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Abstract

We study the determinants of cost pass-through in differentiated product markets.

Random utility models of demand, such as mixed logit, place limited restrictions on

customer substitution patterns while constraining demand curvature in less known

ways. We show that the shape of the distribution of customer preferences determines

cost pass-through. Common functional form assumptions for this distribution lead

to biased estimates of both pass-through and substitution. We offer a flexible and

parsimonious unit-demand specification that accommodates both log-concave demands

(incomplete pass-through) and log-convex demands (over-shifted pass-through), for

quasi-linear preferences and for preferences that accommodate income effects. Instru-

ments and estimation are straightforward, and Monte Carlo analysis validates our

ability to recover the underlying demand curvature. We find large biases from shape

restrictions using well-known breakfast cereal and automobile data.
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1 Introduction

Demand curvature influences cost pass-through and key conclusions to many substantive

economic questions, including the ability of digital platforms such as Amazon.com to influ-

ence the surplus division between third-party sellers and consumers (Gutierrez, 2022), the

welfare implications of uniform pricing in settings ranging from consumer packaged goods

(DellaVigna and Gentzkow, 2019) to consumer financial products (Cuesta and Sepúlveda,

2021), or the price effects of cost efficiencies in horizontal mergers (Jaffe and Weyl, 2013;

Miller, Remer, Ryan and Sheu, 2015). Demand curvature is also central to the incidence of

taxes and exchange rates in non-competitive industries (Weyl and Fabinger, 2013) and to

the role of regulation in controlling externalities (Fabra and Reguant, 2014; Miller, Osborne

and Sheu, 2017). Other studies show how restrictive functional forms bias pass-through

predictions. Bulow and Pfleiderer (1983) famously caution against rigid specifications in

tobacco markets, while Froeb, Tschantz and Werden (2005) show constant elasticity of

substitution (CES ) models inflate merger synergies.

We evaluate the conditions under which discrete choice unit-demand models can

capture both realistic substitution and pass-through patterns. This model is the workhorse

framework within empirical industrial organization (IO) and nests constant elasticity of

substitution (CES ) models commonly used in macroeconomics and international trade.

It is well known that the mixed logit (ML) model, in particular, can capture realistic

substitution patterns across heterogeneous consumers (McFadden and Train, 2000). This

flexibility is key to measuring the closeness of competition between products, predicting

diversion in response to a merger-induced price change, or identifying collusion among firms.

However, understanding the determinants of pass-through (demand curvature) in discrete

choice models is less developed, as is the interaction between substitution and pass-through.

Berry and Haile (2021), for example, state:

...[S]ubstitution patterns drive answers to many questions of interest—e.g., the sizes of

markups or outcomes under a counterfactual merger. However, other kinds of counter-

factuals can require flexibility in other dimensions. For example, “pass-through” (e.g.,

of a tariff, tax, or technologically driven reduction in marginal cost) depends critically

on second derivatives of demand. It is not clear that a mixed-logit model is very flexible

in this dimension.
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Motivating Examples. We illustrate the importance of incorporating preference hetero-

geneity using the well-known simulated ready-to-eat cereal data from Nevo (2000) and US

new automobile purchase data from Berry, Levinsohn and Pakes (1999). In both examples,

we show that modeling choices have a limited impact on estimated own-price elasticities and

a large impact on estimated demand curvatures. As demand curvature plays a key role in

determining firm price responses to a change in marginal cost in settings with market power

(Cournot, 1838;Weyl and Fabinger, 2013), these examples suggest that careful modeling of

preference heterogeneity is an important ingredient in building a model that delivers robust

empirical predictions.

We focus on pairs of elasticity and curvature as descriptive statistics of the shape of

demand. Although the own-price elasticity is likely familiar to the reader as a simple measure

of market power, demand curvature as a simple measure of cost pass-through may not be.

In Section 2, we formally define demand curvature and its connection to cost pass-through.

Beyond curvature, the observed pass-through rate will also depend on competition and the

substitution patterns of the estimated demand, something that we address later in the paper.

Figure 1 presents scatter plots of estimated pairs of own-price elasticity (ε) and

curvature (ρ) using multinomial logit (MNL) and mixed logit (ML) models. Panels A and B

summarize estimates of cereal demand using data from Nevo (2000).1 While the two speci-

fications deliver similar average elasticities, the demand curvature results are very different.

This indicates that the two models will predict very different counterfactual pricing equilibria.

We observe similar results in Panels (C) and (D) using data on new automobile purchases

from Berry et al. (1999).

Foreshadowing later results, the patterns in Figure 1 reflect modeling choices, not

data variation. In MNL models, demand curvature is determined by market shares before

estimation and is truncated at one. Adding flexibility by using nested logit – a popular choice

for antitrust – allows estimated demand to decrease demand curvature (i.e., dots move to the

left), but curvature remains truncated at one. Adding heterogeneity in non-price preferences

similarly decreases demand curvature, while still maintaining truncation at one. Adding

heterogeneity in price sensitivity is necessary to accommodate a demand curvature greater

than one. Introducing price sensitivity properly is crucial. Specifically, the odd shape of

1 We estimate each model using Nevo’s (2000) original set of Hausman-style price instruments. The full
description of the specifications and estimates are reported in Appendix A.
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Figure 1: Example Elasticity and Curvature Estimates

A: Multinomial Logit (Nevo, 2000) B: Full Model (Nevo, 2000)

 0.0  0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6  1.8  2.0
Demand Curvature ( )

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

De
m

an
d 

El
as

tic
ity

 (
)

B: Multinomial Logit
Estimates
Avg. Curvature (0.98)
Avg. Elasticity (3.71)
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A: Full Model
Estimates
Avg. Curvature (1.06)
Avg. Elasticity (3.62)

C: Multinomial Logit (Berry et al., 1999) D: Full Model (Berry et al., 1999)
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Multinomial Logit Model
Estimates
Avg. Curvature (0.99)
Avg. Elasticity (2.75)
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Full Model
Estimates
Avg. Curvature (1.35)
Avg. Elasticity (2.83)

Figure Notes: Black dots represent the estimated own-price elasticity and curvature for a sample product.
The gray dot corresponds to the average elasticity and curvature. Demand estimates in the top panels are
based on the simulated ready-to-eat cereal data from Nevo (2000), while the bottom panels use data from
Berry et al. (1999). All estimates use best practices for mixed logit estimation (Conlon and Gortmaker,
2020).

the dots in Panel (D) reflects the distribution of price sensitivity, which is driven by the

assumption of Cobb-Douglas utility and the income distribution.

Contributions. We demonstrate that ML discrete-choice unit-demand models can capture

both realistic substitution and pass-through patterns. First, we identify how different com-

ponents of customer preferences influence the shape of mixed-logit (ML) demand. We do

so by adopting the “demand manifold” approach of Mrázová and Neary (2017) and focus

on the set of achievable pairs of demand elasticity and curvature as sufficient statistics for

the shape of demand.2 We are, however, limited to analyzing the demand manifold of a

2 While Mrázová and Neary (2017) address the behavior of elasticity and curvature for different continuous
demand systems (e.g., CES , Pollak, translog) in a single-product monopoly model, we instead evaluate
how components of mixed-logit demand influence the relationship between elasticity and curvature in a
discrete choice framework suitable for differentiated products oligopoly models.
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single-product monopolist. Focusing on this case is valuable for highlighting features of the

shape of demand that aid in robust empirical work; we consider multi-product oligopoly

competition in several empirical case studies.

We show that the specification of preference heterogeneity – the shapes of the mixing

distributions of the responsiveness to product attributes and price – determines the set

of achievable elasticity-curvature pairs and, therefore, the shape of demand. Heteroge-

neous tastes over product attributes lower demand curvature and pass-through relative to

MNL. Recognizing heterogeneous price sensitivity increases demand curvature and pass-

through. Here, the skewness of the price mixing distribution plays a vital role. We consider

three approaches to specifying idiosyncratic price responsiveness: distributional assumptions

for unobserved heterogeneity in price sensitivity, observable consumer heterogeneity via

demographic-price interactions, and heterogeneous income effects.

We demonstrate that discrete choice not only nests CES demand – the dominant

framework in the macro and international trade literature – in the case of continuous

demand (Anderson, de Palma and Thisse, 1992) but also in the case of unit-demand. Where

CES and ML differ is in equilibrium pass-through under oligopoly (Head and Mayer, 2025).

Since CES demand restricts curvature to be greater than one, it generates a pass-through

that is always over-shifted and independent of the number of competitors. In contrast,

competition with ML demand limits pass-through. Hence, while the ML framework provides

a natural and intuitive foundation for CES demand and may generate identical estimates of

demand elasticity and curvature, CES predicts price responses which are too large; a finding

consistent with estimated merger synergies in Froeb et al. (2005).

We provide guidance for empirical work by highlighting the restrictions imposed

by common modeling choices for preference heterogeneity, which introduce biases not just

into estimates of demand and cost pass-through, but also counterfactual pricing equilibria.

Depicting estimated product-level demand in elasticity-curvature space for empirical appli-

cations – as in the motivating example in Figure 1 above – helps identify possible restrictions

imposed by the chosen preference specification on the shape of demand. We offer an easy and

parsimonious way to modulate how correlates of demand heterogeneity, such as consumer

demographics, interact with product characteristics and price, thereby increasing the range of

feasible pairs of elasticity and demand curvature that the model accommodates, allowing the

data patterns to dictate the shape of demand. Our approach nestsML, nested logit, andMNL

models while recovering demand parameters using a standard generalized method of moments
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estimator. Identification is straightforward and derives from data moments that trace price

responses and consumption patterns across distributions of customer demographics.

Monte Carlo simulation demonstrates that our proposed instrumentation strategy

recovers the underlying mixing distributions and correctly estimates counterfactual price and

welfare effects. Consistent with our motivating examples in Figure 1, misspecification bias in

demand curvature can be large even when demand elasticities are largely unaffected. Such

biases would have significant implications for the estimated distributional consequences of a

particular government policy (e.g., , tariffs, subsidies, health insurance) or of supply chain

interruptions and cost shocks. These simulation results also suggest that insights derived

from demand manifolds of a single-product monopolist translate to empirical contexts.

As an illustration, we estimate automobile demand using the data from Berry et al.

(1999) under alternative assumptions on the strength of income effects of heterogeneity

on price sensitivities. We evaluate a hypothetical $1,000 subsidy for consumers who buy

a domestically produced vehicle. The average estimated vehicle-level cost pass-through

ranges from 0.99 to 1.79, depending on how income effects modulate the price sensitivity

distribution. When price sensitivity is inversely proportional to consumer income, subsidy

pass-through and predicted price declines of domestic cars are most pronounced, likely

overstating the true effectiveness of trade policy. These insights extend naturally to other

environments, such as the case of electric vehicle subsidies introduced in the Inflation

Reduction Act of 2022. This example focuses on the empirical specification of income

effects that are important for purchases of large durable goods such as cars. We note,

however, that demand curvature and cost pass-through are determined by the shape of the

distributions that define customer preferences more generally, whether these are connected

to observable demographics or unobservable random taste variation. How to best specify

demand heterogeneity in any particular application is a function of the identifying variation

available in the data.

