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Abstract

We study whether regulators should reveal the models they use to stress test banks.

In our setting, revealing leads to gaming, but not revealing can induce banks to un-

derinvest in socially desirable assets for fear of failing the test. We show that although

the regulator can solve this underinvestment problem by making the test easier, some

disclosure may still be optimal, which under some conditions takes the simple form of a

cutoff rule. We characterize the optimal disclosure policy combined with test difficulty,

provide comparative statics, and relate our results to recent policies. We also offer

applications beyond stress tests.
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1 Introduction

From the early days of bank stress tests in the wake of the 2008 financial crisis, disclosure

has been a key issue of discussion among practitioners, academics, and regulators. Most of

the academic discussion has centered around disclosure of the test results to the public (e.g.,

Goldstein and Sapra (2014), Goldstein and Leitner (2018)). However, academics have paid

less attention to another important issue: should regulators disclose the models they use to

project bank capital when conducting the test? This issue has recently gained momentum

among policy makers and practitioners, leading to a change in the Fed’s policy. Under the

old policy, the Federal Reserve provided only a broad description of its stress test models.

Under the new policy, it provides more information on certain equations and key variables,

and illustrates how its models work on hypothetical loan portfolios. Yet, even under the new

regime, the Federal Reserve does not fully reveal its models.1

An important reason for not revealing the models to the banks is to prevent banks from

gaming the test—i.e., taking actions that enable them to pass the test without reducing

risk. Indeed, in a speech on September 26, 2016, Former Fed Governor, Daniel Tarullo,

said that “Full disclosure would permit firms to game the system—that is, to optimize

portfolio characteristics based on the parameters of the model and take risks in areas not

well-captured by the stress test just to minimize the estimated stress losses.”2 However,

banks have constantly complained about model secrecy, claiming that even their best efforts

to prepare for a test could result in unexpected and costly failure.3 These claims cannot

be ignored, particularly given evidence that regulatory uncertainty causes banks to reduce

lending (Gissler, Oldfather, and Ruffino (2016)).

We present a stylized framework that allows us to examine the effects of revealing the

regulator’s stress test models to banks before the test. Our setting has two main forces.

1See https://www.federalreserve.gov/newsevents/pressreleases/bcreg20190205a.htm.
2See https://www.federalreserve.gov/newsevents/speech/tarullo20160926a.htm.
3See “Fed ‘Stress Tests’ Still Pose Puzzle to Banks,” Wall Street Journal, March 12, 2015.
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Not revealing reduces gaming, but it can also induce banks to reduce investment in socially

desirable assets.

In our model, the bank has better capacity than the regulator to identify and measure

risk, but there is a conflict of interest between the bank and the regulator: the bank wants to

take more risk than is socially desirable. To be concrete, the bank can invest in a safe asset

or a risky asset. The bank knows what the value of the risky asset will be during a crisis

(hypothetical stress scenario), but the regulator observes only a noisy signal of that value.

This signal represents the asset value predicted by the regulator’s model. As we explain in

the text, the regulator’s signal could also represent one of the parameters in the regulator’s

model. The bank prefers to invest in the risky asset regardless of its true value during a

crisis, but the regulator prefers the risky asset only if this value is sufficiently high. If the

bank invests in the safe asset, it always passes the test. If the bank invests in the risky asset,

it passes only if the regulator’s signal is above some threshold. A bank that fails the test is

required to reduce risk.

Our main focus is on whether the regulator should reveal his private signal to the bank

before the bank makes its investment decision. We provide results for the benchmark case

in which the threshold for passing the test is exogenous, but our main results are for the

more practically relevant case in which the passing threshold is chosen by the regulator.

This threshold could represent, for example, minimum capital requirements. Our setting

also extends to the case in which instead of choosing a portfolio, the bank submits a capital

plan to either retain cash (safe action) or pay dividends (risky action).

We first compare between a transparent regime, in which the regulator reveals his signal,

and a secret regime, in which the regulator does not reveal his signal. Under the transparent

regime, the bank games the test in the sense that when the regulator reveals a passing

signal, the bank invests in the risky asset even if it knows that the true value is low. Secrecy

mitigates this problem. In particular, fear of failure incentivizes the bank to act more

cautiously, investing in the risky asset only if its value exceeds some threshold. However,

2



secrecy can open the door to a new problem: the bank avoids the risky asset not only when

it is bad for society but also in some cases when it is good. Our first main result is that

if the regulator can freely adjust the passing threshold, then despite this tradeoff, secrecy

is always preferred. Intuitively, secrecy prevents gaming, and by setting a sufficiently low

passing threshold (an easy-to-pass test), the regulator can also prevent the underinvestment

that could result from secrecy.

We then analyze more flexible disclosure rules. Our second main result is that even if

the regulator can set the passing threshold optimally, some disclosure may be optimal. The

logic behind this result is as follows. The regulator has two tools to induce the bank to

reduce risk. First, he can make the test harder by increasing the passing threshold. Second,

he can provide partial information. In particular, he can commit to a cutoff disclosure rule,

under which he sends a high message if his private signal is above some threshold and a low

message if his private signal is below the threshold. The benefit from this disclosure policy

is that if the regulator sends the low message, the bank infers that the risky asset is likely

to fail the test, and so it reduces investment in this asset.

However, each tool has a social cost. Partial disclosure leads to excessive risk if the

regulator sends the high message, while a high passing threshold commits the regulator to

sometimes fail the bank even if his model indicates the asset is good. In some cases, full

secrecy would require a very high probability of failure to incentivize the bank. But then

the regulator can gain by passing the bank more often and mitigating the worsening bank

incentives via partial disclosure.

On a technical level, we show that the cutoff disclosure rule described above is optimal

even if the regulator can choose multiple cutoffs. However, for some parameter values, the

regulator can obtain a better outcome via a nonmonotone disclosure rule, in which messages

pool signals from disconnected intervals. Essentially, very low signals are pooled with very

high signals, less low with less high, etc. As we explain in Appendix C, this disclosure rule

helps reduce the cost of providing incentives to the bank.
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We also discuss practical limitations on the regulator’s ability to implement the two tools

above. One example is when the regulator cannot commit to act according to a prespecified

disclosure rule. In this case, the regulator may not be able to implement partial disclosure,

and so the relevant comparison might be between a fully transparent regime and a fully secret

regime. Another example is when the regulator faces heterogeneous banks but must apply

the same passing threshold for everyone. We show that if banks are sufficiently different from

one another, then in contrast to our first result, full transparency is preferred to secrecy.

We use our framework to derive comparative statics with respect to the bank’s charac-

teristics, such as the bank’s cost of failing the test or the bank’s appetite for the risky asset

(Figure 3 and Figure 4). For example, secrecy combined with an easy test is optimal if

the bank’s appetite for the risky asset is low, while partial disclosure combined with a hard

test is optimal if the bank’s appetite towards the risky asset is high. With respect to the

information in the regulator’s model, the results are ambiguous. A more informative model

makes it easier to incentivize the bank, which pushes towards secrecy, but a more informa-

tive model also reduces the need to rely on the bank’s information, which pushes toward

transparency. We also provide some policy implications. For example, greater model trans-

parency does not necessarily require increased capital requirements; and illustrating how the

Fed’s model works on hypothetical loan portfolios could lead to increased correlation in bank

asset holdings (see Section 6).

Finally, we offer applications of our theory beyond stress tests. One application is a firm’s

board of directors approving a manager’s strategic plan. Another application is an investor

approving an investment recommendation by a financial advisor. We provide more details

in Section 6.
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2 Related Literature

Our paper is related to several strands of literature. The first strand studies stress test

disclosure. This literature has focused on disclosure of the test results to the public (e.g.,

Goldstein and Leitner (2018)).4 In contrast, we focus on disclosure of the regulator’s stress

test models to the banks before the test. To our knowledge, we are the first paper to

offer a formal analysis of this problem. An informal discussion, which includes additional

effects that are not studied in our paper, is provided by Goldstein and Leitner (2020). In

particular, they distinguish between revealing the models to the public vs. revealing them

to the bank.5 Recent papers have also explored other issues that relate to stress tests,

besides disclosure. Colliard (2019) and Leitner and Yilmaz (2019) study the extent to which

regulators should rely on banks’ internal risk models. Shapiro and Zeng (2019) show that

regulators’ reputational concerns could lead to inefficiently tough stress tests. Parlatore and

Philippon (2018) study the design of stress scenarios.

