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Abstract 
 
This paper applies the real options methodology to estimate the impact of the 
restructuring measures in the taxi sector in Barcelona in 1995. These measures 
included among other things the establishment of a fixed price for the license as 
a way to reduce the uncertainty on the future performance of the sector. We 
construct a model that contains the uncertainty in income as well as costs of the 
taxi driver using both individual and aggregate data. We also consider the 
option to sell the license at each point in time. We show that such reform can 
increase the net surplus value for taxi drivers with respect to a liberalized 
market in this sector. We compute the surplus value as a result of this reform to 
be around € 80,000. This value is shown to be robust to an exhaustive 
sensitivity analysis.  
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1 Introduction

The taxi industry has always been the subject of some controversy in the litera-
ture of transportation economics. In this sector, an almost unique combination
of regulations coexist. On the one hand, prices are regulated among all produc-
ers (taxicabs) while entry is also restricted through usually transferable licenses
(sometimes denoted as medallion after the shape that this identification has in
New York). Quality is also part of this regulation. Some authors, such as Cairns
and Liston-Heyes (1996) argue that without such regulation this market would
lack a market equilibrium due to hold-up problems.
In most developed countries the history of the sector has been similar. While

the industry started as a deregulated market, the low entry costs induced waves
of new taxi drivers in the periods of recession, in particular during the 1930s. As a
result, prices fell rapidly and working conditions became particularly rough. Or-
ganized lobbies succeeded in putting the industry under public control, allowing
to regulate fares and the number of licenses that were granted.
Nowadays, in most cities, fares are usually set through bargaining between

taxi unions and the municipalities. They are subject to adjustments in order to
reflect changes in costs. The number of licenses is usually related to population
and it is updated when population increases. Finally, taxi drivers are evaluated
according to some standards that include knowledge of the city they serve.
Cities usually differ in their treatment of licenses. For example, some cities

have experimented with the complete liberalization of the sector, especially in the
west of the United States, during the 1980s with mixed results. The outcome in
these cities has been a substantial entry, together with a (surprising) considerable
increase in prices.1

Licenses are in general transferable, and entry is substantially limited. In
some cities, licenses are perpetual and they can be traded in quite an active
market. Meanwhile, in others, the duration of the license is limited in time.
Until recently, Barcelona belonged to a third group of cities where licenses were
also traded but at a fixed price decided by the municipality (denoted as the
"Borsa de Llicències" or "License Bag"). To avoid side-payments these licenses
were bought by the municipality, that would later assign them to new candidates.
This system was introduced in Barcelona in 1995 as a response to the crisis in
this sector. The restructuring process undertaken by the city was combined by
several other measures being the most important the reduction in the number of
licenses. This system was in place until 2002 where the license price was again
liberalized once the sector recovered.
The regulated price of the license was set to C=36,000 in 1995. This amount

was partially reflecting the market price for the license around that time. The
price was barely updated in the following years and it was around C=36,500 in
2002. This price is considerably lower than the C=60,000 to C=80,000 paid for

1Teal and Berglund (1987) estimate increases in the number of taxis ranging from 18% in
Kansas City to 127% in San Diego. In the mean time, prices rose in San Diego by 26.2% with
similar performance in other cities.
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licenses in other cities in Spain, such as Valencia and Madrid.2 The failure in
updating the license price was the reason that leaded to the liberalization of this
sector after pressure from taxi drivers in 2002.3

This paper estimates how much the fixed price system for the licenses (to-
gether with the other measures) would have benefited the taxi drivers compared
to the liberalized price common in most other cities when it was first applied in
1995. To do so, we take into account that owning a license does not only entitle
to a future stream of cash-flows — before retirement — derived from the work of a
taxi driver but also to the right to resell the license at any time for a preespecified
price and exert another profession. In contrast, in a free license market where
the price is set in equilibrium, all aggregate information is already incorporated
in the price of the license which means that selling the license can only protect
the taxi driver against idiosyncratic uncertainty. In other words, the price of
the license essentially reflects the present value of the cab driver’s profits in the
future periods. Hence, the net surplus4 of a taxi driver in a market where the
price of the license is not regulated, should be approximately zero. Summing up,
the aim of this paper consists of computing the cab driver’s net surplus under a
fixed price framework for licenses settled in Barcelona city in 1995.
A regulated license price, however, insures the taxi driver against aggregate

shocks in the present value of profits of his profession. Therefore, how much
the option to sell the license at a fixed price adds to profits is partially due
to the increase in utility of this mechanism. The results we obtain show that
the net surplus of a typical taxi driver in the fixed license mechanism would
have amounted to C=80,000. This number should be interpreted as how much a
taxi driver would have been willing to pay to participate in the sector after the
restructuring process initiated in 1995 when he expected to work in the sector
for around 30 years.
So why did the mechanism break down in Barcelona? The most likely reason

is the time inconsistency in the decision of taxi drivers. Although the original
Borsa de Llicències benefited entrants by lowering the price of the license they
had to pay, once they were insiders they became interested in liberalizing the
sector as a way to obtain a higher price once they sold the license.
The environment under which this study is conducted is especially useful. The

authority guaranteed a future price for the license, reducing uncertainty regarding
its resale. We also have estimates of costs and income of a typical taxi driver from
a study conducted by the Metropolitan Institute of Taxi in Barcelona (IMET) in
1995 in order to assess on the changes in the sector. In this study, we will also
use other sources of data to estimate, for example, the evolution of fuel costs, the
growth rate of real gross domestic product and so on. All these estimates will be
necessary to obtain the net surplus implied from our theoretical model.
We model the decision of the taxi driver either to stay in the market or sell

the license as an American put option. In other words, when the taxi driver buys

2See El Periódico de Cataluña (12/4/2001).
3See El Periódico de Cataluña (3/13/2002).
4It is defined as the present value of the taxi-driver’s profits once we deduct the relevant

opportunity costs and the price of the license. Later, it will be explained in more detailed.
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the license, he acquires the rights not only to a future stream of income (and
cost) but also the possibility to leave the job and sell the right for a preespecified
price at any moment.
The value of the taxi driver project, that is the present value of the stream

of profits once the abandonment flexibility is considered, can be estimated us-
ing several methodologies. In order to approximate the project value, we rely
on the algorithm presented by Longstaff and Schwartz (2001) that consists of a
simulation procedure. This algorithm compares the value of exercising the option
to abandon, implicit in the project, with the expected value of continuation at
different points of time in each of the simulated trajectories. The key feature
to this approach is to estimate, using the least squares (LS) approach, the con-
ditional expected payoff to continuation. In recent years this methodology has
been applied to several problems. For example, Schwartz and Moon (2000) used
it to value internet firms and Schwartz (2001) to value patents and R&D projects.
This algorithm is easy to implement and it is a very good alternative against the
well-known finite difference method which becomes impractical for solving partial
differential equations when there are multiple factors as our model exhibits.
In our case, we use the above methodology applied to a complex multifactor

model where the state variables are mainly stock, together with flow ones. Their
dynamics are driven, for example, by jump-diffusion processes, which approxi-
mate phenomena such as fare negotiation processes, and so forth. Our experi-
ment allow us to value the cost of aggregate shocks in service sector, compared to
the case where these shocks were not present. We also make a thorough sensitiv-
ity analysis to verify how robust are our results. In this case, we emphasize one
of our contributions. We provide a systematic methodology to study how each
parameter, or a subset of them, contribute to the final net surplus value and we
do it for different sample sizes to either calibrate or estimate, depending on the
equation in the model, some parameters.
The rest of the paper proceeds as follows. In section 2 we formulate the model

and the dynamic equations that describe the process for costs and revenues of the
taxi driver. Section 3 presents the solution procedure and describes the Longstaff
and Schwartz Monte Carlo algorithm (LSM). Section 4 describes the sources of
our data, how we calibrate or estimate the different parameters of the model and
presents the main results. Section 5 performs sensitivity analysis regarding the
main variables of the model and section 6 presents some extensions. Section 7
concludes.

