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Abstract

We study cooperation on evolving social networks with private monitoring and

communication. For arbitrary networks, we construct a class of multilateral restitution

equilibria that attain high cooperation on all supported links, i.e., all links that are

in triangles. These equilibria are both robust—preserving high cooperation between

innocent players on and off the equilibrium path—and local—invariant to players’

beliefs about the network outside their local neighborhoods. Guilty players are not

ostracized; instead they remain involved to sustain cooperation on the network and

while paying restitution by exerting high effort for their innocent partners. When new

players arrive, they strategically form links that in aggregate lead to realistic “small

worlds” network properties, including high support but relatively low clustering.
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1 Introduction

Consider a growing social network in which each link is an ongoing productive relationship.

Within a relationship, the partners benefit from each others’ efforts, but each has an

individual temptation to shirk. Since these relationships are organized within a social

network, there is scope for multilateral enforcement: if a player shirks on one partner, and

that partner informs other players in the network, then eventually the deviator may be

punished by multiple partners. Because the multilateral punishment from the community

is harsher than a bilateral punishment, it can help sustain a higher degree of cooperation.

Since the nature of multilateral enforcement is shaped by the network, players may

strategically choose which relationships to form, anticipating future cooperation. When

new players arrive and find opportunities to connect, they may favor relationships that are

well suited to multilateral enforcement. Over time, players’ choices, aggregated, shape the

long-run evolution of the network and its global properties.

In this paper we introduce a class of multilateral restitution equilibria that implement

multilateral enforcement with private monitoring on an arbitrary network, with two im-

portant properties. First, it is local : each player’s strategy depends only on the structure

of her local neighborhood and the events that occur within it. Second, it is robust : when a

punishment arises, its ramifications do not cascade through the network; instead the effect

is contained within the deviator’s neighborhood.

We apply multilateral restitution equilibria as a tool to study the evolution of the

network when newly arriving players get random opportunities to meet “strangers” and

become “friends”, and then get opportunities to meet friends of friends (building on Jack-

son and Rogers 2007). Their strategic choices, anticipating cooperation equilibrium, result

in a network with “small worlds” properties that are conducive to multilateral enforcement.

In particular, the global network features high “support”, but low “clustering”. High sup-

port means that each pair of linked partners is likely to have at least one mutual neighbor

(Jackson, Rodriguez-Barraquer, and Tan 2012); low clustering means that two players who

share a mutual neighbor are unlikely to be linked to each other. Intuitively, under multi-

lateral restitution a supported link enjoys higher cooperation, so players seek support for

their relationships. In contrast, players do not have an incentive to seek clustering beyond

what is needed to obtain support. In all, our results contribute to a unified understanding

of how multilateral enforcement can both influence and be influenced by the evolution of
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social networks.

Our focus on strategies that are local contrasts with much of the theoretical literature on

multilateral enforcement, which has assumed that the entire network is commonly known.

In reality, the players may observe only a local subset of the entire network. For example,

multilateral enforcement helps support joint production and risk sharing in rural villages of

developing countries. Breza, Chandrasekhar, and Tahbaz-Salehi (2016) surveyed villages

in Karnataka in southwest India, and found that the respondents’ knowledge about the

social network is highly localized.1

We focus on strategies that are robust since infractions arise and are punished in reality,

and yet multilateral enforcement persists rather than breaking down. In the theoretical

literature, early studies of multilateral enforcement either took truthful communication for

granted (simplifying the task of making enforcement robust) or focused on “contagion”

strategies in which a single infraction leads to widespread breakdown of social cooperation.

As social networks and cooperative arrangements are durable in the real world, they must

not rely on widespread breakdown of cooperation as punishment. More recent literature

(particularly Ali and Miller 2016) has identified truthful communication as the key difficulty

in constructing equilibria in which innocent players continue to cooperate. Our multilateral

restitution equilibria guarantee that innocent players will not be harmed by truthfully

conveying information about who has deviated.

Recent work on the theory of cooperation in social networks has largely taken a nor-

mative view on how to compare networks. Broadly speaking, the literature finds that

denser networks yield more cooperation.2 In contrast, the descriptive empirical side of

the literature has found that social networks are not particularly dense. Compared to the

dense networks that are optimal under many theories, real social networks have similarly

high support, but dramatically lower clustering. As a result, for a given population and a

given average degree, real social networks are much more “expansive” (Ambrus, Möbius,

and Szeidl 2014) than is optimal under these theories. In this paper we take a positive

theoretical approach, to study which networks players may form through their strategic

1For instance, 46% of respondents are not able to guess whether there is a link between a given pair
of individuals, and conditional on making a guess, the accuracy is only 33%. Their findings are consistent
with other surveys on people’ knowledge of their networks. For example, Krackhardt (1990) finds that
the accuracy of knowing other people’s connections is 15%–48% within a startup firm with 36 employees;
Casciaro (1998) finds the accuracy is around 45% in a research center of 25 people.

2See, for example, Ali and Miller (2013); Ambrus, Möbius, and Szeidl (2014); Jackson, Rodriguez-
Barraquer, and Tan (2012); Wolitzky (2013); Karlan, Möbius, Rosenblat, and Szeidl (2009).
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Figure 1: (Top) Network enforcement by ostracism; (Bottom) Network enforcement by
multilateral restitution.

interactions. We find that anticipating cooperation, players seek out support for their re-

lationships, generating networks with high support but low clustering, along with other

“small world” characteristics like connectedness, small average distances, and realistic de-

gree distributions.

Multilateral restitution The challenge in constructing robust equilibria with multi-

lateral enforcement on an arbitrary network arises from interactions among overlapping

neighborhoods. After player 1 deviates by shirking on player 2, for multilateral enforce-

ment player 2 should inform player 3 of the deviation, and then both players 2 and 3 should

punish player 1. However, these punishments may interfere with cooperation between play-

ers 2 and 3, since if their payoffs along links 1 : 2 and 1 :3 are depressed, they have less to

lose by shirking on link 2 :3. If both of them are also connected to player 4, then shirking

may start to cascade through the network as a contagion and eventually all partnerships

break down, as illustrated in the top panel of Figure 1.

Multilateral restitution strategies solve this problem by preserving the payoffs of inno-

cent players following a deviation. The deviator is not simply ostracized from the com-

munity; instead he remains active in the network to help sustain cooperation among his
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neighbors. Specifically, after player 1 deviates on player 2, as a restitution punishment

player 1 must exert high effort when meeting player 2 in the future, while player 2 exerts

just enough effort to motivate player 1. At the same time, players 2 and 3 communicate

truthfully and continue cooperating at a high level. Player 3 eventually starts punishing

player 1 as well—either because player 1 shirks on player 3, or because player 3 learns

about player 1’s guilt from player 2. The maximal level of cooperation that a triangle

can sustain on the equilibrium path is that which makes each player indifferent between

working and shirking when facing the threat of maximal punishment by both neighbors.3

Observe that since innocent players 2 and 3 always expect to get their equilibrium payoffs

in their relationships on the 1 : 2 : 3 triangle (it is a surprise for them if player 1 shirks),

restitution punishments do not initiate a contagion. Similarly, if players 1, 2, and 3 are all

connected to player 4, then 4 eventually also punishes 1 while preserving his cooperation

with 2 and 3, as illustrated in the bottom panel of Figure 1. Accordingly, the equilibrium

is robust.