On the empirical front, there is growing evidence on the effect of stress tests on bank

credit supply and the allocations of credit between safe and risky loans (e.g., Acharya,

Berger, and Roman (2018) and Cortés et al. (2020)). However, these papers do not discuss

welfare implications or the effect of regulatory uncertainty. There is also a large literature

documenting the effects of political and regulatory uncertainty on the real economy, including

reduced investment.6 In particular, Gissler, Oldfather, and Ruffino (2016) offer evidence

suggesting that uncertainty about the regulation of qualified mortgages caused banks to

reduce mortgage lending. This literature is consistent with the idea that model secrecy

could induce banks to reduce investment.

4A partial list of this growing literature includes Bouvard, Chaigneau, and Motta (2015), Faria-e-Castro,
Martinez, and Philippon (2017), Williams (2017), Inostroza and Pavan (2017), Orlov, Zryumov, and Skrzy-
pacz (2018), Corona, Nan, and Zhang (2019), and review papers by Goldstein and Sapra (2014), Leitner
(2014), and Goldstein and Leitner (2020). More recent papers include Dogra and Rhee (2018), Quigley and
Walther (2020), Inostroza (2019), and Huang (2019).

5See also Flannery (2019).
6See, for example, Julio and Yook (2012), Fernández-Villaverde et al. (2015), and Baker, Bloom, and

Davis (2016).
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Our paper also relates to the Bayesian persuasion and information design literature (e.g.,

Kamenica and Gentzkow (2011) and Bergemann and Morris (2019)). Our results on general

disclosure (Appendix C) contribute to a nascent subset of this literature in which the receiver

is privately informed, specifically Kolotilin et al. (2017) and Kolotilin (2018). However, the

results in these papers cannot be applied in our setting because they assume linear payoffs

whereas we allow for nonlinear payoffs. Our paper also relates to Goldstein and Leitner

(2018) in the sense that it provides another example in which negative assortative disclosure

is optimal.

A number of papers study settings in which an agent is uncertain about how particular

actions will be rewarded by the principal. In MacLeod (2003), Levin (2003), and Fuchs

(2007), the principal evaluates the agent based on a subjective assessment (formally, a private

unverifiable signal). These papers focus on optimal contracting rather than disclosure. Jehiel

(2015) provides conditions under which a principal should remain silent about a payoff

relevant variable that he privately observes before the agent chooses an action. In his setting,

the agent is uninformed, but in our setting the agent (bank) is informed. Ederer, Holden,

and Meyer (2018) study a multitask principal-agent problem with an uninformed principal

and an informed agent. They provide conditions under which the principal can gain by

randomizing between two incentives schemes. Lazear (2006) studies a setting in which a

principal can monitor only a limited number of actions that an agent can take. He shows

that if agents do not respond much to penalties, the principal can gain by announcing in

advance the actions that will be monitored.

Finally, our paper is also related to the literature on delegation and authority in orga-

nizations, in which a principal can delegate authority to an informed but biased agent, but

cannot design monetary transfers.7 In our setting, if the regulator (principal) reveals his

7A partial list includes Holmstrom (1982), Aghion and Tirole (1997), Dessein (2002), Harris and Raviv
(2008), Alonso and Matouschek (2008), Grenadier, A. Malenko, and N. Malenko (2016), and Chakraborty
and Yılmaz (2017). See also Leitner and Yilmaz (2019), in which a regulator allocates authority to a bank
based on the realization of a signal that the bank produces endogenously.
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signal, he effectively restricts the bank’s action space to those actions that will surely pass

the test. So effectively, the regulator keeps authority. If the regulator does not reveal his

signal, he gives the bank more freedom to choose an action, but in contrast to the literature

above, the regulator responds to the bank’s action using an evaluation process that is based

on the regulator’s private information. Hence, we can think of our secrecy regime as “dele-

gation with hidden evaluation.” In related work, Levit (2020) studies a setting in which an

informed principal can take a follow-up action, but in his setting the agent is uninformed,

communication with the agent is only via cheap talk, and the principal cannot precommit

to taking specific actions.

3 Model

There is a bank and a regulator. The bank can take one of two actions: invest in a safe asset

or invest in a risky asset. The payoff from the risky asset depends on the realization of a

random variable ω ∈ [ω, ω̄], which represents the value of the risky asset during a crisis. We

refer to ω as the state of nature. The bank’s payoff is u(ω) and the regulator’s payoff, which

represents the value to society, is v(ω). Both u and v are increasing in ω (u′ > 0, v′ > 0)

and incorporate the probability of crisis, resulting losses, payoffs during normal times, etc.

The payoff from investing in the safe asset does not depend on ω and is normalized to zero

for both the bank and regulator. That is, u and v are the relative gains from investing in

the risky asset, compared to the safe asset. To save on notation, we use the same letter to

denote both a random variable and its realization.

There is a conflict of interest between the bank and the regulator. The bank prefers the

risky asset to the safe asset in every state ω, but the regulator prefers the risky asset only if

ω ≥ ωr, where ωr ∈ (ω, ω̄). Formally:

Assumption 1. u(ω) ≥ 0 for all ω ∈ [ω, ω̄]

Assumption 2. v(ω) ≥ 0 if and only if ω ∈ [ωr, ω̄]
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The conflict of interest captures the idea that the bank does not internalize the social

cost associated with risk. For our results, it is not crucial that the bank prefers the risky

asset in every state. What matters is that there are states in which the bank prefers the

risky asset but the regulator does not.8

The next example provides a possible microfoundation for the payoff functions u and v.

Example 1. Suppose the risky asset pays $2 in normal times and ω ∈ (0, 1) during a crisis,

and suppose the probability of a crisis is p. The safe asset always pays $1. Suppose in

addition that if the bank’s cash holding falls below $1 (which happens during crisis), there

is a social loss L > 0. For example, the bank may not be able to make debt payments,

which could trigger contagion, or the bank may not be able to continue lending due to debt

overhang. (See also Goldstein and Leitner (2018)). Then u(ω) = 2(1 − p) + pω − 1 and

v(ω) = u(ω)− pL.9

The bank has superior information about the value of the risky asset during a crisis; for

simplicity, we assume the bank perfectly observes ω. The regulator does not observe ω, but

he observes the realization of a noisy signal s ∈ [s, s̄] of ω. The bank privately observes ω and

the regulator privately observes s before the bank makes its investment decision. Everything

else is common knowledge. The random variable ω has a cumulative distribution function

(CDF) G and density g. Conditional on ω, s has CDF F (·|ω) and density f(·|ω). Both g(·)

and f(·|ω) have full support. We also assume:

Assumption 3 (MLRP). If ω′ > ω, the ratio f(s|ω′)/f(s|ω) is strictly increasing in s.

Assumption 3 implies that 1−F (s|ω) is strictly increasing in ω.10 That is, the regulator

is more likely to observe higher signals when the state ω is higher.

8If, there were states ω for which u(ω) < 0 (in contrast to Assumption 1), the bank would never invest
in those states, regardless of the regulator’s disclosure policy.

9Note that u and v are increasing in ω, and if p and L are chosen appropriately, Assumptions 1 and 2
are satisfied.

10See Milgrom (1981).
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After the bank makes its investment decision, the regulator conducts a stress test. That

is, the regulator observes the bank’s investment and decides whether to pass or fail the bank.

If the bank chooses the safe asset, it always passes the test. If the bank chooses the risky

asset, it passes only if the regulator’s signal s is above some threshold, which we denote by

sp. This threshold could represent minimum capital requirements. We analyze the case in

which sp is exogenous as well as the case in which sp is chosen by the regulator. In both

cases, the banks knows sp before it makes an investment decision.

