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maximum likelihood (PML) estimators that deals with these problems and we study the 
asymptotic and finite sample properties of several estimators in this class. We first 
focus on two-step PML estimators which, though attractive for their computational 
simplicity, have some important limitations: they are seriously biased in small samples; 
they require consistent nonparametric estimators of players’ choice probabilities in the 
first step, which are not always feasible for some models and data; and they are 
asymptotically inefficient. Second, we show that a recursive extension of the two-step 
PML, which we call nested pseudo likelihood (NPL), addresses those drawbacks at a 
relatively small additional computational cost. The NPL estimator is particularly useful 
in applications where consistent nonparametric estimates of choice probabilities are 
either not available or very imprecise, e.g., models with permanent unobserved 
heterogeneity. Finally, we illustrate these methods in Montecarlo experiments and in an 
empirical application to a model of firm entry and exit in oligopoly markets using 
Chilean data from several retail industries. 
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1 Introduction

Empirical discrete games are useful tools in the analysis of economic and social phenom-

ena whenever strategic interactions are an important aspect of individual behavior. The

range of applications includes, among others, models of market entry (Bresnahan and

Reiss, 1990 and 1991b, Berry, 1992, Toivanen and Waterson, 2000), models of spatial

competition (Seim, 2000), release timing of motion pictures (Einav, 2003, and Zhang-

Foutz and Kadiyali, 2003), intra-family allocations (Kooreman, 1994, Engers and Stern,

2002), and models with social interactions (Brock and Durlauf, 2001). Although dy-

namic considerations are potentially relevant in some of these studies, most applications

of empirical discrete games have estimated static models. Two main econometric issues

have limited the scope of applications to relatively simple static games: the computa-

tional burden in the solution of dynamic discrete games, and the indeterminacy problem

associated with the existence of multiple equilibria. This paper studies these issues in

the context of a class of dynamic discrete games of incomplete information and develops

techniques for the estimation of structural parameters. The rest of this introductory

section discusses previous work in this literature and describes the contribution of this

paper.

The existence of multiple equilibria is a prevalent feature in most empirical games

where best response functions are non-linear in other players’ actions. Models with

multiple equilibria do not have a unique reduced form and this incompleteness may

pose practical and theoretical problems in the estimation of structural parameters. In

particular, maximum likelihood and other extremum estimators require that we obtain

all the equilibria for every trial value of the parameters. This can be unfeasible even

for simple models. The most common approach to deal with this problem has been

to impose restrictions which guarantee equilibrium uniqueness for any possible value of

the structural parameters. For instance, if strategic interactions among players have a

recursive structure, the equilibrium is unique (see Heckman, 1978). A similar but less

restrictive approach has been used by Bresnahan and Reiss (1990, 1991) in the context

of empirical games of market entry. These authors consider a specification where a firm’s

profit depends on the number of firms operating in the market but not on the identity

of these firms. Under this condition, the equilibrium number of entrants is invariant

over the multiple equilibria. Based on this property, Bresnahan and Reiss propose an

estimator that maximizes a likelihood for the number of entrants. Though this can

be a useful approach for some applications, it rules out interesting cases like models

where firms have heterogeneous production costs or where they produce differentiated

products. Notice also that these restrictions are not necessary for the identification of
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the model (see Tamer, 2003).1

Computational costs in the solution and estimation of these models have also limited

the range of empirical applications to static models with a relatively small number of

players and choice alternatives. Equilibria are fixed points of the system of best response

operators, and in dynamic games each player’s best response is itself the solution to a

discrete choice dynamic programming problem. There is a curse of dimensionality in

the sense that the cost of computing an equilibrium increases exponentially with the

number of players. Furthermore, the standard nested fixed-point algorithms used to

estimate single agent dynamic models and static games require the repeated solution of

the model for each trial value of the vector of parameters to estimate. Therefore, the

cost of estimating these models using those algorithms is much larger than the cost of

solving the model just once.

This paper considers a class of pseudo maximum likelihood (PML) estimators that

deals with these problems and studies the asymptotic and finite sample properties of

these estimators. The method of PML was first proposed by Gong and Samaniego (1981)

to deal with the problem of incidental parameters. In general, PML estimation consists

of replacing all nuisance parameters in a model by estimates and solving a system of

likelihood equations for the parameters of interest. This idea has been previously used in

the estimation of dynamic structural econometric models by Hotz and Miller (1993) and

Aguirregabiria and Mira (2002). Here we show that this technique is particularly useful

in the estimation of dynamic games of incomplete information with multiple equilibria

and large state spaces.

Our PML estimators are based on a representation of Markov perfect equilibria as

fixed points of a best response mapping in the space of players’ choice probabilities.

These probabilities are interpreted as players’ beliefs about the behavior of their oppo-

nents. Given these beliefs, one can interpret each player’s problem as a game against

nature with a unique optimal decision rule in probability space, which is the player’s

best response. While equilibrium probabilities are not unique functions of structural

parameters, the best response mapping is always a unique function of structural pa-

rameters and players’ beliefs about the behavior of other players. We use these best

response functions to construct a pseudo likelihood function and obtain a PML estima-

tor of structural parameters. If the pseudo likelihood function is based on a consistent

nonparametric estimator of players’ beliefs, we get a two-step PML estimator that is

consistent and asymptotically normal. The main advantage of this estimator is its com-

putational simplicity. However, it has three important limitations. First, it is asymptot-

1In general, a unique reduced form is neither a necessary nor a sufficient condition for identification
(Jovanovic, 1989).
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ically inefficient because its asymptotic variance depends on the variance of the initial

nonparametric estimator. Second and more important, the nonparametric estimator

can be very imprecise in the small samples available in actual applications, and this can

generate serious finite sample biases in the two-step estimator of structural parameters.

And third, consistent nonparametric estimators of players’ choice probabilities are not

always feasible for some models and data. These limitations motivate a recursive ex-

tension of the two-step PML that we call nested pseudo likelihood estimator (NPL).

We show that the NPL estimator addresses these drawbacks of the two-step PML at a

relatively small additional computational cost. We illustrate the performance of these

estimators in the context of an actual application and in Monte Carlo experiments based

on a model of market entry and exit.

There has been an increasing interest in the estimation of discrete games during the

last years, which has generated several methodological papers on this topic. Pesendorfer

and Schmidt (2003) propose a two stage method that is equivalent to our two-step esti-

mator when it is initialized with consistent nonparametric estimates. Pakes, Ostrowsky

and Berry (2003) consider the same estimator, and combine it also with simulation meth-

ods. We compare the performance of this estimator with the NPL in our Monte Carlo

experiments. Bajari, Benkard and Levin (2003) show that the simulation-based esti-

mator in Hotz, Miller, Saunders and Smith (1994) can be applied to estimate dynamic

models of imperfect competition with both discrete and continuous decision variables.

For the case of static games with complete information, Tamer (2003) presents sufficient

conditions for the identification of a two-player model and proposes a pseudo maximum

likelihood estimation method. Tamer (2004) extends this approach to static games with

N players. Bajari, Hong and Ryan (2004) study also the identification of normal form

games with complete information.

The rest of the paper is organized as follows. Section 2 presents the class of models

considered in this paper and the basic assumptions. Section 3 explains the problems

associated with maximum likelihood estimation, presents the two-step PML and the

NPL estimators, and describes their properties. Section 4 presents several Monte Carlo

experiments. Section 5 illustrates these methods with the estimation of a model of

market entry-exit using actual panel data of Chilean firms. We conclude and summarize

in section 6. Proofs of different results are provided in the Appendix.

2 A dynamic discrete game

This section presents a dynamic discrete game with incomplete information similar to

the one in Rust (1994, pp. 154-158). In order to make some of the discussions less
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abstract, we consider a model where firms competing in a local retail market decide the

number of their outlets. A model of market entry-exit is a particular case of this frame-

work. Although we do not deal with estimation and econometric issues until section 3,

it is useful to anticipate the type of data that we have in mind. We consider a researcher

who observes many geographically separate markets such as (non-metropolitan) small

cities or towns. The game is played at the level of individual markets. The number and

the identity of the players can vary across markets. Examples of applications with this

type of data are Bresnahan and Reiss (1990) for car dealers, Berry (1992) for airlines,

Toivanen and Waterson (2000) for fast-food restaurants, De Juan (2001) for banks,

Netz and Taylor (2002) for gas stations, Seim (2000) for video rental stores, or Ellickson

(2003) for supermarkets.

2.1 Framework and basic assumptions

Each market is characterized by demand conditions which can change over time (e.g.,

population, income and age distribution, etc). Let dt be the vector of demand shifters

at period t. There are N firms operating in the market, which we index by i ∈ I =

{1, 2, ..., N}. At every discrete period t firms decide simultaneously how many outlets

to operate. Profits are bounded from above such that the maximum number of outlets,

J , is finite. Therefore, a firm’s set of choice alternatives is A = {0, 1, ..., J}, which

is discrete and finite. We represent the decision of firm i at period t by the variable

ait ∈ A.

At the beginning of period t a firm is characterized by two vectors of state variables

which affect its profitability: xit and εit. Variables in xit are common knowledge for all

firms in the market, but the vector εit is private information of firm i. For instance,

some variables which could enter in xit are the firm’s number of outlets at the previous

period or the years of experience of the firm in the market. Managerial ability at

different outlets could be a component of εit. Let xt ≡ (dt, x1t, x2t, ..., xNt) and εt ≡
(ε1t, ε2t, ..., εNt) be the vectors of common knowledge and private information variables,

respectively. A firm’s current profits depend on xt, on its own private information εit,

and on the vector of firms’ current decisions, at ≡ (a1t, a2t, ..., aNt). Let Π̃i(at, xt, εit)

be firm i’s current profit function. We assume that {xt, εt} follows a controlled Markov

process with transition probability p(xt+1, εt+1|at, xt, εt). This transition probability is

common knowledge.

A firm decides its number of outlets to maximize expected discounted intertemporal

profits:

E

{ ∞∑
s=t

βs−t Π̃i(as, xs, εis) | xt, εit

}
(1)
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where β ∈ (0, 1) is the discount factor. The primitives of the model are the profit

functions {Π̃i(.) : i = 1, 2, ...N}, the transition probability p(.|.), and the discount

factor β. We consider the following assumptions on these primitives.

