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Abstract

A single unit of a good is to be sold by auction to one of many potential

buyers. There are two equally likely states of the world. Potential buyers

receive noisy signals of the state of the world. The accuracies of buyers’

signals may differ. A buyer’s valuation is the sum of a common value

component that depends on the state and an idiosyncratic private value

component independent of the state. The seller knows nothing about the

accuracies of the signals or about buyers’beliefs about the accuracies. It

is common knowledge among buyers that the accuracies of the signals are

conditionally independent and uniformly bounded below 1 and above 1/2,

and nothing more. We demonstrate a modified second price auction that

has the property that, for any δ > 0, the seller’s expected revenue will be

within δ of the highest buyer expected value when the number of buyers

is suffi ciently large and buyers make undominated bids.

Keywords: Robustness, Optimal auctions, Incentive Compatibility,

Mechanism Design, Interdependent Values, Informational Size

JEL Classifications: C70, D44, D60, D82

1 Introduction

Models of auction design typically start with a distribution of possible expected

values from which potential buyers’ values are drawn independently. When

buyers’know their own values, second price auctions are natural candidates for

selling an object: buyers have a dominant strategy to bid their value, and in
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presentations and anonymous referees for helpful conversations and suggestions, and Daniel
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the outcome of the auction, the object is sold to the highest value buyer. It

can be argued that, while this is very desirable, there are really no “absolutely

private" problems. As soon as there is the slightest chance that the winner of

the auction may want to resell the object for sale at a future date, or that he

cares even slightly about how much his heirs will be able to sell the object upon

his death, the problem becomes one of interdependent values: my value of the

object depends on other buyers’signals.

An obvious response to this is that economic models often simplify real-world

aspects of a problem in order to focus attention on what seem to be the more

important aspects. Underlying this view is the notion that insights gleaned from

the simpler model that suppresses seemingly less important details carry over,

more or less, to the real problem of interest. There is, however, a delicate issue

concerning the problem at hand: Jackson (2009) presents a simple example in

which the second price auction does not have either a symmetric equilibrium or

an equilibrium in undominated strategies. The example shows that equilibrium

exists only in the extremes of pure private and pure common values; existence

in the private value model is not robust to a slight perturbation.

In this paper, we present a modification of the second price auction that gives

to the seller, in the presence of suffi ciently many potential buyers, an expected

revenue that is approximately equal to the revenue the seller could obtain if all

information were public. The mechanism is of interest beyond this performance.

Since Wilson (1987), researchers have been aware that the common method of

finding optimal mechanisms often relies on implausible assumptions regarding

what is common knowledge among the mechanism designer and the participants

of the economic problem at hand. Over the past several decades, there has

emerged a large literature on “robust mechanism design”that aims to identify

mechanisms that perform well according to some criterion while relaxing the

common knowledge assumptions.1

The common knowledge assumptions we make are markedly weaker than

what is usually assumed. Informally, we consider an interdependent value auc-

tion problem. There is a finite number of equally likely states of nature, and

a given buyer’s value for the object to be sold is the sum of a common value

component that depends on the state and an idiosyncratic value that is state-

independent. Buyers receive a noisy signal about the state of nature. The

accuracies of the buyers’signals are not necessarily the same. Upper and lower

bounds on the accuracies are common knowledge among the buyers. Buyers

1See Bergemann and Morris (2012) and Borgers (2015), Chapter 10 for discussions of robust
mechanism design.
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may or may not have beliefs about their own or other buyers’accuracies, but

no assumptions are made about such beliefs. The seller knows nothing about

the buyers’ information. Much of the work following Wilson’s critique has

focused on relaxing the assumptions regarding what the mechanism designer

knows about players but has maintained common knowledge of much of the

information structure among the players themselves. Our assumptions of what

is common knowledge among the players is substantially weaker than usually

made.

1.1 Literature review

McLean and Postlewaite (2004) (hereafter MP2004) analyzed an interdepen-

dent value model similar to the model in this paper. That paper focused on

the role of “informational size” introduced in McLean and Postlewaite (2002).

A given player’s informational size in an asymmetric information problem is,

roughly, how much that player’s information might affect the probability distri-

bution over states of nature when other players truthfully reveal their private

information. MP2004 shows that when buyers’ informational size is small, a

seller can use a modified second price auction that generates nearly the same

revenue as would be the case if the common value part of players’information

were public. McLean and Postlewaite (2017) (hereafter MP2017) shows how

one can construct two-stage mechanisms for this kind of interdependent prob-

lem that extract the common value part of private information in the first stage,

transforming the problem in the second stage into a private value problem. The

models in these papers follow the standard mechanism design approach in which

there is a prior that is common knowledge among the mechanism designer and

the participants in the problem. Bayes equilibrium is the solution concept in

these papers.

The mechanism in this paper will be a two stage mechanism similar to that

in MP2017, with the second stage being a second price auction. It differs in that

there is no assumed probability distribution and, consequently, Bayes equilib-

rium cannot be the solution concept. Rather, we assume that potential buyers

do not make dominated bids in the second stage auction. A buyer in the second

stage will not have a well defined probability distribution over states, hence

she will not be able to compute her expected value for the object to be sold.

However, she will be able to put upper and lower bounds on what the expected

value would be if she knew other buyers’noisy signals about the state and the

accuracies of those signals. We restrict buyers to bid no lower than the mini-
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mum possible expected value over all possible realizations of the signals. While

a buyer in the second stage will be able to put tight bounds on the expected

value when there are many buyers, we want to emphasize that the second stage

auction remains one of interdependent values. We discuss this further in the

last section.