This formulation captures the idea that the bank passes the test if its projected capital—

according to the regulator’s model—is above some threshold. In general, we can think of

the regulator’s model as the formula that the regulator uses to assess the bank’s capital for

a given portfolio and stress scenario. However, in our paper, the bank’s portfolio is very

simple (safe or risky), and the value of the safe asset is known. Hence, the regulator needs

to project only ω, and it is natural to interpret the signal realization s as the output of the

regulator’s model. Alternatively, s could represent one of the parameters in the regulator’s

model. For example, s could be a coefficient in a regression that uses historical data to

estimate losses on certain type of loan portfolios.

Final payoffs are as follows. If the bank invests in the risky asset and fails the test, the

regulator forces the bank to replace the risky asset with the safe asset. In this case, the

bank suffers a cost c > 0. So, the bank’s final payoff is −c, and the regulator’s final payoff

is zero. If the bank invests in the safe asset, both end up with a final payoff of zero. If the

bank invests in the risky asset and passes the test, the bank’s final payoff is u(ω) and the

regulator’s final payoff is v(ω).

We can interpret the cost c as a cost to the bank’s managers from failing the test (e.g.,

because of a decline in the stock price). The cost c can also be interpreted as an upfront

cost that the bank needs to incur before investing in the risky asset and which is already

included in u(ω). If we assume that this cost is a transfer to other economic agents, then c

does not affect the regulator’s payoff.
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Our main results do not depend on the exact specification of final payoffs above. For

example, c could depend on ω, u could be flat (and positive), and the regulator’s payoff after

the bank fails the test need not be zero.11 We can also capture other consequences of failing

the test, which may be relevant in practice. For example, our model maps to a case in which

instead of choosing an asset, the bank submits a capital plan which the regulator can either

approve or deny (see Appendix A).

The focus of our paper is whether the regulator should reveal his signal s to the bank.

We start with the case in which the regulator is restricted to either reveal or not reveal s

(Section 4). Then we explore more general disclosure rules (Section 5 and Appendix C).

In all cases, the regulator publicly commits to the disclosure policy and to a pass/fail rule,

assumptions which we discuss in Section 6. We refer to investment in the risky asset simply

as “investing” and investment in the safe asset as “not investing.”

The sequence of events is as follows: (i) the regulator publicly commits to a disclosure

policy about s and to a passing threshold sp; (ii) nature chooses ω, the bank observes ω,

and the regulator observes s; (iii) the regulator discloses information about s in accordance

with his disclosure policy; (iv) the bank chooses the risky asset (“invest”) or safe asset (“not

invest”); (v) the regulator performs a stress test, and final payoffs are realized.

We solve the game backwards. First, we characterize the bank’s investment decision for

a given passing threshold and disclosure regime. Then we solve for the optimal disclosure

regime for a given passing threshold. Finally, we solve for the optimal passing threshold.

If the bank is indifferent between two actions, we assume that it chooses the one that is

preferred by the regulator, and if the regulator is also indifferent, we assume that the bank

invests. If the regulator is indifferent between multiple passing thresholds, he picks the

highest one. Our main results do not depend on these assumptions.

Finally, to simplify the exposition, we focus on the more interesting case in which (i)

it is optimal to sometimes fail the bank (sp > s) and (ii) if the regulator does not reveal

11See Remark 1 and item 6 of Section 6.
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his signal, the bank responds by reducing investment. A sufficient condition for this is the

following.12

Assumption 4. E[v(ω)|s] < 0 and u(ω) = 0.

4 Revealing vs. Not Revealing

In this section we compare between two disclosure regimes: revealing (the regulator reveals

his signal s to the bank) and not revealing (the regulator does not reveal his signal to the

bank).

4.1 Bank’s investment

Let p denote the bank’s perceived probability of passing the test upon investment. If the

bank invests, its expected payoff is pu(ω)− (1− p)c. If the bank does not invest, its payoff

is zero. Hence, the bank invests if and only if

pu(ω)− (1− p)c ≥ 0. (1)

Consider first revealing. If the regulator reveals a passing signal, then p = 1, and the

bank’s payoff from investing is u(ω) ≥ 0. If the regulator reveals a failing signal, then p = 0,

and the bank’s payoff from investing is −c < 0. Hence, the bank invests if and only if the

regulator observes a passing signal.

Next, consider not revealing. Now the perceived probability p of passing the test depends

on ω:

p(ω) ≡ P (s ≥ sp|ω) = 1− F (sp|ω). (2)

From Assumption 3 (MLRP), p(ω) is increasing in ω. Since u′ > 0, it then follows that

the left-hand-side in Equation (1) is increasing in ω. Hence, the bank follows a cutoff rule,

12We provide more details in Lemma E1 and in the proof of Proposition 1.
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investing if and only if the state ω is above some threshold. We denote this investment

threshold by ωNR (“NR” stands for “not revealing”), and later, we also use ωNR(sp) to

denote the dependence of ωNR on sp. For some parameter values, it is optimal for the bank

not to invest at all. In this case, we let ωNR = ω̄, which implies the bank invests with

probability 0.

The next lemma summarizes the preceding discussion.

Lemma 1. 1. If the regulator reveals his signal s to the bank, the bank invests if and only

s ≥ sp.

2. If the regulator does not reveal his signal s to the bank, there exists ωNR ∈ Ω, such

that the bank invests if and only if ω ≥ ωNR. The investment threshold ωNR is continuous

and increasing in both sp and c.

The first part in Lemma 1 captures the idea that revealing the regulator’s model could

lead to gaming. In particular, if the regulator reveals a passing signal s ≥ sp, the bank invests

in the risky asset even if it knows the asset will perform poorly in a crisis (ω is low)—i.e., the

bank games the test. This is consistent with regulators’ concerns about gaming, discussed

in the introduction. Regulators have also expressed concerns that revealing the regulator’s

models will cause banks to rely too heavily on them rather than their own models. Consistent

with these concerns, Lemma 1 shows that under revealing, the bank’s investment depends

only on the regulator’s signal s, not on its private information ω. (See also the discussion of

endogenous information production in Section 6.)

The second part in Lemma 1 captures the idea that not revealing makes the bank more

cautious, leading it to avoid investment if ω < ωNR. The fact that ωNR increases in both sp

and c reflects that the bank becomes more cautious if the test is more difficult to pass or the

cost of failing the test is higher.

Remark 1. Our results do not depend on the exact specification of the bank’s payoff function

u and cost of failing the test c. Any specification such that the left-hand-side in Equation
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(1) is increasing in ω will imply that the bank follows a cutoff investment rule and will hence

yield the same results.

4.2 Regulator’s payoff

We use VR and VNR to denote the regulator’s payoff under revealing and under not revealing,

respectively. Later, we also use VR(sp) and VNR(sp) to denote the dependence on sp.

We derive the regulator’s payoffs as follows. Conditional on observing a failing signal

s < sp, the regulator’s payoff is zero because the bank either does not invest or invests

and fails the test. Conditional on observing a passing signal s ≥ sp, the regulator’s payoff

depends on the bank’s investment decision from Lemma 1. Under revealing, the bank invests

in every state ω ≥ ω and the regulator obtains
∫
ω≥ω v(ω)f(ω|s)dω. Under not revealing, the

bank invests only if ω ≥ ωNR and the regulator obtains
∫
ω≥ωNR

v(ω)f(ω|s)dω. Taking the

expectation across all signals s ∈ S and changing the order of integration, we obtain the

following:

Lemma 2. If the regulator reveals his signal, his payoff is

VR =

∫
ω≥ω

[1− F (sp|ω)]v(ω)dG(ω).

