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Abstract

We develop generalised indirect inference procedures that handle equality
and inequality constraints on the auxiliary model parameters. We obtain
expressions for the optimal weighting matrices, and discuss as examples an
MA(1) estimated as AR(1), an AR(1) estimated as MA(1), and a log-normal
stochastic volatility process estimated as a GARCH(1,1) with Gaussian or t
distributed errors. In the first example, the constraints have no effect, while
in the second, they allow us to achieve full efficiency. As for the third, nei-
ther procedure systematically outperforms the other, but equality restricted
estimators are better when the additional parameter is poorly estimated.

JEL classification: C13, C15.
Keywords: Simulation estimators, GMM, Minimum distance, ARCH, stochas-
tic volatility.



1 Introduction

Consider a stochastic process, x;, characterised by the sequence of parametric
conditional densities p(z|x;_1, % 2,...; p), where p denotes the d parameters of
interest. Consider also a possibly misspecified, auxiliary model, described by the
sequence of conditional densities f(x¢|z;_ 1,2 o, . ..;0), where 0 is a ¢ dimensional
vector of parameters, with d < ¢. In those situations in which no closed-form
expression for p(z;|zs_1, 2 2,...;p) exists, but at the same time it is easy to
compute expectations of possibly nonlinear functions of z;, either analytically, or
by simulation or quadrature, the so-called efficient method of moments (EMM)
of Gallant and Tauchen (1996) (GT) is a computationally convenient indirect
inference (II) procedure, which uses the score of the auxiliary model to derive a
generalised method of moments (GMM) estimator of p (see Hansen, 1982).

Existing EMM procedures, though, assume that the parameters of the auxil-
iary model are unrestricted, and consequently, that their pseudo maximum like-
lihood (ML) estimators have asymptotically normal distribution with a full rank
covariance matrix under standard regularity conditions (see e.g. Gourieroux, Mon-
fort and Trognon (1984) or White (1982) for a discussion of unconstrained pseudo
ML estimation). Nevertheless, in many situations of interest, some inequality re-
strictions on @ are usually taken into account in the estimation of the auxiliary
model because (i) they lead to more efficient estimates under correct specifica-
tion, (ii) the pseudo log-likelihood function may not be well defined when the
restrictions are violated, or (iii) some of the auxiliary parameters may become
underidentified in certain regions of the parameter space. Importantly, such pa-
rameter restrictions are often binding in empirical applications.

In this paper, we show how EMM procedures can be generalised to handle
such situations. In particular, we propose an alternative set of moment restric-

tions based on the Kuhn-Tucker first order conditions, which nest the usual ones



when the inequality constraints are not binding, but which remain valid even
if they are. We also derive the corresponding optimal GMM weighting matrix,
and explain how it can be consistently estimated in practice. In this respect, we
consider not only the usual two-step GMM method proposed by GT, but also a
continuously updated one (& la Hansen, Heaton and Yaaron, 1996). In addition,
we combine the constrained parameter estimators and Kuhn-Tucker multipliers to
extend the original class of minimum distance (MD) II estimators introduced by
Smith (1993) and Gourieroux, Monfort and Renault (1993) (GMR) to the inequal-
ity restricted case. It turns out that like in the unconstrained case (see Gourieroux
and Monfort, 1996) (GM96), one can find inequality restricted II estimators that
are asymptotically equivalent to the inequality constrained EMM estimators by
an appropriate choice of weighting matrix.

It is important to bear in mind that our results in no way require that the
restrictions are correct, in the sense that they are satisfied by the unrestricted
pseudo-true values of the auxiliary parameters. Of course, if we knew that this
was indeed the case, we might be able to obtain more efficient estimators of
the parameters of interest (see Dridi, 2000). It is also worth mentioning that
although we concentrate on pseudo log-likelihood estimation of the auxiliary model
for expositional purposes, our procedures can be extended to cover any other
extremum estimators of just identified auxiliary models, such as M-estimators or
method of moments (see section 4.1.3 of GM96).

We also discuss EMM and II procedures based on equality constrained pseudo
ML estimators of 8, as well as on those that combine equality and inequality
constraints. Equality restricted procedures may be particularly useful in practice
from a computational point of view, because in many situations of significant
empirical interest, it is considerably simpler to estimate a special restricted case

of the auxiliary model than to maximise the unrestricted log-likelihood function.



For the same reason, we also consider II procedures based on partially optimised
unconstrained estimators that do not satisfy the standard first order conditions
for extrema of the pseudo log-likelihood function, as well as those that impose the
constraints depending on the significance of some preliminary specification test.
For illustrative purposes, we apply our modified procedures to three time series
models. The first two are (i) an MA(1) process, estimated either as an AR (1) with
a non-negativity constraint on the autoregressive coefficient, or as white noise, and
(ii) an AR(1) process, estimated either as an MA (1) with a non-positivity constraint
on the moving average coefficient, or as white noise. The third model that we
study is the popular discrete time version of the log-normal stochastic volatility
process, which we estimate via a GARCH(1,1) model with either ¢ distributed
errors, or Gaussian ones. This model is important in its own right, and has
become the acid test of any simulation-based estimation method. In addition,
it also helps to illustrate the implementation of our proposed procedures in some
non-standard situations. In particular, the pseudo log-likelihood function based on
the t distribution cannot be defined in part of the neighbourhood of the parameter
values that correspond to the Gaussian case, and moreover, some of the auxiliary
model parameters become underidentified under conditional homoskedasticity.
The paper is organized as follows. In section 2, we include a thorough discus-
sion of EMM and II procedures with either equality or inequality constraints on
the auxiliary model parameters. Since it is often impossible to obtain some of the
required expressions in closed form, we also discuss how they can be evaluated by
simulation. Detailed applications of such procedures to the three examples can
be found in section 3. Finally, our conclusions are presented in section 4. Proofs

and auxiliary results are gathered in the appendix.



2 Theoretical set up

2.1 Inequality constrained EMM and II estimators

Let 1;(0) = In f(x¢|xi—1, 24—, ...;0). The pseudo log-likelihood function for a
sample of size T' on x; based on the auxiliary model (ignoring initial conditions)
will be given by Lr(0) = > ,1(0). Let’s now define the (scaled) Lagrangian
function

Qr(B) = Le(0) + K (O)u (1)

where 3 = (0', i/ )/, and p are the s multipliers associated with s mutually consis-
tent inequality constraints implicitly characterized by h(8) > 0. Assuming that
both the pseudo-log likelihood function Lz (@), and the vector of functions h(8) are
twice continuously differentiable with respect to 6, the latter with a full column
rank Jacobian matrix Oh'(6)/00, the first-order conditions that take into account

the inequality constraints will be given by the usual Kuhn-Tucker conditions:

0Qr(Br) _ 10Ly(0r) O (Or) -

I NFT) =0 2
00 T 00 o0 T @)

together with the sign and exclusion restrictions:
WOr) >0  fir >0  h(0r)© fip =0 (3)

where ~ indicates inequality restricted pseudo-ML estimators, the subscript T'
refers to the sample size of the observed series, and the symbol ® denotes the
Hadamard (or element by element) product of two matrices of the same dimen-
sions.

Standard EMM procedures cannot be used in this context because, as we shall
see below, the expected value of the score of the auxiliary model is no longer
necessarily zero when some of the restrictions of the auxiliary model are binding.

Nevertheless, a modified procedure can be derived from (2). Specifically, we can
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base our estimation of p on the following moments:

(4)

mr(p; B) =E PQT@ ‘ p} =

00

1 0L(6)  on(o) i ]
T 00 00

where the symbol E(.|p) refers to an expected value computed with respect to
the distribution of the model of interest evaluated at p. The main difference with
the unrestricted case is that mz(p; 3) not only depends on the g auxiliary model
parameters @, but also on the s Kuhn-Tucker multipliers p associated with the
inequality restrictions. In this respect, note that if we define

Lr(p:0) = E [%LT«))' 1 )

we can interpret mp(p; 3) = 0 as the first-order conditions of the population pro-
gram

mBaXET(p;O) s.t. h(@)>0 (6)

as long as the differentiation and expectation operators can be interchanged, which
we assume henceforth. We also assume that L1(p; 6) is twice continuously differ-
entiable with respect to both 8 and p. Importantly, in those time series situations
in which the functional form of /;(€) is time-invariant, and z, strictly stationary,
the dependence of the moments on 7' disappears, and expressions (5) and (4)

simplify to

L(p;60) = E[l(6)]p]

m(p;8) = E {mt(e) ' p} L 8,

00 00
For each value of p, we can define a deterministic sequence of binding functions

for the inequality constrained auxiliary parameters 8 and associated Kuhn-Tucker

multipliers p, B5(p) = [64(p), pﬁ}(p)}/ say, such that they solve the population



program (6). As a result, these functions must satisfy the first order conditions:
mr [p; Br(p)] =0
h(6r(p)] >0  pi(p)=0  R[03(p)] © pi(p) =0

and obviously become time-invariant under strict stationarity. To guarantee the

(7)

identification of p, we assume that for all 7' larger than a given value, B4 (p) is
the only such solution, and that the equation 35 (p) = B admits a unique solution
in p (cf. GM96).

Let p° denote the true value of the parameters of interest, and let 6%.(p°) and
i (p®) denote the inequality constrained pseudo-true values for @ and p. If we
knew these values, we could recover p° by either inverting the binding functions,
or solving the possibly non-linear system of equations myp [po; B%(po)] =0. In
practice, though, we do not know the pseudo true values, but if they are consis-
tently estimated by the auxiliary model, we can obtain consistent estimators of
p° by choosing the parameter values that minimize either some appropriately
defined distance between f%(p) and BT, or a given norm of the sample mo-
ments mr(p; BT) In particular, we can minimise with respect to p the following

quadratic forms:

Diy(p: ) = [B1(0) ~ Br] -2 [Br(0) — By ]
or
Gr(p;®) = wi(p; Br) - ¥ - mr(p; Br)
where € and W are positive semi-definite (p.s.d.) weighting matrices of orders g+s
and q respectively, and the letters D and G are a reminder that these objective
functions correspond to MD and GMM estimation criteria respectively. In what
follows, we shall refer to the resulting estimators
pr(Q) = argmin Di(p; Q)

Pr(W) = argminGr(p;¥)



as the inequality restricted I and EMM estimators of p. Obviously, without a ju-
dicious choice of metric that accounts for sample variation in the estimators of the
inequality restricted auxiliary parameters and multipliers in BT, the asymptotic
covariance matrix of p2(Q) and p%(®) is likely to be unnecessarily large.

Let’s start by analysing the second criterion function. It is well known that if
the sample moments mr(p; BT) have a limiting normal distribution, the optimal
GMM weighting matrix (in the sense that the difference between the covariance
matrices of the resulting estimator and an estimator based in any other norm is
p.s.d.) is given by the inverse of the asymptotic variance of vTmz(p; By) (see e.g.
Hansen, 1982). In order to derive the required asymptotic distribution, we follow
GT in assuming the necessary regularity conditions for BT to converge uniformly
almost surely to B%(p°), and for a strong law of large numbers and a central limit
theorem to apply to the Hessian and modified score of the log-likelihood of the

auxiliary model respectively. More formally,

Assumption 1

07 — 04 (p°
P Thm sup ~T T(p) =0| =1
|| B pr(e”)
~of -1

o2 () .
{Taoo TZ aeae' —Jor

sl 5> {azt ), o [gagp 1 (po)}ﬁN(OJéT)

where Jir and Tiy are non-stochastic, q X q matrices, with Ity p.d., and 0% is

any sequence that converges in probability to OQ(pO).

In this respect, it is important to note that there are many situations in which
the pseudo log-likelihood function is not well-defined outside the restricted para-

meter space, and yet the (possibly directional) score and Hessian behave regularly

7



at its boundary (see e.g. the score of the Student’s ¢ GARCH model in section 3.3
below under conditional Gaussianity).

