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Abstract

In this paper we have developed a model which analyzes price competition
in the deregulated Spanish electricity market. This model is the first to
take explicitly into account the mechanism designed in the recent Spanish
Electricity Law for settling stranded costs payments. We show that stranded
costs recovery and efficient competition are not necessarily incompatible. The
settlement mechanism for stranded costs currently prevailing in Spain leads
unambiguously to lower prices; it actually acts as a countervailing force to
market power and high prices in these market. Whether equilibrium prices
are higher or lower than marginal cost depends both on the distribution of
total stranded cost payments among industry participants and on the exact
rules used to define the entitlements.
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1 Introduction

Recent regulatory reform in Spain has led to a process of liberalization in the
Spanish electric sector. The approval by the Spanish Parliament of the Law for the
Electric Sector established the basis for a new competitive system. From January
1, 1998, wholesale electricity prices are set by the market rather than being subject
to direct regulation by the government, as it had been the case prior to the
enactment of this law. Yet, prior to complete liberalization, a transition period
of ten years has been established to facilitate the conversion of incumbent firms
towards the new competitive environment and to limit the impact of competition
on the earnings of the electricity companies.

The establishment by the Electricity Law of a competitive framework in gen-
eration activities interrupted the remuneration process under which generating
companies undertook their investments on infrastructures as well as their con-
tractual obligations. On the basis of the existing regulatory setting, many assets
were guaranteed a return which may not be recoverable following the introduction
of a competitive market. The costs associated with these investments and contrac-
tual obligations that are not recoverable as the competitive system is implemented
are known as stranded costs (costes de transicion a la competencia -CTC- in the

1" The Electricity Law includes a series of transitory

terminology of the Law).
measures to compensate generation companies for these stranded costs.

Most of the public debate in Spain has been focused on the appropriate mag-

L At present, the issue of “stranded assets” becomes a central problem in the process of liber-
alization of all European Community electricity markets. On August 4, 1998, twelve European
Community governments had already communicated to EC Energy Commission their purpose
to compensate national generation companies for their stranded costs. Only Italy, Finland and
Sweden did not do it. For more details see Cinco Dias, August 4, 1998.



nitude for the stranded costs to be recovered by the Spanish electricity industry.?

However, not much attention has been paid to the potential distortions that
the recovery of stranded costs can create in the recently created Spanish electric-
ity market. A frequent claim made against measures purporting to ensure the
recovery of stranded costs is that these provisions necessarily lead to inefficient
competition, above marginal-cost pricing, inefficient despatching, erection of bar-
riers to entry, etc. (See Kiihn and Regibeau,1998, and Lasheras, 1998). In this
paper I analyze whether price incentives are indeed distorted by stranded-cost
recovery payments, or if in contrast, they end up promoting efficient competition
in the Spanish electricity spot market.

I show that efficient competition and stranded-cost recovery are not necessarily
incompatible. I find that price competition is fiercer in the current Spanish elec-
tricity market with stranded-cost payments than in an otherwise identical market
without stranded costs. In other words, the settlement procedure for the recovery
of stranded costs currently in place in Spain leads unequivocally to lower prices.
Whether equilibrium prices are higher or lower than marginal cost, however de-
pends both on the distribution of total stranded-cost payments among industry
participants and on the exact rules used to define these entitlements. These rules
are somewhat ambiguous in the current Law. This paper also establishes the con-
ditions under which I should not expect cost shifting practices, i.e., generators
bidding above or below marginal cost. The reason is essentially the same to that
one developed by Kreps and Scheinkman (1983) in the analysis of equilibrium

pricing behaviour in a capacity-constrained oligopoly market.?

2See Fl Pais, July 12, 1998 and El Pags, October 29, 1998.
3See von der Fehr and Harbord (1993) for a useful and more extensive discussion about the
interpretation of this particular result in the context of electricity spot markets.



The study of electricity spot markets has received much attention in recent
years and a number of theoretical and empirical studies exists, von der Fehr and
Harbord (1997a) (1997b), Green (1996), Wolfram (1998b) and Newbery (1998).
Modelling competition in electricity spot markets has been analyzed under two
main different approaches. The first is taken by Green and Newbery (1992) and
Bolle (1992) when they adapt the supply function model, due to Klemperer and
Meyer (1989). A second approach is taken by von der Fehr and Harbord (1993).
The latter opt for an auction approach and model price in the England and Wales

4 These authors

electricity pool as a first-price, sealed-bid, multiple-unit auction.
find a tendency towards above marginal-cost pricing and inefficient despatching.
In my paper I also opt for the auction approach. Focusing upon the case of
duopoly, I make an attempt at modelling spot market competition with stranded
costs as a first-price, sealed-bid auction. Kahn (1994) and Joskow (1996) also
deal with the stranded-cost issue. While Kahn (1994) discusses the need for the
coexistence of competition and regulation in the electric power industry, Joskow
(1996) provides simple mechanisms to implement stranded-cost recovery policies
that promote efficient competition. Jullien and Kiihn (1998) show how optimal
regulation involving a menu of price caps and price floors could optimally finance
stranded assets in a context of liberalization of entry when government transfers to
firms are not permitted. My results confirm that the implementation of stranded-
cost recovery in a spot market does not necessarily create additional distortions in
the competition, at least no more than those that already appear in a typical spot

market without stranded costs [von der Fehr and Harbord (1993)]. Furthermore,

I show that an optimal stranded-cost recovery policy can hunt the existing price

4See Wolak and Patrick (1997) and von der Fehr and Harbord (1997b) for an extensive
discussion of the alternative approaches.



distortions. More importantly, although I can find recent attempts to simulate
firms’ behaviour in the Spanish electricity pool, my model is the first to take
explicitly into account the mechanism designed in the recent Spanish Electricity
Law for settling stranded-cost payments.®

This paper is organized as follows. The Spanish institutional setting is de-
scribed in Section 2. Section 3 presents the auction model of the Spanish electric-
ity spot market and discusses the assumptions. Section 4 is devoted to analyze the
model for the basic symmetric case. Section 5 extends the model to deal with the

asymmetric case and an alternative regulatory rule. Finally, Section 6 concludes.

2 The Spanish Electricity Industry

In this section I describe the structure of the Spanish electricity industry, as well
as the new market rules that organize and regulate the electricity spot market
since January 1998. These rules were adapted with the objective of introducing
competition in the Spanish electricity market. I will also describe the mechanism

through which incumbents will recover their stranded costs.

2.1 The Structure of the Spanish Industry

Although there are over 1,000 companies involved in the Spanish Electricity In-
dustry, production and distribution of electricity is concentrated in two main
companies: the Endesa Group -a publicly owned company currently undergoing

privatisation- and Iberdrola -a private company-.

®See Ocaiia and Romero (1998) and Marin and Garcfa-Diaz (2000) for an extensive analysis
of firms’ behaviour in the Spanish pool. While the first paper uses the Cournot model to the
Spanish pool, Marin and Garcia-Diaz (2000) opts to generalize Von der Fehr and Harbord’s
(1993) multi-unit auction model for the case of a deterministic demand.



The Endesa Group is Spain’s largest electricity company. Total group installed
capacity now represents 47% of the Spanish generating capacity (including that of
autoproducers), and 41% of electricity distribution in Spain. It owns or controls
22GW of generating plant, 7GW within the parent company, and further 15GW
through its main subsidiaries. These now include Fecsa (Endesa owns 75% of
its outstanding shares), Sevillana (75.1% Endesa), Enher (91.4% Endesa), Unelco
(99.7% Endesa), Viesgo (87.6% Endesa), Gesa (55.3% Endesa), Saltos del Nansa
(85% Endesa) and ERZ (61.2% Endesa). Endesa parent company’s production is
mainly based upon coal fired power stations (with 4.5GW of installed capacity,
of which 2.4GW uses coal produced by Endesa’s own mines). It also has direct
interests in nuclear plants with total capacity 1.5GW.

Iberdrola is the second largest electricity company in Spain, with an installed
capacity of over 16GW, which represents a 28% of Spanish generating capacity.
Iberdrola is Spain’s largest owner of hydroelectric power stations, with capacity of
8.2GW, and output ranging from 9-20TWh. Nuclear power is its major source of
production. Iberdrola has also 39% of the Spanish electricity distribution market.

In addition to these two major companies, there are two smaller firms, namely
Unién Fenosa, with 10.8% of the generating capacity, and Hidro Cantédbrico with
3.5%. As well as these utilities, over 350 companies are involved in autoproduction,
producing 11% of Spain’s total electricity output. In 1998, the import net value
of international exchanges with France and Portugal amounted to 4.590 GWh,
accounting for 3% of total generation.

The electricity distribution market is mainly controlled by the aforementioned
companies: Endesa, Iberdrola, Unién Fenosa, Fecsa, Sevillana and Hidro Can-

tdbrico; 97% of electricity is distributed by these six companies. Iberdrola with



approximately 39% of the distribution market, Unién Fenosa with more than 15%
and Sevillana with further 13% are the three main distributors. Endesa parent
company has no distribution assets.

Transmission is the responsibility of Red Eléctrica de Espana (REE). REE
is the transmission system operator and runs the transport network. REE is
owned by the major electricity utilities in Spain. It owns and operates 60% of
the transmission lines operating at voltages above 220KV. The high voltage lines

outside REE’s control are owned by Iberdrola and Sevillana.

2.2 Market Rules

The approval by the Spanish Parliament of the Law for the Electric Sector (Law
54/1997) on November 1997 established the foundations for the new competitive
system in the Spanish Electric Sector. This law established a new electricity mar-
ket for the trading of electricity between generators and purchasers (generators,
distributors, commercialisers and qualified customers) in Spain. From January 1,
1998, wholesale electricity prices are set by a market rather than being subject to
direct regulation by the government, as it had been the case prior to the enact-
ment of this law. The main feature of the new market structure is that despatch is
to be based on a competitive bidding process in which the system price is settled
by the interplay of supply and demand.

The law establishes a pool system with two responsible institutions for coordi-
nating and running the transmission grid: the System Operator and the Market
Operator. The aim of the System Operator is to coordinate the despatch of elec-
tricity, whereas the Market Operator manages the economic features of the system

(for instance, the calculation and processing of payments across firms, the match-



ing of supply and demand bids, and the calculation of the price of electricity). The
Electricity Law also creates La Comisién Nacional del Sistema Eléctrico (CNSE).
The CNSE is the regulatory body for the electric system, which supervises the
proper functioning of the whole sector.

Each participant in the pool market sends to the Market Operator its of-
fers to supply/purchase. These must include for each hour of the day (a) the
amount of capacity of each type it wishes to supply/purchase and (b) the min-
imum/maximum price at which it is willing to sell/buy. Generators must also
inform of any special technical or economic limitations applying to their power
plants.5

Generation sets are then ranked according to their offer prices (i.e., the supply
function is constructed) in increasing order of cost to create the “merit order”,
which thus comprises the generation units with lower costs among all those offered
to the market. This is used to despatch the system at the least possible cost.
Likewise, a demand function is constructed from the purchase bids. The spot
price of electricity in the pool, the so-called system marginal price (SMP), is
determined by the intersection of demand and supply: the SMP is therefore the
bid price of the marginal operating unit, i.e., the most expensive plant that is
running on the system.

