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Abstract

As much as forty percent of social media users have been harassed online, but there is scarce
causal evidence of how toxic content impacts user engagement and whether it is contagious. In
a pre-registered field experiment, we recruited participants to install a browser extension, and
randomly assigned them to either a treatment group where the extension automatically hides toxic
text content on Facebook, Twitter, and YouTube, or to a control group without hiding. As the
first stage, 6.6% of the content displayed to users was classified as toxic by the extension relying
on state-of-the-art toxicity detection tools, and duly hidden in the treatment group during a six-
week long period. Lowering exposure to toxicity reduced content consumption on Facebook by
23% relative to the mean – beyond the mechanical effect of our intervention. We also report a
9.2% drop in ad consumption on Twitter (relative to the mean), where this metric is available.
Additionally, the intervention reduced the average toxicity of content posted by users on Facebook
and Twitter, evidence of toxicity being contagious. Taken together, our results suggest a trade-off
faced by platforms: they can curb users’ toxicity at the expense of their content consumption.
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[As] long as your goal is creating more engagement, optimizing for
likes, reshares and comments, you’re going to continue prioritizing
polarizing, hateful content.

Frances Haugen, WSJ

1 Introduction

More than seven in ten Americans are active on social media, with as many as forty percent of users

experiencing some form of harassment online.1 Due to the links between inflammatory content and

violence (Müller and Schwarz, 2020a,b; Bursztyn et al., 2019), and the effect of social media on mental

health (Allcott et al., 2020; Mosquera et al., 2020; Allcott et al., 2021; Braghieri et al., 2021), platforms’

incentives to curb toxic content have been under public scrutiny.

Yet, the multifaceted debate lacks evidence about the link between toxicity and user engagement

– an important performance metric,2 which is key to understand social media’s incentives to self-

regulate. From the point of view of profit-maximizing sites, two competing forces affect their optimal

level of toxicity. On the one hand, for some users, a high prevalence of toxicity could increase their

cost of participating in conversations, a worry exacerbated by research documenting the negative

psychological effects of exposure to offensive materials (Schmitt et al., 2014).3 On the other, toxic

content is something that we react to, protest, or argue against; thus its presence might spike up

engagement (Crockett, 2017; Kosmidis and Theocharis, 2020).4 The picture gets even more complex

with the possibility that toxicity is contagious (Rydgren, 2005; Mathew et al., 2019; Ziems et al., 2020),

catalyzing the process. The relative magnitude of these channels is an open question for stakeholders,

spanning from regulators scrutinizing tech giants to platform managers.

We attempt to fill these gaps by conducting a field experiment targeting three leading sites: Face-

book, Twitter, and YouTube, and prepared in cooperation with the Mozilla Foundation.5 We study

the impact of toxic social media materials on user engagement. Specifically, we ask whether a lower
1See https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/ and https://www.adl.org/resour

ces/report/online-hate-and-harassment-american-experience-2022, accessed: 2022-10-20.
2For example, Meta’s Q2 2022 report opens with “positive trajectory on our engagement trends”. Furthermore, ad

impressions, an engagement-dependent outcome, are listed among financial highlights. https://s21.q4cdn.com/39968073
8/files/doc_financials/2022/q2/Meta-06.30.2022-Exhibit-99.1-Final.pdf, accessed 2022-10-19.

3Elon Musk referred to this issue in his recent address to the employees of Twitter, underscoring that “people need to
‘like’ being on the platform, and if they feel ‘harassed or uncomfortable’, they would leave”, https://www.washingtonpo
st.com/technology/2022/06/16/elon-musk-twitter-employee-meeting/, accessed: 2022-10-02.

4This notion is well-illustrated by Frances Haugen’s testimony (see the epigraph), https://www.wsj.com/articles/faceb
ook-whistleblower-frances-haugen-says-she-wants-to-fix-the-company-not-harm-it-11633304122, accessed: 2022-10-01.

5The Mozilla Foundation kindly aided us in promoting our study during the recruitment stage by retweeting a tailored
recruitment post. Furthermore, Jesse McCrosky joined our team, advising on user experience and facilitating the choice
of toxicity detection tools for the project. Lastly, we received high-quality feedback on our browser extension and user
onboarding, which was critical in ensuring that users have a safe and pleasant experience.
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exposure to toxicity affects users’ content consumption, content production, and the time they spend

on the platforms. Additionally, we investigate whether toxicity is contagious, that is, whether lowering

individuals’ exposure to it decreases their propensity to spread further toxicity. Lastly, we explore a

potential mechanism for why toxic content might be contagious – it could change users’ evaluations of

what is toxic – and we analyze toxicity’s effect on measures of users’ well-being.

To address the research questions, we conducted a framed field experiment with 836 individuals

recruited on social media, collecting over 15 million posts and comments displayed to users based

on more than 20,000 hours of social media activity throughout the study. We asked all participants

to install a custom-built browser extension that hides toxic content. To divert attention from the

true purpose of the study, we advertised the extension more generally – as potentially improving

user experience on social media. One of the limitations of introducing experimental interventions

through browser extensions is that they operate on desktop devices, potentially weakening the induced

variation as a share of consumed content (due to high mobile device usage). We anticipated this issue

by targeting users on desktop devices with recruitment ads. As a result, our sample reported a mean

desktop share of social media usage to be 57% on Facebook and 62% on Twitter.

The extension relied on state-of-the-art machine learning toxicity detection algorithms, trained on

a large dataset of online comments categorized by human coders, to assign toxicity scores to all posts,

comments, and replies displayed to the user on Facebook, Twitter, and YouTube, with 17 languages

supported.6 We exogenously varied users’ exposure to toxicity by randomly hiding toxic text content

on the three social media platforms for the duration of six weeks. We randomized the participants

into two conditions: treatment – in which we hid all content with a toxicity score exceeding a common

threshold of 0.3, and control – where no hiding occurred.7 Our hiding intervention directly informs

policy, as it is similar to current platform solutions that deprioritize some forms of content (Le Merrer

et al., 2021) and use toxicity thresholds to trigger content moderation actions (Katsaros et al., 2022;

Ribeiro et al., 2022). Moreover, we designed the extension to make hiding as seamless as possible;

indeed, the experimental variation did not give rise to any data patterns indicative of differential

attrition in our sample.
6Algorithms by various providers, trained on the dataset of online comments from Wikipedia and Civil, competed in

machine learning challenges to most accurately predict toxicity scores of additional statements rated by human coders.
We selected one of the high achievers, Unitary’s Detoxify library, as our main toxicity detection tool.

7The score of 0.3 means that 3 out of 10 human raters labeled the statement “toxic” or “very toxic”. The coders were
provided with industry-standard definitions of toxicity. A “toxic” statement was described as “a rude, disrespectful, or
unreasonable comment that is somewhat likely to make you leave a discussion or give up on sharing your perspective.”
Moreover, a “very toxic” statement was defined as “a very hateful, aggressive, or disrespectful comment that is very
likely to make you leave a discussion or give up on sharing your perspective.” It is important to note that the presence
of elements such as “leaving a discussion” in the definitions of toxicity could make it more likely that lower exposure to
toxicity would increase user engagement. As we argue below, this means that our results are actually conservative.
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The six-week intervention was preceded by a two-week baseline period, where we collected data

on users’ social media activity. The baseline period enabled us to employ a difference-in-differences

identification approach. We pre-registered this empirical strategy anticipating that it is essential to

ensure sufficient statistical power. The extension collected multiple outcomes measuring various forms

of user engagement: time spent on the platform, content consumption, ad consumption, as well as

users’ own posts, replies, and reactions (such as likes). We additionally collected toxicity scores of text

content created by users to illuminate the contagion hypothesis. Lastly, we elicited further outcomes,

such as measures of well-being and toxicity ratings of online comments, in an endline survey.

During the intervention period, the extension recorded that the average toxicity score of text

content displayed to users in the treatment group was 73.2% lower than in the control.8 This stark

drop in exposure to toxic content was enabled by the efficiency of the extension’s hiding functionality,

with our logs indicating that we successfully hid 97.7% of text elements with toxicity scores exceeding

0.3. Overall, the intervention resulted in the hiding of 6.6% of posts, comments, and replies displayed

in the browser across the three platforms for users in the treatment arm. Specifically, we hid about

5% of content on Facebook and 7% on Twitter. Given the heavy browser usage of our sample, we

conclude that our intervention led to a substantial reduction in exposure to toxicity on social media,

even taking into account the mobile app usage.

We now proceed to report our main findings.9 The first group of results concerns content and ad

consumption on social media. The hiding intervention, which lowered exposure to toxicity, significantly

reduced content consumption on Facebook. The conclusion was reached from the treatment effect on

the quantity of content that the platform intended to display, i.e., including the hidden elements. The

effect on this conservative measure of consumption, which we refer to as content offered, cannot be

explained by the mechanical effect of hiding, and thus indicates a genuine reduction in this form of user

engagement.10 Specifically, the intervention reduced content consumption by at least 17.9 elements

a day, a 23% change in comparison to the mean quantity of content throughout the study. Social

media strive to encourage people to engage by viewing many posts in a short time, as it enables the
8Importantly, the average toxicity scores of content that the platforms intended to display (before the hiding applied)

were almost identical by group: 0.064 in treatment and 0.063 in control.
9In the main text of the paper, we focus on reporting the results for Facebook and Twitter. YouTube significantly

differs from Facebook and Twitter in the context of our intervention, as text exchanges are only a secondary reason
(behind watching videos) for visiting the platform. This was crystallized by the data on the average quantity of content
per minute spent on each of the platforms: 6.73 for Twitter, 3.27 for Facebook, and only 1.52 for YouTube (22.6% of the
value for Twitter and 46.5% of the value for Facebook). We report YouTube results in Appendix H.

10An alternative measure is the quantity of content actually displayed to users. While we use the content offered as our
main outcome, in order to dispel the criticism that the result may have been a trivial consequence of the intervention,
it is important to note that the effect on the content displayed is not necessarily mechanical. In the feed and in long
comment sections, hidden elements are instantly replaced by the content below – they are pulled up. We provide more
discussion in Section 4.
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platforms to input more ads in between posts. In this context, it is notable that the intervention led

to a significant reduction both in the consumption of posts (user feed) and comments on Facebook,

the former of which is critical for ad impressions. We conclude that while we cannot directly assess

ad impressions on Facebook, our results are consistent with fewer impressions. On Twitter, on the

other hand, it is possible to identify ads. We find that the hiding intervention significantly reduced

ad consumption on the platform, even though we do not detect an effect on the conservative measure

of content consumption. Taken together, the evidence indicates a likely reduction in profitability, at

least given the ad policy focusing on impressions.

As our second main outcome, we report evidence in favor of the contagion hypothesis. The treat-

ment significantly reduced the average toxicity of posts and comments published by users both on

Facebook and Twitter – respectively by 35% and 20% relative to the mean. Additionally, exploring a

pre-registered angle of heterogeneity, we report an effect in the same direction, though with a slightly

higher magnitude, for the subsample of users with above-median baseline exposure to toxicity.11 Taken

together, we provide broad evidence that lower exposure to toxic content reduces the toxicity of own

posts and comments. Despite the overall strong effect, we find no evidence of normalization of toxicity

– the ratings of seven toxic statements evaluated by participants in the endline survey did not vary by

treatment group.

Finally, we summarize the results on the remaining outcomes. On both Facebook and Twitter,

the intervention did not alter the time spent on the platforms, which is notable given the previously

discussed evidence indicating a negative impact on content consumption. Furthermore, reducing ex-

posure to toxicity on the treated platforms led to positive spillover effects on the combined total time

spent on 38 related websites where the intervention did not take place. In addition, the hiding inter-

vention reduced content production on Facebook, which is in line with lower content consumption on

the platform. We do not find a similar effect for Twitter. Lastly, we report no significant effects of

the intervention on the remaining survey outcomes, including the index of well-being.

Our results are robust to considering difference-in-differences specifications other than the two-way

fixed effects regression, which we use as our main specification. In particular, we account for the fact

that the participants experienced the intervention period during different calendar dates, even though

the recruitment period spanned only three weeks. To that end, we verified that our results are robust

to using the stacked regression specification with start date × individual and start date × period fixed

effects. Furthermore, we provide evidence that our findings are unlikely to be driven by differential

attrition. According to our most conservative measure, the last day seen in the study, 85.2% of users
11It is important to note that the baseline level of toxicity can serve as a proxy for preference for toxic content if we

are willing to assume that the platforms optimize the exposure to toxicity to match user’s tastes at least to some extent.
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active during the intervention survived until its conclusion (i.e., they were seen on day 56 or later),

with the difference in the proportion of survivors not significantly different by the treatment group.12

Additionally, we investigate the dropout dynamics throughout the study, and find no evidence that it

varied by group. Moreover, we consider two likely channels that could have led to differential attrition

regarding types of individuals leaving. Given the character of our hiding intervention, we worried that

people with a preference for toxic content or those with high levels of social media activity were more

likely to drop out of the treatment group. We refute these conjectures by verifying that the baseline

level of activity and the baseline average toxicity of consumed content are not significant predictors of

attrition by group.

The paper contributes to the debate on the consequences of online toxicity in three different ways.

First, we provide novel evidence on the impact of exposure to text-based toxicity on social media,

focusing in particular on content consumption and the contagious character of toxicity. Second, we

offer a method of studying the effects of exposure to toxic content in isolation. This provides an

additional level of granularity to the analysis, with the usual focus being the effects of social media

censorship, a category that is broader and harder to interpret. Third, we hope to inform policy. Both

platforms and regulators are likely to consider moderation tools that are less severe than outright

removal of content. One option is reducing prominence of toxic content on the platform (reducing

its visibility), which is akin to our hiding intervention. Moreover, responding to the interest resulting

from the rising volume of online content that requires scrutiny, we offer evidence on the effects of

employing automated toxicity detection tools, a class of algorithms that will shape the future of

content moderation.

This paper is related to three main strands of the literature. First, there is a growing body of

work in economics that studies the effects of social media penetration, usage, and advertising on

a variety of outcomes, including political participation and persuasion (Fergusson and Molina, 2019;

Enikolopov et al., 2020; Fujiwara et al., 2021; Zhuravskaya et al., 2020; Coppock et al., 2022; Beknazar-

Yuzbashev and Stalinski, 2022), polarization (Sunstein, 2017; Allcott and Gentzkow, 2017; Boxell et al.,

2019; Levy, 2021; Melnikov, 2021), hate crimes (Müller and Schwarz, 2020a,b; Bursztyn et al., 2019;

Jiménez-Durán et al., 2022), and mental health (Allcott et al., 2020; Mosquera et al., 2020; Allcott

et al., 2021; Braghieri et al., 2021). We contribute to this work by shedding light on one of the potential

explanations for the documented harmful effects of social media, namely, the exposure of users to toxic

content.

This paper is also part of a rapidly-growing literature that studies online engagement, its deter-
12We rely on the last day seen in the study because information on whether a user uninstalled the browser extension

is not available to developers, nor can it be obtained on the extension level (i.e., uninstallation event).
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minants, and its connection to platforms’ decisions and content moderation policies. Theoretically,

Acemoglu et al. (2021) argue that, in homophilic networks, polarizing and divisive content is more

likely to spread virally. Liu et al. (2021); Jiménez-Durán (2021), and Madio and Quinn (2021) model

platforms’ optimal content moderation decisions. Our paper contributes to this strand of literature

by providing field evidence illuminating a key parameter of platforms’ decisions – the responsiveness

of user engagement to exposure to toxic content. Empirically, Jiménez-Durán (2021); Ribeiro et al.

(2022); Katsaros et al. (2022) provide experimental evidence of the impact of content moderation on

user behavior. Our paper contributes to this work by directly manipulating the toxicity in user feeds

and comment sections.