ASSUMPTION 1 (Additive separability): Private information appears additively in the

profit function. That is, Π̃i(at, xt, εit) = Πi(at, xt) + εit(ait), where Πi(.) is a real valued

function, and εit ≡ {εit(0), εit(1), ..., εit(J)} ∈ RJ+1 is a vector of real valued random

variables.

ASSUMPTION 2 (Conditional independence): The transition probability p(.|.) factors

as: p(xt+1, εt+1| at, xt, εt) = pε(εt+1) f(xt+1 | at, xt). That is: (1) given firms’ decisions

at period t, private information variables do not affect the transition of common knowl-

edge variables; and (2) private information variables are independently and identically

distributed over time.

ASSUMPTION 3 (Independent private values): Private information is independently

distributed across players: pε(εt) =
∏N

i=1 gi(εit), where, for any player i, gi(.) is a density

function which is absolutely continuous with respect to the Lebesgue measure.

ASSUMPTION 4 (Discrete common knowledge variables): Common knowledge vari-

ables have a discrete and finite support: xt ∈ X ≡ {x1, x2, ..., x|X|} where |X| is a finite

number.

Example (Entry and exit in a local retail market): Suppose the players are supermarkets

making decisions on whether to open, continuing to operate or closing their stores. The

market is a small city and a supermarket has at most one store in this market, i.e.,

ait ∈ {0, 1}. If a supermarket does not operate a store, it gets zero profits. Opening a

new store requires a sunk entry cost α2. If the supermarket operates a store, its profits

depend on: (1) the state of the local economy (e.g., population, income, unemployment

rate, etc), which is captured by the vector of demand shifters dt; (2) the store’s years

of experience in this market, represented by the variable cit; (3) the number of firms

operating in this market; (4) the average experience of other firms in this market; and

(5) a private information shock εit. Current profits of an active store are:

Π̃it = α0+α1dt−α2(1−ai,t−1)+α3 cit−δ1 ln
(
1 +

∑N

j=1
ajt

)
−δ2

(∑N
j=1 ajtcjt∑N

j=1 ajt

)
+εit (2)

where α0, α1, α2, α3, δ1 and δ1 are parameters. In particular, the parameters δ1 and

δ2 capture the existence of strategic interactions. The set of common knowledge state

variables consists of the demographic variables in dt, the decisions at previous period,

and the years of experience of all supermarkets.
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2.2 Strategies and Bellman equations

The game has a Markov structure, and we assume that firms play (stationary) Markov

strategies. That is, if {xt, εit} = {xs, εis} then firm i′s decisions at periods t and s are

the same. Therefore, we can omit the time subindex and use x′ and ε′ to denote next

period state variables. Let σ = {σi(x, εi)} be a set of strategy functions or decision

rules, one for each firm, with σi : X × RJ+1 → A. Associated with a set of strategy

functions σ we can define a set of conditional choice probabilities P σ = {P σ
i (ai|x)} such

that,

P σ
i (ai|x) ≡ Pr (σi(x, εi) = ai |x) =

∫
I {σi(x, εi) = ai} gi(εi) dεi (3)

where I{.} is the indicator function. The probabilities {P σ
i (ai|x) : ai ∈ A} represent the

expected behavior of firm i from the point of view of the rest of the firms when firm i

follows its strategy in σ.

Let πσ
i (ai, x) be firm i’s expected profit if it chooses alternative ai and the other firms

behave according to their respective strategies in σ.2 By the independence of private

information,

πσ
i (ai, x) =

∑
a−i∈AN−1

∏
j 6=i

P σ
j (aj|x)

Πi(ai, a−i, x) (4)

Let Ṽ σ
i (x, εi) be the value of firm i if this firm behaves optimally now and in the fu-

ture given that the other firms follow their strategies in σ. By Bellman’s principle of

optimality, we can write:

Ṽ σ
i (x, εi) = max

ai∈A

πσ
i (ai, x) + εi(ai) + β

∑
x′∈X

[∫
Ṽ σ

i (x′, ε′i) g(ε′i) dε′i

]
fσ

i (x′|x, ai)

 (5)

where fσ
i (x′|x, ai) is the transition probability of x conditional on firm i choosing ai and

the other firms behaving according to σ:

fσ
i (x′|x, ai) =

∑
a−i∈AN−1

∏
j 6=i

P σ
j (aj|x)

 f(x′|x, ai, a−i) (6)

It is convenient to define value functions integrated over private information vari-

ables. Let V σ
i (x) be the integrated value function

∫
Ṽ σ

i (x, εi) g(dεi). Based on this

definition and equation (5), we can obtain the integrated Bellman equation:

V σ
i (x) =

∫
max
ai∈A

{
πσ

i (ai, x) + εi(ai) + β
∑

x′∈X
V σ

i (x′) fσ
i (x′|x, ai)

}
gi(dεi) (7)

The right hand side of equation (7) is a contraction mapping in the space of value

functions (see Aguirregabiria and Mira, 2002). Therefore, for each firm, there is a

unique function V σ
i (x) that solves this functional equation for given σ.

2In the terminology of Harsanyi (1995) the profit functions Πi(a1, a2, ..., aN , x) are the conditional
payoffs and the expected profit functions πσ

i (ai, x) are the semi-conditional payoffs.
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2.3 Markov perfect equilibria

So far σ is arbitrary and does not necessarily describe the equilibrium behavior of other

firms. The following definition characterizes equilibrium strategies of all firms as best

responses to one another.

DEFINITION: A stationary Markov perfect equilibrium (MPE) in this game is a set of

strategy functions σ∗ such that for any firm i and for any (x, εi) ∈ X ×RJ+1,

σ∗i (x, εi) = arg max
ai∈A

{
πσ∗

i (ai, x) + εi(ai) + β
∑

x′∈X
V σ∗

i (x′) fσ∗

i (x′|x, ai)
}

(8)

Following Milgrom and Weber (1985) we can also represent a MPE in probability

space.3 First, notice that for any set of strategies σ, in equilibrium or not, the functions

πσ
i , V σ

i and fσ
i depend on players’ strategies only through the choice probabilities P

associated with σ. To emphasize this point, and to define a MPE in probability space,

we change slightly the notation and use the symbols πP
i , V P

i and fP
i , respectively, to

denote these functions. Let σ∗ be a set of MPE strategies, and let P ∗ be the probabilities

associated with these strategies. By definition, P ∗
i (ai|x) =

∫
I {ai = σ∗i (x, εi)} gi(εi) dεi.

Therefore, equilibrium probabilities are a fixed point. That is, P ∗ = Λ(P ∗), where for

any vector of probabilities P , Λ(P ) = {Λi(ai|x; P−i)}, and:

Λi(ai|x; P−i) =
∫

I

(
ai = arg max

j∈A

{
πP

i (j, x) + εi(j)+
β
∑

x′∈X V P
i (x′) fP

i (x′|x, j)

})
gi(εi) dεi (9)

We call the functions Λi best response probability functions. Given our assumptions on

the distribution of private information, best response probability functions are contin-

uous in the compact set of players’ choice probabilities. By Brower’s theorem, there

exists at least one equilibrium. In general, the equilibrium is not unique.

Equilibrium probabilities solve the coupled fixed-point problems defined by (7) and

(9). Given a set of probabilities P we obtain value functions V P
i as solutions of the N

fixed point problems in (7); and given these value functions we obtain best response

probabilities using the right hand-side of equation (9).

2.4 An alternative best response mapping

We now provide an alternative best response mapping (in probability space) which

avoids the solution of the N dynamic programming problems in (7). The evaluation

of this mapping is computationally much simpler than the evaluation of the mapping

Λ(P ), and it will prove more convenient for the estimation of the model.

3Milgrom and Weber consider both discrete-choice and continuous-choice games. In their terminol-
ogy {Pσ

i } are called distributional strategies, and P ∗ is an equilibrium in distributional strategies.
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Let P ∗ be an equilibrium, and let V P ∗
1 , V P ∗

2 , ..., V P ∗
N be firms’ value functions asso-

ciated with this equilibrium. Since equilibrium probabilities are best responses, we can

rewrite the Bellman equation (7) as,

V P ∗

i (x) =
∑
ai∈A

P ∗
i (ai|x)

[
πP ∗

i (ai, x) + eP ∗

i (ai, x)
]
+ β

∑
x′∈X

V P ∗

i (x′) fP ∗
(x′|x) (10)

where fP ∗
(x′|x) is the transition probability of x induced by P ∗.4 The term eP ∗

i (ai, x)

is the expectation of εi(ai) conditional on x and on alternative ai being the optimal

response for player i. By Proposition 1 in Hotz and Miller (1993), this conditional

expectation is a function of ai and P ∗
i (x) only.

Taking equilibrium probabilities as given, expression (10) describes the vector of

values V P ∗
i as the solution of a system of linear equations. In vector form:(

I − β F P ∗)
V P ∗

i =
∑
ai∈A

P ∗
i (ai) ∗

[
πP ∗

i (ai) + eP ∗

i (ai)
]

(11)

where I is the identity matrix; F P ∗
is a matrix with transition probabilities fP ∗

(x
′|x);

and P ∗
i (ai), πP ∗

i (ai) and eP ∗
i (ai) are vectors of dimension |X| which stack the correspond-

ing state-specific elements. Let Γi(P
∗) ≡ {Γi(x; P ∗) : x ∈ X} be the solution to this

system of linear equations, such that V P ∗
i (x) = Γi(x; P ∗). For arbitrary probabilities P ,

not necessarily in equilibrium, Γi(.) can be interpreted as a valuation operator: that is,

Γi(x; P ) is the expected value of firm i if all firms (including firm i) behave today and in

the future according to their choice probabilities in P . Therefore, we can characterize a

MPE as a fixed point of a mapping Ψ(P ) ≡ {Ψi(ai|x; P )} with

Ψi(ai|x; P ) =
∫

I

(
ai = arg max

j∈A

{
πP

i (j, x) + εi(j)+
β
∑

x′∈X Γi(x
′; P ) fP

i (x′|x, j)

})
gi(εi) dεi (12)

The only difference between best response mappings Λi and Ψi is that Ψi takes firm

i′s future actions as given whereas Λi does not. To evaluate Λi one has to solve N

dynamic programming problems, whereas to obtain Γi and Ψi one only has to solve N

systems of linear equations. In the context of the estimation of the model, we will see

that using mapping Ψ instead of Λ provides significant computational gains.

