where Φ (·) is the distribution function of a standard normal random variable.

Equivalently, if instead of considering the dynamics of the asset value An,t under

the physical probability measure P, one considers its dynamics under the risk neutral

probability measure Q, firm n’s risk neutral default probability is obtained.

In order to simplify notation hereafter we fix the actual time to t = 0, which allows

us to eliminate the first time subindex of pn,t,T , Xn,t,T , and Kn,t,T , which become pn,T ,

Xn,T , and Kn,T .

3 Vasicek asymptotic single factor model

This Section builds on Vasicek (1987, 1991 and 2002).5 We are interested in the

default probabilities at time t > 0 of a group of n = 1, ..., N firms with the asset and

liabilities structure described in the preceding section.

The probability of default of each firm n at time t is denoted pn,t and given by

pn,t = Φ (Kn,t) , (8)

Kn,t =
lnDn − lnAn,0 −

³
µn − σ2n

2

´
t

σn
√
t

. (9)

Imagine we have a portfolio composed of loans to each one of the above firms (one

loan per firm), and we are interested in the distribution function for the portfolio

default rate, i.e. the fraction of defaulted credits in the portfolio at time t. Note that
5See also Finger (1999) and Schönbucher (2000).
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the portfolio default rate is not the variable we will ultimately interested in, which is

the loss in the initial portfolio value or portfolio loss rate.

The aim (and attractiveness) of the Vasicek single factor model we are about to

present is to come up with a simple and closed-form formula for the distribution

function of both the portfolio default and loss rates. Deriving a closed form solution

requires making a set of simplifying assumptions. We will progressively introduce

these assumptions and their implications for the model.

To derive the portfolio default rate, knowing the individual probabilities p1,t, ..., pN,t

of the firms is not enough; we also need to know their correlation structure. Since

the only random variable affecting the status of each firm n at time t (default or not

default) is Xn,t, the correlation structure between the firms’ default probabilities have

to be introduced through the normal random variables X1,t, ...XN,t. We assume that

the correlation coefficient of each pair of random variables Xn,t and Xm,t is ρn,m,t.

Assumption 1. The correlation coefficient ρn,m,t between each pair of ran-

dom variables Xn and Xm is the same for any two firms:

corr (Xn,t,Xm,t) = ρn,m,t = ρt for any n 6= m. (10)

The random part driving all firms’ asset values is characterized by a common

correlation coefficient. We can think that there exists a random factor or source of

uncertainty affecting all firms in exactly the same way. Moreover, we can write the

random variables X1,t, ...,XN,t as

Xn,t =
√
ρtYt +

p
1− ρtεn,t, (11)

for all n = 1, ..., N , where Yt, ε1,t, ..., εN,t are i.i.d. standard normal random variables.

We can interpret (11) as follows: each random variable Xn,t, whose realization deter-

mines whether firm n defaults at t, can be expressed as the sum of two risk factors:

one common or systematic risk factor Yt affecting all firms in the same way, and an

idiosyncratic risk factor εn,t independent across firms.
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Conditional on the realization of the common factor Yt the default probability at

time t of each firm n is denoted by pn (Yt) and given by

pn (Yt) = P [Xn,t < Kn,t | Yt] (12)

= P
h√

ρtYt +
p
1− ρtεn,t < Kn,t | Yt

i
(13)

= P

·
εn,t <

Kn,t −√ρtYt√
1− ρt

| Yt
¸

(14)

= Φ

µ
Kn,t −√ρtYt√

1− ρt

¶
. (15)

Moreover, conditional on the value of the systematic factor Yt, the random variables

X1,t, ...,XN,t (and the default probabilities p1 (Yt) , ..., pN (Yt)) are independent.

Assumption 2. We know the individual default probabilities of each firm

defaulting at time t: p1,t, ...pN,t.

In that case, we can work out, from (8), the value of Kn,t for each firm, Kn,t =

Φ−1 (pn,t), and substitute it into the previous equation for the conditional default

probability

pn (Yt) = Φ

µ
Φ−1 (pn,t)−√ρtYt√

1− ρt

¶
. (16)

Although the underlying theoretical model we are using is a structural one, in

particular the Merton (1978) model, the previous assumption does not specify the way

in which the default probabilities p1,t, ...pN,t are computed. The underlying structural

model presented in the previous section serves as an stylized theoretical foundation

for the Vasicek single risk factor model. However, the default probabilities p1,t, ...pN,t

can be obtained in different ways (see Section 4.7).

Marginal default probabilities p1,t, ...pN,t are taken as given; the Vasicek asymp-

totic single factor model is just a way of introducing dependence between them.

Moreover, because it considers a single common factor and both common and idio-

syncratic factors are normal, the Vasicek asymptotic single factor model is equivalent

to a normal or Gaussian copula.6

6Alternative ways of linking the firms’ default probability exist: using more factors, other dis-
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Assumption 3. The default probability of all firms is the same and it is

denoted by pt:

pn,t = pt for all n = 1, ..., N. (17)

This assumption implies the same conditional default probability p (Yt) for all

firms given the systematic risk factor Yt

p (Yt) = Φ

µ
Φ−1 (pt)−√ρtYt√

1− ρt

¶
. (18)

Consider, for each firm n, the random variable Ln,t which takes value 0 if the firm

has not defaulted before (or at) t and 1 otherwise. Define the random variable Lt as

the sum of the random variables L1,t, ...LN,t. Lt represents the number of defaults in

our portfolio.

If we divide the number of defaults in the portfolio Lt by the total number of

firms N in the portfolio, we obtain the fraction of defaults in the portfolio at time

t, denoted by Ωt. Ωt can be interpreted as the portfolio default rate at time t. The

unconditional cumulative distribution function of the default rate Ωt of a portfolio

characterized by a default probability p and a correlation coefficient ρt is given by

F (ω; pt, ρt) = P [Ωt ≤ ω] . (19)

Assumption 4. The number of credits (one to each firm) in our portfolio

is very large, N →∞.
As Schönbucher (2000) and Vasicek (2002) explain, since defaults are independent

when conditioned to the realization of the common factor Yt, the assumption of

an infinitely large equal-size portfolio of credits implies that, using the law of the

large numbers, the fraction of defaulted credits in the portfolio Ωt converges to the

individual default probability of each individual credit p (Yt) (assumed to be equal

tribution functions different than the normal, other copulas, ... We briefly review them in Section
4.6.2.

9



across credits).7 As a consequence

F (ω; pt, ρt) = P [Ωt ≤ ω] (20)

= P [p (Yt) ≤ ω] (21)

= P

·
Φ

µ
Φ−1 (pt)−√ρtYt√

1− ρt

¶
≤ ω

¸
(22)

= P

·
Yt ≥ Φ−1 (pt)−√1− ρtΦ

−1 (ω)√
ρt

¸
(23)

= 1− Φ

µ
Φ−1 (pt)−√1− ρtΦ

−1 (ω)√
ρt

¶
(24)

= Φ

µ√
1− ρtΦ

−1 (ω)− Φ−1 (pt)√
ρt

¶
. (25)

When ρt = 0 defaults are statistically independent, so Ωt = pt with probability 1,

while when ρt = 1 defaults are perfectly correlated, so Ωt = 0 with probability 1− pt,
and Ωt = 1 with probability pt.

