
 
 
 
 
 
 
 

 
ESTIMATING DYNAMIC PANEL DATA DISCRETE 

CHOICE MODELS WITH FIXED EFFECTS 
 

 
Jesús M. Carro 

 
 

CEMFI Working Paper No. 0304 
 
 

 
 
 

January 2003 
 
 
 

CEMFI 
Casado del Alisal 5; 28014 Madrid 

Tel. (34) 914 290 551. Fax (34) 914 291 056 
Internet: www.cemfi.es 

 
 
 

 
 
 
 
 
I am especially indebted to Manuel Arellano for his valuable advice and comments. I would 
like to thank Pedro Albarran, Cristina Barcelo and Pedro Mira for helpful discussions and 
support. Thanks are also due to seminar participants at CEMFI, Universidad Carlos III, UCL 
and ''The Evaluation of Labour Market Policies'' conference of the Network of Excellence in 
Amsterdam for useful comments. All errors are mine.  
 



CEMFI Working Paper No. 0304 
January 2003 
 
 

 
 
 
 
 

ESTIMATING DYNAMIC PANEL DATA DISCRETE  
CHOICE MODELS WITH FIXED EFFECTS 

 
 
 
 

Abstract 
 
In this paper, I consider the estimation of dynamic binary choice panel data models 
with fixed effects. I use a Modified Maximum Likelihood Estimator (MMLE) that 
reduces the order of the bias in the Maximum Likelihood Estimator from O(T-1) to 
O(T-2), without increasing the asymptotic variance. I evaluate its performance in finite 
samples where T is not large, using Monte Carlo simulations. In Probit and Logit 
models containing lags of the endogenous variable and exogenous variables, the 
estimator is found to have a small bias in a panel with eight periods. A distinctive 
advantage of the MMLE is its general applicability. Identification issues about policy 
parameters of interest that arise in this kind of models are also addressed. In 
contrast with linear models, parameters of interest typically depend on the 
distribution of the individual effects. I discuss the relevance of mean effects across 
individuals and show an instance in which the entire distribution is needed. 
Compared with simple MLE, simulation results show that MMLE improves 
significantly the estimation of the distribution of the effect of interest. 
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1 Introduction

This paper deals with the estimation of dynamic discrete choice models with fixed ef-

fects. These models, that take into account unobserved permanent heterogeneity and

the underlying dynamic processes, are of interest in many empirical applications in eco-

nomics, because they allow us to distinguish between the sources of the time persistence

on individual decisions observed in discrete panel data sets. That observed persistence

may be due to persistence on observable individual characteristics, true state dependence

or permanent unobserved heterogeneity. In the last two cases we observe that for given

observable characteristics individuals choose an option more frequently when they have

chosen it in the past. However, these two sources of persistence in individual decisions

have very different implications and we want to separably identify each of them and

estimate their relative importance. There is true state dependence if previous choices

affects current utility. In contrast, if the source of persistence is permanent unobserved

heterogeneity individuals have higher propensity to take that decision, but there is no

effect of previous choices on current utility and past experience has no a behavioral effect

(see Heckman, 1981a). This is important not only to study persistence, but also to know

the effect of a variable on decisions or in program evaluations. An economic example

that exhibits substantial persistence over time is female labor force participation and

knowing whether or not it reflects true state dependence is needed for understanding

the behavioral relationships underlying participation decisions.1

Furthermore, it is well-known that permanent unobserved heterogeneity may bias

estimates and lead to misleading conclusions about the effect of a variable if we do

not control for it. This is particularly true in dynamic models: the state dependence

coefficients are seriously biased getting significative coefficients even when there is no

state dependence and persistence is only due to permanent heterogeneity. A great bias is

also found in the coefficients that describe the effect of observed characteristics when they

are correlated with the unobserved ones. In econometric literature, there are two ways
1See Hyslop (1999) and Chay & Hyslop (2000) for examples of studies of dynamic structure and

persistence on female labor force and welfare participation.
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of treating unobserved heterogeneity: random effects and fixed effects. Random effects

are used when some knowledge about the distribution of the unobserved heterogeneity

given the observables is assumed. Fixed effects are used when that distribution is left

completely unrestricted. In the latter case, the effect is treated as one different parameter

for each individual.

The problem with random effects comes from the difficulty in establishing a distribu-

tion of the heterogeneity, particularly when it may be related to other observed variables.

An additional problem is the so-called “initial conditions problem”: the process is not

observed from the beginning; thus, we have to assume something about the initial con-

ditions and its relations with the other variables. Even if you condition in the first

sample observation, you need to specify the distribution of the random effects given the

observables and the initial conditions. This is because even if the random effects are

independent of the observables, their distribution conditional on the first sample obser-

vation depends on the observables. A misspecification on sample initial conditions or

random effects distribution will lead to inconsistent estimates. So we would obtain more

robust estimates (robust to misspecifications) if we leave unrestricted the unobserved

heterogeneity as in the fixed effects approach.

There is an extensive research on how to estimate linear panel data models with

fixed effects, but there are no general solutions for non-linear cases. This is an open

area of research. For instance, probit models with explanatory variables including both

exogenous variables and the lagged dependent variable do not have a
√
N consistent es-

timator. Monte Carlo experiments have shown that the traditional maximum likelihood

estimator exhibits considerable bias in finite samples when T is not large.2

The estimation of non-linear models with fixed effects by maximum likelihood suffers

the so-called incidental parameters problem. Here, the fixed effects are the incidental

parameters. Cox and Reid (1987) considered the general problem of doing inference for

a parameter of interest in the absence of knowledge about nuisance parameters.3 Their

solution is based on getting a parametrization such that the nuisance parameters are
2See Heckman (1981b) for an example.
3Incidental parameters are nuisance parameters whose number grows with the sample size.
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information orthogonal to the other parameters, as to limit the influence of the nuisance

parameters. Then, they develop a modification that reduce the order of the bias of

the maximum likelihood estimator (MLE), without increasing its asymptotic variance.

Their general framework has been used for static binary choice panel data models with

fixed effects in Arellano (2001). I apply Cox and Reid idea to dynamic panel data

discrete choice models, studying the asymptotic properties for different N and T plans,

and I evaluate its performance in finite samples. Although this modified MLE is only

consistent when T goes to infinity, it is shown to be useful in the estimation of models

like a probit with lags of the endogenous variable and exogenous variables in panels

with just eight time periods, because it reduces the order of the bias of the MLE. The

method gives a general framework for the estimation of non-linear models with fixed

effects, compared with the restrictive assumptions needed for using other estimators.

For instance, it can be used regardless of the distribution of the errors assumed.

Lancaster (1997) and Woutersen (2001) apply the information orthogonality idea to

integrated likelihood, following a Bayesian approach to the problem. Lancaster applies it

to linear panel data models with fixed effects. Woutersen derives the general properties

of the integrated likelihood estimator. Furthermore, he shows that all the properties

derived for the integrated likelihood estimator also hold for the modified profile likelihood

proposed by Cox and Reid (1987) that is the base of this paper.

The rest of paper is organized as follows. Next section presents the kind of models

whose estimation is studied in this paper, the problem that I try to solve and a brief

comment on some approaches taken in the literature for specific cases. Section 2 also

discusses the nature of parameters of interest (policy parameters), i.e. useful measures

of the effects with the kind of models considered here. That is not a trivial question,

since, in contrast with the linear case, each one of the parameters defined in the model

does not capture on his own the effect of the explanatory variables, the effects are

different for each individual, they depend on the fixed effects and there are more than

one measure that should be considered. Section 3 presents the alternative approach that

we try to address and its asymptotic properties. Section 4 shows some simulations of
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this alternative approach to study its performance in finite samples and its usefulness

for the estimation of the policy parameters of interest. In Section 5 I estimate a female

labor force participation model as an empirical illustration. The last section concludes.

2 The Model and Parameters of Interest

2.1 The Model

Let us consider the following panel data model:

yit = 1{αyit−1 + x0itβ + ηi + vit ≥ 0} (t = 0, ..., T − 1; i = 1, ..., N) (1)

where 1{c} takes value one if condition c is satisfied and zero otherwise. {ηi}i=1,...,N
describe permanent unobserved heterogeneity among individuals and vit reflects unob-

served random variables and shocks that individuals receive every period. As previously

explained, I do not want to make any assumption nor restriction on the distribution of

ηi, so I take a fixed effect approach and, therefore, treat {ηi}i=1,...,N as parameters to

be estimated. In all the paper, for any variable (or set of variables) z, zit denotes ob-

servation at period t for individual i, zi = {zi0, ..., ziT−1}, i.e. the set of all observations
for individual i, and zti are the set of observations from the first period to period t for

individual i (zti = {zi0, ..., zit}).
Examples of the use of this kind of models can be found in Chay and Hyslop (2000)

and Hyslop (1999). The former estimates different specifications of the model with

alternative assumptions about the unobserved individual heterogeneity and initial con-

ditions, using female welfare and labor force participation data. Hyslop (1999) studies

the dynamic structure of labor force participation of U.S. married women using both

linear probability and probit specifications. However, he uses a random effects approach

for the estimation of the dynamic probit model.