Alternative Approaches. We address the role of distributional assumptions in deter-

mining the shape of discrete choice demand and provide a tractable empirical approach to

modeling demand flexibly for a broad range of empirical settings. Our work complements

Compiani (2022), who also focuses on estimating demand flexibly but uses a non-parametric

approach. This solution places fewer restrictions on the shape of demand than our envi-

ronment, but it suffers from the curse of dimensionality. Our treatment of income effects
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is more general than that of Griffith, Nesheim and O’Connell (2018) and focuses on unit

demand models. Alternative demand-side approaches have extended the range of feasible

curvatures by adopting a discrete-continuous choice framework, where heterogeneous con-

sumers choose either a budget allocation for a given product (Adão, Costinot and Donaldson,

2017; Björnerstedt and Verboven, 2016; Head and Mayer, 2025) or fractional units of the

same product (Anderson and de Palma, 2020; Birchall, Mohapatra and Verboven, 2025).

Finally, our focus on demand specification ignores the effect of supply-side frictions

on cost pass-through. For example, menu costs in adjusting price may increase or decrease

the pass-through implied by demand curvature under static Nash-Bertrand pricing alone

(Conlon and Rao, 2020). Supply-side considerations will depend upon the empirical setting,

whereas accurately capturing the shape of demand is a necessary condition for understanding

many aspects of modern empirical work, such as analyses of mergers, taxation, tariffs, cost

shocks, exchange rates, and price discrimination.

Outline. We introduce the demand manifold framework in Section 2 and characterize the

demand manifold for the general ML model in Section 3. We show mathematically how

features of the mixing distributions used in consumer preferences determine the shape of

consumer demand, which we represent through the relationship between elasticity and cur-

vature. We then evaluate the implications of different quasi-linear preference specifications

for curvature and elasticity in Section 4. Section 5 addresses estimating and identifying

heterogeneity in price sensitivity and non-price characteristics. Here, we describe our pro-

posed instrumentation strategy and investigate its properties in Monte Carlo analyses of

both discrete choice models with quasi-linear preferences and choice models with income

effects. Section 6 concludes by summarizing our contributions and discussing empirical

settings beyond trade policy and electric vehicle subsidies where we think adding demand

flexibility is important. Additional results and derivations are reported in the Appendices.

2 A Primer on Demand Manifolds

In this section, we introduce the concept of a demand manifold, a smooth relationship

between demand elasticity and curvature consistent with profit maximization. Mrázová and

Neary (2017) provide an excellent formal derivation of demand manifolds and their properties
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for a wide range of continuous demand specifications. We employ demand manifolds to

assess the flexibility of alternative preference specifications in the context of discrete-choice

demand, highlighting relevant issues that relate to the estimation of mixed-logit demand

from an applied perspective.

We begin by discussing the demand manifold for a single-product monopolist. We

use this setup in Sections 3 and 4 to illustrate graphically the properties of common discrete-

choice demand specifications. Next, we discuss demand sub-convexity, which we impose on

the demand systems in these analyses to ensure the existence of well-behaved pricing equi-

libria and comparative statics. Demand sub-convexity weakly limits the feasible elasticity

and curvature combinations by ensuring demand becomes more elastic at higher prices; i.e.,

Marshall’s Second Law of Demand.

2.1 Single-Product Monopoly

Consider the case of a single-product monopolist with constant marginal cost c. The

monopolist sets the price p that maximizes profits Π(p) = (p − c) ·q(p) and the following

necessary condition holds:

Πp(p) = q(p) + (p− c)·qp(p) = 1− p− c

p
ε(p) = 0 ⇐⇒ ε(p) ≡ −p·qp(p)

q(p)
> 1 , (1)

where ε denotes the elasticity of demand. Similarly, the sufficient condition for price p to

maximize monopoly profits is:

Πpp(p) = 2qp(p) + (p− c)·qpp(p) < 0 ⇐⇒ ρ(p) ≡ q(p)·qpp(p)
[qp(p)]

2 < 2 , (2)

with ρ denoting the curvature of inverse demand. Demand can be concave (ρ < 0), linear

(ρ = 0), but not excessively convex (ρ > 0), to ensure concavity of the profit function.

Mrázová and Neary (2017) prove that a well-defined smooth equilibrium relationship

connecting elasticity ε and curvature ρ exists for continuous demands that are decreasing

(qp(p) < 0 and pq(q) < 0) and three times differentiable. This allows us to invert the elasticity

in Equation (1), and substituting into Equation (2), we obtain the demand manifold:
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ρ[ε(p)] =
q(p)·qpp(p)
[qp(p)]

2 =
p2 ·qpp(p)(

−p·qp(p)
q(p)

)2

·q(p)
=

p2 ·qpp(p)
ε2(p)·q(p)

. (3)

Cournot (1838) first established the connection between demand curvature and pass-through

for a monopolist with constant marginal costs:

dp

dc
=

1

2− ρ
> 0 , (4)

When the monopolist faces log-concave demand with ρ < 1, its pass-through of cost shocks

is incomplete, while it is more than complete in the case of log-convex demand with ρ > 1.

Complete pass-through occurs when ρ = 1. Our representation of the manifold in terms

of (ε, ρ) therefore directly relates to economic outcomes of interest, namely markups and

pass-through, respectively.

2.2 Oligopoly

The monopoly case is helpful to establish the connection between demand curvature and

pass-through rate. We will use graphical analysis repeatedly to convey the intuition of

how distributional assumptions in discrete choice models affect the relationship between

own-elasticity and curvature by plotting demand manifolds corresponding to a single-product

monopoly case. In practical applications, firms compete in oligopoly markets selling multiple

products, and this graphical representation only approximates the relationship between

elasticity and curvature of the residual demand of a particular product, given all other

substitution estimates.

In oligopoly markets, the pass-through of a common cost shock depends not only

on demand curvature but also on substitution between affected products. To convey the

intuition of how substitution affects the pass-through rate for a given product, it is necessary

to simplify these substitution patterns. Weyl and Fabinger (2013, §IV.1) focus on the

homogeneous product oligopoly version of equation (4):

dp

dc
=

1

1 + θ(1− ρ)
> 0 , (5)

where θ is a conduct parameter ranging from θ = 0 for a perfectly competitive industry to

θ = 1 for monopoly. The case of θ = 1/n corresponds to the Cournot solution. As the
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number of firms increases, the role of demand curvature diminishes, and pass-through gets

closer to complete. Genakos and Pagliero (2022) study homogeneous good gasoline markets

and find that pass-through increases from 0.4 in monopoly markets to one in markets with

four or more competitors. The quantitative importance of competition on pass-through in

empirical settings with differentiated goods and more sophisticated substitution patterns is

unclear, however.

Weyl and Fabinger (2013, §IV.2) also consider a particular case of symmetric price

Bertrand-Nash equilibrium. For this particular case, the conduct parameter has an intuitive

interpretation connected to substitution patterns:

θ = 1 +
∑
j ̸=i

∂qj(p)

∂pi

/
∂qi(p)

∂pi
, (6)

where the second term on the right-hand side corresponds to the aggregate diversion ratio

of Shapiro (1996). If a product i has nearly no close substitutes, the firm can charge higher

markups and because
∑

j ̸=i ∂qj(p)/∂pi → 0 and θ → 1, its pass-through (5) coincides with

the pass-through of a single-product monopolist (4). If, on the other hand, product i has

several close substitutes,
∑

j ̸=i ∂qj(p)/∂pi > 0 and θ < 1. The firm therefore faces a more

competitive environment, limiting not only its ability to increase price over marginal cost

but also its ability to pass any cost increase to consumers.

The monopoly pass-through of equation (4), which ignores substitution effects, could

be understood as a rough upper-bound estimate of the pass-through of any oligopoly firm.

When the oligopoly equilibrium is not symmetric and different products are sold at dif-

ferent prices, it becomes difficult to make analytical statements about the sensitivity of

pass-through to general substitution patterns. We evaluate the quantitative relationship

between (4) and (5) in the context of our Monte Carlo study in Appendix E.

2.3 Demand sub-convexity

Demand is said to be sub-convex (super-convex) if log[q(p)] is concave (convex) in log(p). In

the monopoly manifold examples we consider in Sections 3 and 4, we focus our attention on

sub-convex demand or instances when the demand elasticity increases in price; i.e.,

εp(p) =
ε2(p)

p
·
[
1 +

1

ε(p)
− ρ(p)

]
> 0 ⇐⇒ ρ(p) < 1 +

1

ε(p)
= ρ(p)CES . (7)
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Equation (7) establishes a cutoff condition for the curvature of sub-convex demand. For a

given price elasticity, this cutoff is the curvature of the Constant Elasticity of Substitution

(CES ) inverse demand, p(x) = βx−1/σ. CES demand is the only demand system where a

single parameter determines both elasticity and curvature: εCES = σ and ρCES = 1+1/σ > 1.

Thus, εp(p) = 0, which implies the well-known result that CES markups and pass-through

are invariant to price.

There is empirical evidence supporting the so-called Marshall’s (1920) Second Law of

Demand of demand becoming more elastic as prices rise.3 This demand property is key to

the equilibrium existence results of oligopoly models with differentiated products, both for

single-product firms (Caplin and Nalebuff, 1991a) and for multi-product aggregative games

(Nocke and Schutz, 2018). Our analysis below also shows that sub-convexity helps generate

well-behaved comparative statics and equilibria: as price rises, the firm no longer has the

incentive to continue raising the price and garner increasing markups.

3 Demand Elasticity and Curvature for Discrete Choice Models

We now utilize the demand manifold to explore the relationship between curvature and

elasticity in the context of mixed-logit demand, which forms the backbone of much empirical

work in IO. We begin by characterizing the demand manifold for arbitrary specifications of

preference heterogeneity. Define the indirect utility of consumer i from purchasing product

j as:

uij = hi(di, xj) + fi(yi, pj) + ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (8)

where (xj, ξj) denote the observed and unobserved characteristics of the product

j, respectively, pj its price and yi the income of the consumer i. Mixed logit allows for

heterogeneity in consumers’ valuation of the product characteristics x, which we represent

via the characteristic sub-function hi(di, xj). This sub-function takes demographics di as

an argument reflecting a possible correlation between consumer demographics and taste

3 This includes evidence on the relationship between markups and the scale of production in macroeco-
nomics (see Mrázová, Neary and Parenti, 2021, and references therein), markup adjustments after trade
liberalization (De Loecker, Goldberg, Khandelwal and Pavcnik, 2016), pass-through of exchange rates for
coffee and beer in trade (Nakamura and Zerom, 2010; Hellerstein and Goldberg, 2013), as well as tax
pass-through in the legal marijuana market (Hollenbeck and Uetake, 2021) and markup adjustments to
changes in commodity taxation(Miravete, Seim and Thurk, 2018).
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heterogeneity over product characteristics. Lastly, we normalize the value of the outside

option to zero.