The distribution function F (ω; pt, ρt) is increasing in ω, with F (0; pt, ρt) = Φ(−∞) =
0 and F (1; pt, ρt) = Φ(∞) = 1. Moreover, it can be shown that

E(Ωt) = pt, (26)

and

Var(Ωt) = Φ2(Φ
−1(pt),Φ−1(pt); ρt)− p2t , (27)

where Φ2(·, ·; ρt) is the distribution function of a zero mean bivariate normal random
variable with standard deviation equal to one and correlation coefficient ρt; see Va-

sicek (2002, p.161). Therefore, the expected value of the default rate is precisely the

probability of default pt, while its variance is increasing with the correlation parameter

ρt, with Var(Ωt) = 0 for ρt = 0 and Var(Ωt) = pt(1− pt) for ρt = 1.
Assumption 5. The loss given default on each credit, denoted by λt, is

deterministic and the same for all firms.
7A more detailed proof can be found in Vasicek (1987, 1991) and Finger (1999).

10



λt is the loss on each credit due to default at t, expressed as a percentage of its

size. 1− λt is the so-called recovery rate.

Assumption 6. The size of each credit in the portfolio is similar.

This assumption allows a one-to-one relationship between the default rate and the

loss rate or percentage loss of the total initial value of the portfolio. If a fraction Ωt

of the portfolio has defaulted by t, the percentage loss of the total initial value of the

portfolio, denoted by Zt, is λtΩt.

4 CDOs

4.1 Mechanics

CDOs are probably the most important type of multiname credit derivative. A CDO

consists on a portfolio of defaultable instruments (loans, credits, bonds or default

swaps) whose credit risk is sold to investors who, in return for an agreed payment

(usually a periodic fee), will bear the losses in the portfolio derived from the default

of the instruments in the portfolio.

The credit risk of the portfolio underlying the CDO is sold in tranches. A tranche

is defined by a lower and an upper attachment points. The buyers of the tranche

with lower attachment point KL and higher attachment point KU will bear all losses

in the portfolio value in excess of KL, and up to KU , percent of the initial value of

the portfolio. As an example, Table 1 represents the upper and lower tranches of a

fictitious CDO.

Attachment points (%)
Tranche number Tranche name Lower KL Upper KU

1 Equity 0 3
2 Mezzanine 1 3 7
3 Mezzanine 2 7 10
4 Mezzanine 3 10 15
5 Senior 15 30

Table 1. Example of a CDO tranche structure.
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Imagine the CDO underlying portfolio experiences a loss of 9 percent of its initial

value. In that case, the holders of the equity tranche would bear the first 3% of those

losses, the holders of the first mezzanine tranche would bear the next 4% of them,

and the holders of the second mezzanine tranche will bear just 1% of the portfolio

losses. The holders of more senior tranches (mezzanine 3 and senior) would not suffer

any losses.

CDO tranching allows the holders of each tranche to limit their loss exposure to

KU −KL percent of the initial portfolio value.

Let t denote the time (in years) passed since the CDO was originated, T the

maturity (in years) of the CDO, M the initial value of the portfolio, and Zt the

percentage loss in the portfolio value at time t. At time t the total loss in the portfolio

value is ZtM . The loss suffered by the holders of tranche j from the origination (at

time 0) of the CDO up to time t is a percentage Zj,t of the portfolio notional value

M :

Zj,t = min
©
Zt,KUj

ª−min©Zt, KLj

ª
, (28)

where KUj and KLj are the upper and lower attachment points of tranche j.

The losses are paid by the tranche holders during the life of the CDO, with a

predetermined frequency. Let η denote such frequency in years. Usually η = 0, 25,

i.e. one quarter. At each payment date, tranche holders will pay the losses on the

portfolio realized since the last payment date. If t was the last time in which losses

were paid by tranche holders, the payment that the holders of tranche j will have to

pay at time t+ η is the new loss suffered from time t : a fraction Zj,t+η − Zj,t of the
CDO notional M .

So far we have outlined the way in which the portfolio losses are shared among

the holders of the different tranches. However, they have to be compensated for

bearing the risk of such losses. The holders of tranche j receive a periodic payment,

with frequency η years, equal to a premium sj of the outstanding notional amount of

tranche number j. At time t, the outstanding notional of tranche j, denoted by Γj,t,

12



is its initial notional
¡
KUj −KLj

¢
M minus the total losses suffered by its holders up

to time t, given by Zj,tM :

Γj,t =
¡
KUj −KLj

¢
M − Zj,tM (29)

=
¡
KUj −KLj − Zj,t

¢
M (30)

(31)

=


¡
KUj −KLj

¢
M ,¡

KUj − Zt
¢
M,

0,

if Zt < KLj ,
if KLj ≤ Zt ≤ KUj ,
if Zt > KUj .

(32)

If t = 0 is the origination time, payment dates are: η, 2η, ..., T . The structure of

the cash flows for the holders of tranche j is as follows. At each payment date during

the life of the CDO:

• they receive an amount

sjηΓj,t, (33)

and

• pay an amount

(Zj,t − Zj,t−η)M, (34)

for t = η, 2η, ..., T .

The premium sj does not vary during the life of the CDO. However, the notional

of tranche j, Γj,t, is a decreasing function of the total portfolio losses ZtM :

∂Γj,t
∂ (ZtM)

=

 0,
−1,
0,

if Zt < KLj ,
if KLj ≤ Zt ≤ KUj ,
if Zt > KUj .

(35)

The outstanding notional (30) of tranche j becomes zero as soon as the percentage

loss in the portfolio Zt becomes higher than the tranche upper attachment point KUj ,

Zt ≥ KUj , which implies Zj,t = KUj − KLj . When that happens, Γj,t+aη = 0 (and
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Zj,t+aη = Zj,t) for all a ≥ 0 and, as a consequence, the amount they have to receive
(and pay) in future payment dates t+ η, t+ 2η, ... is always zero.

The lower the seniority of the tranche, the higher are the expected losses suffered

by its holders and, therefore, the higher will be the premium they receive.

A CDO whose underlying portfolio consists of credits, loans or debt instruments

from different firms is called a cash CDO. However, the originator of a CDO, i.e. the

one who buys protection (and pays the premium), does not need to physically own

a portfolio of credits, loans or bonds. A portfolio of CDSs generates the same credit

exposure than the portfolio of credits, loans or bonds. When the CDO is constructed

using a portfolio of CDSs it receives the name of synthetic CDO.

Bluhm (2003) analyzes the different factors which have contributed to the success

of CDO trading: spread arbitrage opportunities, regulatory capital relief, funding and

economic risk transfer.

Gibson (2004) presents one of the most insightful works about the mechanics of

CDOs. The author summarizes the development of CDO markets and presents a

simple CDO pricing model which allows him to analyze, among other things, the risk

and leverage inherent in each tranche as well as the sensitivity of each tranche to the

business cycle.

Plantin (2003) presents a theoretical analysis of the rationale for tranching and

securitization activities such as CDOs. The author shows that they arise as a natural

profit maximizing strategy of investment banks, and predicts that investors with

increasing sophistication acquire tranches with decreasing seniority. Mitchell (2004)

reviews the financial literature which justifies the creation of structured assets such

as CDOs.

