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Abstract

Aumann’s knowledge operator can map a measurable event to one that is not
measurable. Thus his theorem regarding agreement of subjective probabilities does
not apply to uncountable information partitions. The event that an agent knows a
measurable event is measurable, if the agent’s information partition is induced by a
measurable function from the state of the world to the agent’s type. Nevertheless,
“usual” set theory (Zermelo-Fraenkel axioms and axiom of choice) can be extended in
two different ways, one of which imples the generalization to uncountable partitions
of Aumann’s “agreement theorem” and the other of which is conjectured to imply its
negation.

JEL classification: D82, D83, D84
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1 Introduction

The research to be reported here generalizes Robert Aumann’s theory of common knowledge
(1976; 1999a; 1999b). In his 1976 paper, Aumann restricted his attention to environments in
which each agent has a countable information partition.1 That assumption is restrictive in

∗I am grateful to Marcin Peski for a discussion that led toward the positive results in the pa-
per. Support for this research has been provided by a gift from the Human Capital Foundation
(http://www.hcfoundation.ru/en/) to the Center for the Study of Auctions, Procurements, and Com-
petition Policy at Penn State University.

1This is a partition of the possible states of the world. Aumann defines an agent to know an event in a
state of the world, if the event is a superset of the block in the agent’s information partition that contains
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some applications, such as in applications to financial economics where it is desired to repre-
sent an agent’s information by the value of a nonatomically distributed random variable. The
range of such a random variable must be uncountable, so Aumann’s “agreement theorem”—
the corollary of which is the important theorem in financial economics that traders who share
identical prior beliefs cannot have common knowledge that there are mutual gains to purely
speculative trade among them—cannot be applied. The 1999 papers do not successfully
fix the problem.2 It will be shown here that, for the class of environments in which infor-
mation partitions are uncountable, the agreement theorem can be proved by assuming an
additional set-theoretic axiom to the axioms typically invoked in economics (that is, to the
Zermelo-Fraenkel axioms along with the axiom of choice). On the other hand, it is conjec-
tured that the generalization of Aumann’s result is inconsistent with an alternate extension
of set theory.

For Aumann, ‘knowledge’ is synonymous with ‘information’, and both words mean direct
observation. Beginning with research by Brandenburger and Dekel (1987), a largely parallel
body of game theory has arisen, in which certainty—belief with subjective probability 1—
replaces knowledge as an object of investigation and as a concept invoked in the statements
of substantive results. Especially in view of the issue regarding the set-theoretic foundation
of common knowledge that I have just described, a legitimate question is: why not dispense
with knowledge and with common knowledge, and instead focus exclusively on certainty and
on common certainty? The theorem regarding impossibility of mutually beneficial, purely
speculative trade can be reformulated in that way. However, except for strategic-form games
in which players share common prior beliefs, the analogy between common knowledge and
common certainty is not exact.3 Moreover, regardless of how close a parallel might exist
between the results regarding common knowledge and common belief in a game or economic
model, in the formulation of a game, it is important to maintain the conceptual distinction
between what what agents observe and what they believe. There are situations in which
the distinction between observing an event to have occurred and merely being subjectively
certain that it has occurred is crucial to the specification of agents’ payoffs. For example,
in Anglo-American judicial systems, a criminal defendent can be convicted on the evidence
of someone’s testimony that she has observed him committing the crime with which he is
charged, but her testimony that she is subjectively certain that the defendant committed
the crime would be inadmissable if it were not based on observation. That is, what the
person who is testifying believes is irrelevant to, but what she has observed is decisive for,
whether the defendant will be acquitted or convicted. This example suggests that the issues
considered here will arise in the formalization of such situations as decision problems or
games, even in cases where optimal actions and equilibrium strategy profiles can be defined
in terms of belief rather than of knowledge.

that state of the world. An event is common knowledge among a group of agent if each agent knows the
event, each knows that everyone else knows it, each knows that everyone else knows that everyone else knows
it, and so forth.

2The formal theory specified here is compared to Aumann (1999a,b) in section 9.
3For example, Ben-Porath (1997) shows that common certainty of players’ rationality cannot substitute

for common knowledge of their rationality in justifying the backward-induction solution of a game.
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2 Events regarding knowledge and certainty

Consider an agent whose prior beliefs are specified by a probability space (Ω,B, P ), where B
is the Borel σ-algebra on Ω and P : B → [0, 1] is a countably additive probability measure.
It is assumed that4

Ω is a complete, separable metric space.