In such an equilibrium, player 2’s effort level on each link depends only on whether the

link belongs to a triangle, so she needs to know only her own neighborhood (her neighbors

and the links among them). Moreover, she might be called upon to punish player 1 for

shirking on a player who is not in her neighborhood, such as player 4 in Figure 1. But she

does not need to learn about player 4’s behavior or even existence; she needs only to hear

from player 3 that player 1 is guilty. To determine how to behave, each player uses only

information about her own neighbors’ behavior.4

Network formation We introduce a dynamic network formation game, in which newly

arriving players strategically form links, anticipating the benefits of multilateral enforce-

ment from the network. We follow the setup of a growing network in Jackson and Rogers

(2007). As each new player enters the community, in the first stage of her arrival she ran-

domly meets some “strangers”, and will link to each (become “friends”) if their idiosyncratic

3In contract law, restitution damages are calculated to erase the “unjust enrichment” obtained by the
party who breached the contract (see Thompson 1984). Within a triangle, this is precisely the punishment
that a deviator faces, since the prospect of punishment makes him indifferent between cooperating and
deviating on the equilibrium path. On a denser network, however, the deviator may suffer restitution
punishments with each of many partners, akin to a legal remedy of paying a multiple of the restitution
damages. Notice that victims are never compensated for being shirked on—restitution punishments operate
in our context as deterrence, not for justice.

4There are further subtleties that we address in our analysis, such as determining which of a deviator’s
neighbors needs to punish him, how to work around the fact that a guilty player cannot be relied upon to
shirk on a partner who doesn’t yet know he is guilty, and what happens if two partners accuse each other.
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linking cost is sufficiently low compared to the benefit they expect from cooperating in the

absence of relationship support. In her second stage, the new player meets her “friends

of friends”; she links to each if their idiosyncratic linking cost is sufficiently low compared

to the benefit of cooperating in the presence of a supporting relationship, since every link

formed in this second stage is supported.

In the third stage, which is new and motivated by multilateral restitution, the new

player seeks support for her unsupported relationships. Specifically, she can revisit her

decisions over links she elected not to form in the second stage. This time, she takes into

account the externality that is provided—forming a new link brings support to one or two

relationships that were unsupported after the second stage. In the first three stages, the

arriving player pays all linking costs, and assumes that all her new friends are innocent. In

the fourth stage, those new friends should pay her their shares of the linking costs; if they

refuse, they become guilty. As a result, the network formation process is also robust, since

the link formation behavior of arriving players is the same on and off the equilibrium path.

As the network grows, it tends toward small worlds properties. First, it inherits several

properties from the Jackson and Rogers (2007) model, including small average distances,

connectedness, and a fat-tailed degree distribution. But because arriving players seek

support for their relationships, the network tends toward higher support, but not higher

clustering. Specifically, we show that as the number of strangers and friends of friends that

arriving players meet increases, the average clustering of the network tends to zero, while

the average support tends to a positive limit. Moreover, the support that arriving players

specifically seek out for their unsupported relationships (i.e., the support created in the

third arrival stage) also tends to a positive limit. Quantitatively, our initial simulations

suggest that this “support seeking” can be responsible for a sizable fraction of the the

limiting support.

1.1 Related literature

Our model of cooperation builds on the private monitoring, variable effort models with

asynchronous interactions, introduced by Ali and Miller (2013, 2016). We allow partners

to exchange cheap-talk messages about their past histories, following Lippert and Spagnolo

(2011) and Ali and Miller (2016). Similar to Ali and Miller (2021), we assume that partners

act sequentially when they meet, enabling the first mover to be punished immediately. Our

modeling innovation is to allow partners to endogenously select which of them is the first

6



mover. By choosing who moves first as a function of the history, the players can attain

higher equilibrium payoffs than if timing (either sequential or simultaneous) were imposed

exogenously. In particular, they can punish the guilty partner by making him move first.

The equilibrium properties on which we focus build on two strands of the prior litera-

ture. We seek equilibria that are robust to contagion, so that a deviation does not cause

a breakdown of cooperation outside the deviator’s neighborhood. This kind of robustness

was first formalized by Jackson, Rodriguez-Barraquer, and Tan (2012). We seek equilib-

ria in which players need only local knowledge, as pioneered by Galeotti, Goyal, Jackson,

Vega-Redondo, and Yariv (2010), and employed by Nava and Piccione (2014) and Camp-

bell (2014). For both robustness and local knowledge, we introduce stronger notions than

used in the prior literature. Our multilateral restitution equilibria, in which guilty players

are not excluded, but rather must work hard to satisfy their punishers, build on the asym-

metric, bilateral renegotiation proof punishments studied by Ali, Miller, and Yang (2016),

which in turn built on the ideas of van Damme (1989).

Substantively, Jackson, Rodriguez-Barraquer, and Tan (2012) and Ali and Miller (2016)

have studied questions that closely relate to ours. Jackson, Rodriguez-Barraquer, and Tan

model each relationship as a fixed-effort repeated prisoners’ dilemma, and assume that

monitoring is public. They show that “social quilts”—networks in which cliques are ar-

ranged as nodes on trees—are optimal when community enforcement must be robust to

contagion and invulnerable to renegotiation. The Ali and Miller (2016) model, like ours, has

private monitoring, variable efforts, and communication; they study “ostracism” equilibria

in which guilty players are excluded while innocent partners continue to cooperate. While

one of their main results is negative (no “permanent ostracism” equilibrium can sustain

more cooperation than bilateral enforcement), their other main result shows how to con-

struct a “temporary ostracism” equilibrium on a complete network that supports strictly

more cooperation than bilateral enforcement. We complement these works by demonstrat-

ing how multilateral enforcement can operate on an arbitrary network, and with agents

holding only local knowledge of the network.

Much of the theoretical literature on social network formation has focused on Nash

equilibrium or pairwise stable networks in symmetric, deterministic environments. Our

network formation game is inspired instead by the stochastic but non-strategic model of

Jackson and Rogers (2007), in which new players, arriving over time, are added to the

network by first linking to random “strangers” (who become “friends”), and then linking
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to “friends of friends.” At the stochastic limit, the resulting networks display “small worlds”

properties. Closer to our network formation model are the stochastic and strategic models

of Golub and Livne (2010) and Campbell (2014), where players first meet strangers and

then meet friends of friends. Both models generate small worlds properties similar (Golub

and Livne) or identical (Campbell) to the Jackson and Rogers model. However, Golub

and Livne assume that each player makes an ex ante strategic decision regarding how

intensively to socialize, and then the entire link formation process follows mechanically

from these decisions. Campbell assumes that players cannot choose how many links to

form or how to allocate them, other than to either form all of them with strangers or

form a fixed fraction of them with friends of friends. Thus in both cases clustering and

support are generated by the same mechanism. In contrast, we assume that players make

case-by-case decisions over which links to form as the individual opportunities arrive; as a

consequence our model contains not only a mechanism that generates both clustering and

support, but also a mechanism that primarily generates support without clustering. As for

payoffs, players in the Golub and Livne model value only direct connections; clustering and

support arise mechanically because friends are valuable. Players in the Campbell model

value support in order to signal high patience; once revealed to be patient they no longer

need support to sustain cooperation in their relationships.5

The networks that form in our model can be interpreted as having both “strong ties”

and “weak ties” (Granovetter 1973), where strong ties are links that are supported and

exhibit high cooperation, while weak ties are links that are unsupported and exhibit low

cooperation. However, in contrast to Granovetter’s analysis it is not particularly likely

that a player with a strong tie to a particular neighbor will seek to connect with others

strongly tied to that neighbor. Instead, it is a player with an initially weak tie to a

particular neighbor who is likely to seek connections to that neighbor’s neighbors in order

to strengthen their tie.