4.2 Pricing

In order to simplify the presentation, we introduce two further assumptions:

Assumption 7. Complete market and absence of arbitrage opportunities.

For our purposes we shall use the class of equivalent probability measuresQ, where

14



non-dividend paying asset processes discounted using the default-free short rate are

martingales. Absence of arbitrage is a necessary requirement for the existence of (at

least) one equivalent probability measure, and the assumption of market completeness

guarantees its uniqueness. Such an equivalent measure is called a risk neutral measure

and will be used to derive bonds and CDS pricing formulas.8

Assumption 8. Independence of the firms’ credit risk and the default-free

interest rates under the risk neutral probability measure.

Although the model could accommodate correlation between interest rates and

survival probabilities, such an assumption would add a higher degree of complexity

into the model because a process would have to be estimated for the default-free short

rate as well.9

Pricing a CDO consists on finding the appropriate premium sj for each tranche

j. The premium sj is fixed in such a way that the net present value of the cash flows

received/paid by its holders is zero, which implies that, as in a swap or CDS, there

is no payment up-front.10

Similar to a plain vanilla interest rate swap or a CDS, a CDO consists of two legs:

a fixed and a floating leg.11 The fixed leg represents the payments tranche holders

receive (positive cash flows), whereas the floating leg represents the payments they

pay (negative cash flows). Consider a CDO with payment dates {t1, ..., tK}, maturity
tK , and notional M , where η = tk+1 − tk for all k = 0, ...,K. The contract starts at
time t0 = 0, and the first premium is due at t1.

At each payment date tk the holders of tranche j receive (33), for k = 1, ..., K.
8See Elizalde (2005b, Appendix A) for an analysis of the different scenarios under which the tran-

sition from the physical to the equivalent (or risk neutral) probability measure can be accomplished.
9Elizalde (2005d) estimates a reduced form model in which default probabilities depend on

default-free interest rates. The results show that the effect of default-free rates on default prob-
abilities is small. Moreover, different empirical papers find different signs for that effect.
10Although, as we mention below, the equity tranche does not usually follow this convention, it

can be priced using similar arguments.
11Elizalde (2005a) describes a CDS pricing model in a similar framework.
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Thus, the value of the fixed leg at time t0, denoted by XF,j, is equal to

XF,j =
KX
k=1

β (t0, tk) sjηE
£¡
KUj −KLj − Zj,tk

¢
M
¤
, (36)

where β (t0, tk) is the discount factor from t0 to tk.

At each payment date tk the holders of tranche j pay (34), for k = 1, ..., K. Thus,

the value of the floating leg at time t0, denoted by XV,j, is equal to

XV,j =
KX
k=1

β (t0, tk)E
£¡
Zj,tk − Zj,tk−1

¢
M
¤
. (37)

The premium sj is chosen in such a way that

XF,j = XV,j, (38)

which implies

sj =

PK
k=1 β (t0, tk)

¡
E [Zj,tk ]− E

£
Zj,tk−1

¤¢PK
k=1 β (t0, tk) η

¡
KUj −KLj − E [Zj,tk ]

¢ . (39)

Zj,tk , given by (28), is the accumulated loss suffered by the holders of tranche j from

the origination of the CDO up to time tk, expressed as a percentage of the portfolio

notional value M .

Given the attachment points KUj and KLj , the payment dates t1, ..., tk, ..., tK and

the discount factors β (·, ·) , we need to evaluate the expectations appearing in (39)
in order to compute the tranche premium sj. In particular, we need to evaluate

E [Zj,tk ] :
12

E [Zj,tk ] = E
£
min

©
Ztk ,KUj

ª−min©Ztk , KLj

ª¤
, (40)

for k = 1, ..., K.

The characteristics (size, number of firms, default probability of each firm, default

correlations between firms, loss given default, ...) of the portfolio will determine the
12Note that E [Zj,t0 ] = 0 for all tranches j.
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distribution function for Ztk and, as a consequence, the tranche premiums. Note that

the percentage losses of the portfolio at each time tk is a random variable different from

the percentage losses of the portfolio at any other time different from tk. Therefore,

we would need the distribution functions for the random variables Zt1, ..., ZtK , i.e. for

each payment date t1, ..., tK .

The issues in this section are also covered by Hull and White (2004), Willemann

(2004), Amato and Gyntelberg (2005), De Prisco, Iscoe and Kreinin (2005), and

Hull, Pedrescu and White (2005). Bluhm (2003) reviews the main CDO modelling

techniques and offers illustrating examples and applications. The Committee on the

Global Financial System (2005) reviews the role of rating agencies in the pricing and

rating of structured products, mainly CDOs. It also provides the main characteristics

of the CDO pricing models used by the main rating agencies.

4.3 Vasicek model: homogeneous large portfolio

As shown in Section 3, if the CDO underlying portfolio satisfies Assumptions 1 to

6, the percentage losses of the portfolio at each time t, Zt, is given by the loss given

default λt, similar for all firms in the portfolio, times the portfolio default rate Ωt.

The premium sj of a tranche with attachment points KUj and KLj is given by

(39). Using (25) and (28), E [Zj,tk ] can be expressed as

E [Zj,tk ] =
1R
0

¡
min

©
λtkω, KUj

ª−min©λtkω,KLj

ª¢
dF
¡
ω; ptk , ρtk

¢
, (41)

for k = 1, ..., K. The integral in (41) needs to be numerically evaluated.

The premium sj of tranche j depends, in the Vasicek model presented, on:

• Upper and lower attachment points KUj and KLj .

• Term structure of interest rates at time t0, given by the discount factors β (t0, t1),
... , β (t0, tK) .

• Frequency of payments η.
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• Default probabilities pt1 , ..., ptK (assumed equal for all credits in the portfolio).

• Default correlations ρt1, ..., ρtK (assumed equal for all credits in the portfolio).

• Losses given default λt1 , ...,λtK (assumed equal for all credits in the portfolio).

• Distribution function F ¡·; ptk , ρtk¢ of the underlying portfolio default rate.
It is common practice to assume the correlation parameter to be the same not

only across firms, but also for all time horizons:

ρtk = ρ, for all k = 1, ..., K. (42)

Moreover, ρ is usually estimated (where usually means usually, not adequately) from

correlations of equity returns, typically ranging from 0 to 30 percent. To estimate

the default probabilities ptk the most straightforward option is to use a reduced form

model calibrated from bond or CDS prices. In the same way, it is usual practice to

assume λt constant across time: λ.

With respect to the use of a single correlation parameter for all firms, St. Pierre

et al. (2004, p. 7) state that “Although some market participants have attempted to

use information from equity returns or spread changes to estimate a correlation value

for every pair of names, the market continues to use a single correlation for the entire

portfolio primarily because a clearly compelling alternative has not yet emerged.”

The issues in this section are also covered by Gregory and Laurent (2003) and

Amato and Gyntelberg (2005).