However, we cannot directly rely on the results in GT to derive the asymptotic
distribution of these sample moments, since the inequality restricted estimator 0r
may not be asymptotically normal in large samples (see Andrews (1999) and the
references therein). In addition, the asymptotic distribution of BT is singular, in
the sense that there are s linear combinations of the elements of v/T [BT— B po)]

that converge in probability to 0. Specifically:

Proposition 1 Under Assumption 1,

(") 0 LM T (6001, )] 410 63(6)] © VT [ (6] = o,(1)

In contrast, there are ¢ linear combinations that are asymptotically well be-

haved:

Proposition 2 Under Assumption 1,

dvec {ON' [05(p°)] 106}

Tor + [N%F(PO) ® Iq] 00’ VT [éT_O%(pO)]
+8h/[g+('wﬁ [r—pir ()]
STEY {‘”t O] | A0 uf‘T<p0>} ~o,(1)

Hence, even though 67 and ftr have a singular and possibly non-Gaussian
asymptotic distribution, Proposition 2 shows that under our regularity condi-
tions, there are always ¢ linear combinations that are asymptotically normally
distributed, irrespectively of the exact nature of the inequality restrictions, and
irrespectively of whether the sign restrictions on h [6%.(p°)] and pi(p°) in (7) are
satisfied with equality, or strictly so. It turns out that those ¢ linear combinations

are implicitly contained in the expected value of the modified score:

8



Proposition 3 Under Assumption 1,

VT (6 ) VT {alt LAGAIAL ) u%(po)} = o,(1)

Therefore, VT mr(p°; BT) has indeed a limiting Gaussian distribution, and the
optimal GMM weighting matrix is precisely the inverse of Z}.

The following proposition specifies the asymptotic distribution of the (infea-
sible) optimal GMM estimator of p based on the inequality restricted auxiliary
model:

Proposition 4

omy [p°; Br(p")] (i) omr [p% B (p°)] -1
8p or ap/

VT [5§(Tip) — "] — N o,{

Given that this expression is completely analogous to the one derived by GT for
the optimal EMM estimator in the absence of constraints, the required matrices
can also be consistently estimated using their suggested procedures. In particular,

since in those cases in which
E [0, [67(p°)] /00 + (01’ [67:(p")] /08) pi(p°)] p°] =0 ¥,

such as strictly stationary and ergodic time series processes with absolutely sum-

o0

mable autocovariance matrices, I converges to Zp = > oo S, [p% Br(p%)].
ol,(0)  On'(0) } {az”(a) N Oh'(0) }’

ST(”;B):EH 20 00 20 20 ”}

for 7 > 0 and S.(p; B) = 5" .(p;3) for 7 < 0 (see e.g. Hansen, 1982), we could

where

obtain a consistent estimate of the matrix Z}, as
TL

Ip= Y w(r)Sr (8)

T==T"
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with

Ol ( OT 3h/(éT)~ alt—r(éT) 8h/(éT)~ /
St = TZ{[ 20 MT][ 290 + 20 HT]}

t=17+1

where w(7) are weights suggested by a standard heteroskedasticity and autocorre-
lation consistent (HAC) covariance estimation procedure, and ¢ the corresponding
rate (see e.g. de Jong and Davidson (2000) and the references therein). Then, a
feasible optimal GMM estimator will be given by pZ (fﬁp) Alternatively, we could
consider continuously updated GMM estimators a la Hansen, Heaton and Yaaron
(1996), by replacing S,r in the above expressions with S, (p; BT)

Let’s now turn to the II estimators of p based on the MD function D%(p; Q).
Unfortunately, we cannot directly rely on standard MD theory, because as we saw
before, the limiting distribution of /7T B; - %(po)] is singular and possibly
non-normal. To overcome this difficulty, it is convenient to write down the linear
transformations in Propositions 1 and 2 together in terms of the following square

matrix of order q + s:

_ Tir + (%) @ 1) dvec {0 [07:(p)] /00} /06" ON' [67:(p°)] /06
diag [ (p°)) Oh [07(p")] /0O’ diag {h [07(p°)] }

i

i i
ICll,OT IC12,OT

i Kiior Khoor

where diag (.) is the operator that transforms a vector into a diagonal matrix
of the same order by placing its elements along the main diagonal. Then, if we
transform the MD conditions by premultiplying them by K¢y, we will have that
the asymptotic distribution of KCiy,v/T [B/T — iT/(pO)] will be normal, with the
singularity confined to the last s elements. In this framework, we can prove the

following result, which can be regarded as the inequality restricted version of

Proposition 4.3 in GM96:
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Proposition 5
VT [p(¥r) — b7 (KFRTKT)] = 0,(1)

where
Yr 0

0 0

v =

There are some cases of practical relevance in which p7 [IC?I’, (Z57) * Ile} , where
+ denotes the Moore-Penrose generalised inverse, is relatively easy to compute.
For instance, suppose that all the restrictions are of the simple “bounds” form, i.e.
Oimin < 0; < Oimax (J=1,...,q), With [0 min| ; |0; max| possibly infinity, and define
I min> Hj max @5 the matching pair of Kuhn-Tucker multipliers (which are set to zero
by definition if the corresponding bound is £00). In addition, assume for simplicity
that we knew that only one restriction, say the lower limit on the first parameter,
is strictly binding in the limit, in the sense that limy s 1] i, #(p°) > 0, while
all the other parameters are asymptotically strictly unconstrained (i.e. 6;min <
limp_, o Hé.T(pO) < @ max for j =2,...,q). Then, it is easy to see from Proposition
2 that the ¢ x 1 vector (fi i 7 far, . . . B,r) will have an asymptotically normal
distribution with a full rank covariance matrix, which can be used to compute
the optimal MD estimator of p. However, the EMM procedure generally has
the advantage that the optimal weighting matrix can be readily computed as the
variance of the limiting normal distribution of the modified score (4), irrespectively
of the exact nature of the inequality restrictions, and irrespectively of whether the
sign restrictions on & [05(p°)] and pi(p°) in (7) are satisfied with equality, or
strictly so.

Nevertheless, there is one instance in which both our proposed procedures are
numerically identical. In particular, suppose that d = ¢, so that the auxiliary

model just identifies the parameters of interest, and that all the restrictions are
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of the simple bounds form. Then, the value of p that for j = 1,...,q produces

estimates of the triplets [Gé(p), Lgmin(P): Hqmax(P)] that are equal to (i) (8,7,0,0)
if ijin < é]’T < Hjmax, (11) (Hjmin,,&qmin,()) if é]’T = Qjmin, or (111) (Qjmax, O,ﬂqmax)
if éjT = 6} max, Will also set to zero the sample moments my(p; BT), and therefore,

will be numerically identical to p%(¥) for all .

2.2 Relationship with the existing unrestricted procedures

Let 87 denote the unconstrained pseudo-ML estimator of the auxiliary model
parameters 0, and define 07%.(p°) as the corresponding pseudo-true values, where
0'.(p) are the usual binding functions that solve the unrestricted population pro-
gram maxg Lr(p;0), with i, = 0 = pk(p). If the auxiliary model is asymp-
totically strictly unconstrained, in the sense that limz_ [Bg(po) —05.(p%)] =0,
limp oo plr(p°) = 0 and limg . h [Bé(po)] > 0, our proposed inequality con-
strained EMM and IT procedures converge to the standard unconstrained EMM
and II approaches of GT and GMR, because /T i, and VT (éT—éT) converge
in probability to 0 from Propositions 1 and 2 respectively. In fact, the inequality
constrained and unconstrained procedures will yield numerically identical results
if none of the inequality restrictions is binding in a given sample, since in that
case O coincides with the unconstrained pseudo-ML estimator, 87 (and fi; with
i = 0). Moreover, if the auxiliary model exactly identifies the parameters of
interest, all the different procedures will be the same for 7" sufficiently large (see
Proposition 4.1 in GM96).

It may seem at first sight that one can handle inequality restrictions on the
parameters of the auxiliary model with the existing unconstrained EMM or II pro-
cedures, by simply reparametrising the constraints appropriately. For instance, a
non-negativity constraint on 6; can be formally avoided by replacing 6; with (9;‘) 2,

where —oo < 07 < co. Unfortunately, the regularity conditions in Assumption 1
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are no longer satisfied in terms of the new parameter when the pseudo-true value
of the original parameter H;T(pﬂ) converges to its lower bound asymptotically, as

the Jacobian of the transformation is 0 at 0§T(p0) = 0.

2.3 Equality constrained EMM and mixed procedures

It is easy to see that if we replace the Kuhn-Tucker multipliers by the usual
Lagrange multipliers, the theoretical derivations in section 2.1 also apply to EMM
procedures based on equality constrained pseudo-ML estimators of the auxiliary
model parameters, provided that the set of moments used for GMM estimation
include the first order conditions corresponding to all the elements of 8. In partic-
ular, if we call 87 the pseudo-ML estimates of @ that satisfy with equality all the
restrictions implicit in h(8), and denote by fi the associated (ordinary) Lagrange

multipliers, the first-order conditions will be given by:

0Qr(Br) 10Lr(8r)  OW(Or)_
90 T 00 o9 Pr=0 (%)

together with h(67) = 0. In this context, we can again define the population

moments mz(p; B) as in (4). Similarly, we can define a deterministic sequence
of binding functions for the equality constrained auxiliary parameters € and as-
sociated Lagrange multipliers p, 85(p) = [0%(p), us(p)]’ say, such that for each
value of p, they solve the population program, maxg L(0) subject to h(8) = 0.

As a result, these functions must satisfy the first order conditions

mr [p; B7(p)] = 0
h107(p)] = 0

(10)

and again become time-invariant under strict stationarity. Of course, the binding
functions 35 (p) will generally be different from 3% (p), which result from imposing

the same constraints as inequalities. Similarly, the equality restricted pseudo-true
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values and limiting matrices Jg- and Z§, will often differ from B%(p°) and Jir
and Z}r. Nevertheless, note that the nature of the regularity conditions is the
same.

In addition, it is also possible to consider equality restricted II procedures that
generalise the GMR approach, by choosing p so as to minimise a well-defined dis-
tance between the expanded vector of equality constrained parameter estimators
and multipliers in the original sample, B, and 35 (p). The main difference with
respect to the inequality constrained case discussed in section 2.1 is that the joint
asymptotic distribution of B, will be normal (albeit singular) under regularity
conditions analogous to the ones in Assumption 1, with ¢ replaced by ¢, and ~ by
—. In any case, Propositions 1 to 5 continue to hold if we replace inequality re-
stricted estimators and Kuhn-Tucker multipliers by equality restricted estimators
and Lagrange multipliers.

Once more, the EMM procedure has the advantage that the optimal weighting
matrix can be readily computed as the variance of the limiting normal distribution
of the modified score, regardless of the exact nature of the equality restrictions.
There are some simple cases, though, in which the asymptotically equivalent IT
estimators can be easily obtained. For instance, suppose that all s restrictions
are of the simple form, 0; = 9} for j = 1,....,s < q. Then, it is easy to see
from Proposition 2 that the ¢ x 1 vector (i p, .- ., fis 1, Os417; - - - 0qr) Will have
an asymptotically normal distribution with a full rank covariance matrix, which
can be used to compute the “optimal” equality constrained II estimator of p,
pr [IC% (IS?)+IC§,]. If, in addition, p = ¢, so that the auxiliary model just
identifies the parameters of interest, then the value of p that produces values of
[05(p), 15(p)] that are equal to (i) (9},/1jT) for j = 1,...,s and (ii) (0,7,0) for
J =s4+1,...,q will also set to zero the sample moments my [p; BT} , and therefore,

will be numerically identical to p%(®) for all W.
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Equality restricted EMM and IT procedures may be particularly useful from a
computational point of view, because in many situations of interest, it is consider-
ably simpler to estimate a special restricted case of the auxiliary model than the
unrestricted model itself. The extensive literature on LM (or score) tests provides
many such examples (see e.g. Godfrey, 1988). For instance, the estimation of a
VAR(p) model is much easier than the estimation of any VARMA (p,q) model that
nests it.