Du (2018) presents a mechanism to sell a common value object that maxi-

mizes the revenue guarantee when there is one buyer and shows that the revenue

guarantee of that mechanism converges to full surplus as the number of buyers

tends to infinity. Du assumes that the prior distribution of the common value

is known. His mechanism, however, guarantees good revenue for every equi-

librium, while as we discuss in the last section, our result focuses on “truthful

revelation”outcomes.2

Wolitzky (2016) studies mechanism design and the possibility of weakening

assumptions of agents’ beliefs. Toward this end, he assumes that agents are

maxmin expected utility maximizers a la Gilboa and Schmeidler (1989).3 Our

assumption about what agents know is substantially weaker, but Wolitzky’s

results hold for a fixed (possibly small) number of agents while our result is for

large numbers of agents.

2 The model

Consider an auction model with n players and a single indivisible object. Player

i’s valuation for the object is the sum of a common value component and an

idiosyncratic private value component. The private value component of player

i is denoted ci and we assume that c1, .., cn are realizations of i.i.d. random

variables taking values in [0, 1]. The distribution function F is assumed satisfy

F (0) = 0 and F (1) = 1 and is differentiable and strictly increasing on [0, 1].

The common value component depends on the realization of one of two equally

likely states of nature a and b. In particular, player i’s valuation for the object

is given by ci + v(a) in state a and ci + v(b) in state b where we assume that

v(a) < v(b). Players observe the state only after the object has been allocated.

However, each player receives a signal ti ∈ {α, β} correlated with the state. The
players’signals are independent conditional on the state and i receives signal

ti = α (signal ti = β) conditional on state a (state b) with probability λi > 1
2 .

2See also a related paper by Bergemann, Brooks and Morris (2017).
3Wolitzky also summarizes other recent papers examining the effect of weakening the com-

mon prior assumption.
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For each t = (t1, .., tn) ∈ {α, β}n and each i, let

fnα (t−i) := |{j : tj = α and j 6= i}|

with a similar definition for fnβ (t−i).

The critical feature of this model is the assumption that buyer i does not

know the accuracy parameters of the other buyers nor does he know his own

accuracy parameter λi. Players do however know the lower and upper bounds for

these accuracies, i.e., buyers know the values of the numbers x and y satisfying

1

2
< x ≤ λi ≤ y < 1

for each i. We denote the set of vectors of accuracies Λn = {(λ1, ..., λn) : λi ∈
[x, y]}, and by λ a generic element of Λn.

We propose a two stage auction mechanism whose extensive form is described

as follows.

Stage 1: Each buyer i observes his signal ti and private value ci and makes a

(not necessarily honest) report of his signal to the auctioneer. If buyer i reports

signal β and at least n2 other buyers report β, then all buyers who have reported

β (including i) advance to the second stage. If buyer i reports signal α and at

least n
2 other buyers report α, then all buyers who have reported α (including

i) advance to the second stage. If buyer i’s report is not a majority report, then

i exits the game with a payoff of 0.

Stage 2: Suppose that k + 1 bidders advance to the second stage where

k ≥ n
2 .With probability ε, the auctioneer will randomly choose (with probability

1
k+1 ) one of the second stage buyers to be awarded the object outright. With

probability 1−ε, the auctioneer will conduct a k+1 bidder second price auction.

In our framework, we will only assume that the bounds x and y are common

knowledge among the buyers. In addition, we do not specify beliefs regarding

the accuracy profile λ ∈ Λn so that, as a result, we cannot specify an equilibrium

in the two stage game. We will instead only assume that, in the second stage,

buyers submit undominated bids.4 More precisely, suppose that buyer i has

advanced to the second stage and will participate in the second stage auction

along with k other buyers. Denote the set of other buyers as S and note that

|S| = k.

4Chiesa, Micali and Zhu (2015) analyze a private value model in which agents have incom-
plete preferences and are restricted to choosing undominated strategies.
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Definition: A bid τ i by buyer i in the second stage auction is dominated if
there exists a bid τ ′i such that

a. for every (σj)j∈S and for every λ ∈ Λn, the expected payoff to buyer i

when bidding τ ′i is at least as high as that attained when bidding τ i, and

b. for some (σj)j∈S and λ ∈ Λn, i’s expected payoff is higher when bidding

τ ′i than that attained when bidding τ i.

Before moving to the formal analysis, we will present an example that illus-

trates the basic purpose of the two stages of our mechanism.

The basic idea is to elicit and make public the information that gives rise to

interdependent values in the first stage, turning the second stage into a private

value problem. The interdependency results from buyers’noisy state signals,

and buyers are asked to report those signals in the first stage. In general buyers

may have an incentive to misreport those signals: if the common value is higher

in state b than in state a, a buyer who gets a noisy signal β that the state is

b has an incentive to report signal α that the state is a. Doing so lowers other

buyers’beliefs that the state is b, which lowers other buyers’expected value of

the object, leading them to bid lower in the second stage.

Our mechanism gives buyers an incentive to truthfully reveal their state

signal by including a buyer in the second stage auction if and only if his an-

nouncement is in the majority. If all other buyers are reporting truthfully, a

buyer has a better chance of being included in the second round by reporting

truthfully than by misreporting.

While a buyer is more likely to get into the second stage auction by reporting

truthfully, this is not enough to assure honest reporting. Consider the following

example.

Suppose there are two equally likely states, a and b, three buyers, and buy-

ers receive conditionally independent signals about the state where P (α|a) =

P (β|b) = .6.5 Player i′s utility function is v(s) + ci, s ∈ {a, b}; the ci’s are
independent draws from the uniform distribution on [0, 1].