Assuming that vit follows certain distribution, a natural way of estimating this model

is by maximum likelihood; to write down the probability of the sample and maximize it

in all the parameters: β, η1, ..., ηN . By doing so, it gives rise to the incidental parameters

problem, first considered by Neyman and Scott (1948). It implies that for any panel
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of finite length, estimators of individual fixed effects are necessarily inconsistent. The

intuition of incidental parameters problem is clear in this case. Only new observations for

individual i give new information about ηi and more individuals, i.e. increments inN , do

not help with the estimation of ηi and add more parameters to be estimated. Therefore,

the maximum likelihood estimator (MLE) of ηi is only consistent when T →∞. In the
maximum likelihood estimator of model (1), the inconsistency of the estimations of ηi

is transmitted to the estimator of the other parameters. The log-likelihood conditioning

on the first observation is

l(γ, η1, ..., ηN) =
NX
i=1

li(γ, ηi) =
NX
i=1

T−1X
t=1

{yit ∗ logFit + (1− yit) ∗ log(1− Fit)}

where it is assumed that −vit are independently distributed with cdf F and γ = (α,β0)0.

Deriving with respect to γ, η1, ..., ηN , we get the first order conditions dηi(γ, ηi) ≡ ∂li(γ,ηi)
∂ηi

and dγi(γ, ηi) ≡ ∂li(γ,ηi)
∂γ

. Note that l(γ, η1, ..., ηN) is defined for i observations such thatPT−1
t=1 yit is not zero or T − 1. MLE of ηi for given γ, bηi(γ), solves dηi(γ, ηi) = 0.

The MLE of γ is given by the maximizer of the so-called concentrated log-likelihood,PN
i=1 li(γ,bηi(γ)), which solves the following first order condition:

1

TN

NX
i=1

½
dγi(γ,bηi(γ)) + dηi(γ,bηi(γ))∂bηi(γ)∂γ

¾
=

1

TN

NX
i=1

dγi(γ,bηi(γ))
This first order condition or estimating equation of γ depends on bηi, and evaluated at
the true value, γ0, does not converge to zero in probability when N → ∞ for fixed T ,

since bηi does not converge to its true value, ηi0, in such situation.
This problem can be overcome if the estimator of γ can be derived so that it does

not depend on the incidental parameters. This is what is done in the linear case, where

estimators of γ based on regression in first differences or deviations from group means

(whiting groups estimator) are consistent for large N and fixed T because they do not

depend on ηi. However, first differentiating or deviations from means does not work in

the case of non-linear models: ∆yit = 1{αyit−1+x0itβ+ηi+vit ≥ 0}−1{αyit−2+x0it−1β+
ηi + vit−1 ≥ 0} still depends on ηi.

A way of getting rid of the incidental parameters and therefore a consistent estimator

for fixed T in binary choice models is by conditioning on a sufficient statistic of ηi, using
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conditional MLE. However it is not possible to find a sufficient statistic for many of

the non-linear models used in econometrics. In particular, logistic assumption is needed

and, even with that assumption, model (1) does not have a sufficient statistic. Manski’s

maximum score estimator is not restricted to a specific distributional assumptions, but

it imposes strict exogeneity on all explanatory variables, excluding dynamic models.4

Honoré and Kyriazidou (2000) consider the estimation of fixed effects discrete choice

models like (1) and propose a fixed T consistent estimator. This estimator requires

logistic assumption, εit be serially independent over time, xi2 equal xi3 or (xi2 − xi3)
be continuously distributed with support in a neighborhood of 0 and (xi1 − xi2) have
sufficient variation conditional on the event that xi2−xi3 = 0. These restrictions rule out
time-dummies, for instance. The rate of convergence is slower thanN−1/2. Furthermore,

the rate of convergence is decreasing as the number of regressors increases. If logistic

assumption is relaxed, Manski’s insight is used and now, in addition to the former

limitations, the parameters are identified only up to scale and the objective function is

not differentiable, which makes the maximization more difficult. Honoré and Kyriazidou

do not derive the asymptotic distribution in this latter case, but they expect the limiting

distribution to be non-normal like in the maximum score estimator, and the rate of

convergence to be slower than N−1/3. So α and β in a dynamic probit of the form of

model (1) do not have a good estimator.

2.2 Policy Parameters of Interest

What we want to measure with the econometric models is the effect of x on y. In

the linear model that effect is β and the expected effect of a change in x over y is

the same for all individuals, so the average effect on the population is equal to the

expected effect for an individual, β. In binary choice models β is of interest since some

economic hypothesis impose testable restrictions on its sign or magnitude. Also, the β

coefficients give the relative impact of the explanatory variables on the probabilities of

(yit = 1). Nevertheless, even though the micropanel literature has emphasized the fixed
4See Arellano & Honore (2001) and Arellano (2001) for surveys on fixed T solutions for discrete

choice models.
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T consistent estimation of β, in models like model (1) with two x variables say x1 and

x2,the effect of a change in x1 over the expected y for and individual i (or the effect of

a change in x1 over the probability of (yit = 1)) is:

∂

∂x1
E [yit|x, ηi] =

∂

∂x1
F (β1x1 + β2x2 + ηi) = β1f(β1x1 + β2x2 + ηi) (2)

when x is a continuous variable and

E [yit|x1b, x2, ηi]−E [yit|x1a, x2, ηi] = F (β1x1b + β2x2 + ηi)− F (β1x1a + β2x2 + ηi) (3)

when we want to know the effect of changing x1 from value x1a to x1b, as it happens if x1 is

a discrete variable. In equation (2) f denotes the pdf that corresponds with distribution

F . These two measures depend on the levels of all the explanatory variables and on the

permanent unobserved heterogeneity ηi. So, the effect differs among individuals due to

their unobserved heterogeneity and the values of the x and y that each one has. Also,

the effect for an individual is different in each period if any of the explanatory variables

has changed during that time.

Usually, the mean effect for all individuals is what people want to calculate. But

more than one mean can be considered. A measure found in literature is the effect of

an increment in x1 over the probability of y = 1, for an individual with the average

characteristics:

F (β1(E(x1it) + 1) + β2E(x2it) +E(ηi))− F (β1E(x1it) + β2E(x2it) +E(ηi)) (4)

As noted by Chamberlain (1984), this effect may not be relevant for most of the popula-

tion since an individual with the average characteristics may not represent any individual

in the population.

The expected effect over the probability of y = 1 of going from x1a to x1b is

E(η,x2)|x1(equation (3) ) =Z
ηi,x2i

[F (β1x1b + β2x2 + ηi)− F (β1x1a + β2x2 + ηi)] dG(η,x2)|x1(ηi, x2|x1a) (5)

where G is the distribution function. This is the parameter of interest estimated in

Altonji and Matzkin (2001). They present it for the continuous case as the expected
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value of the partial derivative of the probability of y = 1 with respect to x, holding the

distribution of the unobservables constant, i.e. E
(η,x2)|x1

(equation (2)). This is done so,

because we want to isolate the effect of the explanatory variable x1 from its correlation

with the unobserved heterogeneity.

An alternative mean, proposed in the literature is taking the average over the mar-

ginal distribution of η,Z
x2

Z
η

[F (β1(x1b) + β2x2 + ηi)− F (β1x1a + β2x2 + ηi)] dGη(ηi)dGx2|x1(x2|x1a). (6)

This measure corresponds with the derivative of the Average Structural Function (ASF)

defined in Blundell and Powell (2000). They present it as easier to identify since the

conditional distribution of η is not needed.5 This measure abstracts from the correlation

between the x variables and η.

Chamberlain (1984) proposed as parameter of interest the mean effect for a randomly

drawn individual:Z
ηi,x2

[F (β1x1b + β2x2it + ηi)− F (β1x1a + β2x2it + ηi)] dG(ηi, x2it) (7)

where the joint distribution of η and x2 is used. This measure takes into account the

correlation between x2 and η, but if we want to measure the effect at certain level of

x1 = x1a the distribution of the unobserved types is not the same as for other level. In

this latter case the effect is given by equation (5).

Equations (7) and (5) are the answer to different questions. For example, if we want

to measure the effect of having a third child (x1a = 2, x1b = 3) over the probability

of female labor force participation (y = 1) for those that already have two children,

we should take into account that there is a correlation between the number of children

and the unobserved preferences (ηi), and that some unobserved types are more likely to

have two children than others. So the relevant distribution of η is the conditional one

and we should compute (5). Measure (7) will be the answer to a question like, what

would be the expected effect of having a child (x1a = 0, x1b = 1) for all individuals in
5Blundell and Powell (2000) consider models with endogenous regressors. In model (1) the unob-

servable part has two components: an exogenous shock vit and permanent unobserved heterogeneity ηi
possibly correlated with the regressors. So the endogeneity in this case comes from ηi.
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the population? If x1 were a treatment indicator such that x1b = 1 and x1a = 0, (7)

would be the Average Treatment Effect and (5) would be the average Treatment on the

Untreated.