If the regulator does not reveal his signal, his payoff is

VNR =

∫
ω≥ωNR

[1− F (sp|ω)]v(ω)dG(ω). (3)

The payoffs under the two disclosure regimes are similar, except that the integral for VR

starts at ω, whereas the integral for VNR starts at ωNR > ω.13 This reflects the fact that

under not revealing, the bank acts more cautiously, investing in fewer states. The expression

inside the integrals reflects the fact that the regulator obtains v(ω) only if the bank passes

13The inequality is strict by Assumption 4.
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Figure 1: The regulator’s payoff under revealing (VR) and under not revealing (VNR) as a
function of the bank’s investment threshold ωNR.

the test, which happens with probability 1− F (sp|ω).

4.3 Preferred regime

4.3.1 Exogenous passing threshold

To compare between the two disclosure regimes, it is useful to plot the regulator’s payoff

in both cases, as illustrated in Figure 1. When ωNR = ω, the two payoffs are the same:

VR = VNR. The payoff under revealing VR does not depend on ωNR, but the payoff under

not revealing VNR does. As ωNR increases but remains below ωr, VNR increases because

the bank reduces investment in states in which investment is socially undesirable. However,

as ωNR increases above ωr, VNR decreases because the bank reduces investment in states

in which investment is socially desirable. In the limit when ωNR = ω̄, the bank does not

invest at all, and so, VNR = 0. The figure implies that if VR > 0, not revealing is preferred

only if ωNR is sufficiently low; otherwise, revealing is preferred. This is summarized in the

proposition below.14

14If VR ≤ 0, then VNR ≥ VR for all ωNR, so not revealing is always preferred.
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Proposition 1. Given a passing threshold sp > s such that VR > 0, there exists ωI ∈ (ωr, ω̄)

such that:

(i) If ωNR > ωI , the regulator strictly prefers to reveal.

(ii) If ωNR ∈ (ω, ωI), the regulator strictly prefers not to reveal.

(iii) If ωNR = ωI , the regulator is indifferent between revealing and not revealing.

The indifference point ωI is the unique ω′ > ω that solves

∫
ω≥ω

[1− F (sp|ω)]v(ω)dG(ω) =

∫
ω≥ω′

[1− F (sp|ω)]v(ω)dG(ω).

The proposition captures the tradeoff entailed by not revealing. Not revealing reduces or

completely eliminates investment in states ω in which investment is not socially desirable.

In other words, it reduces “overinvestment.” However, it can lead to “underinvestment,” in

which the bank reduces investment also in states in which investment is socially desirable. If

the first effect dominates, not revealing is preferred. If the second effect dominates, revealing

is preferred.

4.3.2 Endogenous passing threshold

Now suppose the regulator sets the passing threshold sp optimally. We let sRp denote the

passing threshold that the regulator sets if he plans to reveal his signal and sNRp denote

the passing threshold that the regulator sets if he does not plan to reveal. That is, sRp ∈

arg maxsp VR(sp) and sNRp ∈ arg maxsp VNR(sp).

Theorem 1. If the passing threshold sp is set optimally, then not revealing is strictly pre-

ferred to revealing. That is, VNR(sNRp ) > VR(sRp ).

The basic idea behind Theorem 1 is that by not revealing his signal and adjusting sp,

the regulator can eliminate the overinvestment induced by gaming without inducing under-

investment. In particular, from Proposition 1, we know that with an exogenous passing

threshold, revealing is preferred only if not revealing leads to underinvestment. But if the
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regulator can choose the passing threshold optimally, he can reduce it so that the bank does

not act too cautiously. Moreover, a lower sp also allows the regulator to pass the bank more

often, and since the bank does not overinvest, passing more often also benefits the regulator.

We finish this section with two observations:

Lemma 3. 1. ωNR(sNRp ) < ωr

2. There exists s′ < sp, such that
∫
ω≥ωNR(s)

v(ω)f(ω|s)dω > 0 for every s ∈ [s′, sp]

The first part in Lemma 3 says that overinvestment in the risky asset occurs even under

the optimal passing threshold. Intuitively, if the bank underinvested, the regulator could

gain by reducing sp, which would allow the regulator to capture the (positive) value of the

bank’s investment more often and induce the bank to act less cautiously.15 The second part

says that the regulator sometimes fails the bank even though it is suboptimal to do so ex

post. Intuitively, the commitment to fail the bank helps reduce overinvestment (see also

Section 6).

5 Optimal disclosure

We saw that for a given passing threshold, revealing is preferred to not revealing if the latter

leads the bank to act too cautiously. However, if the regulator sets the passing threshold

optimally, revealing is strictly dominated. In this section, we show that once we allow for

partial disclosure, revealing some information may be optimal even if the regulator sets the

passing threshold optimally.

For ease of exposition, we first focus on a simple form of partial disclosure: a cutoff

rule, which is defined by a threshold sd, such that the regulator reveals whether the signal

realization s is above or below sd (the subscript “d” stands for “disclosure threshold”). We

show that even this simple rule may be preferred to no disclosure.

15If ωNR = ωr, a lower ωNR worsens the bank’s incentives, but this effect is negligible compared to the
benefit of approving the bank’s investment more often.
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Figure 2: The bank’s investment thresholds ωH(sd, sp) and ωL(sd, sp) induced by sending a
high message and low message, respectively, as functions of sd while holding sp fixed.

5.1 Bank investment

Under a cutoff disclosure rule, the regulator sends the bank one of two messages: a “low”

message upon observing a signal below sd (s < sd) and a “high” message upon observing a

signal above sd (s ≥ sd). Based on these messages the bank forms posterior beliefs regarding

the probability of passing the test (p in Equation 1). Specifically, the posterior probability of

passing after a low message is pL(ω) = Pr(s ≥ sp|s < sd, ω), and the posterior probability of

passing after a high message is pH(ω) = Pr(s ≥ sp|s ≥ sd, ω). From Assumption 3 (MLRP),

pL(ω) and pH(ω) are increasing in ω.16

As in Section 4.1, we can show that the bank follows a cutoff rule, investing if and only

if the state ω is above some threshold. We let ωL(sd, sp) and ωH(sd, sp) denote the bank’s

investment threshold following a low message and a high message, respectively. So, if the

regulator reveals that s < sd, the bank invests if and only if ω ≥ ωL(sd, sp). If the regulator

reveals that s ≥ sd, the bank invests if and only if ω ≥ ωH(sd, sp).

The next lemma characterizes the two investment thresholds (see also Figure 2). (Recall,

ωNR(sp) is the bank’s investment threshold under no disclosure, as in Section 4.1.)

Lemma 4. The investment threshold ωL(sd, sp) equals ω̄ if sd ≤ sp and strictly decreases to

16In particular, given any message m, the bank’s posterior beliefs satisfy MLRP, and as a result, 1 −
F (sp|m,ω) is increasing in ω. The proof of Lemma C1 contains more details.
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ωNR(sp) as sd increases from sp to s̄. The investment threshold ωH(sd, sp) strictly decreases

from ωNR(sp) to ω as sd increases from s to sp and equals ω if sd ≥ sp.

The logic behind Lemma 4 and Figure 2 is as follows. If sd ≤ sp, the low message reveals

that the regulator observed a failing signal, and so the bank does not invest (ωL = ω̄),

while the high message pools together the passing signals with some of the failing signals,

which leads to some investment. As sd falls, more failing signals are pooled, and so the

bank becomes more cautious, investing in fewer states (higher ωH). If instead sd ≥ sp, the

high message reveals that the regulator observed a passing signal, and so the bank invests

in every state (ωH = ω), while the low message pools together the failing signals with some

of the passing signals, which leads to less investment. As sd increases, more passing signals

are pooled, and so the bank becomes less cautious, investing in more states (lower ωL). If

s = sp, the outcome is the same as under full disclosure. If s ∈ {s, s̄}, the outcome is the

same as under no disclosure.

Later, we refer to the case in which sd ≤ sp as the regulator revealing some of the failing

signals, and to the case in which sd ≥ sp as the regulator revelaing some of the passing

signals. In particular, if sd ≤ sp, we obtain the same outcome if instead of sending the low

message, the regulator reveals the actual signal realization, and if sd ≥ sp, we obtain the

same outcome if instead of sending the high message, the regulator reveals the actual signal

realization.