Suppose buyer 1 receives signal β. His belief is now that P (b|β) = .6. If he

announces β he will be in the majority unless the two other buyers both receive

signal α. The probability of this is .16 if the state is b and .36 if the state is

a. Thus, conditional on having received signal β, buyer 1’s report of β will be

a majority report with probability .76. If buyer 1 reports α, he will be in the

majority unless the two other buyers both receive signal β. The probability of

this is .36 if the state is b and .16 if the state is a. Thus, conditional on having

5For this example we assume that the set of vectors of accuracies is a singleton.
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received signal β, buyer 1’s report of α will be a majority report with probability

.72. Hence, as is expected, he has a greater chance of being in the majority by

announcing truthfully when his signal is β than by misreporting.

However, there is a possible gain from misreporting. The probability that the

buyer is in the majority when he reports α after seeing β is .72. When all buyers

report truthfully and are informed of the numbers of reports of α and β, all

buyers who participate in the second stage auction have the same beliefs about

the probabilities of the states; that is, the asymmetry of information regarding

the common value components of buyers’information has been eliminated. But

when buyer 1 reports α when he has seen signal β, the buyer distorts the beliefs

of the other buyers. For example, if buyers 2 and 3 both report α, they observe

that all three second stage buyers reported α. Consequently, P (b|α, α, α) = .064

and the expected value of the common value component to them is .064 · v(b) +

.936 · v(a). Player 1, however, knows that his signal was β, and P (b|2 α′s and
1 β) = .288. The expected value of the common value component to buyer

1 is .288 · v(b) + .712 · v(a). Similarly, when one of the other buyers received

signal α and one received β, and buyer 1 reports α when he received β, buyer 1’s

posterior probability of state b is higher than other buyers’posterior probability.

For buyer 1 then, there is a potential benefit from reporting α when he sees β:

conditional on a majority of buyers announcing α, buyer 1 will have distorted

other buyers’ expected values so that their expectation of the common value

component is lower than it would be if those buyers knew his true signal. This

translates into lower bids by those buyers in the second stage auction, and hence,

a lower price that buyer 1 will pay should he win the object.

This potential benefit to buyer 1 of announcing α when he sees β must be

weighed against the probability of getting to the second stage. The expected

gain from misreporting depends on v(b) − v(a): when this difference is large

enough, buyer 1 will do better by misreporting when he sees β. Thus, the

greater chance of getting into the second stage auction may not alone be enough

to incentivize truthful reporting.

The above discussion points out a buyer’s tradeoff between maximizing the

chance of getting to the second stage auction and the benefits of distorting

other buyers’beliefs. But it is clear that when the accuracy of buyers’signals is

uniformly bounded below by x > 1/2 and above by y < 1, the degree to which

a buyer believes that he can alter other buyers’beliefs by misreporting goes to

zero as the number of buyers goes to infinity.

To summarize, we have so far argued that the gain to a buyer from mis-

reporting his state signal when other buyers report truthfully goes to zero as
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the number of buyers goes to infinity. To ensure that there is no gain to such

misreporting we modify the second stage. With probability 1−ε the buyers will
engage in a second price auction; with probability ε the object for sale will be

given at no charge to one of the majority announcers who have advanced to

the second stage. We will show that, when there are many buyers, this small

modification will be suffi cient to assure that a buyer has a strict incentive to

announce truthfully if other buyers are doing so.

It is useful to provide a sketch of the argument. Choose ε > 0. Fix buyer i

and suppose that buyer i receives signal β and all other buyers report honestly

in the first stage and choose undominated bids in the second stage.

If i reports β along with k other buyers and advances to the second stage

then he is awarded the object outright with probability ε
k+1 . With probability

1 − ε, i participates in a k+1 buyer auction in which exactly k+1 buyers have
received signal β. If Ai(fnβ (t−i) = k, ti = β) denotes the payoff to i in the

auction, then i’s second stage payoff is

z(fnβ (t−i) = k, ti = β) = (1−ε)×Ai(fnβ (t−i) = k, ti = β)+
ε

k + 1
×[expected lottery payoff].

If i instead reports α and advances to the second stage then he is awarded

the object outright with probability ε
k+1 . With probability 1− ε, i participates

in a k+1 buyer auction in which exactly k buyers have received signal α. If

Ai(f
n
α (t−i) = k, ti = β) denotes the payoff to i in the auction, then i’s second

stage payoff is

z(fnα (t−i) = k, ti = β) = (1−ε)×Ai(fnα (t−i) = k, ti = β)+
ε

k + 1
×[expected lottery payoff].

Buyer i will honestly report β if∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β) ≥
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

and the following steps outline why this is true if n is suffi ciently large. In

particular, the argument proceeds by showing that, for suffi ciently large n, there

exists an integerm(n) > n
2 for which the following steps are valid whenever each

ci < 1.6 .

Step 1: Suppose that k ≥ m(n).

6 In the proof, m(n) = x(n− 1)− (n− 1)
2
3 .
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Then for every admissible accuracy profile, we have

P (b|fnβ (t−i) = k, ti = β) ≈ 1

implying that i’s expected lottery payoff is

ci + E[v|fnβ (t−i) = k, ti = β] ≈ ci + v(b).

Similarly,

P (b|fnα (t−i) = k, ti = β) ≈ 0

implying that i’s expected lottery payoff is

ci + E[v|fnα (t−i) = k, ti = β] ≈ ci + v(a).

Step 2: Suppose that k ≥ m(n). Then7

λiAi(f
n
β (t−i) = k, ti = β)− (1− λi)Ai(fnα (t−i) = k, ti = β) ≈ o( 1

k + 1
)

where mo( 1m )→ 0 as m→∞ and

λi[i’s expected lottery payoff | fnβ (t−i) = k, ti = β]

−(1− λi)[i’s expected lottery payoff | fnα (t−i) = k, ti = β]

>
ε

(k + 1)

[
v(b)− v(a)

2

]
.