The SMP is the major component of the overall price paid for each despatched

generating unit, which comprises:

e the system marginal price (SMP), increased to take into account transmis-

sion losses;

6Until April 1998, the offers to purchase power in the daily market could only specify the
quantity demanded, but not its price.



e the capacity guarantee (GdP-Garantia de Potencia), which compensates
generators for providing capacity or “security of supply” to the system. The
remuneration for capacity guarantee is intended to be an economic signal

for investment in new generation capacity. In 1998 the capacity price added

1.3Pta/kWh to the SMP;”

e the cost of ancillary services, which are services purchased by the grid com-
pany to ensure the stability of the system. These include black start, reactive

power, and reserve services;
e a price incentive for the cost of small-scale renewable power; and

e the cost of the Market Operator and the CSEN;

2.3 Stranded-Cost Recovery

Under the old regulatory system, which was overruled by the Law of 1997, gen-
erating companies were guaranteed a return based on a value-estimate of their
assets, known as “standard value”, and their costs, known as “standard costs”.
This system implied an average generation wholesale price of 9 Pta/kWh. This
price was regarded by most as excessively high. An estimate of the competitive
price was fixed around 6 Pta/kWh. The sudden introduction of competition in
generation brought by the Electricity Law interrupted the remuneration process
under which generating companies undertook their investments on infrastructures,
whose aim was to guarantee the supply of electricity and whose costs cannot be

recovered at market prices. Something similar occurred with those contractual

"The recent approval by the Spanish Parliament of the modification of the Law for the
Electric Sector (Law 54/1997) on December 1998 established a reduction of the remuneration
for capacity guarantee from 1.3Pta/kWh to 0.3Pta/kWh.



obligations acquired in the past at prices different from current market prices, or
with those costs whose recovery was differed (costes diferidos).

Those costs, incurred by the generating companies under the old regulatory
system, which cannot be recovered due to the introduction of a competitive market
are known as stranded costs. The Electricity Law includes a series of provisions
to compensate the generation companies for these stranded costs.

The maximum amount of stranded costs awarded to companies was set at
Ptas 1,988,561 millions. It was determined as follows. First, the net present value
of the difference in revenues that generating companies could obtain under the
old and new systems was estimated under the assumption that the competitive
market price would be 6 Pta/kWh. Second, to this difference, a 32.5% reduction
was applied to reflect improvements in productive efficiency. Finally, to this re-
sult, an amount of Ptas 295,276 millions was added to subsidise national coal.
The final result implies a total amount of stranded costs of Ptas 1,988,561 mil-
lions. The total value of these payments is to be paid in annuities to the current
owners of the generation sets in a 10-year period ending in 2007, and it is recov-
ered from a charge per kWh made to all final customers. Total stranded costs
minus the subsidy to national coal, an amount of Ptas 1,693,285 millions, are
divided among generation firms in the industry as follows: ENDESA (31,03%),
Iberdrola S.A. (27,1%), Unién Eléctrica Fenosa, S.A. (12,9%), Fuerzas Eléctricas
de Cataluna, S.A. (10%), Hidroeléctrica del Cantédbrico, S.A. (5,7%), Compaiifa
Sevillana de Electricidad, S.A. (5,40%), Elcogas, S.A. (3,1%), E. N. Hidroeléctrica
del Rigagorzana, S.A. (1,68%), Electra de Viesgo, S.A. (1,66%), Hidroeléctrica de
Cataluna, S.A. (0,77%), and Eléctricas Reunidas de Zaragoza, S.A. (0,66%).8

8For more details, see Royal Decree 2019/1997, December 26, 1997, (Real Decreto por el que
se organiza y requla el procedimiento de liquidacion de los costes de transporte, distribucion y



The Law does not give generators the right to claim this maximum amount,
which remains as an upper bound for actual payments for stranded costs. Each
year a reference volume of stranded-cost payments is established. Annual stranded-
cost payments are shared among firms in the industry according to the previously
stated percentages. For instance, the reference amount for 1998 was estimated
to be Ptas 206,878 millions. This reference amount implicitly defines a reference
average pool price for each year, i.e., if the actual average pool price coincides with
this reference price, stranded-cost payments will be set at this reference value. Ac-
tual payments may exceed or fall below this reference amount, depending on the
average pool price for that year. If those payments exceed the reference thresh-
old, which occurs when the average pool price is below the reference price, then
the excess will be applied to diminish the payments made in future years. This,
however, would not reduce the maximum entitlement for the industry. It just
implies that the stranded costs will be recovered earlier. Actual payments cannot
exceed the mazimum amount of Ptas 1,988,561 millions as defined by law. This
implicitly defines a floor price below which actual stranded-cost payments will not
increase any further.

If the average pool price exceeds the reference price, then actual payments for
stranded costs are less than the reference payments. Furthermore, if the average
pool prices is larger than 6 Pta/kWh, the mazimum entitlement is reduced by the
difference between actual industry revenues and the amount that the generating
companies would have earned with a pool price of 6 Pta/kWh.

The procedure through which the annual reference amount of stranded costs

is defined remains unclear. Since the annual reference amount of stranded costs

comercializacion a tarifa, de los costes permanentes del sistema y de los costes de diversificacion
y sequridad de abastecimiento).
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is established by Law before the commencement of each year, it is expected that
it was computed taken into account the expected demand for the year, given
the remaining amount of stranded-cost compensations yet to be made. Likewise,
the mechanism that will be used to calculate the actual stranded costs that each
generating firm will receive at the end of the year remains confusable in some
points.® This is important when actual demand differs from expected demand or
actual average pool price differs from the reference price. I know that an average
pool price below the reference price gives the generating companies an actual
amount of stranded costs that is higher than the reference amount, but how much
more? Is the increment proportional to the actual demand or to the expected
demand? Let me suppose that the actual average pool price is below the reference
price, but the real demand has been extremely high, do the generating companies
still receive stranded-cost payments higher than those established as reference?
The Law does not sufficiently clarify whether stranded-cost recovery payments
are computed according to the actual (ex post) demand or, by the contrary, the
stranded-cost recovery rule is based on the forecasted demand at the beginning of
each transition period, as it is the case for the reference stranded costs. Section 4
and subsection 5.2 analyze these two alternative recovery rules and demonstrate
that these are non trivial questions, because the outcomes obtained under the
recently established Spanish pool market can dramatically change, depending on

their answers.

9The Law remains silent on this point and personal communications with the regulators
(CNSE) suggest that this issue is not yet settled.
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3 The Model

I consider a duopolistic market for electricity with two independent generators,
both of them with identical constant marginal costs, without loss of generality
equal to zero at production levels below capacity.! Each firm has one generating
unit with capacity, k;, normalized to 1, so that total industry capacity, K =
2 ki, is equal to 2. Power demand, d, is modeled as a discrete random variable
independent of price, distributed on {1,2}, with probabilities 7 = Pr(d = 1) and
(1 —7) = Pr(d = 2), respectively.
In the first stage of the model, before the actual opening of the market, risk
neutral firms, simultaneously and non-cooperatively submit offer prices, p; < p,

I Prices are constrained to be

i = 1,2, at which they are willing to supply power.!
below a threshold 0 < P < oo. Von der Fehr and Harbord (1993) provide various
justifications for this upper bound on offer prices: “[This bound must be included
in the analysis] since otherwise, in cases when there is a positive probability that
all sets will be called into operation, expected payoffs could be made infinitely
large. Natural interpretations of P are that it is a (regulated) maximum price,
either officially, or as perceived by the generators (i.e., firms believe that the
regulation authorities will introduce price regulation if the price raises above 7).
An alternative interpretation is that P is a reservation price, below which demand

is completely inelastic”. These intuitions also apply to my model.

On the basis of these bids, an auctioneer draws up a ranking of sets according

00ur discussion is centred on the duopoly case for two reasons, (a) this is the relevant case for
the Spanish electricity industry, where the two main generating companies Endesa and Iberdrola
produce 80% of total generation; and (b) explicit formulae are difficult to obtain in the more
general oligopoly case, specially when stranded costs are introduced in the model.

1The timing of the game purposes to reflect the actual functioning of the Spanish electricity
market, whose rules are described in detail in section 2.
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to their offer prices (i.e., the market supply curve is constructed) in increasing
order of cost to create the “merit order”. This is used to despatch the system
at least cost. In the final stage of the game, when the market opens, demand is
randomly realized. Contingent on this, the auctioneer, by calling suppliers into
operation, equates demand and supply. When the bid of generator 7, p;, is lower
than the bid of generator j, p;, then firm 7 will be ranked in the first position and
it will be the marginal operating unit if demand equals 1. Instead, when demand
is 2, firm j will be the marginal operating unit. In the event that there is a tie at
p, player i is ranked below j with probability 1/2 and gets a payoff of p whenever
demand is equal to 1 or 2, and with probability 1/2 is ranked above j and receives
p only when demand is 2. Operating units, i.e., units actually supplying output,
are paid according to the system marginal price, which is defined to be equal to
the offer price of the marginal operating unit.

The system marginal price determines not only the payoffs that generators
obtain via generation, but also the revenues that firms obtain via stranded-cost
recovery (SCR, hereafter). Let G;(p;) denote the firm i’s expected generation
revenues, and S;(p;) be the firm i’s expected SCR revenues, when firm ¢ and firm
j bid at prices p; and p; respectively. Then, firm i’s expected profits, II;(p;), are
given by

ILi(p:) = Gip) +  Si(pi) (1)

Generation SCR

Revenues Revenues

Firm ¢’s generation payoffs are determined by the electricity supplied to the
spot market by firm ¢ and the pool price, which is settled by the marginal operating

unit. Ex ante, prior to the opening of the market, the expected generation payoffs
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for each firm are given by the equation below,

(1—-m)pi if Di > Py,
%Wpi+(1_77)pi if Di = pj,

Gi(pi) = (2)
mp; + (1 — ) p; if Pi < Pjs
ivjzlv 27i7£jand ngﬁ

Current expected generation profits can be rewritten as,
Gi(pi) = [m (1 = Fj(pi)) + (1 — m) F(pi)] i (3)

D
A =m) | pfilp)dp, 4 =1,2, 17,
where
F; (p;) = Pr(p; < i), (4)

is the cumulative probability that firm j charges a price smaller than p;. Let
suppl; be the support of F; with p;s Djs being its lower and upper bounds, and
f; = dF;/dp be the corresponding density function.

The first term in (3) reflects firm i’s expected generation revenues in the event
that it is the marginal supplier, which occurs with probability (1 — F} (p;)) when
d =1, and with probability F; (p;) when d = 2. The second part of (3) represents
firm ¢’s generation payoffs when bidder j sets the price, but demand is 2 so that
the firm 4’s unit is dispatched.