The sub-function fi(yi, pj) represents how spending on the outside good, yi − pj,

affects indirect utility. The effect of outside good spending varies by individual i, as income

varies across consumers and consumers differ in their price sensitivity. To simplify notation,

we write:

f ′
ij =

∂fi(yi, pj)

∂pj
, and f ′′

ij =
∂2fi(yi, pj)

∂p2j
. (9)

The term f ′
ij represents the marginal effect of price pj on consumer i’s indirect utility, while

f ′′
ij represents how this marginal effect changes with price.

Individual i purchases product j if uij ≥ uik , ∀k ∈ {0, 1, . . . , J}. Because of the

additive i.i.d. type-I extreme value distribution of ϵij, individual i’s choice probability of

product j is:

Pij(p) =
exp

(
hi(di, xj) + fi(yi, pj) + ξj

)
1 +

J∑
k=1

exp
(
hi(di, xk) + fi(yi, pk) + ξk

) . (10)

Notice that individual i makes a dichotomous decision about purchasing product

j (i.e., “Buy j” vs. “Buy Something Else”). We therefore consider the individual purchase

decision as the outcome of a Bernoulli random process with a probability of success Pij. This

probability varies with the vector of prices and characteristics of the different alternatives.

The Bernoulli random variable has mean µij = Pij, variance σ2
ij = Pij(1 − Pij), and (non-

standardized) skewness skij = σ2
ij(1− 2Pij). Aggregating over the measure of heterogeneous

individuals summarized by G(i), total demand for product j becomes:

Qj(p) =

∫
i∈I

Pij(p) dG(i) . (11)

We can now write the elements defining the demand manifold, elasticity, and curva-

ture of product j, relegating the detailed derivations to Appendix B. The own-price demand

elasticity of product j amounts to a scale-free measure that aggregates individual price

responses (demand slopes) weighted by their choice variance:

εj(p) = − pj
Qj(p)

∫
i∈I

f ′
ij ·σ2

ij dG(i) , (12)

– 11 –



Similarly, the demand curvature of our discrete choice model is:

ρj(p) =

∫
i∈I

µij dG(i)×

∫
f ′′
ij · σ2

ij dG(i) +

∫ (
f ′
ij

)2 · skij dG(i)[∫
f ′
ij · σ2

ij dG(i)

]2 . (13)

Combining elasticity (12) and curvature (13), we obtain the general expression for the mixed

logit demand manifold:

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·
[∫

f ′′
ij ·σ2

ij dG(i) +

∫ (
f ′
ij

)2 ·skij dG(i)

]
︸ ︷︷ ︸

Mixing Distributions

. (14)

Discussion. The demand manifold in equation (14) suggests that the mixing distributions

(in between brackets) of attribute valuations across the underlying distribution of customers

drive the relationship between elasticity and curvature. While these are best understood

as primitives of customer demand, the distribution of taste heterogeneity, G, and the sub-

functions f(·) and h(·) are typically chosen before and held fixed during estimation. For

example, a standard specification of non-price tastes through h(·) is a linear function of

customer demographics, and non-observed heterogeneity is captured via a standard normal

distribution. These choices implicitly restrict {σ2
ij, skij}, therefore limiting the relationship

between elasticity and curvature.

Researchers also often choose quasi-linear preferences, where the pricing sub-function

is a linear function of outside good spending, i.e., fij(yi, pj)=α⋆
i (yi−pj). Then, heterogeneity

in the idiosyncratic price sensitivity α⋆
i for any given elasticity drives demand curvature,

generating different implications from the below case of a non-linear sub-function fij(yi, pj),

e.g., the polynomial approximations of Griffith et al. (2018). Our setup, however, always

consists of discrete choice unit demands that are consistent with utility maximization, i.e.,

where Roy’s identity holds for qij=1.
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4 Demand Manifolds of Common Discrete Choice Models

We provide a graphical illustration in this section of how choices of the distribution for taste

heterogeneity G and the pricing sub-function f(·) impact the shape of the demand manifold.

We focus on a single-product monopoly as a simplifying example to provide intuition.

4.1 Quasi-linear Preferences

For quasi-linear preferences, the pricing sub-function simplifies to fi(yi, pj)=α⋆
i (yi−pj) where

αi = α+σpϕi and hi(di, xj) = βixj where βi = β+σxνi. The distribution of price sensitivity

has a mean of α with deviations driven by the shape of Φ, the mean-zero distribution of ϕi,

scaled by σp. Similarly, β is the mean valuation of the observed product characteristics, and

νi captures the idiosyncratic heterogeneity in the valuation, which we assume takes the form

of a standard normal random variable scaled by σx.

Note that purchase decisions based on indirect utility comparisons do not depend on

individual income yi, which shifts the indirect utility of all products by α⋆
i yi, so there are

no income effects. Furthermore, with fi(yi, pj) linear in price, f ′
ij = −α⋆

i and f ′′
ij = 0 so the

demand manifold simplifies to:

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·
∫
(α⋆

i )
2 ·skij dG(i) . (15)

We employ Equation (15) to explore the demand manifolds of several workhorse

discrete choice specifications from the empirical literature: MNL, CES , ML with random

coefficients on product attributes, and ML with a random coefficient on price. The extent

and manner in which these specifications introduce flexibility in the preference specification

vary, enabling us to demonstrate how the demand model’s capacity to accommodate feasible

combinations of elasticity and curvature changes as we relax these restrictions.

Multinomial Logit Preferences. In the MNL model, there is no unobserved heterogene-

ity, so σp = σx = 0; α⋆
i = α; and β⋆

i = β. Hence, Pij = Pj = sj(p) is the market share of

product j. Elasticity and curvature reduce to:

εj(p) = αpj
(
1− Pj

)
, (16a)
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ρj(p) =
1− 2Pj

1− Pj

< 1 . (16b)

Equation (16b) shows that MNL demand is concave with negative curvature only in

very concentrated markets where the product’s market share exceeds 50% of sales.4 MNL

restricts demand to be log-concave and ρj(p) < 1 for all possible prices. Pass-through in

any MNL demand model is necessarily incomplete regardless of setting and identification

strategy. Furthermore, since MNL demand curvature (16b) decreases in Pj, pass-through

grows arbitrarily close to complete when the product market is atomistic and Pj → 0.

This means the researcher’s choice of potential market pins down demand curvature and

pass-through before estimation.

The left panel of Figure 2 depicts several demand manifolds for a single-product

monopoly MNL model. We fix the product attribute to take a value of X = 1 and allow

consumer valuations for the attribute β to range from {β, β + 1 . . . , β + 5}, with β = 1. For

each attribute valuation β, the manifold of the MNL is increasing. We set the price response

coefficient α = 0.5 and consider elasticity-curvature combinations at various price levels.

Each manifold is color-coded for prices, ranging from pj = 0 (darkest) to pj = 10 (lightest).

Note that higher prices always result in more elastic demands and lower equilibrium markups.

Increasing the average valuation of the product attribute, β, to β+1, β+2,. . . , shifts demand

manifolds upwards from the base MNL manifold in Figure 2. Increasing a product’s mean

demand, therefore, results in decreases of both curvature and price elasticity for a given

price.

Nested Logit. Nested logit – a demand system commonly employed in antitrust economics

– provides for more reasonable substitution patterns with a limited computational burden.5

As with MNL, nested logit demand is log-concave. An economic implication of log-concave

demand is that demand curvature and pass-through are always less than one (Amir, Maret

and Troege, 2004). This means that while nested logit provides a simple framework for

approximating substitution patterns, this simplicity comes at the expense of restricting

counterfactual pricing equilibria in merger analysis.

4 Jaffe and Weyl (2010) show that random utility models are inconsistent with linear demand beyond the
symmetric duopoly case, when Pj = sj(p) = 1/2, which follows immediately from (16b).

5 McFadden and Train (2000) demonstrate that a ML specification with random coefficients on product
characteristics can generate equivalent substitution patterns to the nested logit model.
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Figure 2: Multinomial and Mixed Logit Manifolds
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Figure Notes: The left panel shows six alternative MNL demand manifolds with one inside good assuming
α = 0.5, X = 1, and β ∈ {1, ..., 6}. The right panel shows manifolds for a ML model with a random
coefficient on the product characteristic under alternative standard deviations σx and β = 1.

Constant Elasticity of Substitution Preferences. The decreasing and convex black

dashed curve in Figure 2 represents the (ε, ρ) combinations for CES demand under alterna-

tive values for the elasticity of substitution. Anderson et al. (1992) show that a discrete choice

model where individuals spend a fraction of their income on a continuous quantity of a single

product can generate the CES utility function of the representative consumer model. CES

therefore arises naturally in the context of discrete-continuous models (Hanemann, 1984),

while MNL is most appropriate when consumers have unit demands. However, like the

MNL model, CES choice probabilities suffer from the IIA property in producing unrealistic

substitution patterns, e.g., Head and Mayer (2025). Figure 2 also illustrates that for the same

elasticity, the CES and MNL models imply different demand curvatures (and pass-through).

This means model choice starkly restricts pass-through, often inconsistently with the data.

ML with Characteristic Random Coefficients. The literature has highlighted that

accounting for idiosyncratic preferences for product attributes can relax the restricted sub-

stitution patterns generated by MNL demand. We consider whether heterogeneity in the

valuation of the product attribute addresses the limitations of MNL in restricting curvature,

while still assuming that all consumers have the same price responsiveness.

The right panel of Figure 2 shows several demand manifolds for such a ML model,

allowing the standard deviation of the random coefficient on the product attribute to increase

from σx = 1 to σx = 2, while holding fixed the mean product valuation at β = 1. Adding

individual preference heterogeneity “rotates” manifolds: for a given demand elasticity, pref-

erence heterogeneity reduces demand curvature and, hence, pass-through. The firm now
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faces a segment of consumers with high valuations for its attribute over whom it has market

power locally, and it reduces its pass-through relative to the case of uniform preferences.

The light-red shaded area denotes the combinations of elasticity and curvature that

a ML model with heterogeneity in the valuation of the product characteristic can generate

for mean valuations of β ≥ 1. The figure illustrates that the ML model with normally

distributed attribute preferences continues to generate log-concave demand. Caplin and

Nalebuff (1991b) show that ML demand remains log-concave under any log-concave dis-

tribution of idiosyncratic preferences, comprising the vast majority of distributions used

in economics (Bagnoli and Bergstrom, 2005). Mathematically, Equation 14 demonstrates

that curvature can only come through the shape of the choice probability distribution (Pij),

particularly the skewness.

It is evident that this version of a ML model has inherent limitations when empir-

ically studying pass-through in non-competitive environments: pass-through is necessarily

restricted to be incomplete.6 In empirical settings with log-convex demand, firms with market

power aim to over-shift cost shocks. Employing a MNL or a ML model with idiosyncratic

preferences over attributes in such instances would result in biased preference estimates that

generate the closest demand curvature to the true data-generating process that these models

can produce, a curvature of effectively one. Figure 2 illustrates that to exhibit such demand

curvature, the estimated model would either understate the true degree of idiosyncratic

product attribute preferences or overstate consumers’ true price sensitivity, generating the

appearance of a competitive environment with full pass-through.