This paper is also related to the literature that studies how media can impact the diffusion of

hateful attitudes. Yanagizawa-Drott (2014); DellaVigna et al. (2014); Adena et al. (2015); Wang

(2021) find that propaganda in traditional media can help spread violence and extremism, and Blouin

and Mukand (2019) report that government propaganda can manipulate the salience of ethnic identity.

Several studies document the spread of toxic attitudes online (Rydgren, 2005; Mathew et al., 2019;

Ziems et al., 2020; Velasquez et al., 2021) and hypothesize that toxicity is contagious. Yet, survey-based

evaluation of the contagion hypothesis has yielded mixed evidence (Kim et al., 2021). We contribute

to this line of work by providing field evidence of toxicity’s contagiousness.

The paper is organized as follows. Section 2 provides background information, including a descrip-

tion of toxicity detection algorithms. Section 3 outlines the experiment design and characterizes the

intervention. Section 4 provides a discussion of the results and addresses potential concerns. Section

5 concludes.

2 Background

2.1 Supported Platforms

Our hiding intervention encompasses three leading social media platforms: Facebook, YouTube and

Twitter. As of January 2022, the former two can boast of the top highest global number of users – 2.9

billion (rank 1) and 2.6 billion (rank 2) respectively, with the latter’s user base being 436 million.13

The platforms are equally impactful in the United States as they are worldwide. According to Pew

Research, in 2021, 69% of US adults reported using Facebook, with 48.4% of Americans doing it daily.

The proportion was equal to 81% for YouTube (43.7% accessing daily) and 23% for Twitter (10.6%

accessing daily).14 With Facebook and YouTube selected for their sheer size and overall influence, we
13https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/, accessed:

2022-08-28.
14https://www.pewresearch.org/internet/fact-sheet/social-media/, accessed: 2022-08-28.
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added Twitter to our analysis due to its special role as a modern digital agora, facilitating the dialogue

between public figures and their followers, as well as politicians and the electorate.

An important aspect of our intervention is that we focus on hiding toxic text content. This feature

makes Twitter and Facebook particularly suitable for our study due to their text-based discussion

format. Specifically, Twitter encourages exchanges of brief statements, with a character limit of 280

symbols, while Facebook houses plenty of communities in the form of groups, supporting familial,

professional, political, and other thematic discussions. YouTube differs from Facebook and Twitter in

that the user’s primary objective is watching videos, with the comment sections being an additional

element. Beyond the three platforms, we measured user activity (time spent) on 38 additional sites

(including Reddit, Quora, and Parler), where the treatment did not take place.15

2.2 Browser Extension

All participants installed our dedicated browser extension called Social Media Research, which enables

the hiding intervention and records the key outcomes. The extension was compatible with Chromium

browsers such as Google Chrome, Edge, Opera, and Brave, and listed on Chrome Web Store. It was

also available on Firefox via Firefox Browser Add-ons. Together, the supported browsers account

for 93% of the global market share for desktop browsers.16 Extensions constitute a well-established

element of browsing in 2022, with more than 65 million users of the iconic AdBlock.17 Therefore,

we expect that many prospective participants were familiar with the environment in which the study

took place. Just as extensions became prominent tools enhancing browsing experience for web users,

they also gained popularity among researchers, who can use them to collect data on user activity

and displayed content (e.g. Levy, 2021; Beknazar-Yuzbashev and Stalinski, 2022; Aridor, 2022). In

addition to tracking users’ online behavior, we extended this methodology by relying on the add-on to

introduce exogenous variation in exposure to toxic content.

A major advantage of toxicity hiding implemented through a browser extension is that social media

algorithms are unaware of the extension’s actions, as it operates by changing the content of the website

after it was loaded, without communicating anything to the host server. This feature minimizes the

risk that any algorithm-induced adjustment in the content presented to the user could have occurred

as a reaction to the intervention in the time span of six weeks. Our data corroborates this point.18

15Our platform choices warrant a question of why to stop at three. One reason is that the hiding intervention requires
that the extension code is tailored to the DOM structure of each website on which it operates. Frequent alterations made
by the websites’ developers necessitate constant and careful maintenance of the add-on, which can only be extended to
a limited number of platforms. Another factor that played a role in our decision was our interest in the spillovers from
social media with the hiding intervention enabled to other related websites where the treatment did not apply.

16https://kinsta.com/browser-market-share/, accessed: 2022-08-28.
17https://getadblock.com/en/, accessed: 2022-08-28.
18For example, the average toxicity scores of content that the platforms intended to display to users (before any hiding
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Lastly, we have been aware that conducting a social media experiment, involving broad data collec-

tion, via a browser extension developed and maintained by the research team is a major responsibility.

Considering the privacy and safety of our participants to be of paramount importance, we ensured

that the extension onboarding followed Firefox’s best practices19 and was vetted by their add-on re-

viewer. Moreover, all data was encrypted when stored in our database, with the decryption key only

known to the researchers. Details on the installation, onboarding, and privacy policy are provided in

Appendix C. Throughout the study, users could report issues and send questions to the research team

via a feedback form placed on our Twitter page, which was followed by many participants. Technical

problems were infrequent, and those that occurred were addressed expeditiously.

2.3 Toxicity Detection

2.3.1 Algorithms

Effective automated real-time content moderation is a necessity for social media platforms operating

at a large scale. With the ever-growing volume of online conversations and financial considerations

placing constraints on human moderation, the algorithms must play a central role in toxicity detection

efforts. With that in mind, we evaluate the impact of hiding toxic content on social media as detected

by state-of-the-art tools available.

One of the original solutions, published in 2017, is Perspective API, a machine learning technology

identifying toxicity in text conversations. The API is widely used by commercial clients, including social

media such as Taringa!, a large platform in South America, and major publishers like Le Monde or The

Financial Times.20 The need for constant improvement of the algorithms’ precision led to the creation

of Jigsaw challenges, hosted by Kaggle, a machine learning company. These were toxicity detection

competitions for machine learning solutions supplied by independent developers and companies. The

contestants could rely on two newly published data sets “containing over one million toxic and non-

toxic comments fromWikipedia”, marked by human raters.21 For example, Detoxify library (“original”

model) provided by Unitary, a contestant, was trained to serve as a “multi-headed model that’s capable

of detecting different types of of toxicity like threats, obscenity, insults, and identity-based hate”. Its

performance in the first Jigsaw challenge was admirable, with a 98.64 score (the top score was 98.86). In

addition, Unitary supplied a successful “multilingual” model.22 Owing to the high quality performance

applied) did not differ by treatment and over time, indicating that the platforms’ learning about users’ preferences for
toxicity was limited.

19https://extensionworkshop.com/documentation/develop/best-practices-for-collecting-user-data-consents/,
accessed: 2022-08-30.

20https://perspectiveapi.com/case-studies/, accessed 2022-09-07.
21https://www.scientificamerican.com/article/can-ai-identify-toxic-online-content/, accessed 2022-09-03.
22https://github.com/unitaryai/detoxify (section Description), accessed 2022-09-07.
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combined with the prospect of working with a fast and easy-to-use library, we decided to adopt Detoxify

as our main toxicity detection tool. Additionally, we chose Perspective API as our fallback option,

which was helpful due to its support for a wide array of languages.

2.3.2 Toxicity Scores

According to the providers of the algorithms employed in our project, their models render toxicity

scores corresponding to the probability that a text is considered toxic. This way, we could think of

scores exceeding 0.7 as cases where the algorithm is quite confident that a statement is toxic, whereas

values ranging from 0.3 to 0.7 would represent “suspect” cases, where the algorithm is uncertain.23

In order to better understand the meaning of this uncertainty, we need to scrutinize how the toxicity

detection solutions were trained. For example, in the case of Wikipedia comments, several human

reviewers classified each comment as “Very Toxic”, “Toxic”, “Not Toxic”, or chose “I’m not sure”. If

3 out of 10 people categorized a statement as toxic, the algorithms were trained to assign a score of

0.3. This interpretation holds for all algorithms prepared to compete in the Jigsaw challenges (such

as Unitary’s Detoxify). Specifically, Kaggle describes the target levels of toxicity in the training and

evaluation samples as “fractional values which represent the fraction of human raters who believed the

attribute applied to the given comment”. Lastly, it is important to consider the meaning of the words

“toxic” and “very toxic” as presented to human raters whose input was used to train the algorithms.

In this context, the term “toxic” is understood as “a rude, disrespectful, or unreasonable comment that

is somewhat likely to make you leave a discussion or give up on sharing your perspective”, whereas

“very toxic” refers to “a very hateful, aggressive, or disrespectful comment that is very likely to make

you leave a discussion or give up on sharing your perspective”.24 While “leaving a discussion” and

“giving up on sharing your perspective” constitute only a part of these industry-standard definitions,

one might expect that these would bolster the likelihood that detoxification using algorithms trained

this way will increase user engagement. In this context, our estimates showing the negative impact of

exposure to toxicity on various forms of user engagement (see Section 4) are conservative.

2.3.3 Limitations

While the tools enabling our intervention are a sign of a substantial progress in the field of automated

toxicity detection, they are by no means perfect. Unitary itself acknowledges the deficiencies of their

technology, pointing out issues with data sets that are very different from the training one. They also

emphasize that the toxicity scores might be excessively affected by profanity words, which in certain
23https://developers.perspectiveapi.com/s/about-the-api-score, accessed 2022-09-03.
24https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification, accessed 2022-09-03.
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contexts may not necessarily be harmful. This, however, does not imply that Detoxify cannot detect

context-dependent toxicity. For example, a misogynistic statement “Women are not as smart as men”,

though devoid of traditional markers of abusive language, is correctly identified as toxic.25

At this point, one might pose a question about the extent to which the imperfections of the toxicity

detection technology affect the relevance of our results. Our experiment investigates the effects of

applying currently available state-of-the-art tools, which can be used by social media platforms, online

fora, news providers etc., for the purpose of real-time hiding of toxic content. This is directly relevant

to stakeholders interested in automated toxicity detection. Furthermore, as a close proxy, the results

can also provide valuable lessons to platforms considering hybrid systems, with human moderators

partially overseeing the decisions made by the algorithm. Lastly, we hope to inform developers of

future toxicity detection technologies about the social implications of the existing solutions.

3 Experiment Design

3.1 Experiment Overview

Figure 1 summarizes the study flow. All individuals who installed the browser extension and agreed to

data collection were randomly assigned either a treatment or control condition. Each participant went

through a 14-day baseline period, during which we collected data on users’ social media activity, with

no hiding of toxic content regardless of the group. Subsequently, for users in the treatment group, we

enabled the intervention, hiding toxic text content on Twitter, Facebook, and YouTube, for six weeks.

After the last recruited person completed the intervention period, we invited all participants for an

endline survey, where we collected additional outcomes.

3.2 Sample

3.2.1 Recruitment

The recruitment process began on July 6th, 2022 and concluded on July 29th, 2022. We encouraged

participation in the study using Twitter ads targeted at US-based English-speaking adults on desktop

devices.26 To attract a broad subject pool, we relied on a variety of ad designs, including video

ads with social media themed animations (Figure 3a in the appendix), static ads drawing attention

to our gift card raffle (Figure 3b in the appendix), and ads offering a report on user’s social media
25We verified that our extension would assign this sentence a toxicity score of 0.63, which would lead to its hiding in

the treatment group. See the following article for a further discussion of the limitations: https://medium.com/unitary
/how-well-can-we-detoxify-comments-online-bfffe5f716d7, accessed: 2022-09-07.

26Our decision to recruit on Twitter was motivated by the smaller size of its user base in comparison to Facebook and
YouTube. We anticipated that if we enrolled participants via Twitter ads, there would be a relatively larger chance of
them using the other two social media sites.
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Figure 1: The Study Flow

stats (Figure 3c in the appendix). Individuals who clicked on the link in the ads were directed to

a Qualtrics environment for the intake survey. In addition to our main method of recruitment, we

benefited from promotion of our study by the Mozilla Foundation. The foundation’s official Twitter

account (@mozilla) retweeted a recruitment post (Figure 4 in the appendix) tailored to their followers

(278.3 thousand as of August 2022).27 The prospective recruits who clicked on a link in the post were

directed to a landing page, which was a simplified version of the intake survey.28

A consequential choice that we made when planning the ad campaigns was targeting users on

desktop devices. In this case, we faced a trade-off. Individuals viewing Twitter on desktop during

recruitment were more likely to regularly access social media platforms this way, thus allowing the
27The account’s profile can be accessed by clicking https://twitter.com/mozilla, accessed: 2022-08-28.
28Figure 1 outlines the components of the intake survey as experienced by those who were recruited through ads posted

by the researches – an overwhelming majority of participants. Individuals who enrolled through the post retweeted by
the Mozilla Foundation faced a simplified intake survey, composed of only two screens. See Appendix E for details.
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browser extension (which does not operate on mobile devices) to capture a higher proportion of their

activity and moderate a greater share of the content they are exposed to. Ultimately, this consid-

eration prevailed over the concern about the impact on external validity – desktop users could be a

special segment of the population. The alternative, allowing recruitment on mobile devices, carried a

significant risk of hiding very little toxicity. Our decision led to recruiting a sample with a high share

of social media consumption on desktop devices (detoxified and recorded by the extension). Thanks

to that, our intervention amounted to hiding a considerable proportion of users’ overall social media

diet, even when taking into account mobile app activity (see Section 4.1.1).

During the intake survey, we provided everyone with a link to the appropriate extension store,

based on the browser detected by Qualtrics, and offered an animated GIF explaining the installation

process (see Figure 5 in the appendix). As a part of the procedure, the participants could explore the

extension store listing, followed by onboarding. The prospective users could read that the extension

“can improve [their] user experience on Twitter, YouTube, and Facebook”, and that it “may optimize

[their] Twitter, YouTube, and Facebook pages by changing page content”. In an attempt to obfuscate

the exact purpose of the study, we chose to describe the functionality in general high-level terms, that

among other things could include hiding toxic content, though we acknowledge that some users might

have guessed our interests.29

Recruitment to the endline survey started on September 28, 2022, soon after the last participant’s

six-week intervention period concluded. The link to the survey was included in the browser notification

(a new tab opened) sent to all users through the extension. We supplemented this process by sending

emails to the participants who provided a valid email address during the intake survey. As promised

during enrollment, everyone who kept the extension enabled until the end of the study was entered into

a raffle with three available prizes: $50, $150, and $300 gift cards. We instructed the participants on

how to check whether they won a prize in the endline survey. Additionally, everyone who was eligible

for a raffle entry was also entitled to a report on their social media activity.

3.2.2 Treatment Assignment

Individuals who installed the browser extension and agreed to data collection were randomly assigned

either a treatment or a control condition, as well as attached to a unique user id on their first visit to one

of the supported social media platforms. All data recorded by the extension was stored in the database

under the user id. Since the id and treatment assignment were performed at the browser level, in the
29The wording of the store listing and user onboarding is provided in Appendix C. We used a similar strategy in our

pre-screening tasks (intake survey), where the prospective participants learned about the extension functionality and
were asked to indicate if they are willing to keep it installed until the end of September. See Figure 19a in the appendix
for an example.
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intake survey we instructed participants to only install the extension for one browser – their main one

– to minimize the risk that the user could experience different treatments. Furthermore, the user id

was placed in the extension storage, which should all but eliminate the possibility that the same person

could be represented by two different user ids. Even if someone accidentally uninstalled or disabled

the extension, they should still be assigned the same id on re-entry. Hence, we are confident that the

user ids provide a reliable system of identifying participants. After a minimal cleaning procedure,30

we detected 836 extension users, 439 in the treatment and 397 in the control.31

3.2.3 Main Sample

Out of 836 initial users, 775 (92.7%) individuals were still using the extension during the intervention

period – after the baseline period concluded (14 days). From now on, we refer to these participants

as the main sample. Note that there were no differences in user experience between the two groups

during baseline. As expected, attrition at this stage did not vary by group, with 410 individuals

(93.4%) remaining in the treatment, and 365 (91.9%) in the control.