Unlike its generation revenues, firm i’s SCR revenues do not depend on its

actual supply of electricity to the spot market. Instead, they depend on the

14



expected demand for electricity that has to be served by the whole generation
industry.? In fact, a firm obtains SCR payoffs even when it is not producing.

Let S(p) be a continuous and monotonically decreasing function which de-
notes the total SCR payoffs shared by the industry participants when the sys-
tem marginal price is p, and S be the maximum amount of SCR payoffs to be
distributed among generators, i.e., 0 < S(p) < S. Furthermore, I assume that
S(0) <'S, S(P) > 0and S (p) =S, Vp < p,. Consequently, given that S(0) < S
and S'(p) < 0, I have that p,, the price that maximizes SCR payoffs, is strictly
less than 0, the common marginal cost of generation.

I denote by S the reference SCR payment set by the regulator for the industry

3

as a whole and designate as F[.] the expectation operator.! The reference

SCR payment is calculated as a function of the expected demand, F [d], and the

Y

reference price, p* € [0, P|, so that,
Sp)=S—-(p—p)Ed, (5)

where p is the prevailing system marginal price, and F [d] = 2— 7. It is immediate
that S(p*) = S.

Total SCR payofts are thus a function of the difference between the pool price,
p, and the reference price, p*. Therefore, a reduction in the pool price, which leads
to a fall in generation revenues, is compensated with an increase in the revenues
accruing from stranded-cost recovery. A pool price, p, higher than p* will generate

SCR payofts for the industry lower than the reference SCR payoffs, S, and vice

12See Royal Decree 2019/1997, December 26, 1997 (Real Decreto por el que se organiza y
requla el procedimiento de liquidacidn de los costes de transporte, distribucion y comercializacion
a tarifa, de los costes permanentes del sistema y de los costes de diversificacion y sequridad de
abastecimiento).

13Since we have normalized each firm’s capacity to 1, S denotes the SCR reference payment
per unit capacity.
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versa.
Total SCR payoffs, S(p), are shared among generators as established by law.
Let 0; denote the firm i’s SCR share, so that §; € (0,1),i = 1,2,and ¥2_,0; = 1.1
This means that, ex post, once the market has closed and the pool price, p, has
been announced by the auctioneer, the SCR. payoffs corresponding to firm ¢, are
given by,
Si(p) =S (p) 0, i=1,2. (6)
Ex ante, prior to the actual opening of the market, when both independent firms

simultaneously submit their offer prices, expected SCR payoffs for each firm are:

{5 = (mp; + (L =m)ps) = ] Eld]} 0; if p; > pj,

{S—[pi—p|E[d]}6; if p; = pj,

{S = [(mpi + (1 =) p;) —p*| E[d]} 0; if pi <py,

1, 7=1, 2, 1% jand p; <P.
Note that both firms share the SCR payoffs equally when their SCR shares co-
incide, independently of their offer prices. Current expected SCR. profits can be
rewritten as,

Si(pi) ={S = (Elp | p] = p") E[d]} 0;, (8)
where F'[d] =2 —m and E [p | p;] is given by equation (9) below, which represents

the firm i’s expected system marginal price given that firm 7 bids at p;,

Elp|pl = [n(1 = Fj(p:)) + (1 — m) Fj(pi)] ps (9)

14Recall from section 2.3 that the share of stranded costs assigned to Endesa is 31,03%,
whereas 27,10% corresponds to Iberdrola.
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e [" oo+ (1= m) [ oo)dp

From equations (3) and (8), and rearranging terms, I have that the firm ¢’s ex-

pected profits, can be written as

ITi(p;) = n(6;) A(ps) + B (pi) 05, (10)
where _
Ap)=(=m) ["of (dp+ (x4 Fp) (L-2m)p (1)
Bp)=5—-(2—mn (w [ et (o p*) , (12)
and

n@)=1-(2—mn)6,. (13)

Consequently, the firm i’s expected marginal profits are equal to:

I (ps) = n (6:) [ + Fj (pi) (1 = 2m)] — 7pi f; (pi) - (14)

The intuition behind equation (14) is as follows. Firm i’s profits are only
affected by an increase in p; in two circumstances: (a) when firm ¢ determines
the system marginal price, and (b) when an increase in p; forces firm i out of
the merit order. Otherwise, increasing p; has no (first-order) impact on profits.
Firm ¢ is the marginal operating unit with probability [7 + Fj (p;) (1 — 27)], and
the net marginal benefit for firm 7 of raising p; in this case is 7 (6;) , as given by
equation (13). This last term, in turn, comprises two effects. Provided that firm i
is the marginal operating unit, an increase of p; raises generation revenues in the
same proportion, since capacity is 1, but lowers SCR revenues. The marginal loss

in SCR revenues is equal to E'[d]0; = (2 — 7) 6;. To complete the explanation of
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equation (14), note that an increase in p; will move firm ¢ out of the merit order
with probability 7 f; (p;), which will in turn entails a reduction of p; in generation
revenues. Recall that SCR payoffs are not linked to actual production.

The net marginal benefit, n (6;) , plays a crucial role in the determination of the
generators’ equilibrium strategies, since as it is clear from (14), pricing incentives
depend on the sign and magnitude of 1 (6;). For instance, if the firm i’'s SCR
share, 6;, and the probability of low demand, , are such that 7 (6;) < 0, then
the firm ¢’s expected marginal profits are negative, and so, firm ¢ will always bid
below marginal cost at p,., the price which maximizes the SCR payoffs. Otherwise,
firms have incentives to raise prices above marginal cost, as I proceed to show in

the next section.

4 The Analysis: The Basic Symmetric Case

In this section, I find and characterize the Nash equilibria of the model presented
above. The existence, multiplicity and type of equilibria in my model depend on
the support of the demand distribution, as in von der Fehr and Harbord (1993),
as well as on the distribution of stranded-cost revenues.

Concerning demand, I shall consider three scenarios: ‘High-Demand Periods’
in which demand is equal to 2 with probability 1, so that both firms will necessarily
supply the market, ‘Low-Demand Periods’ in which demand is equal to 1 with
probability 1, and so, only one firm supplies the market, and ‘Fluctuating-Demand
Periods’ in which demand may be high and low with probabilities 1 — 7 and
m, respectively.

In this section, I assume that 8; = 0, = %, and consequently stranded-cost

recovery payoffs are equally shared among generators. Note that this assumption
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implies that 7 (0:) = n(62) = § > 0, so that the marginal operator has the
incentive to marginally increase its offer price.

The analysis is considerably simplified when 7 = 0 or 7 = 1. In both scenarios,
pure strategy equilibria are found. In contrast, when 0 < m < 1, I find that
there does not exist an equilibrium in pure strategies, but a unique symmetric

equilibrium in mixed strategies is obtained with firms bidding above marginal

cost.

4.1 High-Demand Periods

I turn to the case in which demand is equal to 2 with probability one, so that both
firms are called into operation with probability one and they supply to the market
at their full capacities. Pure strategy equilibria are found which are characterized
in the proposition below.

Proposition 1 If 7 =0, any offer-price pair (p1, p2) satisfying that max {py, ps}

€ [pr, D| constitutes a pure-strategy equilibrium for this game.

Proof. Since S(p) =S, Vp <p,, m=0and §; = %, I have that the firm i’s net
marginal benefit of raising p;, when firm ¢ is the marginal operating unit, is given

by

1 if p; <pp.
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Substituting this into equation (14) I get that

0 if p; € [pr, D
1L (p:) = (16)
Fy(pi) if pi <py.
Suppose that in equilibrium py,ps € [p, P|. From the previous equation, it is
clear that no firm has ever an incentive to deviate from its equilibrium bid, since
the marginal profit of raising or lowering its offer price is equal to zero. Therefore,
any offer-price pair (py, p2) satisfying that p; € [p., P], for all ¢ = 1,2, constitutes
a pure-strategy equilibrium of this game. Any offer-price pair (p;,p;) such that
pi € [pr, P| and p; < p, also constitutes a pure-strategy equilibrium for the game.
As before, from equation (16), I have that firm 7 never has an incentive to deviate
from its bid, p;. Firm j has not an incentive to deviate either: II!(p;) = F; (p;) =
0 since p; < pr < p;. Finally, I show that any offer-price pair (p;, p2) satisfying
that p; < p,, for all ¢ = 1,2, cannot be a pure-strategy equilibrium. Suppose
that p; < p,, for all i, and take p, < p;, w.lL.o.g. Then, from equation (16),
II!(p;) = F; (pi) > 0, so that firm ’s profits are strictly increasing in its own bid.
Consequently, firm 7 will raise its price and (p;,p;), p; < p; < p,, cannot be an

equilibrium Q.E.D.

For m =0 and n (%) = 0 the firm 4’s profits function is given by

S
]Il(pz) = <§ +p*> 9 for all Di € [ T p]v 1= 1727 (17)

i.e., firm 4’s profits are independent of its own bid, and its marginal incen-
tive to raise its offer-price is equal to zero for any offer-price p; in the support

[pr, D], irrespective of p;.'> The intuition behind this is straightforward. Given

If we allow firms to have asymmetric generating capacity shares, i.e. k; > k;, the net
marginal benefit for firm ¢ of raising p; when it is the marginal operating unit is 7 (6;) =
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that demand is 2 with probability one, an increase in p; does never force firm
i out of the merit order (i.e., mp;f; (pi) = 0), and so, both firms always supply
to the market at their full capacities. In addition, provided that firm ¢ sets the
system marginal price, what it earns via generation when its offer price raises is
exactly offset by with what it losses in stranded costs, so that 7 (%) = 0 when
pi € [pr, D] . Hence, I have that II/(p;) = 0 in this price interval, and consequently
any offer-price pair (pi, p2) satisfying that both offer-prices belong to the interval
[p-, D] constitutes a pure-strategy equilibrium of the game.

Firm ¢ bidding at any price p; in the interval [p,, p|, while firm j bids at
p; < pr also constitutes a pure-strategy equilibrium. As just argued, the high-
bidding firm ¢ has no incentive to deviate as it is indifferent among all prices in
[pr, D], irrespective of what firm j does. But neither it does the low-bidding firm
j given that its profits are independent of its own bid: its bid does not constitute
the system marginal price and it produces at full capacity since demand is 2.
Finally, note that both firms bidding at prices below p, cannot constitute an
equilibrium. From section 3, I know that stranded-cost recovery payments are
always constant at the maximum level S for any price below p,. As a result, a
marginal increase in the system marginal price only affects firms’ profits through
generation payments. Since demand is 2 with probability one, so that no firm can
be out of the merit order, this implies that both firms have an incentive to raise
their offer prices in order to increase their generation revenues at no cost in terms
of stranded payments. Summing up, from Proposition 1, when demand is high

the system marginal price can be at any price p € [p;, D] .

ki —(2—m)0;, ¥p; € [pr,D]. It implies that in the general case proposition 1 holds if and only
if k; = 20;.
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4.2 Low-Demand Periods

In this sub-section I assume that demand is equal to 1 with probability one, i.e.,
m =1, so that only one firm supplies the whole demand.
Proposition 2 If 7 = 1, there exists a unique pure-strateqy equilibrium, in which

the system marginal price equals marginal cost and only one generator supplies
the market.