The previous parameters of interest give an expected effect at each level of x1. If we

want to know the average effect for the population of an increment in their level of x1

on a specific period t: E(equation (3)) =Z
ηi,x1it,x2it

[F (β1(x1it + 1) + β2x2it + ηi)− F (β1x1it + β2x2it + ηi)] dG(η,x)(ηi, x1it, x2it)

(8)

This is a summary measure for the population to evaluate the effect of an increment

given the actual level of the variable from which individuals come from. This is the

parameter of interest if, for example, we want to know the average effect of an increment

in the external income over the probability of working, considering the level of income

that each one has. In this example, x is continues, so the effect is given by E(2) =R
η,xit

β1f(x
0
itβ + ηi)dG(η,x)(ηi, xit). Notice that the parameter of interest expressed in

equation (8) is equal to Ex1(equation (5)) -replacing x1a = x1it and x1b = x1it + 1- but

it is not equal to Ex1(equation (7)).

All the above are population measures. If we have a random sample of (yit, xit, ηi)

i = 1, ..., N ; t = 0, ..., T − 1, knowing β, the sample counterparts, for the effects on a

specific period t, are in table 1.

In model (1), there is also a long run effect, since there are dynamic effects through

αyit−1. This long run effect of a change in xit over the probability of (y = 1) for a

specific individual i on period t is

∂

∂x

½
F (βxit + ηi)

1− F (α+ βxit + ηi) + F (βxit + ηi)

¾
On the other hand, depending on the economic matter analyzed, we may need not

only the mean, but also other descriptive statistics such as the variance, the percentiles

or even the whole distribution of the effect on the population.6 In addition to that, the
6This is a decision based on economic motivations. For example, in the context of treatment effects

and program evaluation studies, Heckman and Smith (1997) discuss situations in which the distribution
of the effect on the population and not the mean of it, is what we need to estimate.
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Table 1: Sample counterparts of the population paremeters of interest

Pop. Sample Counterpart

(4) [F (β1(x1 + 1) + β2x2 + η)− F (β1x1 + β2x2 + η)]

(5) 1
Na

PN
i=1 [F (β1x1b + β2x2it + ηi)− F (β1x1a + β2x2it + ηi)] 1{x1it=x1a}*

(6) 1
Na

PN
i=1

n
1
N

PN
j=1

£
F (β1x1b + β2x2it + ηj)− F (β1x1a + β2x2it + ηj)

¤o
1{x1it=x1a}

(7) 1
N

PN
i=1 [F (β1x1b + β2x2it + ηi)− F (β1x1a + β2x2it + ηi)]

(8) 1
N

PN
i=1 [F (β1(x1it + 1) + β2x2it + ηi)− F (β1x1it + β2x2it + ηi)]

where x = 1
N

PN
i=1 xit, η =

1
N

PN
i=1 ηi and Na =

PN
i=1 1 {x1it = x1a}.

* When x is a continuos variable, 1 {xit = xa} will be sustituted by a kernel density function.

mean is very descriptive (in a statistical sense) in most of the linear models found in the

literature but it may not capture relevant features of the distribution in binary choice

models. In models like (1), individuals choose one option depending on whether they

are above or below a threshold, and a change in x produce a change in the probability

of being above that threshold. This means a greater effect on those who are close to

the threshold and a small effect for those who are far away from the threshold, as it is

captured by the form of function f . The group with small effect of a change in x on

the probability of choosing (yit = 1) contains individuals whose characteristics makes

them choose an option with high probability. The mean effect may be between those

two groups of individuals and it may not be relevant for most of the population. More

appropriate measures are those that help us to evaluate the effect over both groups sepa-

rately and to know the relative importance of them. Depending on the kind of economic

study, we may only be interested on the effect over people with certain characteristics

and situations, for example those who are near the threshold. In such case, the mean is

not only a non-representative measure, but also could lead us to misleading conclusions.

For instance, suppose that in model (1), yit indicates whether individual i owns a
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car and xit is their level of income at period t and we want to study the effect of x over

y. People with very high level of income is going to have a car and a small change in

income is scarcely going to affect their decision - i.e. (2) is very small-. People with very

low level of income is not going to have it and a change in income is not probably going

to change that, since they are very far below from the threshold level. In this last case,

(2) is going to be very small too. If we want to know the effect of changes in the level of

income over yit we may prefer to focus on those that, due to their level of income, are

near to the threshold (not very large and not very small), and therefore are significantly

affected by a small change in x. In such situation we need to look at the distribution of

the effects and not only to the mean.

3 Modifying the concentrated likelihood

The traditional approach to the problem of estimating model (1) has been to look for a

fixed T consistent estimator because most of the micropanels have much larger N than

T, and the finite sample bias found when using some of the estimators that are consistent

only when T → ∞ is not negligible. Nevertheless, our goal is not necessarily to find a

consistent estimator for fixed T , but an estimator with a good finite sample performance

and a reasonable asymptotic approximation for the samples used in empirical studies.

Moreover, as commented in the previous section, only partial solutions with restrictive

assumptions have been found for fixed T , and identification problems arise in that

context when those assumptions are relaxed (see Chamberlain, 1992 and Arellano, 2001).

Also, as shown by Alvarez and Arellano (1998) for linear autoregresive models, the

properties of some common estimators that are optimal when T is fixed, may be quite

different when both T and N tend to infinity. In contrast to time series or single

cross sections, panel data can exploit both dimensions for identification and inference.

Besides, panels with T = 2 are not so common in practice and for values of T like 8 or

9 the finite sample bias of estimators that are only consistent when T →∞ might not

be important. Given all this, we do not need to restrict ourselves to fixed T consistent

estimators and fixed T asymptotics.
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Cox and Reid (1987) considered the general problem of doing inference for a parame-

ter of interest in the absence of knowledge about nuisance parameters. Their formulation

requires information orthogonality between the two types of parameters. That is, the

expected information matrix be block diagonal between the parameters of interest and

the nuisance parameters. They transform the nuisance parameters by reparametrization

in order to get information orthogonality and then modify the likelihood. Their general

framework has been employed for static binary choice panel data models with a fixed

effects formulation in Arellano (2001).

Reparametrization is made from the original parameters (γ, ηi) to (γ,λi) so that
7

E

µ
∂2li(γ0,λ0i)

∂γ∂λi

¶
= 0 (9)

If we could get orthogonality, that is ∂2li(γ,λi)
∂γ∂λi

to equal zero for all i, there would not be

incidental parameters problem, since the estimation of γ = (α, β0)0 would not depend on

the estimation of λi. But this strong form of orthogonality cannot be generally achieved

and, in particular, does not hold for models like (1). Information orthogonality ensures

the estimations of λi(γ) changes slowly with γ, but the MLE of γ is the same, since it is

invariant to reparametrization. So, bγMLE has the same bias of order O(T−1) with both
parametrizations. This is why they modified the concentrated likelihood. In our case,

the modified concentrated log likelihood of Cox and Reid (1987) is:

LM(α, β) =
NX
i=1

lMi(α,β) =
NX
i=1

l∗i
³
γ, bλi(γ)´− 1

2
log
h
−d∗λλ

³
γ, bλi(γ)´i (10)

where l∗i is the concentrated log-likelihood for all the observations of individual i, repara-

metrized from (α,β, ηi) to (α, β,λi), i.e. l
∗
i (γ,λi) = li(γ, ηi(γ,λi)). The modification

term is d∗λλ
³
α,β, bλi(α,β)´ = ∂2l∗i /∂λ

2
i . They make a first order adjustment that tries

to correct the asymptotic bias that comes from the estimation of the fixed effect.8 The
7Here and in what follows, even though it is not explicitly indicated, expectations are conditional

on the same set of information as the likelihood.
8Concentrated likelihood and modified concentrated likelihood in this paper correspond to the profile

likelihood and modified profile likelihood in Cox & Reid (1987). In that paper they justify the modifi-
cation as a way to approximate the conditional likelihood (conditional on incidental parameters or on a
sufficient statistic of them), using bλi(γ) as the conditioning statistic. They interpret the modifications
term as penalizing values of α and β for which the information about the fixed effects is relatively large.
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first order condition or estimating equation of the modified likelihood is more nearly

unbiased than that using the concentrated likelihood. Ferguson, Reid and Cox (1991)

proved that result in general, and Arellano (2001) made the calculation for the static

panel data case showing that the bias in the expected modified score is of order O(T−1)

as opposed to O(1) in the expected concentrated score without modification.9 For es-

timators this means that the order of the bias is reduced from O(T−1) of the MLE to

O(T−2) of the modified maximum likelihood estimator (MMLE). For models like (1)

both MLE and MMLE are inconsistent for fixed T , since the modification corrects first

order bias but not biases of smaller order.10 Arellano (2001) derived the asymptotic

properties of MMLE when T/N tends to a constant -i.e. T grows at the same rate as

N- and compared it with MLE. His results can be summarized as follows:

Consistency: Both, the ML and the MML estimators of γ = (α,β0)0 are consistent

as T →∞ regardless of N .