Covariates We used Twitter handles collected by the extension to match participants to the Twitter

API dataset to obtain covariates related to their previous Twitter activity – such as the number of

years on the platform, the number of likes, friends, and followers.32 The extension retrieved at least

one Twitter handle for 89.9% of users, based on whether the handle was available on the page while the

participant was browsing. We expect the handle availability to be independent of treatment assign-

ment. In particular, if the handle was obtainable given the user’s interface, the extension would have

picked it up during the baseline period, where there was no difference in user experience across groups.

In addition to obtaining Twitter API data, we relied on the Twitter handles to match participants

to their intake survey, where we elicited their demographics and data on their social media usage on

desktop. We were able to match 563 individuals (72.6%) to their responses. Our ability to match the

records depends on whether users correctly and truthfully reported their handle in the intake survey.

We collected Twitter handles before treatment assignment, therefore, the matched individuals should

constitute an as-if random subset of the main sample.33

30We discarded ids in a handful of cases, where despite our efforts, the same person experienced multiple treatments
or re-entered the study at a late stage with a different user id.

31We performed randomization using JavaScript’s Math.random() function, with both groups being equally likely.
32To find more information about the Twitter API, visit https://developer.twitter.com/en/docs/twitter-api, accessed

2022-09-07.
33This conclusion should not be undermined by the fact that we recruited some users through promotion by the Mozilla

Foundation, where we do not collect Twitter handles in the intake survey. The reason is that this way of recruitment
constituted a very minor proportion of all installations – we only recorded 36 responses in which the user declared their
willingness to participate (and of those not everyone necessarily installed the extension).
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Sample Balance Data from the Twitter API and the intake survey allowed us to create a rich

balance table, depicted in Table 7 in the appendix. None of the sixteen covariates indicates significant

differences by treatment assignment at the 5% level. Furthermore, the geographical distributions of

users (categorized into five regions: Midwest, Northeast, South, West, and Other) in both groups

mirror each other. We conclude that the main sample is well-balanced.

3.2.4 Survey Sample

Based on matching the endline survey responses to the extension data by Twitter handles, we identified

364 participants – 43.5% of the initial users (assigned treatment) – who completed the endline survey.

This includes 189 individuals in the treatment group (43.1%) and 175 in the control group (44.1%).

Table 8 in the appendix provides the survey sample balance. Only one out of sixteen listed covariates

– the number of Twitter followers – is significantly different by treatment group at the 5% level.

3.3 Treatment

During the intervention period, our browser extension hid toxic text content on Twitter, Facebook, and

YouTube for all individuals in the treatment group. The extension identified and analyzed each post,

comment, and reply before it was displayed to the user on the three sites. Based on each element’s

text, a probabilistic toxicity score between 0 and 1 was assigned. The extension hid all content with

the score exceeding a fixed threshold – the same for all participants in the treatment group.

Analyzing Text Content The extension sent text content to be evaluated to our server.34 There,

we detected the language of the text. If the language was English, we relied on the “original” model

provided by Unitary’s Detoxify library (see Section 2.3 for details). Otherwise, we applied one of the

multilingual models, which together support 16 additional languages.35 Given that our recruitment ads

targeted US-based English-speaking adults, we anticipated that the overwhelming majority of content

will be covered by the “original” model. Nevertheless, we chose to add fallback options for elements

in other languages to increase the strength of the intervention, and welcome participants of various

ethnicities and linguistic backgrounds. Once the toxicity analysis on the server was concluded, the

toxicity score was sent back to the extension, where a decision was reached if an element should be

hidden or not.
34Our main toxicity detection tool is a Python library. For this reason, we created a Flask app, which allows running

Python on a web server. The app was stored on Digital Ocean for the duration of the study.
35If the language was French, Italian, Russian, Portuguese, Spanish, or Turkish, we used the “multilingual” model by

Unitary. In all other cases, we applied Perspective API – an alternative toxicity detection technology – which additionally
supports multiple other languages: Arabic, Chinese (“zh”), Czech, Dutch, German, Hindi (“hi”, “hi-Latn”), Indonesian,
Japanese, Korean, and Polish.
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Hiding Threshold For all users in the treatment group, we adopted a hiding threshold of 0.3.

This rule means that posts and comments with a toxicity score greater than 0.3 were hidden by the

extension. To interpret the intervention in light of this threshold, we need to recall the meaning of

toxicity scores, introduced in Section 2.3.2. In particular, the score of 0.3 reflects that 3 out of 10

human raters would label a text as toxic. The raters worked with the industry standard definition

of toxicity, understood as “a rude, disrespectful, or unreasonable comment that is likely to make you

leave a discussion.” If 3 out of 10 people would agree that a statement can be characterized by this

strongly worded description of toxicity, we considered it a meaningful candidate for hiding – one that

could be reasonably implemented by a platform. Ultimately, the optimal threshold depends on the

application. For example, if we intended to remove a piece of content from a website entirely or

block the author, a more stringent criterion would be appropriate. Our choice of the threshold also

reflects our ex-ante hope to examine whether substantial detoxification can improve user engagement

and reduce the toxicity of content generated by users, or perhaps reveal a trade-off between these two

objectives.36 We consider our efforts a starting point in this type of analysis with the intention of

offering a benchmark for future, perhaps less intensive, interventions.

Speed of Hiding Immediate hiding of toxic content was of paramount importance to the project.

To ensure it, the app on our server – processing all statements and assigning them toxicity scores – was

deployed on Digital Ocean and served by 8 machines, providing 4 GB RAM and 2 vCPUs each, with

requests efficiently distributed among them during peak times. To evaluate our efforts, we collected

data on the hiding speed on Twitter, measured as the difference between the time at which a toxic

element was hidden and the time when it appeared on the page. The median hiding speed was equal

to 407 milliseconds. The histogram, presented in Figure 6 in the appendix, and the ECDF, depicted

in Figure 7 in the appendix, confirm that most hiding occurred in a fraction of a second, ensuring an

uninterrupted experience from the perspective of the user. Moreover, content on social media is loaded

in batches ahead of where the user is on the page (e.g., if a user scrolls down to see posts 4-6, posts

7-9 are already being loaded), so the extension hides toxic content before users could see it.

Style of Hiding In addition, we minimized traces left on the page by our hiding intervention.

Figure 8 in the appendix demonstrates user experience in the Facebook feed (and on group pages) –

with hidden posts seamlessly replaced by the content below. Furthermore, Figure 9 in the appendix

offers an example of a comment section under a post in the original state and with the intervention
36Our data suggests that our choice of a low threshold level was less consequential than anticipated. In particular,

Figure 12 in the appendix demonstrates that the distribution of toxicity of above-the-threshold content is skewed to the
right.
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provided by our extension. In general, the hiding of posts in the feed and comments under posts

across the three platforms should not have been easily noticeable to a casual user.37 On Twitter and

Facebook, posts were hidden together with their visible comments, and comments with their visible

replies. If a toxic comment/reply on Twitter was a part of a thread, all subsequent replies were hidden

too, as they would not make sense without the toxic element. On YouTube, we were hiding toxic posts

together with “Show replies” button (if unwrapped) and nested replies (if visible). Figure 10 in the

appendix depicts an example of the hiding intervention on YouTube.

Twitter-specific Functionality In order to induce greater exogenous variation in exposure to toxic

content between the treatment and the control group on Twitter, the extension seamlessly unwrapped

“Show more replies” sections at the bottom of comments under a post, where the platform places more

toxic elements.38 The functionality was enabled both in the treatment and the control group during

the baseline and the intervention period, so that the addition of hiding was the only thing that we

experimentally varied across the conditions at the beginning of the intervention.

3.4 Outcomes

3.4.1 Extension Outcomes

The main questions addressed by the paper concern the impact of exposure to toxic content on various

form of user engagement – spanning both what the user views and what they post – and the exposure’s

impact on the propensity to spread further toxicity. In this context, it is natural to divide our outcomes

into two categories: content consumption and content production. Within each category, we separately

focus on toxicity and quantity. Additionally, we describe time that users spent on social media.

Content Consumption (Toxicity) We report the proportion of content on Twitter, Facebook, and

YouTube that the extension hid during the study, as well as the average toxicity scores. These measures

allow us to understand the strength of the intervention and can be interpreted as a “first stage.” For

the treatment group, we simultaneously present the toxicity of content offered by the platforms (what

they intended to display before hiding applied) and toxicity of content shown. Comparing the former

measure to the toxicity of content in the control group (over time) is helpful in discerning any potential

learning by social media algorithms.
37Despite our best efforts, there were some minor exceptions, e.g., in the case of toxic replies on Twitter when they were

marked with a vertical line connecting elements of the thread – we could not entirely remove the line from an element
preceding the hidden one. Importantly, our data suggests that the hiding intervention did not have a negative effect on
user experience. For example, this is indicated by the lack of differential attrition in our experiment – the overall attrition
was low, and the survival rate was actually higher in the treatment group, albeit insignificantly.

38Typically, to see this content, the user needs to click a button – Figure 11 in the appendix shows the difference in
user experience.
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Content Consumption (Quantity) As a basic measure, we record the quantity of content dis-

played to users on each platform as a proxy for content consumption. However, when evaluating the

effect of exposure to toxicity on content consumption, we rely on the quantity of content offered by the

platform – inclusive of the hidden elements, to ensure that any negative treatment effect is not driven

by the mechanical consequences of our intervention. To illuminate the impact of the intervention on

ad impressions, we distinguish between posts and comments/replies. The former category is more

relevant to advertising due to the positioning of ad slots – ads are typically placed in user feeds in

between posts from followed accounts or friends. Moreover, we directly report on the number of ads

displayed to the participants – we can do so on Twitter, where we are able to credibly identify ads

appearing in the feed.

Content Production First, in order to capture more intensive forms of user engagement, i.e., ones

requiring a visible action, we compute the total number of posts and comments published by users on

the platforms. Additionally, we report the number of reactions, such as likes. Second, to investigate

the contagiousness of toxicity, we provide the average toxicity scores of posts, comments, and replies

published by each participant.39

Time on Social Media We record the total time that participants spend on Twitter, Facebook,

and YouTube, with one minute precision. This outcome encapsulates both the time spent on active

consumption and production of social media content as well as passive time, when one of the sites is

open in the current browser tab. We also consider potential spillover effects to platforms where the

intervention did not take place. The extension measured time spent by users on 38 related websites

(the list is provided in Appendix F).

Heterogeneity As indicated in the pre-registration, we explored two angles of heterogeneity. First,

we split the sample into two parts according to the toxicity of content consumed on the three plat-

forms during the baseline period. To that end, we ranked individuals by the average toxicity score,

and categorized the participants relative to the median person. Considering the above-the-median

individuals – henceforth referred to as the toxic sample – gives us insight into the effects on users who

might exhibit higher tolerance for toxic content, or perhaps even a degree of preference for it. This

interpretation stems from the possibility that platforms may optimize what they display to users at

the individual level, and thus the heterogeneity in toxicity scores likely reflects what platforms know
39Please note that we cannot include likes and retweets in our analysis of contagion. This is because any effect for these

endpoints would be explained by a mechanical effect; content with toxicity exceeding 0.3 that users could have shared or
reacted to would be hidden in the treatment group. This only allows for any meaningful difference to occur for elements
with the scores below the threshold.
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about each participant. The second angle of heterogeneity is by platform. Due to the fundamental

differences between Facebook, Twitter, and YouTube – some of which became apparent during pre-

liminary data analysis – we focus mostly on platform-specific investigation, reporting our results for

each website separately.

3.4.2 Survey Outcomes

We collected additional outcomes in the endline survey (see Appendix D for the exact wording of

all questions). In particular, we elicited the impact of the intervention on participants’ self-reported

well-being. Here, we followed the methodology proposed by Allcott et al. (2020) by selecting six

of their survey questions encapsulating subjective well-being. Three measures pertained to positive

emotions and behavior: happiness, life satisfaction, being absorbed in doing something worthwhile.

The other three focused on the negative aspects: depression, anxiety, and boredom. To evaluate the

outcome, we created an index aggregating the answers to the six questions. For each individual, we

computed 1
6

∑6
i=1

yi−ȳi
σi

, where yi is the numerical answer to the ith question, ȳi is its mean, and σi the

standard deviation,40 with the negative measures (a higher value indicates lower well-being) re-scaled

by -1. In each question, we emphasized the period of interest – the last six weeks, focusing attention

on the intervention time.41 Moreover, to analyze whether a lower exposure to toxic content reduces

users’ normalization of hateful attitudes, we asked the participants to read seven online comments (see

Appendix D.2.3), and indicate to what extent they consider each of them toxic. The statements were

displayed in random order. We selected the texts from the training dataset for the Jigsaw challenges.

The chosen statements represent different degrees of toxicity, with Jigsaw’s toxicity scores ranging from

0.4 to 0.93. We provided the survey participants with the same definitions of toxicity and the same

comment evaluation scale as the ones faced by Jigsaw’s annotators. We computed the proportion of

people who reported each statement to be “Toxic” or “Very Toxic” to maintain the original fractional

interpretation of toxicity scores. Then, we averaged the proportions across the statements to report

the final outcome.

3.5 Descriptive Statistics

Panels A and B of Table 1 display descriptive statistics for users and Twitter accounts in our main

sample, and compare them to representative samples. The representative sample of Twitter users comes

from the American Trends Panel (ATP) of September 2020, which is a nationally representative panel
40The proposed solution to aggregating outcomes illuminating the same phenomenon has been widely used by re-

searchers. Examples include Kling et al. (2007) and Bursztyn et al. (2017).
41This approach mirrors Allcott et al. (2020) who underscored in their survey questions that the period of interest is

the last 4 weeks, the duration of their Facebook deactivation intervention.
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of U.S. adults provided by the Pew Research Center. The representative sample of Twitter accounts

originates from English Tweets collected in August 2020 from the 1% random sample of Twitter’s API.

Our sample of users is comparable to a representative sample of U.S. Twitter users in terms of age and

sex, but it oversamples Democrats and undersamples Independents. Moreover, the Twitter accounts

in our sample tend to be older and have fewer followers, with an approximately similar number of

accounts followed relative to accounts from the random sample of Tweets.

Table 1: Descriptive statistics

Panel A: User demographics
Main Sample (mean) Representative (mean) Difference (t)

Age 18-29 (%) 30.90 30.99 0.03
Age 30-49 (%) 36.01 39.84 1.43
Age 50-64 (%) 22.12 20.76 -0.64
Male (%) 52.24 54.17 0.70
Democrat (%) 53.56 35.35 -6.79
Independent (%) 36.83 43.81 2.53
White (%) 64.40 69.24 1.79

Panel B: Twitter accounts
Main Sample (mean) Representative (mean) Difference (t)

Account years 7.0 5.2 -9.38
Number of followers 1,643.0 4,803.7 4.95
Accounts followed 1,211.7 1,071.3 -1.59

Panel C: Baseline outcomes
Facebook, N= 579 Twitter, N= 747

Mean Median SD Mean Median SD
Content shown/day 96.7 23.1 198.5 237.4 106.0 361.9

Posts/day 46.6 11.2 106.8 159.4 79.7 225.3
Comments/day 50.1 11.4 105.4 75.7 20.1 173.2

Toxicity/content shown 0.03 0.03 0.02 0.07 0.07 0.04
Content produced/day 2.3 0.3 5.7 2.3 0.2 6.0
Toxicity/content produced 0.04 0.02 0.08 0.08 0.03 0.13
Minutes spent/day 29.5 5.4 72.6 36.3 14.1 67.9

Note: Panel A compares means of user characteristics in the main experimental sample (Main Sample) relative to a representative
sample of Twitter users from the American Trends Panel (ATP) of September 2020 (Representative). It also presents t-statistics
from tests of difference in means between both samples. Panel B compares Twitter accounts in our main sample relative to a ran-
dom sample of 200,000 English Tweets collected in August 2020 from the 1% random sample of Twitter’s API (Jiménez Durán,
2022). Panel C displays the mean, median, and standard deviation of some of our outcomes on Facebook and Twitter during the
14-day baseline period.