2 Continuous-time model

The model studies the decision to become a taxi driver and in particular the
willingness to pay for a license. Licenses have a positive value because they are
in limited supply, controlled by the public authority. The driver considers at each
point in time the present value of income and costs, taking into account the fact
that the license could be sold, and he could work in another sector earning an
alternative wage. To the extent that this option might be executed, the value of
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a license would be substantially different from the present value of cash flows of
the driver.
We assume that the taxi driver can work for at most T years, after which the

license must be sold due to retirement. We are also considering that the driver
can abandon the project only once, moment after which he can not reenter the
market.
At the initial moment, the agent decides whether to become a taxi driver. In

this case, besides the cost of the license, a car needs to be bought. After that,
the driver receives a flow of revenues in each period t, R (t) and incurs in variable
costs C (t) and fixed costs F (t). So, the cash flow available to the taxi driver at
the end of period t, denoted as CF (t), is:

CF (t) = R (t)− C (t)− F (t) . (1)

Costs are mainly driven by the price of fuel, which is the largest component
of these costs. Fixed costs are essentially related to the cost of the car and the
regular maintenance.5

Revenues are a function of both the number of trips that a taxi driver makes
and the prices charged. We assume that the number of trips is a function of the
business cycle, while prices are adjusted according to the negotiation between the
taxi union and the municipality. New prices depend on changes in costs.
We define next the processes we assume for costs and revenues in detail.

2.1 Cost equation

Total costs at each point in time are generated by three components. The first are
variable costs, depending on both the distance in kilometers and the car type. Its
main component is the cost of diesel oil,6 together with other variable costs such
as lubricants, tires, maintenance and repair expenses. The second component
are fixed costs that contain mainly income and value added taxes, car insurance
and social contributions. Other fixed costs are administration, parking, vigilance
and the cost of buying a car in case of an independent driver. Finally there are
financial costs related to financing the car purchase.
We will only consider as a stochastic variable the item corresponding to the

fuel cost due to the dynamics of the fuel price. So, we will lump together all the
variable costs other than fuel with the fixed and the financial costs. We denote
them by F (t) that is assumed to be deterministic with a growth rate equal to
the inflation rate, i.e.

dF (t) = π (t)F (t) dt (2)

where π (t) denotes the inflation rate per year that is assumed to be non-stochastic
to simplify the model. Meanwhile, the evolution of the only source of uncertainty,
the fuel bill, is assumed to be given by the one-factor model for commodity spot
prices proposed by Schwartz (1997) which follows the stochastic process

dS (t) = ks (µs − lnS (t))S (t) dt+ σsS (t) dWs (t) . (3)
5See section 4.1.1 for more details.
6In 1995, 87% of total cabs used diesel oil, 10% butane gas and the rest gasoline.
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Let X (t) ≡ lnS (t) and after applying Ito’s lemma, the log price follows an
Ornstein-Uhlenbeck process defined by

dX (t) = ks (α−X (t)) dt+ σsdWs (t) (4)

where

α = µs −
σ2s
2ks
.

This process assumes that the log price mean reverts to the long-term level α at
a speed given by the mean reversion rate ks which is considered to be strictly
positive, and with a long run mean for the spot price S = exp (µs). As a result,
S (t) follows a lognormal distribution. Notice that the volatility of the logarithm
of S (t) is σs.
Let γ∆ (t) be the annual return or growth rate of S (t) for a time interval of

length ∆, defined as

γ∆ (t) =
1

∆

Z t

t−∆
dX (u) =

X (t)−X (t−∆)

∆
. (5)

Then the instantaneous return or growth rate of S (t), denoted as γ (t), is given
by

γ (t) = lim
∆→0

γ∆ (t) =
1

S (t)

∂S (t)

∂t
.

Let C (t) denote the cost of gas oil (variable cost) from operating a taxicab.
We impose that its dynamics are given by

dC (t)

C (t)
= γ (t) dt+ σsdWc (t) . (6)

The growth rate and volatility of dC (t) /C (t) are governed by γ (t) and σs.
Denote as dWc (t) another standard Wiener increment defined as

dWc (t) = ρscdWs (t) +
p
1− ρ2scdWa (t) . (7)

We will assume that dWc (t) is highly correlated with dWs (t), so that ρsc is large,
since the uncertainty is mainly driven by the evolution of gas oil prices. There is,
however, another component of uncertainty represented by the Wiener process
dWa (t) that captures the consumption in gas oil depending on other variables
such as the car-type, the distance in kilometers or the number of hours worked
by the particular driver.

2.2 Revenue equation

The revenue from operating a taxicab, R (t), is accrued mainly from the fare mul-
tiplied by the number of passengers ”service units” supplied.7 Between changes

7Additional income for advertising in cab is not considered in our model.
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in tariffs, the behavior of revenues depends on a demand that is mainly deter-
mined by the business cycle.8 Trivially, changes in revenues can be decomposed
as changes in quantities, q (t), and changes in prices, p (t),

dR(t)

R(t)
=

dq(t)

q(t)
+

dp(t)

p(t)
. (8)

2.2.1 Changes in quantities

In particular, we assume that the dynamics of the service units provided are
generated by the following stochastic differential equation (henceforth, sde):

dq (t)

q (t)
= θq (t) dt+ σqdWq (t) (9)

where dWq (t) is a standard Wiener increment with constant volatility σq. The
instantaneous drift of this process is denoted by θq (t). This term captures the
stochastic demand realizations conditioned to fixed fares. Because demand is ex-
tremely inelastic, we approximate these changes as independent of prices. There-
fore, since quantities are very procyclical, the drift θq (t) or expected growth
rate in quantities is approximated by the growth rate or return of the real gross
domestic product (RGDP).9 This drift evolves according to the following mean
reverting process:

dθq (t) = kθ
¡
θ − θq (t)

¢
dt+ σθdWθ (t) (10)

where θ denotes the long-term average drift, kθ is the mean reversion rate which
is assumed to be strictly positive such that ln(2)/kθ can be interpreted as the
”half-life” of the deviations from θ, σθ is the volatility of the drift and dWθ (t) is
another standard Wiener increment that is independent of dWq (t). In principle
we assume that dWθ (t) is also correlated with dWc (t) so that,

dWc (t) dWθ (t) = ρcθdt. (11)

This relationship assumes that higher oil prices might have negative effects on
growth and therefore reduce the rate of increase in passenger income. To the
extent that the growth rate is affected by oil prices, this relationship will be
negative and so ρcθ ≤ 0.
Notice that we are assuming that the quantities sold do not depend on changes

in population. The reason is that the number of licenses is often revised to
accommodate increases in the number of inhabitants of the city.

8This evidence is supported by studies carried out by IMET. They also show more than half
of all trips are done for business reasons.

9We relax this assumption in Section 6 without significant results.
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2.2.2 Changes in prices

Changes in prices are assumed to be “rare” and stochastic in nature, which are the
result of negotiation between taxi unions and the municipalities. In particular,
changes in prices are formulated as the following compound Poisson process:

dp (t)

p (t)
= ϕ (t) dNp (t) (12)

where dNp (t) is the Poisson process with intensity λpdt and ϕ (t) is the growth
rate of the fare. The process dNp (t) is assumed to be independent of both dWq (t)
and dWθ (t). Since the rule that governs exactly the change in fares is unknown,
we will suppose that when a change in fares occurs its revision could be a function
of the evolution of the GDP deflator, henceforth GDPD. We will identify D (t)
as the GDPD whose dynamics are governed by the following geometric Brownian
motion

dD (t)

D (t)
= µDdt+ σDdWD (t) . (13)

We will allow for correlation between the growth rate of real GDP and the GDP
deflator to exist, so that dWθ (t) dWD (t) = ρθD.
The common practice when changing the fares is to adjust its increase by

the change in prices after the last revision occurred. Analytically, this rule is
represented as follows: if t0 denotes the last time a change in fare occurred and
the fare is revised again in t, obviously t0 < t, then the variation is measured
using the growth rate of GDPD for the period. Applying Ito’s lemma on (13) ,
the growth rate ϕ (t) ≡ ln(D (t) /D(t0)) is obtained as

ln(D (t) /D(t
0
)) = βDδt+ σD

√
δtξD (t) (14)

where βD ≡ µD − 0.5σ2D, δt ≡ t − t0 and ξD (t) ∼ iid N (0, 1). Therefore, the
price after the revision becomes

p (t) = exp (ϕ (t)) p (t0)

that corresponds to the solution at time t of the geometric Brownian motion

dp (s)

p (s)
= µDds+ σDdWD (s) , s ∈ [t0, t] .