Asymptotic normality: When N
T
→ c, 0 < c <∞ (N and T grows at the same rate):

³
H

0
NTV

−1
NTHNT

´1/2√
NT

µbγMLE − γ0 +
1

T
H−1
NT bN

¶
d−→ N (0, I) (11)³

H∗0
NTV

−1
NTH

∗
NT

´1/2√
NT (bγMMLE − γ0)

d−→ N (0, I) (12)

where

VNT =
1

NT

NX
i=1

∂l∗i (γ0,λi0)
∂γ

∂l∗i (γ0,λi0)
∂γ

0
, (13)

HNT =
1

NT

NX
i=1

∂2l∗i (γ0, bλi(γ0))
∂γ∂γ0

(14)

and

H∗
NT =

1

NT

NX
i=1

∂2lMi(γ0)

∂γ∂γ0
(15)

The MLE has a bias of order O(T−1) in its asymptotic distribution. The bias term
9In Appendix A, I’ve included that calculations for our case.
10For models whose bias of smaller order is zero, the MMLE is a consistent estimator when N →∞

and T is fixed, because the modification is correcting all the bias. An example is the model: yit =
αyit−1 + ηi + vit, studied in Lancaster (1997).
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disappears in the case of the MMLE because bN = 1
N

PN
i=1

E[d∗γλλi(γ,λi0)]
2E[d∗λλi(γ,λi0)]

is the term that

the modification corrected.

As a matter of fact, the MMLE, has no bias in its asymptotic distribution not only

when N and T grows at the same rate as proved in Arellano (2001), but also when N

grows faster than T
¡
T
N
→ 0

¢
, provided T grows faster than N1/3, i.e. T

3√N →∞. This
result is straight forward from the order of the bias of bγMMLE, which, as stated before,
is O(T−2).11

Arellano (2001) writes modified log-likelihood in equation (10) in terms of the original

parameters as:

LM(γ) =
NX
i=1

lMi(γ) =
NX
i=1

li (γ,bηi(γ))− 12 log [−dηηi (γ,bηi(γ))] + log
Ã

∂λi
∂ηi

¯̄̄̄
ηi=bηi(γ)

!
(16)

where li (γ,bηi(γ)) is the concentrated log-likelihood of individual i’s observations and
dηηi (γ,bηi(γ)) = ∂2li

∂η2i

¯̄̄
ηi=bηi(γ). The two terms that modified li (γ,bηi(γ)) comes from the

modification in equation (10): d∗λλ =
∂2l∗i
∂λ2i

= ∂2li
∂η2i

³
∂ηi
∂λi

´2
+ ∂li

∂ηi

∂2ηi
∂λ2i

= ∂2li
∂η2i

³
∂ηi
∂λi

´2
. In

equation (16) is clearly seen that explicit reparametrization from (γ, ηi) to (γ,λi) is not

needed. As in the integrated likelihood estimator studied byWoutersen (2001), only the

Jacobian term ∂λi
∂ηi
is required. But, since the estimating equation is the score equation,

the Jacobian is not even needed for estimation. We need the derivative of the Jacobian

with respect to γ, which is simpler to obtain because it is given by the partial differential

equations implied by the orthogonalization condition (9). The orthogonalization η(γ,λi)

must satisfy the partial differential equations

∂ηi
∂γ

= − 1

E [dηηi(γ, ηi)]
E [dγηi(γ, ηi)]

Then, for α, the orthogonalization implies that:

∂

∂α
log

µ
∂λi
∂ηi

¶
=

∂

∂ηi

µ
E [dαηi(γ, ηi)]

E [dηηi(γ, ηi)]

¶
(17)

Given (16) and (17), the modified maximum likelihood estimator of α, bαMMLE, is
11Woutersen (2001) proves that result for the integrated likelihood estimator.
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the value of α that solves the following score equation:

NX
i=1

dαMi(γ) =
NX
i=1

dαCi(γ)−
NX
i=1

1

2

∂
∂α
dηηi(γ,bηi(γ))
dηηi(γ,bηi(γ)) +

NX
i=1

∂
∂ηi
(E [dγηi(γ, ηi)])

¯̄̄
ηi=bηi(γ)

E [dηηi(γ,bηi(γ))]
−

NX
i=1

E [dγηi(γ,bηi(γ))]
E [dηηi(γ,bηi(γ))]

∂
∂ηi
(E [dηηi(γ, ηi)])

¯̄̄
ηi=bηi(γ)

E [dηηi(γ,bηi(γ))] = 0 (18)

where dαCi(γ) =
∂li(γ,ηi)

∂γ

¯̄̄
ηi=bηi(γ) is the standard score from the concentrated likelihood,

dαηi(γ, ηi) =
∂2li
∂α∂ηi

, dηηi(γ, ηi) =
∂2li
∂η2i

and bηi(γ) is gotten from the first order condition

of ηi, as it is in the concentrated maximum likelihood. The score equation for β is the

same as (18), just replacing α by β.

In appendix B, I show all the calculations needed in order to compute dαMi(α, β)

for a particular model. In Appendix C, I address the problem of how to optimize a

concentrated likelihood given that, as it happens in the kind of models I interested in,bηi(α, β) cannot be analytically calculated.
The modified maximum likelihood could achieve the goal stated at the beginning of

this section and the finite sample bias may be negligible for moderate T even that, in

general, it is only consistent when T → ∞, because it reduces the order of the bias.
Also, a main advantage of this way of estimating over other methods for panel data

binary choice models is its generality. Estimators like the ones mentioned in Section

2 are too specific and require very restrictive assumptions. However, MMLE can be

applied to different models with different assumptions. For example this method allows

for time dummy variables whereas Honoré and Kyriazidou’s does not. MMLE could

also be applied to multinomial choice models and other non-linear model, not only to

binary choice.

In addition to these properties, MMLE is a convenient estimator to compute the

policy parameters of interest because the fixed effects are estimated as part of the esti-

mation process whereas in the fixed T consistent estimation you get read of them, and

the effect of interest depends on the fixed effects, as discussed in Section 2. Furthermore,

asymptotic properties in both N and T , have to be considered here since the estimates

of the parameters of interest are only consistent when T →∞.
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4 Monte Carlo Evidence

In this section Monte Carlo simulations are used to evaluate the performance of MMLE

in different sample sizes to see if this new estimator and its asymptotic distribution

when both N and T goes to infinity and T ∝ Nα with α > 1
3
, is a good approximation

and have a good properties in finite samples.

The first model I consider is a dynamic logit:

yit = 1{αyit−1 + βxit + ηi + vit ≥ 0} (t = 0, ..., T − 1; i = 1, ..., N) (19)

where xit is an exogenous variable, ηi is an unobservable individual specific effect and

−vit are independently distributed with cdf F conditional on ηi, so that

Pr(yit = 1|ηi, yt−1i , xi) = F (αyit−1 + βxit + ηi) = Fit (20)

and F is the logistic cdf. I consider this dynamic logit because under additional condi-

tions Honoré and Kyriazidou (2000) have a consistent estimator for fixed T , so I have

an estimator to compare with. I will refer to the estimator proposed by them as HK.

I design the experiment as they did, so that my results could be compared with the

ones they report. One practical disadvantage of their estimator that deserves to be

pointed out is that it requires to choose a bandwidth and the results may be negatively

affected by that election. Another difference is that their estimator excludes observa-

tions for which yi1 = yi2 and MMLE excludes observations for which
PT−1

t=1 yit = 0 orPT−1
t=1 yit = T − 1, like the MLE.12 The proportion of observations used in the latter

estimator is increasing with T whereas, in the former case, it remains constant.

As in Honoré and Kyriazidou (2000) I make a thousand replications, β0 = 1, xit is

i.i.d. N(0,π2/3), εit is i.i.d. logistically distributed and ηi = (xi0+xi1+xi2+xi3)/4, so

that the fixed effects are correlated with x. For each simulated sample I estimated by

maximum likelihood and by modified maximum likelihood. HK estimations are taken

from the tables reported in their paper. I report results with samples of different N and
12Note that T is the total number of periods and t = T − 1 is the last period we observe since the

first one is t = 0.
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Table 2: Logit design with different N and T values

T=4 T=8

N 250 500 1000 250 500 1000bβ Bias 0.759 0.768 0.759 0.248 0.253 0.254

MLE bβ MAE 0.759 0.768 0.759 0.248 0.253 0.254bα Bias -2.548 -2.513 -2.55 -0.757 -0.746 -0.741bα MAE 2.548 2.513 2.55 0.757 0.746 0.741bβ Bias -0.054 -0.053 -0.057 0.012 0.015 0.015

MMLE bβ MAE 0.068 0.051 0.057 0.039 0.031 0.022bα Bias -0.554 -0.543 -0.563 -0.106 -0.104 -0.097bα MAE 0.554 0.543 0.563 0.127 0.111 0.098bβ Bias 0.076 0.044 0.038 0.014 0.007 0.009

H and K bβ MAE 0.154 0.113 0.086 0.05 0.037 0.027bα Bias -0.039 -0.052 -0.035 -0.053 -0.054 -0.041bα MAE 0.403 0.256 0.178 0.131 0.098 0.075

Logit design: yit = 1 (αyit−1 + βxit + ηi + εit ≥ 0); β0 = 1; α0 = 0.5; ηi = 1
4

P4
t=1 xit; xit ∼ N

³
0, π

2

3

´
;

εit ∼logistic; 1000 Monte Carlo simulations. Median Bias and Median Absolute Error (MAE) are
reported.

T size. I expect the MMLE to improve much more with T than with N , whereas HK

estimator has a significant improvement with N since it is fixed T consistent. I present

the median bias an median absolute error (MAE) because are robust to outliers and to

be able to compare with results presented in Honoré and Kyriazidou (2000).