B is the σ-algebra of Borel subsets of Ω.
(1)

The agent’s information partition Π satisfies

Π ⊆ B \ {∅} and ∀π ∈ Π ∀π′ ∈ Π [π = π′ or π ∩ π′ = ∅] and
⋃

Π = Ω. (2)

That is, Π partitions Ω into Borel-measurable subsets.5 For each ω ∈ Ω, the agent’s infor-
mation set at ω is the unique element π ∈ Π such that ω ∈ π.

Define the σ-algebra BΠ ⊆ B by

BΠ = {X | X ∈ B and ∀ω ∈ X ∃π ∈ Π [ω ∈ π ⊆ X]}. (3)

BΠ is the σ-algebra of Borel-measurable sets, regarding the occurrence or non-occurrence of
which the agent is informed. Note that Π ⊆ BΠ.

The agent’s posterior beliefs are specified by a regular conditional probability function
p : B × Ω→ [0, 1], that is, by a function that satisfies the following conditions.

For every ω, pω(X) = p(X,ω) defines a Borel probability measure. (4)

For every X ∈ B, pX(ω) = p(X,ω) is BΠ-measurable. (5)

pω(π(ω)) = 1 a.s. (6)

For every X ∈ B and Y ∈ BΠ,

∫
Y

pX(ω) dP = P (X ∩ Y ). (7)

Consider an event X ∈ B. That the agent knows X is also an event, as is the event that
the agent is certain of X. Let K(X) and C(X) denote the knowledge and certainty events
respectively. Here, and henceforth in this paper, event means simply a subset of Ω. It does
not necessarily mean (as in general mathematical usage) that the subset is a Borel set or an
element of some other σ-algebra. Indeed, to find a sufficient condition for measurability of
K(X) is the major theoretical problem to be addressed here.

Following Aumann (1976), the agent is specified to know an event X when he is in state
ω if his information set in ω is a subset of X. That is, all of the states of the world that his
information does not exclude from being the true state are in X. Formally,

K(X) = {ω | ∃π ∈ Π [ω ∈ π ⊆ X]}. (8)

4More generally, it can be assumed that (Ω,B) isomorphic to a Borel subset of a Polish space, that is, of
a topological space that could be characterized in terms of a metric satisfying this assumption.

5A Borel-measurable set is simply an element of B. A P -measurable set with respect to a probability
measure is a broader concept that will be defined (with respect to a probability measure P ) below.
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As discussed above, the agent is specified to be certain of X in ω if pω(X) = 1. That is,

C(X) = {ω | pω(X) = 1}. (9)

Definitions (8) and (9), along with properties (5)–(7) of the definition of regular conditional
probability, imply the following lemma.

Lemma 1 For every X ∈ B, K(X) ⊆ X and C(X) ∈ BΠ. For all X ∈ BΠ, P (X4C(X)) =
0.6

3 A measurability problem with K(X)

Knowledge of a Borel-measurable event is not necessarily a measurable event, even in the
weaker (than Borel) sense of being measurable with respect to the completion of some Borel
measure. An example of this problem will be constructed momentarily. To prepare for this
example, recall what is the completion of a measure.

Let 2Ω denote the power set of Ω, and let P : Ω→ [0, 1] be a countably additive measure.
Then define P∗ : 2Ω → [0, 1] by P∗(X) = sup{P (Y ) | Y ∈ B and Y ⊆ X} and define P ∗ :
2Ω → [0, 1] by P ∗(X) = inf{Z | Z ∈ B and X ⊆ Z}. The set BP = {X | P∗(X) = P ∗(X)}
is a σ-algebra, the events in which will be called P measurable. The restriction of P ∗ to BP
is a countably additive measure that coincides with P on B. To simplify notation, P will
be considered to be defined on BP . The measure on this enlarged σ-algebra is called the
completion of P .7

An atom of B is a smallest non-empty element of B (that is, a non-empty element of B,
no nonempty, proper subset of which is also an element of B). A probability measure P is
purely atomic if there is a countable set X of atoms of B, such P (Ω \

⋃
X) = 0.

Lemma 2 There is an event V such that

∀P [P is not purely atomic =⇒ V is not P measurable ].8 (10)

Example 1 An information partition Π and a Borel-measurable event X, such that

∀P [P is not purely atomic =⇒ K(X) is not P measurable ].