Again, it may seem again at first sight that one can handle equality restric-
tions on the parameters with the existing unconstrained procedures by re-writing
the constraints in explicit form (see e.g. chapter 10 of Gourieroux and Monfort
(1995) (GM95) for a thorough discussion). For instance, a simple linear equality
constraint of the form 6; + 6, = 0 can be formally avoided by eliminating 6}, (or
6;) from the active set of parameters, and replacing it with —6; (or —6;). How-
ever, it is very important to emphasise that in doing so, we would be reducing the
number of moments used in the GMM estimation of the parameters of interest, p,
and therefore, incurring in an efficiency loss relative to our proposed procedure.
As an extreme example, suppose that p = ¢ = s, and that h(0) = 0 — 0", so
that the only admissible value for the equality restricted estimator 87 is precisely
0'. In this case, there is no need for any extra parameters in order to re-write
the implicit restrictions in explicit form. But then, no unconstrained EMM or 11
estimator based on those inexistent parameters can be defined. In contrast, our
equality constrained II procedure will work by simply matching the ¢ equality
restricted binding functions p%.(p) with the sample estimates of the ¢ Lagrange
multipliers.

Our proposed constrained EMM procedures can be trivially extended to handle
a mix of equality and inequality constraints, since in all cases the relevant moments

adopt the form of (4). Similarly, II procedures that match parameters and a mix
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of Kuhn-Tucker and Lagrange multipliers can also be entertained.

Finally, it would certainly be desirable to compare the efficiency of the different
possible versions of the EMM and asymptotically equivalent II estimators. Unfor-
tunately, it is very difficult to say anything in general terms, even for a given set
of implicit constraints h(@). The problem is that different types of “constrained”
estimators (i.e. unconstrained, equality, inequality or mixed) lead to different sets
of moments, which despite their common form, cannot usually be written as a
one-to-one function of each other, either in finite samples or asymptotically (but
see section 3.1 below). Nevertheless, we can establish the relationship between
some of them. In particular, since the inequality estimators of the auxiliary model
parameters éT, and the associated Kuhn-Tucker multipliers 1, will be a mixture
of the unrestricted estimators 9T, and every possible restricted estimator that
satisfies with equality a subset of the s constraints, then the inequality restricted
EMM estimator based on them will also be a mixture (with the same weights) of
the unconstrained EMM estimator p$(®), and every possible equality restricted
EMM estimator. Therefore, the asymptotic distribution of v/T' [,32(\11) — p?p} will
often coincide with the asymptotic distribution of one of those estimators. The
exception is when one (or several) of the constraints is just binding in the limit, in
the sense that the pseudo-true value of the corresponding Kuhn-Tucker multiplier
converges to zero, but the constraint is satisfied with equality by the unconstrained
pseudo-true value. In that case, the inequality constrained EMM estimator will
continue to be in large samples a mixture with positive weights of the correspond-
ing equality constrained and unconstrained EMM estimators, but since they are
asymptotically equivalent, so will be the inequality constrained one (see sections
3.1 and 3.2 for examples).

In addition, it is worth mentioning that any unconstrained EMM estimator is

asymptotically equivalent to an equality constrained EMM estimator that sets all
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the parameters of the auxiliary model to their unconstrained pseudo-true values,
0%(p°). The intuition is that from (9), the associated Lagrange multipliers will co-
incide with the (minus) score of the unconstrained pseudo-log likelihood function.
Therefore, if the true model is “smoothly embedded” within the auxiliary model
(see Definition 1 in GT), and p is unconstrained, Theorem 2 in GT show that
such an equality constrained EMM estimator will be as efficient as the (possibly
infeasible) maximum likelihood estimator of p.

Unfortunately, it is often the case that the auxiliary model does not nest
the true model, as the examples in section 3 illustrate. Therefore, we may have
situations in which it makes no difference whether or not we impose constraints
on @ as far as the estimation of p is concerned (see section 3.1), and others in
which a constrained estimator is more efficient than an unconstrained one (see

section 3.2).

2.4 Partially optimised unconstrained EMM and pre-test

procedures

It is often the case that an empirical researcher tries to estimate a reasonably
complex auxiliary model, in the hope of capturing the most distinctive features
of the data, and in this way, coming close to the idealised situation covered by
Theorem 2 in GT. Unfortunately, such attempts often encounter numerical opti-
misation problems. It turns out that our results can be easily adapted to cover
such a situation as well, at the cost of increasing the complexity of the notation.
For simplicity of exposition, we concentrate on EMM procedures, and assume
that the auxiliary model is unconstrained, that the numerical procedure used to
maximise the pseudo log-likelihood function Ly (8) is a standard gradient method

(such as Newton-Raphson, scoring, BHHH, steepest ascent, or any Quasi-Newton
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procedure),' that the step size is computed by quadratic approximation, and that
the researcher abandons her attempts to maximise the pseudo-log likelihood func-
tion after k.. steps, with k.. > 0. More specifically, if 9;56 ) denotes the value
of the parameters after iteration k (1 < k < kpax), we assume that the recursive

formula employed is

T
A A ~(k— 1
o <ot (o) e (o) L )

t=1

ol (9(’“ ”)

~ (k—1
where P (O(T )> is the ¢ x ¢ symmetric matrix associated with the particular

first-derivative algorithm used, and

V(égf“ 1) [Zazt( - ”) /00’ - P Zazt o\ ” /00] /

S 1(%( )/59' oy 1)
157 1azt( /aaaa’

p(oy )l on (87) 00

is the chosen value of the step length.

Let’s initially consider the case of k,.x = 0, so that no optimisation whatsoever
takes place. Nevertheless, we assume that the initial value 9;9) is stochastic,
for otherwise, we would simply have a special case of the equality constrained
EMM estimator, with the restrictions @ = 8. If the regularity conditions in
Assumption 1 (with 8h/(8)/00 = 1,) remain valid when (i) 87 is replaced by
@;O), (ii) @5(p°) by the limiting pseudo-true value of 9;0), 6% (p°) say, (iii) fip
by ;159 ), which are the Lagrange multipliers required to satisfy the sample first-
order conditions (9) at @ = 9;9 ), and (iv) p’-(p°) by the corresponding pseudo-true

value, ugp() )(po) say, then it follows from the arguments made in section 2.1 that

the fully non-optimised EMM estimator of p based on HT and ;1§9 , /’”)(T) say, will

1See e.g. chapter 13 of GMO95 for a review of numerical optimization methods.
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be consistent and asymptotically normal. Typically, @;9 : would be the result of an
earlier optimisation procedure, during which some of the parameters were fixed
at constant values as part of a step-by-step computational strategy. If that is the
case, the previous sentence is just a re-statement of the results in sections 2.1 and
2.3.

Let’s now consider the more interesting case of k.. = 1, but for the sake of
brevity, let’s concentrate on the Newton-Raphson method, so that P (9(k 1)) =

(k

-1 o (ko
-1 Zt 1(‘%( gl ) /8989'] , and consequently, v <0T )) = 1. It is then

clear that OT and ﬂT will also be stochastic, with pseudo-true values given by

07 (") = 07 (p") — 1 (0) Ty
uPe") = —e{on 000" /06| o}

If, mutatis mutandi, the regularity conditions in Assumption 1 remain valid,
then the one-step optimised EMM estimator of p based on HT and ﬂg} , p(T1 ) say,
will also be consistent and asymptotically normal. But since the above argument
does not really depend on k., being 1, or the way in which 9;9 ) was obtained, it
remains valid for any kpay.

If kpax itself is not fixed a priori, but rather the result of “sampling” variation
highly correlated with the impatience of the empirical researcher, then the result-
ing EMM estimator will still be consistent, but its limiting distribution (in the
usual classical sense) will be a mixture of multivariate normals, whose asymptotic
variances generally depend on the number of iterations. Of course, in practice the
resulting EMM estimator would be numerically identical to the one obtained by
another researcher who happened to choose a priori exactly the same number of
iterations as her stopping rule. But in any case, the important conclusion from
the analysis in this section is that an unsuccessful attempt to optimise the pseudo-

log likelihood function can still be successfully used to obtain a consistent EMM
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estimator of the parameters of interest p, as long as the moment conditions used
include Lagrange multipliers to reflect the lack of convergence of the algorithm.
For reasons analogous to the ones discussed at the beginning of this section,
an empirical researcher may alternatively decide to conduct some specification
test in order to assess if there is any evidence in the sample for an additional
feature of the data that she has not yet incorporated in her auxiliary model, which
merits the optimisation of an even more complex pseudo log-likelihood function.
Since most existing specification tests are of the LM form, they can often be
written in terms of zero parameter restrictions. Therefore, a numerically sensible
strategy could be to base the EMM estimator on the unrestricted estimator of the
more complex model if the specification test rejects the null hypothesis, or on the
equality restricted version if does not. If the specification test is consistent (in the
sense that it rejects the null hypothesis with probability one when the limiting
unrestricted pseudo-true value of the relevant parameter is different from zero),
then the limiting distribution of the pre-test EMM estimator of p is the same as
the limiting distribution of the fully optimised unconstrained EMM estimator. In
contrast, if the limiting unrestricted pseudo-true value is exactly zero, then the
limiting distribution of the pre-test EMM estimator of p will be a mixture of the
equality restricted estimator, and the unconstrained EMM estimator. But since
equality restricted and unconstrained estimators would have the same distribution
under the (pseudo) null, then they will all share the same asymptotically normal

distribution.

2.5 Simulation-based estimators

For the sake of clarity, we have assumed so far that analytical expressions for
(4) and (5) can be readily obtained, as in sections 3.1 and 3.2 below. However,

in many other cases, such expressions may be very difficult, or simply impossible
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to find, and yet they can often be easily obtained by numerical simulation (see
e.g. GM96). In particular, we can compute the required expectations as ensemble
averages of the levels and derivatives of the Lagrangian function (1) across H
realizations of size T of the true process simulated with parameter values equal

to p. Specifically,

ET(PQH) = LHT Pv

where we can make the last terms arbitrarily close in a numerical sense to the first
ones as H — oo. In those models in which x; is strictly stationary and ergodic,
there is, in fact, an alternative simulation scheme, which computes the required
expectations by their sample analogues in a single but very large realization of

the process. In particular, we will have:

L(p:0) = Lon(pi0) = ——3"1,(0)

1 <o) one)
T H 00 00

n=1

m(p;B) =~ mru(p;B)

In this case, we can again make left and right hand sides arbitrarily close in a
numerical sense as H — oo. Similarly, we can approximate the different binding
functions B, (p) by means of appropriately constrained pseudo ML estimators
computed on the basis of a single simulated realization of size T' x H of the true
process generated with the parameters of interest set at p, or by the average across
H simulations of size T of estimators obtained from each simulated sample. From
a numerical point of view, the main advantage of EMM estimators is that they
avoid the computation of the possibly constrained estimators for each simulation
of the process. Finally, note that the autocovariance matrices S-(p; 3r) used in

the computation of the optimal weighting matrix for the continuously updated
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EMM and II estimators can also be arbitrarily approximated by replacing the
required expected values by their sample counterparts in a long simulation of
length T"- H. Nevertheless, it is important to bear in mind that since H is finite
in practice, the asymptotic covariance matrix of the EMM and II estimators in

Proposition 4 must be multiplied by the scalar quantity (1 + H~') (see GMR).

3 Examples
3.1 MA(1) estimated as AR(1)

3.1.1 True and auxiliary models
Consider the following Gaussian MA (1) process:
Tt :Ut—éut_l, 'U,t|l't_1,...NN(0,'(z)), |(5| S ]., 0<¢<OO (11)

where the parameters of interest are p = (6,)". It is well known that E(z;) = 0,

and that its autocovariance structure is given by

Yolp) = (1+6)
nlp) = =6y (12)

vi(p) = 0,5>1

In order to estimate p by II and EMM, we are going to consider initially the

following inequality restricted first order autoregression:
T =¢xi 1+ v, vl q,...~N0O,w), ¢>0,w>0

where 6 = (¢, w)’. Since the autovariances of an AR(1) process are given by

w
14 =
ar(z;) =
cov(wy, m1) = dVar(w)
cov(zywij) = ¢eov(xi1, 14 j), j > 1
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the non-negativity constraint on ¢ implies that the signs of the first autocorrela-
tions of the true and auxiliary models coincide when § < 0, and differ when 6 > 0.