ML with Price Random Coefficients. How can we expand the range of curvatures

that the ML estimates can accommodate to allow for log-convex demand and over-shifting

of pass-through? The only remaining element of preferences to consider is idiosyncratic

price responsiveness. Substituting α⋆
i = α + σpϕi into the demand manifold for quasi-linear

preferences (15) results in:

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·
∫
(α + σpϕ)

2 ·skij dΦ(i) (17)

6 This is at odds with evidence of pass-through rates exceeding 100% in horizontally differentiated prod-
ucts industries such as groceries (Besley and Rosen, 1999); clothing and personal care items (Poterba,
1996); branded retail products (Besanko, Dubé and Gupta, 2005); gasoline and diesel fuel (Marion and
Muehlegger, 2011); as well as beer, wine, and spirits (Kenkel, 2005) among others.
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In the absence of idiosyncratic price heterogeneity, σp = 0, this demand manifold coincides

with the manifold of the MNL in Equations (16a) and (16b). For any given demand elasticity

and price-quantity pair, an increase in the spread of the distribution of idiosyncratic price

heterogeneity via σp expands the range of demand curvatures that the model can generate.

Indeed, the shift of each manifold to the right is proportional to the second-order moment

of the distribution Φ. With a sufficiently large σp relative to the mean price coefficient α,

the manifolds cross the unit curvature threshold, allowing discrete choice demand to accom-

modate pass-through rates above 100%. We illustrate this argument next by considering

particular price mixing distributions.

Normal and Log-normal Price Random Coefficients. We now consider the choice of

price mixing distribution, focusing on the range of feasible elasticity and curvature combi-

nations up to the CES boundary that a candidate price mixing distribution could generate.

We begin with two price-mixing distributions commonly used in empirical work: the normal

and log-normal distributions. Figure 3 depicts the demand manifolds when price random

coefficients are normally and log-normally distributed for alternative values of σp. The

light-red shaded area identifies all combinations of (ε, ρ) within the sub-convex region of

demand that are feasible under each model for any combination of the structural parameters

(α, σp, β). Both panels show that increasing the variation in idiosyncratic price responsive-

ness σp increases the feasible curvatures theMLmodel can accommodate for a given elasticity

value. Manifolds now cross into the log-convex region of demand with more than complete

pass-through, a result that is consistent with many of the (ε̂, ρ̂) estimates in Figure 1.

In the left panel, we depict, among others, the demand manifold corresponding to the

particular demand specification with a normally distributed price coefficient with σp = 0.15.

The figure shows that for this value of σp, the maximum elasticity is reached precisely

at the price level where the demand manifold intersects the CES locus. For higher price

levels, elasticity decreases in price, violating Marshall’s Second Law. For demand to be

sub-convex for all price levels, we therefore require less heterogeneity in price sensitivity

among consumers; i.e., low σp.

Utilizing a one-tailed log-normal distribution for price sensitivity introduces skewness

(Equation 17). Beyond ensuring that the demand of all simulated consumers is downward

sloping (Train, 2009), it expands the scope for more prominent differences in price sensitivity

and curvature; the right panel in Figure 3 shows that larger values of σp continue to generate
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Figure 3: Normal and Log-Normal Price Mixing Distributions
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Figure Notes: Panels present demand manifolds in the (ε, ρ) plane under standard normal and log-normal
price mixing distribution, respectively. Light-shaded regions represent all feasible (ε, ρ) pairs conditional on
the price-mixing distribution. We define “feasible” as manifolds for demand that is sub-convex for all prices.
We identify this region through a grid search across all parameters, conditional on the utility specification,
including the price mixing distribution.

sub-convex demand. This results in a significantly larger range of feasible curvatures for

a given demand elasticity, particularly for less elastic demands, where firms enjoy greater

market power. Figure 3 hence shows that a model with a log-normal price random coefficient

can admit the majority of curvature-elasticity pairs in the sub-convex region of demand.

A More Flexible Mixing Distribution. While log-normality increases the set of achiev-

able elasticity-curvature pairs, there are still small gaps in coverage. Here, we consider a

more flexible mixing distribution – the three-parameter Asymmetric Generalized Normal

distribution (Nadarajah, 2005) which collapses to a one-parameter distribution in the case

of mixed logit demand summarized by the shape parameter κ.7 Figure 4 explores the

implications of using this flexible mixing distribution for the price random coefficient.

In panel A we present three different variants of how the price mixing distribution

may look using various values of κ: ranging from standard normal to log-normal. We

also consider an intermediate case that might represent a particular mixture of these two

distributions. Panel (a) therefore provides intuition of how the Asymmetric Generalized

Normal modulates the shape of the price mixing distribution to cover (ε, ρ) space in panels A

and B in Figures 3 as well as the space between. We confirm this intuition in panel B where

we see the Asymmetric Generalized Normal does indeed cover (ε, ρ) space conditional on

7 See Online Appendix C for technical details.
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Figure 4: Covering the Space with a Flexible Price Mixing Distribution

(a) Price Mixing Distributions
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Figure Notes: The left panel shows three specifications of the price random coefficient distribution for
different values of shape parameter κ with the Asymmetric Generalized Normal distribution. The right
panel shows the combinations of all structural parameters generating well-behaved solutions for (ε, ρ) in
the sub-convex region. The model is capable of covering the sub-convex region in Panel (b) because of the
flexibility provided by the Asymmetric Generalized Normal as the pricing mixing distribution.

maintaining demand sub-convexity (light-shaded region). This result indicates that flexibility

in the price mixing distribution can be achieved parsimoniously.

Demographics as Mixing Distributions. Empirical applications frequently exploit the

fact that idiosyncratic price responsiveness is correlated with demographics. Rather than

imposing a distribution on idiosyncratic price sensitivities, as we did above, one might

therefore specify the idiosyncratic price sensitivity αi as a function of an observable de-

mographic di, i.e., α
⋆
i = α + πddi. The equivalence to the analysis of Section 3 is apparent:

it is now the empirical distribution of demographic di that underlies measure G(i) in the

manifold expression (3) and that determines the feasible combinations of (ε, ρ) pairs that the

demand system can accommodate. Since researchers choose demographics to use as mixing

distributions, this result highlights that these choices restrict, ex ante, the set of achievable

(ε, ρ) pairs. Equivalently, these choices restrict the estimates of market power and achievable

pricing equilibria.

4.2 Preferences with Income Effects

We now extend the analysis to consumer preferences with income effects. In contrast to the

quasi-linear case, where outside good spending enters consumers’ indirect utility function
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linearly, it is natural to allow for income effects when studying expensive products, such

as automobiles. For example, BLP specify Cobb-Douglas utility which generates indirect

utility in Equation (8) via the following price sub-function:

fi(yi, pj) = α ln
(
yi − pj

)
. (18)

Both the quasi-linear price sub-function and BLP ’s alternative are, however, special cases

of a Box-Cox power transformation (Box and Cox, 1964) of outside good spending. We,

therefore, find it useful to specify the following generalized price sub-function to vary the

importance of income effects:

fi(yi, pj) = α⋆
i

(
yi − pj

)(λ)
=


α⋆
i

(
yi − pj

)λ − 1

λ
, if λ ̸= 0 ,

α⋆
i ln
(
yi − pj

)
, if λ = 0 ,

(19)

The power parameter λ ∈ R drives the convexity or concavity of the transformation, thereby

varying the importance of income effects. This enables us to explore how the value of the

power parameter λ affects demand elasticity (12), curvature (13), and the shape and position

of the manifold (14) through its effect on f ′
ij and f ′′

ij in Equation (9). This flexibility is a

valuable feature that we utilize in our Monte Carlo simulations and empirical illustrations,

where we estimate, rather than impose ex-ante, the importance of income effects. A subtle

point in (19) is that the researcher still has the freedom to choose the consumer’s disposable

income. This could be the consumer’s wage income, their wealth, or some other measure

of discretionary income. What we have shown is that this choice will drive the shape of

demand as well as the set of attainable elasticity-curvature pairs. The Box-Cox parameter

modulates this choice to better fit the distribution of price sensitivities in the data.

In line with the BLP specification, we abstract from heterogeneity in price sensitivity

and consider the case of α⋆
i = α. A power parameter of λ = 0 yields the BLP model,

while a power parameter of λ = 1 results in a quasi-linear model such as Nevo (2001). This

means that the income distribution captures any idiosyncratic price responsiveness across

individuals, modulated by λ.8

8 Using a multi-unit demand model, Birchall et al. (2025) rely on a price sub-function with a different
Box-Cox transformation, f(yi, pj) = γλ−1

(
yλi − 1

)
λ−

(
pλj − 1

)
λ, which depends on the share of income,

γ, spent on a chosen product and is only well behaved for λ ∈ (0, 1) (Anderson and de Palma, 2020). Their
transformation is an h-function bridging MNL and CES demands (Nocke and Schutz, 2018). The resulting
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Following Berry et al. (1999), we adopt a first-order Maclaurin series approximation

(at pj = 0) of the Box-Cox transformation:9

fi(yi, pj) = α
(
yi − pj

)(λ) ≃ αy
(λ)
i − αpj

y1−λ
i

. (20)

yielding a demand manifold of:10

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·

∫
i∈I

α2 ·
[
(1− λ)y−λ

i ·σ2
ij + skij

]
y
2(1−λ)
i

dG(i) . (21)

Figure 5 depicts demand manifolds under various λ values in [0, 1] when the charac-

teristic sub-function is βXj and income yi is a log-normal approximation to the U.S. income

distribution. The figure illustrates that accommodating income effects via the approximate

Box-Cox transformation of outside good spending yields preferences that can accommodate

curvatures close to those of the CES boundary as λ approaches zero; i.e., when the pricing

sub-function is fij = log(yi − pj).
11 This suggests that the motivating patterns in the pairs

of elasticity and curvature in Figure 1 for Berry et al. (1999) are driven by the shape of the

income distribution.

Discussion. The preceding sections demonstrate that the ML model exhibits significant

flexibility in capturing realistic substitution patterns and generating a wide range of cost

pass-through when we allow for (a) heterogeneity in consumer valuations for product at-

curvature flexibility disappears for λ = 1, when the specification reduces to the quasi-linear unit-demand
case. Our goal in specifying sub-function (19) is to expand the curvature range of a unit demand model
through a Box-Cox power parameter that modulates income effects within the confines of a unit-demand
setup consistent with utility maximization.

9 Note that for λ = 0, the price sub-function becomes α ln yi − αpj/yi, which only coincides with equation
(19) for yi = 1. Hence, the preference specification based on equation (20) is only approximately consistent
with utility maximization.

10This is the particular solution of the demand manifold derived in Online Appendix B for the case of the
Maclaurin approximation of the Box-Cox price sub-function (19).