Table 2 presents parameters estimation for a value of α0 equal to 0.5. For T = 4,

though the bias is greatly reduced compared with MLE, the median bias and MAE

of bαmmle is far from the results got by Honoré and Kyriazidou. This is not surprising

because, as I said, MMLE is not a fixed T consistent estimator whereas HK is, and

I am comparing both with the smallest T size we could have for estimating this kind
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Table 3: Logit design with α0 = 2, T = 8 and different values of N

250 500 1000

MLE MMLE HK MLE MMLE HK MLE MMLE HKbβ Bias 0.270 0.019 0.016 0.265 0.015 0.014 0.265 0.016 0.016bβ MAE 0.270 0.045 0.064 0.265 0.032 0.044 0.265 0.023 0.034bα Bias -0.654 -0.226 -0.195 -0.647 -0.218 -0.179 -0.647 -0.218 -0.16bα MAE 0.654 0.227 0.227 0.648 0.218 0.197 0.647 0.218 0.164

Table 4: Logit design with T = 16 and N = 250

α0 = 0.5 α0 = 2

Results for bβ Results for bα Results for bβ Results for bα
Bias MAE Bias MAE Bias MAE Bias MAE

MLE 0.099 0.099 -0.312 0.312 0.108 0.108 -0.297 0.297

MMLE 0.005 0.023 -0.022 0.067 0.006 0.027 -0.044 0.084

HK 0.005 0.029 -0.053 0.074 -0.003 0.034 -0.200 0.201

of models.13 However for a T as small as 8, the MMLE has a median absolute error

comparable to HK. So, reducing the order of the bias allows us to use a consistent

estimator when T → ∞, with samples of moderate T size. As expected, the MMLE
does not improve with N as HK does. Compared with MLE, MMLE performs better

with T = 4 than MLE with T = 8.

I have simulated for two different values of α because the larger the α the greater the

serial correlation of yit and I expect that the estimator performs worse, as it happens

with the HK. Results are presented in Table 3. Again, estimates are greatly improved

compared with MLE as they were for smaller values of α.

In order to asses the merits of the modification reducing the order of the bias with

respect to T , I present in Table 4 the results for 16 periods. The MLE of α0 has still an

important bias, however the MMLE is now clearly the best one of the three estimators.
13Take into account that we condition on the first observation to avoid the initial conditions problem.
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Table 5: Probit design with different N, T and α0 values

MLE MMLE

Results for bβ Results for bα Results for bβ Results for bα
α0 T N Bias MAE Bias MAE Bias MAE Bias MAE

0.5 4 250 0.745 0.745 -2.665 2.665 -0.051 0.061 -0.450 0.450

500 0.739 0.739 -2.634 2.634 -0.047 0.050 -0.434 0.434

1000 0.715 0.715 -2.596 2.596 -0.053 0.053 -0.432 0.432

0.5 8 250 0.236 0.236 -0.781 0.781 -0.032 0.042 -0.078 0.119

500 0.230 0.230 -0.777 0.777 -0.036 0.039 -0.077 0.090

1000 0.232 0.232 -0.780 0.780 -0.035 0.035 -0.081 0.084

0.5 10 250 0.168 0.168 -0.591 0.591 -0.026 0.034 -0.057 0.094

500 0.164 0.164 -0.578 0.578 -0.029 0.031 -0.044 0.072

0.5 16 250 0.086 0.086 -0.314 0.314 -0.016 0.027 -0.007 0.067

500 0.089 0.089 -0.329 0.329 -0.013 0.019 -0.022 0.048

2 8 250 0.262 0.262 -0.691 0.691 -0.039 0.046 -0.248 0.248

500 0.266 0.266 -0.700 0.700 -0.035 0.038 -0.256 0.256

1000 0.260 0.266 -0.693 0.693 -0.038 0.038 -0.253 0.253

2 10 250 0.195 0.195 -0.536 0.536 -0.035 0.041 -0.174 0.179

500 0.191 0.191 -0.534 0.534 -0.037 0.039 -0.173 0.174

2 16 250 0.104 0.104 -0.308 0.308 -0.018 0.028 -0.072 0.090

500 0.108 0.108 -0.317 0.317 -0.014 0.021 -0.080 0.084

yit = 1 (αyit−1 + βxit + ηi + εit ≥ 0); β0 = 1; ηi = 1
4

P4
t=1 xit; xit ∼ N

³
0, π

2

3

´
; εit ∼ N

³
0, π

2

3

´
; 1000

Monte Carlo simulations.

One of the advantages mentioned of MMLE with respect to the estimator proposed

by Honoré and Kyriazidou estimator is its generality. The model simulated can be esti-

mated by both methods, but the same model with a time dummy variable for instance,

can not be estimated using HK, whereas it can by modified maximum likelihood. Also,

if we want to estimate a probit instead of a logit, HK does not identified separably α
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and β. Nevertheless, MMLE works in the same way and keeps its theoretical properties

regardless the distribution of vit, to the extend that the maximum likelihood estimator

is a general method of estimation for different distributional assumptions. As explained

in appendix B, the estimator is expressed in terms of a general distribution and density

functions, such that we only have to substitute for the appropriate functions. Let us

see how it works in finite sample for the same model we have already estimated, model

(19), but using a probit assumption. That is

Pr(yit = 1|ηi, yt−1i , xi) = Φ(αyit−1 + βxit + ηi) = Φit (21)

where Φ is the normal cdf.

Table 5 presents simulations results for a probit with different values of N , T and

α0. The conclusions are the same as in the logit case and, in terms of median absolute

error, they perform similarly. In this Table 5 I include the situation with ten periods. It

can be seen how it improves quickly with the number of periods and with 16 the median

biases for the MMLE are less than 5% of the true values. Again, the MLE is severely

biased even for the sixteen periods case.

Estimation of the variance The most common way of estimating the asymptotic

variance-covariance matrix of the estimator in a maximum likelihood framework is using

minus the inverse of the Hessian matrix - denoted by (−H∗
NT )

−1- evaluated at the

estimated values. Looking at the asymptotic distribution in equations (11) and (12)

and given the asymptotic relations of the MMLE and MLE when both N and T go

to infinity, there are four more consistent estimators of the variance-covariance matrix.

In Table 6 I report the five measures and the comparison with the variances found

in simulation and the percentage of times that the confidence intervals cover the true

parameter values for each variance’s estimator. The coverage of the intervals is less than

95% mainly due to they are not centered. Centering them using the mean bias of the

estimates, the coverage rate is very close to 95%. Looking at the results, all of them

are quite similar and (−H∗
NT )

−1 is the easiest choice since it is calculated as part of the
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Table 6: Estimates of the variance

Mean RMSE CI, 95%dV ar(bα)
Value in 1000 simulations 0.011299

(H∗0V ∗−1H∗0)−1 0.0107554 9.726*10−4 85.5%

(H∗0V −1H∗0)−1 0.0117856 9.747*10−4 87.7%

(H 0V −1H 0)−1 0.0117337 9.407*10−4 87.2%

−H−1 0.0112123 4.123*10−4 86.7%

−H∗−1 0.0112586 4.219*10−4 88.9%d
V ar(bβ)

Value in 1000 simulations 0.0015955

(H∗0V ∗−1H∗0)−1 0.0016823 1.908*10−4 94.2%

(H∗0V −1H∗0)−1 0.0018146 2.827*10−4 94.8%

(H 0V −1H 0)−1 0.0017809 2.464*10−4 94.4%

−H−1 0.001696 1.497*10−4 94.0%

−H∗−1 0.0017146 1.712*10−4 94.2%

yit = 1 (αyit−1 + βxit + ηi + εit ≥ 0); N = 500; T = 8; α0 = 0.5; β0 = 1; ηi =
1
4

P4
t=1 xit; xit ∼

N
³
0, π

2

3

´
; εit ∼logistic; 1000 Monte Carlo simulations.

Colum CI 95%: percentage of 95% confidence intervales that contain the true value of the parameter
across 1000 simulations. Intervals based on the normal asintotic distribution. Intervals are not centered,

so CI = bα± 1.96 ∗ dV ar(bα) and bβ ± 1.96 ∗ d
V ar(bβ). Mean bias bαMMLE = −0.090; Mean bias bβMMLE =

0.015

optimization process.14

Policy Parameters of Interest. I present some of the parameters of interest de-

scribed in Section 2 for a simulated sample, and their estimates by MMLE and MLE,

in table 7. They can all be estimated, just replacing α, β and ηi by their estimates.

The measure corresponding to equation (6) is different from the one corresponding to
14Although we are using a concentrated likelihood, the Hessian has to take into account that the ηi

are also being estimated. In Appendix C, I explain how I have addressed this problem.
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Table 7: Mean Effects of yit−1 = 1 on the probability of yit = 1 computed according to

the diffent measures presented in table 1.

Value MMLE MLE

yit−1 = 0

joint (5) 0.199 0.164 0.059

marginal (6) 0.162 0.133 0.046

yit−1 = 1

joint (5) 0.198 0.157 0.056

marginal (6) 0.160 0.132 0.046

Average (7) 0.198 0.160 0.057

yit = 1{αyit−1 + βxit + ηi + vit ≥ 0}. Dynamic logit case. α0 = 1,β0 = −1, ηi = N(0, 1), xit = ηi+
N(0, 1) , εit is i.i.d. logistically distributed. N = 10000, T = 8. Effects of yit−1 = 1 on the probability
of yit = 1 : {F (α+ βxit + ηi)− F (βxit + ηi)} . The numbers in parentheses refer to the equation that
define each measure.

equation (5) because (6) is using the marginal distribution of the fixed effect; therefore,

it is ignoring that there is positive correlation between the explanatory variables and

the fixed effects. The MMLE is clearly improving the estimation comparing it with the

MLE.