Example (Entry and exit in a local retail market): Consider the example in section 2.1.

Expected current profits if not active are πP
i (0, x) = 0 and if active they are

πP
i (1, xt) = α0 + α1 dt − α2 (1− ai,t−1) + α3 cit − δ1 NP

it − δ2 CP
it (13)

with NP
it =

∑
a−i∈{0,1}N−1

Pr (a−i|xt) ln
(
1 +

∑N

j=1
a−i(j)

)
, and

CP
it =

∑
a−i∈{0,1}N−1

Pr (a−i|xt)
(∑N

j=1 a−i(j) cjt/
∑N

j=1 a−i(j)
)
. We can also write this

4That is, fP∗
(x′|x) =

∑
a∈AN

(∏N

j=1
P ∗

j (aj |x)
)

f(x′|x, a).
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expected profit as πP
i (1, xt) = zP

it θ, where zP
it =

{
1, dt, ai,t−1 − 1, cit, N

P
it , C

P
it

}
, and θ

is the vector of parameters (α0, α1, α2, α3, δ1, δ2)
′. If the private information shock is

normal with zero mean and variance σ2, then eP
i (0, xt) = 0 and eP

i (1, xt) =

= σφ (Φ−1 (Pi(1|xt))) /Pi(1|xt), where φ(.) and Φ (.) are the density and the cumulative

distribution of the standard normal, respectively. The multiplicative separability of the

parameters θ in expected profits implies that these parameters are also multiplicative

separable in the mapping Γi(P ). That is, we can write Γi(P ) = ZP
i θ + σ λP

i , where

ZP
i and λP

i are a matrix and a vector which are obtained by solving a system of linear

equations as in (11) in order to collect the infinite sum of zP and eP (1, .) terms, respec-

tively, along all possible future paths originating from a given state. Finally, the best

response functions Ψi have the following form:

Ψi(1|xt; P ) = Φ

( (
zP

it + β ZP
it

) θ

σ
+ β λP

it

)
(14)

where ZP
it =

∑
x′∈X ZP

i (x′)∇fP
it (x

′), λP
it =

∑
x′∈X λP

i (x′)∇fP
it (x

′),∇fP
it (x

′) = fP
i (x′|xt, 1)−

fP
i (x′|xt, 0), and ZP

i (x′) is the corresponding row of matrix ZP
i .

3 Estimation

3.1 Econometric model and data generating process

Consider a researcher who observes players’ actions and common knowledge state vari-

ables across M geographically separate markets over T periods, where M is large and

T is small. This is a common sampling framework in empirical applications in IO.

Data = {amt, xmt : m = 1, 2, ...,M ; t = 1, 2, ..., T} (15)

where m is the market subindex, and amt = (a1mt, a2mt, ..., aNmt). An important as-

pect of the data is whether players are the same across markets or not. We use the

terminology global players and local players, respectively, to refer to these two cases.

In our example of the model of market entry-exit we may have some large firms who,

active or not, are potential entrants in every local market, and some other firms who are

potential entrants in only one local market. For instance, in the fast food industry Mac

Donald’s would be a global player whereas a family-owned fast food outlet would be a

local player. Our framework can accommodate both cases. However, we can allow for

heterogeneity in the structural parameters across players only if those players’ decisions

are observed across all or most of the markets. To illustrate both cases, the Monte Carlo

experiments that we present in section 4 are for the model with global players only, and

the empirical application in section 5 is for local players only.
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The primitives {Πi, gi, f, β, : i ∈ I} are known to the researcher up to a finite vector

of structural parameters θ ∈ Θ ⊂ RK . Primitives are continuously differentiable in θ.

Let θ0 ∈ Θ be the true value of θ in the population. The researcher is interested in the

estimation of θ0. Under Assumption 2 (i.e., conditional independence), the transition

probability function f can be estimated from transition data using a standard maximum

likelihood method and without solving the model. We focus on the estimation of the

rest of the primitives. We consider the following assumption on the data generating

process.

ASSUMPTION 5: Let P 0
mt ≡ {Pr(amt = a|xmt = x) : (a, x) ∈ AN × X} be the

distribution of amt conditional on xmt in market m at period t. (A) For every observation

(m, t) in the sample P 0
mt = P 0. (B) Players expect P 0 to be played in future (out

of sample) periods. (C) There is a unique θ0 ∈ Θ such that P 0 = Ψ(P 0; θ0) and

P 0 6= Ψ(P 0; θ) for any θ 6= θ0.

Assumption 5A establishes that the data has been generated by only one Markov

Perfect equilibrium.5 Without this assumption, we would need to extend the primitives

of the model to include a probability distribution that determines the likelihood with

which different equilibria are selected.6 Assumption 5B is a natural extension which is

necessary in order to accommodate dynamic models. Without it, we cannot compute

the expected future payoffs of within-sample actions unless we (once again) specify the

beliefs of players regarding the probability of switching equilibria in the future. Our

assumption avoids the specification of ad-hoc equilibrium selection devices. Assumption

5C is a standard identification condition.

3.2 Maximum likelihood estimation

For some values of the structural parameters the model can have multiple equilibria.

Therefore, we have a likelihood correspondence instead of a likelihood function and this

makes estimation by maximum likelihood non-standard. To illustrate this issue, let Υ

be the set of equilibrium types and suppose that this set is discrete and countable, e.g.,

Υ = {1, 2, 3...}. An equilibrium type is a probability function P τ (θ) where τ ∈ Υ is the

5This assumption can be relaxed if we are willing to impose some additional structure on the
sampling framework. For instance, suppose there is a finite number of equilibria that are played in
the data. The pseudo maximum likelihood methods in this paper can still be applied if the number of
observations (markets) of each equilibrium type goes to infinity with sample size, and the researcher
knows the type of equilibria that is played in each market and time period, and (if different equilibria
are played over time) players do not anticipate the switch from one equilibrium to another.

6Moro (2003) introduced the assumption that only one equilibrium is present in the data in a
somewhat different context. In his work the researcher observes a function of the equilibrium strategies
rather than the equilibrium object itself; therefore, additional assumptions are needed in order to
identify the selected equilibrium from the data.
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index that represents the type. For any type τ we can define an equilibrium type-specific

log-likelihood function:

lτ (θ) =
1

M

∑M

m=1

∑T

t=1

∑N

i=1
ln P τ

i (aimt|xmt; θ) (16)

Under Assumption 5 the population probabilities P 0 belong to one and only one equi-

librium type. That is, there is a τ 0 ∈ Υ and θ0 ∈ Θ such that P 0 = P τ0(θ0). If we knew

the equilibrium type τ 0, we would maximize lτ0(θ) with respect to θ and obtain the MLE

of θ0. Under standard regularity conditions, this estimator is consistent, asymptotically

normal and efficient.

However, we do not know the equilibrium type of P 0, and therefore this MLE is

unfeasible. In principle, we could consider an algorithm that searches both for the

equilibrium type τ 0 and for the vector of parameters θ0. For instance, if we knew and

could characterize all the equilibrium types, we would obtain equilibrium type-specific

ML estimators: for any τ ∈ Υ, θ̂
τ

= arg maxθ∈Θ lτ (θ). Then, we could define the

estimator:

θ̂ = θ̂
τ∗

, where τ ∗ = arg max
τ∈Υ

lτ (θ̂
τ
). (17)

In practice, this estimator can be difficult to implement. First, notice that we need

to know all the equilibrium types that the model has on Θ. This is computationally

impractical even for relatively simple models. Second, to obtain an equilibrium type-

specific estimator, say θ̂
τ
, we need an algorithm that guarantees that for different values

of θ we always select equilibrium type τ . This can be a very difficult task for some

types of equilibria (see McKelvey and McLennan, 1996). And third, the computation

of this estimator requires one to evaluate the mapping Ψ and the Jacobian matrix

∂Ψ/∂P ′ at many different values of P . Though evaluations of Ψ for different θ′s can

be relatively cheap because we do not have to invert the matrix (I − βF ) in (11),

evaluations for different P imply a huge cost when the dimension of the state space is

large because this matrix needs to be inverted each time. Therefore, this estimator can

be impractical in models where the dimension of P is relatively large. For instance, that

is the case in most models with heterogenous players because the dimension of the state

space increases exponentially with the number of players. For that type of models this

estimator can be impractical even when the number of players is not too large. These

problems motivate the following pseudo likelihood estimators.

11



3.3 Pseudo maximum likelihood estimation

The PML estimators try to minimize the number of evaluations of Ψ for different vectors

of players’ probabilities P . We define first the pseudo likelihood function:

QM(θ, P ) =
1

M

∑M

m=1

∑T

t=1

∑N

i=1
ln Ψi(aimt|xmt; P, θ) (18)

where P is an arbitrary vector of players’ choice probabilities. Suppose that we knew

the population probabilities P 0, and consider the following PML estimator:

θ̂U ≡ arg max
θ∈Θ

QM(θ, P 0) (19)

Under standard regularity conditions this estimator is root-M consistent and asymptoti-

cally normal, and its asymptotic variance is Ω−1
θθ , where Ωθθ is the variance of the pseudo

score, i.e., Ωθθ ≡ E({∇θsm} {∇θsm}′), with sm ≡
∑T

t=1

∑N

i=1
ln Ψi(aimt|xmt; P

0, θ0).

Notice that to obtain this estimator we have to evaluate the mapping Ψ at only one

value of players’ choice probabilities.

However, this PML estimator is unfeasible because P 0 is unknown. Suppose that we

can obtain a
√

M−consistent nonparametric estimator of P 0. For instance, if there are

not unobservable state variables, we can use a frequency estimator or a kernel method to

estimate players’ choice probabilities. Let P̂ 0 be this nonparametric estimator. Then, we

can define the feasible two-step PML estimator: θ̂2S ≡ arg max
θ∈Θ

QM(θ, P̂ 0). Proposition

1 presents the asymptotic properties of this estimator.