Panel C of Table 1 reports summary statistics for a subset of our outcomes based on the 14-day
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baseline period for our two main platforms: Facebook and Twitter. On average, users spend roughly

half an hour per day on both platforms. They consume 1.4 times more content on Twitter, despite

producing 2.3 elements of content on both platforms. Comments constitute half of Facebook content

but only one-third in the case of Twitter. The average toxicity score per unit of content (both consumed

and produced) is almost double on Twitter. Throughout the study we collected a total of 15,287,908

posts, comments, and replies shown to our participants, including 10,281,107 on Twitter, 3,065,231

on Facebook, and 1,941,570 on YouTube. Despite platforms’ existing content moderation efforts, the

extension recorded a remarkable total of 1,053,787 toxic elements – posts, comments, and replies with

a toxicity score exceeding 0.3. During the study, the highest proportion of toxic content was collected

on Twitter (7.84%), followed by YouTube (5.98%), and Facebook (4.28%). Even more surprisingly, the

distribution of the toxicity scores for the above-the-threshold content strongly skewed to the right, as

depicted in Figure 12 in the appendix. In fact, we observed that as much as 52.94% of toxic elements

had a score above 0.7.

3.6 Empirical Strategy

At the core of our identification strategy is the use of the baseline period to establish benchmark levels

of activity, such as time on social media or content consumption, for each individual. This baseline

should allow us to estimate the effects of the intervention with more precision. In our pre-registration,

we indicated our intention to evaluate the outcomes using a difference-in-differences approach, where

we rely on the two-week baseline and the six-week intervention periods.

Given that we randomly assigned treatment to each participant, the parallel trends assumption is

satisfied by design. Furthermore, the median person was actively using their browser on 14 out of the

14 days of the baseline, with the median total activity equal to 3449 minutes. The first quartile values

were 12 and 1644, respectively. The high level of activity during the baseline, even for the left tail of

the distribution, indicates that it was a reliable measure of users’ typical activity.

We adopt the two-way fixed effects model (TWFE) as our main specification. First, for each

participant, we define time periods t as days in the study relative to their individual start date.

Second, we generate a treatment dummy Dit, indicating whether the hiding intervention was on for

individual i in period t. Lastly, we regress the outcome variable Yit on the treatment dummy Dit with

individual fixed effects αi and period fixed effects δt:

Yit = αi + δt + βTWFEDit + ϵit. (1)

We use Driscoll and Kraay standard errors to account for serial and cross-sectional dependence, as we
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have a relatively long panel of individuals (Cameron and Miller, 2015), but we also discuss robustness

to alternative standard errors.42

Even though our recruitment period was very short (about 3 weeks), one may be concerned that

our participants enrolled in the study on different days, and thus, in terms of calendar days, their

presence in the experiment did not perfectly overlap. According to the newest difference-in-differences

literature (see Baker et al., 2022; Chabé-Ferret, 2021, for a review), the staggered treatment could lead

to bias in the TWFE estimator. As a robustness check, we report the stacked difference-in-difference

regressions (proposed by Cengiz et al., 2019; Gardner, 2022), which address this problem. This involves

extending specification 1 by including start date × individual and start date × period fixed effects.

Lastly, it is important to note that browser extensions do not allow developers to observe unin-

stallation events by users, which necessitates inferring attrition from user activity. All regression

specifications presented in the main text of the paper rely on panels involving participants who were

active on day 46 or later (at least 10 days before the end of the intervention). This assumes that 10

days of inactivity is a reliable signal of attrition. As a robustness check, we explore different attrition

thresholds and show that our results are not driven by the particular choice of day 46.

4 Results

In this section we present the findings of the paper. We categorize the results into four strands: content

consumption, content production, time spent on the platforms (including spillover effects), and users’

well-being. We address each category in turn. For platform-specific outcomes, in the main text of the

paper we focus on presenting the findings for Twitter and Facebook – social media where text-based

exchanges are the primary reason for visiting the site.43 We outline the results pertaining to YouTube

activity in Appendix H. The section concludes with a discussion of robustness and potential concerns.

Chiefly among the concerns is the risk of differential attrition. As a result, we devote Section 4.5.1

to providing evidence that our findings are unlikely to be driven by differential attrition. There, we

evaluate survival patterns throughout the study, highlighting parallel trends in dropout dynamics.

Additionally, we report regression analysis indicating that the hiding intervention did not significantly

affect the proportion of survivors at the end of the study, and that the average number of days in the

study was uncorrelated with treatment group. Lastly, we discuss regression analysis refuting two likely
42Driscoll and Kraay (1998) provide a non-parametric estimator that is robust to heteroscedasticity and very general

forms of spatial and temporal dependence. This method requires a large number of time periods, which is a plausible
assumption in our setting with 56 time units per individual.

43YouTube significantly differs from Facebook and Twitter in the context of our intervention, as text exchanges are
only a secondary reason (behind watching videos) for visiting the platform. This was crystallized by the extension data
on the average quantity of content per minute spent on each of the platforms: 6.73 for Twitter, 3.27 for Facebook, and
only 1.52 for YouTube (22.6% of Twitter’s value and 46.5% of Facebook’s value).
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channels that could fuel differential attrition – related to users’ activity and “preference” for toxicity

(with the baseline exposure to toxicity as a proxy).

4.1 Content Consumption

4.1.1 Toxicity

During the intervention period, the extension automatically removed a daily average of 23.7 pieces of

toxic text content per treated user on the three supported platforms, including 15.8 on Twitter and

4.6 on Facebook. To put these quantities in context, we report hiding 6.55% of such content displayed

to users in their browser – 7.10% on Twitter, and 4.94% on Facebook. Given that our participants

reported spending, on average, 62% of their Twitter time and 57% of their Facebook time on a desktop

device, a back-of-the-envelope calculation suggests that the extension hid 4.4% of their entire Twitter

diet – taking into account mobile usage – and 2.8% for Facebook. We conclude that the intervention,

despite being introduced solely on desktop devices, considerably varied exposure to toxic content on

social media.

The hiding intervention resulted – by design – in a decrease in the average toxicity of users’

desktop feeds and comment sections. Figure 2 depicts the average toxicity score of elements on the

three supported platforms over the course of the study, split by treatment condition. For treated

individuals, the figure provides both the level of toxicity of content offered by the platforms, i.e.,

inclusive of the elements that were hidden (dashed line), and the toxicity of content shown , i.e.,

displayed to users (solid line). For participants in the control group, the figure plots the toxicity of

content shown. The graph demonstrates a sharp drop in the average exposure to toxic content in

the treatment group. At the same time, it is clear that the average toxicity of elements that would

have been displayed to participants did not differ by treatment arm – it was 0.063 in the control and

0.064 in the treatment. These contrast with the mean toxicity of 0.017 that was shown to users in the

treatment group after the conclusion of the baseline period. Overall, the hiding intervention reduced

the toxicity of content the participants were exposed to by 73.2% across the three platforms.

Table 9 in the appendix demonstrates that the treatment lowered the average toxicity score by

about 2 pp. on Facebook (p-value < 0.001) and 5 pp. on Twitter (p-value < 0.001). Respectively,

these can be interpreted as a 58.6% and a 70.5% reduction relative to the mean. Lastly, the lack of

difference in the average toxicity of content that the platforms intended to display to users between the

experimental groups and across time indicates that, at least on average, the platforms’ algorithms did

not learn anything about the participants’ preferences for toxic content as a result of the intervention.
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Figure 2: Average Toxicity of Content Shown to Users During the Study

Note: The figure depicts the average toxicity of posts, comments, and replies shown to users on each day of the study (relative to
when a given participant started), separately for the control group and the treatment group. The dashed line for the treatment
group demonstrates the average toxicity of elements that the platforms intended to show to the user before any hiding was applied
by the extension. The data presented here encompasses the three supported platforms (Twitter, Facebook, and YouTube). The
dashed vertical line (“Intervention start”) indicates day 15 – the first day of the intervention period.

4.1.2 Quantity

Table 2 summarizes the main results on our key measure of engagement – the quantity of posts and

comments that users consume. The hiding intervention, which lowered exposure to toxicity, signif-

icantly reduced content consumption on Facebook. The conclusion was reached from the treatment

effect on the posts and comments that the platform offered, i.e., including the hidden elements. Thus,

the negative effect on this measure of consumption cannot be explained by the mechanical effect of

hiding, and indicates a genuine reduction in this form of user engagement. Specifically, we observed

that the hiding intervention decreased content consumption by at least 17.6 elements a day (p-value <

0.001). This magnitude represents a 23% decrease relative to the mean quantity of content throughout

the study, or 0.08 standard deviations. The effect is similar for the sample of all Facebook users and for

those in the toxic sample, although it is slightly stronger for the latter. On Twitter, the effect on con-

tent consumption, measured using content offered, is statistically (p-value = 0.912) and economically

insignificant (-0.8 elements per day or 0.002 standard deviations).

Figure 13a and 13b in the appendix present estimates from the event study specification for Face-

book and Twitter respectively, which allow us to analyze the dynamics of the treatment effects. The

drop in content consumption on Facebook occurs after the first week of the intervention, and appears

to persist throughout most of the study. Hence, the effects are not driven by period-outliers.
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Table 2: Effect of Intervention on Offered Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -17.6*** -0.8 -21*** 4.1

(2.753) (7.177) (3.888) (13.882)
p < 0.001 p = 0.912 p < 0.001 p = 0.77

N 31 864 38 472 15 120 19 320
Mean 76.15 204.53 60.84 274.32
SD 218.08 424.28 193.66 508.85

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of
users whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The
dependent variable is the number of posts and comments offered to users; those displayed on their feeds and comment sections plus
the content mechanically hidden by the extension. The unit of observation is the individual-day, where day is measured relative
to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard errors are
parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

To further shed light on our main estimates, we split our data by whether a piece of content in

question is a post or a comment – Table 10 in the appendix presents the results. It is notable that the

intervention reduced consumption of both posts (user feed) and comments on Facebook, the former of

which is consequential for ad impressions – as the platform places ads in between posts. For the main

sample, the consumption of posts fell by 9.7 per day (a 26% change). The reduction for comments was

equal to 8.5 (a 21% change). This is mirrored in the toxic sample, with the numbers being, respectively,

9.8 and 11.7. On Twitter, the results are inconclusive, although suggestive of a slightly negative effect

on comments.

Our conservative measure of content consumption – content offered – adds the elements hidden by

the browser to the number of elements actually displayed to users. This provides a lower bound (in

absolute value) on any negative treatment effect, and ensures that the results are not driven by the

mechanical effect of hiding. While we use content offered as our main outcome, this does not imply

that the effect on content shown is necessarily uninformative. In the feed and in long comment sections,

hidden elements are instantly replaced by the content below – they are pulled up. Furthermore, even

in the event that there is no available replacement, or if we consider the implications of elements being

loaded in batches, a lower quantity of content shown during a browsing session indicates that users

decided not to scroll further or seek more content in place of what was hidden – a meaningful decision.

Overall, the intervention led to a reduction in content displayed to users, as presented in Table 11

in the appendix, by 21.3 posts per day (p-value < 0.001) on Facebook and 14.6 (p-value = 0.04) on

Twitter.
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4.1.3 Advertising

The hiding intervention resulted in a reduction of ad consumption on Twitter. In particular, Table 3

indicates that the average number of ads displayed to users per day fell by 1.8 (p-value = 0.002), a 9.2%

difference. Similarly to our main measure of content consumption, we count all ads including those that

are hidden, to ensure that the result is not driven by the mechanical effect of the intervention. In this

context, it is important to note that only a very small fraction of ads (0.59%) was identified as toxic,

so relying on the conservative approach has a minimal impact on the point estimate. Unlike in the

case of Twitter, we are unable to precisely identify ads on Facebook. However, as previously discussed,

we can use consumption of posts (excluding comments and replies) as a proxy for the number of ads

displayed to users on Facebook. We find a negative effect of the intervention on that measure, which

is consistent with a drop in ad consumption on Twitter.

Table 3: Effect of Intervention on the Number of Twitter Ads

Main Sample Toxic Sample
(1) (2)

Treated -1.8*** -0.3
(0.534) (0.925)

p = 0.002 p = 0.708
N 20 617 11 464
Mean 19.54 20.76
SD 24.17 24.18

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of
users whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The
dependent variable is the number of ads offered to users on Twitter; those displayed on their feeds plus the ads mechanically hidden
by the extension. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include
users who were active up to at least day 46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote
significance at the 10%, 5%, and 1% levels, respectively.

4.2 Content Production

4.2.1 Toxicity

Having discussed content consumption, we now turn our attention to content production. Table 4

displays the estimates on the toxicity of posts and comments written by users. The intervention had a

significantly negative impact on the average toxicity scores of the content they publish – conditional on

posting. The effect is quantitatively similar for both platforms: -0.014 on Facebook (p-value = 0.016)

and -0.016 on Twitter (p-value = 0.006). These can be interpreted as a 35% and a 20% reduction in the

content toxicity relative to the mean, or a decrease of 0.15 and 0.106 standard deviations, respectively,

for Facebook and Twitter. The pattern is similar for users in the main sample and those in the toxic
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sample, although the magnitude is slightly stronger for the latter. Taken together, we find broad

evidence consistent with the hypothesis that toxicity on social media is contagious.

Table 4: Effect of Intervention on Toxicity of Produced Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.014** -0.016*** -0.023** -0.02***

(0.006) (0.006) (0.009) (0.008)
p = 0.016 p = 0.006 p = 0.013 p = 0.01

N 6658 9621 2737 5968
Mean 0.04 0.08 0.05 0.1
SD 0.09 0.15 0.1 0.17

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the average toxicity of the published content, conditional on posting. The unit of observation is the individual-day, where
day is measured relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Next, we investigate a potential mechanism behind the contagion hypothesis, namely, that exposure

to toxic content contributes to normalization of toxic behavior, which then increases the likelihood that

users engage in this type of behavior. Despite the overall strong effect of the exposure on toxicity of

own content, we find no evidence of normalization of toxicity. The results are presented in Table 15

in the appendix. We report an insignificant effect (p-value = 0.491) on the index summarizing users’

evaluations of seven toxic statements in the endline survey, which offers suggestive evidence that

exposure to toxicity does not change their opinions on what is considered toxic. Additionally, the table

provides regression analysis for each statement separately, and shows that the intervention resulted

in a significant difference in toxicity evaluation only for 1 out of 7 statements, with comment C7 (see

Appendix D.2.3) considered more toxic in the treatment group by 11 pp. (p-value = 0.028).

4.2.2 Quantity

Besides an effect on the toxicity of users’ posts, we also present a result on the quantity of content

they write. As Table 5 demonstrates, the intervention reduced the publishing of posts and comments

by 0.7 per day (p-value = 0.022) in the main Facebook sample. The effect for Twitter is in the

opposite direction and insignificant (0.1 more daily content, p-value = 0.443). Taking into account the

previously discussed findings, we conclude that our intervention results in a reduction of both content

consumption and content production on Facebook. We do not provide similar evidence for Twitter.