11We consider a power parameter λ ∈ [0, 1], in line with the empirical literature, to ensure that marginal
utility of income is increasing and concave (so that higher income households are always less responsive to
price at different rates as modulated by λ). Note that using the convenient Maclaurin approximation leads
to some estimation bias and BLP estimates sit on the CES boundary, which should correspond to λ = 0.
Using the approximation will produce estimates of λ smaller than zero, corresponding to a more concave
function than ln(yi − pj). Values λ < 0 still ensure that the marginal utility of income is increasing and
concave, so that higher income individuals are less responsive to prices.
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Figure 5: Demand Manifolds & Income Effects
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Figure Notes: Demand manifolds for different values of the Box-Cox transform parameter λ using the
U.S. income distribution and the rest of the model specification of Berry et al. (1999). The dot identified as
”BLP (95/99)” corresponds to the average estimated curvature and elasticity value using the BLP automobile
data and estimation best practices as outlined in Conlon and Gortmaker (2020).

tributes and (b) flexible distributions of price sensitivity. The former expands the set

of estimable elasticity-curvature combinations within the log-concave region of demand,

while the latter extends this set to log-convex demand. Moreover, the interaction between

(a) and (b) is non-trivial and is likely unknown before estimation. The intuition is that

idiosyncratic attribute valuations give firms localized market power, leading to under-shifted

pass-through. At the same time, consumer heterogeneity in price sensitivity results in

over-shifted pass-through, as the firm focuses on different customer types in response to

cost changes. The combined effect of these two forces drives a given product’s pass-through.

We provide a simple linear example of over-shifted pass-through (i.e., log-convex demand)

via heterogeneous price sensitivities in Appendix D.
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5 Guidance for Empirical Work

We suggest modeling preference heterogeneity using the Box-Cox power transform introduced

in Section 4.2. While there are many ways to model consumer heterogeneity flexibly, the

Box-Cox transform provides a simple, one-parameter mechanism for transforming data into

mixing distributions that are consistent with identifying data moments. It also has the

added advantage of being consistent with unit-demand models that rationalize consumer

utility maximization.

In the following sections, we address the identification and estimation of the shape of

demand in horizontally differentiated, multi-product oligopoly typical to empirical settings.

We begin with a model where demand exhibits income effects, as in Berry et al. (1999), and

then continue by evaluating the quasi-linear demand case presented in Nevo (2001). Both

models generate results that are consistent with the predictions from the single-product

monopoly case from Section 2 to connect mixing distributions to elasticity, curvature, and

the shape of demand. These results also demonstrate that our approach provides an easy al-

ternative for implementing empirical strategies to extend the range of estimable pass-through

ratios that discrete choice models can accommodate in a wide variety of applied settings.

While our focus in this section is on using the Box-Cox power transform to estimate the

distribution of price sensitivities flexibly, modifying our identification strategy to non-price

characteristics to accommodate lower demand curvature and pass-through is straightforward.

We detail our identification strategy in Section 5.1. In Section 5.2, we conduct a

Monte Carlo analysis to demonstrate the effectiveness of our identification strategy and to

illustrate the consequences of misspecification. In Section 5.3 we simulate a counterfactual

trade policy using alternative estimated demand specifications for new automobiles. We

conclude in Section 5.4 by addressing the empirical implications of imposing different price

mixing distributions in a quasi-linear preference setup.

5.1 Instruments to Identify Demand Manifolds

We employ an identification strategy that exploits heterogeneous consumer responses to

exogenous price changes by relying on a variant of the instruments proposed initially by BLP

and refined as “Differentiation IVs” by Gandhi and Houde (2020): the distance of the focal

product from rivals in product characteristic space. Changes in the focal product’s isolation
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in characteristic space exogenously shift its demand, assuming that product characteristics

are chosen before demand unobservables, ξ, are realized. A comparison between instances

with many versus few similar products reveals the extent to which consumers substitute

between similar products, akin to observing exogenous variation in choice sets. As the

Box-Cox transformation allows for nonlinear heterogeneity in such substitution as a function

of income or other observable consumer demographics, we interact the Differentiation IV

with moments from the demographic distribution, e.g., income. This allows us to recover

the shape of the distribution of consumers’ price sensitivities and attribute valuations and,

hence, the curvature of a unit demand function.

A challenge, of course, when employing this instrument to identify price sensitivity

is the endogeneity of prices in an oligopoly equilibrium: unobserved demand shocks ξ may

confound the response in price to a change in cost ω. We follow Gandhi and Houde (2020)

and construct exogenous price predictions via a reduced-form hedonic price regression based

on exogenous characteristics xt and cost shocks ωt:
12

pt = γ0 + γ1xt + γ2ωt + ut . (22)

We run the above regression and use the results to construct the vector of predicted prices

p̂t. We then construct differences in price-space between product j and its competitors:

Zp
jt =

∑
r

(
p̂rt − p̂jt

)2

. (23)

Equation (22) enables us to construct exogenous prices by separating price effects due to

changes in demand (via ξ) from changes in cost (via ω). It is also a simple pass-through

regression. Cost pass-through γ̂2 informs the identification of demand primitives related to

curvature via the demand shocks captured in equation (23). While Gandhi and Houde (2020)

recommend relying on Zp to identify the distribution of unobserved preference heterogeneity,

interacting it with moments of the distribution of observable demographics serves to identify

the case when price sensitivity is correlated with the same demographics. For example,

12Alternatively, we could construct prices non-linearly using firm first-order conditions as in Berry et al.
(1999).
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when estimating demand allowing for flexible income effects, we include the interactions of

the above price differentiation instrument Zp with moments of the income distribution:

ZP
jt =

∑
r

(
p̂rt − p̂jt

)2

, (24a)

ZD
jt = ZP

jt ⊗
{
inc10%t , inc50%t , inc90%t

}
. (24b)

We trace the demand manifolds using cost shocks, while holding exogenous demand shifters

constant at different price levels. Section 5.2 explores the instrument’s performance in Monte

Carlo simulations. Lastly, we extend the argument to quasi-linear preferences in Section 5.4.

5.2 Flexible Discrete Choice Estimation with Income Effects

We conduct a Monte Carlo analysis to demonstrate the validity of our identification strategy

and evaluate the potential for mis-specified demand systems to introduce biases in the

economic outcomes of interest, namely elasticity and curvature. Consider a setting with

J = 20 differentiated products sold by single-product firms competing in price for T = 50

periods. Consumer indirect utility takes the following form:

ujlt = β0 + β1x
1
jt︸ ︷︷ ︸

Common Across
Consumers

+
K∑
k=1

(
β2,k + σX,kνik

)
x2
jt,k︸ ︷︷ ︸

Idiosyncratic
Characteristic Tastes

− α · pjt · yλ−1
it︸ ︷︷ ︸

Idiosyncratic
Price Sensitivities

+ ξjt + ϵijt , (25)

where income effects decrease as λmoves from zero to one. In this specification, some product

characteristics are observed by the researcher (x1
jt, x

2
jt) while others are only observed by con-

sumers and firms (ξjt). Valuation of the product attribute x1
jt is common across individuals,

and we draw x1 independently from a uniform distribution. We model consumer preference

heterogeneity in product characteristics via x2
jt with two elements (K = 2), including a

constant and a uniformly distributed product characteristic. As in Gandhi and Houde (2020),

product attributes (other than the constant) vary across time.13 Consumers, therefore, have

preference heterogeneity over the J inside goods via the constant random coefficient and over

variation in the observable product characteristic across the J products and T time periods.

13In empirical applications, such as automobiles, this is due to product remodels, which the researcher treats
as exogenous to unobserved variation in demand via ξ. This is equivalent to allowing for exogenous product
entry and exit – a common assumption in the empirical literature.
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We set β2 = 1 and σX = 5 for k = 1, 2. We assume that the unobservable characteristic

ξjt is distributed standard normal. We model heterogeneous price sensitivity using the

approximation to the Box-Cox transformation (20) of outside good spending modulated by

parameter λ. We assume that consumer income yit is drawn from a log-normal distribution

and parameterize these draws following Andrews, Gentzkow and Shapiro (2017), generating

market and time variation by allowing the variance of income to vary.

Single-product firms choose prices simultaneously each period, given their constant

marginal costs cjt. In the static oligopoly Bertrand-Nash equilibrium, period t equilibrium

prices p⋆t , satisfy the set of J first-order conditions for the firms:

p⋆jt = cjt − sj(δt, p
⋆
t ;σX , σp)×

[
∂sj(δt, p

⋆
t ;σX , σp)

∂p⋆jt

]−1

. (26)

Marginal costs are a function of product characteristics and cost shocks:

log cjt = τ0 + τ1 log x
1
jt + τ2 log x

2
jt + ωjt + ζjt (27)

We set all τ parameters equal to 1 and draw cost shocks {ωt, ζt} from standard normal

distributions. We assume that ωt, which identifies the distribution of price sensitivity, is

observed. We generate pricing equilibria under Bertrand-Nash pricing as in Berry et al.

(1999) in the true data-generating processes by selecting α and β0 so that the average

own-price elasticity is 2.5 with a 20% aggregate inside share for each simulation.

We consider alternative specifications of the role of outside good spending in demand

and use the Monte Carlo analysis to investigate the success of an empirical demand model

with a flexible Box-Cox power transformation of outside good spending at recovering the

true demand curvature underlying these data-generating processes, relative to simpler alter-

natives. We employ the best practices outlined in Conlon and Gortmaker (2020) to estimate

consumer demand given observed prices, quantities, and ω cost shocks.

We consider three data-generating processes: we simulate demand and cost data

assuming that (1) λ = 0, as in the original BLP specification; (2) λ = 1, resulting in

quasi-linear demand; and (3) λ = 0.7, an in-between case with weaker income effects than

case (1): the distribution of αi is compressed, with a coefficient of variation of only 0.56,

relative to 3.57 for the case of λ = 0. In the following, we denote case (1) as ‘log’; case (2)

as ‘linear’; and case (3) as ‘box-cox’ or ‘bc’.
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Table 1: Monte-Carlo: Parameter Estimates

Scenario α (varies) λ (varies) σx = 5 σ0 = 5 Coeff .Var MAB Corr .

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE σα/α σ̂α/α̂ ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231 -3.81 -3.79 0.00 0.00 0.66 0.66

2: linear–linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947 0.00 0.00 0.00 0.00 0.66 0.66

3: bc–bc 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735 -0.57 -0.57 0.00 0.00 -0.47 -0.47

4: log–bc 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121 -3.81 -3.77 0.00 0.00 -0.47 -0.47

5: linear–bc -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109 0.00 -0.11 0.00 -0.01 -0.44 -0.43

6: bc–log -15.514 15.612 - - 0.851 0.947 -2.211 2.218 -0.57 -3.77 0.55 -0.69 -0.44 0.63

7: bc-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987 -0.57 0.00 -0.16 0.22 -0.44 0.43

Table Notes: The first column indicates the true data-generating process and the researcher’s assumed specification of the
price-income interactions. The next three (double) columns report the average bias (A.Bias) and root mean standard error
(RMSE) of the income parameter λ and drivers of the idiosyncratic characteristics tastes using 1,000 replications for each
scenario. The price coefficient, α, varies for each replication to ensure that ε = 2.5. The attribute random coefficients σx

and σ0 (constant) are both set to 5. Column “Coeff .Var” reports the coefficient of variation of the distribution of price
responsiveness of the data-generating process and the estimated model. The remaining set of columns report the coefficient of
variation for idiosyncratic prices-sensitivity parameters (αi), the median average bias (MAB) for average product elasticity and
curvature (ε, ρ), and the average correlation between product-level elasticity and curvature (corr(εj , ρj)).