PROPOSITION 1: Suppose that: (1) Assumptions 1 to 5 hold; (2) Ψ(P, θ) is twice

continuously differentiable; (3) Θ is a compact set; (4) θ0 ∈ int (Θ); and (5) let P̂ 0 =

(1/M)
∑M

m=1 qm be an estimator of P 0 such that
√

M
(
P̂ 0 − P 0

)
−→d N (0, Σ). Then,

√
M
(
θ̂2S − θ0

)
−→d N (0, V2S), where:

V2S = Ω−1
θθ + Ω−1

θθ ΩθP Σ Ω′
θP Ω−1

θθ

and ΩθP ≡ E({∇θsm} {∇P sm}′), with ∇P representing the partial derivative with re-

spect to P . Given that Ω−1
θθ ΩθP Σ Ω′

θP Ω−1
θθ is a positive definite matrix, we have that the

feasible PML estimator is less efficient that the PML based on true P 0, i.e., V2S ≥ Ω−1
θθ .

Furthermore, if P̂ 0
A and P̂ 0

B are two estimators of P 0 such that ΣA −ΣB > 0 (positive

definite matrix), then the PML estimator based on P̂ 0
B has lower asymptotic variance

than the estimator based on P̂ 0
A.

Root-M consistency and asymptotic normality of P̂ 0, together with regularity con-

ditions, are sufficient to guarantee root-M consistency and asymptotic normality of this

PML estimator. There are several reasons why this estimator is of interest. It deals
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with the problem of indeterminacy associated with multiple equilibria. Furthermore,

repeated solutions of the dynamic game are avoided and this can result in significant

computational gains.

However, the estimator has several important limitations. First, its asymptotic

variance depends on the variance Σ of the nonparametric estimator P̂ 0. Therefore, it can

be very inefficient when Σ is large. Second, and most importantly, for the sample sizes

available in actual applications, the nonparametric estimator of P 0 can be extremely

imprecise even when the number of players is not too large (e.g., 5 players). This can

generate serious finite sample biases in the estimator of structural parameters. We

illustrate this problem with several Monte Carlo experiments in Section 4. And third,

for some models it is not possible to obtain consistent nonparametric estimates of P 0.

That is the case in models with unobservable market characteristics.

3.4 Nested pseudo likelihood method

The nested pseudo likelihood (NPL) method is a recursive extension of the two-step

PML estimator. Let P̂0 be an initial guess of the vector of players’ choice probabilities.

It is important to emphasize that this guess need not be a consistent estimator of P 0.

Given P̂0, NPL generates a sequence of estimators {θ̂K : K ≥ 1} where the K − stage

estimator is defined as:

θ̂K = arg max
θ∈Θ

QM(θ, P̂K−1) (20)

and the probabilities {P̂K : K ≥ 1} are obtained recursively as:

P̂K = Ψ(θ̂K , P̂K−1) (21)

That is, θ̂1 maximizes the pseudo likelihood QM(θ, P̂0); given P̂0 and θ̂1 we obtain a

new vector of probabilities by iterating in the equilibrium mapping, i.e., P̂1 = Ψ(θ̂1, P̂0);

then, θ̂2 maximizes the pseudo likelihood QM(θ, P̂1); and so on. A NPL fixed-point is

the limit of this sequence, if it exists.7 Clearly, a NPL fixed point (θ̂NPL, P̂NPL) has the

following two properties: (a) θ̂NPL maximizes the pseudo likelihood QM(θ, P̂NPL) and

(b) P̂NPL = Ψ(θ̂NPL, P̂NPL). For any given sample, Brower’s theorem guarantees the

existence of at least one NPL fixed-point.8 However, the set of NPL fixed-points may

contain more than one pair (θ, P ). The NPL estimator is defined as the NPL fixed-point

7Although we have not proved convergence of the NPL algorithm in general, we have always obtained
convergence in our Monte Carlo experiments and applications.

8The pseudo score ∂QM (θ, P )/∂θ and the equilibrium mapping P−Ψ(θ, P ) are continuous mappings
in the compact set of (θ, P ).
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associated with the maximum value of the pseudo likelihood. Proposition 2 establishes

the large sample properties of this estimator.

PROPOSITION 2: Suppose that: (1) Assumptions 1 to 5 hold; (2) Ψ(P, θ) is twice

continuously differentiable; (3) Θ is a compact set; (4) θ0 ∈ int (Θ); and (5) the NPL

estimator is the NPL fixed-point with the maximum value of the pseudo likelihood. Then,√
M
(
θ̂NPL − θ0

)
−→d N (0, VNPL), where:

VNPL =
[
Ωθθ + ΩθP (I −∇P Ψ′)

−1∇θΨ
]−1

Ωθθ

[
Ωθθ +∇θΨ

′ (I −∇P Ψ)−1 Ω′
θP

]−1

where ∇P Ψ is the Jacobian matrix ∇P Ψ(P 0, θ0). Furthermore, if the matrix ∇P Ψ

has all its eigenvalues between 0 and 1, the NPL estimator is more efficient than the

unfeasible PML estimator, i.e., VNPL < Ω−1
θθ < V2S.

NPL estimation maintains the two main advantages of PML: it is feasible in models

with multiple equilibria, and it minimizes the number of evaluations of the mapping Ψ

for different values of P . Furthermore, it addresses the three limitations of the two-stage

PML that were mentioned above. First, under some conditions on the Jacobian matrix

∇P Ψ, the NPL is asymptotically more efficient than the unfeasible PML and therefore

more efficient than any two-step PML estimator, whatever the initial estimator of P 0

that we use. In other words, imposing the equilibrium condition in the sample can

yield asymptotic efficiency gains relative to the two-step PML estimators. The last

part of Proposition 2 provides one set of sufficient conditions for such a result to hold.

Second, in small samples the NPL estimator reduces the finite sample bias generated

by imprecise estimates of P 0. This point is illustrated in the Monte Carlo experiments

of section 4. And third, consistency of the NPL estimator does not require that we

start the algorithm with a consistent estimator of choice probabilities. If the initial

guess P̂0 is a consistent estimator, consistency of a NPL fixed-point is straightforward

because all elements of the sequence of estimators {θ̂K , P̂K : K ≥ 1} obtained from

the NPL algorithm are consistent (see Aguirregabiria and Mira 2002 for a recursive

proof in the single agent context). If the researcher uses an initial guess which is not

consistent, such as a reduced form parametric approximation with unknown probability

limit, the NPL estimator will still converge in probability to an NPL fixed-point of

the Q∞(θ, P ) function, the probability limit of the sample criterion QM(θ, P ). If the

population function has more than one fixed-point local maximum, a ’poorly behaved’

initial guess P̂0 might identify a NPL fixed point which is not (θ0, P 0). Condition (5) in

Proposition 2 rules this out. In practical terms this means that the researcher should

initiate the NPL with different P guesses and, if different limits are attained he should

choose the one which maximizes the value of the pseudo likelihood. A particularly
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important implication of this is that NPL may be applied to situations in which some

time-invariant market characteristics are unobserved by the researcher. This case is

treated in some detail in the Appendix.

4 Monte Carlo experiments

This section presents the results from several Monte Carlo experiments based on a

dynamic game of market entry and exit with heterogeneous firms. The specification of

the profit function of firm i is:

Π̃imt = α0i + α1 dmt − α2 (1− aim,t−1)− δ ln
(
1 +

∑N

j=1
ajmt

)
+ εimt (22)

dmt represents the size of market m at period t (e.g., population in the market). The

parameters to estimate are {α0i : i = 1, 2, ...N}, α1, α2 and δ. The parameters α2

and δ represent entry cost and the magnitude of strategic interactions, respectively, and

they are particularly important for the dynamics of market structure in this model. We

consider a sampling framework in which the same N firms are the potential entrants

over M separate markets. The following primitives are invariant across the different

experiments: N = 5, α01 = −1.9, α02 = −1.8, α03 = −1.7, α04 = −1.6, α05 =

−1.5, α1 = 1, β = 0.95, and {εimt} are iid extreme value with zero mean and unit

dispersion. Also, the variable dmt has a discrete support with 5 points and it follows a

first order Markov process which is homogeneous across markets.9 For each experiment,

we computed one MPE by iterating in the best response probability mapping starting

with a vector of choice probabilities Pi(ai = 1|x) = 0.5 for every i and x. We have

implemented experiments with sample size M = 200 and M = 400 markets, but the

results are very similar and we report here only results for M = 400. For each experiment

we use 1000 Monte Carlo simulations to approximate the finite sample distribution of

the estimators. The transition probability of the variable dmt is considered as known in

these experiments.

Entry costs, α2, and the magnitude of strategic interactions, δ, vary over the exper-

iments. We consider values of α2 between 0 and 4 and values of δ between 0 and 2. To

give an idea of the magnitude of these values, notice that the expected one-period profit

9The support of dmt is {1, 2, 3, 4, 5}, and the transition probability matrix is:
0.8 0.2 0.0 0.0 0.0
0.2 0.6 0.2 0.0 0.0
0.0 0.2 0.6 0.2 0.0
0.0 0.0 0.2 0.6 0.2
0.0 0.0 0.0 0.2 0.8


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of firm i = 5 (i.e., the most efficient firm) is:

Under monopoly : Pr ofit(firm 5) = α05 + α1E(dmt) = 1.5
Under duopoly : Pr ofit(firm 5) = α05 + α1E(dmt)− δ ln(2) = 1.5− 0.69 δ
With three firms : Pr ofit(firm 5) = α05 + α1E(dmt)− δ ln(3) = 1.5− 1.10 δ

Therefore, δ = 1 implies that profits of this firm decrease by 54% when we go from a

monopoly to a duopoly, and by 73% when we go from monopoly to three firms. With

δ = 2, these percentages are 92% and 147%, respectively. An entry cost α2 = 1 implies

67% of firm 5’s profit as a monopolist, and 124% of its profit as a duopolist (with δ = 1).

Table 1 presents the values of α2 and δ in the different experiments, as well as some

descriptive statistics associated with the Markov perfect equilibrium of each experi-

ment.10 An increase in δ reduces firms’ profits and therefore it reduces the number of

firms in the market and the probability of entry, and it increases the probability of exit.

The effect on the number of exits (or entries) is ambiguous and depends on the parame-

ters of the model.11 In Table 1, we can see that for larger values of δ we get fewer active

firms but more exits and entries. We can also see that in markets with higher entry

costs we have lower turnover and more persistence in the number of firms. Interestingly,

increasing the cost of entry has different effects on the heterogenous potential entrants.