5Campbell (2014) features two other aspects that relate to our work. First, Campbell’s players can
choose the stakes of their relationships. However, these stakes are binary (high or low), and are used only
as screening devices, not to take advantage of multilateral enforcement. Second, Campbell’s players have
only local knowledge of the network, which makes their inference problem of screening types non-degenerate.
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2 The repeated interaction game

At first, we focus on how players can cooperate on a fixed network, in a way that is

robust and local. We study a population of players N = {1, . . . , n} who are arranged on a

network, and interact repeatedly along their network links. The network, G, is a collection

of undirected bilateral links. If players i and j are linked in the network, we write i :j ∈ G,

or ij for short; as synonym, we call them “partners” or “friends”, and call their link a

“partnership” or a “friendship”. Later, in Section 4, we examine how the prospect of

multilateral enforcement influences the formation of the network as new players arrive over

time.

Following the social networks literature, we say a path of length k between player i and j

is a sequence of distinct players {i0, i1, . . . , ik} such that i0 = i, ik = j, and il : il+1 ∈ G for

any l ∈ {0, . . . , k − 1}. Let D(i, j) be the distance between player i and j, defined as the

length of the shortest path between them. Let D(i, i) = 0 and D(i, j) = ∞ if i and j are

not path-connected. Define player i’s D-neighborhood as (gDi , G
D
i ): gDi = {j : D(i, j) ≤ D}

and GDi = {j :k ∈ G : j, k ∈ gDi }. For instance, a player’s 1-neighborhood includes herself,

all her friends, and all the links among herself and her friends.

The repeated interaction game proceeds over time t ∈ [0,∞). Each pair of linked

players, i : j ∈ G, meets at random times generated by a Poisson process of rate λ > 0.

Meetings are i.i.d. across links and over time. Whenever partners i and j meet, they play a

stage game with three phases: communication, sequencing, and effort, as described below.

Players outside the partnership cannot observe when the partners meet or how they behave

when they meet. With this private monitoring, communication is crucial to implementing

multilateral enforcement.

1. Communication: Each player i and j simultaneously sends a cheap-talk message.

Each player’s message space is the power set of the intersection of their 1-neighborhoods.

(The message that player i sends will interpreted as the set of players in that inter-

section that player i considers guilty.)

2. Sequencing: Each player i and j simultaneously sends a message indicating which

partner should go first. If they agree, the agreed-upon order takes place. If they dis-

agree, then one of them is randomly selected to move first, with equal probabilities.6

6For the random selection, we assume that each pair has access to public randomization devices whose
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3. Effort: Let i be the first mover. Then i and j sequentially choose effort levels xi, yj

in [0,∞), where xi indicates that i is the first mover and yj indicates that j is the

second mover.

Player i’s stage game payoff function when partnership ij meets is b(yj)− c(xi), where

b(yj) is the benefit from her partner j’s effort and c(xi) is the cost she incurs from her

own. Similarly, player j’s stage game payoff is b(xi) − c(yj). All players share a common

discount rate r > 0.

We normalize the net value of effort x to b(x)−c(x) = x. Our first assumption (following

Ali, Miller, and Yang (2016)) articulates that higher effort levels increase the temptation

to shirk.

Assumption 1. The cost of effort c is smooth, strictly increasing, and strictly convex, with

c(0) = c′(0) = 0 and limx→∞ c
′(x) =∞. The “relative cost” c(x)/x is strictly increasing.

Strict convexity with the limit condition guarantees that in equilibrium effort is bounded

(as long as continuation payoffs are bounded, which we assume below). Increasing relative

cost means a player requires proportionally stronger incentives to exert higher effort.

Solution concept Our solution concept is plain perfect Bayesian equilibrium, or PPBE

(Watson 2016). This refinement of “weak perfect Bayesian” equilibrium Mas-Colell, Whin-

ston, and Green (1995) imposes Bayesian updating on off-path beliefs, but is less restrictive

and simpler to verify than sequential equilibrium or perfect extended-Bayesian equilibrium

(Fudenberg and Tirole 1991; Battigalli 1996). Since we will construct a particular class of

equilibria without making any claims about optimality, we could adopt a weaker solution

concept. Our use of PPBE assures that our construction does not rely on the kinds of

implausible off-path beliefs that are possible under weak perfect Bayesian equilibrium.

3 Robust community enforcement on a fixed network

In this section we show that community enforcement can sustain high cooperation in the

repeated interaction game on whatever network arises from the network formation game,

in a way that preserves cooperation among innocent players after a deviation, and without

realizations are observed only by that pair. We focus on sequential moves in the main model, because they
yield strictly higher expected payoffs than simultaneous moves (see Remark 3 in the appendix).
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requiring a player to know anything about the network structure or behaviors outside of

his local neighborhood.

To begin with, we seek to sustain high levels of cooperation in society even off the

equilibrium path.

Definition 1. A strategy profile is robust if partners who have not deviated always coop-

erate at the same level, on and off the path of play.

This property is stronger than the robustness criterion used by Jackson, Rodriguez-

Barraquer, and Tan (2012), which allowed for cooperation to break down among a bounded

set of innocent players following a deviation by one of their neighbors.

Next, the strategy profile only requires local knowledge, including both the network

structure and the interactions.

Definition 2. A strategy profile is D-local if each player i’s strategy is invariant to her

beliefs about interactions and network topology outside her D-neighborhood.

We focus on strategy profiles that are 1-local, given a fixed network. It may be that an

event in a player’s 2-neighborhood, but not in his 1-neighborhood, may trigger a sequence

of events that affects his behavior. However, he will not actually need to learn about that

event. For example, in the network in Figure 1, player 4 ultimately punishes player 1 for

having deviated on the 1:2 link, but he does so because player 3 tells him that player 1 is

guilty. That even off-path behavior is invariant to beliefs about the wider network makes

this property stronger than the invariance criterion used by Nava and Piccione (2014),

which allows players’ behavior to depend on their beliefs about the global network in the

course of play.7

3.1 Benchmark cooperation

Our benchmark for high cooperation is the maximum level of cooperation attainable by a

stationary equilibrium on a triangle network. But first we introduce bilateral cooperation,

the maximal cooperation attainable between two partners without the aid of community

enforcement.

7The equilibrium Nava and Piccione construct (for a game of local interaction rather than bilateral
interaction) exploits that possibility by inducing incorrect beliefs about the network following a deviation.
The equilibrium we construct satisfies both our 1-locality criterion and their invariance criterion.
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Bilateral cooperation Consider a strategy profile in which on the path of play first

movers choose effort level x and second movers choose effort level y; off the equilibrium

path each exerts zero effort. The equilibrium path incentive constraints are:

0 ≤ −c(x) + b(y) +

∫ ∞
0

e−rtλ
1

2

(
x+ y

)
dt (1)

0 ≤ −c(y) +

∫ ∞
0

e−rtλ
1

2

(
x+ y

)
dt (2)

The bilateral cooperation levels xB and yB are the effort levels that bind these incentive

constraints. Since the grim trigger punishment is a minmax punishment and each partner’s

effort relaxes the other partner’s incentive constraint, these are the maximum efforts that

can be supported by any stationary equilibrium that does not involve community enforce-

ment. Note that this implies −c(yB) = −c(xB) + b(yB); i.e., the gain from shirking is the

same regardless of whether a player moves first or second, and on the equilibrium path the

first mover receives a negative payoff in the stage game.8

Triangular cooperation Consider a triangle network, and a strategy profile in which on

the path of play first movers choose effort level x and second movers choose effort level y.