With these three data sets, we then estimate seven specifications. In scenarios (1)-

(3), we specify the demand model correctly and verify that we can recover the underlying

preferences using the above instrumentation strategy. In scenarios (4) and (5), we specify

general ‘box-cox’ preferences to recover the simpler ‘log’ and ‘linear’ preferences. Lastly, in

scenarios (6) and (7) we investigate model misspecification by using either a ‘log’ or a ‘linear’

demand model in estimation to recover ‘box-cox’ preferences.

Discussion of Results. We present the parameter estimates in Table 1 for seven scenarios.

In general, across curvature targets, the estimation succeeds at recovering the underlying

parameters when the researcher’s preference specification coincides with the true underlying

data-generating process, i.e., Scenarios (1)-(3), consistent with Gandhi and Houde (2020)

and Conlon and Gortmaker (2020). The estimates of elasticity (market power), curvature

(pass-through), and their correlation are consistent with the true quantities in the data.

In Scenarios (4) and (5), we model consumer price-sensitivities flexibly using a Box-

Cox transformation of outside expenditure and estimates the income parameter λ. The

estimates of the Box-Cox model accurately identify the true λ and the random coefficients of

product attributes when the underlying preferences include a logarithmic function of income.

However, it overestimates the average price responsiveness α. We also observe that the the

Box-Cox model accurately recovers the distribution of price sensitivity (columns labeled

‘Coeff. Var’) and the elasticity-curvature pairs.
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Scenarios (6) and (7) address misspecification biases of imposing particular price-

income interactions when the true data-generating process is Box-Cox. Scenario (6) as-

sumes the logarithmic transformation of outside good spending, while Scenario (7) assumes

quasi-linear preferences of Nevo (2001). The assumed logarithmic specification leads to a

substantial misspecification bias in all estimated parameters. The large positive average bias

for the random coefficients on the characteristic, σx, leads to greater substitution within

inside products than the true data. In comparison, the average bias of −2.2 for the random

coefficient on the constant indicates greater substitution to the outside option than the true

data. Not surprisingly, the economic implications are significant as the average estimated

elasticity is −1.95, or 0.55 points less elastic than the true data-generating process. In

contrast, the average estimated curvature is 0.69 points above the true data-generating

process. Misspecification of price-income interactions as logarithmic, therefore, results in an

overestimate of both market power and pass-through. Moreover, specifying log preferences

amounts to imposing a different rate of change of the demand elasticity with income from

the true relationship under Box-Cox preferences, leading to much greater heterogeneity

in price sensitivity than the underlying data. Such a bias has consequences for welfare

calculations, especially since solving for changes in consumer surplus requires accounting for

income effects. Suppose that we assumed that preferences are quasi-linear, instead, as in

scenario (7). Then the estimated elasticity of −2.66 understates firms’ true market power

while the estimated curvature is 0.22 points below the true data, indicating the estimated

model also under-predict the firm pass-through.

The final two columns of Table 1 demonstrate that misspecification impacts the

distribution of estimated elasticity-curvature pairs among products. Looking across the

different data-generating processes, we observe that the shape of the distribution of price

sensitivities via the income distribution determines the demand manifold relationship be-

tween demand elasticities and curvature. Imposing specific price sensitivity distributions

– Scenarios (6) and (7) – results in a flipped sign of the correlation between product-level

elasticities and curvatures, or the slope of the manifold, leading to a mischaracterization

of the relationship between market power and pass-through among the products. This

could have large consequences for evaluating the economic effects of mergers, cost changes,

taxation, or tariffs, particularly for different consumer and firm types.
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5.3 Flexible Income Effects: Empirical Implications

In this section, we demonstrate the quantitative and qualitative implications of misspecifying

income effects for empirical research. We rely on the automobile data from Berry, Levinsohn

and Pakes (1995) to illustrate the elasticity and curvature properties of a ML model with

income effects modulated by the power parameter λ. Using the same model specification

and identification strategy as Berry et al. (1999), we estimate four sets of preferences holding

λ fixed at λ=0 (BLP preferences), λ=1 (quasi-linear preferences), λ=0.5 and λ=0.75. For

all estimated models, we incorporate income draws as in Andrews et al. (2017) and follow

best practices outlined in Conlon and Gortmaker (2020).

Figure 6 shows the scatter plots of (ε̂, ρ̂) for each automobile model in the BLP data

under these four alternative specifications.14 The top left panel represents the quasi-linear

case. The average estimated automobile demand elasticity is ε̂=2.75 with nearly full (single-

product) pass-through, ρ̂=0.99, as any mixed MNL without idiosyncratic price sensitivity

is necessarily log-concave, as shown in Section 4. Note also the sorting of automobiles by

price: the estimated demand is substantially more elastic for the most expensive vehicles.

The demand estimates are log-convex for all automobile models whenever we allow for

some income effects, as shown in the other three panels of Figure 6. Reducing λ increases the

importance of income effects through smaller price responses by higher-income households.

Moving from quasi-linear preferences to accounting for income effects does not significantly

change the average estimated elasticity, e.g., ε̂BLP = 2.83 when λ = 0. Despite the similar

average price elasticity, the curvature distribution (pass-through) varies substantially across

specifications. This is similar to what we observed in the RTE cereal case of Figure 1.

Curvatures decrease monotonically with λ, with ρ̂= 0.99 when λ= 1 to ρ̂BLP = 1.35

when λ= 0 (which, in this case, coincides with the curvature of the CES model evaluated

at the average elasticity: ρ̂CES = 1 + 1/2.83 = 1.35). Average pass-through rates increase

from 99% in the quasi-linear specification without income effects to 179% with the strong

income effect specification of BLP demand – dramatically different predictions. The esti-

mated demand for all vehicles is hence sub-convex in the quasi-linear case, but only 55.8%

of estimated vehicle demands are sub-convex under the original BLP specification. The

intermediate cases of λ= 0.5 and λ= 0.7 make clear that income effects broadly not only

14We report average elasticity, curvature, price markup, and pass-through rate estimates for each scenario
in Table F.1 in Appendix F.
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Figure 6: Income Effects and Demand Manifolds
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Figure Notes: Each dot represents the point elasticity and curvature estimates for each observation in
the BLP automobile data, while the gray dot corresponds to the average elasticity and curvature estimates.
Point estimates are colored according to vehicle origin and we see significant overlap in (ε, ρ) space.

restrict the range of demand elasticity (and markup) estimates but also expand the range of

demand curvature (and pass-through rate) estimates that a discrete choice model of demand

can deliver. Appendix F summarizes these results.

Do these differences matter for economic research and policy? We answer this question

by giving consumers in the four estimated equilibria a $1,000 subsidy for purchasing a new

domestic vehicle and recompute the Bertrand-Nash pricing equilibrium. We are particularly

interested in the degree to which firms adjust their prices to capture or amplify the subsidy

across the different demand specifications. We present the equilibrium pass-through rates of

the subsidy for domestic vehicles in Figure 7.

As expected, the shape of the mixing distribution is of first-order quantitative impor-

tance in evaluating this policy. Under the original BLP specification, median pass-through

is 1.39. Hence, the subsidy induces domestic automakers to reduce their vehicle prices by

more than the subsidy to capture price-sensitive customers. As the mixing distribution
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Figure 7: Demand Manifolds and Trade Policy
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Figure Notes: Figure present pass-through of US vehicles for a hypothetical $1,000 vehicle subsidy paid to
US consumers for the purchase of domestic vehicle.

becomes less skewed, pass-through decreases until it becomes under-shifted when λ = 1.

We also observe a compression of the distribution of subsidy pass-through across vehicles.

For a policy maker choosing the subsidy required to elicit a particular demand response,

these differences are important, as are the welfare implications for consumers. For example,

suppose consumers’ true preferences are quasi-linear, so that λ=1. A researcher who specifies

preferences to account for income effects will overestimate the effectiveness of subsidization.

5.4 Flexible Discrete Choice Estimation with Quasi-Linear Preferences

The preceding analysis demonstrated the importance of modeling the distribution of het-

erogeneous preferences flexibly using preferences with income effects. We now show that

identification and Monte Carlo results extend to quasi-linear preferences. Quasi-linearity

is a common assumption, even in settings with expensive products where income effects

are likely important (e.g., Grieco, Murry and Yurukoglu, 2021), because it provides added

flexibility; i.e., it does not require specifying how to include income in the specification or

accounting for income effects in counterfactual welfare calculations.
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As should be apparent by now, the choice of price mixing distribution materially

impacts answers to important empirical questions posed by researchers. Applying the

Box-Cox transformation in the case of quasi-linear demand is straightforward and can be

done to any mixing distribution, provided the researcher has access to identifying moments

which connect changes in consumption across a distribution of individual (or household)

characteristics. We consider the following variant of equation (8) where we include α⋆
i to

capture consumers’ heterogeneous price sensitivity:

uij = xjβ
⋆
i + α⋆

i

(
yi − pj

)
+ ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 . (28)

Demographics can flexibly enter the price coefficient α⋆
i in a variety of ways. Nevo

(2001) accommodates a non-linear effect of household income on price sensitivity, as prior

work has found sizable differences in price elasticities across low- and high-income consumers

in a wide variety of markets. However, with quasi-linear preferences, such patterns do not

actually represent income effects; they simply capture differences in purchase behavior by

consumers of different income levels. There are several ways of introducing such flexibility

in α⋆
i .

15 The Monte Carlo analysis of Section 5.2 demonstrates, however, that leveraging the

Box-Cox transformation provides greater flexibility with minimal computational burden. We

therefore model price-sensitivity as follows:

αi = − exp
(
α + πy

(λ)
i

)
, where y

(λ)
i ≡


yλi − 1

λ
, if λ > 0 ,

ln
(
yi
)
, if λ = 0

(29)

This specification of αi guarantees that all customers have down-ward sloping demands.

A nice feature of this Box-Cox transformation is that it nests common empirical

applications. A power parameter of λ = 1 corresponds to a linear effect of income on price

sensitivity, and λ = 0 denotes the case of log income, but the transform can also accommodate

a convex relationship between income and price sensitivity with λ > 1. While our focus above

15One might allow price sensitivity to differ by income bin or sieve estimation, e.g., Wang (2022). We
found that both approaches implicitly introduced discrete customer types into the mixing distribution,
thereby limiting the shape of the mixing distributions and leading to elasticity-curvature pairs, which
deviated substantially from the true shape of demand. We therefore focus on Box-Cox transformations of
continuous rather than discrete distribution, and use the power parameter λ to reflect differences in price
sensitivity between low- and high-income consumers.
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is on allowing flexibility in the price mixing distribution, we could also introduce flexibility

via a Box-Cox transformation on demographics for non-price characteristics.

Figure 8: Visualizing the Box-Cox Transform
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How exactly does the transform influence customer behavior in the model, and what

are the implications for the distribution of αi? Figure 8 depicts examples of the Box-Cox

transformation for three values of λ. In Panel (a), we show the transformation for each value

of yi, while in Panel (b), we illustrate the distributional implications for the price sensitivity

parameter αi. For small values of λ, the transform generates most of the variation in price

sensitivity among low-income consumers (Panel a), and these low-income consumers drive

skewness in the distribution of price sensitivity. As λ increases, variation in price sensitivity

increasingly shifts to higher-income consumers.