Note, however, that the auxiliary model only nests the true model when ¢ = 0.

3.1.2 Pseudo-ML estimators

The log-likelihood function of the auxiliary AR(1) model for a sample of size
T (ignoring initial conditions) will be given by:

T T 1
Lr(0) = 1,(6) = —Sn2r— S hnw— > (@ — gz )
t t

and the (scaled) Lagrangian function by

1 1 11

QT(ﬂ) = —5111271' — 5 Inw— %? t (xt — ¢$t71)2 + ¢M1 + wity

where p = (uq, p5)" are the multipliers associated with the inequality restrictions
¢ > 0 and w > 0 respectively. Therefore, the sample first-order conditions that
take into account the inequality constraints will be given by the Kuhn-Tucker

conditions:

11 ~ N
—= Z(l“t — ¢pxi_1)T14—1 + iy = 0O
t

wTr T
(13)
11 (2 — i) 3
— - 1 — 0
20T 4 ot + Har

together with the sign and complementary slackness constraints:

¢r >0 fup>0 ép-fip=0

Or >0 figp >0 O fiyp =0

But since
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we can safely take i,y as 0 in what follows. Also note that since
fur = —__Z ¢T5Bt 1)Tt-1

we can interpret the other multiplier as (minus) the coefficient in the OLS regres-
sion of z;_; on the inequality restricted residuals (z; — ngT:vt_l) (see Gourieroux,
Holly and Monfort, 1982). Therefore, this Kuhn-Tucker multiplier will be 0 if the
inequality restriction is not binding in the sample, or the usual Lagrange multiplier
associated with the equality constraint ¢ = 0 otherwise.

Let g}ﬁT,d)T and fi;7(= 0) denote the unrestricted OLS estimators of ¢,w and
pty. Similarly, let ¢,(= 0), w7 and fi,7 denote the corresponding equality restricted

estimators, and define the sample second moment matrix as follows:

$ Ooor O01T 1 Ty
T = R R = ? E Ty Ti—1

oo O11T t Ti—1

Then we can show that,

<}5T = Goir/0uT ¢or =0 &T = I(Goir > 0)601r/G11T
&1 = Goor — Ooyr/Our @1 = Goor QO = 600 — I(Gorr > 0)65,p/011T
i =0 fur = —601/600 fur = —1(Goir < 0)d011/G0or

(14)
where I(.) is the usual indicator function. Therefore, the inequality restricted
OLS estimators of ¢ and w take two different forms depending on whether the

sign of 17 (and ¢;) is positive or negative.
3.1.3 Population moments and binding functions

In view of the discussion in section 2, we can base the different EMM estimators

of p on the following population moments

11

mir(p;B) = E oT (X — xi_1)T1t—1 + Uy | P
t
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1 l l(fﬂt - ¢xt—1)2

. — - -1
maor(p; B) 2w T t " } + pa| P

which, due to the covariance stationarity of the true model, reduce to the following

time-invariant expressions

my(p;B) = é[%(p)—mo(p)Hul
(15)
ma(p: B) = % —2¢71(p)+501+¢)%(p)_1 b

where the dependence of 7; on p comes from (12).
If we define 6'(p) and pi(p) as the values of the parameters and multipliers

of the auxiliary model that for each value of p solve the population program
meaxET(p; 0) st. 9>0,w>0

where

Lr(p:60) = E[1:(6)] p] = —% In 27 — %lnw _(+ ¢2)70(25)_2¢71(P)’

it is clear that the inequality restricted binding functions 3(p) satisfy the moment

conditions
m [p; B'(p)] =0

together with the sign and exclusion restrictions

S
S
\%
=
E@
S
%
=
S
S
E@
S
I
)

Wip) = 0, ph(p) =0, wi(p)-ps(p)=0

From here, it is easy to see that

(o) = B{ [z = ¢ (p)rea]’| o} = {14 [6'(0)] | 0(p) — 26 (p)1(p) 2 0
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so that u4(p) = 0, as expected. As for the other elements, in principle there may

be two different situations depending on whether or not 6 < 0. Specifically:

u _ ’Yl(p) e _ 7 _ ’Yl(p)

“(p) = o(P) ¢“(p) =0 cb(p)—l(ézo)%(p)

wi oy 2P ey o) — B 7i(p)
w'(p) = v(p) ~o(p) (P) = (P (P) = Yo(p)—1(6 > 0) ~o(p)

u _ el _’71(9) i _ 71(p)
pi(p) = 0 pi(p) = () pi(p) =—1(6 <0) ()

where 3"(p) denotes the usual unrestricted binding functions, and 3°(p) the
equality restricted ones associated with the constraint ¢ = 0. Obviously, they

all coincide for 6 = 0, in which case

¢"(0,9) = ¢°(0,9) = ¢'(0,¢) = 0(= 6)
w'(0,9) = w(0,9) = w'(0,9) =
‘ 0

Figure 1 plots the binding functions ¢“(p) and pf(p) for —1 < 6 < 1. Note
that in this framework, ¢'(p) = max [¢"(p),0] and pt(p) =max [15(p),0].
3.1.4 Asymptotic distributions of pseudo-ML estimators and sample

moments

Given the different expressions for the inequality restricted pseudo-ML estima-
tors of @ and p discussed previously, the sample counterparts to (15) will be given
by either:
1(p) — (601r/G117)70(P)]

Goor — Oy /0117

[—2(601r/61u)711(P)+(1 + 65i0/5T17)70(P) — (Goor — 617/ G017 )]

my(p; BT) =

my(p; BT) = R R N 2
2 (Goor — 017/6117)

when 617 > 0, or

[V1(p)—G017]

ml(p7 BT) = a-OOT
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.5y = o)
90T
when 6917 < 0. In this respect, note that m(p; BT) are precisely the sample
moments that we would use in a standard unrestricted EMM procedure, while
m(p; B) are the ones that correspond to the equality constrained EMM procedure
based on the constraint ¢ = 0.

Let’s now derive the asymptotic distribution of the pseudo-ML estimators of
the auxiliary parameters, multipliers and moments in the three different relevant
situations that may occur: (i) 6° < 0, (ii) 6° > 0, and (iii) 6 = 0. To do
so, we shall use the following lemma, which can be proved as a straightforward

application of Theorem 5.7.1 in Anderson (1971):

Lemma 1 When z; is given by the Gaussian MA (1) model (11), the first sam-
ple autocorrelation gsz is T/?-consistent for the first population autocorrelation
" (p°), with the following limiting distribution

VT (90— (0" iN{O,”(é”) 408"+ (8°)° +<6°>8}
fr=00") 1+ @)’

Note that the asymptotic variance of <}§T, which not surprisingly is the same for

a non-invertible MA (1) process with parameter 1/, achieves its maximum (=1)
for 6° = 0 and its minimum (=1/2) for §° = 41. In addition, it is easy to see
that /T ((AbT + ﬁlT) = 0,(1) because 699 — 611 = (2% — 23)/T = O,(T ). As a

result, we will have that

1 if <0
TlggoP(V—¢T>0)— lim. P(VThar <0)=14 1/2 if & =0
0 if 682>0

Hence, when 6° < 0, v/T (&T — g}ﬁT) and \/Tfi,; are both 0,(1), and the inequal-
ity restricted EMM and 11 estimators of p are asymptotically equivalent to the

usual unrestricted EMM and II estimators. In contrast, when 6° > 0, /T ngT and
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VT (fiyr — fiyr) are 0,(1), and the inequality restricted EMM and 1T estimators of
p will then coincide in large samples with the equality restricted ones. The most
interesting situation arises when 6° = 0. In this case, BT has a non-normal as-
ymptotic distribution, as it will be equal to either (g}ﬁT, wr,0) or (0, wr, fiyr) with
probability approximately one half each. As a consequence, the sample moment
conditions will also be m(p; BT) fifty per cent of the time, and m(p; B;) the other
fifty. Nevertheless, given that when 6° = 0 we can write
0
ﬁml(pO;BT) = _%ﬁ&T
000 — Op1 /o1

and

VTmy(p% Br) = —VThyy
it is clear that /T |my(p%; Br) — mi(p% Br)| = 0p(1), so that the limiting dis-
tribution of v7T'm;(p°; BT) will also be normal, with an analogous result for the
other moment. The reason is that despite the fact that both /T &T and /T fiyp
have half normal distributions, asymptotically v/T(¢5 — i,7) has the same N (0, 1)
distribution as either vT(¢p — fiyp) = VT oy or VT (dp — fiyp) = —VTiiyp. In
fact, this last statement is true irrespectively of §° < 0, and simply constitutes an

example of Proposition 2. As for Proposition 1, we trivially have that
ﬁlTﬁ [éT_fbg’(Po)} + &Tﬁ [ﬂlT_Ni(PO)} =0

and the same applies to the unrestricted and equality restricted pseudo-ML esti-

mators and multipliers.

3.1.5 Indirect inference estimators

If the parameters of interest of the true model were v = (,,7;)" rather than
p, the solution of the linear system of equations m[%, BT] = 0 with respect to v

would give us the inequality restricted EMM estimator of these autocovariances.
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More explicitly, since the system above could be re-written as

¢y 1 y —G&r]
o7 Yor _ ~T,U1T (16)

~2 ~ -
L+ ¢r —2¢r Yir wr

we would have that the inequality constrained EMM estimators of v would be

given by
Yor ~ Yor - Yor
. =1(¢r20) | +1(op <0) | ~
YT YT TiT
where
'AYOT door o gOT — 0 ng
= N = (17)
Y1 Oo1T our — %ot

are the EMM estimators of v that use as score generator an unrestricted AR(1)
model, and

Yor door

YT aoir
the ones based on a white noise process, provided that in the latter case we include
in the set of moments the Lagrange first order condition of the autoregressive

2 But given that 6oor — 6117 =

parameter with the corresponding multiplier.
O,(T1) for any value of 8°, it is easy to see that the EMM estimator of 4 based
on an inequality restricted AR(1) process, v, is always asymptotically equivalent
to both 4, and 7.

This result is not totally surprising if we note that the two sets of sample

moments satisfy the following relationships:

~92 A
o g ~ N = N o1 =
(CTOOT — ﬁ) my(p; Br) = Goorma(p; Br) — U(Q)OT_(}HT“W(P; B)
ooiT , . R
5 (011T - UOOT)
11T
. 62y 2 - . oot 3 2 Gour 3
Goor — = my(p; Br) = —Goor——mu(p; B) + Goor(1 + ——)ma(p; B)
O11T O11T onur

2Note that the implied estimate of the first autocorrelation is the same in both cases.
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~2
o
01T [ A .
+—— (0117 — Goor)
onur

Hence, VTm(p; By) and vTm(p; B;) are almost an exact linear combination of
each other for large T irrespectively of p°.
On the other hand, the unconstrained 11 estimators of v, and v; would be

obtained by minimising the following MD criterion function:

. 2 2 2
=2+ (2)

while the equality constrained 11 estimators would minimise

2
e _ Y -
D7 (v:Iz) = <H1T + 71) + (wr — ’70)2
0

instead. But in view of the expressions for ¢y, &r, fiyp and @p in (14), it is
obvious that such II estimators will numerically coincide with 4, and %, respec-
tively. Moreover, since the inequality constrained 11 estimator would minimise the
objective function

2 2
Di(y;1,) = [¢T = zlfm > 0>} + [ﬁm + %I(vl < m}
0 0

+ {J)T - {vo—ﬁf(% > 0)] }2

Yo

it is clear that it will be given by 4, as expected. The reason is that since the
auxiliary model exactly identifies the first two autocovariances, and there are no
binding constraints of v, then II and EMM yield the same estimators.