4.4 Sensitivity of tranche premiums to the model parameters

Clearly, tranche premiums are a positive function of the firms’ default probability

and of the losses in case of default. The impact of the default correlation on tranche

premiums is slightly more complicated. For the equity tranche, a higher default

correlation increases the probability that no defaults will occur and therefore decreases

the premium. The opposite is true for the most senior tranche, where a high default
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correlation increases the probability that of a high number of defaults occurring,

increasing its expected losses and therefore its premium. While equity and senior

tranche premiums are monotonic on the default correlation, its impact on mezzanine

tranches is not clear cut.

Duffie and Garleanu (2001), Gibson (2004), Hull and White (2004), Willemann

(2004), and Amato and Gyntelberg (2005) present an analysis of the sensitivity of

tranche premiums to the model parameters, in particular to the correlation coefficient.

Gregory and Laurent (2004) describe in detail CDO sensitivities with respect to the

correlation parameter.

4.5 Trading issues

CDOs can either be constructed using a portfolio of loans or bonds (cash CDOs) or

using a portfolio of CDS (synthetic CDOs). Figure (1) shows the notional of cash and

synthetic CDOs issued and sold to investors in the last 9 years. Although cash CDOs

were more popular than synthetic CDOs in the second half of the 90’s, synthetic

CDOs have taken the lead since 2000.

0
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400

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Cash notional

Synthetic notional

Figure 1: CDO notional (billion USD). Source: Financial Times (2005a).

In recent years, a new way of selling and buying CDO tranches has became ex-
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tremely popular, mainly due to the appearance of standardized markets: single CDO

tranches.13 As explained by Hull, Pedrescu and White (2005, p. 5), “Standard port-

folios and standard tranches are defined. One party to a contract agrees to buy

protection on an individual tranche; the other party agrees to sell protection on the

tranche. Cash flows are circulated in the same way as they would be if a synthetic

CDO were constructed for the portfolio. However, in single tranche trading, the un-

derlying portfolio of credits is never created. It is merely a reference portfolio used

to calculate cash flows.”

This market works somewhat similarly as the options and futures markets on

stock indexes such as Dow Jones, S&P, FTSE, ... First, a portfolio or index of firms

is formed. As in the case of stock indexes, the composition of the index is publicly

known, chosen by the organizing market and reviewed and updated periodically ac-

cording to the liquidity and traded volume of the firms.14 Second, CDO tranches are

traded using the firms in the index as if they were in the underlying portfolio of the

CDO.

Dow Jones administers the main credit derivatives indexes which are used as

underlying portfolios for single CDO tranche trading. There exist indexes for the US,

emerging markets, Asia, Europe, ... as well as indexes for different sectors of some of

those areas.15

The two most traded indexes are the Dow Jones CDX NA IG and the Dow Jones

iTraxx Europe, which are composed of 125 equally weighted investment grade US and

European firms respectively.

The portfolios underlying the previous indexes are used to construct tranches in

the same way as the portfolios underlying a CDO. A tranche defined on any of these

indexes has a well defined cash flow structure and, as such, it can be traded among
13Hull and White (2004), Amato and Gyntelberg (2005), and Hull, Pedrescu and White (2005)

provide alternative descriptions of these markets.
14Since the index serves as an underlying portfolio to trade with the firms’ credit risk, the liquidity

and volume of trade refer to the firms’ defaultable instruments such as bonds and CDS.
15For more information see www.djindexes.com.
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market participants.16 Credit derivatives dealers provide bid and ask quotes for the

premium of each tranche.

Once an investor enters into a (long or short) position in a CDO tranche for a

given amount of money, the evolution (i.e. default status) of the firms in the index

during the specified maturity will determine the corresponding payoffs. The most

common maturity is 5 years.

When a firm in the index defaults, it is taken off from the index and a new one

is introduced. This new firm is taken into account for new, but not for previously

contracted, deals. Changes in the composition of the index do not necessarily involve

defaults, but also liquidity and related considerations.17

The theoretical formula for the premium (39) characterizing a CDO tranche was

derived assuming there was no up-front payment. The way in which single CDO

tranches are quoted follows that assumption except for the equity tranche. In the

equity tranche, the protection buyer, i.e. tranche holder, receives a periodic premium

of 5% of the outstanding notional, as well as an up-front payment, which is what is

quoted in the market.

Andersen, Basu and Sidenius (2003), Gibson (2004), and St. Pierre et al. (2004)

analyze the dynamic hedging of short positions on single-tranche CDOs using CDSs

of the firms underlying the CDO portfolio.

Finally, for those worried about the tax treatment of CDO returns, Bloomfield

and Shamrakov (2005) offer some tips to maximize tax benefits.

4.5.1 Moral hazard

It is often the case in cash CDOs that the originator of the CDO, usually a bank

repackaging and selling credits in its portfolio, retains the most risky (equity) tranche.

As Duffie and Garleanu (2001) and Gibson (2004) point out this responds mainly to

two facts. First, the bank knows better than anybody else the quality of the credits
16The structure of the upper and lower attachment points can vary between indexes.
17See Dow Jones Indexes (2005).
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underlying the CDO and, in order to ensure prospective investors that they won’t be

cheated, it retains the riskiest tranche as a signal of the fairness of the deal. This

asymmetry of information is more acute when the underlying portfolio is made up

of non-traded instruments, such as bank loans. Second, in most cases the bank is

the one in charge of monitoring the service of the credits, which can influence the

probability of those credits making the scheduled payments and therefore the cash

flows of the CDO. Retaining the equity tranche keeps the incentives of the originating

bank to keep to monitor the credits.

Franke and Krahnen (2005) provide a review of theoretical literature showing

that first loss positions are optimal arrangements for the originators of CDOs and

similar structured assets. They also mention research conducted by the Deutsche

Bank empirically verifying that major German banks do actually hold significant

positions in the equity tranches they originate.

The explosion of CDO trading in recent years means that banks have been able

to get rid of a huge amount of unwanted credit risk. But, according to the previous

arguments, they have kept a high fraction of equity tranches, the riskiest ones. As

a consequence, they have reduced their exposure to high credit risk losses but they

have increased the fraction of their credit risk coming from first losses. Financial

Times (2005d) documents that this “has left some issuing banks with large unwanted

trading positions. This year, banks have been adopting an array of techniques aimed

at either reducing this risk overhang or making the higher-yielding, riskier credit

pieces more appealing to a broader range of investors.” The article mentions a survey

by Fitch Ratings showing evidence of the high exposure to issuing banks to CDO

equity tranches and their efforts to reduce this exposure to avoid, for example, the

high capital charges which these positions will generate under Basel II.

4.5.2 Types of CDOs

This section borrows directly from Fitch (2004b), which presents a detailed analysis

of CDO mechanics as well as Fitch’s methodology to price, analyze and assign ratings
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to CDOs.