That is, it tends to increase the probability of being active of relatively more efficient

firms, and reduces that probability for the more inefficient firms.

For each of these six experiments we have obtained the two-step PML and the NPL

estimators under the following choices of the initial vector of probabilities: (1) the true

vector of equilibrium probabilities P 0; (2) nonparametric frequency estimates; (3) logit

models, one for each firm, with explanatory variables {am,t−1, dmt}; and (4) random

draws from a U(0, 1). The first case is the unfeasible or PML estimator (which we label

’2-true’) and we will use it as a benchmark for comparison with the other estimators.

The estimator initiated with logit estimates (’2-logit’) is not consistent but it has lower

variance than the estimator initiated with nonparametric frequency estimates (’2-freq’)

and therefore it can have better properties in small samples. The random values for P̂0

represent an extreme case of inconsistent initial estimates of choice probabilities. Notice

that with 400 observations an a state space with 160 points, the frequency estimator is

also very imprecise, i.e., most estimates are zeros or ones.

Tables 2, 3 and 4 summarize the results from these experiments. Table 2 presents the

median number of iterations it takes the NPL algorithm to obtain a NPL fixed-point.

10The descriptive statistics in Table 1 were obtained using a large sample of 50,000 markets where
the initial values of state variables were drawn from their steady-state distribution.

11Notice that the number of exits is equal to the number of active firms times the probability of
exit. While a higher δ increases the probability of exit, it also reduces the number of active firms, and
therefore its effect on the number of exits is ambiguous.
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Table 3 shows the empirical mean and standard deviations of the estimators based on

the 1000 replications. Table 4 compares the Mean Squared Error (MSE) of the 2-freq,

2-logit and NPL estimators by showing the ratio of the MSE of each of them to the

MSE of the ’benchmark’ 2-true estimator.

Remark 1: The NPL algorithm always converged and, more importantly, it always

converged to the same estimates regardless of the value of P̂0 (true, nonparametric,

logit or random) that we used to initialize the procedure. This was the case not only

for the 6,000 data sets generated in the six experiments presented here, but also for

other similar experiments that we do not report here (e.g., 6,000 data sets with 200

observations). Of course, this may be a property only specific of our functional form

assumptions (e.g., logit, multiplicative separability of parameters) or of the equilibria we

considered (e.g., stable equilibrium). But it is encouraging to see that, at least for this

particular class of models, the NPL works even when initial probabilities are random.

We obtained the same result when using actual data in the application in section 5.

Remark 2: Table 2 shows that with δ = 1, we need a relatively small number of iterations

to obtain the NPL estimator. With δ = 2, the number of NPL iterations is significantly

larger. In general, the algorithm converges faster when we initialize it with the logit

estimates.

Remark 3: The two-freq estimator has a very large bias in all the experiments, though

its variance is similar to, and sometimes even smaller than, the variances of NPL and

two-true estimators. Therefore, it seems that the main limitation of two-freq is not its

larger asymptotic variance (relative to NPL) but its large bias in small samples.

Remark 4: The NPL estimator performs very well relative to the two-true estimator

both in terms of variance and bias. The square-root MSE of the NPL estimator is never

more than 27% larger than that of the 2-true estimator. In fact, the NPL estimator

can have lower MSE than the 2-true estimator. This was always the case in experiments

where the parameter δ is relatively large, as in experiment 3.

Remark 5: The two-logit performs very well for this simple model. In fact, it has very

similar bias and variance as the NPL estimator. Only in experiment 4, with δ = 2, we

find very significant gains in term of lower bias and variance of using NPL instead of two-

logit estimator. In general, the stronger the strategic interactions the more important

the gains of iterating in the NPL procedure.

Remark 6: In all the experiments, the most important gains associated with the NPL

estimator occur for the entry cost parameter, α2
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5 An application

5.1 Data and descriptive evidence

This section presents an empirical application of a dynamic game of firm entry and

exit in local retail markets. The data come from a census of Chilean firms created for

tax purposes by the Chilean Servicio de Impuestos Internos (Internal Revenue Service).

This census contains the whole population of Chilean firms paying sales taxes. Sales

taxes are mandatory for any firm in Chile regardless of its size, industry, region, etc.

The data set has a panel structure; it has annual frequency and covers the years 1994 to

1999. The variables in the data set at the firm level are: (1) firm identification number;

(2) firm industry at the 5 digit level; (3) annual sales, discretized in twelve cells; and

(4) the comuna (i.e., county) where the firm is located. We combine these data with

annual information on population at the level of comunas for every year between 1990

and 2003.

We consider five retail industries and estimate a separate model for each of them.

The industries are: restaurants, bookstores, gas stations, shoe shops, and fish shops.

Competition in these retail industries occurs at the local level, and we consider comunas

as local markets. There are 342 comunas in Chile. In order to have a sample of

independent local markets we exclude those comunas in the metropolitan areas of the

larger towns: Santiago (52 comunas), Valparaiso (9 comunas), Rancagua (17 comunas),

Concepcion (11 comunas), Talca (10 comunas) and Temuco (20 comunas). We also

exclude comunas with populations larger than 50, 000 because it is likely that they have

more than one market (34 comunas). Our working sample contains 189 comunas. In

1999, the median population of a comuna in our sample was 10, 400, and the first and

third quartiles were 5, 400 and 17, 900, respectively.

Table 5 presents descriptive statistics on the structure and the dynamics of these

markets. There are some significant differences in the structure of the five industries.

The number of restaurants (20 firms per 10,000 people) is much larger than the number

of gas stations, bookstores, fish shops or shoe shops (between 1 and 4 firms per 10,000

people). Market concentration, measured by the Herfindahl index, and firm size (i.e.,

revenue per firm) is also smaller in the restaurant industry. Turnover rates are very

high in all these retail industries. It is difficult to survive during the first three years

after entry. However, survival is more likely in gas stations than in the other industries.

There are at least three factors that could explain why the number of restaurants

is much larger than the number of gas stations or bookstores. First, differences in

economies of scale are potentially important. The proportion of fixed costs in total oper-

ating costs may be smaller for restaurants. Second, differences in entry sunk costs might
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also be relevant. While the creation of a new gas station or a new bookstore requires

an important investment in industry-specific capital, this type of irreversible invest-

ment may be less important for restaurants. And third, strategic interactions could be

smaller between restaurants than between other retail businesses. For instance, product

differentiation might be more important among restaurants than among gas stations.

To analyze how these three factors contribute to explain the differences between these

industries, we estimate a model of entry and exit that incorporates these elements.

5.2 Specification

The profit function if the firm operates in the market is:

Π̃imt(1) = α0+α1 ln (POPmt)+α2 (1−aim,t−1)−δ ln
(
1 +

∑
j 6=i

ajmt

)
+ωm+εimt (23)

POPmt is the population in market m and year t. The variable ωm represents time-

invariant market characteristics that are common knowledge to the players but are

unobservable to us. Appendix B describes the NPL estimator for this model with

unobserved time-invariant market characteristics. We assume that ωm is i.i.d. over

markets N(0, σ2
ω).12 The economic interpretation of the parameters is the following:

−α0 is a fixed operating cost; α2 is an entry sunk cost; α1 measures how the variable

profit of a monopolist increases with market size; and δ captures the effect of the number

of competitors on a firm’s profit, i.e., strategic interactions.13 We assume that the

logarithm of POPmt follows an AR(1) process where the autoregressive parameter is

homogeneous across markets but the mean varies over markets:

ln (POPmt) = ηm + ρ ln (POPm,t−1) + umt (24)

The vector of state variables in this model includes the incumbent indicator of each

firm at the beginning of the year (i.e., aim,t−1 for i = 1, 2, ..., N). The number of states

associated with these state variables is 2N , which is intractable. However, the structure

of this model is such that we can reduce the number of states to 2N . First, notice

that all firms are ex-ante identical, and therefore we consider symmetric Markov perfect

12In fact, both ln(POPmt) and ωm have discrete distributions. For ωm we consider a discretized
version of a normal distribution with zero mean. The support is symmetric around zero with 21 points.
We use the method in Tauchen (1986) to discretize the AR(1) process for ln(POPmt). We consider 10
points in the support of ln(POPmt).

13We assume that the current payoff of a non active firm is zero regardless of its incumbency status,
so we are implicitly normalizing the exit value to zero. A nice feature of this normalization is that
the estimate of α2 is an estimate of the sunk cost, i.e., entry cost minus exit value. However, this
normalization is not innocuous for the interpretation of other parameter estimates. In particular, our
estimate of −α0 is an estimate of the fixed operating cost plus a term that is zero only if the exit value
is zero.
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equilibria. That is, every incumbent firm has the same probability of exit, and every

potential entrant has the same probability of entry. And second, a firm’s profit depends

on the number of competitors but not on the identity of the competitors. Taking into

account these two features of the model, it is simple to show that the all the information

in {aim,t−1 : i = 1, 2, ..., N} that is relevant to predict a firms’ current and future profits

is contained in just two variables: the firm’s own incumbent status, aim,t−1, and the

number of incumbent firms, nm,t−1. The number of states associated with these two

variables is 2N .

5.3 Estimation results

The parameters of the AR(1) process for the logarithm of population are estimated

by full maximum likelihood using data for the period 1990-2003. The estimate of the

autoregressive coefficient is 0.9757 (s.e. = 0.0008). Other estimation methods provide

very similar estimates.14 To obtain the matrices of transition probabilities associated

with a discretization of these AR(1) processes we use the method in Tauchen (1986).

We treat the number of potential entrants in each market as an estimable parameter

and we assume that it varies across markets and industries but is constant over time.

Our estimate of the number of potential entrants in market-industry m is:

Nm = max

{
max

t∈(1,2,...,T )
{nm,t−1 + enmt} ; 2

}
(25)

where nm,t−1 is the number of firms active at period t − 1; enmt is the number of new

entrants at period t; and we assume that there are at least two potential entrants in each

market. Table 6 presents the distribution of the number of potential entrants for each

industry. We have also considered estimates of the number of potential entrants under

two alternative scenarios: (a) the same N within an industry but different N ′s across

industries; and (b) the same N for every market and every industry. The qualitative

estimation results that we describe below are very similar regardless which of these three

approaches we use to estimate the number of potential entrants.