The common asymptotic distribution of 44,4, and 4, can be directly ob-
tained as a special case of Theorem 8.4.2 in Anderson (1971):

Lemma 2 When z; is given by the Gaussian MA (1) model (11), For and Jyp
are TV/?-consistent for v,(p°) and v,(p°) respectively, with the following limiting
distribution
VT [30 = 7(p°)] 5 N [0,V (p°)]
where o[ 2+86%+26% 46— 48°
Vie)=v ( —46 —48°  1+582+ ¢ )
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But even though ~ are not really the parameters of interest, we can regard
their EMM estimators as “sufficient statistics” from which we can estimate p.
At first sight, it may seem that we could recover p by solving numerically the
éT‘ > 5.

One attractive possibility involves the minimisation of the optimal (continuously

nonlinear system of equations (12). Unfortunately, there is no solution if

updated) MD criterion:

Yor — Yo(P)
Yir — 71(p)
subject to the inequality constraints —1 < 6 < 1 and ¥ > 0.

( Yor = Yo(P) F1ir — 71(P) > Vil(P)

Tedious but
otherwise straightforward algebra shows that the resulting estimators of 6 and v

will be given by the following expressions:

or =0 N
NT if¢T:O
¢T:500

5y = (—1 +y/1- 4&?) /(2)

b = 600/ (1 +57)
ST = —Sign(G%T)
b = b0 (7+ 1207 = 16|67 / (6 - 4]ér)

In fact, given that the above MD criterion would numerically coincide with the

if0<¢p<.25  (18)

if 7. > .25

optimal (continuously updated) GMM criterion based on the restrictions

Elz} —7,(p) =0

Bz —71(p)] =0
if 6oor = 0117, and that the estimating equations used in (un)restricted EMM
and II procedures would be a linear combination of these ones, it is clear that the

different estimators of p are asymptotically equivalent.?

3Nevertheless, when ‘&T) > .5, the different estimators of ¢ will differ in finite samples,

not only because oo — 0117 is only approximately zero, but also because unless one uses the
analytical expression for V(p) above, there will be estimation error in the HAC calculation of
the optimal weighting matrices.
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An analogous line of reasoning applies to pretest EMM and II estimators that
use either the equality restricted estimators when a standard LM test for first
order serial correlation does not reject the null of white noise, or the unrestricted
estimators when it does. Since as we have just seen, p; and p, have the same
asymptotic distribution regardless of the value of §°, such a common distribution
will be inherited by the pretest estimators.

Finally, note that since the auxiliary model “smoothly embeds” the true model
when §° = 0, Theorem 2 in GT implies that in this particular case, the unrestricted
estimator p, is asymptotically equivalent to maximum likelihood, and the same
obviously applies to all the other estimators. However, the asymptotic efficiency
of pr relative to the ML estimator decreases as ‘60‘ increases. In particular, the
asymptotic distribution of v/T'(67 — 6°) when 6° = 1 is half normal by virtue of
Lemma 1 and expression (18), while the ML estimator of 6 is superconsistent (i.e.
consistent at the rate T'; see Sargan and Bhargava, 1983).

In principle, it may seem that the imposition of the correct restriction |¢| <
.5 in the estimation of the auxiliary AR(1) model should produce more efficient
estimators of the parameters of interest. However, it turns out that exactly the
same II estimator of p is obtained when we replace the non-negativity restriction
on ¢ by a general restriction of the form ¢, ;, < ¢ < @ .., fOr any o, Prmax-
Moreover, the equivalence between the different EMM and II estimators of p in
the MA(1) via AR(1) example does not really depend on the nature of the true
model, whose parameters only enter through v,(p) and 7,(p), but rather on the
particular form of the auxiliary model used. As we mentioned above, the reason
is that from the point of II and EMM estimation, 4,4, and 7, play the role
of “sufficient statistics” from which we infer p. In this respect, it is possible
to prove that the same result is true whenever the auxiliary model is given by

a conditionally homoskedastic Gaussian AR(p) process, with p finite, and the
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restrictions are linear in the autoregressive parameters.

3.2 AR(1) estimated as MA(1)

3.2.1 True and auxiliary models
Consider now the following stationary AR(1) process:
Ty = ¢xi1 + v, vlreg,...~NOw), |¢<1,0<w<o0 (19)

where the parameters of interest are p = (¢,w)’. It is well known that E(x;) = 0,

and that its autocovariance structure is given by

v;(p) = ¢]1_L¢27 720 (20)

In order to estimate p by indirect inference, we are going to use initially the

following inequality restricted MA (1) model:

xp = up — Ouy_1, uglryq,...~N(0,¢), 6§<0,0>0
where 6 = (8,1)". Since its autocovariance structure is given by:
Var(z,)) = (1+8)
cov(zy, k1) = —0U
cov(xy,xp—j) = 0, j>1

the non-positivity constraint on 6 implies that the signs of the first autocorrela-
tions of the auxiliary and true models coincide when ¢ > 0, and differ when ¢ < 0.

Note, however, that the auxiliary model only nests the true model when ¢ = 0.
3.2.2 Pseudo-ML estimators

The log-likelihood function of the MA (1) model for a sample of size T" will be
given by:

Lr(0) :—ZIHZW——lnw——Z [z — v4(6

33



with

Vt((S) = — Z 5j¢’17t,j,
j=1

and the (scaled) Lagrangian function by

1 1 11

Qr(B) = —3n2r —5lny — 577 ) fow = vi(®F + o + vy

where pp = (uq, py)" are the multipliers associated with the inequality restrictions

60 <0 and 9 > 0 respectively. Therefore, the first-order conditions that take into

account the inequality constraints will be given by the Kuhn-Tucker conditions:

11 ~ th<5T) -

&—szut(éT) 96 +r = 0

;1 @—1 +/]’2T = 0

2¢TT t ¢T

where
w(®) = Y & (21)
=0

8Vt((5) - cei—1
T —jz_;jéj Ty j (22)

together with sign and exclusion constraints

or < 0, figp >0, 67 fiup =0
¢T > 07ﬁ2T2071LT'/12T:O

But as
- 1 -
Yr =7 guf(éT) >0

we can safely take fi,; = 0 in what follows. Also since
11 N ACD)

lﬁlT:_lL_TT t u(0r) 96
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we can interpret this Kuhn-Tucker multiplier as (minus) the coefficient in the
OLS regression of dv,(d7)/06 on the inequality restricted residuals u,(87) (see
Gourieroux, Holly and Monfort, 1980). Therefore, fi,, will be 0 if the inequality
restriction is satisfied, or the usual Lagrange multiplier associated with the equality

constraint ¢ = 0 otherwise. Not surprisingly, the Lagrange multiplier is simply

-1 ~

T = T'Y,zwey  Ouor
17 — _ 9 - T X

! Zt Ly O00T

which, as in the previous example, is approximately the same as the (opposite of

the) first sample autocorrelation in large samples. Similarly,
1 5 .
= T Z Ly = 000T
t
i.e. the sample variance with denominator 7.

3.2.3 Population moments and binding functions

Given the covariance stationarity of the true model, we can base our estimation

g

ma(p; B) = E{ﬁ [“ff) - 1} + 1

which using the results in the appendix, can be written as

of p on the following time-invariant expressions

1 v (6)

E“t(‘s) 96

my(p;8) = E[ + 1

(23)

')

i) = gl o4y 2

w
_ =P 7)1 9P (¢26° + ¢6% — 6 — 6) + 1y

<1+2Z(5171 P )
=1 (p)
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1 w .1—5¢_
S WA= Tres VT

where the intermediate expressions only depend on the auxiliary model, while the
final expressions are obtained by replacing (20) in the intermediate ones.
If we define 6"(p) and p'(p) as the values of the parameters and multipliers

of the auxiliary model that for each value of p solve the population program
mélxﬁT(p; 0) st. 6<0,9>0

where

Lr(p;0) = E[1:(8)] p] = _5111277 - —lnw - _E{“t )‘ P}

it is clear that the inequality restricted binding functions 3(p) satisfy the moment

conditions
m [p; B'(p)] =0

together with the sign and exclusion restrictions

IN
=
T
S
Y%
=
2.
)
B
=
[
e}

§'(p)
Vi(p) > 0, ph(p)>0, %'(p)-uh(p)=0

From here, it is easy to see that

— [6'(p)]

and consequently, that ub(p) = 0, as expected.

o) = B 0] o} = L2 <1+22 () 242

From the above moment expressions, we also have that the usual unconstrained
binding function for 8§, 6“(p) will be the real root of the following third order
equation

& [8“(P)° + 68" ()" = 6"(p) =9 =0
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whose modulus is less than or equal to 1. *
As a result, if 6“(p) < 0, then B'(p) = B“(p), where
w’ 1—8"(p)¢
=[Py (1 -¢") 1T+0"(0)"
p“(p) = 0

are the remaining unconstrained binding functions, while if §“(p) > 0, then

B'(p) = B°(p), where

“(p) = 0
vl = wle) = o (24)
15 (p) el sy

N Yo(P)

are the binding functions associated with the equality constraint 6 = 0. Since the
first theoretical autocorrelation has the same sign as ¢, the first solution applies
when ¢ > 0, while the second solution when ¢ < 0. Obviously, they all coincide
when ¢ = 0, in which case

8"(0,w) = &%(0,w) = 8'(0,w) = 0(=¢)

P(0,w) = ¢*(0,w) =9'(0,w) = w

pi(0,w) = p5(0,0) = pi(0,w) =0

Figure 2 plots the binding functions 6“(p) and pf(p) for —1 < ¢ < 1. Note

that in this framework, &'(p) = min [6“(p),0] while i (p) = max [u(p),0].

3.2.4 Asymptotic distributions of pseudo-ML estimators and sample
moments

First of all, let’s state the AR(1) version of Lemma 2 above, which can again

be obtained from theorem 8.4.2 in Anderson (1971):

41t is important to mention that §“(p) is different from the first inverse autocorrelation of
the AR(1) model, which is given by ¢/(1 + ¢?), since the range of 6“(p) is -1 to 1, rather than
-1/2 to 1/2 (see e.g. Bhansali, 1980).
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Lemma 3 When x; is given by the Gaussian AR (1) model (19), Goor and o
are TY%-consistent for v,(p°) and v,(p°) in (20) respectively, with the following
limiting distribution

VT [37 — (%] % N[0, V(p")]

where

V(p) - w? (2+2¢2 4¢ )

1) 40— ot
Given that the population moments evaluated at the equality restricted pseudo-

ML estimators are given by:

LAy w _ g107

ml(p7 B) - 600T(1 . ¢2) a-()OT
1 w .

malpif) = o5 [(1 - ¢’) _UOOT]

it is straightforward to derive their asymptotic distribution by means of the delta
method. Similarly, we can use the same technique to derive the asymptotic dis-
tribution of fi;p = —6&107/600r and Yy = Goor. Alternatively, the asymptotic
distribution of the estimator of the Lagrange multiplier can be directly obtained
from the Mann and Wald theorem.

In contrast, the asymptotic distribution of the unrestricted estimators 57 and
@LT is rather more laborious to obtain, as we need to derive closed form expressions
for the matrices Zj, and Jjp. For simplicity, we shall only do it for the case of
¢° = 0, which as we saw before, corresponds to §"(p°) = 0 and “(p°) = «°. In

this case, the score of the MA(1) log-likelihood function evaluated at the pseudo-

true parameter values will be given by the following expressions:

11 1,
o7 Z Tili-1 = —jo0o1r
2 w
11 x2 1 .
2 (5-1) = g o -]
t
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Hence, we can use Lemma 3 directly with §° = 0 to show that

1 0

To =
0 1/2(w°)?

Similarly, it is also easy to prove that for p = (0,w°)’

1 0
j@u -
0 1/2(w%)?
so that
b) 0 1 0
v | T 4N ,
p — WP 0 0 2(w?)?

as expected, since the true process is white noise, and the MA and AR log-likelihood
functions are locally equivalent.