In an alternative interpretation, if the regulator sets sd ≤ sp, he essentially commits

to publicly disapprove an asset for investment when his model forecasts a particularly low

value for it and simply remain silent otherwise. Similarly, if sd ≥ sp, the regulator publicly

approves an asset for investment when his model forecasts a particularly high value for it

and remains silent otherwise.
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5.2 Regulator’s payoff

Suppose the regulator chooses a disclosure threshold sd and a passing threshold sp. We

derive the regulator’s payoff as follows.

Conditional on observing a failing signal s < sp, the regulator’s payoff is zero, as in

Section 4.2. Conditional on observing a passing signal s ≥ sp, the regulator’s payoff depends

on the message sent and the bank’s investment rule, as follows:
∫
ω≥ωH(sd,sp)

v(ω)f(ω|s)dω if sd < sp

1s∈[sp,sd)

∫
ω≥ωL(sd,sp)

v(ω)f(ω|s)dω + 1s≥sd
∫
ωH(sd,sp)

v(ω)f(ω|s)dω if sd ≥ sp
(4)

Taking the expectation across all signals s ∈ S, rearranging terms, and using the observation

that if s ≥ sp, ωH(sd, sp) = ω (Lemma 4), we obtain that:

Lemma 5. For a given policy (sd, sp), the regulator’s payoff is:
∫
ω≥ωH(sd,sp)

v(ω)[1− F (sp|ω)]dG(ω) if sd < sp∫
ω≥ωL(sd,sp)

v(ω)[1− F (sp|ω)]dG(ω) +
∫ ωL(sd,sp)

ω
v(ω)[1− F (sd|ω)]dG(ω) if sd ≥ sp

5.3 Exogenous passing threshold

We first solve for the optimal disclosure threshold sd, for a given passing threshold sp. If

there are multiple solutions, we focus on the highest one (for ease of exposition) and denote

it by sd(sp). That is, sd(sp) is the highest sd that maximizes the regulator’s expected payoff

in Lemma 5 for a given sp.

Proposition 2. For a given passing threshold sp:

1. If no disclosure leads the bank to underinvest (ωNR(sp) > ωr), it is optimal to reveal

some of the failing signals. In particular, the regulator sets sd(sp) ∈ (s, sp), so that the bank

invests according to the regulator’s ideal investment rule: ωH(sd(sp), sp) = ωr.

2. If no disclosure induces the bank to invest according to the regulator’s ideal investment
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rule (ωNR(sp) = ωr), then no disclosure is optimal: sd(sp) ∈ {s, s̄}.

3. If no disclosure leads the bank to overinvest (ωNR(sp) < ωr), then either no disclosure

is optimal or else it is optimal to reveal some of the passing signals; i.e., sd(sp) ∈ (sp, s̄). In

the latter case, ωL(sd(sp), sp) ∈ (ωNR(sp), ωr]. A sufficient condition for partial disclosure

to strictly dominate no disclosure is that Equation (5) below holds.

In the first part of Proposition 2, no disclosure leads the bank to be too cautious about

investing in the risky asset, and so the purpose of disclosure is to make the bank less cautious.

This is done by fully revealing some of the failing signals (setting sd < sp). Then if the

regulator sends the high message, the bank is less worried about failing the test and is

induced to invest according to the regulator’s ideal investment rule.

In part 2, no disclosure already induces the bank to invest according to the regulator’s

ideal investment rule. In this case, disclosure can only do harm, because it leads the bank

to deviate from the regulator’s ideal investment rule.

In part 3, no disclosure leads the bank to be too reckless about investing in the risky

asset, and so the purpose of disclosure is to make the bank more cautious. This is done by

sending a low message that pools all the failing signals with only some of the passing signals

(setting sd > sp). However, this comes at a cost. The high message assures the bank of a

passing signal, so the bank acts too recklessly, investing in every state ω. Because of this

cost, partial disclosure is not necessarily optimal. Essentially, the cost of partial disclosure

is similar to that of full disclosure– it enables gaming. However, with partial disclosure,

gaming is a concern only when the high message is sent.

A sufficient condition for partial disclosure to be optimal in part 3 is that revealing the

highest signal s̄ (and pooling together all the other signals) leads to a better social outcome

than no disclosure. In the proof, we show that this condition reduces to

−
∫ ωNR

ω

v(ω)f(s̄|ω)dG(ω) <
∂ωL
∂sd

∣∣∣
sd=s̄

v(ωNR)[1− F (sp|ωNR)]. (5)
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The left-hand-side in (5) is the marginal cost of revealing s̄. When the bank learns that s = s̄

(high message), its investment threshold falls from ωNR to ω –i.e., there is more gaming. The

right-hand-side is the marginal benefit of revealing s̄. When the regulator reveals that s < s̄

(low message), the bank’s investment threshold ωL increases but remains below ωr; i.e., there

is less overinvestment.17

An example in which Equation (5) holds (so partial disclosure is optimal) is when the

social loss from investing in the risky asset is not too high even in the worst possible state;

e.g., if v(ω) is not too negative or if L in Example 1 is not too high. In this case, even if

the bank games the test, it is not very costly from a social point of view. Another example

is when the bank’s investment is highly sensitive to partial disclosure (i.e., ∂ωL/∂sd is very

negative). In this case, the bank’s investment threshold ωL rises dramatically in response to

even little disclosure, which increases the benefits of partial disclosure.

Under some regularity conditions, we obtain the following comparative statics with re-

spect to the bank’s cost of test failure c. If c is intermediate, no disclosure is optimal, but

as c moves in either direction (increases or decreases), more disclosure is optimal. Figure 3

illustrates this.18 When c = 1, no disclosure is optimal because it induces the bank to invest

according to the regulator’s ideal investment rule. As c increases, no disclosure induces the

bank to invest too cautiously, and so the regulator reveals some of the failing signals to make

the bank less cautious. In this region, a higher c leads to more disclosure, namely a lower sd.

As c decreases, no disclosure induces the bank invest more recklessly, but if the bank is not

too reckless, no disclosure continues to be optimal. As c falls further, no disclosure induces

the bank to invest too recklessly, and so the regulator reveals some of the passing signals

(reduces sd) to make the bank more cautious.

By adding more structure on the bank’s payoff function u(ω), we can obtain similar

comparative statics with respect to other bank’s characteristics. For example, suppose

17Note that both ∂ωL

∂sd
and v(ωNR) have negative signs.

18Here we let Ω = [0, 1], S = [0, 1], u(ω) = (3ω)0.1, v(ω) = ω − 0.5, and f(s|ω) = 2[sω + (1− s)(1− ω)].
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u(ω) = a · û(ω), where a > 0 represents the bank’s appetite towards the risky asset and

û(ω) ≥ 0. Then no disclosure is optimal if a is intermediate, but as a moves in either

direction, more disclosure is optimal.19

5.4 Endogenous passing threshold

Next, we solve for the optimal passing threshold sp, namely the (highest) sp that maximizes

the regulator’s payoff in Lemma 5 when sd = sd(sp). We denote the optimal sp by s∗p and

let s∗d = sd(s
∗
p).

Extending the logic of Lemma 3, we can show that under the optimal passing threshold,

the bank overinvests upon receiving the high message. Moreover, the regulator sometimes

fails the bank even though it is suboptimal to do so ex post. Formally:

Lemma 6. 1. ωH(s∗d, s
∗
p) < ωr.