According to the discussion at the end of Section 2, I compute the expected effect of

a change in x over the probability of (yit = 1) for each individual, given in equation (2)

and look at the distribution of that effect. I use the MML estimates of the parameters

of model (19), based on a simulated sample of the described logit design with α0 = 0.5,

β0 = 1, N = 500 and eight periods.

In Figure 1 I present smoothed densities of the effects of a change in xiT−1 over the

probability of (yiT−1 = 1) for all individuals in the full simulated sample with the true

parameters’ values, for the sample of movers, i.e. for the sample actually used on the

estimation, with the true parameters’ values, with the ML estimates of the parameters

and with the modified maximum likelihood estimates of the parameters. The sample

of movers excludes, as explained before, those i observations whose sum of yit for the
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Table 8: Descriptive statistics of the individual effects of a change in xiT−1 over the

probability of (yiT−1 = 1)

Full Movers MMLE MLE

Mean 0.1476 0.1519 0.1454 0.1613

Std. Deviation 0.0797 0.0783 0.0805 0.1052

Skewness -0.2707 -0.3358 -0.2488 -0.0530

Percentiles

1% 0.0050 0.0064 0.0040 0.0017

10% 0.0303 0.0348 0.0280 0.0177

25% 0.0747 0.0818 0.0716 0.0583

Median 0.1581 0.1647 0.1560 0.1630

75% 0.2246 0.2270 0.2236 0.2670

90% 0.2458 0.2462 0.2454 0.2998

99% 0.25 0.25 0.2493 0.3069

Logit design with α0 = 0.5, N = 10000 and T = 8. The first column is for the full sample, the
second column is for the sample of movers, i.e. the sample actually used on the estimation, with
the true parameters’ values, the third column uses the modified maximum likelihood estimates of the
parameters and the last column uses the ML estimates of the parameters.

last T − 1 periods is equal to zero or T − 1. We call these individuals stayers, as
oppose to movers, because they take the same decision all the sample period. In this

experiment the proportion of stayers is around 10%. The main feature is the bi-modality.

Individuals around the first mode are those with a small effect due to that the levels

of their observable variables or the levels of their individual effects are such that they

have very high or very small probabilities of yit = 1, and a change in xiT scarcely affects

them. Observations around the second mode are those with higher effect and, in this

simulation, most of the individuals are in that region. The mean effect is between those

two groups and it is only relevant for a very small part of the population.

Figure 2 is the same but with N = 10000. Comparing the four densities in both

graphs, it can be noticed that the MLE misestimate the second mode and the densities
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around that mode significantly, whereas MMLE describes the distribution more accu-

rately. The main difference between the sample of movers and the full sample is that

the former underestimates the density of the small effects, because most of the excluded

observations are those whose probability of taking value one is always very high or very

low -this is why they take value one or zero in all observed periods- and, therefore a

variation in x has little impact on their decision.

The same conclusions can be noticed comparing the percentiles and other descriptive

statistics of the distributions in Table 8. No great differences are found if we look at

the mean or the median, but there are important differences between MLE and the rest

of the estimations looking at any other statistic, particularly at the highest percentiles.

Although bβMLE is severely biased, the mean effect based on ML estimations does not
have much bias in this particular case because it overestimates the frequency density of

the smallest effects and underestimates the frequency of greatest effects, being finally

balanced on average.

Figure 2 and Table 8 are based on a simulation of a large sample. In order to

evaluate the small samples performance of the estimation of the distribution of the

effects, I conduct a Monte Carlo experiment with 1000 replications of the logit model

(19), with α0 = 1, β0 = 1.5, ηi = (xi0 + xi1 + xi2 + xi3)/2, N = 500 and eight periods.

Results on the estimation of the quantiles of the distribution of the effect are in Table

9. The improvement using the MML estimates compared with ML estimates at all

quantiles and at the estimation of the maximum effect is clear in terms of both bias

reduction and root mean square error, particularly at the highest quantiles. The MML

estimates are quite close to the true value based on the sample of movers. However, if we

compared them with the true value based on the full simulated sample, there are more

differences for the lowest quantiles. The reason for this situation is the higher proportion

of stayers in this experiment compared with the experiment in table 8. In this case that

proportion is around 30%, whereas on the graphs presented in this section it was around

10%. The differences are found only on the lowest quantiles because those that are less

affected by a change on the explanatory variables, are those with higher probability of
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Table 9: Quantiles of the distribution of the individual effects of a change in xiT−1 over

the probability of (yiT−1 = 1)

Full Movers MLE MMLE

minimum 0.0000 0.0001 0.0000 0.0001

Mean Bias -0.0001 0.0000

RMSE 0.0002 0.0001

25% 0.0266 0.0395 0.0166 0.0385

Mean Bias -0.0229 -0.0010

RMSE 0.0236 0.0059

Median 0.1195 0.1475 0.1189 0.1461

Mean Bias -0.0286 -0.0013

RMSE 0.0327 0.0124

75% 0.2788 0.2968 0.3495 0.2909

Mean Bias 0.0526 -0.0059

RMSE 0.0572 0.0160

Maximum 0.3750 0.3750 0.5057 0.3667

Mean Bias 0.1307 -0.0083

RMSE 0.1337 0.0168

1000 Monte Carlo replications of the logit model (19), with α0 = 1, β0 = 1.5, ηi = (xi0+xi1+xi2+xi3)/2,
N = 500 and T = 8. Mean Bias and RMSE calculated with respect to the sample of movers, which is
the sample actually used on the estimation of model’s parameters.

not changing their decision on the sample period and, therefore, not being used on the

estimation of α and β. It is important to note that this problem, as the estimation of

the model’s parameters on finite samples, depends on the number of periods available.

In any case, the estimation of the parameters of interest by MML presented in tables

7, 8 and 9, are consistent when T goes to infinity and they clearly improve the finite

sample performance of the MLE.

5 Empirical Illustration

In this section, I illustrate the modified maximum likelihood method by estimating

an empirical model of female labor force participation. This empirical illustration is

similar to some of the specifications estimated in Hyslop (1999), although there are

some differences that makes a direct comparison difficult. Essentially, Hyslop uses a
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different sample period, random effects instead of fixed effects and AR(1) instead of

white noise errors. In this empirical illustration, as in Hyslop(1999), children variables

are assumend to be strictly exogenous with respect to εit in equation (22). However,

children variables are endogenous with respect to ηi. Moreover, in contrast with random

effects approaches, no restrictions are placed on the form of the dependence between

effects and children variables.15

I use data on 1461 married women corresponding to waves 12-22 of the Panel Study

of Income Dynamics (PSID). Sample information is for the ten calendar years 1979-88.

Only women continuously married, aged between 18 and 60 in 1985 and whose husband

is a labor force participant in each of the sample years, were included in the sample.16

The equation estimated is:

yit = 1 {αyit−1 + x0itβ + ηi + εit ≥ 0} (t = 0, ..., T − 1; i = 1, ..., N) (22)

yit takes value one if wife i participate in period t and zero otherwise. xit = (#kids0−
2it−1, #kids0 − 2it, #kids3 − 5it, #kids6 − 17it, log incomeit, (ageit/10), (ageit/10)2,
time dummies), where #kidsa − b is the number of children aged between a and b,
log income is the log of husband’s labor income deflated by Consumer Price Index and

age is wife’s age. εit is assumed to be independent and identically distributed normal

variable. So it is a dynamic probit model.

Table 10 shows some descriptive statistics for the explanatory variables. Table 11

contains the distribution of the number of periods that wives in the sample participate,

looking at the last nine sample periods. Most of them participate at least one period.

Just eight percent never participate. Almost half of the them participate all the last nine

periods. We can not use in our estimation those who never participate or participate

all the periods. So the sample we use for estimation is restricted to 664 women. We
15In Carro (2002) I study the same problem as in this empirical illustration but I consider more general

specifications and assumptions, like take into account specifically on the estimation of the model that
the number of children variable could be affected by past participation decisions. In this empirical
illustration, as in Hyslop (1999), number of children variables are assumed to be strictly exogenous
with respect to εit in model (22). However, here they are freely correlated with the other unobservable
part ηi of equation (22).
16As in Hyslop (1999), an individual is defined as a participant if they report both positive annual

hours worked and annual earnings.
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Table 10: Descriptive statistics

Variable Mean Std. Dev. Min Max

#kids0− 2 0.235 0.472 0 4

#kids3− 5 0.288 0.515 0 3

#kids6− 17 1.036 1.105 0 7

income 42093 0.447 153 1340221

age in 1980 33.3 8.84 16 56

Table 11: Distribution of the number of years that wifes participate, looking at the last

nine sample periods

Number of years worked

0 1 2 3 4 5 6 7 8 9 Total

Freq. 121 62 62 57 71 69 94 110 139 676 1461

Percent 8.28 4.24 4.24 3.90 4.86 4.72 6.43 7.53 9.51 46.27 100

look at the last nine year instead to the ten years we have in our sample, because we

are conditioning on the first observation to avoid the sample initial conditions problem.