As for the inequality restricted pseudo-ML estimators of 6, ¥, and pu,, there
may be three different situations, according to whether ¢ < 0, ¢” > 0 or ¢° = 0.
In the first case, it is easy to see from Propositions 1 and 2 that \/T(ET — ST),
VT (thy — p) and V/Tiyp are all 0p(1), while in the second case the same applies
to VTér, VT (hp — by) and VT (jiyp — fiyp). Once more, the interesting case
arises when ¢° = 0, because /T 67 and VT fyr have half normal asymptotic
distributions. Nevertheless, from Proposition 2 we will again have that vT' ((~5T —
fi;) will share an asymptotic N(0,1) distribution with T'(67 — ji;p) = VTbrp
and VT (87 — fiyr) = —VT i

3.2.5 Indirect inference estimators

Given the two different expressions for the inequality restricted pseudo-ML
estimates of @ and p discussed previously, the sample counterparts to the pop-
ulation moments (23) will be given by either m(p; 3), which correspond to the

sample moments used by an unrestricted EMM procedure, or m(p; B;), which will
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be the moments used by the equality constrained one. But since when we solve

m(p; Br) = 0 we get

5 o _ o a'10T
T = —Mr ==
OooT
2 52
- v < N 10T
wr = Yp(l—67)=Goor — 5
00T

it is clear that the equality constrained EMM estimator converges in probability
to the first order sample autocorrelation, which is the maximum likelihood es-
timator of the parameter of interest. Hence, it is always at least as efficient as
the unrestricted EMM estimator. Note that this is true regardless of the sign of
§“(p°), and therefore independently of whether or not ¢° = 0. Of course, if we
knew that §“(p°) = 0, or any other value for that matter, we could recover ¢°
from the binding function directly without estimation error (cf. Dridi, 2000). The

same result applies to the corresponding equality constrained 11 estimators, which

minimise the MD objective function

il - 71(P) ? v 2
Dr(p;1z) = |f‘1T + ’Yo(P)} + [¥r —70(p)]

As for the inequality restricted estimators, it depends on whether or not the
pseudo-true value §'(p°) is 0 or strictly negative (or the associated Kuhn-Tucker
multiplier ¢ (p°) is 0 or strictly positive). If ¢° > 0, then p; will be asymptotically
equivalent to the unrestricted estimator p, because the sign restriction on op is
not binding in large samples. As a result, the inequality restricted estimators
will be less efficient than the equality constrained ones. If on the other hand,
¢" < 0, the restriction is almost surely binding in the limit, and therefore p; will
be asymptotically equivalent to the equality restricted estimator p,. Finally, the
most interesting situation arises when ¢° = 0. In this case, since the unrestricted
pseudo log-likelihood nests the true log-likelihood, the unrestricted estimators will

also be as efficient as maximum likelihood by virtue of Theorem 2 in GT. But since
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the inequality restricted estimators will be a 50:50 mixture of p, and p; in large
samples, it will share their common asymptotic distribution.

A similar line of reasoning can be applied to a pre-test estimator that uses
either p; when a standard LM test for first order serial correlation does not reject
the null hypothesis of white noise, or p, when it does. Since such an LM test is
consistent in the context of the AR (1) model (19), then the pretest EMM estimator
will always be asymptotically equivalent to p,, and therefore inefficient relative

to py except when ¢° = 0.

3.3 Stochastic volatility estimated as GARCH(1,1) with
Gaussian and Student’s t distributed errors

3.3.1 True and auxiliary models

Consider the following log-normal stochastic volatility process

Ty = \/h_tut

Inh; =a+6Inh_1 + o,v;

(25)

where |6] < 1,0 < 0, < o0, and (ug, v;)'|z4—1,... ~ N(0,1Iy). This model was
originally proposed as an alternative to the ARCH class, and can be regarded as
the discrete time analogue of the continuous time Orstein-Uhlenbeck stochastic
processes for instantaneous log volatility frequently used in the theoretical finance
literature. Unfortunately, it is impossible to find analytical expressions for the
conditional distribution of x; based on its own past values alone, despite the fact
that its distribution conditional on hy, z; 1, ... is Gaussian, with zero mean and
variance h;. Given its importance, though, it is not surprising that a voluminous
collection of research papers has been devoted to the estimation of the parameters
of interest p = (o, 6,0,)" (see Shephard (1996) for a survey).
In an influential such paper, Kim, Shephard and Chib (1998) consider likelihood-

based estimators of (25), and analyse its goodness of fit relative to some popular
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ARCH-type competitors. In particular, they find that the log-normal stochastic
model above and a GARCH(1,1) model with (standardised) Student’s t distributed
errors fit the data equally well, as long as the additional tail-thickness parameter
is not set to its limiting value under Gaussianity. Therefore, since the latter has
a conditional density that can be written in closed form, it looks like the ideal

candidate for auxiliary model. On this basis, the model we estimate is given by

Ty = \/)\_tgt

Ao =Y+ pxi g + T
where e4|x;_; ... follows a standardised Student’s t distribution with n~! degrees
of freedom,”® so that @ = (3, , 7, n)’. Note that by having an extra parameter, the
auxiliary model (seemingly) overidentifies p. As is well known, the standardised
t distribution nests the standard normal for n = 0, but otherwise has fatter tails.
Also note that like in the previous two examples, the auxiliary and true models
are non-nested except in the trivial case in which x; is Gaussian white noise.

The parameters of the auxiliary model are usually estimated subject to several

inequality restrictions for the following reasons:

1. As discussed by e.g. Nelson and Cao (1991), when &7 has infinite support,
the conditional variance \; will be nonnegative with probability one if ¢) > 0,

@ >0and 7> 0.

2. The pseudo-ML estimators of @ may not be well behaved when ¢ + 7 > 1
(see Lumsdaine, 1996).

3. The pseudo log-likelihood function based on the standardised Student’s ¢
distribution cannot be defined when the inverse of the degrees of freedom

parameter is either negative, or exceeds 1/2.

5Since the implied degrees of freedom parameter can take any real value above 2, in fact
the errors have a distribution that is /(1 — 2n)/n times the ratio of a standard normal to the
square root of an independent gamma variate with parameters 1/2n and 2.

42



4. When ¢ = 0, m becomes asymptotically underidentified, which may also
happen in finite samples depending on the treatment of the initial observa-

tions (see e.g. Andrews, 1999).

As a consequence, we estimate the auxiliary model subject to the following set

of inequality constraints:
V20, > @un T20, p+m <1 0<n <y (26)

where 7,,;,, and 1/2 — 7, are arbitrarily chosen small values.®

In addition, the Student’s t-based log-likelihood function often becomes rather
flat for very small values of 7, because it is very difficult to numerically distin-
guish a standardised t with 2,000 degrees of freedom from another one with 5,000
degrees of freedom, or indeed from their Gaussian limit. In fact, we effectively
set 7 = 0 whenever n < n,,;, to avoid large numerical errors in the computation
of the derivatives.” For that reason, we also consider a mixed equality/inequality
estimator that sets 1 to 0 to obtain a Gaussian pseudo log-likelihood function,
but which computes the value of the corresponding multiplier from the relevant
first order condition. For the sake of brevity, we refer to the estimator that allows
71 to vary freely within its bounds as the “inequality restricted” estimator, and to
the other as the “equality restricted” one. Nevertheless, the remaining auxiliary

parameters are always estimated subject to the other bounds in (26).

3.3.2 Monte Carlo study

We assess the performance of our proposed procedures by means of an extended
Monte Carlo analysis, with the same experimental design as Jacquier, Polson and

Rossi (1994) (JPR). In this respect, the results in JPR suggest that the most

6 After some experimentation, we chose vy, = .025, and n,,,, = 499, which corresponds to
2.04 degrees of freedom.
"We chose 1,,;, = -0005, which corresponds to 2,000 degrees of freedom.
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important determinant of the performance of the different estimators will be the
unconditional coefficient of variation of the unobserved volatility level h;, k say,

where
V(ht) 0'2
2 — — v -1
T R =)

Intuitively, the reason is that when x? is low, the observed process is close to

Gaussian white noise, and the estimation of the stochastic volatility parameters
is difficult. Unfortunately, the existing empirical evidence suggests that low x%s
are the rule, rather than the exception (see JPR and the references therein).

The Monte Carlo designs considered by JPR in their tables 5, 6 and 7, have nine
entries, arranged in three rows and columns. The rows are defined in terms of 2,
and the columns by the autocorrelation coefficient for log volatility, 6. Finally, the
remaining parameter 1 is chosen so that the unconditional mean of the volatility
level equals .0009. Although most of their reported results correspond to a sample
size of T' = 500 observations, we have also considered 1" = 1,000 and 2, 000.

For convenience, we first optimise the pseudo log-likelihood function in terms
of some unrestricted parameters 8%, where 1) = 072, o = @ + (1 —@,..) sin?(65),
T = (1—¢)sin’®(05) and n = [1 — sin®(6})] i +5i0°(05)Mmay- Then, we compute
the score in terms of the original parameters 8 = (1, ¢, 7w, 1)’ using the analytical
expressions derived by Calzolari, Fiorentini and Sentana (2000), and introduce
one multiplier for each of the four first order conditions in order to take away any
slack left. Since there are no closed-form expressions for the expected value of
the modified score, we compute them on the basis of single simulations of length
TH, with H = 10, as explained in section 2.5. A larger value of H should in
theory reduce the Monte Carlo variability of the EMM estimators according to
the relation (1+H '), but at the cost of a significant increase in the computational
burden. Finally, we minimise numerically the GMM criterion function in terms

of some unrestricted parameters p*, with a = p}, § = 6yax sin(p3) and o, = p3?,
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where Opax = -9999, so as to ensure that [6| < 1 and o, > 0.

Tables 1, 2 and 3 contain the proportion of inequality and equality restricted
pseudo-ML estimators of @ that satisfy with equality the different restrictions
in (26). When x? is 1, such restrictions are hardly ever binding, especially for
T = 2,000. However, when x? is large (=10), most of the estimated GARCH
models are of the IGARCH variety. This is particularly true when 7 is free, but it
also happens when the conditional distribution is assumed Gaussian. Somewhat
surprisingly, such a finding does not seem to constitute a finite sample problem,
because the proportion of boundary cases actually increases with the sample size.
In contrast, in those empirically relevant situations in which x? is small (=.1),
IGARCH parameter configurations are hardly ever estimated, but the estimates of
the ARCH and GARCH coefficients, and the reciprocal of the degrees of freedom
parameter, reach their lower bounds fairly often, especially for the smaller sample
sizes. For instance, when T' = 500 and 6 = .98, almost 60% of the simulations
have inequality constrained pseudo-ML estimators for which at least one of those
restrictions is binding. As pointed out by Shephard (1996), part of the empirical
success of the stochastic volatility and t-GARCH models simply lies on their ability
to capture the fat-tailed behaviour of asset returns. Therefore, when one tries to
fit a t-distributed GARCH(1,1) auxiliary model to artificial data that shows little
volatility clustering, and only a small degree of leptokurtosis, it is not totally
surprising that one ends up with parameter estimates that correspond to Gaussian
white noise. In any case, the results clearly show that our proposed generalisations
of EMM and II procedures are not only of theoretical interest, but also highly
relevant in practice.

Tables 4 to 9 present the means, root mean square errors, mean biases and
standard deviations of the inequality and equality restricted EMM estimators of

the parameters of interest p for the case in which the optimal GMM weighting
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matrix is estimated as the variance in the original data of the modified score of the
auxiliary model evaluated at the pseudo-ML parameter estimates. In this respect,
note that by including a multiplier in each first order condition, we automatically
centre the scores around their sample mean. Given that the auxiliary model tends
to fit the simulated data rather well, we have not included any correction for serial
correlation (cf. GT).

As expected, the estimates of the autoregressive parameter 6 are downward
biased. This is particularly so when 8° is high, and/or ¢ low, which mimics the
behaviour of a pseudo-ML estimator of the autoregressive parameter of an AR (1)
process observed subject to measurement error. And exactly like in that situation,
the downward bias in the estimator of § is transmitted into an upward bias in
the absolute value of the estimates of the mean constant, «, and the standard
deviation of the log-volatility innovations o,. Therefore, it is not surprising that
the most important determinant of the performance of the different estimators is
precisely 2, which effectively plays the role of a signal to noise ratio.