Step 3: Combining steps 1 and 2, we conclude that for all k ≥ m(n) and

for any accuracy profile, we have

λiz(f
n
β (t−i) = k, ti = β)− (1− λi)z(fnα (t−i) = k, ti = β)

> o(
1

k + 1
) +

ε

(k + 1)

[
v(b)− v(a)

2

]
>

ε

(k + 1)

[
v(b)− v(a)

4

]
.

Step 4: For each k ≥ m(n) and for any accuracy profile, an application of

7When ci < 1, the payoff to the winning bidder converges to zero at an exponential rate.
This is shown in Step 5 of the proof.
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the law of large numbers yields∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)

−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k, ti = β|b)

−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k, ti = β|a).

Furthermore,

P (fnβ (t−i) = k, ti = β|b) = λiQk(n)

and

P (fnα (t−i) = k, ti = β|a) = (1− λi)Qk(n)

where ∑
k≥m(n)

Qk(n) ≈ 1.

Step 5: Combining the previous steps, we conclude that∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k, ti = β|b)

−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k, ti = β|a)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)λiQk(n)−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)(1− λi)Qk(n)

≈
∑

k≥m(n)

[
λiz(f

n
β (t−i) = k, ti = β)− (1− λi)z(fnα (t−i) = k, ti = β)

]
Qk(n)

≈
∑

k≥m(n)

ε

(k + 1)

[
v(b)− v(a)

4

]
Qk(n)

≥ ε
[
v(b)− v(a)

4(n+ 1)

] ∑
k≥m(n)

Qk(n)

≈ ε
[
v(b)− v(a)

4(n+ 1)

]
implying that∑

k≥n
2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β) > 0.
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3 The result

Proposition: Suppose that v(b) > v(a) ≥ 0 and xv(a) > (1 − x)v(b). Then

for each ε > 0, there exists an N such that for each n ≥ N the following holds:

for every accuracy profile (λ1, .., λn) satisfying 1
2 < x ≤ λj ≤ y < 1 for each

j, for every characteristic profile (c1, .., cn) with ci ∈ [0, 1[ and for every profile

(σ1, .., σn) of undominated bids, the auction game is incentive compatible at the

first stage. That is∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β) > 0

and∑
k≥n

2

z(fα(t−i) = k, ti = α)P (fα(t−i) = k|ti = α)−
∑
k≥n

2

z(fβ(t−i) = k, ti = α)P (fβ(t−i) = k|ti = α) > 0.

Remark: For large n, the seller’s expected revenue is close to

1 +
v(a) + v(b)

2
.

To see this, suppose that n is large. If the second stage auction has k ≥ n
2

bidders who have reported α and are choosing undominated bids, then the

bidders estimate the value of the common component to be approximately v(a)

so the winning bidder pays approximately v(a) plus the second highest value of

the private valuations of the other k−1 bidders. For large n this is approximately

1 + v(a). If the second stage auction has k ≥ n
2 bidders who have reported β

and are choosing undominated bids, then the bidders estimate the value of

the common component to be approximately v(b) so the winning bidder pays

approximately v(b) plus the second highest value of the private valuations of

the other k − 1 bidders. For large n this is approximately 1 + v(b). Therefore

the seller’s expected revenue from the mechanism is approximately equal to

[1 + v(a)]P (fα(t) ≥ n

2
) + [1 + v(b)]P (fβ(t) ≥ n

2
) = 1 +

v(a) + v(b)

2
.

4 Proof

Assume that i sees β and ci where 0 ≤ ci < 1.8

8 In this proof, the assumption that v(b) > v(a) plays an important role. The case in which
player i sees signal α employs essentially symmetric computations but now the assumption
that xv(a) > (1− x)v(b) comes into play.
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For a profile t of signals, note that

fα(t−i) + fβ(t−i) = n− 1

Let

πβk(n) = E[v|fβ(t−i) = k, ti = β]

π∗k(n) = E[v|fα(t−i) = k, ti = β]

and note that

πβk(n) > π∗k(n).

The dependence of fα(t−i) and fβ(t−i) on n and the dependence of π
β
k(n) and

π∗k(n) on λ1, .., λn are suppressed for notational ease.

Step 1: To begin, note that there exists an integer N0 such that for each i
and for all n ≥ N0, we have
n

2
< x(n−1)−(n−1)

2
3 ≤ λi(n−1)−(n−1)

2
3 < λi(n−1)+(n−1)

2
3 ≤ y(n−1)+(n−1)

2
3 < n .

Applying Hoeffding’s inequality, it follows that

P

(∣∣∣∣fβ(t−i)

n− 1
−
∑
j 6=i λi

n− 1

∣∣∣∣ > 1

(n− 1)
1
3

|b
)
≤ 2 exp

(
−2(n− 1)

1

(n− 1)
2
3

)
.

Therefore,

P
(
fβ(t−i) > y(n− 1) + (n− 1)

2
3 |b
)
≤ P

fβ(t−i) >
∑
j 6=i

λj + (n− 1)
2
3 |b

 ≤ 2 exp[−2(n−1)
1
3 ]

and

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)
≤ P

fβ(t−i) <
∑
j 6=i

λj − (n− 1)
2
3 |b

 ≤ 2 exp(−2(n−1)
1
3 ).

Similarly,

P

(∣∣∣∣fα(t−i)

n
−
∑
j 6=i λj

n

∣∣∣∣ > 1

(n− 1)
1
3

|a
)
≤ 2 exp(−2(n− 1)

1

(n− 1)
2
3

)

implying that

P
(
fα(t−i) > y(n− 1) + (n− 1)

2
3 |a

)
≤ P

fα(t−i) >
∑
j 6=i

λj + (n− 1)
2
3 |a

 ≤ 2 exp(−2(n−1)
1
3 )
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and

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)
≤ P

fα(t−i) <
∑
j 6=i

λj − (n− 1)
2
3 |a

 ≤ 2 exp(−2(n−1)
1
3 ).