Identification. As λ modulates the distribution of price-sensitivity across consumers and,

therefore, consumption patterns among low- and high-income consumers, identification comes

from the likelihood that consumers buy inexpensive versus expensive varieties conditional on

income. For example, when λ=1, marginal differences in price sensitivity across income levels

are uniform. Hence, the predicted average price of the chosen product changes uniformly

across income groups, all-else-equal. When λ=0, we observe that small differences in income

will yield very different consumption sensitivities to price. We would, therefore, observe in

the data that the average price paid between consumers across the lowest income groups

would look very different while the average price paid among the highest income groups

would change little. The opposite is true for the case when λ > 1 as the gradient in the

average price paid across low-income consumers is flat while we observe a large gradient
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Table 2: Quasi-linear Monte-Carlo: Parameter Estimates

Scenario α (varies) σx = 5 σ0 = 5 π = −0.2 λ (varies)

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE

1: log–log -0.014 0.016 -0.003 0.056 -0.772 0.787 0.022 0.022 -0.010 0.010

2: linear–linear -0.043 0.044 -0.003 0.055 -0.671 0.693 0.015 0.016 - -

3: bc–bc -0.024 0.025 -0.013 0.055 -0.276 0.293 0.012 0.013 -0.031 0.034

4: log–bc 0.057 0.132 -0.009 0.058 -0.695 0.725 0.040 0.057 0.267 0.556

5: linear–bc -0.011 0.019 -0.005 0.055 -0.612 0.637 0.032 0.034 0.167 0.194

6: bc–log -0.562 0.564 -0.189 0.204 -1.761 1.768 -0.292 0.292 - -

7: bc-linear -1.015 1.019 -0.402 0.405 0.095 0.286 -1.369 1.375 - -

Table Notes: The first column indicates the true data-generating process and the researcher’s assumed specification of the
price-income interactions. The next four (double) columns report the average bias (A.Bias) and root mean standard error
(RMSE) of different model parameters. Each scenario involves 1, 000 pricing equilibrium and estimation simulations. The price
coefficient, α, varies for each replication to ensure that ε = 2.5. The attribute random coefficients σx and σ0 (constant) are
both set to 5, the income price coefficient is set to π = −0.2, and the Box-Cox parameter is set to λ = −1 for all simulations,
where applicable.

across high-income consumers. A similar argument holds for the Box-Cox transform of

demographics related with non-price product characteristics.

Monte Carlo Simulation. We follow a similar process to the Monte Carlo simulation

described in Section 5.2 but now applied to (indirect) utility specification (28). We specify

π = −0.2 so high-income agents are less sensitive to changes in price and therefore their

demand is less elastic than low-income consumers. We set λ = −1 to demonstrate an

interesting case which aligns with the BLP specification we studied earlier.

All other parameters are specified – or solved for – as described in Section 5.2. Simi-

larly, estimation and identification is no different with the exception of adding instruments

to separately identify mean price sensitivity (α) from heterogeneous price sensitivity (π).

We identify α by including p̂ as an instrument (or equivalently cost shocks ω). Movement in

these cost shocks drive exogenous shifts in prices which elicit a common demand response.

We identify π by via aggregate income shocks which vary by market t. Specifically,

we solve for the average income for each market (or period) t and generate the income

distribution across markets. We then construct three indicator variables which is equal to

one if a market t is in the bottom ten percent, top ten percent, or between 40th and 60th

percentiles. We create the identifying instruments for π by interacting p̂ (or equivalently

cost shocks ω) with these indicator variables. The identifying assumption then follows the

logic of Figure 8, i.e., the instruments trace out how common cost shocks impact different

income groups at different rates. For example, if prices increase exogenously and the demand
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Table 3: Quasi-linear Monte-Carlo:
Implications for the Estimated Shape of Demand

True-Specification σα/α σ̂α/α̂ ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log -0.256 -0.229 -0.143 0.009 -0.410 -0.371

2: linear–linear -0.115 -0.109 -0.125 -0.002 -0.379 -0.362

3: bc–bc -9.927 -10.631 -0.092 0.004 -0.251 -0.263

4: log–bc -0.256 -0.190 -0.148 0.019 -0.410 -0.374

5: linear–bc -0.115 -0.105 -0.124 -0.001 -0.379 -0.361

6: bc–log -9.927 -0.713 -0.525 -0.005 -0.252 0.202

7: bc-linear -9.927 -0.489 -0.692 0.172 -0.251 -0.311

Table Notes: The first column indicates the true data-generating process and the researcher’s
assumed specification of the price-income interactions. Column “Coeff .Var” reports the coefficient of
variation of the distribution of price responsiveness of the data-generating process and the estimated
model. The remaining set of columns report the coefficient of variation for idiosyncratic prices sensi-
tivity parameters (αi), the median average bias (MAB) for average product elasticity and curvature
(ε, ρ), and the average correlation between product-level elasticity and curvature (corr(εj , ρj)).

response is largest among markets in bottom ten percent, the estimator will choose λ values

closer to negative one (and vice-versa). We use these instruments for all specifications since

these are commonly used in the existing literature and therefore provide a useful example.

Results. We present Monte Carlo estimation results in Table 2. As before, we find that

we are able to recover the λ parameter when the true data are generated from the flexible

Box-Cox model and we also allow for flexibility. We are also able to capture nested models

popular in the literature which use either income or log-income when we allow for flexibility.

Estimation bias increases substantially when the researcher imposes the relationship between

income and price-sensitivity but the true data-generating process is different.

We demonstrate the implications of imposing a relationship between income and price

sensitivity in Table 3, particularly scenarios 6 and 7. The first two columns demonstrate that

imposing price sensitivity to be log-linear or linear in income leads to estimated distributions

of price sensitivity (summarized by their respective coefficients of variation) that differ

substantially from the true data, with important implications for estimated distributional

welfare consequences of e.g., policy-induced cost changes. We observe that in both scenarios

6 and 7, the researcher over-estimates demand elasticity, or equivalently under-estimates

the firms’ market power. When the researcher imposes income interacted with price and

the true data generating process is the flexible Box-Cox specification with λ = −1, they

under-estimate demand curvature. We find that the misspecification bias when the researcher

assume log-income on estimated demand curvature is small, however. This stems from the

fact that our experiments assumed λ = −1. In all cases, our results indicate that we can
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recover the transform parameter (λ) and accurately estimate average elasticity (ε), demand

curvature (ρ), and the distribution of price sensitivities using the Box-Cox model combined

with commonly used instruments.

6 Concluding Remarks

We have shown that the unit-demand mixed-logit model accommodates a wide array of

empirically relevant elasticity-curvature pairs, thereby providing further evidence of the

power of the mixed-logit model as a demand framework and policy tool. We have also

demonstrated how different components of the demand specification contribute to expanding

the set of attainable elasticity-curvature pairs to better approximate the true shape of

demand. Our theoretical and empirical results highlight the importance of modeling mixing

distributions flexibly to keep a healthy distance between assumptions and results. As the

Box-Cox transformation we rely on is simple to incorporate and the estimation can be done

with standard econometric techniques, allowing for this flexibility has a high substantive

return with only minor additional cost.

Our empirical setting demonstrated that modeling the distribution of customer pref-

erences flexibly is important for designing and evaluating trade policy but the analyses here

inform a range of other empirical contexts. First, cost pass-through in the international

trade and macroeconomic literature is often driven by the assumption of CES demand. Our

results indicate that this assumption may lead to over-estimated cost pass-through, including

exchange rates. Second, the trade subsidy we offered customers in our empirical exercise is

similar to subsidies given to consumers who buy an electric vehicle (EV) under the Inflation

Reduction Act of 2022. Our results indicate that robust estimates of the effectiveness of

this policy at generating incremental EV purchases requires modeling the distribution of

customer preferences flexibly.

Another area where accurate measurement of demand curvature plays a key role in

evaluating welfare is third-degree price discrimination (Aguirre, Cowan and Vickers, 2010).

DellaVigna and Gentzkow (2019) document that retailers frequently choose to price uni-

formly despite the well-documented socioeconomic differences across local markets. Uniform

pricing may also result from regulation, e.g., the 2010 Affordable Care Act (ACA) requires

health insurers to set uniform prices within predefined “rating areas,” covering a collection
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of counties or zip codes with a variety of customer types. In our companion paper, Miravete,

Seim and Thurk (2025), we explore how misspecification of price responsiveness impact the

sign and size of redistribution effects of uniform pricing in the breakfast cereal market.
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Online Appendix

A Elasticity and Curvature of Demand for Breakfast Cereal

This appendix describes the estimation of Figure 1 for ready-to-eat breakfast cereal. As we

note in the main test, the specification for Berry et al. (1999) presented in Panel D follows

Conlon and Gortmaker (2020) using income data as presente in . Nevo (2000) specifies

preferences as follows (ignoring market location and time indices):

uij = xjβ
⋆
i + α⋆

i pj + ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (A.1a)(
α⋆
i

β⋆
i

)
=

(
α

β

)
+ΠDi + Σνi , νi ∼ N(0, In+1) , (A.1b)

where xj is the (n×1) vector of observed product characteristics and pj is the price of (inside)

product j available in each market, J , with J = |J |. Payoff of the outside good is ui0 = ϵi0.

There are random coefficients of product characteristics, β∗
i and price responsiveness, α∗

i .

Preferences might be correlated with a d-vector of demographic traitsDi through the (n+1)×
d matrix Π of interaction estimates that allow for cross-price elasticity to vary across markets

with different demographic composition. To further account for individual preferences over

unobservable product attributes, νi captures mean-zero, unobserved preference shifters with

a diagonal variance-covariance matrix Σ. Lastly, the idiosyncratic unobserved preference

by consumer i for product j, ϵij, follows the Type-I extreme value distribution across all

products in J .

We consider four alternative specifications. The estimation results of Model A are

represented graphically in Panel B of Figure 1. Each specification also includes the product

characteristics product characteristics following Nevo (2001) but are not reported. Robust

standard errors are in parentheses.

Where does curvature come from in this model? In Model B we removed the price-

interactions with demographics, while in Model C we remove the normally-distributed price

random coefficient. We observe that curvature is driven by the shape of the price mixing
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Table A.1: Breakfast Cereal: Price Related Estimates

Means Std. Dev. Demographic Interactions (πp) Manifold

Specification (α) (σp) log(Income) log(Income)2 Child ε ρ

[A] -62.7299 3.3125 588.3252 -30.1920 11.0546 3.62 1.06
(14.8032) (1.3402) (270.4410) (14.1012) (4.1226)

[B] -30.9982 2.0216 — — — 3.74 0.96
(0.9674) (0.9367) — — —

[C] -53.1367 — 444.7281 -22.3987 16.3664 3.60 1.08
(12.1023) — (209.6548) (10.7282) (4.7824)

[D] -30.8902 — — — — 3.74 0.96
(0.9944) — — — —

Table Notes: GMM estimates of parameters related to price sensitivity using simulated breakfast cereal data estimated
via “best practices” described in Conlon and Gortmaker (2020). The remaining parameters for product characteristics
follow Nevo (2001) and are included in each demand specification but are not reported. Robust standard errors are in
parentheses.

distribution connect to demographics. This finding is supported in Model D where we observe

no heterogeneity in price sensitivity leads to log-concave estimated demand.