Table 7 presents NPL estimates of this model for the five industries.15 In spite of

the parsimonious specification of the model, with only five parameters, the measures

of goodness of fit are high. Both for the number of entrants and for the number of

exits, the R-square coefficients are always larger than 0.19. All the parameters have the

14The within-groups (or fixed effects) estimator is 0.9766 (s.e. = 0.0008). OLS in first differences:
0.9739 (s.e. = 0.0032). And the IV in first differences using population at t− 2 as instrument is 0.9706
(s.e. = 0.0128).

15The discount factor is fixed at β = 0.95. As in the case of the Monte Carlo experiments, we
initializes the NPL algorithm with different vectors of probabilities and we always converged to the
same NPL fixed point.
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expected signs. It is important to note that in the estimation of a version of the model

without unobserved market characteristics we obtained negative estimates of δ in the

gas station and the shoe shop industries.

As is common in discrete choice models, the parameters in the profit function are

identified only up to scale. Given that the dispersion of the unobservable ε′s may change

across industries, we cannot obtain the relative magnitude of fixed costs, entry costs or

strategic interactions by just comparing the values of α0/σ, α2/σ or δ/σ for different

industries. For this reason, we also report three normalized coefficients at the bottom

of Table 7. The coefficient exp (−α0/α1) represents the minimum market population

such that variable profits of a monopolist can cover fixed operating costs. We can see

that fixed operating costs, relative to variable profits, are smaller in restaurants than

in the other four industries. This can be a major factor to explain the relatively large

number of firms in the restaurant industry. Bookstores are the retailers with the largest

proportion of fixed costs in total operating costs. The coefficient exp (α2/α1) represents

the minimum market population such that variable profits of a monopolist can cover

entry sunk costs in a single year. The estimates of this coefficient are significantly smaller

than for the coefficient exp (−α0/α1) associated with fixed operating costs. It seems that

for these retail industries sunk entry costs are small relative to fixed operating costs. Gas

stations are the retailers with largest sunk costs. However, the inter-industry differences

in sunk costs explain little of the differences in the number of firms. The importance

of strategic interactions can be measured by the coefficient δ ln(2)/α1. It represents

the percentage increase in market population such that profits of a duopolist in the

larger market are equal to profits of a monopolist in the smaller market. According to

this coefficient, restaurants and bookstores are the retailers with the smallest strategic

interactions. This might be due to product differentiation in these two industries.

Based on these estimations the main differences between these retail industries can

be summarized as follows. First, economies of scale are very small in the restaurant in-

dustry, and this is the main factor to explain the relatively large number of restaurants.

Second, strategic interactions are particularly small among restaurants and among book-

stores, which might be due to more product differentiation in those industries. Third,

economies of scale seem particularly important in the bookstore industry. However, the

number of bookstores is in fact larger than the number of gas stations or the number of

shoe shops. The reason is that negative strategic interactions are weak in this industry.

And fourth, industry specific investments, i.e., sunk costs, are small in all these indus-

tries. Gas stations is the industry with largest sunk costs, but the magnitude of these

costs does not result in a particularly small number of firms in this industry. However,

it does contribute to explain the lower turnover for gas stations.
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6 Conclusions

This paper presents a class of empirical dynamic discrete games and studies the estima-

tion of structural parameters in these models. We are particularly concerned with two

estimation problems: the computational burden in the solution of the game, and the

problem of multiple equilibria. We proposed two different pseudo maximum likelihood

(PML) methods that deal with these issues: two-step PML and nested PML. We argue

that the second method has several potential advantages relative to the first. These ad-

vantages are illustrated in our Monte Carlo experiments and in a empirical application.

In particular, the two-step PML tend to have a larger finite sample bias than the NPL.
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APPENDIX A: PROOFS OF PROPOSITIONS

Notation: For notational simplicity we consider in this appendix that T = 1, and

we omit the time subindex. We use P 0
(a,x) to denote the vector of dimension NJ |X| ×

1 with the joint distribution of am and xm in the population. P̂ 0
(a,x) is the sample

counterpart of P 0
(a,x), i.e., the frequency estimator of P 0

(a,x). Using this notation, we can

write expectations and sample means in matrix form. For instance,

E
(∑N

i=1 ln Ψi(aim|xm; θ, P )
)

= ln Ψ(θ, P )′P 0
(a,x)

(1/M)
∑M

m=1

∑N
i=1 ln Ψi(aim|xm; θ, P ) = ln Ψ(θ, P )′P̂ 0

(a,x)

(A.1)

We use also ∇θΨ(P, θ) and ∇P Ψ(P, θ) to denote the Jacobian matrices ∂Ψ(P, θ)/∂θ′

and ∂Ψ(P, θ)/∂P ′, respectively.

Proof of Proposition 1:

Consistency of two-step PML: Define Q∞(P, θ) ≡ E(
∑

i ln Ψi(aim|xm; P, θ)). Notice

that: (a) Q∞(P, θ) is uniformly continuous; (b) QM(P, θ) converges a.s. and uniformly in

(P, θ) to Q∞(P, θ); and (c) P̂ 0 converges a.s. to P 0. Under (a)-(c), QM(P̂ 0, θ) converges

a.s. and uniformly in θ to Q∞(P 0, θ) (Lemma 24.1 in Gourieroux and Monfort). By

the identification assumption 5C, θ0 is the only vector in Θ such that Ψ(θ, P 0) = P 0

Therefore, by the information inequality Q∞(P 0, θ) has a unique maximum in Θ at

θ0. It follows that θ̂2S ≡ arg maxθ∈Θ QM(P̂ 0, θ) converges a.s. to θ0 (Property 24.2 in

Gourieroux and Monfort).

Asymptotic distribution of two-step PML: Let ∇θsm and ∇P sm be the pseudo

scores (for observation m) evaluated at the true parameter values, i.e.,

∇θsm =
∑N

i=1∇θ ln Ψi(aim|xm; P 0, θ0) and ∇P sm =
∑N

i=1∇P ln Ψi(aim|xm; P 0, θ0). De-

fine Ωθθ ≡ E (∇θsm∇θs
′
m) and ΩθP ≡ E (∇θsm∇P s′m). By the generalized infor-

mation matrix inequality (see McFadden and Newey, 1994, p. 2163) we have that

E ((qm − P 0)∇θs
′
m) = 0 and E ((qm − P 0)∇P s′m) = I, where I is the identity matrix.

Therefore,(
1√
M

∑M

m=1
∇θsm

)
−ΩθP

(
1√
M

∑M

m=1

(
qm − P 0

))
→d N (0, Ωθθ + ΩθP ΣΩ′

θP ) (A.2)

The first order conditions that define this estimator are ∇θQM(P̂ 0, θ̂FU) = 0. A mean

value theorem between (θ0, P 0) and (θ̂2S, P̂ 0), together with consistency of (θ̂2S, P̂ 0),

implies that:

0 = ∇θQM(P 0, θ0) +∇θθQM(P 0, θ0)
(
θ̂2S − θ0

)
+∇θP QM(P 0, θ0)

(
P̂ 0 − P 0

)
+ op(1)

(A.3)
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By the CLT and the information matrix inequality, we have that ∇θθQM(P 0, θ0) →p

−Ωθθ, and ∇θP QM(P 0, θ0) →p −ΩθP . Then,

√
M
(
θ̂2S − θ0

)
= Ω−1

θθ

{
−ΩθP

(
1√
M

∑M
m=1 (qm − P 0)

)
+
(

1√
M

∑M
m=1∇θsm

)}
+ op(M

−1/2)

(A.4)

By Mann-Wald Theorem,
√

M
(
θ̂2S − θ0

)
converges in distribution to a vector of normal

random variables with zero means and variance matrix:

V2S = Ω−1
θθ ( Ωθθ + ΩθP Σ Ω′

θP ) Ω−1
θθ = Ω−1

θθ + Ω−1
θθ ΩθP Σ Ω′

θP Ω−1
θθ (A.5)

Proof of Proposition 2:

Consistency of the NPL: The NPL estimator (θ̂NPL, P̂NPL) is defined by condi-

tions: (a) θ̂NPL maximizes in θ ∈ Θ the pseudo likelihood QM(θ, P̂NPL); (b) P̂NPL =

Ψ(θ̂NPL, P̂NPL); and (c) for any (θ, P ) satisfying conditions (a) and (b), QM(θ̂NPL, P̂NPL)

≥ QM(θ, P ). Since Q∞(θ, P ) is uniformly continuous and QM(θ, P ) converges a.s.

and uniformly in (θ, P ) to Q∞(θ, P ), we have that (θ̂NPL, P̂NPL) converges a.s. to a

point (θ∗, P ∗) such that: (a’) θ∗ maximizes in θ ∈ Θ the population pseudo likelihood

Q∞(θ, P ∗); (b’) P ∗ = Ψ(θ∗, P ∗); and (c’) for any (θ, P ) satisfying conditions (a’) and

(b’), Q∞(θ∗, P ∗) ≥ Q∞(θ, P ). Now, we show that this point (θ∗, P ∗) should be (θ0, P 0).

By the identification assumption 5C, (θ0, P 0) satisfies conditions (a’) and (b’). That

is, P 0 = Ψ(θ0, P 0) and by the Kullback-Leibler information inequality we have that for

any θ ∈ Θ, Q∞(θ, P 0) ≤ Q∞(P 0, θ0). For any other point (θ, P ) that satisfies conditions

(a’) and (b’), we have that P 6= P 0 (again by assumption 5C). Therefore, Kullback-

Leibler information inequality implies that for any (θ, P ) 6= (θ0, P 0) satisfying conditions

(a’) and (b’), we have that Q∞(θ, P ) < Q∞(P 0, θ0). We conclude that (θ0, P 0) is the

only pair that satisfies conditions (a’), (b’) and (c’), and therefore the NPL estimator

converges a.s. to θ0.