We also will need the following probability bounds that follow from the bounds

computed above:

(i)

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|a

)
= (1− λi)P

(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)

≤ 2(1− λi) exp(−2(n− 1)
1
3 ).

(ii)

P
(
fα(t−i) ≥

n

2
, ti = β|b

)
= λiP

(
fα(t−i) ≥

n

2
|b
)

= λiP
(
fβ(t−i) <

n

2
|b
)

≤ λiP
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)

≤ 2λi exp(−2(n− 1)
1
3 ).

(iii)

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|b

)
= λiP

(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)

≤ 2λi exp(−2(n− 1)
1
3 )

(iv)

P
(
fβ(t−i) ≥

n

2
, ti = β|a

)
= (1− λi)P

(
fβ(t−i) ≥

n

2
|a
)

= (1− λi)P
(
fα(t−i) <

n

2
|a
)

≤ (1− λi)P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)

≤ 2(1− λi) exp(−2(n− 1)
1
3 ).

Step 2: We first compute bounds for πβk(n) = E[v|fβ(t−i) = k, ti = β] that

hold for all suffi ciently large n. To begin, note that

πβk(n) = v(a)P (a|fβ(t−i) = k, ti = β) + v(b)P (b|fβ(t−i) = k, ti = β)

= v(b)− [v(b)− v(a)]P (a|fβ(t−i) = k, ti = β).

13



Since

P (fβ(t−i) = k, ti = β|a) = (1− λi)
∑

S⊆N\i
:|S|=k

∏
j∈S

(1− λj)

 ∏
j /∈S∪i

λj


and

P (fβ(t−i) = k, ti = β|b) = λi
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


we conclude that for all n ≥ N0,

P (a|fβ(t−i) = k, ti = β) =
P (fβ(t−i) = k, ti = β|a)

P (fβ(t−i) = k, ti = β|a) + P (fβ(t−i) = k, ti = β|b)

=
1

1 +

λi
∑
S⊆N\i
:|S|=k

∏
j∈S

λj


 ∏
j /∈S∪i

(1−λj)


(1−λi)

∑
S⊆N\i
:|S|=k

∏
j∈S

(1−λj)


 ∏
j /∈S∪i

λj


≤ 1

1 +
(

x
1−x

)2k−n+2
Let d = 2x− 1. Then there exists an integer N1 > N0 such that n ≥ N1 and

k ≥ x(n− 1)− (n− 1)
2
3 imply that(
x

1− x

) (n−1)d
2

≤
(

x

1− x

)2k−(n−1)
.

To see this choose N1 so that d− 2(n− 1)−
1
3 > d

2 for all n ≥ N1. Next, suppose
that note that k ≥ x(n− 1)− (n− 1)

2
3 . Then x

1−x > 1 implies that

(
x

1− x

)2k−(n−1)
≥
(

x

1− x

)2(x(n−1)−(n−1) 23 )−(n−1)
and it follows that(

x

1− x

)2k−(n−1)
≥
(

x

1− x

)2(x(n−1)−(n−1) 23 )−(n−1)
=

(
x

1− x

)(n−1)[d−2(n−1)− 1
3

]
≥
(

x

1− x

) (n−1)d
2

.

In particular, (
x

1− x

)2k−n+2
≥
(

x

1− x

) (n−1)d
2 +1

14



Therefore, n ≥ N1 implies (since v(a) < v(b)) that for each k ≥ x(n− 1)−
(n− 1)

2
3 we have

v(b) ≥ πβk(n)

= v(b)− [v(b)− v(a)]P (a|fβ(t−i) = k, ti = β)

≥ v(b)−

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)].

Step 3: We next compute bounds for π∗k(n) = E[v|fα(t−i) = k, ti = β] that

hold for all n suffi ciently large. To begin, note that

π∗k(n) = v(a)P (a|fα(t−i) = k, ti = β) + v(b)P (b|fα(t−i) = k, ti = β)

= v(a) + [v(b)− v(a)]P (b|fα(t−i) = k, ti = β).

Since

P (fα(t−i) = k, ti = β|a) = (1− λi)
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


and

P (fα(t−i) = k, ti = β|b) = λi
∑

S⊆N\i
:|S|=k

∏
j∈S

(1− λj)

 ∏
j /∈S∪i

λj


we conclude that

P (b|fα(t−i) = k, ti = β) =
P (fα(t−i) = k, ti = β|b)

P (fα(t−i) = k, ti = β|a) + P (fβ(t−i) = k, ti = β|b)

=
1

1 +

(1−λi)
∑
S⊆N\i
:|S|=k

∏
j∈S

λj


 ∏
j /∈S∪i

(1−λj)


λi
∑
S⊆N\i
:|S|=k

∏
j∈S

(1−λj)


 ∏
j /∈S∪i

λj


≤ 1

1 +
(

x
1−x

)2k−n .
If n ≥ N1 and k ≥ x(n− 1)− (n− 1)

2
3 then we conclude from step 2 that(

x

1− x

)2k−(n−1)
≥
(

x

1− x

) (n−1)d
2
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implying that(
x

1− x

)2k−n
=

(
x

1− x

)2k−(n−1)(
1− x
x

)
≥
(

x

1− x

) (n−1)d
2

(
1− x
x

)
=

(
x

1− x

) (n−1)d
2 −1

.

Therefore,

v(a) ≤ π∗k(n)

= v(a) + [v(b)− v(a)]P (b|fα(t−i) = k, ti = β).

≤ v(a) +

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)].

Step 4: For each n, define

ηn =

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)]

and note that

ηn ≥

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)].