Off the equilibrium path, if the first mover deviates, the second mover chooses zero effort

in the current interaction, and both then choose zero effort in all future interactions. If the

second mover deviates, both choose zero effort in all future interactions. In such a strategy

profile, if i deviates on j, both i and j will then shirk in their next meetings with k, so

a “contagion” spreads until cooperation ceases over the whole network. Ali and Miller

(2013) showed in a closely related model that such strategy profiles constitute equilibria if

equilibrium-path incentive constraints bind, since then an induction argument guarantees

the off-path incentive constraints. Moreover, since they implement minimax punishments,

these equilibria maximize cooperation among all stationary equilibria. Here we focus only

on the equilibrium-path constraints, to compute an upper bound on the cooperation that

8We could add another condition that no player receives negative payoff in the stage game, which would
lower the level of efforts and the players’ utilities, and the analysis of the model is analogous.
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can be attained by any stationary equilibrium on a triangle network:∫ ∞
0

e−rte−2λtλ
1

2
b(x) dt ≤ −c(x) + b(y) + 2

∫ ∞
0

e−rtλ
1

2

(
x+ y

)
dt (3)∫ ∞

0
e−rte−2λtλ

1

2
b(x) dt ≤ −c(y) + 2

∫ ∞
0

e−rtλ
1

2

(
x+ y

)
dt (4)

These incentive constraints bind at effort levels xT and yT. As with bilateral cooperation,

the gain from shirking is the same for the first mover and the second mover.

Lemma 1. There exist triangular effort levels xT > xB and yT > yB that bind constraints

(3) and (4).

All omitted proofs are in Appendix A. The triangle can sustain higher levels of effort

because each player faces more punishment if he deviates.

3.2 Robust cooperation with local knowledge

Our main result shows that high levels of cooperation can be sustained in a robust manner,

with players needing only local information about the network and other players’ behavior.

A link ij is supported if there exists k such that ik ∈ G and jk ∈ G; i.e., if i and j have

at least one common friend.

Theorem 1. There exists a robust and 1-local multilateral restitution strategy such that on

any network there exists a plain perfect Bayesian equilibrium in which all players employ

this strategy, and triangular effort levels are attained on every supported link along the

equilibrium path.

Intuitively, robustness requires innocent partners to continue to cooperate with each

other, in which case they do not have to worry about deviations that may occur outside

their local knowledge. In order to achieve this robustness, innocent partners need the help

of their guilty mutual friends to sustain cooperation at a high level off the equilibrium path.

Accordingly, they should not use ostracism as illustrated in the top panel in Figure 1—

instead they should punish the deviator in a less socially wasteful way. We describe the

class of strategy profiles here, and provide the full proof in Section 3.4.

Multilateral restitution strategies operate as follows. Partners who have never deviated

communicate “truthfully”; i.e., when partners i and j meet, partner i reveals who she
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deems guilty among the mutual friends she has with partner j. In the sequencing phase,

they never nominate themselves to move first, with the result that the first mover is always

randomly selected.9 If their link is supported, they cooperate at the triangular levels xT

and yT. If their link is unsupported, they cooperate at the bilateral levels xB and yB.10

Now consider a supported link ij and suppose that player i has deviated on player j.

Then we say that i and j both deem i “guilty.” If i’s deviation occurs in the effort phase

while moving first, j immediately chooses zero effort when moving second in the same

interaction. In either case, thereafter they punish i on the ij link by requiring i to always

be the first mover (that is, both nominate i in the sequencing phase), and choosing effort

levels xP and yP that are calibrated to deliver the equilibrium path payoff to j while

delivering a zero payoff to i:

−c(xP) + b(yP) = 0, and b(xP)− c(yP) =
1

2

(
xT + yT

)
. (5)

Lemma 2 shows that there exists a solution satisfying 0 < xP < xT and 0 < yP < yT.

In addition to player i’s punishment on the ij link, to support triangular levels of

cooperation i must also be punished by at least one other neighbor, such as player k whose

jk link supports ij link. However, once player i is being punished by both players j and k,

imay no longer have an incentive to cooperate at triangular levels with other neighbors l, m,

and so on. To accommodate this potential collapse of incentives, the equilibrium specifies

that guilty i should also eventually be punished by every neighbor reachable via a path

from j that is contained in i’s 1-neighborhood but does not pass through i. The set of such

players—including j—is denoted Σij . Formally,

Σij = {k : ∃ path {j0, j1, . . . , jl} ⊂ g1i s.t. j0 = j, jl = k}. (6)

The punishments within individual relationships may of course be delayed, since in-

formation about i’s deviation must be passed through the network. When i meets such a

neighbor k ∈ Σij , in the communication phase k will reveal if she deems i guilty, in which

case i’s punishment on the ik link starts immediately. If instead k still thinks i is innocent,

9As Section 3.1 noted, the first mover receives a lower payoff than the second mover, so no punishment
is needed to deter deviations on the equilibrium path in the sequencing phase.

10Cooperation at the bilateral level on an unsupported link is motivated by the threat of letting the guilty
player receive zero utility. Since play along unsupported links is measurable with respect to the interactions
along their link, we may ignore them for the remainder of this discussion.
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i may either shirk on k or pretend to be innocent by working. Regardless, eventually all

players in Σij will learn that i is guilty. Since i is punished along at least one other link after

deviating on j, the punishment is sufficiently severe to support triangular cooperation.

Multilateral restitution equilibria are by construction robust and 1-local, and attain

triangular effort on supported links. It remains for us to establish that there exists a mul-

tilateral restitution equilibrium. For this we need to tackle several difficulties stemming

from the fact that the communication is via the network and needs to be incentive com-

patible, and the fact that the set of players Σij that punishes player i for deviations on the

ij link will generally intersect, but not coincide with, the similarly defined sets for other

supported partnerships. Before proving the theorem in Section 3.4, we first illustrate the

difficulty during the communication phase, and how a multilateral restitution equilibrium

handles it.

3.3 Diffusion of information

With private monitoring, it is important to establish that information of a player’s devia-

tion diffuses through the network fast enough to provide sufficient punishment. Truthful

communication cannot be taken for granted: Ali and Miller (2016) show that players would

not communicate truthfully under permanent ostracism if they were cooperating above the

bilateral effort. In this section, we investigate players’ incentives for truthful communica-

tion.

First, a guilty player does not have incentives to communicate truthfully. This lack of

incentive would not be a problem if the guilty player were guaranteed to shirk on every

partner in the punishing set (Σij) as soon as possible, so each partner would learn of his

guilt in a timely manner. However, as shown in the following example, the guilty player

has incentives to slow down the diffusion of information about his guilt, so he may work

with some partners rather than shirking.

Example 1. Consider a “generalized diamond” with “diagonal” players i and k and com-

mon neighbors j, l1, . . . , lm, as shown in Figure 2. In a multilateral restitution equilibrium,

if m is sufficiently large then i, after shirking on j along the equilibrium path, will not

immediately start shirking on k.

Proof. Consider the scenario that player i meets player k immediately after he shirks on
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k

l1

i

j · · · lm

Figure 2: A generalized diamond

player j, so i has not met any of l1, . . . , lm since deviating. In the communication phase,

k indicates she does deem i guilty; then suppose nature chooses i to move first. If i shirks,

his expected payoff is

0 +m

∫ ∞
0

erte−λtλ
1

2
b(x)dt. (7)

Now, we consider another strategy for i, which we will show guarantees a strictly higher

payoff than (7) for m sufficiently large. In this strategy, i cooperates with k in the current

meeting, and shirks on all his neighbors in the future. First, by cooperating with k he

earns b(yT )− c(xT ) < 0 in the current meeting, and at least zero thereafter on link ik. But

on each link ilz, for z = 1, . . . ,m, i expects a strictly higher payoff than he would if k knew

about his shirking. It suffices to show that for m sufficiently large, the improvement is

strictly greater than c(xT )− b(yT ).