2. There exists s′ < s∗p, such that
∫
ω≥ωL(s∗d,s

∗
p)
v(ω)f(ω|s)dω > 0 for every s ∈ [s′, s∗p]

The first part in Lemma 6 implies that under the optimal s∗p, the first two cases in Proposi-

tion 2 cannot happen. The first case cannot happen because it would imply that ωH(s∗d, s
∗
p) =

ωr. The second case cannot happen because sd = s would imply that ωH(s∗d, s
∗
p) = ωNR(s∗p) =

ωr. Hence, we obtain the following:

Theorem 2. If the regulator sets the passing threshold optimally, then either no disclosure

is optimal or else it is optimal to reveal some of the passing signals; i.e., s∗d ∈ (s∗p, s̄). In the

latter case, ωL(s∗d, s
∗
p) ∈ (ωNR(s∗p), ωr]. A sufficient condition for partial disclosure to strictly

dominate no disclosure is that Equation (5) holds when sp = sNRp

The regulator has two tools to mitigate the bank’s overinvestment: (i) he can increase

the passing threshold sp; and (ii) he can reveal some of the passing signals (reduce sd), so

19The comparative statics with respect to a are opposite to the those with respect to c because what
matters is the ratio c/u(ω), which determines the bank’s investment threshold.
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that the bank acts less recklessly upon receiving the low message. Theorem 2 shows that in

some cases, it is optimal to combine both tools.

Clearly, the ability to fail the bank is crucial to incentivize the bank. But why would it

ever be optimal to combine it with partial disclosure? The answer is that for some parameter

values (e.g., if c is low), not revealing anything requires a high probability of failure (high

sp) to incentivize the bank, which wastes valuable investment. In this case, the regulator

can gain by passing the bank more often, and the worsening bank incentives can then be

mitigated with partial disclosure, so that the marginal benefits and marginal costs of each

tool are equated.

Formally, we show in Appendix E that if s∗d ∈ (s∗p, s̄), the first-order conditions imply

that

∂sp
∂ωL

∣∣∣
s∗d,s
∗
p

∫
ω≥ωL(s∗d,s

∗
p)

v(ω)f(s∗p|ω)dG(ω) (6)

= −v(ω∗L)[F (s∗d|ω∗L)− F (s∗p|ω∗L)]

∂sd
∂ωL

∣∣∣
s∗d,s
∗
p

∫
ω≤ωL((s∗d,s

∗
p)

v(ω)f(s∗d|ω)dG(ω).

The first line in (6) reflects the marginal cost of providing incentives via the first tool.

To increase ωL, the regulator needs to increase sp, but then he ends up failing the bank

upon observing sp even though his expected payoff conditional on sp is positive. The third

line reflects the marginal costs of providing incentives via the second tool. To increase ωL,

the regulator needs to decrease sd, but then the probability of sending the high message

(which leads to a social loss) is higher. Finally, the second line reflects the marginal benefit,

which is the same for both tools. Increasing ωL reduces the disutility v(ω∗L) from a socially

undesirable investment, which happens if the regulator observes a passing signal but sends

the low message, i.e., with probability F (s∗d|ω∗L)− F (s∗p|ω∗L).

Under some regularity conditions, the optimal policy is as illustrated in Figure 4. The
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figure shows how s∗p and s∗d change as a function of c, and it also shows the optimal passing

threshold under not revealing sNRp and the resulting investment threshold ωNR(sNRp ). When

c is sufficiently high, the regulator sets a relatively low passing threshold and does not reveal

any information. In this case, even a low passing threshold provides incentives to the bank

(i.e., ωNR is close to ωr), so partial disclosure is unnecessary. In contrast, when c is low, no

disclosure requires the regulator to set a high passing threshold sNRp to provide incentives.

But since this is costly, the regulator does not increase the passing threshold as much and

instead enhances the bank’s incentives via partial disclosure. Consistent with Figure 3, as c

decreases, the regulator sets a lower sd.

The comparative statics with respect to a (the bank’s appetite towards the risky asset, as

defined at the end of Section 5.3) are opposite to that with respect of c. When a is low, the

regulator sets a relatively low passing threshold and does not reveal any information. When

a is high, the regulator sets a high passing threshold and combines it with partial disclosure.

Remark 2. The comparative statics above are for the case in which the regulator follows a

simple cutoff disclosure rule. In Appendix C, we show that a cutoff rule remains optimal

even within a larger set of disclosure rules under which the regulator partitions the signal

space into nonoverlapping intervals and reveals the interval to which the signal belongs.

However, we also show that for some parameter values, the regulator can achieve a better

outcome via a nonmonotone disclosure rule in which messages pool signals from disconnected

intervals. For example, the regulator sends the high message not only upon observing the

highest passing signals but also upon observing some very low failing signals. This type of

pooling can help reduce the cost of sending the high message because the bank does not act

too recklessly upon receiving that message.
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6 Discussion

In this section, we discuss some of the assumptions, interpretations, policy implications, and

possible extensions of the model.

1. In our model, the bank chooses a portfolio (safe asset or risky asset). In Appendix A

we illustrate that our model also maps to a case in which the bank’s portfolio is given,

and instead of choosing a portfolio, the bank submits a capital plan, which needs to

be approved by the regulator. The capital plan is to either retain cash (safe action) or

distribute it as dividends (risky action). In this case, revealing the regulator’s signal

can induce the bank to retain too little cash, which could result in financial distress.

But not revealing can lead the bank to retain too much cash, which could result in

wasteful investment (e.g., because of a free cash flow problem as in Jensen (1986)).

2. We assumed that the regulator has full flexibility in adjusting the passing threshold.

The result that not revealing is strictly preferred to revealing (Theorem 1) relies on

this assumption. However, in practice, the regulator may not have such flexibility, and

so revealing might be preferred. One example is when the passing threshold is given

exogenously, as in Proposition 1. Another example is when the regulator must apply

the same passing threshold to banks with different characteristics. This case could arise

because of practical considerations, or because the bank’s characteristics are privately

observed by the bank. We show that if banks are sufficiently different from one another,

then for some parameter values, revealing is strictly preferred to not revealing. We

provide a formal statement of this result in Appendix B, but the intuition is simple.

The benefit from not revealing the regulator’s signal is that by choosing the passing

threshold appropriately, the regulator can affect the bank’s investment threshold in his

favor. But if banks are very different from one another, it is impossible to calibrate

the passing threshold to induce desired investment by everyone.
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3. Under the optimal policy, the regulator sometimes fails the bank even though it is

suboptimal to do so ex-post (Lemma 3 and Lemma 6). As we noted earlier, this com-

mitment helps provide incentives to the bank. But our main results continue to hold

even if the regulator cannot commit to act according to a prespecified pass/fail rule.

In particular, not revealing continues to dominate revealing, and for some parameter

values, partial disclosure continues to be optimal. Intuitively, the regulator’s inability

to act according to some prespecified rule makes it harder for the regulator to provide

incentives to the bank. However, without any further restrictions, the regulator can

still provide better incentives and hence achieve a better outcome than full disclosure;

and in some cases, he can achieve a better outcome than no disclosure. We provide

more details in Appendix D.

4. The analysis of partial disclosure relies on the assumption that the regulator can com-

mit to act according to some prespecified disclosure rule. This commitment is im-

portant because without commitment, the regulator would prefer to deviate ex post,

reporting the low message instead of the high message. We believe that a commitment

to follow prespecified rules, including how much information to reveal, is reasonable in

the context of annual stress tests that are conducted by the regulator. In models of

repeated interaction, the commitment outcome may also be obtained without commit-

ment.20 If, however, the regulator cannot commit to act according to a prespecified

disclosure rule, the relevant comparison might be simply between a secrecy regime and

a fully transparent regime, which do not require this type of commitment.21

5. In our model, the regulator has two tools to provide incentives to the bank: the

disclosure policy and the passing threshold. In practice, the regulator may be able

to use additional tools, such as imposing penalties on banks that fail the test. We can

20See Mathevet, Pearce, and Stacchetti (2019) and Best and Quigley (2020).
21If not revealing is preferred (for a given sp), the regulator cannot gain by revealing, because this will

worsen the overinvestment problem. If revealing is preferred, we can assign out-of-equilibrium beliefs to rule
out a deviation to not revealing.
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incorporate this into our setting by assuming that the regulator can affect the bank’s

private cost of failing the test c. If the regulator has full control over c, he can get

arbitrarily close to the first best by setting c close to infinity, passing the banks almost

surely, and not revealing anything. However, in the more realistic case in which the

regulator does not have full control over the parameter c, the main results in our paper

will continue to hold. More generally, if there are multiple tools to incentivize the

banks, we believe that as long as these tools cannot be fully adjusted or are costly to

adjust, the result that partial disclosure may be optimal will continue to hold.