6The symmetric-difference operation on sets is denoted by 4.
7Halmos (1970, Chapters II–III) presents this material in detail.
8Oxtoby (1980, Theorems 5.3, 5.4). The proof utilizes the Axiom of Choice.
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Let Ω = [0, 1], and let V be an event satisfying (10). Let X = {ω/2 | ω ∈ V \ {0, 1}}.
Clearly X ⊆ (0, 1/2) and X satisfies (10), since that property is not affected by deletion of
a finite set or by a linear transformation. Define Π by

ω ∈ π ⇐⇒


π = {ω, ω + 1/2} if ω ∈ X,
π = {ω, ω − 1/2} if ω − 1/2 ∈ X,
π = {ω} otherwise.

(11)

Now it will be shown that, although [0, 1/2] is Borel measurable, K([0, 1/2]) is not P mea-
surable for any P that is not purely atomic. K([0, 1/2]) = [0, 1/2] \ X, and therefore
[0, 1/2] \K([0, 1/2]) = X. Since the difference of two P -measurable sets is also P measur-
able, and since X is not P measurable if P is not purely atomic, K([0, 1/2]) cannot be P
measurable if P is not purely atomic.

Example 1 shows that, if Π satisfies (2) and X ∈ B, nevertheless it is possible that K(X)
defined by (8) may not be measurable with respect to any prior belief that is not purely
atomic. To embed the example in the full model of an agent specified in section 2, satisfying
all of the conditions (1)–(7), it is sufficient to specify a non-purely-atomic prior belief P .
Parthasarathy (1967, Theorem 8.1) shows that there is a regular conditional probability
measure satisfying (4)–(7) that represents the agent’s posterior belief.9

4 Measurable assignment of knowledge states induces

measurable knowledge events

The measurability problem identified in example 1 does not occur (for any prior probability
measure), if the agent’s information partition is induced by a Borel-measurable function
τ : Ω → T , where each T is a separable, complete metric space of knowledge states (or
types).10

Assume that

T is a separable, complete metric space, and T is the Borel σ-algebra on T. (12)

Let A denote the product σ-algebra B ×T on Ω× T . Define a subset X of either Ω or T to
be analytic if it is the projection of a set Y ∈ A. Define a subset X of either Ω or T to be
universally measurable if, for every measure µ, µ∗(X) = µ∗(X).

Lemma 3 A countable union of analytic sets is analytic. Every analytic set is universally
measurable. The complement of a universally measurable set is universally measurable.11

9To apply Parthasarathy’s theorem, let X and Y both be Ω, let C = BΠ and let π be the identity mapping.
10Π is induced by τ if Π = {τ−1(t) | t ∈ T} \ {∅}.
11The first assertion is proved in Bertsekas and Shreve (1978, Corollary 7.35.2). The second is proved in

Bertsekas and Shreve (1978, Corollary 7.42.1). The third is immediate from the definition of measurability
with respect to µ.
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Lemma 4 If τ : Ω → T is Borel measurable, and X ⊆ Ω and Y ⊆ T are analytic, then
τ(X) and τ−1(Y ) are analytic.12

Proposition 1 If Π is the information partition induced by a Borel-measurable function
τ : Ω → T , where T is a separable, complete metric space, then for every X ∈ B, K(X) is
universally measurable.

Proof K(X) = {ω | τ(ω) /∈ τ(Ω\X)} = Ω\τ−1(τ(Ω\X)). Event τ−1(τ(Ω\X)) is analytic
by lemma 4, so it is univerally measurable by lemma 3. Therefore K(X) = Ω\τ−1(τ(Ω\X))
is universally measurable, again by lemma 3.

5 Common knowledge

Aumann (1976) formalizes the theory of common knowledge and proves an “agreement the-
orem” that, if agents’ posterior probabilities of an event in some some state of the world are
commonly known to them, then the posterior probabilities are identical if the agents share a
common prior. Aumann makes an assumption that implies that the information partition of
each agent is a countable set of measurable events, each of which has positive prior probility.
In this section, it will be shown that a measurability problem related to example 1 can occur
otherwise.

Consider a finite set I of agents, and let each agent i have information partition Πi.
Let ΠI be the common-knowledge partition, which is the finest partition that is at least as
coarse as each Πi.