We also assume that each revision is independent of the previous ones. In other
words, let t1 < t2 < ¦ ¦ ¦ < tn be n dates where a fare alteration has happened, so
the growth rate (or jump size) is distributed as

ϕ (ti) v id N
¡
βDδti, σ

2
Dδti

¢
(15)

where δti ≡ ti − ti−1.
Summing up, given the previous equations we will refer to changes in revenues

according to equation (8) as described exactly by

dR (t)

R (t)
= θq (t) dt+ σqdWq (t)| {z }

dq(t)
q(t)

+ ϕ (t) dNp (t)| {z }
dp(t)
p(t)

. (16)
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2.3 Risk-neutral measure

Notice that equations (4),(10) and (16) are under the real measure. Respect to the
process for R (t), we will assume that the jump risk is not systematic and so it is
unpriced by the market. However, the uncertainty fromWq (t) has a risk premium
φq assumed to be constant. Using standard techniques, the corresponding risk-
neutral measure for equation (16) can be obtained as

dR (t)

R (t)
=
£
θq (t)− φq

¤
dt+ σqdW

∗
q (t) + ϕ (t) dNp (t) (17)

where dW ∗
q (t) is the Wiener increment under the risk-neutral measure so that

dW ∗
q (t) = dWq (t) +

¡
φq/σq

¢
dt. For simplicity, we suppose that for the process

θq (t), driven by equation (10), the true and risk-adjusted processes are the same,
so that the risk premium is zero. The dynamics of the Ornstein-Uhlenbeck process
defined in (4) under the equivalent martingale measure can be rewritten as

dX (t) = ks (α
∗ −X (t)) dt+ σsdW

∗
s (t) . (18)

Notice that we have defined α∗ = α − φs, where φs is the risk premium (also
assumed constant) of the gas oil price risk and dW ∗

s (t) = dWs (t) + (φs/σs) dt
denotes again the Wiener increment under the equivalent martingale measure.
Finally, we also assume a zero risk premium for the uncertainty dWa (t), so that
the risk-neutral measure dW ∗

c (t) is written as

dW ∗
c (t) = ρscdW

∗
s (t) +

p
1− ρ2scdWa (t) .

The risk neutral measure for equation (6) is

dC (t)

C (t)
= (γ (t)− ρscφs) dt+ σsdW

∗
c (t) (19)

where dW ∗
c (t) dW

∗
θ (t) = ρcθdt.

2.4 Optimal stopping and net surplus value

Let V (y, t) be the project value of driving a taxi at date t. V (y, t) does not only
incorporate the present value of the taxi driver’s stream of cash flows but it also
does the flexibility of changing this job for a new one and also the income for
selling the taxi driver license. We will assume that both the license price, denoted
as L (t), and the salary corresponding to the new job, denoted as w (t), grow at
the inflation rate π (t), that is:

dL (t)

L (t)
= π (t) dt,

dw (t)

w (t)
= π (t) dt. (20)

Let y, the abbreviation of y (t), denote the set of state variables that determine
the value of the project. So, y contains the following variables (also represented
in abbreviated form):

y = (q, θq, C,X, F, L,w, p)0 .
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Here we consider a binary decision problem. At every instant, the taxi driver can
either continue, i.e. driving the taxi, or stop and get a payoff that amounts to
the income received from selling the license and the salary of the alternative job
that will be earned from that moment until retirement. We will also assume that
once he has decided to sell the license, he will never become a taxi driver again.
Summing up, the Bellman equation10 for our optimal stopping problem becomes

V (y, t) = max

Ω (y, t)| {z }
abandon

; CF (y, t) + (1 + rdt)−1E∗y,t [V (y + dy, t+ dt)]| {z }
continue

 (21)

where E∗y,t [·] denotes the conditional expected value on the set of state variables
at date t and conditioned to y under the risk neutral measure, r denotes the
annual risk-free rate and Ω (y, t) denotes the abandonment payoff. Our Bellman
equation is subject to a boundary condition since there is a fixed time limit,
denoted as T , which is the age of retirement and it will be represented as

V (y, T ) = Ψ (y) , ∀y. (22)

Since the dynamics of the fare price p (t), described in equation (12), is governed
by a Poisson process, we will assume that over a short interval of time dt the
probability of one jump occurring is λpdt, while 1− λpdt is the probability of no
jump. So, there are two possibilities for the change in value dV (y, t), depending
on whether a jump in the fare price takes us into the stopping (abandonment)
region or not. If it does, then

dV (y, t) = λpdt [Ω (y + dy, t)− V (y, t)] + (1− λpdt) [V (y + dy, t)− V (y, t)]
(23)

and if it remains in the continuation region, we get a similar equation but with
Ω (y + dy, t) replaced by V (y + dy, t). Given equations (21) and (23), we can
express the continuation region as:

rV (y, t) = CF (y, t) +
1

dt
E∗y,t [dV (y, t)] . (24)

Now, rewrite y as y = (z, p)0 where z contain the pure diffusion processes, and p is
driven by a pure compound Poisson process. Applying the multidimensional Ito’s
lemma with jumps11 in (24), we obtain the following partial differential equation
(henceforth, pde):

rV (y, t) = CF (y, t) + λp [Ω (p+ dp, z, t)− V (y, t)] (25)

+Vt (y, t) + Vz (y, t)A (z, t) +
1

2
tr
£
Γ (t, z)Γ (t, z)0 Vzz (y, t)

¤
where Vt, Vz and Vzz denote the obvious partial derivatives of V valued inR, 1×R7
and R7×7 respectively, tr (·) denotes the trace of a square matrix and z is driven

10For more details about dynamic optimization under stochastic continuous time, see Dixit
and Pindyck (1994).
11See Duffie (2001).
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by the following diffusion equation system under the risk-neutral measure:

dz = A (t, z) dt+ Γ (t, z) dW (t) .

This system is obtained through the following equations: (2), (9), (10), (18), (19)
and (20) . Finally, we will rewrite the Wiener increments of these equations as
functions of independent Wiener ones, denoted as dW (t) .
For each t, assume that the pde (25) holds, and so continuation is preferred to

stopping, for y > y∗ (t) where y∗ (t) is the critical value function that is unknown.
This function divides the (y, t) space into two regions with continuation being
optimal above the curve and abandoning below it. So, for the solution of the
dynamic optimization program we will solve both V and y∗ but for that, it will
be necessary to impose the two well-known boundary conditions along y = y∗ (t)
which are the "value-matching condition" and the "smooth-pasting condition
which can be seen for a more detailed discussion in Dixit and Pindyck (1994).
This procedure is difficult to implement since the pde in (25) has no closed-form
solution and the large number of different factors make the use of numerical
methods for pde inconvenient. Finally, another problem interfering with the
above procedure is that (25) is not local to the continuation region due to the
Poisson process12. So, we will solve the project of the value V by using a variation
of the algorithm proposed by Longstaff and Schwartz (2001) that will be explained
later.
Finally, once we have obtained V at the initial moment, denoted as t = 0,

then the taxi driver’s net surplus is obtained by substracting both the present
value, also evaluated at t = 0, of the stream of the new job’s wages finishing at
T and the license price from the project V.