Fitch (2004b) considers three criteria to classify CDOs: assets being securitised,

motivation behind the securitization, and way in which the CDO transfers the credit

risk of the underlying portfolio. According to the assets being securitised, we can

mainly distinguish between bonds (CBOs) and loans (CLOs). The reasons behind

the issuance of the CDO determines whether it is an arbitrage CDO or a balance sheet

CDO. Balance sheet CDOs are those created by financial institutions to transfer part

of the credit risk in their balance sheet to other investors. Arbitrage CDOs are those

issued in order for the issuer to (p. 2) “profit on the margin between the weighted

average return received on a portfolio of debt obligations and the cost of hedging the

risk in the capital markets via the issuance of the CDO notes or swaps.” Finally,

and as we have already mentioned, a CDO can either be a cash flow CDO, where the

issuer actually owns the underlying portfolio, or a synthetic CDO, whose underlying

portfolio is not owned by the issuer but it is based on an index of firms.18

4.5.3 Correlation smile and base correlations

We all know what “implied volatility” means in European option pricing. Using the

popular Black-Scholes formula for valuing options, the option price is a closed function

of the short rate, time to maturity, stock price, and volatility of the stock price. For

a given market price of the option and using the short rate, time to maturity, and

stock price, we can back up, using the Black-Scholes formula, the volatility level which

yields an option price equal to the price quoted in the market. Such a volatility level

is called implicit volatility.

The same exercise can be performed for the prices of CDO tranches. The market

price of a single tranche CDO would play the role of the option market price; the

Vasicek asymptotic single risk factor formula (39) would play the role of the Black-

Scholes formula, and the default correlation coefficient ρ (assumed constant across
18Fitch (2004b) also distinguishes between static and revolving CDOs (p. 12), as well as between

underlying portfolios with bullet maturities or amortizing principal schedules (p. 14).
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firms and time) that of the stock price volatility.

Therefore, given the market price of a single CDO one can, using the pricing

formula (39) and fixing the value of the rest of the parameters, (numerically) compute

the correlation coefficient ρ which matches such a price.19

Using market prices of single CDO tranches with the same underlying portfolio,

we can compute the implied default correlation for each tranche. If the model behind

the pricing formula (39) were correct we should obtain the same correlation for all

tranches. However, that is not the case. In general, the implied correlation is higher

for equity and most senior tranches than for mezzanine tranches, which is known as

the correlation smile.

Amato and Gyntelberg (2005, p. 84) present several possible explanations for the

correlation smile: (i) there is segmentation among investors across tranches and these

different investor groups hold different views about correlations; (ii) the smile reflects

market participants’ uncertainty about how best to model credit risk correlations (the

implication is that equity tranches, which are more sensitive to correlations, contain a

model risk premium embedded in their prices); (iii) local demand conditions in prices;

and (iv) that market participants might be using other pricing models.

The first explanation offered by Amato and Gyntelberg finds support on the desire

of issuing banks to get rid (ex-post) of all their positions in equity tranches they

kept when issuing CDOs; see discussion in Section 4.5.1. As explained there, banks

kept positions in the equity tranches of the CDOs they issued to avoid problems

of moral hazard. But these positions have become large enough as for them to try

to pass them into the market by re-selling them with new names and some added

guarantees. Financial Times (2005d) argue that “This demand imbalance between

different sections of the CDO capital structure - also referred to as correlation book -

has pushed up equity tranche spreads, which, according to some bankers, means they

offer higher returns and better value than warranted by fundamental factors. The
19Note that this can be done with any CDO pricing model. However, the Vasicek asymptotic

single factor model has become the market standard.
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spreads and returns on mezzanine tranches, meanwhile, have been suppressed.”

As pointed out by Hull and White (2004), “tranche implied correlations must be

interpreted with care. For the equity tranche (the most risky tranche in a CDO,

typically 0% to 3% of the notional) higher implied correlation means lower value to

someone buying protection. For the mezzanine tranche ... the value of the tranche

is not particularly sensitive to correlation and the relationship between correlation

and breakeven spread, ..., may not be monotonic. For other tranches higher implied

correlation means higher value to someone buying protection.”

Apart from interpretation problems, implied correlations suffer another two major

problems, pointed out by, among others, McGinty and Ahluwalia (2004), Willemann

(2004), and van der Voort (2005). First, since mezzanine tranche premiums are not

monotonic in the correlation, implied correlations might not be unique. Second,

implied correlations depend on the upper and lower tranche attachment points and,

as a consequence, they can not be interpolated to price other tranches with different

attachment points.

McGinty and Ahluwalia (2004) came up with a clever way of solving such prob-

lems: base correlations. They make use of the monotonicity of the equity tranche on

the default correlation, and construct fictitious equity tranches which are then used

to construct mezzanine tranches. However, base correlations are not bullet proof as

shown by Willemann (2004), and, as pointed out by Hull and White (2004), they are

even more difficult to interpret than implied correlations.

For a discussion and a list of references on base correlations see Finger (2004).

St. Pierre et al. (2004) explain how to derive base correlations from market observed

tranche premiums and how to employ them to value non-standard tranches.

4.5.4 Exotic CDOs

Besides its importance in terms of traded volume, multiname credit derivatives and

CDOs in particular, are constantly evolving in terms of new products, new markets,

new trading conventions, ... Such developments are the forces behind the latest ad-
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vances in modelling and calibration techniques. As an example of such new products,

the so-called CDO2 is a CDO of CDOs: a portfolio of CDOs is assembled, tranched,

and sold to investors. See Baheti et al. (2005) and Fitch (2004a) for a description of

CDO2.

Other exotic CDO products include forward starting CDOs, options on CDO

tranches, leverage super senior CDOs, and bespoke CDOs. Most of this derivatives

have payoff structures linked to the evolution of tranche premiums (or their pricing

requires to model such evolution). Thus, their pricing and hedging demand models

which take into account the dynamics of tranche premiums. The use of the Vasicek

single factor model (and its extensions) is limited for this type of products, because

they are (so far) static pricing models: they are able to produce tranche premiums

for a given set of parameter models which is valid for one particular day, but not to

consistently provide a model for the dynamics of such prices.

The dynamics needed for pricing these exotic CDOs can be obtained, for example,

with intensity models (see Introduction). Additionally, a new set of dynamic credit

portfolio models has been put forward by Andersen, Piterbarg and Sidenius (2005),

Bennani (2005), and Schönbucher (2005). The authors present alternative proposals

to model directly the dynamics for the portfolio losses.

4.6 Extensions of the Vasicek model

The attractiveness of the Vasicek model for CDO pricing lies in its simplicity and rel-

atively straightforward application, which only requires to compute a set of numerical

integrals. However, the assumptions about the characteristics of the underlying port-

folio are strong.

There exist quite a broad literature which, building on the previous model, relaxes

one or several assumptions and comes up with another pricing model. In some, al-

though not in all, cases this implies the use of Monte Carlo simulation. The popularity

of these models is confirmed by its use by the main rating agencies.20

20See the Committee on the Global Financial System (2005, p. 18).
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In what follows we provide brief a review of this literature, without going in detail

into the mechanics of each pricing model.

4.6.1 Homogeneous finite portfolio

CDO underlying portfolios vary in size. For example, the two most popular single

tranche CDOs, Dow Jones CDX NA IG and Dow Jones iTraxx Europe indexes, are

composed of 125 reference entities, with an equal weighting given to each.

If we relax Assumption 4 (the number of credits in the portfolio is very large,

N → ∞), one does not get the very nice equation (25) for the distribution function
of the portfolio losses.