Summarizing Steps 2 and 3, we conclude the following: for every n ≥ N1 and

for each k ≥ x(n− 1)− (n− 1)
2
3 , we conclude that

v(b) ≥ πβk(n) ≥ v(b)−

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)] ≥ v(b)− ηn

v(a) ≤ π∗k(n) ≤ v(a) +

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)] = v(a) + ηn.

Step 5: We now compute estimates of player i’s expected payoff in the

second stage auction if player i reports α and advances to the second stage. In

this case, i will join k ≥ n
2 other players that have reported α. Therefore, i’s

expected payoff in the presence of k other players is equal to

(1− ε)× [expected auction payoff} + ε

k + 1
× [expected lottery payoff]

= (1− ε)Ai(fα(t−i) = k, ti = β) +
ε

k + 1
[ci + π∗k(n)]
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So we must estimate player i’s expected payoff in the auction.

Suppose that n ≥ N1 and k ≥ x(n−1)− (n−1)
2
3 . As summarized in Step 3,

we have computed a bound for π∗k(n), so we must estimate player i’s expected

payoff in the auction.

Suppose that each bidder i submits an undominated bid ci + zi where zi is

bidder i’s estimate of the expectation of the common value component. Then

v(a) + ηn ≥ zi ≥ v(a)

for every i. Note that the rv cj + zj takes values in [zj , 1 + zj ]. Next, note that

for each ζ ∈ [maxj 6=i zj , 1 + maxj 6=i zj ] we have

Prob

(
max
j 6=i
{cj + zj} ≤ ζ

)
=
∏
j 6=i

F (ς − zj).

Next, note that for suffi ciently large n, we have

ci + zi ≤ 1 + max
j 6=i

zj

so we consider two cases. If maxj 6=i zj ≥ ci + zi, then i’s auction payoff is 0. If

maxj 6=i zj < ci + zi, then then i’s auction payoff is∫ ci+zi

maxj 6=i zj

[ci + π∗k(n)− ζ]
d

dy

∏
j 6=i

F (ζ − zj)

 dy = (π∗k(n)−zi)
∏
j 6=i

F (ci+zi−zj)+(ci+zi−max
j 6=i

zj)
∏
j 6=i

F (µ−zj)

for some µ satisfying

ci + zi > µ > max
j 6=i

zj .

Since |zi − zj | < ηn for each j and |zi − maxj 6=i zj | < ηn, there exists an

integer N2 > N1 and δ > 0 such that 0 ≤ |ci+zi−zj | ≤ ci+ |zi−zj | < ci+δ < 1

and 0 ≤ |ci + zi −maxj 6=i zj | < ci + δ < 1 whenever n ≥ N2. Therefore, n ≥ N2
and k ≥ x(n− 1)− (n− 1)

2
3 imply that

Ai(fα(t−i) = k, ti = β) = (π∗k(n)− zi)
∏
j 6=i

F (ci + zi − zj) + (ci + zi −max
j 6=i

zj)
∏
j 6=i

F (µ− zj)

≤ ηnF (ci + δ)k + F (ci + δ)k+1.

Step 6: Suppose that n ≥ N2 = max{N0, N1, N2} and k ≥ x(n− 1)− (n−
1)

2
3 .

Let

B = max{z(fβ(t−i) = k, ti = β), z(fα(t−i) = k, ti = β) : t ∈ T, λ ∈ {x, y}n}.
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Recalling that

P
(
fα(t−i) ≥

n

2
, ti = β|b

)
≤ 2λi exp(−2(n− 1)

1
3 )

and

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|a

)
≤ 2(1− λi) exp(−2(n− 1)

1
3 )

we conclude that

∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

=
∑

n
2≤k<x(n−1)−(n−1)

2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a)

+
∑

k≥x(n−1)−(n−1)
2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a)

+
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|b)

≤
∑

k≥x(n−1)−(n−1)
2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a) + 2B exp(−2(n− 1)
1
3 ).

Recalling that

P
(
fβ(t−i) ≥

n

2
, ti = β|a

)
≤ 2(1− λi) exp(−2(n− 1)

1
3 )

and

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|b

)
≤ 2λi exp(−2(n− 1)

1
3 )

we conclude that∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)

=
∑

n
2≤k<x(n−1)−(n−1)

2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)

+
∑

k≥x(n−1)−(n−1)
2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)

+
∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|a)

≥
∑

k≥x(n−1)−(n−1)
2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)− 2B exp(−2(n− 1)
1
3 ).
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Defining

Qk(n) =
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


it follows that

P (fα(t−i) = k, ti = β|a) = (1− λi)P (fα(t−i) = k|a) = (1− λi)Qk(n)

and

P (fβ(t−i) = k, ti = β|b) = λiP (fβ(t−i) = k|b) = λiQk(n).

Therefore,∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

≥
∑

k≥x(n−1)−(n−1)
2
3

[λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β)]Qk(n)− 4B exp(−2(n− 1)
1
3 ).

Step 7: Suppose that n ≥ N2 = max{N0, N1, N2} and k ≥ x(n− 1)− (n−
1)

2
3 .

In this step we estimate

λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β).

Recall that

z(fβ(t−i) = k, ti = β) = (1− ε)Ai(fβ(t−i) = k, ti = β) +
ε

k + 1
[ci + πβk(n)]

and

z(fα(t−i) = k, ti = β) = (1− ε)Ai(fα(t−i) = k, ti = β) +
ε

k + 1
[ci + π∗k(n)].

Applying Step 5, it follows that

−(1−λi)Ai(fα(t−i) = k, ti = β) ≥ −(1−λi)
(
ηn(ci + δ)k + (ci + δ)k+1

)
> −

(
ηn(ci + δ)k + (ci + δ)k+1

)
.