3 Model implementation

The algorithm we implement will obtain the solution numerically by discretizing
the continuous time model for sufficiently small increments. For this reason, we
will start with the formulae that approximate the previous processes and later,
we will describe the algorithm.

3.1 Discrete approximation

Since there is no analytical solution to the continuous time model presented, it
is solved using Monte Carlo simulation. The value of the project is computed
using a variation of the least-squares Monte Carlo (LSM) algorithm proposed
by Longstaff and Schwartz (2001) for the valuation of American options. In the
simulations, we use the following discrete approximations to equations (10),(17)
and (19) respectively:

θq(t) = θ(1− e−kθ∆) + e−kθ∆θq(t−∆) + σθ

s
1− e−2kθ∆

2κθ
ξθ (t) (26)

12See Dixit and Pindyck (1994, pp. 113).
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R (t) = R(t−∆) exp
h
θq(t)− (φq + 0.5σ2q)∆+ σq

√
∆ξq (t) + ϕ (t)N∆ (t)

i
(27)

C(t) = C(t−∆) exp
h
γ∆ (t)− (ρscφs + 0.5σ2c)∆+ σc

√
∆ ξc (t)

i
(28)

where ξθ (t) , ξq (t) and ξc (t) are standard normal variates and the correlation
between ξθ (t) and ξc (t) is ρcθ. The parameter ∆ is the time interval and N∆ (t)
is the approximation to the continuous Poisson process dNp (t) by a Bernoulli
distribution with a probability λp∆ of a jump during a time interval of length ∆.
From equation (27), ϕ (t) follows the process (15) and the correlation between
ξD (t) and ξθ (t) is ρθD.
Finally, note that in equation (28) it is necessary to determine the dynamics

for the process γ∆ (t) given in (5). The next proposition describes the behavior
for γ∆ (t).

Proposition 1 The annual growth rate for a time interval ∆, γ∆ (t) , follows an
ARMA(1,1) process defined as:

γ∆ (t) = e−ks∆γ∆ (t−∆) + � (t) (29)

where � (t) is a MA(1) process13 with variance and first order covariance defined
as

E
£
�2 (t)

¤
=

σ2s
2ks∆2

£
3− ks∆− (3 + ks∆) e

−2ks∆¤ ,
E [� (t) � (t−∆)] =

σ2s
2ks∆2

£
1− e−ks∆

¤
.

Proof. See Appendix A.

3.2 Algorithm

A variation of the LSM algorithm proposed by Longstaff and Schwartz (2001)
is implemented in order to solve the optimal policy and so, to obtain the value
of a project by simulating numerous paths of the equations discretized above.
In particular, denote T as the project horizon in years and let N = T/∆ be the
number of periods for every path of the simulation. Equations (26) , (27) and (28)
are used to generateM paths of eN = N+1 periods for each of the three variables.
For each path i we obtain three vectors of length eN × 1: R(i) ≡ [R(i, j∆)],
θR(i) ≡ [θR(i, j∆)] and C(i) ≡ [C(i, j∆)] where j = 0, 1, ..., N . Note that for
j = 0 we have the starting values corresponding to the year 1995 as we will see

13Notice that the MA(1) process can be represented as � (t) = ' (t)+δ' (t−∆) where ' (t)
is a white noise process distributed as N

¡
0, σ2'

¢
. Since δ satisfies ρ�δ

2 − δ + ρ� = 0 where ρ�
denotes the MA(1) first order correlation, we will only consider for the discrete approximation
that root which guarantees the invertibility condition for the MA(1) process.
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later. Finally, given the fixed cost at each point, i.e. F (i, j∆), we obtain the
value of the cash flow CF (i, j∆) as in (1).
The algorithm searches for the optimal stopping time along each path by

backwards induction. It is assumed that the option to abandon the project can
only be exercised once. We find in each path i the optimal stopping time among
the N possible exercise dates. The value of the project at each point in time is
denoted as V (i, j∆). Conditional on not having abandoned the project before,
at the expiration date it is characterized by the following boundary condition:

V (i, T ) = max {L (T ) + w (T ) ; exp (−r∆)L (T +∆) + CF (i, T )} .

This expression means that if the taxi driver decides to abandon in the last
period, he receives both L (T ) for selling his license and the salary for his new
job, w (T ), that will be only held during that period. Nevertheless, if he de-
cides to continue then he gets the earnings from driving the taxi that amount
to CF (i, T ) and he also receives at the end of the period exp (−r∆)L (T +∆)
which corresponds to the price of the license for the following period discounted
appropriately. For any previous date j∆ < T, the present value of the project to
continue at point (i, j∆) conditional on not having abandoned the project before
along path i is computed as14

Vc(i, j∆) =
XN

k=j+1
exp(−r (k − j)∆)V (i, k∆); 0 ≤ j < N (30)

The expected value of continuation evaluated at point (i, j∆) where j∆ < T is

obtained by regressing the dependent variable in (30) onto a set of basis functions
of the state variables15 at date j∆ where the sample includes all M paths. LetbVc (i, j∆) be the fitted value of the regression and let Va(i, j∆) denote the value
of the project to abandon at date j∆ defined as

Va(i, j∆) = L (j∆) + PVw (j∆)

where PVw (j∆) is the present value of the alternative wage stream from the
current date j∆ to period T . That is,

PVw (j∆) = w (j∆)
1− exp (−er (N − j + 1)∆)

1− exp (−er∆)
where er = r−π denotes the real interest rate per year. Each V (i, j∆) is obtained
according to the following rule: if bVc (i, j∆)+CF (i, j∆) is smaller than Va(i, j∆)
we set
14Note that we do not take into account the cash flow at point (i, j∆) for obtaining Vc(i, j∆).

It will be considered later for V (i, j∆).
15Following Longstaff and Schwartz (2001), we consider here as independent variables: con-

stant, R, θR, C, R2, θ
2
R, C

2, R× θR, R× C and θR × C.
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V (i, k∆) =

½
w (j∆) + L (j∆) ; k = j
w (k∆) ; j < k ≤ N

For the remaining paths, where bVc (i, j∆) + CF (i, j∆) is larger than Va(i, j∆),
we set

V (i, j∆) = CF (i, j∆).

By rolling back in time and repeating the procedure at each date j∆, we can
fill out the corresponding column of the M × eN matrix V ≡ [V (i, j∆)]. Notice
that the optimal stopping time rule in this paper consists of obtaining for each
path i the minimum j∆ such that the abandonment is better than continuing.
Let V (j∆) represent the average of the V (i, j∆)’s at date j∆. The net surplus
in the first period, Γ (0), is obtained as follows:

Γ (0) = V (0)− PVw (0)− L (0)

where V (0) denotes the value of the project with flexibility, that is

V (0) =
XN

j=0
exp(−rj∆)V (j∆).

4 Data and parameter estimates

The data used for the estimation of a taxi driver’s cash-flows are obtained from
the book "Papers del Taxi. Reestructuració" published by the IMET. This book
summarizes a study of the sector in Barcelona during 1995 coinciding with the
debate on how to restructure the sector. It provides estimates of costs and income
of a representative taxi driver. Therefore, for convenience, we will make 1995,
denoted as t = 0, the base year of our study. The data in that book will be
complemented by estimations of the future evolution of variables such as income,
fares or costs of inputs — mainly gas oil — from several sources that we will outline
next.
Finally, at the end of this section we will present the estimates for the net

surplus value from our model. We will call this first estimation of the surplus as
the benchmark value. In the following section, we will do extensive sensitivity
analysis to show the robustness of the benchmark.