If Assumptions 1-3 are satisfied, the number of defaults in the portfolio at time t,

denoted by Lt, is, conditional on the common factor Yt, a binomial (N, p (Yt)) random

variable.

As a consequence, the conditional probability of the portfolio experiencing x de-

faults before t is given by

P (Lt = x | Yt) =
µ
N
x

¶
p (Yt)

x (1− p (Yt))N−x . (43)

Since the common factor Yt follows an i.i.d. standard normal random variable, the

unconditional probability of the portfolio experiencing x defaults before t is given by

P (Lt = x) =
+∞R
−∞
P (Lt = x | s) dΦ (s) , (44)

where Φ (·) is the distribution function of a standard normal random variable.

If Assumption 6 holds, i.e. the size of each credit in the portfolio is similar, each

default generates a loss of 1
N
percent of the total portfolio initial valueM . Therefore,

the distribution function of the portfolio percentage losses at time t is

F̂ (ω; pt, ρt) =
NX
x=0

P (Lt = x)1{ω≥ x
N }, (45)

where 1{·} is the indicator function.
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Keeping Assumption 5 (similar loss given defaults across firms), the premium sj

of a tranche with attachment points KUj and KLj is still given by (39), but with

E [Zj,tk ] given by

E [Zj,tk ] =
1R
0

¡
min

©
λtkx,KUj

ª−min©λtkx,KLj

ª¢
dF̂ (x; ptk , ρ) , (46)

for k = 1, ..., K, instead of (41).

Hull and White (2004), among others, offer a CDO pricing model for finite port-

folios with two different implementation approaches.

4.6.2 General distribution functions

In the Vasicek single risk factor model, a firm n defaults at time t if the random

variable Xn,t is lower than a default threshold Kn. Moreover, Xn,t is a function

(11) of a common or systematic factor Yt and a firm idiosyncratic factor εn,t, assumed

i.i.d. standard normal random variables. As a consequence, the credit risk dependence

structure among firms is given by a normal multivariate distribution or normal copula.

However, as argued by Frey, McNeil and Nyfeler (2001), there is no compelling

reason for choosing normal random variables for the distributions of Yt and ε1,t, ..., εN,t

and, as a consequence, of X1,t, ...,XN,t. They show, in the framework of the single fac-

tor model, that the aggregate portfolio distribution is extremely sensitive to the exact

nature of the multivariate distribution of the latent variables X1,t, ...,XN,t. Normal

mixture distributions, t-student, and generalized hyperbolic distributions, comprise

a useful source of alternative models for the latent variables.21

See Schönbucher (2000, 2002), Hull and White (2004), and Burtschell, Gregory

and Laurent (2005) for extensions of the Vasicek single factor model with general

distribution functions for the systematic and idiosyncratic factors. Hull and White

(2004) consider normal and t-student distributions, while Burtschell, Gregory and

Laurent (2005) also consider several copula models. Schönbucher (2002) analyzes
21Mencia and Sentana (2004) analyze the properties of the generalized hyperbolic distribution,

which has the normal and t-student distribution as special cases. They also propose statistics to
test for normality and t-student.
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the class of Archimedean copulas, and Andersen, Basu and Sidenius (2003) use a t-

student copula. Daul et al. (2003) generalize the t-copula to model large sets of risk

factors of different classes, allowing to more accurately estimate the tail dependence

present in the data.

One of the drawbacks of the normal copula is, as we mentioned previously, that it

cannot fit the prices of the different CDO tranches with a single correlation coefficient,

generating a correlation smile. As Kalemanova, Schmid and Werner (2005) explain,

researchers blame the lack of tail dependence in the normal copula and propose cop-

ulas with positive tail dependence such as t-student, ... These distributions correct

the pricing performance of the model, but at the cost of a much higher computation

time. The authors propose the use of a Normal Inverse Gaussian (NIG) distribution,

a special case of the generalized hyperbolic distribution, which is shown to improve

both the computation time and the pricing accuracy of the model. See also Guegan

and Houdain (2005) for an application of the NIG distribution to CDO pricing.

4.6.3 Heterogeneous finite portfolio

The assumption of a finite portfolio comprised of heterogeneous credits represents

the most real case. In an heterogeneous portfolio, each credit has a different default

probability pn,t, loss given default λn,t and exposure to the systematic risk factor ρn,t.

Each credit n represents a fraction fn of the initial portfolio value.

There are several techniques to derive the distribution of the portfolio loss rate Zt.

We present here one based on the Fast Fourier Transform (FFT), which is probably

the most intuitive, although it has been shown not to be the fastest among the

available alternatives (cf. Andersen, Basu and Sidenius 2003, Gregory and Laurent

2003, De Prisco, Iscoe and Kreinin 2005, and Hull and White 2004.)22

The default probability of firm n conditional on the realization of the common
22De Prisco, Iscoe and Kreinin (2005) present a review and comparison of these models.
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factor becomes

pn (Yt) = Φ

Ã
Φ−1 (pn,t)−√ρn,tYtp

1− ρn,t

!
. (47)

The percentage portfolio loss at time t, Zt, is given by

Zt =
NX
n=1

Ln,tfnλn,t, (48)

where, for each firm n, the random variable Ln,t takes value 1 if the firm has defaulted

up to time t and 0 otherwise.

The characteristic function of the random variable Zt conditional on the common

factor is

Ψ (u | Yt) = E
£
eiuZt | Yt

¤
(49)

= E
h
eiu

PN
n=1 Ln,tfnλn,t | Yt

i
(50)

= E

"
NY
n=1

eiuLn,tfnλn,t | Yt
#
, (51)

where i =
√−1.

Conditional on the common factor Yt, the random variables L1,t, ..., LN,t are inde-

pendent Bernoulli variables:

Ψ (u | Yt) =
NY
n=1

E
£
eiuLn,tfnλn,t | Yt

¤
(52)

=
NY
n=1

£
pn (Yt) e

iufnλn,t + (1− pn (Yt))
¤

(53)

=
NY
n=1

£
1 + pn (Yt)

¡
eiufnλn,t − 1¢¤ . (54)

Integrating over Yt we compute the unconditional characteristic function of the per-

centage portfolio loss

Ψ (u) =

Z ∞

−∞
Ψ (u | Yt) dΦ (Yt) . (55)
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Once we have numerically computed the unconditional characteristic function of the

percentage portfolio loss Zt we can use the FFT to recover its distribution function

which then is employed in the CDO pricing formulas.

As Burtschell, Gregory and Laurent (2005) point out, the FFT (or any alternative

technique) can be used independently of the underlying model, as long as we can

derive the conditional default probability pn (Yt).

Additional papers which price CDOs with heterogeneous finite underlying port-

folios include Andersen and Sidenius (2004) and Burtschell, Gregory and Laurent

(2005).

4.6.4 Stochastic default correlations

The most usual practice is to consider default correlations constant through time,

similar across firms, and independent of the firms’ default probabilities. Regarding

the latter issue, Hull, Pedrescu and White (2005) argue that there is a growing body

of empirical research suggesting that correlations are positively dependent on default

probabilities.23 The authors use a first passage model, similar to the Merton (1974)

structural model in which the Vasicek factor model is based, but which allows firms to

default at any point in time. Default correlations are made stochastic and correlated

with the systematic factor, generating a better fit to CDO market data than the basic

model with constant default correlation. The model can also be extended to include

more than one systematic factor and is implemented through Monte Carlo simulation.