Proof. Suppose 0 < p; < pj;, then firm j has an incentive to undercut its rival’s
bid in an arbitrarily small amount ¢ > 0. If j plays p; — € it gets a strictly higher
payoff, since its stranded-cost receipts are constant but its generation revenues
raise by p; > 0. Suppose now that 0 < p; = p;. This cannot be an equilibrium
either, since again any firm can increase its profits by p;/2 when undercutting its

rival. Suppose p; < p; < 0. Since 7 =1,

N |—=

if p; € [pr, D)
0<n(%>= (18)

—_

Then, from equation (14), II/(p;) > 0 and hence, firm ¢ will raise its price so
that p; < p; < 0 cannot be an equilibrium. Likewise, p; = p; < 0 cannot be an

equilibrium either. Firm i’s expected profits are equal to

5 (S+p1) if pe(p,0)
I(pi) = (19)
L(p+S) if pi<p.
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If firm ¢ raises its price by € > 0, then its profits become
$(S—pi+p") if pi e (p,0)
ILi(pi +¢) = (20)

N =

So that II;(p; + €) > II;(p;), which implies that p; cannot be part of an pure
equilibrium strategy. Finally, I must check that p; = p; = 0 is a Nash equilibrium.
It is easy to check that no firm has an incentive to deviate, since, for all i and
p; = 0, Ii(p;) is continuously increasing up to 0 and for all p; € [0,P] remains
constant at its maximum value of I;(0) = % (S + p*) . In conclusion, there exists
an unique pure equilibrium in which firm ¢ and firm ;5 bid at marginal cost, and
only one of them supplies the whole demand. Q.E.D.

Proposition 2 is an intuitive result and the argument used to prove it is equiv-
alent to that of the typical Bertrand model.!® Since, with probability 1 demand
can be covered by one generator only, the system marginal price is always set
by the low bidding firm. Any offer-price, p;, above marginal cost cannot be part
of an equilibrium, since it will always be optimal for firm ;5 to undercut p; : firm
7 obtains strictly larger generation revenues while its stranded-cost payoffs remain
unchanged. Offer-prices below marginal cost cannot be part of an equilibrium ei-
ther. Suppose firm ¢ bids at an offer-price below marginal cost and has a positive
probability of being the marginal operating unit (i.e., p; < p; < 0). Then, firm ¢ is
receiving losses from generation in expected terms. By raising p;, firm 7 cuts its

generation losses. It may also reduce its income from stranded-cost repayments.

61f we allow firms to have different marginal cost, i.e. ¢; > ¢;, there is no pure strategy
equilibrium for our game. In order to avoid this non-existence problem, we must impose the
tie-breaking rule that firm 7 is called into operation with probability 1 whenever the firm’s offer
prices tie at ¢;. This alternative tie-breaking rule has no bearing on our results when marginal
costs are identical.
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But this last effect can be shown to be less important. Thus, any pure-strategy
equilibrium must have both generators offering prices at marginal cost. Deviations
which imply lower prices entails losses in generation larger than compensations in
SCR payments, so that the net effect on profits is strictly negative, and deviations

to higher prices involve no extra revenues.

4.3 Fluctuating-Demand Periods

I am dealing now with the case in which 0 < 7 < 1, so that there is a positive
probability of either firm becoming the marginal operating unit, independently of
their bids. I find that there is no pure-strategy equilibrium in this case, but there
exists a unique mixed-strategy equilibrium. Furthermore, I find that the lowest
price in the support of the players’ strategies is strictly greater than the common

marginal cost, and is an increasing function of the highest possible price, p.

Proposition 3 If 0 < m < 1, then there does not exist an equilibrium in pure
strategies for this game.

Proof. Suppose (p;,p;) constitutes a pure-strategy equilibrium and p; < p;. Since

0 < 7 < 1 then I have that

NIE]

1

0 <1 <§> _ (21)

1 it p; <p.

Hence, from equation (14) I have that

0 < II(p;) = (22)

™ if pi < Dr,
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so firm ¢ has an incentive to raise its offer price p;. Therefore, any offer-price pair
(pi, p;) with p; < p; cannot constitute a pure equilibrium. Suppose now that the
offer-price pair (p;, p;) , where p; = p; > 0, is a pure-strategy equilibrium. If firm
1 reduces its price by € > 0, then it is easy to check that its expected profits raise
by %W (p — me) > 0 for € small enough, which implies that p; = p; > 0 cannot be a
pure-strategy equilibrium. Likewise, p; = p; < 0 cannot be an equilibrium either,

since II}(p;) > 0, for all ¢ when p; < 0, irrespective of p;. Q.E.D.

The intuition behind this result is the following. Suppose that a pure-strategy
equilibrium exists and that firm ¢ is the lowest bidder. In this case, firm ¢ has an
incentive to raise its offer price towards the firm j’s bid. This raises its profits by
n (%) > 0 when demand is 1 and leaves them unaffected, otherwise. This implies
that any offer-price pair (p;, p;) with p; < p; cannot constitute a pure equilibrium.
It is not optimal to bid equal to firm j’s bid, either. Provided that the offer
price is above marginal cost, any firm can increase its profits by undercutting
the rival at an infinitesimally lower price, since this increases the probability of
being called into operation without reducing the system marginal price. Likewise,
pi = p; < 0 cannot be an equilibrium, since any firm has always an incentive to
raise its offer price. By raising p;, firm ¢ reduces its expected generation losses.
It may also reduce its income from stranded-cost repayments. But this last effect
can be shown to be less important. Finally, both firms bidding at the common
marginal cost cannot constitute an equilibrium because any firm can increase its
expected profits by raising its offer-price: a higher price raises profits by a strictly
positive amount, n (%) , when demand is 2 and leaves them unaffected, under

other circumstances. In conclusion, there is no pure-strategy equilibrium.
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However, I can show that there is a unique symmetric mixed-strategy equilib-
rium for this game. In this symmetric equilibrium both firms use the same pricing
strategy defined by an identical distribution function, F* (p), over a coincident
support, {Q, ﬁ} . Lemmas 1-3 below tell me what are the basic properties that have
to be satisfied by the (common) support of the equilibrium strategy.

Lemma 1 In any symmetric mized-strateqy equilibrium, p = P.
Proof. Let p be the highest price in the common support and assume p < p. It

is easy to check that playing p any firm obtains a higher expected payoff than
playing p in the amount of (p — p) (1 —7) 5 > 0. Q.E.D.

That is, the (regulated) maximum price, P, is always the upper bound of the

firms’ strategy in equilibrium.

Lemma 2 In any symmetric mized-strateqy equilibrium, p > 0.

Proof. For all p; < 01 have that II/(p;) > 0, irrespective of p;. This implies that

any price below marginal cost cannot be part of the equilibrium strategy. Q.E.D.

From this I conclude that no firm bids at prices below marginal cost.

Lemma 3

(a) In a symmetric mized-strategy equilibrium, no offer price p < p < P, will
be played with positive probability by any player, i.e., there are no interior

mass points in the common support [Q, ﬁ} .
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(b) In a symmetric mized-strategy equilibrium, int(suppF™ (p)) is connected,

i.e., there are no gaps in the support of the players’ strategies.

Proof. (a) I start by showing that if p € int(suppF™* (p)) is played with positive
probability by some firm, p is not played with positive probability by the other
firm. Let p € int(suppF™* (p)) be an offer price which is played with positive
probability by the firm i, i.e., AF*(p) = F*(p) — limg0 F* (p — x) > 0. Since
the number of mass points in suppF™* (p) must be countable, there is an € > 0
arbitrarily small such that p — ¢ is named with zero probability by the firm i. The
expected profits of firm j when it sets a price p with positive probability are lower
than its profits when it undercuts p to p — ¢ (e sufficiently small) in an amount
equal to:

AF* (p) g (p — me) > 0. (23)

The difference between bidding at p and bidding at p — €, is that in the former
case, given a tie, firm j is ranked below firm ¢ with probability 1/2, while in the
latter case firm j is always ranked below firm ¢ when firm ¢ plays p.

I next show that if p € int(suppF™ (p)) is played with positive probability
by any firm, any offer price exceeding p by the other player is bounded away
from p. As before, let p € int(suppF™ (p)) be an offer price which is played with
positive probability by firm i. Since the number of mass points in suppF™* (p) must
be countable, there is an € > 0 arbitrarily small such that p + ¢ is named with
zero probability by firm ¢. Consider now the payoff of firm j who plays p+ . The
expected profits of firm j when it sets a price p are higher than its profits when it

bids at p+ ¢, for € arbitrarily small, with positive probability, in an amount equal
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to:
T
2

so firm j prefers to tie with firm i rather than setting p + ¢ (e sufficiently small).

AF*(p)5 (p— (1 —=m)e) >0, (24)
The difference between bidding at p and bidding at p + ¢ is that at the last
price firm j is always ranked above firm ¢ when firm ¢ plays p. Given the strict
inequality in equation (24) and by continuity, there exists 7 > 0 sufficiently small,
such that for all € € (0,7) firm j obtains a strictly higher payoff playing p than
playing p+ €. Therefore, any offer price which forms part of firm j’s strategy and
is not less than p must be higher than p 4+ 7, i.e., firm j never names a price
p € (p,p+ 7). Consequently, firm ¢’s optimal response is to shift its mass point
from p to p + €, with € € (0,7) (since this increases its average price without
reducing its sales) which contradicts the existence of a mass point at p.

(b) A set is connected if it is not the union of two non-empty disjoint closed
subsets. Since int(suppF™ (p)) is a subset of R, then int(suppF™* (p)) is connected
if and only if it is an interval. Let (p,, py) be the largest gap in int(suppF™ (p)) and
let {p,} and {ps} be two sequences of prices converging to p, and py, respectively.
From the previous lemma, F* (p) contains no atoms in the interior of its support
which implies that lim,, ., F*(p,) = lim,,_,, F*(ps), and thus that F™* (p) is
constant for any p € (p,, py) . This implies that p, = p, because, otherwise, any
firm would deviate by shifting density from p = p, to prices in (ps, ps) , since this
does not involve the loss of any customer, and implies strictly greater expected

revenues per customer. Q.E.D.