4.1 Costs

4.1.1 Fixed costs and non-stochastic variable costs

We decompose the non-stochastic costs in three components: the costs related to
the purchase of the car, F1 (t), the rest of the fixed costs, F2 (t), and the variable
but deterministic costs, F3 (t). We will later consider the costs of fuel.

14



According to the study undertaken by the IMET, the average price of a new
taxicab in 1995, all taxes included, is C=13,643.16 The average duration is consid-
ered to be 7 years, and for simplicity we assume that depreciation is linear and
constant over these 7 years, i.e. C=1,949 per year. We will further assume that the
car is paid during this 7 year period. Installments will amount to C=1,949 a year
together with the interest expenses which correspond to C=409.29 a year. Hence,
the total financial costs, that include amortization and interest payment amount
in 1995, i.e. F1 (0), to C=2,358.29.
The fixed costs of running a taxi include, among other concepts, taxes, in-

surance, social security, value added taxes (VAT),17 the income tax, parking and
surveillance, and management and administration. Note that these kind of costs
are independent of the distance driven by the taxicab and will be denoted as
F2 (t). All together they represent a cost F2 (0) of C=5,808.89. Finally, we com-
pute the non-stochastic variable cost component in our model that collects the
expenses on lubricants, tires and maintenance and repairs. Because they depend
on the distance driven and not on the number of customers we can consider them
as fixed.18 Its estimation in the IMET study leads to an initial figure for 1995,
F3 (0), of C=1,758.89 per year. The costs of the details corresponding to these
three components for the base year are summarized in Table 1.
Summing up, the total fixed costs and non-stochastic variable costs, denoted

as F (t) , is the sum of the above three components. We assume that F (t) grows
at the inflation rate. We will set an inflation rate of 2.7% per year from now
on,19 then π (t) = 0.027 for t ≥ 0. To simplify, it will be denoted as π this annual
constant expected inflation rate.

4.1.2 Fuel costs

The cost of fuel C (t) is the largest component of the variable costs. In 1995, it
represents a cost C (0) equal to C=1,865.76. Next, we will estimate the parameters
of the log-price equation (18) which are necessary to implement equation (28).
The parameters in (18) are under the risk-neutral measure. Notice that the risk
premium φs is not observed through the spot diesel fuel price but it is implied in
the futures price where the underlying asset is the gas oil commodity.
Following Schwartz (1997), the theoretical futures (or forward) price at time t

where the underlying asset is driven by the one factor model defined in equation

16The study was performed in pesetas. For convenience, we have converted them into euros
using the actual fixed exchange rate.
17Because the government cannot verify the revenue of the taxi driver, the VAT paid is for

the most part established independently of production.
18An important assumption in this case is that the distance is independent of variables such

as the cost of fuel. It can be argued that if the cost of fuel increases, taxi drivers spend less time
on the road. This feature could be incorpored in the model without difficulty. However, we
lack data on the elasticity of this distance with respect to the price of gas oil. For this reason,
we keep distance constant.
19This is the target value under the EMU proposal in 1998.
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Table 1: Cost components in 1995 (in euros)

Components of F1 F1 (0) %
amortization 1,949.00 82.64
interest payment 409.29 17.36
Total 2,358.29 100
Components of F2 F2 (0) %
driving tax 164.81 2.84
vehicle insurance 1,341.75 23.10
social security 2,069.56 35.63
value added tax 360.61 6.21
income tax 841.42 14.48
parking and surveillance 865.46 14.90
management and administration 165.28 2.84
Total 5,808.89 100
Components of F3 F3 (0) %
lubricants 155.46 8.84
tires 415.13 23.60
maintenance and repairs 1,188.30 67.56
Total 1,758.89 100

(18) and having maturity T is

F (t, T ) = exp

·
e−ksTX (t) + α∗

¡
1− e−ksT

¢
+

σ2s
4ks

¡
1− e−2ksT

¢¸
. (31)

Let Φ ≡ (α∗, ks, σs) denote the vector of parameters to be estimated and
consider X (t) an unobservable state variable as in Schwartz (1997). Then, we
estimate Φ by using the methodology given in Cortazar and Schwartz (2003)
which is a procedure that is not based on the Kalman filtering method imple-
mented in Schwartz (1997) but through a calibration procedure.20 The estimation
period goes from 12/24/90 to 12/25/95 for weekly observations with a sample size
m = 262. The number of future contracts corresponding to every observation is
always the same and equal to n = 7, so the total sample size is 1834. The gas oil
futures contracts used are traded in the International Petroleum Exchange (IPE)
of London and they are denoted as F1 to F7, where F1 is the contract closest
to maturity, F2 is the second one closest to maturity and so on. The descriptive
statistics for these contracts are shown in Table 2 for the above sample period.
The parameter estimates from equation (39) in Appendix B are α∗ = 5.099,

ks = 0.782 and σs = 0.218. For the simulation of equation (28) we need to
obtain the risk premium φs. Since φs = α− α∗, we need to obtain previously an
estimate of α. We consider as a proxy for the underlying asset of gas oil futures

20The estimation procedure to obtain the parameters can be seen in Appendix B.
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Table 2: Gas oil futures contracts (in euros)

Futures Mean price (s.e.) Mean maturity in years (s.e.)
F1 167.68 (19.94) 0.038 (0.024)
F2 167.48 (18.71) 0.120 (0.024)
F3 167.54 (17.55) 0.202 (0.024)
F4 167.72 (16.46) 0.285 (0.024)
F5 167.69 (15.23) 0.367 (0.024)
F6 167.56 (14.11) 0.449 (0.024)
F7 167.38 (13.17) 0.531 (0.024)

Figure 1: Evolution of EN590 spot vs spot from calibration
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the EN590 NWE FOB Barges gas oil spot from Platts.21 We consider again both
weekly observations and the same sample period as before. We estimate the exact
discretization corresponding to (4) which follows an AR(1) representation. The
result is α equal to 5.092 and therefore φs = −0.007. In Figure 1 we can compare
the evolution of the EN590 spot price against the spot price series obtained
through the calibration method (see equation (38) from Appendix B). We can see
that the calibrated series follows very closely the original one, with a correlation
between both series of around 83%. Note that the series from calibration through
the futures model (31) does not need to replicate exactly the behavior of EN590
since the last one is not really the underlying asset of the futures but a proxy
one.
21See for more details the web page: www.platts.com
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4.2 Revenues

4.2.1 Initial value of revenues

The IMET estimated the average income of a taxi driver in 1995 using several
methods. The result is that an appropriate estimation of a taxi driver’s daily
income is C=93.16. Considering several samples, it is assessed that each taxicab
makes on average about 28 trips a day. Since an average driver works around 221
days a year, the revenue in 1995, i.e. R (0), is roughly C=20,584.66.

4.2.2 Parameters of RGDP equation

Equation (26) requires estimates of the parameters that determine the real GDP
growth rate in (10) . We take the real GDP series from the Quarterly Spanish
National Accounts22 (QSNA) with 1986 constant prices. Our sample includes 104
observations corresponding to the period from 1970:1 to 1995:4. The real GDP
return series θq (t) is created as θq (t) ≡ lnRGDP (t) − lnRGDP (t− 1) . The
descriptive statistics for the θq (t) series can be seen in Table 3. The Jarque-Bera
test does not reject the null hyphotesis of being a Normal distribution and we can
appreciate that the time series is rather symmetric. The correlations, denoted as
ρ (i), tend to decrease quickly.

Table 3: Descriptive statistics of θq(t)

Mean 0.007 ρ (1) 0.856
Median 0.007 ρ (2) 0.677
Std. Dev. 0.006 ρ (3) 0.563
Skewness 0.233 ρ (4) 0.477
Kurtosis 2.980 ρ (5) 0.350
Jarque-Bera (p-value) 0.627 ρ (6) 0.260

Since the exact discrete equation corresponding to the continuous equation
defined in (10) is an AR(1) model with constant, we regress θq (t) on a constant
and the one period lagged dependent variable with result shown in Table 4.
Given the estimates in the previous table, and considering ∆ = 1

4
, we can

easily obtain the values of θ, kθ and σθ through equation (26). The parameter
values23 are respectively θ = 0.007, kθ = 0.613 and σθ = 0.007. Finally, the
starting value for the last quarter of 1995, θq (0), is set to be 0.4% according to
QSNA.