Asymptotic distribution of the NPL: The marginal conditions that define the NPL

estimator are:
(1/M)

∑M
m=1∇θsm(P̂ , θ̂) = 0

P̂ −Ψ(P̂ , θ̂) = 0
(A.6)

A stochastic mean value theorem between (θ0, P 0) and (θ̂, P̂ ), together with consistency

of (θ̂, P̂ ) implies that:

(1/
√

M)
∑M

m=1∇θsm − Ωθθ

√
M
(
θ̂ − θ0

)
− ΩθP

√
M
(
P̂ − P 0

)
= op(

√
M)

(I −∇P Ψ)
√

M
(
P̂ − P 0

)
−∇θΨ

√
M
(
θ̂ − θ0

)
= op(

√
M)

(A.7)
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Solving the second set of equations into the first set, we get:[
Ωθθ + ΩθP (I −∇P Ψ)−1∇θΨ

]√
M
(
θ̂ − θ0

)
= (1/

√
M)

∑M
m=1∇θsm + op(

√
M)

(A.8)

By Mann-Wald theorem, we have that
√

M
(
θ̂ − θ0

)
−→d N (0, VNPL) where:

VNPL =
[
Ωθθ + ΩθP (I −∇P Ψ)−1∇θΨ

]−1
Ωθθ

[
Ωθθ +∇θΨ

′ (I −∇P Ψ′)
−1

Ω′
θP

]−1
(A.9)

Relative efficiency of NPL and Unrestricted PML: The asymptotic variance of

θ̂U is Ω−1
θθ . Taking into account that ΩθP = ∇θΨ

′diag(P 0)−1∇P Ψ, we can write the

variance of the NPL estimator as:

VNPL =
[(

I +∇θΨ
′ S ∇θΨ Ω−1

θθ

)
Ωθθ

(
I + Ω−1

θθ ∇θΨ
′ S ′ ∇θΨ

)]−1
(A.10)

where S ≡ (I −∇P Ψ′)−1∇P Ψ diag(P 0)−1. Then, Ω−1
θθ − VNPL is positive definite if

∆ =
(
I +∇θΨ

′ S ∇θΨ Ω−1
θθ

)
Ωθθ

(
I + Ω−1

θθ ∇θΨ
′ S ′ ∇θΨ

)
− Ωθθ (A.11)

is positive definite. Operating in the previous expression we can get that:

∆ = ∇θΨ
′ (S + S ′) ∇θΨ + (∇θΨ

′ S ∇θΨ) Ω−1
θθ (∇θΨ

′ S ∇θΨ)
′

(A.12)

It is clear that ∆ is positive definite if S is positive definite. Since diag(P 0)−1 is a

positive definite diagonal matrix, ∆ is positive definite if (I −∇P Ψ′)−1∇P Ψ′ is positive

definite. Finally, a sufficient condition for (I −∇P Ψ′)−1∇P Ψ′ to be positive definite is

that all the eigenvalues of ∇P Ψ′ are between 0 and 1.
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APPENDIX B: MODEL WITH PERMANENT UNOBSERVED HETERO-

GENEITY

Let xmt be the observable state variables, and suppose that there is also a vector

of time invariant common knowledge unobservable market characteristics, ωm. For

instance, in the entry-exit model, we may have a profit function:

Π̃imt(1) = α0 + α1 dmt + α2 (1− aim,t−1)− δ ln
(
1 +

∑N

j=1
ajmt

)
+ ωm + εimt (B.1)

where ωm represents time-invariant market characteristics affecting firms’ profits, which

are common knowledge to the players but are unobservable to the econometrician. We

make the following assumptions on the distribution of these unobservables.

ASSUMPTION 6: The vector of unobservable variables ωm is such that: (A) it has

a discrete and finite support Ω =
{
ω1, ω2, . . . , ωL

}
; (B) it is independently and iden-

tically distributed over markets with probability mass function ϕl ≡ Pr(ωm = ωl);

and (C) ωm does not enter into the conditional transition probability of xmt, i.e.,

Pr(xm,t+1|amt, xmt, ωm) = f(xm,t+1|amt, xmt).

Assumption 6C states that all markets are homogenous with respect to (exogenous)

transitions, and it implies that the transition probability functions f can still be esti-

mated from transition data without solving the model. The other parameters θ to be

estimated now include the support and the distribution of the unobservables ω.

The vector P now stacks the distributions of players’ actions conditional on all values

of observable and unobservable common knowledge state variables. Pl is the subvector

describing the equilibrium in a market with unobservable ωl (i.e., a ’type l ’market).

We adapt assumptions 5AB on the data generating process as follows:

ASSUMPTION 5’: Let P 0
mt ≡ {Pr(amt = a|xmt = x, ωm = ω) : (a, x, ω) ∈ AN ×X×Ω}

be the distributions of amt conditional on xmt and ωm in market m at period t. (A) For

every observation (m, t) in the sample P 0
mt = P 0. (B) Players expect P 0 to be played

in future (out of sample) periods.

Assumption 5 still states that only one equilibrium is played in the data conditional

on market type, which is unobservable to the econometrician but not to players. Now,

to obtain the pseudo likelihood function we integrate the best response probabilities

over the distribution of unobservable market characteristics. We have that:

ln Pr(Data|θ, P ) =
∑M

m=1
ln Pr(ãm, x̃m|θ, P ) =

∑M

m=1
ln
(∑L

l=1
ϕl Pr(ãm, x̃m|ωl; θ, P )

)
(B.2)

where ãm = {amt : t = 1, 2, ..., T} and x̃m = {xmt : t = 1, 2, ..., T}. Applying the chain
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rule, the Markov structure of the model, and assumption 6C, we get:

Pr(ãm, x̃m|ωl; θ, P ) =

(
T∏

t=1
Pr(amt|xmt, ω

l; θ, P )

)(
T∏

t=2
Pr(xmt|am,t−1, xm,t−1, ω

l; θ, P )

)
Pr(xm1|ωl; θ, P )

=

(
T∏

t=1

N∏
i=1

Ψi(aimt|xmt, ω
l; Pl, θ)

)(
T∏

t=2
f(xmt|am,t−1, xm,t−1; θ)

)
Pr(xm1|ωl; θ, P )

(B.3)

Therefore,

ln Pr(Data|θ, P ) =
∑M

m=1 ln

(∑L
l=1 ϕl

(
T∏

t=1

N∏
i=1

Ψi(aimt|xmt, ω
l; Pl, θ)

)
Pr(xm1|ωl; θ, P )

)

+
∑M

m=1

∑T
t=2 ln f(xmt|am,t−1, xm,t−1; θ)

(B.4)

The first component in the right hand side is the pseudo likelihood function QM(θ, P ).

The second component is the part of the likelihood associated with transition data. As

we have mentioned above, the transition probability functions f can still be estimated

from transition data without solving the model.

Given our sampling framework, the observed state vector at the first observation for

each market xm1 is not exogenous with respect to unobserved market type: Pr(xm1|ωm) 6=
Pr(xm1). This is the, so called, initial conditions problem in the estimation of dynamic

discrete models with autocorrelated unobservables (Heckman, 1981). Under the assump-

tion that xm1 is drawn from the stationary distribution induced by the Markov perfect

equilibrium, we may implement a computationally tractable solution of this problem.

Let p∗(x; f, P ) be the steady state probability of state x under transition probability f

and Markov perfect equilibrium P. Therefore, our pseudo likelihood function is:

QM(θ, P, f) =
1

M

∑M

m=1
ln

(∑L

l=1
ϕl

(
T∏

t=1

N∏
i=1

Ψi(aimt|xmt, ω
l; Pl, θ)

)
p∗(xm1; f, Pl)

)
(B.5)

Given this pseudo likelihood function, the NPL estimator is defined as in Section 3.4.

In order to obtain consistency the identification condition in assumption 5 is suitably

modified:

ASSUMPTION 5’ (C): There is a unique θ0 ∈ Θ such that θ0 = argmaxθ Q∞(θ, P 0, f)

where

Q∞(P, θ, f) ≡ E

(
ln

(∑L

l=1
ϕl

(
T∏

t=1

N∏
i=1

Ψi(aimt|xmt, ω
l; Pl, θ)

)
p∗(xm1; f, Pl)

))

Notice that to start the NPL algorithm we need guesses of all conditional choice

probability vectors {Pl : l = 1, . . . , L}, all of which will be updated at each iteration:
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P̂l,K = Ψ(θ̂K , P̂l,K−1). At each NPL iteration we also need to re-calculate the steady

state distributions p∗(.; f, Pl). However, these steady state probabilities are fixed within

an NPL iteration, which facilitates very much the estimation of this model with perma-

nent unobserved heterogeneity.
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Table 1
Monte Carlo Experiments

Parameters(1) and Description of the Markov Perfect Equilibrium
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

α2 = 1.0 α2 = 1.0 α2 = 1.0 α2 = 0.0 α2 = 2.0 α2 = 4.0
Descriptive Statistics δ = 0.0 δ = 1.0 δ = 2.0 δ = 1.0 δ = 1.0 δ = 1.0

(1) Number active firms: 3.676 2.760 1.979 2.729 2.790 2.801
Average

(2) Number of firms: 1.551 1.661 1.426 1.515 1.777 1.905
Std. Dev.