We claim that when m is sufficiently large, with a probability above e−1, player i meets

at least
√
m + 1 players from the set {l1, . . . , lm} before k knows about i’s shirking. The

probability that i meets at least
√
m+ 1 of them before k meets i (again), j, or, any other

player i has shirked on, is

m

m+ 2
· m− 1

m+ 2
· · · m−

√
m

m+ 2
≥
(
m−

√
m

m+ 2

)√m
,

which converges to e−1 as m → ∞. Conditional on i meeting these
√
m + 1 players

before k learns i is guilty, he expects his first meeting with each of them to occur ear-

lier on average than the unconditional expected first meeting time. Therefore i’s ex-

pected payoff, from the perspective of his initial meeting with k after shirking on j, is
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at least
√
me−1

∫∞
0 e−rte−λt 12b(x

T) dt. Since this lower bound is strictly increasing and

linear in
√
m, the claim is proven. �

Based on this example, we cannot assume that information always diffuses through

every feasible channel. However, in a multilateral restitution equilibrium, innocent players

are always willing to share information truthfully. The restitution punishments are specif-

ically calibrated to deliver them their equilibrium path payoffs, even off the equilibrium

path. Therefore they cannot benefit from slowing down the diffusion of information. Sim-

ilarly, a guilty player is willing to communicate truthfully about the guilt of others, since

it does not affect how other players treat him.

The truthful communication of innocent players puts a lower bound on the speed of

information diffusion. In the generalized diamond network shown in Figure 2, while i

cannot be relied upon to shirk on k after shirking on j, knowledge of i’s deviation will be

passed from j to k then to each lz. This lower bound is sufficient to show that if players

cooperate at triangular levels on all supported links along the equilibrium path, then i’s

continuation payoff on each link ilz is greater on the equilibrium path than it is off the

equilibrium path after i shirks on j (see Lemma 3). This implies that even if player i hides

his guilt from k, diffusion of knowledge about his guilt still suffices to deter his deviations

on generalized diamond networks. In Lemma 4, we then use an induction argument to

extend this conclusion to arbitrary networks.

3.4 Proof of Theorem 1

We prove that a multilateral restitution equilibrium exists and satisfies the desired proper-

ties, first on a triangle network, then on a “diamond” network, and then on a “generalized

diamond”. Ultimately, we prove by induction that it works on any arbitrary network.

1. Triangle network

2. Diamond network

3. Generalized diamond

4. Arbitrary network

17



Triangle network. Consider a triangle {i, j, k}. The incentives on the equilibrium path

have been verified when deriving the effort levels xT and yT. We need to examine incentives

off the equilibrium path. Start with verifying that player i, after initially deviating on

player j, wants to shirk on player k when k does not know he is guilty, even if he moves

first:

−c(xT) + b(yT) +

∫ ∞
0

e−rte−2λtλ
1

2
b(xT) dt ≤ 0. (8)

This is implied by Equations (3) and (4). It follows that i also wants to shirk on k when

moving second.

Once player i has deviated on player j, j’s immediate gain from a deviating on the ij

link decreases, as shown in the lemma below.11

Lemma 2. xP < xT and yP < yT.

This lemma implies that innocent players prefer not to shirk even off the equilibrium

path, when some of their partners are guilty. Moreover, innocent players cannot gain by

being untruthful, and guilty players by construction cannot gain by deviating.

Diamond network. Consider a diamond network of 4 players, {i, j, k, l} (as {1, 2, 3, 4}
in the network in Figure 1); i.e., all pairs are connected except for link jl. In this network,

we call link ik the “diagonal.”

Lemma 3. On a diamond network, there exists a 2-local multilateral restitution equilibrium

that supports triangular efforts on every link along the path of play.

We focus on the deviation of i on j, because the analysis of other deviations are identical

to either that of the ij deviation or a deviation on a triangle network. From the analysis of

the triangle network, the loss of utility from the ik link is sufficient to deter i from shirking

on j. Now with the additional link il which could be an additional shirking opportunity

for i, the key is to show that i is also weakly worse off on the il link. Specifically, we want

to show that the payoff i gets on the il link is weakly higher on the equilibrium path than

11Here we can invoke the restrictions on off-path beliefs imposed by PPBE: all players’ beliefs must accord
with the behavior specified by the strategy profile after i’s deviation. In this case, j must believe that if she
deviated on i and became guilty, k would learn of her guilt according to the stochastic process generated
by the strategy profile. Henceforth we invoke these restrictions without further note.
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after i has deviated on j. The payoff from the il link on the equilibrium path is∫ ∞
0

e−rtλ
1

2

(
xT + yT

)
dt. (9)

Off the equilibrium path, as discussed in Section 3.3, we consider the lower bound on

information transmission which relies only on players other than i. That is, the news

about i’s deviation goes only from j to k then to l, but not from i to k then to l. Then, a

potentially loose upper bound on i’s expected payoff on the link il after his deviation is∫ ∞
0

e−rte−2λt
(
λ

1

2
b(xT) + λ

∫ ∞
0

e−rτe−2λτλ
1

2
b(xT) dτ

)
dt. (10)

That is, i can shirk on l and gain b(xT ) if i moves second when meeting l (with 1/2

probability), provided that l does not know i is guilty. The news will not reach l in time

in two scenarios: i meets l before j meets k, or otherwise i meets l before k meets l. Then,

we prove in the appendix that (10) is weakly lower than (9).

Generalized diamond. A generalized diamond has a diagonal link ik and two or more

common neighbors of players i and k, {l1, . . . , lm}, as shown in Figure 2. It is straightfor-

ward to see that i does not benefit from deviating on j along the equilibrium path in any

generalized diamond: first, he is punished by k, and then, by Lemma 3, he gets a weakly

lower payoff on each link ilz after shirking on j. Similarly, if he deviates on k then he will

be punished by all l1, . . . , lm.

Arbitrary network. Now we complete the proof of Theorem 1 by the following lemma.

Lemma 4. Consider any arbitrary neighborhood Σij. Triangular efforts on supported link

ij are sustained by a multilateral restitution equilibrium.

Although the punishing set Σij can be large and complex in an arbitrary network,

we can divide Σij into subsets and prove players’ incentives to sustain high cooperation

by induction. To begin with, because ij is supported, |Σij | ≥ 2. When |Σij | = 2, the

local neighborhood is a triangle, and i’s incentive to cooperate with j in a multilateral

restitution strategy profile has been verified. Next, suppose i has incentives to cooperate

with j under a multilateral restitution strategy profile when facing any punishing set with

size |Σij | ≤ m. Then we consider when the punishing set has size |Σij | = m + 1. We can
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divide Σij into two subsets: the first one containing j and at least one of her partners is a

triangle, a diamond or a generalized diamond, and the second one is the rest of Σij . Player

i receives sufficiently punishment from the first subset of partners as shown in the previous

three cases, and he does not have incentives to shirk on any partner in the second subset

by the induction hypothesis. Thus, his cooperation with j can be sustained.

3.5 To be added

• Formal definition of multilateral restitution strategies and associated beliefs

4 Implications for evolving networks

Since partnerships supported by multilateral enforcement are particularly valuable, players

may strategically seek them out. In this section we introduce a dynamic network formation

game with random linking opportunities and random link formation costs. We identify a

simple equilibrium in this game in which players form a network with realistic small worlds

properties, because they anticipate playing in a multilateral restitution equilibrium after

forming their links. We focus in particular on measures of “clustering” and “support”:

clustering is the fraction of paths of length two that are contained in triangles; support is

the fraction of links that are contained in triangles.

4.1 Dynamic network game

We follow the setup of a growing network in Jackson and Rogers (2007). According to an

independent clock process (Poisson or otherwise), at each arrival a new player i ∈ N is born,

and, in that instant, forms new network links according to the following four arrival stages.

Players are numbered according to their order of arrival. Each existing link continues to be

recognized for partnership meetings according to its independent Poisson clock of rate λ as

described in Section 2, and players’ actions at those meetings follow multilateral restitution

strategies.