The effects on consumption and production diverge among users in the toxic sample, suggesting
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a relative shift towards production. On Facebook, individuals did not change the quantity of content

they produce but reduced their consumption. On Twitter, they increased content production but

consumption did not rise (some measures, e.g. ad consumption went down).

Table 5: Effect of Intervention on Total Number of (Own) Posts

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.7** 0.1 0.2 0.6***

(0.272) (0.099) (0.335) (0.19)
p = 0.011 p = 0.443 p = 0.591 p = 0.003

N 27 720 30 352 12 600 16 296
Mean 2.51 2.42 1.93 3.28
SD 14.16 7.56 7.92 8.89

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of elements of content posted by users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard
errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

4.2.3 Reactions

Separately, we investigate the effects of the intervention on the number of reactions (such as likes).

Table 12 in the appendix provides the results. Overall, we report no significant effect on both Facebook

and Twitter. However, the hiding intervention led to a reduction in the number of reactions on

Facebook for the toxic sample (p-value = 0.018), a result consistent with a drop in other types of

engagement (such as lower content consumption).

4.3 Time Spent

We now present the results on the time users spend on the platforms – both those undergoing the

intervention and otherwise. First, we find no evidence of a significant change in the amount of time

individuals spend either on Facebook or on Twitter. This is so despite being ex-ante powered to rule

out effects larger than 0.03 standard deviations around the point estimate in the main sample. Table

6 presents the regression details. A caveat here is that the effect for Twitter in the toxic sample is

positive and marginally significant, at the 10% level. This finding is interesting in the context of

the previously reported results regarding the toxic sample – the intervention increased their content

production as well as the number of reactions. Taken together, these indicate that there is potential

in exploring whether for users with high exposure to toxicity hiding toxic content could improve some
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forms of engagement. We hope that this type of heterogeneity will be a subject of further academic

work.

Table 6: Effect of Intervention on Social Media Consumption Time

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated 1.5 -0.4 1.3 3.9*

(1.384) (1.316) (1.641) (2.158)
p = 0.284 p = 0.777 p = 0.417 p = 0.079

N 32 760 38 752 15 512 19 320
Mean 22.88 30.58 22.08 42.76
SD 80.69 85.35 91.44 106.54

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on the platform. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard
errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Finally, somewhat surprisingly, reducing exposure to toxicity on the treated platforms led to posi-

tive spillover effects on the combined total time spent on 38 other social media platforms, where the

intervention did not take place. Table 13 in the appendix presents the results of the regression of

time spent on social media platforms other than Facebook, Twitter, and YouTube. In particular, the

hiding intervention resulted in users spending, on average, 1.8 more minutes per day on the not treated

platforms (p-value = 0.029).

4.4 Measures of Well-Being

In this subsection we focus on measures of user well-being collected in the endline survey. Overall, we

do not detect a significant effect of the hiding intervention on the index of self-reported individual well-

being (p-value = 0.634). Moreover, Table 14 indicates that the treatment had no significant impact

on any components of the index considered in isolation: happiness (p-value = 0.488), life satisfaction

(p-value = 0.710), anxiety (p-value = 0.730), depression (p-value = 0.629), doing something worthwile

(p-value = 0.303), and boredom (p-value = 0.523). These findings provide suggestive evidence that

exposure to toxicity may not be the main driving force behind the negative effects on social media

on well-being, a relationship well-documented in the literature. This point should be treated with

caution given the small sample size (N=388 individuals). We hope that our design will be applied in

the future to investigate toxicity’s impact on well-being with a larger group of users, an important step

in understanding the mechanisms through which social media penetration affects individual welfare.

28



4.5 Robustness and Potential Concerns

4.5.1 Attrition

A major threat to identification in the paper is a risk of differential attrition. We devote this section

to documenting that the hiding intervention, lasting six weeks, did not result in differential dropout

of participants throughout the experiment.

We begin the analysis by inspecting attrition trends using Figure 14 in the appendix. For each day

of the study (relative to when a participant started), the figure visualizes the proportion of individuals

who were active on that day or later. In other words, it plots the proportion of users who certainly

remained extension users in each period. The graph provides no indication of differential dropout by

treatment group at any point of the experiment. Given that the user experience did not vary by group

during the baseline, it is insightful to consider attrition specifically during the intervention period. We

report that 84.9% of those who remained until the start of the intervention were active on day 56 (the

last day of the study) or later, with the following split by group: 86.6% in the treatment and 83.0%

in the control. The difference in the proportion of survivors between the groups is not statistically

significant (p-value = 0.166). Together with the earlier graphical evidence, this implies that the hiding

intervention did not lead to differential dropout of participants, at least in terms of their number.

Another way of using the survival rates to inspect the issue of attrition is to compare its pace

between the intervention period and the baseline, where there were no differences across the groups.

The average attrition pace per week was similar during the former (2.5 pp.) and the latter (3.6 pp.).

The symmetry in dropout by treatment group is even more clear in Figure 15 in the appendix, where

we depict the number (rather than the proportion) of remaining participants, computed using the same

method. We deliberately set the beginning of the y-axis to 300 to zoom in on the attrition trends. By

inspecting the graph, we can conclude that they were almost exactly parallel. Lastly, Figure 16 in the

appendix depicts the distribution of users’ last active day by the treatment group. This figure offers

an alternative depiction of the patterns of attrition throughout the study.

More formally, Table 16 in the appendix shows a regression of the last day seen in the study on the

treatment dummy (Column 1). The coefficient is insignificant with a p-value of 0.55. Furthermore, we

considered two likely channels that could have led to differential attrition regarding types of individuals

leaving. Given the character of our hiding intervention, we worried that people with preference for

toxic content or those with high levels of social media activity were more likely to drop out of the

treatment group. We extend the regression analysis to refute these conjectures. First, we include the

average toxicity score of content displayed to the user during the baseline, and its interaction with the

treatment dummy (Column 2). This specification is motivated by the possibility that the platforms
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might optimize on the toxicity of content shown; thus, the added covariate could be a proxy for the

tolerance (or preference) for toxicity. Second, we provide a specification with the average time spent

on social media during the baseline, and its interaction with the treatment dummy (Column 3). All

of the interaction coefficients are insignificant.

4.5.2 Robustness: Attrition Thresholds

As previously discussed, due to our inability to observe unistallation events, which is a general issue

with browser extensions, we need to infer attrition from user activity. The regression specifications

presented in the main text of the paper are based on panels involving participants who were active

on day 46 or later, thus requiring 10 days of inactivity to determine that someone dropped out of the

study. In this subsection, we explore different attrition thresholds and show that our results are robust

to applying them.

First, Appendix G.1 presents the main regression tables for the panel of users who were seen on

56 or later – this applies to 84.9% of participants who were active at any point of the intervention

period. The advantage of this specification is that for every single period we have certainty that we

do not mistake the lack of a particular activity (e.g. time spent on a platform or posting) for missing

data. The regression tables demonstrate that all of our main significant results – the effects on content

consumption on Facebook (content offered), both overall as well as considering posts and comments

separately, ad consumption on Twitter, production and toxicity of own posts, and time spillover effects,

are robust to applying day 56 attrition threshold. Additionally, using this specification we find a

significant effect on comments consumption on Twitter (using the conservative measure) both in the

main sample (p-value = 0.017) and in the toxic sample (p-value = 0.006).

Second, the panels of day 46 and day 56 survivors have a drawback of excluding initial data

for participants who likely dropped out in the middle of the intervention. To address the issue, in

Appendix G.2 we consider the regression specifications where for each individual we include data up

until the point of their last day of browser activity. We find that the main results (as listed above)

are robust to applying this definition of attrition, with the caveat that the effect of the intervention on

the time spent on untreated platforms related to social media is now significant only at the 10% level.

Taking this together with the previous set of robustness checks, we conclude that our results are not

driven by an arbitrary choice of the attrition threshold, and do not hinge on wrongly imputing zeros

in lieu of missing data.
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4.5.3 Robustness: Alternative Specifications

In this subsection we discuss robustness of our results to alternative regression specifications. In

Appendix G.3, we replicate the main regression tables using a stacked regression specification with

start date × individual and start date × period fixed effects. All of the significant results for the main

sample reported in Section 4 are robust to applying this specification.

Finally, we move on to discuss robustness to clustering standard errors at the individual level rather

than relying on Driscoll and Kraay standard errors. The relevant regression analysis is presented in

Appendix G.4. We report that our finding that the intervention reduced content consumption on

Facebook (content offered) is robust to such clustering both in the sample of all users (p-value = 0.029)

and the toxic sample (p-value = 0.007). Furthermore, the results on the consumption of comments are

robust at the 5% level, whereas the effects on the consumption of posts are robust at the 10% level.

We have insufficient power to detect an effect of the hiding intervention on ad consumption on Twitter

with clustered standard errors – the p-value increases to 0.112. Similarly, the results on production

of own posts and spillovers to the untreated platforms are not robust to clustering at the individual

level. At the same time, we find that the evidence in favor of the contagion hypothesis is robust such

clustering – both on Twitter (p-value = 0.014) and on Facebook (p-value = 0.014).

5 Conclusion

This paper studies how the toxicity of users’ feeds and comment sections can impact their consumption

and production of social media content. In principle, toxic content could reduce user engagement –

indeed, the definition of toxicity utilized by the leading toxicity detection algorithms includes its

propensity to make people leave a discussion. Yet, we find evidence that lower exposure to toxicity

can actually reduce the quantity of content that users consume on some platforms. We also discuss

the potential impact on ad impressions and profitability by showcasing that the intervention led to

lower consumption of posts on Facebook’s feeds (where ads are inserted by the platform) and, more

directly, a lower ad consumption on Twitter. Lastly, we find evidence supporting the concerns that

toxic online behavior can be contagious.

These findings confirm that policymakers and companies attempting to incentivize healthier con-

versations on the online agora face no easy task. The contagiousness of toxicity suggests that reducing

its prevalence can bring welfare improvements due to the presence of spillovers between users (and in

light of the well-documented real-world effects of toxic content). However, a revealed-preference ap-

proach that takes users’ consumption patterns at face value might suggest that curbing toxic content

is not unambiguously welfare-improving, and that users may have a degree of preference for it. Never-
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theless, these findings should be complemented by future work. In particular, we stress the importance

of conducting platform-side experiments unbeknownst to users to increase the external validity of the

results. Additionally, our finding that exposure to toxicity can reduce content consumption holding

the time spent on the platform constant suggests that it might be important to study the impact of

toxicity on the attention paid to social media content and information more broadly.
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A Figures

(a) Standard Video Ad (b) Standard Static Ad

(c) Learning One’s Social Media Stats

Figure 3: Examples of Recruitment Ads on Twitter
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Figure 4: Our Recruitment Post Retweeted by The Mozilla Foundation

Figure 5: Screens from Installation Instructions GIF (Chrome Browser)
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Figure 6: Speed of Hiding Toxic Content on Twitter

Note: The histogram depicts the distribution of the hiding speed for posts, comments, and replies on Twitter. The hiding speed is
defined as the difference in the timestamp when an element was removed from the user’s page by the extension and the timestamp
when the element was first identified. The extension listened to changes in the DOM structure of the page (using Mutation Observer)
in order to detect a new element appearing on the page. The hiding speed is reported in milliseconds. The histogram is truncated
at 2000 milliseconds. We collected data on the hiding speed from August 22nd until the end of the study (end of September).
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Figure 7: ECDF of the Hiding Speed on Twitter

Note: The figure depicts the cumulative empirical distribution of the hiding speed for posts, comments, and replies on Twitter. The
hiding speed is defined as the difference in the timestamp when an element was removed from the user’s page by the extension and
the timestamp when the element was first identified. The extension listened to changes in the DOM structure of the page (using
Mutation Observer) in order to detect a new element appearing on the page. The hiding speed is reported in milliseconds. We
collected data on the hiding speed from August 22nd until the end of the study (end of September).
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(a) Original Feed (b) Moderated Feed

Figure 8: Hiding Intervention: Feed

Note: Panel A shows an example of a Facebook group feed that we created for demonstrative purposes. Panel B depicts how this
section would look for a user with the hiding intervention on. One post from Panel A (the element in a red frame) was removed,
as it has a toxicity score of 0.85, above the hiding threshold of 0.3. The other two posts (green frames) were not classified as toxic.
Panel B demonstrates that the content below the hidden element is pulled up. This means that the post by Extension Testing 3 is
now directly below the one by Extension Testing 1. We also see a new element (blue frame), which was previously further below in
the feed.
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(a) Original Comment Section (b) Moderated Comment Section

Figure 9: Hiding Intervention: Comments

Note: Panel A shows an example of a comment section on Facebook that we created for demonstrative purposes. Panel B depicts
how this section would look for a user with the hiding intervention on. Two comments were removed (red frames). The first one,
“Come on, women are not as smart as men”, has a toxicity score of 0.67. The second one, “Why does it matter? Your comments
are pathetic...”, has a score of 0.93. Note that replies are removed together with toxic comments (see the element in a gray frame).
Panel B demonstrates that the content below the hidden elements is pulled up. This means that the comment by Extension Testing
4 is now directly below the one by Extension Testing 2. We also see new elements (blue frames), which were previously further
below in the comment section.
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(a) Original Comment Section

(b) Moderated Comment Section

Figure 10: Hiding Intervention on YouTube

Note: Panel A shows an example of a real comment section under a YouTube video. Panel B depicts how this section would look
for a user with the hiding intervention on. Three comments from Panel A were removed (elements in red frames). Starting from the
top, their toxicity scores were 0.42, 0.81, and 0.7, respectively. The last comment (not hidden) is just below the hiding threshold
– with a score of 0.28. Overall, two of the comments from Panel A remained after the intervention was applied (elements in green
frames). In Panel B, we see new elements (blue frames) – previously further below in the comment section – which replaced the
hidden elements. The presented comments do not originate from our sample – they are publicly available online (as of 2022-10-31).
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(a) Extension Disabled (b) Extension Enabled

Figure 11: Show More Replies (Twitter)

Note: Panel A shows the bottom of the comments section on Twitter in the case when the extension is disabled – the user has
to click “Show more replies” to load the remaining comments. Panel B depicts the same section in the case when the extension
is enabled – the remaining comments are already loaded. The presented comments do not originate from our sample – they are
publicly available online (as of 2022-10-31).
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Figure 12: Toxicity of Elements above the Threshold (Histogram)

Note: The figure depicts the distribution of toxicity of posts, comments, and replies above the hiding threshold of 0.3. All elements
with toxicity above the threshold were hidden for users in the treatment group during the intervention period. The data presented
here encompasses the three platforms (Twitter, Facebook, and YouTube) and includes both the baseline and the intervention period.
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Figure 13: Event Study Specifications of Offered Content

Note: This figure presents estimates from the event study version of Equation (1) for Facebook (panel A) and Twitter (panel B).
The dependent variable is the number of posts and comments offered to users. The unit of observation is the individual-day, where
day is measured relative to the intervention date. We include users who were active up to at least day 46 of the study. The solid line
represents point estimates and the gray area represents 95% confidence intervals. Standard errors are clustered at the individual
level, given that the large-period assumption of Driscoll-Kraay is not plausible in the dynamic specification.
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Figure 14: Proportion of Users Who Certainly Remained in the Study

Note: For each day in the study (relative to when a given participant started), the figure shows the proportion of users who were
active on that day or later, separately for the treatment and the control group. The proportions reported in the figure provide
the most conservative estimate of the survival rate – not being active on a given day (or even for several days) is an insufficient
indication of attrition.
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Figure 15: Number of Users Who Certainly Remained in the Study