Proposition 4 There is a unique symmetric equilibrium in mized strategies de-
fined by the distribution function F*(p), which represents the equilibrium pricing

strategy of each firm, where p € {Q,ﬁ} and p is given by (26).
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In (e (p/p)*) when 7= 1
F*(p) = (25)
(11:27;r> (p/ﬁ)% + 52 when T # 3,
D (%)4 when 7 = %
O<p= (26)

D (ﬁ)ﬁ when 7w # %
Proof. From the previous lemmas I know that in a symmetric mixed-strategy
equilibrium both firms use the same pricing strategy defined by an identical dis-
tribution function, F™* (p), over a coincident and connected support, [Q, ﬁ} and no
player plays any price p < p with positive probability.
Since F*(p) = 1, firm i’s expected payoff from playing p is:

) =p1-m 2 + (s— (2-m) (W/pppf* (») dp—p*)) Lo

The expected payoff to player 7 of playing p € []_), ]5} is:

1) =3 (s =200+ 0= [Cor ) 29

P . 1
+ (5— (2-m) (W/p pf* (p)dp —p )) 5
In a mixed-strategy equilibrium, it must be the case that,

1I(p) = I(p), ¥p € [p,7] - (29)

Given that F* (p) is continuous in [Q ]‘9} (lemma 3(a)) and {Q, ﬁ} is connected
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(lemma 3(b)) , equation (29) implies that,

I(p) = 5 (m+ (1= 2m) F* (p)) = npf* (p) = 0, ¥p € (p.F) . (30)

Rearranging terms I have that,

() - =—. (31)

Solving this first-order differential equation with the boundary condition that
F*(p) = 1, I have that:

) when W:%

=

In (e (p/p)
F* (p) = (32)

1-27

(11—_27;r> (p/P) ? + 577 when m# %v

Then, solving out F*(p) = 0, I obtain:

7 (1>4 when 7 =3

(33)

S
I

2

D (ﬁ)m when  # 3.

This concludes the existence part of this proof. Uniqueness of symmetric equilib-
rium follows immediately from the fact that the first differential equation in (31)

has a unique solution satisfying the boundary constraint that F*(p) = 1. Q.E.D.

Proposition 5 There is no asymmetric mized-strategy equilibrium for this game.

30



Proof. From Proposition 3 I know that it cannot be the case that, in equilibrium,
firms set prices according to degenerated distribution functions. A similar argu-
ment to the one used in Lemma 3 can be used to rule out mass points and gaps in
the support of any asymmetric mixed-strategy equilibrium strategy. Furthermore,
I have that the expected profit function for each firm is identical. Then, to show
that there are no asymmetric mixed-strategy equilibria it is sufficient to prove
that firms set prices according to a common support, [_, ]5} , with p < p. From
Proposition 3 p. < p for ¢ = 1,2. Suppose p, < p;, <D then Hi(ﬂi) increases for
values of p such that p,<p< p; since Ff (p) is constant for prices in that inter-
val. Hence p, = p; Suppose now that p; > p;. Then, firm 4 is the only competitor
setting a price p € (ﬁj,@) as part of its strategy. But, in this case, firm ¢ has
an incentive to shift probability from p to p; as this increases its expected payoft
by %7‘(’ (1 —7) (p; —p) > 0. This is true for all p € (ﬁj,@), which contradicts the
non-existence of gaps in the equilibrium distribution function. Hence p; = p;. In

conclusion, only symmetric mixed-strategy equilibria exist for this game. Q.E.D.

Summing up, from Propositions 3, 4 and 5, I conclude that there is a unique
equilibrium for the full game in which each firm sets prices according to a common,
continuous and strictly increasing distribution function F™* (p) over a coincident
and connected support {Q, ﬁ} .

Let E*[p] = fpﬁ pdF™* (p) denote the expected price of the game associated to
the equilibrium strategy, F'* (p). Then, I can show that:

Corollary 1 The equilibrium expected price, E* [p] = f;_’ pdF* (p), is a decreasing
function of . B
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Proof. It can be shown that

E*[p] = ﬁde*(p)zz‘?(l_W)ll—( a )] (34)

Then,
W) (55 ot ()T
+(27T1_3)2 [(1;)_ -1 } <0, for all 7 € [0,1].
Q.E.D.

Corollary 1 implies that the larger is the probability of low demand, the more
competitive becomes the market, so that, the lower are the expected prices. When-
ever 7 raises, the probability of being out of the merit order increases for any given
price, in which case both firms will tend to submit lower bids. In the limit, when
m equals 1, I have that ™ (2) = 1, so that, both firms bid always in equilibrium
at the lowest possible price in the support, p. Furthermore, I have that

lim p = 0, (36)

T—1=

which implies that, when 7 equals 1, both firms set marginal costs in equilib-

rium.
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Figure 1: Range of equilibrium prices. This figure plots the range of equilibrium prices as
a function of n. When n equals 1 the unique price in equilibrium is the marginal cost. Any
price in the interval [p .. p] can be the system marginal price when 7 equals zero. The range
of equilibrium prices is represented by the interval [p, pJif 0< n<1.

A fall in 7 produces two opposite effects. First, when 7 diminishes the prob-
ability of being out of the merit order declines for any given price, so that, this
would lead firms to raise their offer prices. On the other hand, when 7 falls, the
net benefits of raising the system marginal price decrease. This last effect partly
mitigates the incentive to raise the offer price. In the limit, when 7 equals 0, those
two effects offset perfectly. Consequently, both firms supply the market at their
full capacities and the net benefit of raising the system marginal price is zero:
what a firm earns via generation when the system marginal price raises is exactly
offset by what it losses in stranded-cost payments. Therefore, firms will be indif-
ferent between any price p € [p,,p]. This is illustrated in Figure 1 where I depict

the range of equilibrium prices as a function of the demand distribution. When
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m equals 1 I have that a pure-strategy equilibrium exists with both firms bidding
at marginal cost. Any price in the interval [p,, ] can be the system marginal price
when 7 equals zero. Finally, whenever 0 < m < 1, I get a mixed-strategy equi-
librium in which both firms use the same pricing strategy defined by F™* (p) , over
the common support, [Q, ﬁ} .

To conclude this section, I compare the equilibrium of my symmetric game
with stranded cots with the equilibrium of an otherwise identical game without
stranded costs.

Let ﬁ(p) be the common equilibrium pricing strategy of each firm in a pool

17

market without stranded costs.”” Then, I can show the main result:

Corollary 2 F*(p) > ﬁ(p), for all p € [g, ﬁ} .

From the previous corollary it results that the generators’ common pricing
strategy in a pool market without stranded costs first-order stochastically domi-
nates the generators’ strategy in an otherwise identical pool market with stranded
costs. [See Figure 2]. That is, generators in a pool market without stranded
costs submit higher prices with greater probability than they do in a market with
stranded costs. Therefore, starting from a situation without stranded-cost repay-

ments, these costs necessarily encourage overall competition.

I7Tf we impose that #; = 0y = 0, and allow for different marginal costs among firms, our
model coincides with von der Fehr and Harbord (1993)’s model.
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FA(p)

F*(p)

F*(p)

Figure 2: Equilibrium pricing strategies. This figure plots the equilibrium pricing
strategies in a pool market with stranded costs, denoted by F*(p); and in an otherwise

identical pool market without stranded costs, represented by F”(p).

5 The Analysis: Extensions
5.1 Asymmetric Stranded-Cost Sharing Rules

In what follows I assume that 6, < 6, that is, stranded-cost recovery payofts
are shared among generators asymmetrically. Since >.2_; 6; = 1 then I have that
0 <6y <1/2 <6 <1. As I show below, generators’ price incentives strongly
depend on 7 (6;) , so that, the sign and magnitude of the parameter 7 (6;) is crucial
in order to identify the equilibria in the following sub-sections. First up, I consider
conditions under which I find pure-strategy equilibria, and subsequently I identify

mixed-strategy equilibria.
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5.1.1 High-Demand Periods

I start by dealing with the case in which, with probability one, demand is equal
to 2, i.e., m = 0. Pure-strategy equilibria exist in all of which the system marginal

price equals the highest admissible price.

Proposition 6 If 1 =0 and 0y < 01, then there exist pure-strategy equilibria, in
all of which generator 2 determines the system marginal price offering to supply
at the highest admissible price, p.

Proof. Suppose that in equilibrium p; > p,. Since m = 0 then I have that

1-20, <0 ifp, € (p, D)
IT(p,) = 1/(61) = (37)

1 >0 if p1 <py.

Hence, firm 1 will alter its price so that p; > ps cannot be an equilibrium. Like-
wise, p1 = po cannot be an equilibrium either since 7 (63) = 1 — 20, > 0, so that
I15(p2) > 0, and hence, firm 2 can increase its profit by increasing its bid. Then,

it must hold that, in equilibrium, py > p;. Since I(ps)| is strictly increasing

p2>p1
in its argument I can conclude that generator 2 will bid in equilibrium at the
highest admissible price. Furthermore, because both generators always supply its
total capacity, generator 2 has no incentive to deviate undercutting generator 1,

whatever firm 1’s bid. Q.E.D.

In high demand periods both generators are despatching its total capacity.
Since I have that 1 (62) > 0 and 7 (¢;) < 0 for all p € [p,, |, it implies that gener-
ator 1’s expected payments are decreasing with its own bid; meanwhile generator

2’s expected profits are increasing in its own offer price. Therefore, pure-strategy
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equilibria exist, in all of which the generator with lower proportion of SCR share
(generator 2) will always determine the system marginal price bidding at the
highest admissible price, p. Generator with the higher proportion of SCR share
(generator 1) is indifferent between any offer price lower than rival’s bid. Further-
more, since both generators always supply its total capacity, generator 2 has no

incentive to deviate undercutting generator 1, irrespective of firm 1’s bid.

5.1.2 Low-Demand Periods

In this scenario I deal with the case where, with probability one, demand is one,
i.e., m = 1. As in the symmetric case I find an unique equilibrium outcome in
which both generators offer to supply at marginal cost and only one of them

supply the whole demand.

Proposition 7 If 7 = 1 and 05 < 0, then there exists a unique pure-strateqy
equilibrium, in which the system marginal price equals marginal cost and only one
generator supplies the market.
Proof. The argument to prove this proposition is equivalent to that found in
section 4.2.

Because of the structure of stranded-cost recovery payments, in the equilibrium
both firms will earn positive profits strictly bigger than zero but asymmetric, that
is, generator with a lower proportion of SCR share will obtain lower payoffs than

generator with a higher proportion of SCR share.

5.1.3 Fluctuating-Demand Periods

In this section I concentrate on the case in which both low demand and high de-

mand can occur with positive probability, i.e., 0 < 7 < 1, so that either generator

37



can be the marginal operating unit with positive probability regardless of its bid.