• Arrival stage 0: An i.i.d. random cost γij is drawn for each pair of players {i, j} with

j < i, from a distribution with CDF F . These costs are not revealed to the players.
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• Arrival stage 1: mr players∗ are uniformly randomly selected from a pool of players

born before i. Each selected pair {i, j} jointly learns their cost γij . Player i decides

which, if any, of these links to form. If i forms link ij, he pays 2γij .

• Arrival stage 2: mn players∗ are uniformly randomly selected from the union of

i’s stage-1 friends’ friends. Each selected pair {i, k} jointly learns their cost γik; in

addition, player k learns about any links that formed in her 1-neighborhood in arrival

stage 1. Player i decides which, if any, of these links to form. If i forms link ik, he

pays 2γik.
12

• Arrival stage 3: In uniform random sequence, each triple {i, j, k} such that ij was

formed in arrival stage 1, jk is connected, and {i, k} was selected in arrival stage 2

but the link ik did not form, is recognized again. When triple {i, j, k} is recognized,

the players jointly learn γjk and the union of their 1-neighborhoods, including links

formed in arrival stages 1–2. Player i decides whether to form the jk link. If i forms

the link, he pays 2γik.

• Arrival stage 4: All players to whom i linked simultaneously pay non-negative trans-

fers to player i. These transfers are observed only by player i.

∗ If the pool of eligible players is smaller than the number to be selected, then all

eligible players are selected.

At the end of these arrival stages, each player in the network observes any new links that

formed in their own 1-neighborhood.

4.2 Network formation equilibrium

While a multilateral restitution equilibrium exists in the repeated interaction game for any

network, in this section, we show that players who arrive anticipating joining a multilat-

eral restitution equilibrium will form a network with certain realistic characteristics. For

tractability, we focus on an equilibrium that is somewhat naive from the players’ collective

12It is worth noting that our network-based search differs slightly from Jackson and Rogers (2007) because
in their model these mn players are chosen from the union of all mr stage-1 players’ friends regardless of
whether i forms a link to them or not in Stage 1. In our setup, we assume these mn players are chosen
from friends of those who i forms links to in Stage 1. This is because anticipating cooperation, it is more
beneficial to search through linked friends.
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perspective, due to some coordination failures. Let uB = 1
2(xB +yB) be the utility of a link

with bilateral cooperation, and let uT = 1
2(xT + yT) be the utility of a link with triangular

cooperation. We define a “greedy linking” strategy profile for player i’s arrival as follows.

• Arrival stage 1: When a pair {i, j} is recognized to meet, i forms link ij iff γij ≤ uB.

• Arrival stage 2: When a pair {i, k} is recognized to meet, i forms link jk iff γik ≤ uT.

• Arrival stage 3: When a triple {i, j, k} is recognized to meet, i forms link ik iff

γik ≤ uT + zijk(u
T − uB), where zijk ∈ {0, 1, 2} is the number of unsupported links

in the triple at the time they meet.

• Arrival stage 4: If a link ij was formed but should not have been according to i’s

strategy profile, then player j pays zero to player i. Otherwise, if a link ij was formed

in arrival stage 1–2, then player j pays γij to player i. In addition, if the link ik is

formed for the triple {i, j, k}, then players j and k each pay player i 1
3zijk(u

T − uB).

The arriving player i deems guilty any player j who deviates from the transfer he or she

should have paid in arrival stage 4 if innocent; player i deems all other new neighbors

innocent. The network formed upon player i’s arrival (assuming player i does not deviate)

is denoted Gi.

It is clear that each link that should form is strictly beneficial to the (innocent) players

who form it. However, the players suffer from some coordination failure in Stages 1 and 3

that causes them to forego profitable linking opportunities. In Stage 1, they fail to jointly

anticipate links that may form in Stages 2 and 3; optimally anticipating later links would

lead them to form some links in Stage 1 for which γij > uB. In Stage 3, they fail to jointly

anticipate links that may form later in Stage 3: since supporting links are formed by a

greedy algorithm rather than an optimal algorithm, a less beneficial link may be chosen

early over a more beneficial one that is recognized later. Focusing on an equilibrium with

these coordination failures aids in finding closed form expressions for network statistics like

support and clustering, and in simulations.

The next result shows that equilibrium cooperation behaviors in Theorem 1 are not

disrupted by the link formation process.

Theorem 2 (loosely stated). In the dynamic network game, there exists a multilateral

restitution and greedy linking equilibrium that attains triangular effort levels on every sup-

ported link along the path of play.
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Proof idea. We observe that no player has incentives to shirk and also all innocent players

share information truthfully.

First, consider players i > j > k. Suppose j has shirked on k before player i is born.

We claim that player j gets less value from i’s entry compared to that when j is innocent.

First, the same set of links are formed by i regardless of j’s guilt, because j’s guilt is not

anticipated by i. If j pays his share of the cost for link ij, then the link formation is

identical to that when j is innocent. However, j faces weakly more punishment because

Σjk(Gi−1) ⊂ Σjk(Gi). If j does not pay his share of the cost for link ij, j immediately

becomes guilty to i and thus gets zero utility from the link ij. Moreover, the set of players

to punish j becomes strictly larger: Σjk(Gi−1) ( Σjk(Gi) ∪ Σji(Gi).

Second, each innocent player l ∈ Σjk(Gi−1) shares the information about j’s shirking

truthfully. This is straightforward because player i forms the same set of links, and each

innocent player pays the same amount of her share of the cost for the link to i. As l’s

utility does not depend on whether other players know about j’s guilt, she will not benefit

from withholding such information. �

In arrival stage 1, each possible link forms with probability pr ≡ F (uB). In arrival

stage 2, players can form clusters by closing triples; each eligible link forms with probability

pn ≡ F (uT). In arrival stage 3, they can revisit links not formed in arrival stage 2 to support

their relationships.

Remark 1. As the network grows, it inherits several properties from the results of Jackson

and Rogers (2007), including:

• Connectedness: The limiting probability that any two players are connected by a path

is 1.

• Fat-tailed degree distribution: The tail of the limiting degree distribution is heavier

than the exponential distribution.

These observations arise from the fact that without arrival stage 3 the network formed

is essentially a Jackson and Rogers (2007) network, and then arrival stage 3 adds additional

links.

Most importantly, we address clustering and support. Let m = prmr + pnmn and

ρ = prmr/pnmn.
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Remark 2. As the network grows,

• Low clustering: The limiting probability that two neighbors of the same player are

linked is strictly positive if ρ > 1, and it converges to 0 as mr →∞.

• High support: The limiting probability that two linked players share a common neigh-

bor is strictly positive, and it converges to a value above 1− e−1/ρ∗ > 0 as mr →∞,

where ρ∗ = limmr→∞ ρ.

We begin with examining these two measures when the network is formed absent of

stage 3, denoted as C2 and S2 for clustering and support, respectively. Then, we build

stage 3 on top of it to bound clustering and support in the network, denoted as C3 and S3.

Support and clustering from arrival Stages 1–2 When the network is formed with-

out arrival stage 3, our model is very similar to Jackson and Rogers (2007). By analysis

analogous to theirs, the clustering measure is13

C2 =

0 if ρ ≤ 1;

6
(1+ρ)[(3m−2)(ρ−1)+2mρ] if ρ > 1.

(11)

We now calculate the support measure. All pnmn links formed by network-based search

must be supported, so we focus on the prmr links formed randomly. Say ij is a random

link. (While we consider undirected links, we use the order ij to indicate the link is formed

by i arriving when player j is already present). There are three possibilities to support ij.