[A] α⋆
i = α +

d∑
k=1

παkDi + σανi , (Nevo – Full Model) (A.2a)

[B] α⋆
i = α + σανi , (Only Price Random Coefficient) (A.2b)

[C] α⋆
i = α +

d∑
k=1

παkDi , (Only Demographic Price Interactions) (A.2c)

[D] α⋆
i = α , (No Price Interactions) (A.2d)

B Probability Distributions and Demand Manifolds

In this section we provide detail behind the derivations in the main text. Because of the

additive i.i.d. type-I extreme value distribution of ϵij, the individual i’s choice probability of

product j given by (10) is also the mean of an individual-specific Bernoulli distribution:

µij = Pij , (B.1)

which are functions of the vector of prices p that we omit to reduce clutter. The variance is:

σ2
ij = Pij(1− Pij) . (B.2)
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And finally, the third central moment or non-standardized skew is:

skij = Pij(1− Pij)
2 − P2

ij(1− Pij) = Pij(1− Pij)(1− 2Pij) , (B.3)

from where we obtain standardized moment or skew as:

µ̃ij,3 =
skij
σ3
ij

=
Pij(1− Pij)(1− 2Pij)√

[Pij(1− Pij)]3
=

1− 2Pij√
Pij(1− Pij)

, (B.4)

where σ3
ij is the third raw moment of the individual choice probability distribution.

Moment Derivatives. We use the derivative of the choice probability (10) with respect

to price repeatedly:

P′
ij =

∂Pij

∂pj
= f ′

ij · Pij(1− Pij) . (B.5)

The derivative of the variance with respect to price is:

∂σ2
ij

∂pj
=

∂Pij(1− Pij)

∂pj
= P′

ij(1− Pij)− PijP′
ij = f ′

ij · Pij(1− Pij)(1− 2Pij) = f ′
ij · skij . (B.6)

To conclude, we obtain the price derivative of skewness by differentiating the first equality

in (B.3):

sk′
ij =

[
(1− Pij)

2 − 4Pij(1− Pij) + P2
ij

]
·P′

ij =
[
(1− 2Pij)

2 − 2Pij(1− Pij)
]
·f ′

ij ·Pij(1−Pij) .

(B.7)

Demand Manifold. Price differentiate (11) and substitute (B.5) to obtain demand elas-

ticity of product j with respect to p:

εj(p) ≡ − pj
Qj(p)

· ∂Qj(p)

∂pj
= − pj

Qj(p)

∫
i∈I

f ′
ij ·Pij (1− Pij) dG(i) . (B.8)

Similarly, the inverse demand curvature of product j is:
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ρj(p) ≡ Qj(p) ·
∂2Qj(p)/∂p

2
j

[∂Qj(p)/∂pj]2
=

∫
i∈I

PijdG(i)×


∫

f ′′
ij ·Pij (1− Pij) dG(i)+∫ (

f ′
ij

)2 ·[Pij (1− Pij) (1− 2Pij)] dG(i)


[∫

f ′
ij · Pij (1− Pij) dG(i)

]2 .

(B.9)

Equations (12) and (13) follow after substituting (11), (B.2) and (B.3) into these expressions.

Combining elasticity and curvature we obtain the expression for the demand manifold (14):

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·
[∫

f ′′
ij ·Pij (1− Pij) dG(i) +

∫ (
f ′
ij

)2 ·[Pij (1− Pij) (1− 2Pij)] dG(i)

]
.

(B.10)

C A General Mixing Distribution

Without loss of generality, suppose idiosyncratic demand sensitivity is modeled as α⋆
i =

α+πϕi, where α is the mean slope of demand and π captures the effect on price heterogeneity

of preferences across individuals. We model draws of individual types ϕi after the following

three-parameter Asymmetric Generalized Normal distribution (Nadarajah, 2005):

Prob
(
ϕ < x; ι, ζ, κ

)
= ΦN(y) where =


−1

κ
log

(
1− κ(x− ι)

ζ

)
, if κ ̸= 0 ,

x− ι

ζ
, if κ = 0 ,

(C.1)

and where ΦN(·) denotes the cumulative distribution function of a standard normal. To

avoid an overparameterized model, we normalize the scale parameter ζ = 1, and κ < 0

so that the support of the distribution is (ι + 1/κ,∞). The distribution is right-skewed,

mimicking a log-normal distribution for κ = −1 and converging to a normal distribution as

κ −→ 0. Furthermore, we center the distribution around the mean slope:

E[ϕ] = ι− ζ

κ

(
eκ

2/2 − 1

)
= 0 , (C.2)

so that:

ι =
1

κ

(
eκ

2/2 − 1

)
. (C.3)
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The one-parameter (κ) Asymmetric Generalized Normal distribution can then be written as:

Prob
(
ϕ < x;κ

)
= ΦN(y) where =


−
log
(
eκ

2/2 − κx
)

κ
, if κ ̸= 0 ,

x− ι

ζ
, if κ = 0 ,

(C.4)

with ι and ζ defined above. The mean, variance, and skewness are:

µ[ϕ;κ] = 0 , (C.5)

σ2[ϕ;κ] =
eκ

2/2
(
eκ

2/2 − 1
)

κ2
, (C.6)

µ̃3[ϕ;κ] =
3eκ

2/2 − e3κ
2/2 − 2(

eκ2/2 − 1
)3/2 . (C.7)

D Over-shifted Pass-Through via Heterogenous Price Sensitivities

To make intuition connecting heterogeneous price sensitivity and over-shifted pass-through

concrete, we present a simple example of pricing by a monopolist who caters to two consumers

with linear demands of different slopes in Figure D.1, Panel A. The monopolist sets prices

for each customer and responds to an increase in cost (red lines) by increasing equilibrium

prices by half of the cost increase; i.e., pass-through is “under-shifted.”

In many empirical settings, firms do not practice such first-degree price discrimination.

Panel B shows that in setting a uniform price, the monopolist now faces a kinked demand.16

At the initial marginal cost and implied optimal price, the monopolist serves both customer

types. Once marginal cost increases, the firm maximizes profit by increasing the price and

excluding the price-sensitive customer. Pass-through is now over-shifted. More generally, in

responding to an increase in cost, a firm serving heterogeneous consumers with a uniform

price trades off the standard incentive to remain on the elastic portion of demand and the

benefits of catering to less price-sensitive customers only.

16Note that the shape of demand depends on the markets firms choose to compete in because such decisions
imply consumer preference heterogeneity. Kimball (1995) first suggests a smooth, differentiable version of
this kinked demand to ensure subconvexity and markups that increase in the production scale.
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Figure D.1: Heterogeneous Customers and the Shape of Demand
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Figure Notes: Top panels present pass-through for linear demand under targeted and uniform pricing
given data points (p1, q1) and (p2, q2). Bottom panels present discrete choice and CES rationalizations of
the same data points.

How do these theoretical points translate to empirical work? In Panel C, we observe

that the kinked demand intuition extends naturally to the ML framework since product

demand is a function of the underlying mixing distributions.

If we restricted ourselves to MNL demand and only observed the two price-quantity

pairs in the data, our estimator would infer incorrectly that a positive demand shock had

also occurred (ξ2 > ξ1). This is because the shape of MNL demand is not sufficiently flexible

to reconcile the first-order conditions at both points without adding a demand shift. When

we add flexibility via heterogeneity in price sensitivity, we observe that the demand function
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(red line) can now contain both points on a single demand curve – just as in the kinked

linear demand case.

Panel D shows that these two points are consistent with a single CES demand

function. The CES demand entails two differences from ML. First, we observe in the

figure that the difference between ML and CES demand becomes large as the price drops.

Consumers purchase discrete quantities in ML but can choose arbitrarily small quantities

in CES . Second, CES constrains curvature and pass-through to be constant. Hence, in a

neighborhood where the ML and CES demand functions have similar demand curvatures,

e.g., when price exceeds three, ML cost pass-through is far below what CES would predict.

While CES is a useful simplification of ML for estimation, its pass-through predictions in

oligopoly settings are restrictive.

E Competition, Demand Curvature, and Pass-through

Our analysis of pass-through in the main text focused on demand curvature (i.e., the shape

of demand) and ignored the impact of competition (i.e., shifts of the demand curve). We

address the interaction of curvature and competition in our Monte Carlo environment by

varying λ to generate equilibria of varying degrees of demand curvature. We then shock

each simulated equilibrium with a common 10% increase in marginal costs and consider two

alternate counterfactual equilibria. First, we assume each firm operates as a single-product

monopolist. We call this scenario “Monopoly.” Second, we assume firms internalize the

price choices of their competitors and we therefore solve for new Bertrand-Nash pricing

equilibrium. We call this scenario “Oligopoly.” We present the median Monopoly (solid

line) and Oligopoly (dashed-line) pass-through rates for different levels of demand curvature

in Figure E.1.

We find that competition pushes equilibrium pass-through towards one, thereby

muting the upward pricing pressure generated by the change in marginal costs. The increase

in the common cost leads to both direct and indirect pass-through effects. The price of a

product always increases with its own cost. This is the direct effect captured by Monopoly

pass-through. The indirect effect collects substitution effects induced by price changes of

other products similarly affected by the cost increase. The net effect depends on “how far”

a particular product is from its closest substitutes in product space.
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Figure E.1: Competition and Pass-Through Rates
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Figure Notes: Figure presents Monte Carlo results across equilibria of median demand curvature. We
generate each equilibrium following the environment discussed in Section 5.2 for the Box-Cox utility specifi-
cation where λ∈ [0, 1]. For each market t in each equilibrium, we solve for the median (across 20 products)
demand curvature. “Monopoly” represents the pass-through rate of a single-product monopolist, e.g., (4).
“Oligopoly” is the median pass-through rate for each market t in each equilibrium generated by a 10%
increase in marginal costs. The shaded region reflects the 95% confidence interval.

Many empirical questions depend critically on the relative importance of the “direct

effect” and “net effect.” The literature has focused on doing this by getting substitution

patterns right. Our work highlights the importance of also getting the shape of demand

right. We turn now to demonstrating that this focus on the shape of demand is important

for designing and evaluating trade policy.

F Additional Results

Table F.1: Income Effects, Markups, and Pass-Through Rates

λ = 0 λ = 0.5 λ = 0.75 λ = 1

Elasticity (ε) 2.83 (0.26) 2.34 (0.48) 2.77 (1.01) 2.75 (2.05)

Curvature (ρ) 1.35 (0.08) 1.19 (0.07) 1.13 (0.05) 0.99 (0.01)

Markup (%) 44.41 (5.26) 46.25 (8.77) 44.48 (13.77) 48.12 (20.55)

Pass-Through (%) 178.99 (18.33) 145.91 (16.38) 117.90 (7.27) 99.41 (0.01)

Table Notes: Mean and standard deviations (in parentheses) of demand elasticity and curvature plus their implied price
markup and pass-through rate.
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