The sign of 7 (6;), the firm ¢’s net marginal benefit of altering p;, plays a
crucial role in the determination of the generators’ equilibrium strategies since
pricing incentives depend on it. Differing from the symmetric case, in which I
have that 7 (%) is strictly positive for all 7 € (0,1), in the asymmetric case I
have that, while 7 (f;) remains positive for all 7 € (0,1), the sign of 1 (6;) can
be positive, negative or even zero, depending on the current values of 7= and 6,’s.
This is illustrated in Figure 3 where I depict the regions in which, provided p;
€ [pr,P|, firm 1’s net marginal benefit presents a positive, zero or negative sign
as a function of demand distribution, 7, and proportion of SCR shares among

’s.!® It can be observed in Figure 3 that, remaining constant 6,, a

firms, 0,
change in demand distribution, 7, can alter dramatically the pricing incentives
for firm 1. From equation (13) I know that 7 (¢;) is a continuous and decreasing
function of 7. Starting from a situation of positive net marginal benefit, a fall in
7 relaxes firm 1’s incentives to increase its offer price. In fact, since I have that
n(601) |x=0< 0 and 7 (01) |r=1> 0 for all 6; € (1/2,1) then I get that, for any
01, I can find values of m low enough such that firm 1’s net marginal benefit of
raising p; becomes negative (1 (61) < 0), so that, firm 1’s pricing incentive is now
to reduce its offer price. Note also that a decrease in the degree of asymmetry in

the SCR shares (a fall in 6,) increases the range of demand distributions which

makes positive the firm i’s net marginal benefit of altering p;, 7 (61).

8Remember that n (0;) = 1, for all p; < p,., i = 1,2.
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Figure 3: Values of parameter 1(0,). This figure represents the regions in which
firm 1’s net marginal benefit is positive, negative or zero; as a function of the
probability of low demand () and the SCR shares among firms (6, and 8,).

Therefore, I distinguish three cases in order to deal the analysis of the types

of equilibria in the game:

(a) Case I: n(0;) > 0, where, provided firm 1 sets the system marginal price,
it always has an incentive to raise, at least marginally, its offer price. The
cases in which this assumption holds are restricted for the values of 6; and
7 in the following manner,

1

_7'('.

ng, >0 0 < 5 (38)

(b) Case II: n(6,) = 0, if firm 1 is the marginal operating unit, its benefits are

not altered by changes on its own offer price.

(c) Case III: n(A;) < 0, where the firm 1 always wants to decrease its offer

price in order to maximize its profits.

39



I proceed to analyze the types of equilibria in the game under the three possible

cases.

e Case I n(6;) >0

Under the current case there does not exist pure-strategy equilibrium. How-
ever, I can show that a unique mixed-strategy equilibrium does exist and has very

intuitive properties.

Proposition 8 If0 <7 <1 and n(6y) > 0, then there does not exist an equilib-
rium in pure strategies for this game.

Proof. Similar to that one of Proposition (3) when substituting both equation
(21) and equation (22), which hold in the symmetric case, by the equation (39)

and equation (40), respectively:

1-2~-7)0; if p;€[p, D)
0<n() = (39)
]. lf Di < Dr,
™ (0;) if p; € [pr, D)
0 < I (p;) = (40)

7T 1f Di <p7“7

which applies in this case. Q.E.D.

The intuition for the proposition above is comparable to that one developed in
Proposition (3). I can show that there is a unique equilibrium in mixed strategies

for this game in which each firm set prices according to continuous and strictly
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increasing distribution functions, F;" (p) for i = 1,2, over a coincident interval,
except that firm 2 names the uppermost price with positive probability. Following
lemmas below establish what are the attributes that have to satisfy the respective

supports in any pair of equilibrium strategies.

Lemma 4
(a) p; <7D, 1=1,2.

(b) It is impossible for both firms to name identical supreme, i.e., p; = D;, with

positive probabilities.

(c) Suppose that either p, > Py, or Dy = Pyand P, is named with probability

zero. Then, in any equilibrium P, = P.

Proof. (b) Suppose p; = p; = p and p is played with positive probability by the
firm i, i.e., AF (p) = F; (p) — limgyo F;* (p — ) > 0. Since the number of mass
points in suppF; (p) must be countable, there is an € > 0 arbitrarily small such
that p — € is named with zero probability by the firm i. The expected profits of
firm j when it sets the price p with positive probability are lower than its profits

when it undercuts p to p — ¢ (e sufficiently small) in an amount equal to:

AF; (5) 5 (B —20(6;)2) > 0. (41)

The difference between bidding at p and bidding at p — €, is that in the for-
mer case, given a tie, firm j is ranked below firm ¢ with probability 1/2, while in

the latter case firm j is always ranked below firm ¢ when firm ¢ plays p. Q.E.D.
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(c) Since P, has been defined as upper bound of suppFj, it implies that
F5 (py) = 1. Hence, I (P,) is strictly increasing in its argument, and so, it attains

a maximum at p. Q.E.D.

Lemma 5 In any equilibrium p, = p,=p > 0.

Proof. First I prove that P, =p; =P From Proposition (8) p, <P for ¢ =
1,2. Suppose p, < p;, <D then II;(p,) increases for values of p such that p, <
p < p; since F (p) is constant for prices in that interval. Hence p, = p; = p- To
complete the proof, I need to show that p > 0. I have that II/(p;) > 0, for all

pi < 0 irrespective of p;. Thus any price below marginal cost cannot be part of an

equilibrium strategy. Q.E.D.

Lemma 6

(a) In any equilibrium, no offer price p < p < D, will be played with posi-
tive probability by any player, i.e., there are no interior mass points in the

support of players’ strategies.

(b) In any equilibrium, int(suppF; (p)) is connected, for all i = 1,2, i.e., there

are no gaps in the support of players’ strategies.

Proof. (a) Similar argument to that one of lemma 3(a) when substituting
F* (p), which applies for the symmetric case, by F;* (p), and equations (23) and
(24) by the below equations (42) and (43), respectively:

™

AF? ()2

(5 20(6;)) >0, (42)
AF! ()5 (xp —2(1 - ) (6)) > 0 (43)
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(b) A set is connected if it is not the union of two non-empty disjoint closed
subsets. Since int(suppF; (p)) is a subset of R for all i, then int(suppF; (p)) is
connected if and only if it is an interval. For any given ¢, let (p,i,py) be the
largest gap in int(suppF;* (p)) and let {p,} and {ps} be two sequences of prices
converging to p,; and py;, respectively. From the previous lemma, F}* (p) contains
no atoms in the interior of its support which implies that lim,, ., . Fi* (py) =
lim,, .., F7* (ps), and thus that F} (p) is constant for any p € (pai,py;). This
implies that p,; = py; because, otherwise, any firm would deviate by shifting
density from p = p,; to prices in (pai, Pyi) , since this does not involve the loss of

any customer, and implies strictly greater expected revenues per customer. Q.E.D.

From lemmas 4-6 I know that in the equilibrium at most one player who plays
P with positive probability, that no player plays any price p < p with positive
probability, and that both players’ mixed strategies have full support on {Q, ﬁ} |

then obtain the following result:

Proposition 9 There exists an unique equilibrium in mized strategies defined by
two distribution functions F}(p) and Fy(p) representing the equilibrium pricing
strategies of firm 1 and firm 2, respectively, where p € [g, ﬁ} , and p 1is gwen by

(46).

[y

27392
) when 7 ==

in (e (/p)
FY (p) = (44)

1—27

s 3 —\n(0 -
127 (17) (p/P)""? = + -~ when 7 # 3,

N

2739] 27391
In (62392 (p/p) 2 ) when p<pandn= %
Fy (p) =
M 1—27

™ + 575 when p<pand7r7é%,
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F(p) =1, (45)

_2
— —36
p(%)zgz when =1

O0<p= (46)

- s 1
=( = (1—2m) n(62) 1
D (—1_7r> when 7 # 3.

[\

Proof. Since Fi(p) = 1, player 2’s expected payoff from playing p is:

Ih(5) = p(1— ) (6a) + (s— (2-m) (w /p”pﬁ(p)dp—p*)) 0.

—

47)

The expected payoff to player 2 of playing p € {Q, ]3} is:

Ih(p) = (6:) (p (4 B ) (L= 20) + (1) [ o () dp) (48)

+ (5— (2—m) (W/;pfl (p) dp—p*)) 05.

In a mixed-strategy equilibrium, it must be the case that

IIy(p) = I1(p), for all p € [p.7] . (49)

Given that Fj (p) is continuous in [Q ]‘9} (lemma 6(a)) and {Q, ﬁ} is connected
(lemma 6(b)) , equation (49) implies that,

M(p) =1 (6) (7 + (1 — 27) F; (p)) — 7pfi (p) =0, forall p€ (p,7).  (50)

Rearranging terms I have that,
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i) - o) 2RIy gy 61)

Solving this first-order differential equation with the boundary condition that

Fy (p) = 1, I have that:

. 27392
Fr (p) = In (e (p/P) 2 ) when 7= (52)
1 o (22) (/P + 5E when 7 #£ 4
1-2m ™ 2m—1 2°
Then, solving out Fy'(p) = 0, I obtain:
— (1) 27392 1
Pz when 7 =3 (53)
2 - i 1
P (ﬁ) 2070 when 7 # %
Employing the same procedure I obtain:
2739] 27391
In (62392 (p/p) 2 ) when p<pandn= %
Fy(p) =
2 () m P_WZW]?; SOV L 5 and 1
1—27r(7r> (p/P) + 57 when p<pandm# 3,
F; (p) =1 (54)

This concludes the existence part of this proof. As I already argued in the
proof of Proposition 4 uniqueness of equilibrium follows immediately from the
fact that the first differential equation in (51) has a unique solution satisfying the
boundary constraint that Fj(p) = 1. A similar argument can be used to prove

uniqueness of firm 2’s equilibrium strategy. Q.E.D.
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From Propositions 8 and 9 I conclude that there is a unique equilibrium for
the full game in which each firm set prices according to continuous and strictly
increasing distribution functions over a connected and identical support, []_), ﬁ}. It
is interesting to notice the presence of an atom of positive probability in the distri-
bution function of the lower-SCR share generator. Firm 2 names the uppermost
price, p, with positive probability. This mass point at P, is an increasing function
of the degree of asymmetry in the proportion of SCR shares and a decreasing
function of w. The more asymmetric the SCR shares, the less tempted the lower-
SCR share generator is to exploit its SCR payments. A fall in 85 increases firm
2’s net marginal benefit of raising its offer price, so that, more probability mass
is placed on higher prices. Likewise, a fall in 7 increases the probability that
both generators will be operating even if they offer to supply only at high prices.
Thus, more probability mass is placed on higher prices, in which case both firms
will tend to submit high bids. I also find that the lowest price in the support of
the players’ strategies, p, is strictly greater than the marginal cost, and that this
lowest price is a decreasing function of 7 and an increasing function both of the
degree of asymmetry in the SCR shares and the highest admissible price, 7. In

particular, it can be shown that:

lim p =P, and (55)

lim p = 0. (56)
These limits represent the cases dealt in subsections 5.1.1 and 5.1.2, respectively.