First, it could be supported by another random link ik formed in player i’s arrival stage 1,

such that jk is linked. As the population increases, the probability of such a link jk goes

to zero. Second, it could be supported by a later player h, who forms a random link hi in

her arrival stage 1 and then forms hj in her arrival stage 1 or 2. Again, as the population

increases, the probability of link hi goes to zero. So, we are left with the third case in which

ik is formed by network-based search through the link jk, in player i’s arrival stage 2.

For each of mn players, with the probability 1
prmr

it is search through player j, say

through link jk, and i forms a link to k with probability pn. Thus the probability link ij

13Their clustering expression features an extra term in the numerator, to account for the fact that they
allow player i to meet neighbors of a player j he met in Stage 1, even if he did not form link ij in arrival
stage 2. In our model, player i meets player j’s neighbors in arrival stage 3 only if the ij link was formed
in arrival stage 2.
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is supported

β2 = 1−
(

1− pn
prmr

)mn

. (12)

In other words, the link ij is not supported if none of her links to all mn friends of friends

she meets supports ij. To sum up,

S2 =
prmrβ2 + pnmn

prmr + pnmn
. (13)

Support and clustering with arrival stage 3 We first calculate the probability, de-

noted as β3, that a random-search link ij formed in player i’s arrival stage 1 does not

become supported in arrival stage 2, but does become supported in arrival stage 3. Recall

that each link formed in stage 3 must support one or two other links. Let α3L ≡ F (2uT−uB)

be the probability of a link cost below the value of both cooperating at the triangular level

(uT ) and supporting one other link (uT − uB). And let α3H ≡ F (3uT − 2uB) be the the

probability of a link cost below the value of both cooperating at the triangular level and

supporting two other links. Using (12), the lower bound on β3 is

β3 ≥ β3L =

(
1− pn

prmr

)mn

−
(

1− α3L

prmr

)mn

. (14)

Let K3 be the expected number of links i forms in stage 3. Thus, K3 ≥ 1
2β3Lprmr. From

right to left, this is because i has in expectation prmr links formed in arrival stage 1, each

of which is unsupported in arrival stage 2 but supported in arrival stage 3 with probability

at least β3L, but the link that brings the support may also support a second link and thus

for a given i represents at least half of an additional link.

Putting them together, the lower bound on support in the network is

S3 ≥
(β2 + β3L)prmr + pnmn + 1

2β3Lprmr

prmr + pnmn + 1
2β3Lprmr

. (15)
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Similarly, the upper bound on β3 is

β3 ≤ β3H =

(
1− pn

prmr

)mn

−
(

1− α3H

prmr

)mn

. (16)

The number of links i forms in arrival stage 3 is at most K3 ≤ β3Hprmr. Thus, the upper

bound on support in the final network is

S3 ≤
(β2 + β3H)prmr + pnmn + β3Hprmr

prmr + pnmn + β3Hprmr
. (17)

Notice that S3 > S2 > β2, and β2 → 1 − e−1/ρ∗ as mr → ∞. Thus, we have shown the

second point of Remark 2.

When ρ ≤ 1, C3 = 0. When ρ > 1,

C3 ≤
3m2 1

m(1+ρ) + 3β3H
ρm
ρ+1

m(m−1)
2 +m2 + m(2mρ+1−ρ)

2(ρ−1) + 2β3H
ρm
ρ+1

,

=
6 + 6β3Hρ

(1 + ρ)[3m− 2 + 2mρ
ρ−1 ] + 4β3Hρ

.

(18)

When mr →∞, m→∞, and thus C3 converges to zero.

Lastly, we can obtain the level of “support-seeking” by comparing the support in the

network with and without arrival stage 3. In particular, “seeking for support” is bounded

between s3L − s2 and s3H − s2. Some algebra shows that as mr → ∞, if ρ∗ > 0 then

s3L−s2 converges to a strictly positive limit. Indeed, support-seeking can be quantitatively

quite significant. For example, consider ρ = 2 and α3L/pn = α3H/α3L = 2; that is, the

probability of forming a supported link that supports another link is twice as that of forming

a supported link that supports no other link, and is half of that of forming a supported

link that supports two other links. Then, s2 = 0.60, s3L = 0.77, and s3H = 0.92, so that

support-seeking increases the support measure by 30–55%.

4.3 To be added

• Formalize Theorem 2 and proof

• Formalize Remark 2 and proof
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• Simulation results on clustering and support: What is “low” and “high” when mr �
∞? =

5 Concluding remarks

We introduce a class of multilateral restitution equilibria, which implements multilateral

enforcement on an arbitrary network, while avoiding cascading punishments and allowing

the players to know only their local neighborhoods. The key component of multilateral

restitution equilibria is that guilty players are not ostracized from the community; instead

they work hard with their partners to preserve the stability of the network. Then, antici-

pating playing the multilateral restitution equilibria, arriving players who form new links

seek support for their relationships. We show that as the network grows, it exhibits high

support and low clustering.
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A Proofs

Proof of Lemma 1. Evaluating the integrals in equation (4) and rearranging, we have

c(y) ≤ λ

r
(x+ y)− λ

2(r + 2λ)
(y + c(y)).

Rearrange it,

r(2r + 5λ)

2λ(r + 2λ)
c(y)− r + 4λ

2(r + 2λ)
y ≤ x.

Take the cost of both sides of the inequality, we have

c

(
r(2r + 5λ)

2λ(r + 2λ)
c(y)− r + 4λ

2(r + 2λ)
y

)
≤ c(x) = y + 2c(y). (19)

The last equality uses the observation that in the binding case −c(yT) = −c(xT) + b(yT).

By Assumption 1, c′(0) = 0, c′(x) increases in x, and limx→∞ c
′(x) = ∞. So, there

exists a unique y > 0 such that

r(2r + 5λ)

2λ(r + 2λ)
c(y) =

r + 4λ

2(r + 2λ)
y.

The LHS of (19) is zero when y = y, while the RHS must be positive, so (19) holds.

Then, as y increases to infinity, the cost increases much faster than the value. As a result,

when y is sufficiently large, the LHS of (19) is always higher than the RHS. Specifically,

we can first identify the threshold y′ such that when y > y′, c(y) > y. By convexity,

c(3y) ≥ 3c(y) > y + 2c(y). Next we can find the threshold y′′ such that when y > y′′,
r(2r+5λ)
2λ(r+2λ)c(y) − r+4λ

2(r+2λ)y > 3y. Then when y > max(y′, y′′), LHS of (19) is always higher

than the RHS. Thus, there must exists a value yT such that when y = yT, LHS is equal

to RHS, and when y > yT, LHS is always higher than RHS. xT can be calculated by

c(xT) = yT + 2c(yT). �

Proof of Lemma 2. We prove yP < yT by contradiction. Suppose yP ≥ yT. Summing
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b(yP)− c(xP) = 0 and b(xP)− c(yP) = 1
2

(
xT + yT

)
, it leads to

2(xP + yP) = xT + yT ≤ xT + yP.

Then xT > xP+yP. On the other hand, by c(xT) = c(yT)+b(yT), we have c(yP)+b(yP) >

c(xT). Together with b(yP) − c(xP) = 0, it implies c(xP) + c(yP) > c(xT). Since c(x) is

strictly convex, it must be that xT < xP +yP. It is a contradiction. So yP < yT must hold.

Lastly, observing that c(xP) = b(yP) < c(yT) + b(yT) = c(xT), so xP < xT. �

Proof of Lemma 3. Note that the analysis after a deviation by j or l is identical to the

analysis on a triangle network. Moreover, innocent players are always willing to implement

the prescribed punishments (since they still get their equilibrium path payoffs, but would

be punished themselves for any deviation), and to communicate truthfully. So it suffices

to consider only equilibrium path deviations by i.