But perhaps more importantly for our purposes, neither of the two restricted
versions of the EMM estimator seems to dominate the other across all Monte
Carlo designs. When x? is 10, the inequality restricted EMM estimator systemat-
ically outperforms the equality restricted one in terms of root mean square error,
although not necessarily in terms of mean bias for 7" = 500. In contrast, when
k2 is .1, the equality restricted EMM estimator tends to outperform the inequal-
ity restricted one, except perhaps as far as o, is concerned. The reason is that
when the behaviour of the data is close to Gaussian white noise, our attempts
to estimate simultaneously the reciprocal of the degrees of freedom, 7, result in a
deterioration of the estimators of the GARCH parameters relative to the Gaussian
case. At the same time, since the first order condition for 7 is the most directly

related to the degree of leptokurtosis of the observed data, the equality restricted
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EMM estimator of o, is somewhat less precise than its inequality restricted coun-
terpart. As for the middle row, the results are mixed, at least for T'= 500. As T’
increases, the inequality restricted EMM estimator tends to have a smaller root
mean square error than the equality restricted one, at the cost of a slightly higher
mean bias.

Finally, a comparison of our results with the ones reported by JPR suggests
that our EMM procedures tend to outperform the QML and MM estimators
considered by these authors, except in those instances in which, according to
JPR, the performance of the latter is exceptionally good. In contrast, the EMM
estimators are dominated by the empirical Bayesian estimators proposed by JPR,
which is not very surprising given that our auxiliary model does not nest the
model of interest, and we do not use any prior information. In this respect, it is
important to mention that the relatively poor performance of the EMM estimators
is partly due to those simulations in which ¢ is estimated as being negative. For
instance, the root mean square error of the equality restricted estimator of § in
row 2, column 3 of Table 5 decreases from .0765 to .0524 if we exclude the only

two negative estimates of 6 found in 1,000 replications.

4 Conclusions

In this paper, we generalise the II approaches of GT and GMR to those empir-
ically relevant situations in which there are constraints on the parameters of the
auxiliary model. In the EMM case, specifically, we derive the moments used in
GMM estimation from either the Kuhn-Tucker first order conditions for inequality
constraints, or the usual Lagrange first order conditions for equality restrictions.
Similarly, in the II case, we minimise the distance between an extended vec-
tor that includes both pseudo-ML parameter estimates and multipliers, and the

corresponding binding functions. Equality constrained estimators may be par-
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ticularly useful from a computational point of view, since in many situations of
interest, it is considerably simpler to estimate a special restricted case of the aux-
iliary model. We also obtain expressions for the optimal GMM weighting matrix,
and the MD one that yields asymptotically equivalent II estimators. In addition,
we also consider EMM and II procedures based on partially optimised uncon-
strained estimators, as well as those that impose the constraints depending on the
significance of some preliminary specification test.

For illustrative purposes, we discuss the usual example of MA(1) estimated
as AR(1), and show that the inequality restricted EMM and II estimators are
asymptotically equivalent to the unrestricted estimators, and indeed, to equality
restricted EMM and II estimators that set the autoregressive parameter to 0 in the
auxiliary model, but include either the corresponding first order condition in the
set of moments, or the Lagrange multiplier in the distance function. Importantly,
the equivalence of the different EMM and II estimators in this example does not
really depend on the specific inequality restriction imposed, or the nature of the
true model, but rather on the particular form of the auxiliary model used. In
this respect, the same result continues to hold if the auxiliary model is given by
a conditionally homoskedastic Gaussian AR(p) process with linear restrictions on
the autoregressive parameters. We also discuss the reverse example in which an
AR(1) model is estimated via MA(1). It turns out that the equality restricted
EMM and II estimators that impose the white noise restriction not only dominate
the unrestricted estimators, but also become as efficient as maximum likelihood,
even though the auxiliary model does not nest the true one. Finally, we compare
the performance of our proposed procedures for a log-normal stochastic volatility
process estimated as a GARCH(1,1) model with either Gaussian or t-distributed
errors. In this case, we find that the pseudo-ML estimators are quite often at the

boundary of the parameter space. We also find that although neither estimator
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systematically outperforms the other, the equality restricted estimator dominates
the inequality restricted one in those situations in which there is little information

in the data about the additional tail-thickness parameter.
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Appendix

1 Proofs of results
1.1 Proposition 1

If we linearise the complementary slackness conditions
h(O7) © fiy =0

around B4(p"), taking into account that h [6%.(p%)] ©® pi(p°) = 0, and that
Hadamard products are commutative, we obtain:

on (01) [aT_giT(pO)} +h(07) © VT [jap—pin(p")] =0

*

KT © o0
where 3% = (0%, u¥) is an “intermediate” value (in fact, a different one for each

row). Then, given that in view of our high level assumptions, g} —p4(p°) = 0,(1),
h(03) —h [6%(p%)] = 0,(1), and Oh(67)/060 — Oh [07(p°)] /96 = 0,(1), the result

follows. O

1.2 Proposition 2

If we linearise the first-order Kuhn-Tucker conditions

VT ol(0r)  ON(O7) .
T zt: o0 " op Fr|70
around B%.(p°), we obtain:
T 2:

%; {8@(0}) e Iq)ﬁvec [OK (0%)/00) } JT [éT—O%(pO)]

ol 0’ an' [0i(p")]
! }+ [az(p )}HZT(pO)

06006’ 00’

L M(6;)

5 VT [fr—mi(p")]
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!/

where 35 = (0%, p%) is another “intermediate” value. Then, since in view of

Assumption 1
o1z (67y) ;
T Z { 8080/ } = jOT + Op(l)

Ovec [Oh' (07.)/00)]

dvec {ONn' [05(p°)] 106}

on'(07) on’' [OiT(pO)]
\vvr) o 2 1PTAF U] 1
R o0 oW
a straightforward application of Cramer’s theorem completes the proof. O

1.3 Proposition 3

Let’s now linearise the sample moments mz(p% B;) around B5(p°) to obtain

VTmr(p’; Br) = VTwmr [p% B (p°)]
omr (P BT) /=15 pi omr(p% Br) jmr-
+TT\/T |:9T_9T(p0):| +8—;J/Tﬁ [NT_NT(pO)]
where 37 is yet another “intermediate” value. This implies that under Assumption

1, VTmyp(p° BT) has the same asymptotic distribution as

e [ OLEDL 7 (60 )] + P LB iy )

00 on
where
omy [p% B (p°) . . Ovec {On' [0'(p")] /06 .
[ 90’ g ] = Jor+ [NT(PO) ® Iq] { [8;' ] } = MNtor
omr [p% Br(p")] 0N [07(p")] _ .
a“/ o0 12,0T
But then, Proposition 2 directly yields the required result O
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1.4 Proposition 4

The first order conditions associated with p$ [(Zi;) '] can be written as

omty {5 [(Zir) 15 Br }
dp

’ (IéT)il -VTmyr {ﬁ% [(IéT)il} ;BT} =0

Expanding around p° yields

s (;:3 BT)‘ (Zip) ™ - VT (6% By )
— <§§ 5). gy el Pr) <ap,, 1) s
duec |omt(p3: Br) /0p)|

+ @)™ me (i Br) @ 14 o VT [55(Tir) - 0]

where p7} is some “intermediate” value. But since mp (p*T; BT) is 0p(1), we finally

have that
] om’ 0; 4 0 ' 9 (); i 0 -1
VT [55(Ti) — 9] = { e V’JT“’ | (g yr. Omr [pa,fT(p >]}
omy [p% Br(p°)] i ~
 Imr [PapﬂT(P )] (i) VT (POQﬁT) +0,(1)
as required. 0

1.5 Proposition 5

The result follows directly if we combine the proofs of Propositions 2 and 3 to

show that

VT (6% Br) = {KiyorVT [Br-04(0)| + Kigor VT [fir—15(p)] } = 0,(1)
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2 The expected value of the score of an MA(1)
model

In order to find

my(p;8) = E

1
my(p;B8) = E E{ " —1]+N2

1t 1s convenient to write

. 1
u(6) = ey = 5
j=0
and
al/t(é) . > -1 . —L
a6 ;]5 i T —snet

so that we can understand both u;(6) and dv,(6)/06 as the output of linear filters
applied to the original series x;. In this light, we can obtain the required expec-
tations as the constant terms in the autocovariance generating function of u2()
and u,(6) - Ov(6)/06. In particular, I'y,s)u.(5)(2) Will be given by

1 1
1—6z Ta(2)- 1—6z71

Y0(p) [1+ 52, 8( + 7))
= | e L S )
+ X P 14 5 (7 + 27|

Hence,

£ (011 - 242} (10550240)
1=1 0

which for the special case of the true process being a stationary AR (1) reduces to

9 B w 1—06¢
Elu®le] = a=ma =) 1760
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In fact, given that we can write
1 1 .
€Ty =
1-6L""  (1—-6L)1—¢L) "

it is not surprising that E [u?(8)| p] coincides with the unconditional variance of

u(6) =

an AR(2) process with autoregressive roots 6 and ¢, and innovation variance w.
Similarly, the cross-covariance generating function of dv(6)/06 and u(6),
Lov,(5)/06,u:(6)(2), will be given by (minus) the following expression

z 1
(1-62)2 Far(2) 1—6z71

S OITREEY GRS SETZEES o) B (D o)
j=1 =1 =1 k=1
= 7%(p) ijsjilzj + Z Z]'(Sjil%(ﬁ)(zl +270)2
j:l

j=1 1=1
oo 0 0

+7o(p ZZQ&J 16720 2~ —|—ZZZ]6] Y65, (p) (2 + 272k

j=1 k=1 j=1 k=1 =1

Therefore, the coefficient associated with the constant term will be

o0

1o(p) 32365+ 318 ) +2Zé’vl S G3 1y ()Y 6
=1 Jj=1

j=1 =1 j=1

But since for |6] < 1

. 25—1 G 27 5
;w - 525]__1_52

=0
69 = 53 (4 1Y = —
2 2+ DY =

we will have that

()] 1 o (2 -17(p)
E{ut(é)w'p}— (1_52 {6+z; 262 + (1-6%)1] 6 %(p)}

For the special case of a stationary AR(1) process, this expression reduces to:

E {Ut(é)ﬁvat_((f)

w

,,] =) (1-87) (1 80)?

(8°¢% + 60— 6 — ¢)
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Figure 1: Binding Functions for MA(1) estimated as AR(1)
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Figure 2: Binding Functions for AR(1) estimated as MA(1)
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Table 1

Proportion of auxiliary model parameter estimates at the boundary

(Inequality /Equality)

T=500, H=10, Fixed GMM weighting matrix, 1,000 replications

« 1) Oy
-.4106 .95 4835
0/0
0/0
.949/.867
0/1
.949/.867

-.868 .95
.003/.002
.001/0
063/.047
0/1
066,.049

.26

-.358 .95
260,280
133/.162
.001/.004

264/ 1
526/.363

.096/

Table 2

« 1) Oy
-.1642 .98 .308
0/0
0/0
.816/.762
0/1
.816/.762
-.1472 .98 .166
.006/.003
.003/.004
.111/.076
.014/1
.132/.082

141 .98
.306/.328
.149/.115

0/.001
299/1
577/.393

L0614

Proportion of auxiliary model parameter estimates at the boundary

(Inequality /Equality)

T=1,000, H=10, Fixed GMM weighting matrix, 1,000 replications

K2 « 1) Oy

10 -.821 .9 .675
¥ = @min 0/0
= 0/0
p+m=1 .967/.815
7] = Tlmin 0/1
total .967/.815

1 =786 .9 .363
© = Pmin .002/.004
= .003/.003
p+m=1 .012/.010
71 = Tmin 0/1
total .015/.016

.1 706 .9 135
© = Omin .291/.287
= 169/.177
p+m=1 0/.004
7 = Nmin .215/1
total .533/.383

K2 « 6 oy

10 -.821 .9 .675
¥ = Ymin 0/0
=0 0/0
p+m=1 .995/.894
71 = Tmin 0/1
total .995/.894

1 =786 .9 .363
¥ = ¥min 0/0
=0 0/0
p+m=1 .001/.001
7] = Tlmin 0/1
total .001/.001

.1 706 .9 135
© = Vmin .215/.228
= .082/.100
p+m=1 0/.003
7 = Nmin 113/1
total .352/.277