Table 12 presents the results of the estimation of model (22) by MLE and Modified

MLE. There are significant differences on the estimated parameters. As expected, the

MLE is underestimating the true state dependence effect and overestimating the effect

of the other variables. As a result of that, the impact of previous participation on the

probability of participating is, in absolute value, 1.4 times the impact of a child aged

between 0 and 2 using MLE and 2.7 times using the MMLE. So, the estimate by MLE

of the impact of previous participation relative to the impact of a child aged between

0 and 2 on the probability of participating, which is approximately given by the ratio

α/β, is a half of the value gotten when using Modified MLE.

In the spirit of the discussion about the policy parameters of interest, one may be

interested in calculating the effect on the participation decisions of having one more child
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Table 12: Estimates of model (22)

Parameter ML Estimates MML Estimates

α 0.755 1.082

(0.043) (0.042)

# Children 0-2t−1 -0.039 0.004

(0.054) (0.049)

# Children 0-2 -0.534 -0.400

(0.064) (0.058)

# Children 3-5 -0.281 -0.182

(0.055) (0.050)

# Children 6-17 -0.075 -0.036

(0.043) (0.039)

Log(income) -0.252 -0.208

(0.055) (0.051)

Age/10 2.329 1.780

(0.627) (0.573)

Age2/100 -0.244 -0.183

(0.042) (0.047)

Standard errors are in parentheses. Time dummies are also being estimated.

on a particular period, which is of the form of equation (3). In Figure 3 I present the

distribution of that effect on the sample of movers, using both the ML and the Modified

ML estimates of the parameters. As it happened on the simulated experiment, the MLE

is misestimating the distribution of the effect. Also, the MLE overestimates the mean

effect, since the mean is -0.156 for the MLE and -0.116 for the MMLE. Figures 4 and

5 present the dynamic effect over twenty periods of having one more child in period

one. The first graph is the effect for an individual whose characteristic at period zero

are the average characteristic of the sample. This is the kind of effect calculated in
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Hyslop (1999). The dynamic effect based on the maximum likelihood estimates is not

only overestimating the effect, as clearly shown in the graph, but also misestimating

the dynamics, since there is less persistence of the effect over time, compared with the

MMLE. It might be more relevant to look at the average effect for the individuals on the

sample, instead of the effect for an individual with the average characteristics. Figure

5 presents that average effect. There are differences on magnitude on those graphs.

At period three, the effect for an individual with the average characteristics is slightly

above 0.20, whereas the mean effect for all individuals is slightly above 0.15, according

to the Modified MLE. The conclusion on the comparison of the two estimators in this

second graph are the same as in the previous.

6 Conclusion

I have applied the modified maximum likelihood estimator (MMLE) to dynamic panel

data discrete choice models with fixed effects. This reduces the bias of the estimated

parameters from O(T−1) to O(T−2) (without increasing the asymptotic variance), so

that the finite sample bias may be negligible for moderate T and the estimator has good

asymptotic properties (in an N and T asymptotic) even in situations in which N grows

faster than T . Monte Carlo experiments have shown that there is a small bias in probit

and logit models with a lag of the endogenous variable and exogenous variables for eight

time periods.

One of the main advantages of this approach over other methods for estimating panel

data binary choice models is its generality. For example, this method allows for time

dummy variables whereas Honoré and Kyriazidou’s does not. For the probit model,

MMLE identifies separably the coefficients (α, β) of the explanatory variables and not

just β/α. The method is generally applicable and it has the same asymptotic properties

regardless of the distribution of the errors.

In addition, MMLE allows to get sensible estimates of the different policy parameters

of interest considered in the literature: summary measures of the effect of a change in

x over the probability of y = 1. In contrast with linear models, that expected effect
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is different for each individual and it depends on the fixed effects and on the level of

the variables. I have shown that the mean of that effect across all individuals may

not be the parameter of interest because for some economic studies we may need to

estimate the whole distribution on the population of the effect of a explanatory variable.

Using MML estimates of model’s parameters improves significantly the estimation of

that distribution with respect to the ML case. Another advantage of the approach

considered in the paper is that the fixed effect, needed for the calculation of the effect

for each individual, is estimated as part of the estimation process whereas in the fixed T

consistent estimation you get read of them. Also, the asymptotics in both N and T has

to be considered because the estimation of that effect is consistent only when T →∞.
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A Appendix
This appendix shows how the modification on the concentrated log-likelihood (10) is a first order

adjustment on the asymptotic bias of the score of the concentrated log-likelihood, so the first order

condition is more nearly unbiased and the order of the bias is reduced. The notation follows that in

Arellano(2001).

Denote d∗γi =
∂l∗i
∂λi
, d∗γλi =

∂l∗i
∂γ∂λi

, and so on. Making an expansion around λi0(true value of the

fixed effect of individual i) of the score of the concentrated log-likelihood evaluated at γ0 :

d∗γi(γ0, bλi(γ0)) = d∗γi(γ0,λi0) + d∗γλi(γ0,λi0)(bλi(γ0)− λi0) +
1

2
d∗γλλi(γ0,λi0)(bλi(γ0)− λi0)

2 + r (A1)

where r is the remainder term. In this equation is clear that the score evaluated at the true value of

γ (γ0), differs from the value of the score that we want to get, i.e. the score evaluated at both γ0 and

λi0 (d∗γi(γ0,λi0)), as much as bλi(γ0) differs from λi0.

The estimator bλi(γ0) solves d∗λi(γ0, bλi(γ0)) = 0. Expanding d∗λi(γ0, bλi(γ0)):
0 = d∗γi(γ0, bλi(γ0)) = d∗λi(γ0,λi0) + d∗λλi(γ0,λi0)(bλi(γ0)− λi0) + r

From that: ³bλi(γ0)− λi0

´
= − d

∗
λi
(γ0,λi0)

d∗λλi(γ0,λi0)
+ r0 (A2)

Substituting in (A1) the expressions for
³bλi(γ0)− λi0

´
and

³bλi(γ0)− λi0

´2
, after some calculations

and taking expectations:

E
h
d∗γi(γ0, bλi(γ0))|.i = E £d∗γi(γ0,λi0)|.¤+ E

h
d∗γλλi(γ0,λi0)|.

i
2E [d∗λλi(γ0,λi0)|.]

+O
¡
T−1

¢
(A3)

where the conditioning set is (λi0, xi, yi0). d∗γi(γ0, bλi(γ0)) is biased and the leading term of the bias,
E[d∗γλλi(γ0,λi0)|.]
2E[d∗λλi(γ0,λi0)|.]

, is O(1).

If we do the same with the score of the modified log-likelihood (10):

E
£
d∗Mγi(γ0)|.

¤
= E

h
d∗γi(γ0, bλi(γ0))|.i− E

h
d∗γλλi(γ0,λi0)|.

i
2E [d∗λλi(γ0,λi0)|.]

(A4)

where the last term in this expression comes from the derivative of the modification in (10), i.e. the

derivative with respect to γ of −12 log [−d∗λλ (γ,λi)]. So, (A4) is equal to (A3) minus the leading term
of the bias of the score of the standard concentrated log-likelihood. Therefore, the bias in the modified

score is of order O(T−1) as opposed to O(1) in the expected score without modification. For the

estimators this imply that the MMLE is reducing the order of the bias in the MLE form O(T−1) to

O(T−2).

B Appendix: Computation of the Modified Score
Let’s consider the logit model used in the Monte Carlo experiments and implement the modification

on it.
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yit = 1{αyit−1 + βxit + ηi + vit ≥ 0} (t = 0, ..., T − 1; i = 1, ..., N) (B1)

where xit is a vector of exogenous variables, ηi is an unobservable individual specific effect and −vit are
independently distributed with cdf F conditional on ηi, y

t−1
i = (yi0, ..., yit−1)0 and xi = (xi1, ..., xit)0,

so that

Pr(yit = 1|ηi, yt−1i , xi) = F (αyit−1 + βxit + ηi) = Fit (B2)

F is the logistic cdf.

As explained in the paper, an individual’s modified score, in terms of the original parameterization,

is of the form:

dαMi(α,β) = dαCi(α,β)− 1
2

∂
∂αdηηi(α,β,bηi(α,β))
dηηi(α,β,bηi(α,β)) +

∂
∂ηi

(E [dαηi(α,β, ηi)|yi0, ηi, xi])
¯̄̄
ηi=bηi(α,β)

E [dηηi(α,β,bηi(α,β))|yi0, ηi, xi]
−E [dαηi(α,β,bηi(α,β))|yi0, ηi, xi]
E [dηηi(α,β,bηi(α,β))|yi0, ηi, xi]

∂
∂ηi

(E [dηηi(α,β, ηi)|yi0, ηi, xi])
¯̄̄
ηi=bηi(α,β)

E [dηηi(α,β,bηi(α,β))|yi0, ηi, xi] (B3)

where dCi(α,β) is an individual’s score from the concentrated likelihood:

dαCi(α,β) =
∂li(α,β, ηi(γ))

∂α
=
T−1X
t=1

µ
yit−1 +

∂bηi(α,β)
∂α

¶£
yit − F (αyit−1+βxit+ηi)

¤
, (B4)

dαηi(α,β, ηi) =
∂2li
∂α∂ηi

= −
T−1X
t=1

yit−1f(αyit−1 + βxit + ηi), (B5)

dηηi(α,β, ηi) =
∂2li
∂η2i

= −
T−1X
t=1

f(αyit−1 + βxit + ηi), (B6)

f is the logistic pdf.