Note: For each day in the study (relative to when a given participant started), the figure shows the number of users who were
active on that day or later, separately for the treatment and the control group. The totals reported in the figure provide the most
conservative estimate of number of people remaining in the study – not being active on a given day (or even for several days) is an
insufficient indication of attrition.
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Figure 16: Histogram of the Day of User’s Last Activity

Note: The figure depicts the distribution of the last day on which the user was active according to the extension (relative to when
they started), separately for the treatment and the control group. The dashed vertical line (“Intervention start”) indicates day 15
– the first day of the intervention period. The distribution was plotted after the last person completed the intervention period.
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B Tables

Table 7: Balance Table

Control (N=365) Treatment (N=410)
Mean Std. Dev. Mean Std. Dev. Diff. in Means p

Qualtrics 0.701 0.458 0.668 0.471 -0.033 0.323
Twitter API 0.868 0.338 0.824 0.381 -0.044 0.088
Days in Study 62.561 13.549 63.662 12.023 1.101 0.234
Use Facebook 58.621 26.873 55.356 28.852 -3.265 0.238
Use Twitter 61.337 25.478 61.159 25.608 -0.178 0.936
Age 42.036 16.884 39.684 15.816 -2.352 0.103
Male 0.510 0.501 0.539 0.499 0.029 0.507
Democrat 0.566 0.497 0.513 0.501 -0.054 0.217
Independent 0.355 0.480 0.385 0.487 0.029 0.489
White 0.639 0.481 0.653 0.477 0.014 0.739
Private 0.088 0.284 0.065 0.247 -0.023 0.266
Followers 2167.483 16567.270 1231.370 10639.782 -936.113 0.393
Friends 1282.899 2691.861 1081.544 1519.039 -201.355 0.243
Listed 32.625 236.941 22.083 109.136 -10.542 0.470
Years on Twitter 7.234 4.905 6.924 4.979 -0.309 0.423
Likes 15909.685 32821.184 16607.358 41449.953 697.673 0.811
Tweets 11836.785 37334.028 8854.642 20366.846 -2982.143 0.209

N Pct. N Pct.
Region Midwest 55 15.1 55 13.4

Northeast 48 13.2 51 12.4
Outside the US 4 1.1 5 1.2
South 82 22.5 90 22.0
West 66 18.1 70 17.1
NA 110 30.1 139 33.9

Note: This table compares characteristics of users assigned to the treatment and control arms, for the main experimental sample.
The top panel presents means, standard deviations, difference in means, and the p-value from a test of difference in means. The
bottom panel presents the distribution of users per region in both treatment arms.
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Table 8: Survey Balance Table

Control (N=175) Treatment (N=189)
Mean Std. Dev. Mean Std. Dev. Diff. in Means p

Qualtrics 0.926 0.263 0.937 0.244 0.011 0.686
Twitter API 1.000 0.000 0.995 0.073 -0.005 0.319
Days in Study 63.449 12.536 65.448 9.928 1.999 0.094
Use Facebook 58.900 25.989 54.833 27.376 -4.067 0.219
Use Twitter 62.586 25.730 60.165 24.402 -2.422 0.376
Age 40.509 15.947 38.240 14.252 -2.270 0.173
Male 0.519 0.501 0.537 0.500 0.019 0.733
Democrat 0.623 0.486 0.551 0.499 -0.072 0.178
Independent 0.321 0.468 0.352 0.479 0.031 0.544
White 0.642 0.481 0.629 0.485 -0.013 0.799
Private 0.091 0.289 0.069 0.254 -0.022 0.438
Followers 1444.886 5021.706 550.085 1002.812 -894.801 0.022
Friends 1264.149 2725.106 1154.894 1447.106 -109.255 0.637
Listed 22.497 88.161 17.574 78.826 -4.923 0.576
Years on Twitter 7.640 4.729 7.602 4.739 -0.038 0.940
Likes 15113.971 30990.165 23337.293 52859.072 8223.321 0.069
Tweets 11560.640 38363.506 10136.989 22342.608 -1423.651 0.669

N Pct. N Pct.
Region Midwest 37 21.1 35 18.5

Northeast 31 17.7 32 16.9
Outside the US 4 2.3 4 2.1
South 49 28.0 59 31.2
West 41 23.4 45 23.8
NA 13 7.4 14 7.4

Note: This table compares characteristics of users assigned to the treatment and control arms, for the sample of users who completed
our endline survey. The top panel presents means, standard deviations, difference in means, and the p-value from a test of difference
in means. The bottom panel presents the distribution of users per region in both treatment arms.
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Table 9: Effect of Intervention on Toxicity of Content Shown

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.019*** -0.049*** -0.028*** -0.063***

(0.001) (0.002) (0.002) (0.002)
p < 0.001 p < 0.001 p < 0.001 p < 0.001

N 12 518 20 658 5176 11 493
Mean 0.02 0.05 0.03 0.06
SD 0.03 0.05 0.04 0.05

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the average toxicity of the content shown to users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard
errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 10: Effect of Intervention on Offered Content, by Conversation Type

Main Sample Toxic Sample

Facebook Twitter Facebook Twitter

Posts Comments Posts Comments Posts Comments Posts Comments

(1) (2) (3) (4) (5) (6) (7) (8)

Treated -9.7*** -8.5*** 3.4 -3.9 -9.8*** -11.7*** 14.9* -10.7*
(1.606) (2.065) (4.827) (2.944) (1.591) (2.922) (8.492) (6.291)

p < 0.001 p < 0.001 p = 0.484 p = 0.191 p < 0.001 p < 0.001 p = 0.085 p = 0.096

N 31 472 30 912 38 360 37 688 14 896 14 784 19 320 19 152
Mean 36.99 40.83 136.45 68.22 25.82 36.2 174.63 98.48
SD 111.84 128.71 268.17 199.98 73.78 138.05 306.57 256.1

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependents
variables are the number of posts and comments offered to users; those displayed to them plus the content mechanically hidden by
the extension. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include
users who were active up to at least day 46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote
significance at the 10%, 5%, and 1% levels, respectively.
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Table 11: Effect of Intervention on Shown Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -21.3*** -14.6** -25.4*** -18.7

(2.653) (6.941) (3.765) (13.443)
p < 0.001 p = 0.04 p < 0.001 p = 0.171

N 31 864 38 472 15 120 19 320
Mean 74.66 198.87 58.97 264.81
SD 212.63 410.7 185.25 489.32

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of posts and comments shown to users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard
errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 12: Effect of Intervention on Liked Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.3 -0.5 -1.1** 1.1*

(0.287) (0.423) (0.446) (0.585)
p = 0.246 p = 0.289 p = 0.018 p = 0.07

N 25 984 35 168 11 424 17 920
Mean 4.42 8.6 4.1 12.84
SD 15.95 27.11 17 34.03

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of likes that users give. The unit of observation is the individual-day, where day is measured relative to
the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard errors are
parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 13: Effect of Intervention on Spillovers to Related Sites (Time Spent)

Main Sample Toxic Sample
(1) (2)

Treated 1.8** 2.4**
(0.808) (0.953)

p = 0.029 p = 0.015
N 37 016 18 088
Mean 9.61 12.47
SD 41.46 48.21

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on 38 other platforms related to social media (listed in Appendix F). The unit of observation
is the individual-day, where day is measured relative to the intervention date. We include users who were active up to at least day
46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels,
respectively.

Table 14: Effect of Intervention on Users’ Well-Being

Index Components
All Happiness Satisfaction Depression Anxiety Worthwhile Boredom

Treated -0.035 -0.098 -0.058 0.031 0.043 -0.093 -0.065
(0.073) (0.141) (0.155) (0.089) (0.090) (0.090) (0.101)

p = 0.634 p = 0.488 p = 0.710 p = 0.730 p = 0.629 p = 0.303 p = 0.523
N 388 391 388 388 388 388 388

Note: This table reports estimates of an OLS regression on treatment assignment for our main experimental sample. The dependent
variables are an index of well-being and its components. The unit of observation is the individual user. We include respondents who
answered the endline survey. Robust standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1%
levels, respectively.

Table 15: Effect of Intervention on Users’ Ratings of Toxic Statements

Index Individual Comments

C1-C7 C1 C2 C3 C4 C5 C6 C7
Treated 0.016 -0.045 0.043 -0.011 -0.000 0.014 0.001 0.110**

(0.023) (0.049) (0.040) (0.048) (0.027) (0.051) (0.043) (0.050)
p = 0.491 p = 0.354 p = 0.284 p = 0.811 p = 0.986 p = 0.788 p = 0.973 p = 0.028

N 384 384 384 384 384 384 384 384
Mean 0.591 0.643 0.807 0.682 0.924 0.448 0.227 0.406

Note: This table reports estimates of an OLS regression on treatment assignment for our main experimental sample. The dependent
variables are an index of users’ evaluation of the toxicity of 7 social media posts and its components. The unit of observation is the
individual user. We include respondents who answered the endline survey. Robust standard errors are parenthesized. ∗,∗∗ , and
∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 16: Attrition Regressions

(1) (2) (3)
(Intercept) 52.786*** 53.05*** 52.569***

(0.418) (0.775) (0.5)
p < 0.001 p < 0.001 p < 0.001

Treatment 0.917 1.328 1.152*
(0.574) (1.047) (0.691)

p = 0.111 p = 0.205 p = 0.096
Baseline Toxicity -6.53

(15.132)
p = 0.666

Baseline Toxicity × Treatment -6.286
(20.315)
p = 0.757

Baseline PC Usage 0.003
(0.004)
p = 0.43

Baseline PC Usage × Treatment -0.003
(0.005)

p = 0.534
N 775 767 775

Note: This table reports estimates of an OLS regression on treatment assignment for our main experimental sample. The dependent
variable is the last day that the extension registered user activity (capped at 56). Column 2 includes the average toxicity score of
content displayed to the user during the baseline, and its interaction with the treatment dummy. Column 3 includes the average
time spent on social media during the baseline, and its interaction with the treatment dummy. The unit of observation is the
individual user. We include respondents who answered the endline survey. Robust standard errors are parenthesized. ∗,∗∗ , and
∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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C Extension: Listing, Onboarding, and Privacy Policy

This appendix contains additional information about our browser extension Social Media Research. In

particular, we outline the installation sequence, onboarding, and our privacy policy.

C.1 Store Listing

During the intake survey, we provided each individual with a link to the store compatible with their

browser. On clicking the link, users accessed our extension’s store listing page (Figure 17), which

outlined the core functionality, our privacy policy, and contact details of the researchers and the IRBs.

Figure 17: Our Extension’s Store Listing Page (Opera Browser)

Prospective users could read that their participation in the study helps “the academic community

understand how people interact with social media.” and that the extension “can improve [their] user

experience on Twitter, YouTube, and Facebook”. Furthermore, we informed them that the extension

“may optimize [their] Twitter, YouTube, and Facebook pages by changing page content”. The store

description did not directly reference hate speech or moderation of toxic content. In an attempt to

obfuscate the exact purpose of the study, we chose to describe the functionality in general high-level

terms that among other things could include hiding toxic content. Following the advice from the IRBs

overseeing the study, we provided a more precise description of the purpose of the study in a debriefing
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script disseminated after the project’s conclusion.

The privacy policy on the store listing page explained what types of data can be collected by the

extension: “We will collect page content displayed to you on three platforms: Twitter, YouTube, and

Facebook, as well as the time and date of collection”. We highlighted that this includes information

such as “the texts of posts, likes, retweets” and that “we will also collect the time [they] spend (but

not the content) on websites related to social media”. Additionally, we assured the participants that

the collected data is encrypted when stored in our database. The decryption key is known only to

the research team, thus reducing the risk of confidentiality breach even in the unlikely event that the

database is accessed by an unauthorized person.

C.2 Installation and Onboarding

The installation process was uncomplicated, and likely familiar to many users. First, it required

clicking a blue “Add” button in the top right corner of the store listing page (Figure 17), which

prompted a confirmation screen where the user had to accept the required permissions for the extension.

Second, upon completing the previous step, the extension opened a new tab with the onboarding screen

(Figure 18).

Figure 18: Onboarding Page
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The main purpose of the onboarding was obtaining affirmative consent for data collection. A descrip-

tion of the types of data that the extension records was repeated on the page alongside with information

about compensation (gift card raffle) and contact details (of the research team and the IRBs). The

user had two options to choose from: (1) “Yes, you can collect my personal data in accord with your

Privacy Policy, and I consent to participate in the study” and (2) “No, do not collect my personal

data, and I do not consent to participating in the study. Uninstall the add-on.” The extension was pro-

grammed in a way that prevented any data recording unless the user clicked option (1). While most of

the content in the onboarding screen was duplicating either the information from the intake survey or

the store listing, it was an essential part of the process. In particular, we wanted to ensure that it was

crystal clear to the participants what data is being obtained (especially the PII), and that an explicit

authorization was given for it. Our onboarding process follows Firefox’s best practices for collecting

user data and was scrutinized by a Firefox add-on reviewer prior to the extension’s publication.

C.3 Privacy Policy

Below, we provide the exact text of the extension’s privacy policy.

Protecting the privacy of our users is of paramount importance both to us and our universities.

The study has been approved by the internal review boards of the University of Chicago and Columbia

University under numbers IRB22-0073 and AAAT9887.

We will collect page content displayed to you on three platforms: Twitter, YouTube, and Facebook,

as well as the time and date of collection. This includes information such as what ads were displayed

in the feed as well as before and within YouTube videos, the texts of posts, likes, retweets. We will

also collect the time you spend (but not the content) on websites related to social media. These will

be encrypted and securely stored in our database. The extension can also obtain authentication tokens

to make requests to Twitter API to customize the content that you see, but we will not store such

information. For the avoidance of doubt, we never collect, record, or handle any of your private

messages, such as in Facebook Messenger.

Data are being collected exclusively for the purposes of this study. Data collected by the extension will

be securely stored, and no identifiable information will be shared outside the research team. Furthermore,

any such information will be deleted after the project concludes. If you would like us to delete your

identifiable information at an earlier stage, please contact us and we will do so promptly.
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D Survey Instruments

In this appendix, we provide the wording of all demographic questions as well as questions used to

elicit survey outcomes described in the paper. We start by reporting the intake survey questions before

moving to discuss the endline survey.

D.1 Intake Survey

D.1.1 Social Media Usage

How often would you say you use social media from your desktop computer, as opposed to your mobile

device?

For each platform (Twitter and Facebook) respondents could pick an integer from 0-100 using a slider.

We used five labels: Only mobile (0), Mostly mobile (25), About equally (50), Mostly desktop (75),

Only desktop (100). There was also an option “Don’t use”. If the participant chose it, they did not

have to report the proportion using the slider.

D.1.2 Demographics

A. What is your year of birth?

Text entry question. Only integers between 1900 and 2020 were allowed.

B. What is your sex?

• Male

• Female

C. In which state do you currently reside?

Participants had to choose one value from a drop-down list. The options included: 50 US states,

District of Columbia, Puerto Rico, and “I do not reside in the United States”.

D. Generally speaking, do you usually think of yourself as a Republican, a Democrat, or an Indepen-

dent?

• Democrat

• Republican

• Independent
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If Independent is selected in question D.

E. As an Independent, do you think of yourself as closer to Republicans or Democrats??

• Republicans

• Democrats

F. Which of the following best describe your race or ethnicity? You can select more than one option.

• African American/Black

• Asian/Asian American

• Caucasian/White

• Native American, Inuit or Aleut

• Native Hawaiian/Pacific Islander

• Other (text entry)

G. Are you of Hispanic, Latino, or Spanish origin?

• Yes

• No

• Prefer not to answer

D.2 Endline Survey

D.2.1 Willingness to Pay

We are interested in how valuable the extension is to you.