22These data series and most of the ones used in the rest of the section are obtained from the
TEMPUS database of the Spanish National Statistics Institute. See the webpage: www.ine.es
23The parameters of RGDP equation are finally obtained by solving the following equations

for ∆ = 1/4 : e−kθ∆ = 0.858; θ(1− e−kθ∆) = 0.001 and σθ

q
1−e−2kθ∆

2κθ
= 0.003.
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Table 4: LS with dependent variable θq(t)

Independent variables coefficient std. error (s.e.) p-value
c 0.001 5×10−4 0.037
θq (t− 1) 0.858 0.051 0.000
R-squared 0.739 s.e. of regression 0.003

4.2.3 Revenue risk premium

We consider that the main source of risk in the revenue of the taxi driver is re-
lated to shifts in the local economy of the city. To the extent that the economy of
Barcelona depends on the behavior of its financial service sector, we can approxi-
mate the risk of driving a taxi to the risk of investing in any financial service firm.
The average beta24 of financial service firms is 0.817. The annual return for the
Madrid Stock Exchange Index (IGBM) over the period 1994 to 1995 is 12.30%.
The annual nominal interest rate r is obtained through 3-month interbank loans
and it is equal to 9.4% in 1995. The market risk premium is 0.029 and so, the
risk premium for the taxi revenues is φq = 0.817× 0.029 = 0.024.

4.2.4 Volatility of revenues

The annual volatility of the variable q (t) in (9) cannot be estimated directly
from the IMET study. So, it is approximated to the annual volatility for the
series resulting as the difference between the growth series of the real gross value
added (GVA) in market services from QSNA (base 1986) and the RGDP return
series. In particular, σq equals 0.6% given a sample including the period 1970:2
to 1995:4.

4.2.5 Jump component in revenues

We would expect a perfect pass-through of changes in costs into changes in fares
if taxi drivers had the power to choose prices. However, fares are the result of the
negotiation with public authorities, in particular between the municipality and
the taxi union. Since changes in fares do not occur on a regular basis, they will
be captured through the Poisson process Np(t) with parameter λp. We assume
that on average fares change once every five years, so the annual average number
of jumps λp equals 0.2.

4.2.6 Parameters of deflator equation

The two parameters describing the drift and variance of the growth rate of the
GDP deflator, βD and σD, are easily obtained through equation (14). Given the
quarterly GDPD series (base 1986) obtained from both the real and market price

24This beta is an average of several betas. They have been estimated by considering the last
60 trading days in 1995.
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GDP, the result is σD = 2.5% for the sample standard deviation per year from
the GDPD growth series corresponding to our period from 1970:2 to 1995:4. The
sample mean GDPD annual growth rate is βD = 10.1%. Finally, we compute the
starting value of the deflator growth rate ϕ (0) to be 0.82% for the fourth quarter
in 1995.

4.3 License price, alternative wage and other parameters

4.3.1 License price

We study the case of a taxi driver aged 35 who obtains a license in 1995 and so,
he can exercise his job for 30 years. The license price in 1995, L (0), amounts
to C=36,000 in 1995 and it increases every year according to the above mentioned
expected inflation rate of π equals 2.7%. To simplify the exposition of the results,
we assume in this example that the driver who buys the license is not financially
constrained and so, he can pay the license without additional borrowing. The
driver has the option at each point in time before retirement to sell the license at
the fixed price mentioned above and exercise an alternative job for the remaining
period until retirement.

4.3.2 Alternative wage

The IMET study estimates an implicit wage for the taxi driver of C=11,419.23 a
year in 1995. Assuming that the taxi driver is risk averse, we could estimate the
certainty equivalent of his salary as an approximation to the alternative salary,
denoted asw (t). We use that as the minimum annual wage that he could accept in
a different job. Given the revenue risk premium φq, the original wage corresponds
to w (0) = (1− φq)× 11, 419.23 resulting in C=11,145.17. We assume that growth
rate for the alternative wage is the inflation rate π.

4.3.3 Correlation parameters

Finally, the remaining parameters that we need to determine their values are the
correlations ρsc, ρcθ and ρθD. Since the sign of ρcθ is assumed to be negative due
to the negative strong impact of high oil prices in the economy, measured through
the behavior of the GDP growth rate, we assume ρcθ takes a starting value of
−0.6. We will also give a high but positive value of ρsc. Take, for example, a
value for ρsc equal 0.85. Finally, we will consider a value of ρθD equal 0. Notice
that all these correlations will be changed in the next section for the sensitivity
analysis.

4.3.4 Simulation parameters

In all cases we use 50,000 simulations with half-yearly steps (periods), so that
∆ = 1/2, and up to a horizon of 30 years. As a result, T = 30 and N = 60.
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Figure 2: Percentage of abandoned paths per period (T = 30)
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4.4 Simulation results

Using both the data and parameter values described above, we obtain that the
project value with flexibility, V (0), is C=417,690 and the taxi driver’s net surplus,
Γ (0) , is about C=80,000.25 In Figure 2, it is shown the evolution of the percentage
of abandoned paths per period. We can appreciate two important spikes at the
beginning, specifically during the first year (2 periods) in the future, i.e. year
1996. The total percentage of abandonments in 1996 amounts to 16.61%. The
reason for this behavior could be explained in the low revenues that he could earn
at first because of his learning process as a taxi driver. Finally, we can appreciate
another spike, that would be the largest one (46.82%) in the last period. It
means that almost half of the taxi drivers decide to maintain this job until his
retirement.

5 Sensitivity analysis

In this section we perform an exhaustive sensitivity analysis in order to measure
the robustness of the net surplus value obtained in the previous section (also
known as the benchmark value). The systematic analysis we carry out allow
us, among other things, to compute the contribution of each of the variables we
discuss on the net surplus value.

5.1 Parameters of variable cost equation

We first study the sensibility of our results to changes in the parameters that
govern the variable costs of the firm, and particularly, the price of the gas oil.
These parameters, as shown in (28) and (29), are ks, σs and φs.

25To be more precise, the net surplus is exactly C=79,989.
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In order to analyze the robustness of the estimates described in Section 4.1.2
for the whole sample from 12/24/90 to 12/25/95, we apply here the same method-
ology but using a different sample size each time under the following rolling pro-
cedure: in each estimation we reduce by one the number of observations, deleting
the first one of the previous sample. That is, the first estimation corresponds
to all the sample, while in the second we start from the observation of the date
12/31/90. The last estimation is done with data starting 12/26/94 so that we
have at least one year of weekly data. As a result, we obtain a sample of 100
estimations where each has the estimates of the above three parameters for a
certain sample period. We obtain the net surplus value when holding fixed the
rest of the parameters in the model given its corresponding values in the last
section. Figure 3 shows the evolution of the above three estimates through time
where "riskp", "Ks" and "sigS" denote the parameters φs, ks and σs respectively.
A remarkable feature is the similarity in the behavior of φs and σs with a high
correlation of about 0.85. The correlation between φs and ks is about −0.67 and
finally, the lowest correlation is between ks and σs of −0.33. Table 5 shows the
descriptive statistics of the three series displayed in Figure 3 and also for the net
surplus estimates. Note that the median of the net surplus series is C=78,167 -
higher than the mean but not too much - which is around the value obtained
in the example from the last section, specifically C=80,000. Meanwhile, the range
corresponding to the net surplus values - going from C=1,597 to C=101,659 - shows
a high dispersion.26 Summing up, if we select the median as the candidate27 of
the estimation for the net surplus, then there is hardly difference with respect to
the benchmark value of C=80,000 from the last section.