Burtschell, Gregory and Laurent (2005) consider the case where the random vari-

ables X1,t, ...,XN,t are given by

Xn,t =
√
ρnYt +

p
1− ρnεn,t, (56)

for all n = 1, ..., N , where ρ1, ...ρN are independent stochastic correlations. Unlike

Hull, Pedrescu and White (2005), the default correlations are independent of the
23The authors refer to De Servigny and Renault (2002), Ang and Chen (2002), and Das, Freed

and Kapadia (2004).
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systematic risk factor. The authors show that stochastic correlation practically elim-

inates the correlation smile for, among others, normal and t-student distributions for

the systematic and idiosyncratic factors.

Andersen and Sidenius (2004) also consider a (multifactor) model with stochastic

default correlation, allowing default correlations to be higher in bear markets than in

bull markets.

4.6.5 Multifactor models

Is it one systematic risk factor enough to capture all credit risk correlation across

firms? A proper answer to this question is still lacked. Wilson (1998) and Elizalde

(2005d) represent attempts to answer it, from two different angles.

In a multifactor model, the random variable Xn,t determining whether firm n

defaults or not at time t, depends on various, rather than one as in the Vasicek single

factor model (11), common factors:

Xn,t =
√
ρ1Y1,t + ...

√
ρJYJ,t +

p
1− ρ1 − ...− ρJεn,t, (57)

where Yj,t, for j = 1, ..., J, are different common factors and εn,t is a firm idiosyncratic

factor. The firms’ default correlation structure is given by their dependence on the

common factors through the coefficients ρ1, ..., ρJ . Again, as in the Vasicek single

factor model, one can assume those coefficients to be different for each firm n and

across time.

Schönbucher (2000) and Hull and White (2004) deal with multifactor models.

4.6.6 Random loss given default

Andersen and Sidenius (2004) and Hull and White (2004) consider the case of random

loss given defaults, correlated with default probabilities.

4.6.7 Totally external defaults

In a recent paper, van der Voort (2005) addresses, what he considers, a fundamental

problem of the standard one factor Gaussian, i.e. Vasicek single risk factor, pricing
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methodology. In such a model, a default event will strongly affect the available

information on the common factor, significantly increasing the default probability

of the rest of the firms in the underlying portfolio. The author argues (p. 5) that

this “fundamental shortcoming of the model is caused by the fact that the model is

not able to explain defaults which are not caused by macro economic behavior, but

are entirely external.” He proposes to introduce an extra idiosyncratic factor in the

model, to account for totally external default risk, caused by fraud, legal issues, ...

(e.g. Enron, Worldcom, Parmalat, ...) This way, totally external defaults do not

affect the available information about the systematic risk factor.

After deriving formulas for the default probabilities and portfolio loss rate, the

author shows how this extended model can account for the implied correlation smile.

4.6.8 Focusing on a single tranche

All the models analyzed so far start deriving the distribution function for the losses

in the total portfolio Zt, which is then used to derive the losses in each single tranche

j, Zj,t (given by 28). However, the seller of protection, i.e. tranche holder, of a given

tranche j (and the buyer of protection in single tranche CDOs) is only interested in

the distribution of Zj,t. De Prisco, Iscoe and Kreinin (2005) develop a new analytical

approach, building upon the Vasicek single factor model for CDO pricing, for directly

computing the loss distribution of a single tranche Z. They use a compound Poisson

approximation and show that this technique is as accurate of competing models such

as Monte Carlo methods which first compute the total distribution of the portfolio.

Moreover, when we are just interested in valuing a single tranche, their technique is

faster in most cases.

Other extensions have been considered, most of them included in the papers men-

tioned during the text. Finger (2004) presents an alternative survey of different

variations of the standard model for CDO pricing.
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4.7 Parameter calibration

Choosing a particular model from the ones presented above is already a difficult task,

which trades-off model simplicity versus the validity of the assumptions. But that is

only half of the problem. Once a model is specified, one has to feed it with values for

the different parameters in order to obtain prices for CDO tranches.

There are three main groups of parameters which have to be estimated: marginal

default probabilities, default correlations and losses given default.

4.7.1 Default probabilities

Marginal default probabilities can be obtained in several ways: (i) using an structural

model (similar or more complicated than the Merton 1974 model) and data of the

firms’ assets and liability structure, (ii) using a reduced form model and data of the

firms’ defaultable instruments (bonds, credit default swaps, ...) market prices,24 (iii)

using information from rating agencies about default probabilities, ...

4.7.2 Loss given default

Regarding losses given default, the convention is to use historical (generally published

by rating agencies) data to select them, depending on the seniority of the claims

analyzed and assuming they are constant across time and across seniorities.25 The

Committee on the Global Financial System (2005) reviews the main characteristics of

the CDO pricing models used by the main rating agencies. With respect to recovery

rate assumptions, the Committee (p. 18) states that they “continue not to conform

fully with mounting empirical evidence of substantial cyclical variability in recoveries

and negative correlation with default probabilities.”26 However, it also recognizes (p.

44) that “more emphasis is also being put on systematic variation in recovery rates”

within rating agencies CDO pricing models.
24See Galiani (2003) for an application using CDSs, and Li (1998) and Elizalde (2005a) for appli-

cations using bond prices.
25See Moody’s (2000) and Altman and Arman (2002).
26See Covitz and Han (2004) and Altman et al. (2005).
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The Basel Committee of Banking Supervision set up a Loss Given Default Work-

ing Group in September 2004 in order to analyze the relationships between losses

given default and economic conditions (which can also affect default probabilities and

default correlations) and the treatment of losses given default in the banking industry.

Their main findings, included in BCBS (2005), emphasize that losses given default

are lower than average during times of high default rates, that data limitations pose

an important challenge to estimate such relationships, and that there is currently lit-

tle consensus (across banks) with respect to the way of incorporating the correlation

between losses given default and default probabilities in the calibration of their credit

models.

Fitch (2004b, p. 8) explains the differences in portfolio losses depending on

whether the CDO is a cash flow or a synthetic CDO, which make a big difference

when calibrating losses given default. “In a cash flow CDO, recoveries are always

achieved by either selling the defaulted asset or going through the work-out process.

In a synthetic CDO, losses and recoveries are determined by either cash or physical

settlement. Under a cash settlement, a protection payment is based on the difference

between the par value of an obligation selected for valuation and its post-credit-event

market value determined in a bidding process, ... Under physical settlement, the pro-

tection buyer is paid the par amount of the defaulted obligation and must deliver an

obligation to the CDO issuer.” Therefore, under physical settlement, one has to value

the option that the protection buyer has to choose between the different (probably

pre-specified in the contract) obligations of the defaulted firm.

4.7.3 Correlation

Without doubt the calibration of default correlation is the most complicated part of

the process. According to Duffie and Garleanu (2001, p. 3), “Currently the weakest

link in the chain of CDO analysis is the availability of empirical data that would bear

on the correlation, actual or risk neutral, of default.” Schönbucher (2003, p. 289)

agrees that “Default correlation and default dependency modelling is probably the
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most interesting and also the most demanding open problem in the pricing of credit

derivatives.”