To establish your valuation, we will offer you a series of choices between keeping our extension installed

for another month vs. receiving various gift card amounts.

One of your choices will be randomly selected as the “choice that counts”. We will then randomly

determine 10 participants for whom their “choice that counts” will be implemented.

We asked participants a series of questions involving two options, one of which involves keeping the

browser extension installed for another month. Each participant had to make the maximum of four

choices – we eliminated redundant questions by assuming monotonicity.

A. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month.

• You receive $6.
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B. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month.

• You receive $4.

C. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month.

• You receive $2.

D. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month.

• You receive $1.5.

E. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month.

• You receive $1.

F. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month.

• You receive $0.5.

G. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month.

• You receive $0.

H. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month AND receive $0.5.

• You receive $0.

I. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.
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• You keep our browser extension installed for one more month AND receive $1.

• You receive $0.

J. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month AND receive $1.5.

• You receive $0.

K. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month AND receive $2.

• You receive $0.

L. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month AND receive $4.

• You receive $0.

M. Which of the following would you prefer? This is a real question: there is a chance that it will

actually be implemented, so please answer carefully.

• You keep our browser extension installed for one more month AND receive $6.

• You receive $0.

D.2.2 Measures of Well-Being

In this part of the survey, we would like to ask you several questions about your well-being.

Click the point on the scale below that you feel is most appropriate in describing you.

A. Over the past 6 weeks, I thought I was:

• 1 (not a very happy person)

• 2

• 3

• 4

• 5

• 6

• 7 (a very happy person)
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Indicate your agreement with the statement below.

B. During the past 6 weeks, I was satisfied with my life.

• Strongly disagree

• Disagree

• Slightly disagree

• Neither agree nor disagree

• Slightly agree

• Agree

• Strongly agree

C. Below are some ways you might have felt or behaved in the past 6 weeks. Please tell us how much

of the time during the past 6 weeks:

1. None or almost
none of the time 2. 3. 4. All or almost

all of the time
... you felt depressed.
... you felt anxious.
... you were absorbed in doing something worthwile.
... you felt bored.

D.2.3 Normalization of Toxicity

Lastly, we would like to ask you to rate toxicity of seven real comments posted online. Before you

provide the ratings, please read the definitions of toxicity below.

Very Toxic: a very hateful, aggressive, or disrespectful comment that is very likely to make you leave

a discussion or give up on sharing your perspective.

Toxic: a rude, disrespectful, or unreasonable comment that is somewhat likely to make you leave a

discussion or give up on sharing your perspective.

Please rate the toxicity of the following comments. We kept the original spelling, including any

mistakes.

The following questions were shown in random order.

C1. Comment: So tired of all these Portlanders moving to California and ruining the culture. When

will it stop?!?

• Very Toxic

• Toxic

• Not Toxic

• I’m not sure
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C2. Comment: The sky is falling! The sky is falling! This country has elected a black man twice! And

now a woman! Please God! Make America Great Again! We’re going down in flames!!!

• Very Toxic

• Toxic

• Not Toxic

• I’m not sure

C3. Comment: Only an individual living in the bubble of Ottawa and ”working” as a professor can

come up with this nonsense.....wow!

• Very Toxic

• Toxic

• Not Toxic

• I’m not sure

C4. Comment: can we just exterminate this scumbag already? every miserable breath he takes is a

slap in the face to people who understand the privilege of parenthood.

• Very Toxic

• Toxic

• Not Toxic

• I’m not sure

C5. Comment: If you want more EmX transit route, more bike lanes, and less traffic lanes, vote for

either Joshua Skov or Chris Wig. If not Goggle the others and make sure they are not part of the

arrogant progressive movement, which is ruining Eugene.

• Very Toxic

• Toxic

• Not Toxic

• I’m not sure

C6. Comment: FYI: ”LOL” does not turn a pack of malicious lies into amusingly subversive wisdom.

• Very Toxic

• Toxic

• Not Toxic

• I’m not sure

C7. Comment: Sadly, you are probably right. Things in Africa have gone from bad to worse for gay
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people, thanks mostly to American evangelical homophobes like Scott Lively exporting their hate to

foreign shores.

• Very Toxic

• Toxic

• Not Toxic

• I’m not sure
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E Recruitment by the Mozilla Foundation

As indicated in Section 3.2.1, the Mozilla Foundation promoted our study by retweeting a tailored

recruitment post (Figure 4). Participants recruited this way completed a simplified version of the

intake survey in comparison to the standard one (see Figure 1) – taken by prospective participants

who clicked a link in one of the ads posted by the research team. In particular, the simplified survey

contained only two screens: a pre-screening task (Figure 19a) and an installation screen (Figure 19b).

The former outlined the extension functionality and elicited people’s willingness to keep the extension

installed until the end of September 2022. The latter provided links to the appropriate extension store

for various browsers. Individuals who took this version of the survey did not answer survey questions

listed in Appendix D.1 and did not provide their Twitter handle.

(a) Pre-Screening
(b) Installation Screen

Figure 19: Simplified Intake Survey

Note: Users who enrolled through the post retweeted by the Mozilla Foundation faced a simplified intake survey, composed of only
two screens. The first one contained a pre-screening task with a short explanation of extension functionality and compensation.
The second one featured icons with logos of various supported browsers, which served as links to the appropriate stores.

This method of enrollment was supplementary to our main recruitment efforts, and constituted a

minor proportion of all extension installations – we only recorded 36 responses to the survey in which

the user declared their willingness to participate (and of those not everyone necessarily installed the

extension).
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F Additional Platforms: Time Spent

Below, we provide the list of platforms which we used to compute the time spent by users on websites

related to social media where the hiding intervention did not take place.

• instagram.com,

• tiktok.com,

• wechat.com,

• whatsapp.com,

• mewe.com,

• tumblr.com,

• linkedin.com,

• snapchat.com,

• pinterest.com,

• telegram.com,

• meetup.com,

• medium.com,

• twitch.tv,

• discord.com,

• steemit.com,

• vk.com,

• quora.com,

• vimeo.com,

• zoom.us,

• reddit.com,

• houseparty.com,

• tapereal.com,

• qq.com,

• weibo.com,

• nextdoor.com,

• 4chan.org,

• blogger.com,

• livejournal.com,

• substack.com,

• zello.org,

• signal.org,

• messenger.com,

• spotify.com,

• clouthub.com,

• rumble.com,

• parler.com,

• gettr.com,

• gab.com.
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G Robustness Checks

G.1 Panel A: Day 56 Survivors

The regression analysis presented in this appendix relies on the panels of participants who were active

on day 56 (the last day of the intervention) or later.

Table 17: Effect of Intervention on Toxicity of Content Shown

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.019*** -0.048*** -0.028*** -0.063***

(0.001) (0.002) (0.002) (0.002)
p < 0.001 p < 0.001 p < 0.001 p < 0.001

N 12 062 19 712 5022 10 934
Mean 0.02 0.05 0.03 0.06
SD 0.03 0.05 0.04 0.05

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the average toxicity of the content shown to users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 56 of the study. Driscoll-Kraay standard
errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 18: Effect of Intervention on Offered Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -19.1*** -5.5 -23.7*** -6

(2.964) (6.442) (4.442) (11.741)
p < 0.001 p = 0.394 p < 0.001 p = 0.611

N 30 464 36 400 14 392 18 200
Mean 77.8 205.96 63.16 274.03
SD 221.53 423.62 197.92 505.55

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of
users whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The
dependent variable is the number of posts and comments offered to users; those displayed on their feeds and comment sections plus
the content mechanically hidden by the extension. The unit of observation is the individual-day, where day is measured relative
to the intervention date. We include users who were active up to at least day 56 of the study. Driscoll-Kraay standard errors are
parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 19: Effect of Intervention on Offered Content, by Conversation Type

Main Sample Toxic Sample

Facebook Twitter Facebook Twitter

Posts Comments Posts Comments Posts Comments Posts Comments

(1) (2) (3) (4) (5) (6) (7) (8)

Treated -10.4*** -9.3*** 1.2 -6.5** -11.1*** -13.2*** 10.1 -16.1***
(1.69) (2.217) (4.493) (2.645) (1.756) (3.274) (7.318) (5.613)

p < 0.001 p < 0.001 p = 0.791 p = 0.017 p < 0.001 p < 0.001 p = 0.173 p = 0.006

N 30 184 29 512 36 344 35 616 14 224 14 056 18 200 18 032
Mean 37.69 41.76 138.05 67.96 26.63 37.72 175.84 97.08
SD 113.61 130.8 270.41 197.06 75.15 141.31 308.41 251.31

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependents
variables are the number of posts and comments offered to users; those displayed to them plus the content mechanically hidden by
the extension. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include
users who were active up to at least day 56 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote
significance at the 10%, 5%, and 1% levels, respectively.

Table 20: Effect of Intervention on the Number of Twitter Ads

Main Sample Toxic Sample
(1) (2)

Treated -1.6*** -0.4
(0.557) (0.87)

p = 0.006 p = 0.661
N 19 673 10 906
Mean 19.64 20.69
SD 24.34 24.28

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of
users whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The
dependent variable is the number of ads offered to users on Twitter; those displayed on their feeds plus the ads mechanically hidden
by the extension. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include
users who were active up to at least day 56 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote
significance at the 10%, 5%, and 1% levels, respectively.
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Table 21: Effect of Intervention on Total Number of (Own) Posts

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.8*** 0.1 0.1 0.5***

(0.28) (0.101) (0.359) (0.167)
p = 0.008 p = 0.521 p = 0.694 p = 0.002

N 26 600 28 840 12 152 15 400
Mean 2.54 2.4 1.95 3.24
SD 14.32 7.51 8.01 8.79

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of elements of content posted by users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 56 of the study. Driscoll-Kraay standard
errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 22: Effect of Intervention on Toxicity of Produced Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.015** -0.016*** -0.024** -0.02***

(0.006) (0.006) (0.009) (0.007)
p = 0.014 p = 0.006 p = 0.011 p = 0.009

N 6415 9141 2635 5619
Mean 0.04 0.07 0.05 0.1
SD 0.09 0.15 0.1 0.17

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the average toxicity of the published content, conditional on posting. The unit of observation is the individual-day, where
day is measured relative to the intervention date. We include users who were active up to at least day 56 of the study. Driscoll-Kraay
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 23: Effect of Intervention on Social Media Consumption Time

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated 1.4 -0.3 0.8 3.7*

(1.31) (1.171) (1.493) (2.091)
p = 0.295 p = 0.801 p = 0.576 p = 0.084

N 31 192 36 680 14 728 18 200
Mean 23.51 30.09 22.82 42.7
SD 82.19 83.21 93.28 107.77

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on the platform. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 56 of the study. Driscoll-Kraay standard
errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 24: Effect of Intervention on Spillovers to Related Sites (Time Spent)

Main Sample Toxic Sample
(1) (2)

Treated 2.2** 3***
(0.885) (1.067)

p = 0.018 p = 0.007
N 35 000 17 024
Mean 9.27 11.86
SD 39.69 45.35

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on 38 other platforms related to social media (listed in Appendix F). The unit of observation
is the individual-day, where day is measured relative to the intervention date. We include users who were active up to at least day
56 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels,
respectively.
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G.2 Panel B: Until Last Day Active

The regression analysis presented in this appendix, include, for each individual, all data up until the

last day of their browser activity.

Table 25: Effect of Intervention on Toxicity of Content Shown

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.019*** -0.05*** -0.027*** -0.064***

(0.001) (0.002) (0.002) (0.002)
p < 0.001 p < 0.001 p < 0.001 p < 0.001

N 13 162 21 723 5514 12 187
Mean 0.02 0.05 0.03 0.06
SD 0.03 0.05 0.04 0.05

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the average toxicity of the content shown to users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include an unbalanced panel with all users up until the last day of their browser activity.
Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 26: Effect of Intervention on Offered Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -15.2*** 1.1 -15.6*** 0.6

(2.903) (7.395) (4.026) (14.267)
p < 0.001 p = 0.88 p < 0.001 p = 0.967

N 33 452 40 329 15 925 20 346
Mean 76.6 209.96 62.67 281.95
SD 218.02 436.11 197.59 519.35

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of
users whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The
dependent variable is the number of posts and comments offered to users; those displayed on their feeds and comment sections plus
the content mechanically hidden by the extension. The unit of observation is the individual-day, where day is measured relative to
the intervention date. We include an unbalanced panel with all users up until the last day of their browser activity. Driscoll-Kraay
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 27: Effect of Intervention on Offered Content, by Conversation Type

Main Sample Toxic Sample

Facebook Twitter Facebook Twitter

Posts Comments Posts Comments Posts Comments Posts Comments

(1) (2) (3) (4) (5) (6) (7) (8)

Treated -8.3*** -7.5*** 5.7 -4.3 -7.2*** -8.9*** 12.5 -11.7*
(1.804) (2.008) (5.087) (2.777) (2.148) (2.668) (8.608) (6.217)

p < 0.001 p < 0.001 p = 0.269 p = 0.13 p = 0.002 p = 0.001 p = 0.151 p = 0.064

N 33 051 32 442 40 192 39 482 15 709 15 531 20 346 20 179
Mean 37.24 41.05 140.8 69.41 27.15 36.79 180.32 100.32
SD 112.17 128.01 281.77 201.57 79.71 137.41 317.1 257.82

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our main
experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity above
median during the baseline period (Toxic Sample). The dependents variables are the number of posts and comments offered to
users; those displayed to them plus the content mechanically hidden by the extension. The unit of observation is the individual-day,
where day is measured relative to the intervention date. We include an unbalanced panel with all users up until the last day of
their browser activity. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1%
levels, respectively.

Table 28: Effect of Intervention on the Number of Twitter Ads

Main Sample Toxic Sample
(1) (2)

Treated -1.4*** -0.1
(0.5) (0.856)

p = 0.009 p = 0.898
N 21 693 12 158
Mean 19.9 21.15
SD 24.53 24.5

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of ads offered to users on Twitter; those displayed on their feeds plus the ads mechanically hidden by the
extension. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include an
unbalanced panel with all users up until the last day of their browser activity. Driscoll-Kraay standard errors are parenthesized.
∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 29: Effect of Intervention on Total Number of (Own) Posts

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.7** 0.1 0.3 0.5**

(0.27) (0.104) (0.341) (0.194)
p = 0.013 p = 0.511 p = 0.392 p = 0.013

N 29 049 31 583 13 273 17 040
Mean 2.53 2.44 2.01 3.32
SD 14.22 7.58 9.21 8.93

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of elements of content posted by users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include an unbalanced panel with all users up until the last day of their browser activity.
Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 30: Effect of Intervention on Toxicity of Produced Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.017*** -0.016*** -0.032*** -0.02***

(0.006) (0.006) (0.01) (0.008)
p = 0.004 p = 0.008 p = 0.003 p = 0.009

N 6998 10 078 2894 6285
Mean 0.04 0.08 0.05 0.1
SD 0.09 0.15 0.11 0.16

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the average toxicity of the published content, conditional on posting. The unit of observation is the individual-day,
where day is measured relative to the intervention date. We include an unbalanced panel with all users up until the last day of
their browser activity. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1%
levels, respectively.
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Table 31: Effect of Intervention on Social Media Consumption Time

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated 1.1 -0.7 1.6 3.2

(1.245) (1.243) (1.561) (1.971)
p = 0.379 p = 0.587 p = 0.305 p = 0.109

N 34 419 40 609 16 347 20 346
Mean 22.8 31 21.96 43.28
SD 79.77 85.16 89.7 106.11

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on the platform. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include an unbalanced panel with all users up until the last day of their browser activity.
Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 32: Effect of Intervention on Spillovers to Related Sites (Time Spent)

Main Sample Toxic Sample
(1) (2)

Treated 1.5* 3***
(0.827) (0.939)

p = 0.074 p = 0.002
N 38 721 19 059
Mean 9.83 12.63
SD 41.73 48.13

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on 38 other platforms related to social media (listed in Appendix F). The unit of observation
is the individual-day, where day is measured relative to the intervention date. We include an unbalanced panel with all users up
until the last day of their browser activity. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at
the 10%, 5%, and 1% levels, respectively.
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G.3 Stacked Regression Specification

In this appendix, we replicate the main regression tables reported in the paper using a stacked regression

specification, which extends the two-way fixed effects specification by including start date × individual

and start date × period fixed effects.