Furthermore, from equation (52) and equation (54), I get,

Corollary 3 Fj(p) < Fy(p), for allp € {Q, T)} .
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That is, firm 2’s strategy first-order stochastically dominates firm 1’s strategy.
[See Figure 4] . This is an intuitive result because it indicates that the lower-SCR
share generator submits high prices with a greater probability than the higher-
SCR share generator. This probability tends to be higher when the degree of
asymmetry, (67 — 6s), exhibits higher values. When m = % and 7y, > 0, the
probability that ps > p; is reduced to:

1 1
Pr = Prob(p2 > p1) |x=05= [1 — 5| |r=05= 5 (3 T 5= 302) ; (57)

so that, 0 [Pr] /00y < 0, and hence, a larger degree of asymmetry between 6; and
0, gives the lower-SCR share generator a bigger chance of being the firm which

submits higher offer prices.

Fi*(p)
F>*(p)
1 1 Fi*(p)
F2*(p)
> p

|
<

Figure 4: Asymmetric equilibrium strategies. This figure plots the pricing equilibrium
strategies in a pool market with asymmetric payments of stranded costs. F;*(p) and F,*(p)
represent the equilibrium pricing strategies of firm 1 and firm 2, respectively.
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e CaseII: (0,)=0

I turn now to the case in which 7 (6;) = 0, so that, the higher-SCR share
generator presents a null incentive to variate marginally its offer price, provided
it is the marginal operating unit. What firm 1 earns via generation when its offer
price raises is exactly offset by with what it losses in stranded-cost payments,
whatever p; € [p,, P|. Since 7 (6y) is strictly bigger than zero, when generator
2 is the marginal operator, it has always an incentive to increase its offer price.

Pure-strategy equilibrium is found which is characterized in the proposition below.

Proposition 10 If0 <7 < 1 andn(0,) = 0, all pure strategy equilibria are given
by the offer price pairs (p1,p2) such that p, < p; < v and ps = P.

Proof. Since I1;(ps) > 0, for all p, < 0, irrespective of py, then I have that firm 2
always bids at or above marginal cost. Suppose that in equilibrium p; > py > 0.
Since 7 (62) > 0, then I have that IIj(ps) > 0. Hence, p; > ps > 0 cannot be
an equilibrium. Likewise, p; = py > 0 cannot be an equilibrium either since
any firm can increase its profits when it undercuts p; to p; — e (¢ sufficiently
small) in an amount equal to 5 (p — 21 (6;)e) > 0, 7 = 1,2. Suppose now that
0 = p; = po. This cannot be an equilibrium either, since firm 2 can increase its
profits by € (1 — ) n(f2) > 0 when raising its offer price by ¢ > 0. Therefore,
it cannot happen in equilibrium that p, < p;.

I can then prove that any offer-price pairs (pi, p2) such that p, < p; < v and
p2 = P constitute a Nash equilibrium. Suppose that p, > p;. Hence II;(p,) | paspy 18

strictly increasing in its argument and it attains a maximum at p. If p, = P, firm
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1’s expected marginal profits are given by:

0 forall p; € [p,, P
[ (p1)] | (po=py= (58)

m forall p; < p.,

so that, the low-bidding generator is indifferent between any offer price p; €
[pr, D] . It is easy to check that playing p, = P generates higher expected payoffs

to firm 2 than undercutting firm 1’s bid when

1—m\ _
p<v= (2_7T)p, (59)

which implies that firm 2 has no incentive to deviate from 7 whenever p; <
v. Therefore, there exists pure-strategy equilibria, (p1,p2), in all of which py =

pand p, < p; <wv. QE.D.

From previous proposition I know that the low-SCR share generator bids al-
ways at the highest admissible price, p, so that, it determines the system marginal
price when demand is 2. The generator with high-SCR share is always the low-
bidding firm, so that, it determines the system marginal price when demand is 1,
and it is indifferent between any offer price lower than that of its rival. Neverthe-
less, to ensure that generator with the lower SCR-share does not deviate, it has
to bid low enough so that the low-SCR share generator’s profit will be less when
undercutting than profits that it would obtain bidding at the highest admissible
price. Thus, v represents the upper bound for the high-SCR share generator.

I can note that the upper bound on the low-bidding firm’s offer price is a

decreasing function of the probability of low-demand periods, 7. As 7 increases
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the upper bound on the low-bidding firm’s offer price decreases. The intuition
for the result is straightforward. Since the incentive to undercut is stronger when
the probability of low demand increases, the low-bidding firm must decrease the
expected earnings that high-bidding firm could get by undercutting and this hap-
pens diminishing its offer price, p;. In the limit when 7 is equal to 1, low-bidding
firm’s offer price is zero. It is easy to prove that

lim v = 0. (60)

T—1

Firm 1 never bids below p,. Since stranded-cost recovery payments are always
constant at the maximum level S for any price below p,, a marginal increase in
the system marginal price only affects firm 1’s expected profits through generation
payments. This implies that firm 1 has always an incentive to raise its offer price,
for all p; < p,, in order to increase its expected generation revenues at no cost in

terms of expected stranded payments.
e Case III: n(A;)< 0

In this case I assume that the firms present opposite pricing incentives when
they are the marginal operating unit. When generator 1 sets the system marginal
price, its expected profits are decreasing with its own bid; whereas generator 2’s
marginal expected profits are increasing in its offer price. There exists a pure-

strategy equilibrium in this game characterized by Proposition (11) below.

Proposition 11 If 0 < w < 1 and n(61) < 0, then there exists a pure-strategy
equilibrium in which player 2 plays p and player 1 plays p,.
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Proof. Since I know that firm 2 bids always at or above marginal cost, then, firm

1’s marginal benefits are given by

n(6h) [m+ Fa(p1) (1 = 27)] — wp1 fo(pr) <0, if p1 > p,
II(p) = (61)
T (1 —pifa(pr)) + Fa(p1) (1 — 2m) >0, ifp1 <py,

so that, player 1 achieves its maximum expected payoffs at p.. Since 7 (6s) is
strictly positive and firm 1 bids at p,, I have that firm 2’s expected profits are
increasing in its own offer price, so that, profit maximization requires firm 2 to

bid at the highest admissible price, p. Q.E.D.

Since 1 (A1) < 0 firm 1 has always an incentive to reduce its price when it
has a positive probability of being the marginal operator. Likewise, firm 2 has
an incentive to increase its bid when it sets the system marginal price. Because
0 < m < 1 both generators have always a positive probability of setting the sys-
tem marginal price, irrespective of their bids. Therefore I have that generator 1
achieves its maximum expected profits at p,, the price which maximizes the ex-
pected SCR payoffs; whereas generator 2 maximizes its expected revenues bidding
at P, the price which maximizes the expected generation payoffs. Consequently,
the offer-price pair (p,, D) constitutes the unique pure-strategy equilibrium of this

game.

5.2 Alternative SCR Payment Rules

Von der Fehr and Harbord (1993), using a similar auction-model than mine,
demonstrated that price competition in a deregulated wholesale market for elec-

tricity without stranded-cost repayments is likely to create distortions in the gener-

51



19" In previous

ators’ pricing incentives, which lead to prices above marginal costs.
sections I proved that SCR repayments based on expected demand (ex ante) can
serve to partially mitigate these practices. I even found particular cases in which
SCR repayments led the generator with higher proportion of SCR payoffs to bid
below marginal cost.

In this section I analyze a different SCR payment structure, which is based on
actual (ex post) demand. Our goal is to determine whether this regulatory rule
leads firms to price at marginal cost. I show that when the firm’s shares of SCR
repayments are equal to their generating capacity shares, there is a pure-strategy
equilibrium where all firms bid at marginal cost.

Under the new payment rule, for a given system marginal price p, total SCR

payoffs are given by:
S—(p—p*) when d=1

S(p) = (62)
S—2(p—p*) when d=2,

Ex ante, prior to the actual opening of the market, when both independent firms

simultaneously submit their offer prices, the SCR payoffs for each firm are given

YWolfram (1998a) also finds evidence of positive price costs mark-ups in a study on market
power in the England and Wales electricity spot market.
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{S — [(ij + 2 (1 — W)pz) —p*E [d]]}@z if pi > Py,

{S—1[pi—p*|Ed]}0; if pi = pj,

{S — [(7’(‘])Z + 2(1 — 7T)pj) —p*E [d]]}@z if P < Py,

Z'a.j:l’ 27 Z#Jandpzfﬁ

Let G(p | p;) denote the total industry’s expected generation revenues when firm
i bids at p;, and E [p | p;, d = D] be the firm i’s expected system marginal price
when firm ¢ bids at p; and demand is equal to D. Then, current expected SCR

payoffs corresponding to firm ¢ can be written as,

Sipi) = {S — (G(p | pi) — P"E[d)} 0, (64)
where

Glp|p)=7nEp|p, d=1+2(1—m)E[p|p; d=2], (65)

Elp|p, d=1]=p(1 - Fi(ps) + / pfi(p)dp, (66)

Elp|pi d=2=pFm) + [ phi(o)ip, (67)

Pi

and F [d] = 2 — 7. Firm i’s expected profits are given by
IIi(pi) = Gi(pi) + Si(pi), (68)

where G;(p;) is given by equation (3) and S;(p;) is denoted by equation (64).

Consequently, firm ¢’s expected marginal profits are equal to:

I/ (p)) =7 (1 = Fj (i) (1 = 6;) + (1 —7) Fy (pi) (1 — 20;) — 7pi f5 (pi) . (69)
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The intuition behind equation (69) is as follows. The first two terms in the sum
represent the net marginal benefit for firm ¢ of raising p; when firm ¢ determines
the system marginal price. Firm ¢ is the marginal operating unit with probability
7 (1 — F} (pi)) , when demand is 1, and the net marginal benefit for firm i of raising
p; in this case is (1 — 6;). Likewise, when demand is 2, firm i is the marginal
operating unit with probability (1 — ) Fj (p;), and its net marginal benefit in
this case is (1 — 26;). The last term in the sum denotes the event that an increase
in p; may force firm ¢ out of the merit order. This happens with probability
7fj (p;), and it will in turn entail a reduction of p; in generation revenues.

I focus the analysis only for the case in which I have ‘Fluctuating demand pe-
riods’ since in the rest of cases, ‘High demand periods’ and ‘Low demand periods’,
similar results are obtained to those achieved under the previous SCR policy. 1

start by presenting the symmetric case and later on I analyze the asymmetric one.
5.2.1 Symmetric Case
Set 01 = 0 = 1/2, then,

Proposition 12 If 0 < w < 1, then there exists a unique pure-strateqy equilib-
rium, in which both generators offer to supply at marginal cost.

Proof. Suppose (p;,p;) constitutes a pure-strategy equilibrium and p;, < p;.