Steps 2 and 3 imply that πβk(n) → v(b) and π∗k(n) → v(a). So choose N3 > N2

so that for all n > N3,

λiπ
β
k(n)− (1− λi)π∗k(n) >

λiv(b)− (1− λi)v(a)

2
≥ xv(b)− (1− x)v(a)

2
> 0.

Therefore,
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λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β) =

λi(1− ε)Ai(fβ(t−i) = k, ti = β) +
ε

k + 1
λi[ci + πβk(n)]

−(1− ε)(1− λi)Ai(fα(t−i) = k, ti = β)− (1− λi)
ε

k + 1
[ci + π∗k(n)]

≥ ε

k + 1

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)ηn(ci + δ)k + (ci + δ)k+1

=
1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)(k + 1)

(
ηn(ci + δ)k + (ci + δ)k+1

))
.

Step 8: Since F (ci + δ) < 1, it follows that for k large enough,

ε

[
xv(b)− (1− x)v(a)

2

]
−(1−ε)(k+1)

(
ηnF (ci + δ)k + F (ci + δ)k+1

)
> ε

[
xv(b)− (1− x)v(a)

4

]
Furthermore, for n large enough,

ε

[
xv(b)− (1− x)v(a)

4

]
(1−2 exp(−2(n−1)

1
3 )−4B(n+1) exp(−2(n−1)

1
3 ) > 0

Consequently, there exists an N > N3 such that for all n ≥ N and k ≥ x(n −
1)− (n− 1)

2
3 , and we conclude that
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∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

≥
∑

k≥x(n−1)−(n−1)
2
3

[λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β)]Qk(n)− 4B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)(k + 1)

(
ηn(ci + δ)k + (ci + δ)k+1

))
Qk(n)

−4B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

4

])
Qk(n)− 4B exp(−2(n− 1)

1
3 )

≥ 1

(n+ 1)

 ∑
k≥x(n−1)−(n−1)

2
3

(
ε

[
xv(b)− (1− x)v(a)

4

])
Qk(n)− 4B(n+ 1) exp(−2(n− 1)

1
3 )


≥ 1

(n+ 1)

(ε [xv(b)− (1− x)v(a)

4

]) ∑
k≥x(n−1)−(n−1)

2
3

Qk(n)

− 4B(n+ 1) exp(−2(n− 1)
1
3 )


=

1

(n+ 1)

[(
ε

[
xv(b)− (1− x)v(a)

4

]) [
P (fβ(t−i) ≥ x(n− 1)− (n− 1)

2
3 |b)

]
− 4B(n+ 1) exp(−2(n− 1)

1
3 )

]
≥ 1

(n+ 1)

[(
ε

[
xv(b)− (1− x)v(a)

4

])
(1− 2 exp(−2(n− 1)

1
3 )− 4B(n+ 1) exp(−2(n− 1)

1
3 )

]
> 0

5 Discussion

1. When the number of buyers is large, the information of a single agent will

generally have a small influence on the expected value of the common compo-

nent. This is related to the idea of informational size that we have employed in

other papers but differs in important ways. Our previous work assumed com-

mon knowledge of the information structure. Thus, if we were able to induce

truthful revelation of agents’ private information about the common compo-

nent and make that information public, there would be common knowledge of

the expected value of that common component. This turns the second stage

auction into a private value auction. In the current paper there is no common

knowledge prior over agents’information - no assumption is made about agents’

beliefs about either the accuracy of their own signal or the signals of others. For
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every probability distribution over buyers’accuracies, one can compute the ex-

pected value of the common component. To prove our main result we show that

there is a lower bound on these expected values that converges to the expected

value given the true state.

The following example illustrates that the convergence is NOT driven by

revelation of all information relevant to the common component, but holds even

if the second stage auction is one of interdependent values. Consider a problem

like that analyzed in the paper in which bidders get noisy signals about the

state where the accuracy is between x and y, where x > 1/2 and y < 1. Suppose

that in addition to the signal about the state, each bidder learns whether the

accuracy of her signal was above or below x+y
2 . The process is as before -

bidders announce their signal (but not the signal about the accuracy) and those

in the majority participate in a second price auction in the second stage. Now,

even though every bidder has information relevant to all other bidders but not

available to them, our result still obtains. This follows since we proved that for

every vector of accuracies the conclusion of the theorem holds.

2. We demonstrated that in our mechanism, when it was assumed that

buyers do not make dominated bids should they reach the second stage auction,

it was optimal for a buyer to correctly reveal his state signal when there were

many buyers and other buyers reported truthfully.9 It would, however, also

have been optimal for a buyer to misreport his signal if all other buyers did so,

for more or less the same reasons that truthful revelation is often not the unique

equilibrium in a standard direct mechanism. To get to the second stage in our

model, a buyer wants to be in the majority; if all other buyers misreport, my

doing so as well maximizes my chance to move to the second stage. It should

be noted, however, that whether all buyers report truthfully or all buyers lie,

the same set of buyers will advance to the second stage and having advanced to

the second stage, the constraints on the bids that are undominated is the same.

Hence, the lower bound on the seller’s expected revenue is the same whether

buyers unanimously announce truthfully or untruthfully in the first stage. This

does not, however, mean that the lower bound is the same for all equilibria. For

example, it is an equilibrium for all buyers to report state a regardless of the

signal they receive, and the lower bound on the seller’s expected revenue would

typically be lower for this equilibrium.

9Note that we do not say that correctly reporting the state signal is an equilibrium. Since
a buyer who reaches the second stage does not necessarily have a well defined probability
distribution over his possible values of the object, he does not have a well defined expected
utility conditional on getting to the second stage.
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3. We treated the case in which there are two equally likely states of nature.