6. We assumed that if the bank fails the test, the regulator’s payoff is zero. This assump-

tion is not crucial for our main results. What is crucial is that there is some social

cost of providing incentives by increasing sp. For example, we could assume that upon

failing the bank, the regulator obtains αv(ω) for some α ∈ (0, 1). This case could

reflect a situation in which the risky asset is transferred to other financial institutions

that are less skilled at monitoring the asset but are also less systemically important. If

α is not too large, it would still be costly to provide incentives by increasing sp alone,

and so partial disclosure will continue to be optimal.22

7. Policy makers have suggested that if the Fed model were to be published, then to coun-

teract gaming, the minimum capital requirement would need to materially increase.23

Our model suggests that this conclusion is only partially correct. In particular, for

some parameter values, the optimal passing threshold under revealing is lower than

that under not revealing: sRp < sNRp . For example, this could happen if the bank’s cost

of failing c is low, so the regulator needs to set a very high sNRp to reduce overinvest-

ment.24

22For example, under the assumptions of Figure 4 and assuming c = 0.1, partial disclosure is optimal
whenever α < 0.76.

23See the departing speech by Fed Governor Daniel Tarullo: https://www.federalreserve.gov/

newsevents/speech/tarullo20170404a.htm.
24E.g., in Figure 4, sRp = 0.5, and for a sufficiently low c, sNR

p > 0.5 = sRp .
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8. A widely expressed concern is that disclosing the Fed’s models could increase correla-

tions in asset holdings among banks subject to the stress tests (i.e., the largest banks),

making the financial system more vulnerable to adverse financial shocks. An extension

of our model would suggest that this concern is also valid if the Fed just illustrates

how its models work on hypothetical loan portfolios, as under the new policy discussed

in the introduction. In particular, the proposed hypothetical portfolios could serve as

benchmark portfolios in which too many banks invest, leading to correlated investment.

So just as in our basic model, in which the bank could underinvest in a socially valuable

risky assets by choosing the safe asset for which the test results are predictable, banks

could also underinvest in their idiosyncratic risky portfolios, for which the test results

are unpredictable, and overinvest in the benchmark risky portfolio, for which the test

results are predictable.

9. A related concern is that revealing the regulator’s models will cause banks to exert less

effort in developing their own models. A simple extension in which the bank needs to

incur a fixed cost to obtain its private signal about ω would imply that the bank will

incur this cost only if the regulator does not reveal signal. However, a complete setting

that incorporates information production by the bank or by the regulator is beyond

the scope of this paper. We believe that in general the conclusions will depend on how

we model information production.25,26

10. An interesting question is how the optimal disclosure regime changes with respect to

25For example, one could think of a setting in which the bank can generate one of two signals: an
informative signal that gives the actual realization of ω, or a less informative signal, whose only purpose
is to predict the test outcome; e.g., tell whether s is above or below the passing threshold. If the cost of
obtaining the second signal is sufficiently low compared to the cost of obtaining the more informative signal,
the outcome might be that if the regulator does not reveal his model, the bank generates only the second
signal. In this case, revealing the regulator’s model could generate a better outcome by saving the inefficient
information production by the bank.

26See also Leitner and Yilmaz (2019), who show that under some conditions, it is optimal to allow banks to
produce two models: a less informative for regulation and a more informative model for their own investment
decisions.
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the information in the regulator’s signal. A more informative signal makes it easier to

incentivize the bank, which pushes towards secrecy, but a more informative signal also

pushes towards revealing, because the regulator can use his information to force actions

without the need to rely on the bank’s information. Hence, the relationship between

the informativeness of the regulator’s signal and the preferred disclosure regime need

not be monotone. To illustrate this, we consider a sequence of signals that becomes

less informative in the sense of Blackwell (1953). That is, each signal is a garbling of

the previous signal. For a fixed passing threshold, we can construct examples in which

if the level of garbling is intermediate, not revealing is preferred to revealing, but if the

level of garbling is either very high or very low, revealing is preferred.27

11. Finally, our setting is an example of a principal-agent problem in which an informed

but biased agent takes an action on behalf of a partially informed principal, who can

respond to the agent’s action after an evaluation process that is based on the principal’s

private information. In our setting, the agent is the bank and the principal is the

regulator, but there are other applications. For example, the agent could be a financial

advisor and the principal could be a wealthy individual. Our results suggest that in

some cases, the individual could benefit by not sharing his views with the financial

advisor about a new investment strategy but replace the advisor if the latter suggests

an investment that is deemed too risky by the individual. Similarly, the agent could

be the firm’s manager and the principal could be the firm’s board of directors. In this

case, the board could benefit by not expressing their opinions while the manager is

working on a strategic plan but use their opinions to disapprove the plan if its value is

deemed too low.28

27See the end of Appendix E.
28In both examples, it is natural to assume that the principal cannot commit to an opinion-based decision

rule, but as we saw earlier (item 3 in the discussion), our results still hold in this case.
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7 Conclusion

We study whether a regulator should reveal his stress tests model to banks before conducting

the test. We also explore the interaction between the regulator’s disclosure policy and another

regulatory tool that can be used to incentivize banks: the threshold for passing the test.

We show that if the regulator has full flexibility in adjusting the passing threshold, not

revealing is always preferred to revealing. However, if the regulator cannot freely adjust the

passing threshold, then revealing may be preferred. Finally, if the regulator can commit to

act according to a disclosure policy that goes beyond just revealing or not revealing, then for

some parameter values, some disclosure is optimal even if the regulator can fully adjust the

passing threshold. And if we restrict attention to monotone disclosure rules, a simple cutoff

rule is optimal. We characterize the optimal cutoff rule and derive comparative statics and

policy implications.

Our paper leaves open several questions that could be explored in future work. For

example, our framework is static, but because regulators continually update their models, it

would be interesting to explore the optimal dynamic disclosure policy. Our framework also

assumes the regulator’s signal is one dimensional. It would be interesting to explore the case

in which the bank can invest in multiple assets, and the regulator’s model takes the form of

multiple signals that predict the value of each asset.
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Appendix

A Capital plans

We provide an example to illustrate that our model maps to a case in which instead of

choosing a portfolio, the bank submits a capital plan, which needs to be approved by the

regulator.

Suppose the bank has already invested in the risky asset from Example 1. In addition

to this asset, the bank has 1 + δ dollars in excess cash, which can either be retained at the

bank or paid as dividends. If the bank retains the cash, managers invest it in a negative

NPV project that gives only 1. That is, managers waste δ, which could result from a free

cash flow problem (Jensen (1986)). Also assume that if the bank’s cash holding falls below

1 to z < 1, the bank suffers a loss r(1 − z) and the regulator suffers a loss L(1 − z), where

L > r > 0. These losses, which represent costs of financial distress, can be motivated as in

Example 1.

Final payoffs are as follows. If the bank retains the cash, the bank’s cash holding never

falls below 1. Hence, the final payoff to both the bank and the regulator is 1 + 2(1− p) + pω.

The first term is the payoff from investing the cash, and the other terms represent the

expected payoff from the risky asset.

If the bank does not retain the cash, then during a crisis the bank’s cash holdings fall

below 1 (to ω). So the expected losses to the bank and regulator are pr(1−ω) and pL(1−ω),

respectively. The final payoffs are the sum of dividend payment, payoff from the risky asset,

and expected loss due to financial distress. So the final payoffs to the bank and to the

regulator are 1 + δ + 2(1 − p) + pω − pr(1 − ω) and 1 + δ + 2(1 − p) + pω − pL(1 − ω),

respectively. Normalizing the payoff from the safe action (of retaining cash) to zero, the

functions u and v are given by u(ω) = δ − pr(1− ω) and v(ω) = δ − pL(1− ω).29

29Note that u and v are increasing in ω, and if r and L are chosen appropriately, Assumptions 1 and 2 are
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As before, the regulator approves the risky action (in this case, paying dividends) only

if the bank passes the test. If the bank retains cash, it always passes the test. Otherwise, it

passes the test only if the projected value of its risky asset during a crisis is sufficiently high

(i.e., if s ≥ sp). As before, if the bank fails the test, the bank’s final payoff is −c < 0. Recall

that c can represent the cost to the bank’s managers from failing the test. Here c can also

represent an upfront cost that the bank needs to incur to submit a capital plan that involves

a dividend distribution, and as before, this cost is a transfer to other agents and does not

affect the regulator’s payoff.