E [dαηi(α,β, ηi)|yi0, ηi, xi] = −
T−1X
t=1

E [yit−1f(αyit−1 + βxit + ηi)|yi0, ηi, xi] (B7)

E [dηηi(α,β, ηi)|yi0, ηi, xi] = −
T−1X
t=1

E [f(αyit−1 + βxi + ηi)|yi0, ηi, xi] (B8)

E [yit−1f(αyit−1 + βxit + ηi)|yi0, ηi.xi] = f(α+ βxit + ηi) Pr (yit−1 = 1|yi0, ηi, xi) (B9)

E [f(αyit−1 + βxit + ηi)|yi0, ηi, xi] = f(α+ βxit + ηi) Pr (yit−1 = 1|yi0, ηi, xi) +
+f(βxit + ηi) (1− Pr (yit−1 = 1|yi0, ηi, xi))

= Pr (yit−1 = 1|yi0, ηi, xi) (f(α+ βxit + ηi)− f(βxit + ηi)) +

+f(βxit + ηi) (B10)
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Pr (yit = 1|yi0, ηi, xi) can be calculated recursively from:

Pr (yi1 = 1|yi0, ηi, xi) = F (αyi0 + βxi1 + ηi), starting point. For t > 1 : (B11)

Pr (yit = 1|yi0, ηi, xi) = Pr (yit−1 = 1|yi0, ηi, xi) (F (α+ βxit + ηi)− F (βxit + ηi)) + F (βxit + ηi)

From (B10), ∂
∂ηi
E [f(αyit−1 + βxit + ηi)|yi0, ηi, xi] =

∂

∂ηi
Pr (yit−1 = 1|yi0, ηi, xi) (f(α+ βxit + ηi)− f(βxit + ηi))

+Pr (yit−1 = 1|yi0, ηi, xi) (f 0(α+ βxit + ηi)− f 0(βxit + ηi)) + f
0(βxit + ηi) (B12)

From (B9), ∂
∂ηi
E [yit−1f(αyit−1 + βxit + ηi)|yi0, ηi, xi] =

f 0(α+ βxit + ηi) Pr (yit−1 = 1|yi0, ηi, xi) + f(α+ βxit + ηi)
∂

∂ηi
Pr (yit−1 = 1|yi0, ηi, xi) (B13)

∂
∂ηi

Pr (yit = 1|yi0, ηi, xi) are calculated recursively from:

∂

∂ηi
Pr (yit = 1|yi0, ηi, xi) =

∂

∂ηi
Pr (yit−1 = 1|yi0, ηi, xi) (F (α+ βxit + ηi)− F (βxit + ηi))

+Pr (yit−1 = 1|yi0, ηi, xi) (f(α+ βxit + ηi)− f(βxit + ηi)) +

+f(βxit + ηi), for t > 1 (B14)
∂

∂ηi
Pr (yi1 = 1|yi0, ηi, xi) = f(αyi0 + βxi1 + ηi) (B15)

From the first order condition of ηi, dηi(α,β, ηi) =
PT−1
t=1 (yit − Fit), bηi(α,β), solves:

T−1X
t=1

yit =
T−1X
t=1

F (αyit−1 + βxit + ηi) (B16)

Deriving the previous equation with respect to α :

0 =
T−1X
t=1

f(αyit−1 + βxit + ηi)

µ
∂bηi(α,β)

∂α
+ yit−1

¶
Therefore:

∂bηi(α,β)
∂α

=
−PT−1

t=1 yit−1f(αyit−1 + βxit + ηi)PT−1
t=1 f(αyit−1 + βxit + ηi)

(B17)

The modified first order condition for β is calculated in the same way. In the logistic case fit =

Fit ∗ (1−Fit), which simplifies the first order condition of the likelihood, but these recursive procedures
of computing the expectations needed for the modification works regardless of the density function f

assumed.
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C Appendix: Concentrating the likelihood and es-
timating with fixed effects

A problem that arise on the maximization of the log likelihood function

logL =
NX
i=1

T−1X
t=1

{yit ∗ logF (αyit−1 + xitβ + ηi) + (1− yit) ∗ log(1− F (αyit−1 + βxit + ηi))} (C1)

is that we have to estimate N parameters corresponding to the fixed effects, implying a second deriv-

atives matrix with N + 2 rows and columns. A way of proceeding is using some results from matrix

algebra suggested in Chamberlain (1980) in order to simplify the computation of the inverse of the

Hessian. Heckman and MaCurdy (1980) divided the optimization problem in two problems:

1.- The maximization with respect to α and β of the log likelihood given a value of the fixed effects

{ηi}Ni=1 .
2.- The maximization of the log likelihood function for each ηi given the estimation of α and β:

logLi|(α,β) =
PT−1
t=1 {yit ∗ logFit + (1− yit) ∗ log(1− Fit)}. This gives N isolated maximization prob-

lems.

They suggested iterating back and forth between the two problems until convergence is achieved.

Apart from the issue of whether or not the back and forth iteration will converge to the true maximum

of the log-likelihood, a shortcoming of this way of proceeding is that the estimated variance for the

estimator of α and β will be too small. The Hessian of the log-likelihood function is not block diagonal,

so the estimator of the variance based on the first program does not obtain the correct submatrix of

the inverse information matrix.

In this paper I compute both the MLE and the MMLE from the first order conditions of the

concentrated likelihood, so I do not divide the procedure in two estimation problems. Since, due to

nonlinearity, we can not get a explicit expression of the fixed effects estimators as functions of α and

β, I make numerical substitution of them on the estimating equations of γ = (α,β)0, i.e. the estimator

of γ solves
NX
i=1

½
dγi(γ,bηi(γ)) + dηi(γ,bηi(γ))∂bηi(γ)∂γ

¾
=

NX
i=1

dγi(γ,bηi(γ)) = 0 (C2)

where bηi(γ) is the number that makes dηi(γ, ηi) = 0 for the value of γ in which we are evaluating the
estimating equations; dηi(γ, ηi) ≡ ∂li(γ,ηi)

∂ηi
and dγi(γ, ηi) ≡ ∂li(γ,ηi)

∂γ . So, we use a Gauss-Newton type

algorithm to solve equation (C2) with respect to γ, and in each step bηi is computed such that for the
value of γ in that step (γs), dηi(γs, ηi) equals zero. Thus, the equation for each of the ηi is nested

in the algorithm that maximizes the concentrated likelihood. In each step, we have to solve N single

nonlinear equations, one for each of the fixed effects. dηi(γs, ηi) = 0 is easily solve by bracketing and

bisection, and we use that N times. This method is faster than a Gauss-Newton type procedure for

this N problems. Here, we need to bracket the root of the equation. This can be done because we have

some knowledge about the form of the equation since we know F and its derivatives.

The difference with respect to Heckman and MaCurdy’s suggestion is that maximization with

respect to α and β is not made for each given estimated value of the fixed effects. Instead of that the
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values of the fixed effects are change accordingly in each step of the estimation process of α and β; just

as if we were able to analytically find bηi(γ).
To overcome the already mentioned problem of estimating the variance, we take advantage of

the fact that the equation dηi(γs, ηi) = 0 is nested on the algorithm. Thus, we calculate the second

derivatives accounting for the fixed effects. That is, deriving (C2) with respect to γ, the Hessian is

equal to:

NX
i=1

{∂
2li(γ,bηi(γ)
∂γ∂γ

+
∂2li(γ, ηi)

∂γ∂ηi

¯̄̄̄
ηi=bηi(γ)

∂bηi(γ)
∂γ

+

+

Ã
∂2li(γ, ηi)

∂ηi∂γ

¯̄̄̄
ηi=bηi(γ) +

∂2li(γ, ηi)

∂ηi∂ηi

¯̄̄̄
ηi=bηi(γ)

∂bηi(γ)
∂γ

!
∂bηi(γ)
∂γ

+ dηi(γ,bηi(γ))∂2bηi(γ)∂γ∂γ
}

dηi(γ,bηi(γ))∂2bηi(γ)∂γ∂γ = 0 because dηi(γ, ηi) = 0 at ηi = bηi (γ).
Everything is the same for the MMLE, just replacing dγi(γ,bηi(γ)) = ∂li(γ,ηi)

∂γ

¯̄̄
ηi=bηi(γ) by the mod-

ified first order condition presented in the paper, dγMi(γ).
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Figure 1: Smoothed density of the effect of a change in xiT− over the probability of

(yiT−1 = 1) for a simulated sample from the Logit design, with T = 8 and N = 500.
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Figure 2: Smoothed density of the effect of a change in xiT−1 over the probability of

(yiT−1 = 1) for a simulated sample from the Logit design, with T = 8 and N = 10000.
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Figure 3: Smoothed density of the effect of having one more child beetween 0 and 2

years old at period t=1
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Figure 4: Effect of a birth in period one for an individual with the average characteristics.
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Figure 5: Dynamic Mean Effect of a birth in period one
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