First, consider whether player i could gain by shirking on player j, on the equilibrium

path. Once player k knows of i’s deviation, incentives on the ik link are straightforwardly

similar to the triangle case; this is also true for the il link. So we focus on what happens

when i meets a partner (either k or l) who does not know of i’s deviation. (Note that a

partner who does know of i’s deviation should demonstrate that knowledge in the pre-play

communication phase.) Our class of strategy profiles does not specify whether i should

work or shirk in such meetings. What is important is that whatever happens should not

lead to payoffs for i that are high enough to justify shirking on j in the first place.

Suppose, after shirking on player j, player i meets player l; l does not know of i’s

deviation, and i does not know whether k knows of i’s deviation. Observe that on the

equilibrium path, if j were not present then i would have been just indifferent between

working (at effort xT or yT, depending on whether he moved first) and shirking on l. Now

off the equilibrium path, i expects zero future payoffs on the ij link, but j’s presence

means k and ultimately l will learn of i’s original deviation sooner in expectation. This

loss of future social collateral strictly reduces i’s incentive to work with l, compared to the

equilibrium path on a triangle network. Hence i strictly prefers to shirk on l, regardless of

i’s belief about the probability that k knows of i’s deviation. (Moreover, it follows from

analysis of the triangle that after shirking on l, i subsequently strictly prefers to shirk

on k.)

Next consider player i (after shirking on player j) meeting player k, when k does not
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know of i’s deviation, and when i has not yet shirked on l. Now matters are a bit more

complicated—by working rather than shirking on k, i can slow down the rate at which

l learns that i has deviated. The most i can slow down the rate at which l learns of the

deviation is to work with k until either k learns of i’s deviation from j, or i shirks on l.

We already know this makes i strictly worse off on the ik link than shirking immediately

(since i would be indifferent on the equilibrium path of a triangle, but here j will spread

the news to k).

The key is to show that i is also weakly worse off on the il link. That is, the payoff i

gets on the il link on the equilibrium path is weakly higher than when i has deviated on j;

this is satisfied if∫ ∞
0

e−rtλ
1

2

(
xT + yT

)
dt ≥

∫ ∞
0

e−rte−2λt
(
λ

1

2
b(xT) + λ

∫ ∞
0

e−rτe−2λτλ
1

2
b(xT) dτ

)
dt,

(20)

which we verify below. Note that we consider the slowest information transmission, such

that the news about i’s deviation goes only from j to k then to l, but not from i to k then

to l. So the value on the RHS of (20) is a loose upper bound on i’s expected payoff on the

link il after his deviation.

We now verify that (20) holds. From summing the binding incentive constraints in (3)

and (4) with b(xT), we have

b(xT) +

∫ ∞
0

e−rte−2λtλb(xT) dt = xT + yT + 2

∫ ∞
0

e−rtλ
(
xT + yT

)
dt. (21)
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Then, we simplify the RHS of equation (20):∫ ∞
0

e−rte−2λt
(
λ

1

2
b(xT) + λ

∫ ∞
0

e−rτe−2λτλ
1

2
b(xT) dτ

)
dt

=
λ

r + 2λ
· 1

2

(
b(xT) +

∫ ∞
0

e−rte−2λtλb(xT) dt

)
=

λ

r + 2λ
· 1

2

(
xT + yT + 2

∫ ∞
0

e−rtλ
(
xT + yT

)
dt

)
=

λ

r + 2λ
· 1

2
· r + 2λ

r

(
xT + yT

)
=
λ

r
· 1

2

(
xT + yT

)
=

∫ ∞
0

e−rtλ
1

2

(
xT + yT

)
dt,

where the second equality is from (21). Thus equation (20) holds with equality.

Then, consider whether player i could gain by shirking on player k along the equilibrium

path. Since k then spreads the news to both players j and l, this is strictly worse for i

than shirking on j on the equilibrium path.

Finally, consider players other than the original deviator i: as in our analysis of the

triangle network above, they expect to receive equilibrium-path payoffs on all their links

(being shirked on is always a surprise) and therefore have no incentive to deviate on or off

the equilibrium path. �

Proof of Lemma 4. Because ij is supported, |Σij | ≥ 2. We prove the lemma by induction

on the number of players in Σij . When |Σij | = 2, the local neighborhood is a triangle,

and i’s incentive to cooperate with j in a multilateral restitution strategy profile has been

verified. Suppose i has incentives to cooperate with j under a multilateral restitution

strategy profile when facing any punishing set such that |Σij | ≤ m ≥ 2. Then we consider

when the punishing set has size |Σij | = m+ 1 ≥ 3.

We consider two separate cases. First, if i has is at least one partner k whose link

to i is uniquely supported by j (i.e., if the ij link were removed, the ik link would be

unsupported), then we partition Σij as follows. Σ1
ij includes j and all players whose links

to i are uniquely supported by j, and Σ2
ij = Σij \Σ1

ij . Note that players in Σ1
ij \ {j} do not

have any links to Σ2
ij . Therefore once i deviates on j, there is no incentive for i to delay

shirking on neighbors in Σ1
ij in order to slow the rate at which neighbors in Σ2

ij learn he is
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guilty, nor vice versa. Hence it suffices to show that i does not gain from deviating on j

separately on each subnetwork {i}∪Σ1
ij and {i, j}∪Σ2

ij . As for {i}∪Σ1
ij , it is a generalized

diamond with ij being its diagonal, so by our previous analysis Σ1
ij itself suffices to deter

i from deviating on j. As for {i, j} ∪ Σ2
ij , it is a punishing set of size |Σ2

ij | ≤ m, which by

the induction hypothesis itself suffices to deter i from deviating on j.

The second case is when there is no player whose link to player i is uniquely supported

by ij. Then we arbitrarily choose player k (a common neighbor of i and j, at least one of

which exists since ij is supported), and partition Σij as follows. Σ1
ij includes j, k, and any

neighbor of i whose link to i is unsupported in Σij \ {i, j}, while Σ2
ij = Σij \ Σ1

ij . Then

{i} ∪ Σ1
ij is a generalized diamond combined with zero or more links among Σ1

ij . Since

the added links (none of which directly involve i) aid in distributing information about

i’s deviation on j among the players in Σ1
ij , Σ1

ij itself suffices to deter i from deviating

on j. As in the first case, Σ2
ij is a punishing set of size |Σ2

ij | ≤ m, which by the induction

hypothesis itself suffices to deter i from deviating on j. So the overall punishment from

Σij deters i from deviating on j.

Off the equilibrium path, by Lemma 2 the same analysis applies to any innocent player,

even if she has guilty neighbors.

Evidently the strategies form an equilibrium, which by construction is robust and 2-

local. �

B Extensions and discussion

B.1 Sequential vs. simultaneous moves

We show that players earn strictly higher expected payoffs from sequential moves. We prove

this result for bilateral cooperation, and it is straightforward to extend it to triangular

cooperation. Recall that in a bilateral cooperation, players use xB and yB when they move

sequentially, and let them both use zB when they move simultaneously.

Remark 3. In a bilateral cooperation: xB > zB and yB > zB.

Proof. If players move simultaneously, their incentive constraint is

0 ≤ −c(z) +

∫ ∞
0

e−rtλzdt = −c(z) +
λ

r
z
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So zB satisfies c(zB)− λ
r z

B = 0. By Assumption 1, there is a unique solution of zB > 0.

If players move sequentially, xB and yB bind the constraints (1) and (2). In particular,

summing up (1) and (2), we have c(xB)− λ
r x

B = (1 + λ
r )yB. Since yB > 0, it is clear that

xB > zB. Next, (2) implies c(yB)− λ
r
1
2(xB+yB) = 0. When yB = zB, c(zB)− λ

r
1
2(xB+zB) <

0 because xB > zB. Thus, yB > zB. �
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