13 Define KI(X) =
⋂

i∈I Ki(X). The event that X is common knowledge
is
⋂

n∈NK
n
I (X). Denote this event by K∞I (X).

Analogously to (8) (which defines K(X) for an individual agent), the event that event
X is commonly known is defined by

ω ∈ K∞I (X)⇐⇒ ∃π ∈ ΠI [ω ∈ π ⊆ X]. (13)

The following example, which builds on example 1, shows that an element of ΠI may fail
to be measurable with respect to a prior belief that is not purely atomic.

Example 2 A non-measurable event in a common-knowledge partition

Consider two agents. Let Π1 be the information partition constructed in example 1.
(Recall that the construction is based on an event X ⊆ (0, 1/2) that is not measurable
with respect to any measure that is not purely atomic.) Let Π2 = {[1/2, 1]} ∪ {{ω} |
ω < 1/2}. Both agents’ information partitions consist solely of events in B. However,
ΠI = {[1/2, 1] ∪X} ∪ {{ω} | ω < 1/2 and ω /∈ X}. Since [1/2, 1] ∪X is the disjoint union
of a Borel set and X, it is not measurable with respect to any measure that is not purely
atomic. (Otherwise X would also be measurable, contrary to assumption.)

12Bertsekas and Shreve (1978, Proposition 7.40).
13Π is as fine as Π′ if ∀π ∈ Π ∃π′ ∈ Π′ π ⊆ π′. It is strictly finer if, furthermore, the two partitions are

not identical. Π′ is as coarse as Π if Π is not strictly finer than Π′.
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6 The common-knowledge partition under measurable

assignment of knowledge states

As in the case of events defined by an individual agent’s knowledge, the non-measurability
problem illustrated by example 2 can be ruled out by assuming that there is a measurable
assignment of knowledge states. Specifically, if each agent’s information partition is induced
by a Borel-measurable type function τi : Ω → Ti (where each Ti is a separable complete
metric space), then the common-knowledge partition consists of analytic events. The key to
proving this fact is stated in terms of a function πI : 2Ω → 2Ω defined by

πI(X) =
⋃
i∈I

[Ω \Ki(Ω \X)] =
⋃
i∈I

τ−1
i (τi(X)). (14)

Lemma 5 The element π of ΠI such that ω ∈ π satisfies

π =
⋃
n∈N

πn
I ({ω}).14 (15)

Proposition 2 Every element of ΠI is analytic, and is thus universally measurable.

Proof For an arbitrary event X, πI(X) =
⋃

i∈I τ
−1
i (τi(X)). Therefore, by lemma 3, πI(X)

is analytic if X is analytic. Suppose that ω ∈ π ∈ ΠI . By induction, every set πn
I ({ω}) is

analytic. Therefore, by lemma 3 and lemma 5, π is analytic, and thus universally measurable.

7 Generalizing Aumann’s agreement theorem

Aumann’s (1976) theorem concerns the pairwise comparison of agents’ posterior probabilities
of an event X, in states of the world in which their posterior probabilities of that event
are common knowledge. Given this topic, there is no loss of generality from making the
simplifying assumption that there are only two agents. Following Aumann, assume in this
section that I = {1, 2} and that P is the agents’ common prior probability measure, and let
pi(·, ω) be the regular conditional probability of agent i (conditioning on BΠi

). Fix an event
X, and define

L = {ω | p1(X,ω) < p2(X,ω)} and G = {ω | p1(X,ω) > p2(X,ω)}
and E = {ω | p1(X,ω) = p2(X,ω)} (16)

It will be convenient to reformulate Aumann’s result by studying the event that the two
agents’ posterior probabilities of X are commonly known not to be equal. Aumann proves

14This equation formalizes the conclusion of the paragraph analyzing reachable from ω, in Aumann (1976,
p. 1237).
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that this event is empty. That strong result is a consequence of his assumption that every
non-empty, measurable event has positive measure. Without that assumption, the conclusion
would be that the commonly known non-agreement event is null (that is, that it has prior
probability zero). Thus, Aumann’s theorem is tantamount to the following proposition and
its corollary.

Proposition 3 If each agent’s information partition is induced by a Borel-measurable type
function τi : Ω→ Ti (where each Ti is a separable complete metric space),

ΠI is countable, (17)

and M is an event that satisfies

M =
⋃
{π | π ∈ ΠI and π ⊆M}, (18)

then P (M ∩ L) = P (M ∩G) = 0 and P (M ∩ E) = P (M).