(3) AR(1): number active firms 0.744 0.709 0.571 0.529 0.818 0.924
(autoregressive parameter)

(4) Number of Entrants 0.520 0.702 0.748 0.991 0.463 0.206
(or Exits) per period

(5) Excess Turnover(2) 0.326 0.470 0.516 0.868 0.211 0.029
(in # of firms per period)

(6) Correlation between -0.015 -0.169 -0.220 -0.225 -0.140 -0.110
entries and exits

(7) Prob. being active: Firm 1 0.699 0.496 0.319 0.508 0.487 0.455
” Firm 2 0.718 0.527 0.356 0.523 0.521 0.501
” Firm 3 0.735 0.548 0.397 0.547 0.556 0.550
” Firm 4 0.753 0.581 0.434 0.564 0.592 0.610
” Firm 5 0.770 0.607 0.475 0.586 0.632 0.686

Note 1: For all these experiments, the values of the rest of the parameters are: N = 5, α01 = −1.9,
α02 = −1.8, α03 = −1.7, α04 = −1.6, α05 = −1.5, α1 = 1.0, σε = 1, and β = 0.95.
Note 2: Excess turnover is defined as (#Entrants + #Exits)-abs(#Entrants - #Exits).
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Table 2
Monte Carlo Experiments

Median Number of Iterations of the NPL Algorithm
Initial Probabilities

Frequencies Logits Random

Experiment 1 8 4 6

Experiment 2 11 7 9

Experiment 3 27 19 23

Experiment 4 16 8 11

Experiment 5 12 7 9

Experiment 6 13 9 10
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Table 3
Monte Carlo Experiments

Empirical Means and Empirical Standard Deviations of Estimators
Estimator Parameters

α01 α1 α2 δ

Experiment True values -1.900 1.000 1.000 0.000
1 1-stage (True P 0) -1.915 (0.273) 1.007 (0.152) 1.002 (0.139) 0.002 (0.422)

1-stage (NP freq. P̂ 0) -0.458 (0.289) 0.374 (0.141) 1.135 (0.190) 0.200 (0.364)
1-stage (Logit P̂ 0) -1.929 (0.279) 1.006 (0.153) 0.997 (0.138) -0.009 (0.431)

NPL -1.902 (0.279) 1.018 (0.157) 0.994 (0.139) 0.036 (0.439)

Experiment True values -1.900 1.000 1.000 1.000
2 1-stage (True P 0) -1.894 (0.212) 1.002 (0.186) 1.007 (0.118) 1.007 (0.583)

1-stage (NP freq. P̂ 0) -0.919 (0.208) 0.351 (0.119) 0.886 (0.123) 0.095 (0.337)
1-stage (Logit P̂ 0) -1.920 (0.226) 0.977 (0.197) 1.000 (0.122) 0.915 (0.597)

NPL -1.893 (0.232) 1.016 (0.220) 0.998 (0.121) 1.050 (0.681)

Experiment True values -1.900 1.000 1.000 2.000
3 1-stage (True P 0) -1.910 (0.183) 1.006 (0.209) 1.000 (0.112) 2.008 (0.783)

1-stage (NP freq. P̂ 0) -1.126 (0.189) 0.286 (0.094) 0.792 (0.107) 0.027 (0.311)
1-stage (Logit P̂ 0) -1.919 (0.248) 1.022 (0.305) 0.985 (0.145) 2.070 (1.110)

NPL -1.920 (0.232) 0.950 (0.189) 1.007 (0.116) 1.792 (0.667)

Experiment True values -1.900 1.000 0.000 1.000
4 1-stage (True P 0) -1.890 (0.516) 1.020 (0.329) 0.001 (0.119) 1.063 (1.345)

1-stage (NP freq. P̂ 0) -0.910 (0.243) 0.337 (0.104) 0.239 (0.113) 0.127 (0.354)
1-stage (Logit P̂ 0) -2.070 (0.436) 0.903 (0.262) 0.000 (0.119) 0.571 (1.061)

NPL -1.891 (0.482) 1.014 (0.291) 0.001 (0.115) 1.047 (1.186)

Experiment True values -1.900 1.000 2.000 1.000
5 1-stage (True P 0) -1.912 (0.178) 1.007 (0.142) 2.008 (0.132) 1.006 (0.359)

1-stage (NP freq. P̂ 0) -0.840 (0.218) 1.379 (0.130) 1.591 (0.143) 0.181 (0.302)
1-stage (Logit P̂ 0) -1.921 (0.204) 0.997 (0.167) 2.002 (0.138) 0.971 (0.405)

NPL -1.924 (0.203) 1.018 (0.178) 2.000 (0.137) 1.027 (0.435)

Experiment True values -1.900 1.000 4.000 1.000
6 1-stage (True P 0) -1.899 (0.206) 1.003 (0.132) 4.050 (0.203) 1.006 (0.238)

1-stage (NP freq. P̂ 0) -0.558 (0.228) 0.332 (0.128) 2.745 (0.211) 0.206 (0.238)
1-stage (Logit P̂ 0) -1.895 (0.240) 0.996 (0.147) 4.048 (0.208) 0.992 (0.277)

NPL -1.918 (0.239) 1.009 (0.152) 4.044 (0.207) 1.009 (0.285)
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Table 4
Square-root Mean Square Error

Relative to the 1-stage PML with true P0

Estimator Parmeters
α01 α1 α2 δ

Experiment 1 1-stage (NP freq. P̂ 0) 5.380 4.222 1.676 0.983

1-stage (Logit P̂ 0) 1.027 1.006 1.002 1.022
NPL 1.019 1.040 0.996 1.044

Experiment 2 1-stage (NP freq. P̂ 0) 4.736 3.553 1.415 1.655

1-stage (Logit P̂ 0) 1.070 1.066 1.029 1.034
NPL 1.098 1.188 1.020 1.171

Experiment 3 1-stage (NP freq. P̂ 0) 4.347 3.440 2.095 2.549

1-stage (Logit P̂ 0) 1.357 1.462 1.301 1.419
NPL 1.268 0.935 1.038 0.892

Experiment 4 1-stage (NP freq. P̂ 0) 1.977 2.035 2.228 0.699

1-stage (Logit P̂ 0) 0.906 0.848 1.000 0.850
NPL 0.935 0.884 0.969 0.881

Experiment 5 1-stage (NP freq. P̂ 0) 6.054 4.459 3.279 2.429

1-stage (Logit P̂ 0) 1.146 1.176 1.043 1.130
NPL 1.143 1.250 1.037 1.210

Experiment 6 1-stage (NP freq. P̂ 0) 6.591 5.589 6.072 3.487

1-stage (Logit P̂ 0) 1.162 1.209 1.020 1.166
NPL 1.158 1.248 1.010 1.197
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Table 5
Descriptive Statistics

189 markets. Years 1994-1999

Restaurants Gas stations Bookstores Shoe shops Fish shops

Number of firms per 10,000 people 14.6 1.0 1.9 0.9 0.7

Markets with 0 firms 32.2 % 58.6 % 49.5 % 67.1 % 74.1 %
Markets with 1 firm 1.3 % 15.3 % 15.8 % 10.8 % 9.6 %

Markets with 2 firms 1.2 % 7.8 % 8.0 % 6.7 % 5.0 %
Markets with 3 firms 0.5 % 5.2 % 6.9 % 3.8 % 3.4 %
Markets with 4 firms 1.2 % 4.0 % 3.6 % 2.7 % 2.0 %

Markets with more than 4 firms 63.5 % 9.2 % 16.2 % 8.9 % 5.9 %

Herfindahl Index (median) 0.169 0.738 0.663 0.702 0.725

Annual revenue per firm 17.6 67.7 23.3 67.2 124.8
(in thousand $)

Regression coeff.: log(1+# firms) 0.383 0.133 0.127 0.073 0.062
on log(market size)(1) (0.043) (0.019) (0.024) (0.020) (0.018)

Regression coeff.: log(firm size) -0.019 0.153 -0.066 0.223 0.097
on log(market size)(2) (0.034) (0.082) (0.050) (0.081) (0.111)

Entry rate (%)(3) 9.8 14.6 19.7 12.8 21.3

Exit rate (%)(4) 9.9 7.4 13.5 10.4 14.5

Survival hazard, %: 86.2 (13.8) 89.5 (10.5) 84.0 (16.0) 86.8 (13.2) 79.7 (20.3)
1 year (5)

Survival hazard, %: 69.5 (19.5) 88.5 (1.1) 70.0 (16.6) 71.1 (18.2) 58.1 (27.2)
2 years

Survival rate hazard, %: 60.1 (14.9) 84.6 (4.3) 60.0 (14.3) 52.6 (25.1) 44.6 (23.3)
3 years

Note 1: Market size = Population. Regression included time dummies. Standard errors in parentheses.
Note 2: Firm size = Revenue per firm. Regression included time dummies. Standard errors in parentheses.
Note 3: Entry rate = Entrants / Incumbents
Note 4: Exit rate = Exits / Incumbents
Note 5: Survival and hazard rates are calculated using the subsample of new entrants in years 1995 and 1996.
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Table 6
Distribution of the estimated number of potential entrants

Restaurants Gas stations Bookstores Shoe shops Fish shops

Nm = 2 63 (33.3 %) 146 (77.3 %) 123 (65.1 %) 153 (81.0 %) 158 (83.6 %)

Nm = 3 1 (0.5 %) 9 (4.8 %) 14 (7.4 %) 6 (3.2 %) 6 (3.2 %)

Nm = 4 3 (1.6 %) 8 (4.2 %) 10 (5.3 %) 8 (4.2 %) 9 (4.8 %)

Nm = 5 1 (0.5 %) 8 (4.2 %) 5 (2.7 %) 5 (2.7 %) 2 (1.1 %)

Nm = 6 1 (0.5 %) 3 (1.6 %) 5 (2.7 %) 4 (2.1 %) 4 (2.1 %)

Maximum Nm 105 17 48 16 20

37



Table 7
NPL estimation of Entry-Exit model

Parameters Restaurants Gas stations Bookstores Shoe shops Fish shops

Constant:
α0

σ
-9.519 -12.769 -15.997 -14.497 -6.270

(0.478) (1.251) (0.141) (1.206) (1.233)

ln(Pop):
α1

σ
1.743 1.929 2.029 2.030 0.914

(0.045) (0.127) (0.076) (0.121) (0.125)

Entry cost:
α2

σ
5.756 10.441 5.620 5.839 4.586

(0.030) (0.150) (0.081) (0.145) (0.121)

ln(# firms):
δ

σ
1.643 2.818 1.606 2.724 1.395

(0.176) (0.325) (0.201) (0.316) (0.234)

Std. dev of ωm 1.322 2.029 1.335 2.060 1.880

Number of obs. 945 945 945 945 945
R-square: entries 0.298 0.196 0.442 0.386 0.363

R-square: exits 0.414 0.218 0.234 0.221 0.298
Standarized
parameters:

(a) exp (−α0 / α1) 235 750 2658 1267 951
(b) exp (α2 / α1) 27 224 16 18 151

(c) δ ln(2) / α1 65.3 % 101.3 % 54.9 % 93.1 % 105.7 %

Note (a): The value exp (−α0/α1) represents the minimum market population size such that variable profits
of a monopolist can cover fixed operating costs.
Note (b): The value exp (α2/α1) represents the minimum market population size such that variable profits
of a monopolist can cover entry sunk costs.
Note (c): The value δ ln(2)/α1 represents the percentage increase in market size such that profits of a duopolist
in the larger market are equal to profits of a monopolist in the smaller market.
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