Hence, from equation (69) I have that

NE]

if Di € [ Ty p)
0 < I (p;) = (70)

™ lf Di <p7“7

so firm ¢ has an incentive to raise its offer price p;. Therefore, any offer-price pair
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(pi, p;) with p; < p; cannot constitute a pure-strategy equilibrium. Suppose now
that the offer-price pair (p;, p;) , where p; = p; > 0, is a pure-strategy equilibrium.
If firm ¢ reduces its price by € > 0, then it is easy to check that its expected profits
raise by %W (p —€) > 0 for € small enough, which implies that p; = p; > 0 cannot
be a pure-strategy equilibrium. Likewise, p; = p; < 0 cannot be an equilibrium
either, since II/(p;) > 0, for all ¢ when p; < 0, irrespective of p;. To complete the
proof I need to show that the offer-price pair (p;, p;) with p; = p; = 0 constitutes
a Nash equilibrium. It is easy to check that no firm has an incentive to deviate,
since, for all ¢ and p; = 0, II;(p;) is continuously increasing up to 0 and for all
pi € [0,P] remains constant at its maximum value of I7;(0) = (S + (2 — ) p*) 3. In
conclusion, there exists an unique pure equilibrium in which firm ¢ and firm 5 bid

at marginal cost. Q.E.D.

The intuition for the result is straightforward. Let me first analyze generators’
pricing incentives when demand is 2. In this case, the net marginal benefit obtained
by the marginal operator when it raises its offer price is zero. What a firm earns
via generation when the system marginal price raises is exactly offset by what
it losses in stranded costs. On the other hand, when demand is 1 there exists a
unique equilibrium in which both generators are bidding at marginal cost. Hence,
a unique equilibrium outcome exists with both generators offering to supply at

marginal cost.

5.2.2 Asymmetric Case

In what follows I assume that 65 < 6;. I show below that no pure-strategy equi-
libria are achieved in this game. However, I can show that there is a unique

equilibrium in mixed strategies for this game characterized by lemmas 4-6 and
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the following proposition,

Proposition 13 There does not exist an equilibrium in pure strategies. I find an
unique equilibrium in mized strategies defined by two distribution functions F (p)
and Fh (p) representing the equilibrium pricing strategies of firm 1 and firm 2,
respectively, where p € [Puin, D], and Pmin 18 given by (74).

In (e (p/ﬁ)(1702)> when [, =0
Fi(p) = (71)

Ba

(p/P) ™ {1 + ﬂ(lﬁ_fﬂ - “(16_202) when [, # 0,

L
(1—6y) [1—%(%)91} when p < p and 3, = 0
Fy(p) =
E (1
(p/ﬁ)_"l e gl M ﬂ(lﬁ_el) when p < p and 8, # 0,
m(1-65) '\ Bz !
((14)(17292))
Fy(p) =1, (72)

where 8, =(1—m)(1—20;) —w(1—6;), i =1,2, and (73)

D (%) =02 when 3, =0
0< Pmin = (74)
L
p [(1ir7r) ((11:29022))} = when ﬁ2 # 0.
Proof. Similar to the proof Proposition 8 and 9.

The same intuitions that were explained in the case I of section 5.1.3 apply here

when I compare the results here obtained. There is a unique equilibrium for the full
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game in which each firm set prices according to continuous and strictly increasing
distribution functions, F; (p), @ = 1,2, over a connected and identical support,
[Pmin, D] - From equation (71) and (72) it follows that when the probability that
both firms will be operating (i.e., 7 is small), more probability mass is placed on
higher prices (and vice versa). As in the case I of section 5.1.3 I find the presence
of an atom of positive probability in the distribution function of the lower-SCR
share generator. Firm 2 names the uppermost price, p, with positive probability
and this mass point at p, is an increasing function of the degree of asymmetry in
the proportion of SCR shares and a decreasing function of 7. Likewise, I have that
the lowest price in the support of the players’ strategies, pumi, is strictly greater
than the marginal cost, and that this lowest price is a decreasing function of =
and an increasing function both of the degree of asymmetry in the SCR shares

and the highest admissible price, p. It can be easily shown that:

lin% Pmin = D, and (75)

lin% Prmin = 0. (76)
From equation (71) and (72), I obtain the following result:

Corollary 4 E(p) <F (p), for all p € [Pmin, D] -

That is, firm 2’s strategy first-order stochastically dominates firm 1’s strategy,
so that the lower-SCR share generator submits high prices with a greater proba-
bility than the higher-SCR share generator. This probability tends to be higher
when the degree of asymmetry in SCR shares, (f; — 65) , is higher.
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Figure 5: Firm 1’s equilibrium strategies under two alternative SCR payment rules.
F*(p) denotes firm 1°s pricing equilibrium strategy ina pool marketin which SCR
payments are based on expected demand; whereas F |"(p) represents firm 1’s pricing
equilibrium in an otherwise identical pool market in which SCR payments are based on real
demand.

Main differences arise when I compare the results here obtained with those
obtained under the previous SCR payment rule. If #; and 7 are determined in a
such a way that 7 (6;) > 0 for all 4, I find that an SCR payment rule based on real
demand makes price competition fiercer than an SCR rule in which payments are

based on expected demand. In particular I have that:
(a) for m > 1/2, pryn is strictly lower than p, and

(b) for m > 1/2 and for all p € [puin, |, E; (p) > FF (p), i = 1,2, that is,
generators’ strategy under the former rule fist-order stochastically dominates the

strategy of the generators with the new SCR policy. [See Figure 5 and 6].
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Figure 6: Firm 2’s equilibrium strategies under two alternative SCR payment rules.
F,*(p) denotes firm 2’s equilibrium strategies in a pool market in which SCR payments are
based on expected demand; whereas F,™ (p) represents firm 2’s pricing equilibrium in an
otherwise identical pool market in which SCR payments are based on real demand.

Only in the cases in which 7 and 65 are lower enough than 1/2 I do not observe
this stochastic dominance in all the support of prices. In particular, for = and 65
lower enough than 1/2 I find that pp, is higher than p, so that, Fi(p) < F* (p),
i = 1,2, for all p € [pmm,v) with v < P, and F, (p) > F*(p), i = 1,2, for all
p € (v,P|. It implies that

(c) the atom of positive probability that the lower-SCR share generator has
at p is always lower under the new payment rule.

On the other hand, if #; and 7 are determined in a such a way that 1 (6;) < 0, I
know from Proposition 11 that under an SCR payment rule based on expected

demand, a perfect equilibrium exists in which the lower SCR share generator
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always bid at p and the higher SCR share generator bids at p,, so that, the lower
SCR share generator charges lower prices under the alternative payment rule than
in the former one; the opposite happens with the higher SCR share generator.
Therefore, I conclude that the enactment of an SCR payment rule based on
real demand encourages price competition, so that, it serves to alleviate the above
marginal-cost pricing distortion typically found in spot markets competition. I
observe that price competition in a spot market in which SCR payments are
based on real demand is, in general, fiercer than price competition in an otherwise
identical market in which the SCR set up is based on expected demand. In
particular, for the symmetric case, I am able to show that marginal-cost pricing

constitutes an equilibrium for all range of demand distributions.

6 Concluding Remarks

In this paper I have developed a model which analyzes price competition in the
deregulated Spanish electricity market. I have shown that stranded-cost recovery
and efficient competition are not necessarily in conflict. The model clarifies the
overall competitive effect of the recovery of stranded costs under the existing
institutional set-up. Whether equilibrium prices are higher or lower than marginal
cost depends both on the distribution of total stranded-cost payments among
industry participants and on the exact rules used to define these entitlements.
This paper also establishes the conditions under which I should expect cost shifting
practices to be avoided. The main purpose of the paper has been to address the
issue of stranded-cost recovery in a formal model specifically designed to reflect

the main institutional features of the new electricity market in Spain.

60



References

1]

Bolle, F. (1992), ‘Supply Function Equilibria and the Danger of Tacit Col-
lusion: The Case of Spot Markets for Electricity’, Energy Economics, April,
pp- 94-102.

Green, R. J. (1996), ‘Increasing Competition in the British Electricity Spot

Market’, Journal of Industrial Economics, vol. 44, no. 2, pp. 205-16.

Green, R. J. and D. M. Newbery (1992), ‘Competition in the British Electric-
ity Spot Market’, Journal of Political Economy, vol. 100, no. 5, pp. 929-53.

Joskow, P. L. (1996), ‘Does Stranded Cost Recovery Distort Competition?’,
The Electricity Journal, April, pp. 31-45.

Kahn, E. (1994), ‘Can Regulation and Competition Coexist? Solutions to
the Stranded Cost Problem and Other Conundra’, The FElectricity Journal,
October, pp. 23-35.

Kiihn, K.-U, and B. Jullien (1998), ‘Price Caps and Price Floors: Entry
Liberalization and the Stranded Asset Issue’, Mimeo, CEMFI.

Kiihn, K.-U, and P. Regibeau (1998), ‘;Ha Llegado la Competencia?: Un
Anslisis Econémico de la Reforma de la Regulacién del Sector Eléctrico en

Espana’, Informes del Institut d’Analisi Economica, CSIC.

Klemperer, P. D. and M. A. Meyer (1989), ‘Supply Function Equilibria in

Oligopoly Under Uncertainty’, Fconometrica, vol. 57, no. 6, pp. 1243-77.

Lasheras, M. A. (1998), ‘Stranded Costs in the Spanish Electricity Industry’,
Working Paper 006/98, CNSE.

61



[10]

[11]

[12]

Marin. P.; and A. Garcia-Diaz (2000), ‘Strategic Bidding in Electricity Pools
with Short-Lived Bids: An Application to the Spanish Market’, CEPR Dis-
cussion Paper No. 2567, U. Carlos III, Madrid.

Newbery, D. M. (1998), ‘Competition, Contracts, and Entry in the Electricity
Spot Market’, RAND Journal of Economics, vol. 29, no. 4, pp. 727-49.

Ocana, C. and A. Romero (1998), ‘A Simulation of the Spanish Pool’, CNSE

working paper.

Von der Fehr, N.-H., and D. Harbord (1992), ‘Spot Market Competition
in the UK Electricity Industry’, Memorandum no. 9/1992, Department of

Economics, University of Oslo.

Von der Fehr, N.-H., and D. Harbord (1993), ‘Spot Market Competition in
the UK Electricity Industry’, The Economic Journal 103, pp. 531-546.

Von der Fehr, N.-H., and D. Harbord (1997a), ‘Capacity Investment and
Competition in Decentralized Electricity Markets’, Mimeo, Department of

Economics, University of Oslo.

Von der Fehr, N.-H., and D. Harbord (1997b), ‘Competition in Electricity

Spot Markets’, Mimeo, Department of Economics, University of Oslo.

Wolak, F. A. and R. H. Patrick (1997), ‘The Impact of Market Rules and
Market Structures on the Price Determination Process in the England and
Wales Electricity Market’, CEPR Discussion Paper No. 463, Department of

Economics, Stanford University.

62



[18] Wolfram, C. D. (1998a), ‘Measuring Duopoly Power in the British Electricity

Spot Market’, Mimeo, Department of Economics, Harvard University.

[19] Wolfram, C. D. (1998b), ‘Strategic Bidding in a Multiunit Auction: An Em-
pirical Analysis of Bids to Supply Electricity in England and Wales’, RAND
Journal of Economics, vol. 29, no. 4, pp. 703-25.

63