Proof By proposition 2, every element of ΠI is P -measurable. By (17), every union of
elements of ΠI is P -measurable. In particular, by (18), M , M ∩ L, M ∩G, and M ∩ E are
all P -measurable. The last three sets partition M .

For each of these sets M ∩ K (K ∈ {L,G,E}), the condition (7) of the definition of
regular conditional probability states that∫

M∩K
p1(X,ω) dP (ω) = P (M ∩K ∩X) =

∫
M∩K

p2(X,ω) dP (ω). (19)

Since p1(X,ω) < p2(X,ω), for all ω ∈ L,
∫
M∩L p1(X,ω) dP (ω) <

∫
M∩L p2(X,ω) dP (ω) if

P (M∩L) > 0. Thus, by (19), P (M∩L) = 0. An analogous argument shows that P (M∩G) =
0, so P (M ∩ E) = P (M).

The following proposition is virtually a corollary of proposition 3, but it is not quite a
special case of that proposition because hypothesis (17) is not invoked.

Proposition 4 If each agent’s information partition is induced by a Borel-measurable type
function τi : Ω→ Ti (where each Ti is a separable complete metric space), Z ∈ B, ω ∈ π ∈ ΠI ,
P (π) > 0, and π ⊆ p−1

1Z(p∗1) ∩ p−1
2Z(p∗2) (where piZ denotes i’s posterior probability of Z as

represented in clause (5) of the definition of regular conditional probability), then p∗1 = p∗2.

Proof In proposition 3, take X = p−1
1Z(p∗1)∩ p−1

2Z(p∗2) and M = π. Note that, because M is
the union of a countable set (specifically, of a singleton) of elements of ΠI , the countability
of ΠI does not have to be assumed.

Remarks:

1. Proposition 4 corresponds most closely to Aumann’s statement of his theorem. It is
included—with its extremely short proof—to substantiate that proposition 3 expresses
the main content of the result and is the appropriate version of it to be generalized.
Proposition 4 itself is a poor candidate for generalization because typically, in a setting
where P is nonatomic, no element of ΠI will have positive measure.
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2. Aumann (1976) invokes an even stronger countability assumption than condition (17).
His condition implies that the functions τi satisfying the first hypothesis of the propo-
sition can be constructed, although that hypothesis is not explicit in his theorem.

3. For the no-mutual-gains-to-speculative-trade theorem, the result about L and M rather
than the result about E is directly relevant. That is, for it to be commonly known
that there is a mutual gain to speculative trade, the direction of the inequality between
agents’ posterior beliefs—not just the fact that they are not equal—must be commonly
known. In order to be commonly known, such an event must be null.

4. In proposition 4 and in proposition 5 below, condition (17) is replaced by alternate
conditions that imply that M is P -measurable. Because the propositions are iden-
tical to proposition 3 in other respects, the proof of proposition 3 establishes those
propositions as well, once this measurability condition has been proved.

8 A set-theoretic condition for K∞I (X)

to be measurable

A full-strength generalization of Aumann’s agreement theorem would be simply to remove
the countability hypothesis of the statement that K∞I (X) is P -measurable. The usual axioms
of set theory (ZFC)—the Zermelo-Fraenkel axioms (ZF) together with the Axiom of Choice—
are apparently not strong enough to prove or disprove such a generalization. It can be proved,
however, from an additional axiom, the axiom of projective determinacy (PD). On the other
hand, it seems likely to be inconsistent with another axiom, the axiom of constructability
(V=L) It has been proved in ZF that the axiom of constructability implies the axiom of
choice. The prevailing conjecture among set theorists is that PD is also logically consistent
with ZFC.15

8.1 Projective sets

The results to be derived below are consequences of the fact—to be proved momentarily—
that K∞I (X) is a countable intersection of projective sets.

A subset Z of a Polish space Ω is projective if either

1. Z is analytic; or

2. Ω \ Z is projective; or

3. there is a projective subset V ⊆ Ω × Ω′ (where Ω′ is some Polish space) such that
Z = {v∈Ω | ∃w∈W (v, w) ∈ V }.

That is, a set is projective if it is an analytic subset of some Polish space, or if it can be
obtained from analytic sets via finitely many operations of complementation and projection.