Although the way in which default correlation is introduced in the above models

is quite convenient in terms of modelling, it is quite inconvenient in terms of cali-

bration. The exposure to the systematic risk factor ρ represents the impact of the

(unobservable) systematic risk factor on a random variable (Xn,t) which is a non-linear

transformation of the firm’s asset value (which itself is an unobserved and complicated

process to estimate). The major problem when calibrating ρ is not the availability of

data sources, but the difficulty of interpreting what ρ represents.

The usual practice is to use equity return correlations directly (e.g. Fitch, 2004b,

p.10). But what is the relationship (in the model) between equity returns and the

exposure to the systematic risk factor ρ? Whatever it is (and this depends on the

underlying model), they are probably not the same. De Servigny and Renault (2002)

and Zeng and Zhang (2002) conclude that using equity correlation as a proxy of the

model default correlation is clearly insufficient.

The Committee on the Global Financial System (2005, p. 44) reports that, among

the major rating agencies, Moody’s and Fitch use assumptions based on equity returns

correlations. In contrast, Standard and Poor’s calibrates ρ to historically observed

default correlations (which seems a more appropriate solution).

Daniels, Koopman and Lucas (2005), after reviewing different approaches for mod-

elling default dependencies using observable macroeconomic variables as a systematic

risk factor, present a model to decompose default risk into two unobservable factors:

a systematic and idiosyncratic factor. Such a model is similar to the standard Va-

sicek single risk factor model. Their estimation methodology allows for a dynamic

structure for the systematic risk factor.

The problem of calibrating the exposure to the systematic risk factor is a second

order problem. Wemust first understand the dynamics driving credit risk correlations,

How do they vary across business cycles?, Are they related to default probabilities?,

How many factors (economic wide, sectorial, ...) affect them? In which degree?
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... Moody’s Investor Service (1997), Das, Freed and Kapadia (2002), De Servigny

and Renault (2002), and Elizalde (2005d) present answers to those and other related

questions.

Finger (2004, p. 122), after reviewing the calibration of default correlations con-

cludes:

“Do any of the empirical methods of estimating correlation provide reliable

results, or is correlation in the standard model purely a technical factor,

unrelated to anything that is truly observable? It will be difficult to

continue to use the standard model if there is no empirical way to at least

estimate a range for the correlation parameter.”

As a last caveat, it is surprising (and scaring) how most of the papers cited above

applying the Vasicek single risk factor model and its extensions to price CDOs do

always present “numerical implementations” to analyze the mechanics of the models,

without any mention about how to compute the model parameters, in particular

default correlation. Before going on with new and fancier extensions we should be

worrying about empirically calibrating and testing existing ones.
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Appendix

A Bank capital regulation

The New Basel Accord on Banking Supervision and Regulation, known as Basel II and
contained in Basel Committee on Banking Supervision (BCBS, 2004), requires banks
to, among other things, hold a minimum level of capital, referred to as regulatory
capital. The idea is to align regulatory capital with the risks underlying banks’
assets, in such a way that a more risky bank will be required to hold a higher amount
of capital.
Subject to the approval of the corresponding supervisor, banks satisfying certain

standards of sophistication (in terms of its risk management process, databases, ...)
will compute their regulatory capital using the so called internal ratings based (IRB)
approach. Under the IRB approach, regulatory capital is computed using a formula,
based on Vasicek’s asymptotic single factor model.
Under the IRB approach, banks’ regulatory capital is the sum of the regulatory

capital assigned to each of the following asset classes: corporate, sovereign, bank,
retail, and equity, defined in BCBS (2004, paragraphs 215-243). One can think of
each of these asset classes as portfolios of similar assets, issued by different firms, and
apply the model presented in this report to compute its loss distribution function.
According to IRB approach, bank capital must cover losses due to loan defaults

with a probability (or confidence level) of 99, 9%. In particular, given the distribution
function F (ω; pt, ρt) for the fraction of defaulted loans, let bω be the critical value such
that

Pr(pt ≤ bω) = F (bω) = 0.999,
which implies bω = F−1 (0.999; pt, ρt).
In the case of a portfolio of corporate, sovereign or bank exposures with an effective

maturity of one year t = 1, the capital requirement k is given (as a percentage of the
portfolio value) by27

k = λF−1 (0.999; p1, ρt) (A1)

= λΦ

µ
Φ−1(p1) +

√
ρtΦ

−1(0.999)√
1− ρt

¶
, (A2)

where:

• λ is the (constant across time) loss given default.28

27See BCBS (2004, p. 69) for retail exposures and BCBS (2004, p. 72) for equity exposures.
28BCBS (2004, p. 62) describes the approaches for deriving an estimate of λ. Under the most

simple approach, claims on corporates, banks and sovereigns not secured by recognized collateral
will be assigned λ = 45% if they are senior claims and λ = 75% if subordinated. See also BCBS
(2005) for a discussion of the relationship between λ and economic conditions and how banks should
incorporate it when computing regulatory capital.

38



• The correlation coefficient ρt is assumed to be a decreasing function of the
default probability pt given by

ρt = 0.24− 0.12
1− e−50pt
1− e−50 , (A3)

and represented in Figure (2). ρt = 0.24 for pt = 0 and ρt = 0.12 for pt = 1.
29
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tp

Figure 2: Correlation coefficent ρt as a function of the defaut probability pt.

• If the effective maturity is different than one year, the capital requirement k
given by (A1) has to be multiplied by a coefficient δ which is a function of
the effective maturity t and the default probability pt. δ is increasing in the
effective maturity for all default probabilities, and is increasing (decreasing) in
the default probability for maturities t (lower) higher than one year.30

Capital requirements are thus computed as the percentage of the portfolio value
the bank needs to set aside in order to be able to cover losses due to loan defaults
when no more than 99.9 percent of the loans or credits in the portfolio default.
Figure (3) represents capital requirements (A1) as a function of the one year

default probability p1 for a 45% loss given default λ (left) and as a function of the
loss given default λ for a 1% default probability p1 (right). The higher the default
probability p1 of the underlying credits and the higher the loss given default λ, the
higher is the required regulatory capital k.
29For retail exposures the correlation coefficient ρ is set constant and equal to 15 percent.
30BCBS (2004, p. 68) describes the approaches for deriving an estimate of the portfolio effective

maturity.
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Figure 3: Capital requirements k as a function of the one year default probability p1
for a 45% loss given default λ (left) and as a function of the loss given default λ for
a 1% default probability p1 (right).

For all the details regarding regulatory capital calculation see the original docu-
ment BCBS (2004).31 Finger (2001) and Gordy (2003) review the single factor model
behind regulatory capital and discuss its calibration. Within the theoretical litera-
ture, Repullo and Suarez (2004) analyze the loan pricing implications of Basel II, and
Elizalde and Repullo (2005) analyze the determinants of regulatory capital, economic
and actual in the context of the single risk factor model outlined above.
31Additionally, the BCBS maintains a website with selected literature on concentration risk in

credit portfolios: www.bis.org/bcbs/events/rtf05biblio.htm.
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