An extension to an arbitrary finite number of equally likely states would be

straightforward. Let {θ1, .., θm} denote the set of states and let {α1, .., αm}
denote the set of signals where 1

2 < x ≤ Pi(αi|θi) ≤ y < 1. That is, the

probability that player i’s signal is "correct" is bounded by x and y. Suppose

that v(θk) denotes the common value in state θk and that v(θi)P (θi|αi) >

v(θj)P (θj |αi) for i 6= j. Then, as in the case analyzed above, if more buyers

have announced state αk than any other state, those buyers proceed to the

second stage auction. As in the case above, a small lottery will induce buyers

to truthfully announce their signals when other buyers do so.

4. We assumed two equally likely states. While it is not critical that the

states be exactly equally likely, the analysis above will break down if the states

have dramatically different probabilities. Suppose the probability of state a is

p and buyers get a state signal that has accuracy .6. If p = .5 and my signal

indicates that the state is a, my belief is that a is the more likely state, and

consequently, other people are more likely to get the signal indicating state a

than a signal indicating state b. However, if p = .01, my posterior beliefs are

that state b is more likely than a, and I have a better chance of getting to the

second stage by misreporting my state signal than by reporting truthfully. If the

states are not equally likely, there will be a minimum accuracy ρ of the signal

for which, when I observe a signal for state a, my belief is that a is the most

likely state. It is necessary and suffi cient that the signal accuracy be at least

this high to elicit truthful reporting.

5. We assumed that the common value components of utility (v(a) and v(b))

were the same for all buyers. One would expect that a similar argument would

hold for some variation in these values across buyers.

6. We assumed that the bounds on the accuracies of buyers’signals were

common knowledge. The intuition underlying the arguments above hold for

deviations from common knowledge that are not too large. Suppose that there

is a subset of buyers for whom the bounds on accuracies are common knowledge

among themselves. If the subset consists of a proportion of the number of

buyers that is close to, but less than, one, the intuition of our result carries

over: bidding in the second stage will generate expected revenue close to the

maximum possible, and it will be incentive compatible for buyers in the subset

to report truthfully if others in the group do so.
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7. We demonstrated that, for a particular auction problem, the incentive

problem stemming from interdependent values can be ameliorated when there

are many buyers. The structure of the argument suggests that there is a general

message. A buyer gains by misreporting that part of his private information that

affects other buyers’values. By doing so the buyer alters other buyers’values

by distorting their beliefs. The information structure in our problem has the

property that as the number of buyers gets large, the degree to which a buyer

can distort others’beliefs gets small, hence small rewards for truthful revelation

induce truthful reporting. When the number of buyers gets large, the aggregate

reward necessary to induce truthful reporting is small because the amount by

which a buyer can distort other buyers’ beliefs decreases faster than rate at

which the number of buyers increases.

While there are information structures for which this is not the case, many

natural information structures share this property. When this property holds,

an important part of agents’asymmetric information —the part leading to in-

terdependent values —can be dealt with at small cost.

8. The mechanism set out above uses the first-stage announcements to con-

vert the initial interdependent value problem into a private value problem in

the second stage, assuming truthful reporting in the first stage. That the sec-

ond period problem is private value makes our analysis of agents’second stage

bidding behavior easier. In the standard second price auction, bidding below

one’s expected value is weakly dominated. In our framework agents do not have

a probability distribution over the accuracies of the signals received, hence,

they do not have a probability distribution over their value of the object being

auctioned. However, the lower bound on the possible accuracies puts a lower

bound on the probability of the correct state of nature over all possible accu-

racies. This, in turn, puts a lower bound for any agent on her expected values

across all possible accuracies, and bidding below this lower bound is dominated.

As the number of agents increases, this lower bound converges (with probability

one) to the value of the object had the underlying state of nature been known.

While it is true that in the mechanism we analyze, the first stage honest

reporting of agents’ signals converts the second stage auction into a private

value auction, that is not necessary for this mechanism to deliver the asymptotic

result. Consider, for example, a variant of the problem we analyze in which each

agent gets a noisy signal of the state of nature, with upper and lower bounds

x and y on the accuracy. Suppose that, unlike in our problem, each agent also

learns that the accuracy is above or below x+y
2 , that is, above or below the
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midpoint of the possible accuracies.10 How does this affect the performance of

our mechanism (in which agents report their signal about the state but not

whether their signal accuracy was above or below x+y
2 ).

The incentive in our mechanism for an agent to honestly report her signal

when other agents do so is unchanged: the chance to participate in the lottery

open to those whose reports are in the majority outweighs any incentive to mis-

represent when there are many agents. The second stage second price auction,

however, will not be a private value auction since each agent now has private

information —whether her signal accuracy is above or below x+y
2 —that is un-

known to other agents but payoff relevant to them. The second stage auction is

close to a private value auction, since in the second stage the non-public infor-

mation any single agent has is of little importance when there are many agents.

But the example in Jackson (2009) discussed above makes clear that auctions

that are almost, but not quite, private value can be problematic.

Despite the fact that the second stage auctions for this problem are not

private value, the performance of the mechanism when the number of agents

increases will be the same as in our initial problem. The fact that the second

stage auction is now an interdependent value problem makes determining an

optimal bid even more diffi cult. But if agents truthfully report their stage

signal in the first period, the lower bound on an agent’s expected value will still

converge to her value had the state been known when the number of agents

increases.

9. Our mechanism provides the incentive to truthfully report agents’state

signals in the first stage by giving the object for free with probability ε to a

randomly chosen member of the first stage majority. One could think of this

as a metaphor for some advantage that accrues to being on the “winning side”.

For example, one could think of firms looking at applicants’announcements and

limiting attention to those who had been in the majority.
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