15Jech (2002) is among the textbooks that state these axioms and examine them in detail.
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Lemma 6 If each agent’s information partition is induced by a Borel-measurable type func-
tion τi : Ω→ Ti (where each Ti is a separable complete metric space), then for every Borel-
measurable set X and every number n, Kn

I (X) is a projective set. K∞I (X) is a countable
intersection of projective sets.

Proof That every Kn
I (X) is projective is proved by induction. The basis step is that

K0
I (X) = X, and X is a Borel set and thus an analytic set. The induction step closely

resembles the proof of proposition 1. (Note that the graph of a Borel-measurable function
is an analytic set, so the images and inverse images of projective sets under τi are projective
sets.) K∞I (X) is a countable intersection of projective sets because K∞I (x) =

⋂
n∈NK

n
I (X).

As has been mentioned above, two axioms have opposite implications regarding whether
or not all projective sets are universally measurable. ZF+V=L implies that a non-measurable
projective set exists. I conjecture that, assuming V=L, an example can be constructed of
a set X ∈ B such that K∞I (X) is not universally measurable. ZFC+PD implies that every
projective set is universally measurable. In that case, since every K∞I (X) (for X ∈ B) is a
countable intersection of projective sets,ZFC+PD entails that every K∞I (X) is universally
measurable.

8.2 Agreement of agents’ posterior probabilities

The following generalization of Aumann’s theorem is provable in ZFC. Its hypotheses (20)
is implied by the axiom of projective determinacy. The proof is parallel to the proof of
proposition 3, with lemma 6 and the fact that a countable intersection of P -measurable sets
is P -measurable playing the role that the countability hypothesis of proposition 3 plays in
the proof of that proposition.

Proposition 5 If each agent’s information partition is induced by a Borel-measurable type
function τi : Ω→ Ti (where each Ti is a separable complete metric space) and

every projective event is P -measurable (20)

then, for the events L, G, and E defined in equation (16), K∞I (L), K∞I (G), and K∞I (E) are
all P -measurable, and P (L) = P (G) = 0.

9 Comparison between section 2 and

Aumann’s framework

The framework of section 2 closely follows a single-agent specialization of Aumann (1999a,b).
Now several differences in exposition, and minor differences in specification, are discussed.

In (1999a), Aumann defines an information partition in terms of a mapping from the
states of the world to an abstract set of knowledge states. The information partition is
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induced by the equivalence relation of mapping to the same knowledge state. The framework
of this paper is equivalent in this regard, since information sets can be taken to be the
knowledge states. When Π is viewed in a natural way as a correspondence from each state
of the world to its equivalence class in the information partition, it functions as Aumann’s
mapping from states of the world to knowledge states.

In (1999b, section 12), Aumann defines a knowledge-belief system. While the mapping
to knowledge states in (1999a) is not assumed to possess any measurability property, the
information sets of a knowledge-belief system are assumed to be measurable events as in
(2). However, (Ω,B) is assumed only to be an abstract measurable space, rather than to be
derived from a separable, complete metric space.

A knowledge-belief system includes a function π that satisfies conditions (4) that pω is
a measure for every ω and (5) that pX is measurable for every X. Aumann assumes that
K(X) ⊆ C(X), which is slightly stronger than assumption (6) here.16 Specifically, (6) and
the definitions of K and C imply that P (K(X) \ C(X)) = 0, while Aumann’s assumption
can be reformulated as K(X) \C(X) = ∅. Aumann also assumes that, for every X ∈ B and
α ∈ [0, 1], K(p−1

X (α)) = p−1
X (α). This assumption is implied by assumption (5) that pX is

BΠ measurable (which entails that p−1
X (α) ∈ BΠ because {α} is the intersection of countably

many open sets) and the definition (8) of K (which entails that ∀X ∈ BΠ K(X) = X).
Aumann’s knowledge-belief system does not have an analogue of (7), which is the condi-

tion of Bayesian consistency between prior and posterior beliefs. Rather, the system specifies
only posterior beliefs. If desired, prior beliefs of a single agent could be specified by taking
(7) as a definition. However, that approach would have limitations in a multi-agent setting.
For example, if it is desired to impose a common-prior assumption (cf. Harsanyi (1967–68)),
then it is more straightforward to do so directly than to verify that the implications of the
assumption regarding agents’ posterior probabilities are satisfied.

16Note that example 1 and example 2 are counterexamples to measurability within Aumann’s framework
as well as within the framework of this paper, since the examples satisfy this assumption.
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