« 1) Ou
-.4106 .95 4835
0/0
0/0
.989/.954
0/1
.989/.954

.95
0/0
0/0
.030/.020
0/1
030/.020

-.368 .26

-.853 .95
188/.213
.059/.059

0/0
126/ 1
:320/.239

.0964

« ) Ou
-.1642 .98 .308
0/0
0/0
.960/.918
0/1
.960/.918
.98 166
0/0
0/.001
112/.081
002/ 1
114/.082

1472

141 .98
239/.241
.051/.035

0/0
169/ 1
.386/.260

L0614



Table 3
Proportion of auxiliary model parameter estimates at the boundary
(Inequality /Equality)

T=2,000, H=10, Fixed GMM weighting matrix, 1,000 replications

K « 1) Oy « 1) Oy « 1) Oy
10 -.821 .9 .675 -.4106 .95 4835 -.1642 .98 .308
¢ = Pmin 0/0 0/0 0/0
= 0/0 0/0 0/0
p+m=1 1/.973 1/.995 .998/.988
71 = Tmin 0/1 0/1 O/]
total 1/.973 1/.995 .998/.988
1 786 .9 .368 -.368 .95 .26 -.1472 .98 .166
¢ = Pmin 0/0 0/0 0/0
™= 0/0 0/0 0/0
p+m=1 0/0 .009/.002 .089/.069
1 = Twin 0/1 0/1 0/1
total 0/0 .009/.002 .089/.069
.1 706 .9 185 -.858 .95 .0964 -.141 .98 .0614
¥ = Pmin 147/.153 .130/.128 .198/.192
= .027/.034 .015/.012 .008/.006
pt+m=1 0/.001 0/0 0/0
7l = TJmin .034/1 .056/ 1 .096/ 1
total .197/.169 .186/.133 .281/.194



K2

10
mean
rmse
mean bias
std. dev.

1
mean
rmse
mean bias
std. dev.

.1
mean
rmse
mean bias
std. dev.

K2

10
mean
rmse
mean bias
std. dev.

1
mean
rmse
mean bias
std. dev.

.1
mean
rmse
mean bias
std. dev.

o!
-.821
-.9613
.3902
-.1403
3641

-. 136
-1.0108
.6969
-.2748
.6404

-. 706
-2.3819
3.3865
-1.6759
2.9428

0
.9
.8834
.0468
-.0166
.0438

.8628
.0929
-.0372
.0851

.6642
4773
-.2358
4150

Table 4
Mean, root mean square error, mean bias and standard deviation of the

inequality restricted EMM estimator

Oy
675
.6804
.1003
.0054
.1001

363
.3840
.1064
.0210
.1044

135
1712
1418
.0362
1371

o 0
-.4106 .95
-.5549  .9325

3124 .0381
-.1443 -.0175

2771 .0339
-.368 .95
-.6402  .9130

.6284  .0876
-.2722  -.0370

5663 .0794
-.8353 .95
-1.9527  .7247
3.1102  .4383
-1.5997 -.2253
2.6673 .3759

Table 5

Oy

4835
4959
.0844
.0124
.0835

.26

2907
.0973
.0307
.0923

.0964
1526
1420
.0562
1304

«
-.1642
~.3342
3181
~.1700
2688

1472
~4013
5431
-.2541
4800

141
-1.5684
2.8693
-1.4274
2.4891

T=500, H=10, Fixed GMM weighting matrix, 1,000 replications

0
.98
.9595
.0389
-.0205
.0330

.98
.9452
0741

-.0348
.0654

.98
7792
4025

-.2008
.3488

Oy

.808

.3290
.0742
.0210
.0712

.166

1997
.0913
.0337
.0848

L0614
1227
1343
0613
1196

Mean, root mean square error, mean bias and standard deviation of the

o!
-.821
-.9245
.5582
-.1035
.5485

-. 186
-.9546
1267
-.2186
.6930

-. 706
-2.2013
3.0879
-1.4953
2.7017

0
.9
.8884
.0657
-.0116
.0647

.9
8711
.0983

-.0289
.0940

.9
.6892
4363

-.2108
.3820

equality restricted EMM estimator

Oy
.675
.5836
.1926

-.0914
.1695

363
3423
1213
-.0207
1195

185

.1636
.1380
.0286
1350

(6%
-.4106
~.5249
3759
~.1143
3581

-.368

-.5671
.5590

-.1991
.0523

-.858
-1.8327

2.8495
-1.4797

2.4352

o
.95
.9365
.0438
-.0135
.0417

.95
9237
0739

-.0263
.0690

.95
7416
4019

-.2083
3437

Oy
4835
.4386
1305
-.0449
1225

.26
2577
1023

-.0023
1023

.0964
.1449
.1340
.0485
.1249

(6%
1642
~.3084
2772
~.1442
2367

1472
~.3620
6130
-.2148
5741

141
-1.4194
2.6460
1.2784
2.3167

T=500, H=10, Fixed GMM weighting matrix, 1,000 replications

0
.98
9629
.0332
-.0171
.0284

.98
9515
0765

-.0285
.0710

.98
7999
3724

-.1801
.3260

Oy
.308
.2958
.0914

-.0122
.0906

.166

1781
.0845
0121
.0837

0614
1131
1251
0517
1139



K2

10
mean
rmse
mean bias
std. dev.

1
mean
rmse
mean bias
std. dev.

.1
mean
rmse
mean bias
std. dev.

K2

10
mean
rmse
mean bias
std. dev.

1
mean
rmse
mean bias
std. dev.

.1
mean
rmse
mean bias
std. dev.

Table 6

Mean, root mean square error, mean bias and standard deviation of the

o
-.821
-.8752
2388
-.0542
.2326

-. 186
-.8426
3343
-.1066
.3168

-. 706
-1.7295
2.3196
-1.0235
2.0815

0
.9
.8940
.0281
-.0060
.0275

.9
.8859
.0447

-.0141
.0425

.9
7559
.3270

-.1441
.2936

inequality restricted EMM estimator
T=1,000, H=10, Fixed GMM weighting matrix, 1,000 replications

Oy
.675
.6726
0712

-.0024
0711

363

3703
0677
.0073
0673

185

.1684
.1085
0334
.1033

« 0
-.4106 .95
-4726 9427

1836 .0225
-.0620 -.0073

1728  .0213
-.368 .95
-.4679  .9366

2396 .0326
-.0999 -.0134

2178 .0297
-.353 .95
-1.2584  .8226
2.1294  .2995
-.9054 -.1274
1.9273 2711

Table 7

Oy « 1) oy
4885 -.1642 .98 .808
4870 -.2395  .9706 .3188
.0568 .1498  .0183 .0445
.0035 -.0753 -.0094 .0108
.0567 1295 0157 .0432

.26 -1472 .98 .166
2725 -.2521  .9658 .1840
.0541 2023 0277 .0485
.0125 -.1049 -.0142 .0180
.0527 1730 .0237  .0450
.096/ -.141 .98  .0614
1381 -.9353 .8680 .1062
.1010 1.9963 .2813 .0955
.0417 -.7943 -.1120 .0449
.0920 1.8314  .2581 .0843

Mean, root mean square error, mean bias and standard deviation of the

o
-.821
-.8228
3243
-.0018
3243

-. 186
-.8249
S677
-.0889
.3568

-. 706
-1.6778
2.3131
-.9718
2.0991

0
.9
.9000
0378
.0000
0378

.9
.8885
.0490

-.0115
.0476

.9
7631
.3264

-.1368
2963

equality restricted EMM estimator
T=1,000, H=10, Fixed GMM weighting matrix, 1,000 replications

Oy
675
.6032
.1416

-.0718
1220

363
.3497
.0869
-.0133
.0859

185

.1580
.1062
.0223
1037

« 0
4106 .95
-.4610  .9443

2337 .0268
-.0504 -.0057

2282 .0262
-.368 .95
-.4557 9385

2518  .0336
-.0877 -.0115

.2360  .0315
-.8353 .95
-1.2176  .8282
2.0173  .2847
-.8646 -.1218
1.8226  .2573

Oy « ) Oy
4835 -.1642 .98 .308
.4524 -.2373 9714 .3020
.0953 1734 .0199  .0622
-.0311 -.0731 -.0086 -.0060
.0901 1572 0179  .0619

.26 -.1472 .98 .166
.2580 -.2480  .9668  .1753
.0653 3091 .0388  .0530
-.0020 -.1001 -.0132 .0093
.0653 2922 .0364 .0521
.0964 -.141 .98 .0614
1343 -.8975 .8733 .1015
.1015 1.8984 2676 .0923
.0380 -.7565 -.1067  .0401
.0941 1.7412  .2455 .0831



Table 8
Mean, root mean square error, mean bias and standard deviation of the
inequality restricted EMM estimator
T=2,000, H=10, Fixed GMM weighting matrix, 1,000 replications

K2 « 1) Ou « 1) Oy « 1) Oy
10 -.821 .9 675 -.4106 .95 4835 -.1642 .98 308
mean -.8590 .8957 .6777 -.4463  .9458 4872 -.2074  .9747 .3150
rmse .1603  .0190 .0510 1157 .0138  .0407 .0932 .0117 .0319
mean bias  -.0380 -.0043 .0027 -.0357 -.0042 .0037 -.0432 -.0053 .0070
std. dev. .1558  .0185 .0509 1101 .0132  .0406 0826 .0104 .0312
1 -.786 .9 .363 -.368 .95 .26 -.1472 .98 .166
mean -.7960 .8921 .3696 -.4184  .9432 .2676 -.2009 9727 .1752
rmse 1955 .0261 .0465 1323 .0180 .0366 1109 .0156  .0342
mean bias  -.0600 -.0079 .0066 -.0504 -.0068 .0076 -.0537 -.0073 .0092
std. dev. 1860  .0249 .0460 1223 .0167 .0358 .0970 .0137 .0330
.1 -.706 .9 .185 -.358 .95 .0964 -.141 .98 .0614
mean -1.2351  .8254 .1604 -.7558  .8933 .1256 -4874 9313 .0934
rmse 14174 .2001 .0791 1.0600 .1493 .0703 1.0634 .1423 .0654
mean bias  -.5291 -.0746 .0254 -.4028 -.0567 .0292 -.3464 -.0487 .0320
std. dev. 1.3150 .1856 .0750 9805  .1382 .0640 9555 .1337 .0570
Table 9

Mean, root mean square error, mean bias and standard deviation of the
equality restricted EMM estimator
T=2,000, H=10, Fixed GMM weighting matrix, 1,000 replications

K2 « 1) Oy « 1) Oy « 1) Oy
10 -.821 .9 675 -.4106 .95 4885 -.1642 .98 .308
mean -.8229  .8999  .6288 -.4249 9485  .4576 -.2012 9758  .3027
rmse 2397 .0279  .1083 1351 .0159  .0693 0952 .0110 .0435
mean bias  -.0019 -.0001 -.0462 -.0143 -.0015 -.0259 -.0370 -.0042 -.0053
std. dev. 2396 .0279  .0980 1343 .0158 .0643 0877 .0102 .0432
1 -. 786 .9 .363 -.368 .95 .26 -.1472 .98 .166
mean -7798  .8943  .3549 -.4149 9439  .2593 -.1954 9736 .1723
rmse 2212 .0295  .0596 1498 .0199  .0449 1043 .0138  .0349
mean bias  -.0438 -.0057 -.0081 -.0469 -.0062 -.0007 -.0482 -.0064 .0063
std. dev. 2168  .0290  .0590 1422 .0190  .0449 0925 .0123 .0343
1 -.706 .9 135 -.858 .95 .0964 -.141 .98 L0614
mean -1.1955 .8310  .1549 -.7130  .8994 1212 -.4184  .9410 .0885
rmse 1.3864 .1956 .0783 9254 1301  .0687 6934  .0969 .0601
mean bias  -.4895 -.0690 .0199 -.3600 -.0506 .0248 -.2774  -.0390 .0271

std. dev. 1.2971 1830  .0757 8525 1198 .0641 6355  .0887  .0537