Table 5: Descriptive statistics of φs, ks, σs and net surplus

φs ks σs Γ (0) (in C=)
Mean 0.294 0.525 0.571 60,237

Median 0.225 0.474 0.611 78,167
Maximum 0.897 0.782 0.835 101,659
Minimum -0.045 0.294 0.118 1,597
Range 0.942 0.488 0.717 100,062

25th percentile 0.086 0.356 0.445 11,632
75th percentile 0.434 0.689 0.708 90,324

Std. Dev. 0.272 0.164 0.182 1,538

Further analysis of the surplus series in Table 5 can be done by regressing
the net surplus value (dependent variable) with respect to the above parameters
(independent variables). The result of the regression, including the constant, has
a R-squared of around 90% with all the parameters being significant.
The commovement of φs and σs mentioned before means that the information

26Analysing better the surplus value series in Table 5, we find in the intervals [0, 50), [50, 100)
and [100, 102) the amounts of data - in thousands of euros - with percentages 36%, 55% and
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Figure 3: Evolution of variable cost parameter estimates
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Table 6: LS with net surplus (in thousands of euros) as dep. var.

Indep. var. coefficient std. error. (s.e.) p-value
c -10.813 6.531 0.000
φ∗s -98.158 12.884 0.000
ks 187.623 7.578 0.000
σs -48.191 6.822 0.000

R-squared 0.907 s.e. of regression 11.650
Adj. R-squared 0.904 sample size 100

content of each parameter can be misleading. If we consider all cases of regressing
any independent variable (φs, ks, σs) against the rest of the independent ones
including a constant, we find that when φs becomes the dependent one we obtain
the highest R-squared, of around 89%. Denote φ∗s as the error term of this last
regression, that is the information content of φs which is orthogonal to both ks and
σs. Table 6 displays a new regression with the surplus value as dependent variable
but now with independent ones ks, σs and φ∗s. The results are as expected. The
sign of φ∗s is negative and since ρsc is positive under the benchmark framework
(see Section 4.3.3), then an increase in the risk-premium makes the surplus value
decrease since the drift of the variable cost equation (19) is higher. Similarly, the
negative sign of σs reflects the fact that higher volatility implies higher costs and
so both lower cash-flows and lower surplus value.
Finally, in Figure 3 we can appreciate that the volatility (sigS) shows a time-

9% respectively. So, most data can be found in the second interval that contains the median.
27This is a sensible criterion since the median is more robust than the mean.
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Figure 4: Evolution of RGDP parameter estimates
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varying pattern and also, the commovement behavior of the volatility and the
risk-premium (riskp). This could suggest a theoretical model for futures prices
containing both stochastic volatility and a time-varying risk-premium as a func-
tion of the volatility. In other words, futures prices could be computed under the
well-known Heston’s framework.28 However, this extension is beyond the scope
of this paper.

5.2 Parameters of RGDP equation

For the process governing the changes in the RGDP we carry out the same study
as before. Following a rolling procedure for the AR(1) structure established for
RGDP in Section 4.2.2, we finally obtain a sample of fifty AR(1) estimates and
transform them into the corresponding parameter estimates of equation (26) to
run the Monte Carlo simulation. We start in the first simulation with observations
from 1970:2 to 1995:4, and going from 1982:3 to 1995:5 in the last one. Figure
4 shows the evolution of the parameters through time where "lgdp", "kgdp" and
"sgdp" denote respectively the parameters θ, kθ and σθ, while Table 7 presents
the corresponding descriptive statistics.
Note that the volatility series (sgdp) shows a decreasing trend in Figure 4.

The correlation values are −0.44, −0.23 and 0.13 corresponding respectively to©
θ, kθ

ª
,
©
θ, σθ

ª
and {kθ, σθ} .

Table 7 also presents the descriptive statistics of the net surplus series where
each observation is obtained keeping all the parameters fixed except those from
the RGDP equation (26) with different values - according to the above rolling
procedure - per surplus value estimate. Note that the median value of C=70,129
is lower than our benchmark value of C=80,000. The series is rather symmetric.

28See Heston (1993).
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Table 7: Descriptive statistics of θ, kθ, σθ and net surplus

θ × 102 kθ σθ × 102 Γ (0) (in C=)
Mean 0.581 0.796 0.570 70,059
Median 0.580 0.838 0.569 70,129
Maximum 0.720 1.173 0.705 81,736
Minimum 0.495 0.506 0.361 64,017
Range 0.225 0.667 0.344 17,719

25th percentile 0.526 0.662 0.543 65,957
75th percentile 0.597 0.871 0.633 71,689
Std. Dev. 0.062 0.139 0.085 4,643

It shows a lower dispersion - see the standard deviation - than the corresponding
one in Table 5. Finally, note that the maximum value of C=81,736 is relatively
close to the benchmark. We also study the effect on the surplus value of changes
in the parameters. The corresponding regression29 — including also a constant
term — shows a 99% R-squared coefficient. However, most of the explanatory
power arises from θ, with a positive sign, while kθ is not significant.

5.3 Correlation parameters

In this section we study how the net surplus changes when modifying in each
surplus estimate only one correlation parameter value from the set {ρsc, ρcθ, ρθD}
while the rest of the parameters are taken fixed from the benchmark case. The
grid of values that we consider for any correlation goes from −1 to 1 with steps of
size 0.02, so for each correlation we will have a surplus series of 101 observations.
Table 8 shows the descriptive statistics corresponding to the net surplus series
obtained in each case, that is one series for each correlation sensitivity analysis,
which are denoted as Γρsc (0), Γρcθ (0) and ΓρθD (0) corresponding to ρsc, ρcθ and
ρθD respectively.
Notice that the mean and median values corresponding to the three series

are very similar to the ones under the benchmark case of C=80,000. We can
also appreciate that Γ (0) is most sensitive with respect to ρθD (see the relative
dispersion measures located in the last two rows of Table 8). Meanwhile, for ρsc
it occurs the opposite behavior. Finally, regressing each surplus series against a
constant and the correlation series we obtain that ρsc and ρcθ have a negative effect
on the value of the surplus while the effect of ρθD is positive. The corresponding
R-squared measures are above 97% in all three regressions.

29To shorten the paper, it is not displayed.
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Table 8: Descriptive statistics for net surplus

Γρcθ (0) (in C=) Γρsc (0) (in C=) ΓρθD (0) (in C=)
Mean 77,880 82,246 80,159

Median (Q2) 77,568 82,346 79,964
Maximum 82,405 84,792 85,730
Minimum 75,080 79,906 75,039
Range 7,325 4,886 10,691

25th percentile (Q1) 76,062 80,895 77,315
75th percentile (Q3) 79,531 83,404 82,950

Std. Dev. 2,132 1,473 3,131
Std. Dev./ Mean 0.027 0.018 0.039
(Q3 −Q1) /Q2 0.045 0.030 0.070

5.4 Time horizon

We finally measure the impact on the surplus value by considering only a decrease
in the time horizon of driving a cab. Table 9 shows the effect of changing only the
number of years from 30 to 5 under the benchmark situation. As expected, the
surplus value decreases when the number of years is reduced and the probability
of abandonment in the first period increases.

Table 9: Impact of time horizon on net surplus

T (years) 30 25 20 15 10 5
Γ (0) (in C=) 80,000 55,670 33,080 13,310 -70 -3,700
1st period (% aband.) 8.86 11.04 14.53 22.51 47.41 93.93
last period (% aband.) 46.81 46.81 45.31 38.16 17.29 1.34

In Figure 5 we present the evolution of the percentage of abandoned paths per
period for a horizon fixed to 10 years. Compared with Figure 2 the main difference
is that with a shorter horizon the agent abandons during the first periods. The
reason is that for a short horizon, high initial costs or low initial revenues are
enough to make the job nonprofitable.
Definitively, if we consider all the different sensitivity studies carried out in

this section, we can conclude that the correlation analysis is the least sensitive
showing net surplus values close to the benchmark value.