Table 33: Effect of Intervention on Toxicity of Content Shown

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.019*** -0.048*** -0.024*** -0.064***

(0.001) (0.002) (0.002) (0.002)
p < 0.001 p < 0.001 p < 0.001 p < 0.001

N 12 518 20 658 5176 11 493
Mean 0.02 0.05 0.03 0.06
SD 0.03 0.05 0.04 0.05

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our
main experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity
above median during the baseline period (Toxic Sample). The dependent variable is the average toxicity of the content shown to
users. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include users who
were active up to at least day 46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance
at the 10%, 5%, and 1% levels, respectively.

Table 34: Effect of Intervention on Offered Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -16.5*** -4.1 -21.6*** -14.7

(2.624) (7.25) (4.815) (12.786)
p < 0.001 p = 0.57 p < 0.001 p = 0.257

N 31 864 38 472 15 120 19 320
Mean 76.15 204.53 60.84 274.32
SD 218.08 424.28 193.66 508.85

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our
main experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity
above median during the baseline period (Toxic Sample). The dependent variable is the number of posts and comments offered
to users; those displayed on their feeds and comment sections plus the content mechanically hidden by the extension. The unit of
observation is the individual-day, where day is measured relative to the intervention date. We include users who were active up to
at least day 46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%,
and 1% levels, respectively.
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Table 35: Effect of Intervention on Offered Content, by Conversation Type

Main Sample Toxic Sample

Facebook Twitter Facebook Twitter

Posts Comments Posts Comments Posts Comments Posts Comments

(1) (2) (3) (4) (5) (6) (7) (8)

Treated -8.8*** -7.9*** 1.9 -5.7* -10.7*** -11.2*** 9.1 -23.3***
(1.577) (1.967) (4.861) (3.101) (1.949) (3.473) (7.405) (6.7)

p < 0.001 p < 0.001 p = 0.703 p = 0.07 p < 0.001 p = 0.002 p = 0.226 p = 0.001

N 31 472 30 912 38 360 37 688 14 896 14 784 19 320 19 152
Mean 36.99 40.83 136.45 68.22 25.82 36.2 174.63 98.48
SD 111.84 128.71 268.17 199.98 73.78 138.05 306.57 256.1

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our main
experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity above
median during the baseline period (Toxic Sample). The dependents variables are the number of posts and comments offered to
users; those displayed to them plus the content mechanically hidden by the extension. The unit of observation is the individual-day,
where day is measured relative to the intervention date. We include users who were active up to at least day 46 of the study.
Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 36: Effect of Intervention on the Number of Twitter Ads

Main Sample Toxic Sample
(1) (2)

Treated -1.7*** 0.3
(0.549) (0.962)

p = 0.003 p = 0.755
N 20 617 11 464
Mean 19.54 20.76
SD 24.17 24.18

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our main
experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity above
median during the baseline period (Toxic Sample). The dependent variable is the number of ads offered to users on Twitter; those
displayed on their feeds plus the ads mechanically hidden by the extension. The unit of observation is the individual-day, where day
is measured relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 37: Effect of Intervention on Total Number of (Own) Posts

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.8*** -0.1 0.4 0.4

(0.274) (0.096) (0.311) (0.221)
p = 0.005 p = 0.473 p = 0.244 p = 0.117

N 27 720 30 352 12 600 16 296
Mean 2.51 2.42 1.93 3.28
SD 14.16 7.56 7.92 8.89

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our
main experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity
above median during the baseline period (Toxic Sample). The dependent variable is the number of elements of content posted by
users. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include users who
were active up to at least day 46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance
at the 10%, 5%, and 1% levels, respectively.

Table 38: Effect of Intervention on Toxicity of Produced Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.014** -0.019*** -0.031*** -0.023**

(0.005) (0.007) (0.009) (0.01)
p = 0.012 p = 0.01 p = 0.001 p = 0.022

N 6658 9621 2737 5968
Mean 0.04 0.08 0.05 0.1
SD 0.09 0.15 0.1 0.17

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our
main experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity
above median during the baseline period (Toxic Sample). The dependent variable is the average toxicity of the published content,
conditional on posting. The unit of observation is the individual-day, where day is measured relative to the intervention date. We
include users who were active up to at least day 46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗
denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 39: Effect of Intervention on Social Media Consumption Time

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated 1.9 -0.3 1.5 3.1

(1.534) (1.398) (1.87) (2.162)
p = 0.211 p = 0.817 p = 0.432 p = 0.161

N 32 760 38 752 15 512 19 320
Mean 22.88 30.58 22.08 42.76
SD 80.69 85.35 91.44 106.54

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our
main experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity
above median during the baseline period (Toxic Sample). The dependent variable is the number of minutes spent on the platform.
The unit of observation is the individual-day, where day is measured relative to the intervention date. We include users who were
active up to at least day 46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at
the 10%, 5%, and 1% levels, respectively.

Table 40: Effect of Intervention on Spillovers to Related Sites (Time Spent)

Main Sample Toxic Sample
(1) (2)

Treated 2.2*** 3***
(0.808) (1.018)

p = 0.008 p = 0.004
N 37 016 18 088
Mean 9.61 12.47
SD 41.46 48.21

Note: This table reports estimates from Equation (1) with start date × individual and start date × period fixed effects for our main
experimental sample (Main Sample) and the subsample of users whose feeds and comment sections had an average toxicity above
median during the baseline period (Toxic Sample). The dependent variable is the number of minutes spent on 38 other platforms
related to social media (listed in Appendix F). The unit of observation is the individual-day, where day is measured relative to
the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard errors are
parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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G.4 Clustered Standard Errors

In this appendix, we replicate the main regression tables reported in the paper with standard errors

clustered at an individual level rather than with Driscoll and Kraay standard errors.

Table 41: Effect of Intervention on Toxicity of Content Shown

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.019*** -0.049*** -0.028*** -0.063***

(0.002) (0.002) (0.003) (0.003)
p < 0.001 p < 0.001 p < 0.001 p < 0.001

N 12 518 20 658 5176 11 493
Mean 0.02 0.05 0.03 0.06
SD 0.03 0.05 0.04 0.05

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the average toxicity of the content shown to users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 46 of the study. Individually-clustered
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 42: Effect of Intervention on Offered Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -17.6** -0.8 -21*** 4.1

(8.015) (16.448) (7.66) (29.818)
p = 0.029 p = 0.961 p = 0.007 p = 0.891

N 31 864 38 472 15 120 19 320
Mean 76.15 204.53 60.84 274.32
SD 218.08 424.28 193.66 508.85

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of
users whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The
dependent variable is the number of posts and comments offered to users; those displayed on their feeds and comment sections plus
the content mechanically hidden by the extension. The unit of observation is the individual-day, where day is measured relative to
the intervention date. We include users who were active up to at least day 46 of the study. Individually-clustered standard errors
are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 43: Effect of Intervention on Offered Content, by Conversation Type

Main Sample Toxic Sample

Facebook Twitter Facebook Twitter

Posts Comments Posts Comments Posts Comments Posts Comments

(1) (2) (3) (4) (5) (6) (7) (8)

Treated -9.7* -8.5** 3.4 -3.9 -9.8** -11.7*** 14.9 -10.7
(5.016) (3.7) (9.156) (9.526) (4.198) (4.49) (15.102) (18.225)

p = 0.055 p = 0.023 p = 0.711 p = 0.683 p = 0.02 p = 0.01 p = 0.324 p = 0.559

N 31 472 30 912 38 360 37 688 14 896 14 784 19 320 19 152
Mean 36.99 40.83 136.45 68.22 25.82 36.2 174.63 98.48
SD 111.84 128.71 268.17 199.98 73.78 138.05 306.57 256.1

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependents
variables are the number of posts and comments offered to users; those displayed to them plus the content mechanically hidden by
the extension. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include
users who were active up to at least day 46 of the study. Individually-clustered standard errors are parenthesized. ∗,∗∗ , and ∗∗∗
denote significance at the 10%, 5%, and 1% levels, respectively.

Table 44: Effect of Intervention on the Number of Twitter Ads

Main Sample Toxic Sample
(1) (2)

Treated -1.8 -0.3
(1.105) (1.611)

p = 0.112 p = 0.829
N 20 617 11 464
Mean 19.54 20.76
SD 24.17 24.18

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of ads offered to users on Twitter; those displayed on their feeds plus the ads mechanically hidden by the
extension. The unit of observation is the individual-day, where day is measured relative to the intervention date. We include users
who were active up to at least day 46 of the study. Individually-clustered standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote
significance at the 10%, 5%, and 1% levels, respectively.
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Table 45: Effect of Intervention on Total Number of (Own) Posts

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.7 0.1 0.2 0.6

(0.638) (0.34) (0.362) (0.599)
p = 0.264 p = 0.823 p = 0.618 p = 0.32

N 27 720 30 352 12 600 16 296
Mean 2.51 2.42 1.93 3.28
SD 14.16 7.56 7.92 8.89

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of elements of content posted by users. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 46 of the study. Individually-clustered
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 46: Effect of Intervention on Toxicity of Produced Content

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated -0.014** -0.016** -0.023* -0.02**

(0.006) (0.007) (0.012) (0.01)
p = 0.014 p = 0.014 p = 0.056 p = 0.043

N 6658 9621 2737 5968
Mean 0.04 0.08 0.05 0.1
SD 0.09 0.15 0.1 0.17

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the average toxicity of the published content, conditional on posting. The unit of observation is the individual-day, where
day is measured relative to the intervention date. We include users who were active up to at least day 46 of the study. Individually-
clustered standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 47: Effect of Intervention on Social Media Consumption Time

Main Sample Toxic Sample
Facebook Twitter Facebook Twitter

(1) (2) (3) (4)
Treated 1.5 -0.4 1.3 3.9

(2.268) (2.884) (2.776) (5.322)
p = 0.509 p = 0.897 p = 0.629 p = 0.468

N 32 760 38 752 15 512 19 320
Mean 22.88 30.58 22.08 42.76
SD 80.69 85.35 91.44 106.54

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on the platform. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 46 of the study. Individually-clustered
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 48: Effect of Intervention on Spillovers to Related Sites (Time Spent)

Main Sample Toxic Sample
(1) (2)

Treated 1.8 2.4
(1.288) (2.057)
p = 0.16 p = 0.247

N 37 016 18 088
Mean 9.61 12.47
SD 41.46 48.21

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose feeds and comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on 38 other platforms related to social media (listed in Appendix F). The unit of observation
is the individual-day, where day is measured relative to the intervention date. We include users who were active up to at least day
46 of the study. Individually-clustered standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and
1% levels, respectively.
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H YouTube Results

The intervention hid 6.19% of content displayed to users on YouTube in the treatment group. This

includes comments about videos as well as replies to comments. Table 49 indicates a successful first

stage, which reduced toxicity scores of elements that users are exposed to by 3.4 pp. (p-value < 0.001),

a reduction of 65.1% in comparison to the control group.

Table 50 indicates that intervention had no impact on content consumption on YouTube, measured

using content offered. Furthermore, Table 51 shows that it also did not alter consumption of content

shown, a measure which could be affected by the mechanical effect of hiding. Taken together, we find

no evidence that content consumption was affected by the intervention in any form. On the other hand,

Table 52 shows that higher exposure to toxicity led to higher content production on YouTube, both in

the main sample (0.2 per day, p-value = 0.009) and in the toxic sample (0.3 per day, p-value=0.005).

Moreover, Table 53 shows an inconclusive result on the time spent on the platform, with an insignificant

effect in the main sample (p-value = 0.449) and a marginally significant positive effect for the toxic

sample (p-value = 0.0053).

We do not offer clear evidence in favor of the contagion hypothesis on YouTube. The point estimates

in Table 54 point in the direction that higher exposure leads to higher toxicity of own content, which

is consistent with the significant findings for Facebook and Twitter, but we have insufficient power to

detect the effect on YouTube alone.

Table 49: Effect of Intervention on Toxicity of Content Shown

Main Sample Toxic Sample
(1) (2)

Treated -0.034*** -0.042***
(0.002) (0.003)

p < 0.001 p < 0.001
N 11 118 6643
Mean 0.04 0.04
SD 0.04 0.04

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent variable
is the average toxicity of the content shown to users on YouTube. The unit of observation is the individual-day, where day is
measured relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

80



Table 50: Effect of Intervention on Offered Content

Main Sample Toxic Sample
(1) (2)

Treated 0.2 2.3
(1.805) (2.711)

p = 0.925 p = 0.406
N 35 392 18 032
Mean 43.21 54.49
SD 133.64 147.28

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent variable
is the number of comments offered to users on YouTube; those displayed plus the comments mechanically hidden by the extension.
The unit of observation is the individual-day, where day is measured relative to the intervention date. We include users who were
active up to at least day 46 of the study. Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at
the 10%, 5%, and 1% levels, respectively.

Table 51: Effect of Intervention on Shown Content

Main Sample Toxic Sample
(1) (2)

Treated -2.5 -1.4
(1.785) (2.674)

p = 0.167 p = 0.613
N 35 392 18 032
Mean 42.1 52.98
SD 130.29 143.28

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent variable
is the number of comments shown to users on YouTube. The unit of observation is the individual-day, where day is measured
relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard
errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 52: Effect of Intervention on Total Number of (Own) Posts

Main Sample Toxic Sample
(1) (2)

Treated 0.2*** 0.3***
(0.069) (0.106)

p = 0.009 p = 0.005
N 11 984 6888
Mean 0.46 0.58
SD 2.48 2.91

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent variable
is the number of elements of content posted by users on YouTube. The unit of observation is the individual-day, where day is
measured relative to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay
standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 53: Effect of Intervention on Social Media Consumption Time

Main Sample Toxic Sample
(1) (2)

Treated -0.8 4*
(1.042) (2.008)

p = 0.449 p = 0.053
N 37 744 18 872
Mean 26.39 36.1
SD 85.76 102.29

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of
users whose comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent
variable is the number of minutes spent on YouTube. The unit of observation is the individual-day, where day is measured relative
to the intervention date. We include users who were active up to at least day 46 of the study. Driscoll-Kraay standard errors are
parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 54: Effect of Intervention on Toxicity of Produced Content

Main Sample Toxic Sample
(1) (2)

Treated -0.035 -0.062
(0.033) (0.041)

p = 0.289 p = 0.14
N 1458 951
Mean 0.09 0.1
SD 0.21 0.22

Note: This table reports estimates from Equation (1) for our main experimental sample (Main Sample) and the subsample of users
whose comment sections had an average toxicity above median during the baseline period (Toxic Sample). The dependent variable
is the average toxicity of the published content on YouTube, conditional on posting. The unit of observation is the individual-day,
where day is measured relative to the intervention date. We include users who were active up to at least day 46 of the study.
Driscoll-Kraay standard errors are parenthesized. ∗,∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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