6 Extensions

In this section, we provide an extension of the framework introduced in Section 2.
We extend the process for changes in quantities in (9) to allow for a more general
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Figure 5: Percentage of abandoned paths per period (T = 10)
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case where the drift is modelled now as a mean-reverting process to the growth
rate of the real GDP represented as θq (t) . If we denote, under this more general
framework, the drift of the process for dq (t) /q (t) as dβ (t) instead of dθq (t), we
can assume

dβ (t) = kβ (θq (t)− β (t)) dt+ σβdWβ (t)

dθq (t) = kθ
¡
θ − θq (t)

¢
dt+ σθdWθ (t)

dWβ (t) dWθ (t) = ρβθ

where kβ, σβ > 0. The above model represents a bivariate Ornstein-Uhlenbeck
process. The interpretation is that for fixed fares, the taxi driver’s revenue does
not depend exactly on the evolution of the RGDP growth rate. Instead, it is
subject to a (idiosyncratic) shock that fades away over time. This new growth
rate β (t) should be positively correlated with θq (t). For this reason we assume at
first that ρβθ > 0. Since we have no previous information about how to estimate
the parameters kβ and σβ, we will assume that kβ equals kθ and σβ equals σθ. For
values of ρβθ equal 0 and 0.8, we obtain net surplus values of C=78,280 and C=82,110
respectively. In general, a higher correlation between the growth rate of income
and growth rate of GDP, which implies a smaller uninsurable idiosyncratic risk,
increases the surplus value. In any case, the change in the surplus value is around
the benchmark value of C=80,000.

7 Concluding Remarks

The taxi-sector is particularly prone to discussions on whether it should be re-
formed because it includes a variety of - sometimes contradictory - regulations.
Many reforms have been focussed on liberalizing prices or making entry easier
while at the same time trying to guarantee a certain income for the taxi drivers.
Others, like our present study, have been focussed on insurance for the taxi drivers
against fluctuations in the return from their job.
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We show in this case how such a reform can increase the net surplus value for
insiders respect to a liberalized market for licenses. The total effect we compute
is substantial. The net surplus we estimate is around C=80,000 and this value is
robust to the sensitivity analysis carried out.
The study also points out one of the problems of this kind of reforms: its

sustainability. Although this fixed license price scheme provided substantial pro-
tection during the years of crisis in the sector, it also became inconvenient for the
licenses once the sector recovered and the liberalized price of the license increased.
The consequence of this difference was the pressure to abandon the mechanism.
Finally, a year after the liberalization of the sector, anecdotal evidence sug-

gests that the price of the license in Barcelona has increased substantially and is
barely similar to the prices in other Spanish cities.
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A Appendix30

Equation (4) implies that

Z t

t−∆
dX (u) =

Z t

t−∆
ks (α−X (u)) du+

Z t

t−∆
σsdWs (u) (32)

= ksα∆− ks

Z t

t−∆
X (u) du+ ηγ (t)

where ηγ (t) ∼ N (0, σ2s∆). Also, note that
R t
t−∆X (u) du is a flow variable in

contrast to the stock variable S (t) and it will be denoted as ξ (t) . Then, equation
for γ∆ (t) in (5) may be expressed as

γ∆ (t) = ksα− ks∆
−1ξ (t) +∆−1ηγ (t) (33)

It is shown in Theorem 8 from Bergstrom (1984) that ξ (t) satisfies an ARMA
(1,1) process, i.e.

ξ (t) = α∆
¡
1− e−ks∆

¢
+ e−ks∆ξ (t−∆) + ηξ (t) (34)

where ηξ (t) is defined as

ηξ (t) = −σsk−1s
Z t

t−∆

¡
e−(t−u)ks − 1¢ dWs (u) (35)

−σsk−1s
Z t−∆

t−2∆

¡
e−ks∆ − e−(t−∆−u)ks

¢
dWs (u)

which follows a MA(1) process verifying31:

E
£
η2ξ (t)

¤
=

σ2s
2k3s

£
(1 + ks∆) e

−2ks∆ + ks∆− 1
¤

E
£
ηξ (t) ηξ (t−∆)

¤
=

σ2s
2k3s

£
3
¡
1− e−2ks∆

¢− 2ks∆e−ks∆
¤

We can appreciate that the disturbances ηγ (t) and ηξ (t) defined in (32) and (35)
are correlated and satisfy that

E
¡
ηγ (t) ηξ (t)

¢
= σ2sk

−2
s

£
e−ks∆ + ks∆− 1

¤
and

E
¡
ηγ (t−∆) ηξ (t)

¢
= σ2sk

−2
s

£
1− (1 + ks∆) e

−ks∆¤
30In order to shorten this appendix the proof of some results here are available upon request

to the authors.
31We apply equations (60) and (61) in Theorem 8 from Bergstrom (1984) for the general case

of a time interval of length ∆ in order to obtain the variance and the first-order covariance of
ηξ (t) .
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Finally, considering equations (33) and (34) it can be shown that γ∆ (t) follows
an ARMA (1,1) process:

γ∆ (t) = e−ks∆γ∆ (t−∆) + � (t)

where � (t) is a MA(1) process such that

E
£
�2 (t)

¤
=

σ2s
2ks∆2

£
3− ks∆− (3 + ks∆) e

−2ks∆¤
and

E [� (t) � (t−∆)] =
σ2s

2ks∆2

£
1− e−ks∆

¤
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B Appendix

In this appendix we explain in detail how to apply the methodology in Cortazar
and Schwartz (2003) based on calibration to obtain the parameters in equation
(31) .
The log price corresponding to (31) for a certain date ti and maturity Tj can

be expressed as
lnF (ti, Tj) = ϑ0 (Tj) +X (ti)ϑ1 (Tj) (36)

such that

ϑ0 (Tj) ≡ α∗
¡
1− e−ksTj

¢
+

σ2s
4ks

¡
1− e−2ksTj

¢
,

ϑ1 (Tj) ≡ e−ksTj .

Meanwhile, lnFm (ti, Tj) represents the log observed futures market price to
the corresponding log theoretical one. Define the log pricing error eij correspond-
ing to a certain date ti and maturity Tj as the difference between both log prices
which can be expressed given (36) as

eij = lnF (ti, Tj)− lnFm (ti, Tj) (37)

= Λ (ti, Tj)−X (ti)ϑ1 (Tj)

where Λ (ti, Tj) ≡ lnF (ti, Tj) − ϑ0 (Tj). Note that for an initial value of Φ we
have a simple linear regression model without a constant where the dependent
variable is ln eF (ti, Tj), ϑ (Tj) as the independent one and X (ti) as the parameter
to estimate. So, given a cross-section sample for a certain date we could obtain the
state variable by using the standard least squares (LS) regression. If we repeat
this procedure given a time series with cross-section data, we finally obtain a
time series for the state variable given the same initial value set of Φ. So, the LS
estimate of X (ti) , denoted as bX (ti) , for a given date ti is obtained as

bX (ti) = µXn(ti)

j=1
ϑ21 (Tj)

¶−1Xn(ti)

j=1
Λ (ti, Tj)ϑ1 (Tj) (38)

where n (ti) represents the number of contracts in date ti. Summing up, the cali-
bration consists of minimizing the square errors defined in (37) for the whole sam-
ple. Note that eij becomes a function of both Φ and the state variable {X (ti)}mi=1
wherem is the time series sample size. SubstitutingX (ti) by its estimate in equa-
tion (38) , then eij will only depend onto Φ. So, we finally minimize the following
problem:

min
{Φ}

Xm

i=1

Xn(ti)

j=1

³
Λ (ti, Tj)− bX (ti)ϑ1 (Tj)´2 . (39)
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