B Heterogeneous banks

We analyze the case in which the regulator must apply the same passing threshold to banks

with different characteristics. Suppose the bank’s private cost of failure c is a random

variable with a CDF H. The bank observes the realization of c but the regulator does

not. Recall that under not revealing, the bank expects to pass the test with probability

p(ω) = 1− F (sp|ω). Rearranging Equation (1), it follows that the bank invests in state ω if

and only if c ≤ [F (sp|ω)−1−1]u(ω), i.e., with probability I(ω, sp) ≡ H([F (sp|ω)−1−1]u(ω)).

Extending the logic of Lemma 2, we obtain that the regulator’s payoff under not revealing

is:

VNR =

∫
ω≥ω

I(ω, sp)[1− F (sp|ω)]v(ω)dG(ω). (B1)

The payoff under revealing does not depend on H and is given by VR(sRp ), as in Lemma 2.

In the special case in which H has all of the mass on a particular c, H is a step function,

and (B1) reduces to (3).

To formalize the idea of banks that are sufficiently different from one another, we examine

a sequence of distributions Hi that are median-preserving spreads in c, with a limiting

satisfied.
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Figure B1: Panel (a) shows the density of c, when its distribution is lognormal with parame-
ters µ = ln 2 and various values of σ. Panel (b) shows the regulator’s payoff under revealing,
VR(sRp ), and under not revealing, VNR(sNRp ), as a function of σ.

distribution that places half the mass on c = 0 and half the mass on c =∞.30 We show that

if VR(sRp ) is sufficiently high, as we make precise in the proof, then in the limit, revealing is

preferred.

Proposition B1. If VR(sRp ) is sufficiently high, then for any sequence {Hi}∞i=1 of distribution

functions satisfying

1. Hi+1 is a median-preserving spread of Hi for all i ∈ N ; and

2. limi→∞Hi(c) = 1
2

for all c > 0,

revealing is strictly preferred to not revealing for high enough i.

30Hb is a median-preserving spread of Ha if Ha and Hb have the same median m, Hb(x) ≥ Ha(x) for all
x ≤ m, and Hb(x) ≤ Ha(x) for all x ≥ m, with a strict inequality for at least one x.
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Figure B1 illustrates the result above for the case in whichH is lognormal with parameters

µ = ln 2 and various values of σ, which amounts to fixing the median of H at 2 and increasing

uncertainty by increasing σ. For a very low level of uncertainty, not revealing is strictly

optimal. For a very high level of uncertainty, revealing is strictly optimal.

C General disclosure

We solve for an optimal disclosure rule for a given passing threshold sp. To avoid technical

issues, we assume that ω and s are drawn from finite sets Ω and S. We denote the elements

of Ω by ω1 < ω2 < .... < ωn, assume that ωr ∈ Ω, and let ir denote the i ∈ {1, ..., n} such

that ωi = ωr. We use f(s|ω) and g(ω) to denote probability mass functions. A disclosure

rule is defined by a finite set of messages M and a function h that maps each signal s ∈ S to

a distribution over messages. We let hm(s) denote the probability that the regulator sends

message m upon observing s. (
∑

m∈M hm(s) = 1 for every s ∈ S.)

C.1 Regulator’s problem

As in Section 4.1, we first show that the bank follows a cutoff rule, investing if and only if

the state ω is above some threshold. We denote the decision to not invest by the threshold

ωn+1 > ωn and let Ω′ ≡ Ω ∪ {ωn+1}. Formally:

Lemma C1. For any disclosure rule (M,h), there exists a function ω : M → Ω′ such that

if the regulator sends message m ∈M , the bank invests if and only if ω ≥ ω(m).

Lemma C1 implies that sending a message is equivalent to sending an investment rec-

ommendation ωi ∈ Ω′ such that the bank invests if and only if ω ≥ ωi. Using a “revelation

principle” we can assume, without loss of generality, that the regulator sends only recom-

mendations that the bank obeys.31 The obedience constraints are that if the bank observes

31See Bergemann and Morris (2019).
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state ω, and the regulator recommends investment threshold ωi, then if ω < ωi, the bank

cannot gain by investing and if ω ≥ ωi, the bank cannot gain by not investing.

In a slight abuse of notation, we let hi(s) denote the probability that the regulator

recommends ωi ∈ Ω′ upon observing s. We let vi(s) ≡
∑

ω≥ωi
v(ω)f(ω|s).

Lemma C2. The regulator’s problem reduces to choosing a set of functions {hi : S −→

[0, 1]}i=1,...,n+1 to maximize ∑
s≥sp

f(s)
n∑
i=1

vi(s)hi(s) (C1)

such that

u(ωi−1)
∑
s≥sp

f(s|ωi−1)hi(s)− c
∑
s<sp

f(s|ωi−1)hi(s) ≤ 0 i = 2, .., n+ 1 (C2)

n+1∑
i=1

hi(s) = 1 s ∈ S. (C3)

Equation (C1) is the regulator’s expected payoff if the bank’s follows the regulator’s

recommendations. In particular, conditional on observing a failing signal s < sp, the payoff

is zero, and conditional on observing a passing signal s ≥ sp and sending recommendation

ωi, the payoff is vi(s). Equation (C2) says that if the regulator recommends investment

threshold ωi, the bank cannot gain by investing upon observing the lower state ωi−1. To see

that, note that by Bayes’ rule, the probability of passing the test conditional on state ω and

recommendation ωi is

pi(ω) ≡
∑

s≥sp f(s|ω)hi(s)∑
s f(s|ω)hi(s)

. (C4)

So the bank cannot gain from investing in state ωi−1 if and only if

u(ωi−1)pi(ωi−1)− c[1− pi(ωi−1] ≤ 0, (C5)

which reduces to equation (C2). Equation (C3) simply says that conditional on observing
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a signal, the regulator sends a recommendation with probability 1. In the proof, we show

that the solution to the linear programming problem above also satisfies the other obedience

constraints.

C.2 Properties of optimal disclosure rules

If ωNR(sp) ≥ ωr, we know from Proposition 2 that a cutoff rule can implement ωr and

hence is optimal. The rest of this section focuses on the case ωNR(sp) < ωr, in which no

disclosure leads the bank to act too recklessly, and the purpose of disclosure is to make the

bank act more cautiously. We first show that the obedience constraints must be binding

and recommended investment thresholds never exceed ωr. In particular, the regulator never

recommends the bank not to invest.

Lemma C3. If ωNR(sp) < ωr, then under an optimal disclosure rule:

1. Equation (C2) is satisfied with equality.

2. hi(s) = 0, for every s ∈ S and every i > ir.

The next proposition shows that optimal disclosure is “single-peaked.” That is, recom-

mended thresholds weakly increase for failing signals s < sp and weakly decrease for passing

signals s ≥ sp.

Proposition C1. If ωNR(sp) < ωr, then under an optimal disclosure rule, the following

hold:

1. For every ωi > ωj and s < s′ < sp, if hi(s) > 0, then hj(s
′) = 0.

2. For every ωi < ωj and s > s′ ≥ sp, if hi(s) > 0, then hj(s
′) = 0.

The first part in Proposition C1 says that if the regulator recommends ωi in some failing

signal s < sp, he never makes a lower recommendation in a higher failing signal. The second

part says that if the regulator recommends ωi in some passing signal s ≥ sp, he never makes

a lower recommendation in a lower passing signal.
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The idea behind Proposition C1 is as follows. To induce ωi ≤ ωr, the regulator must pool

failing signals with passing signals. From equation (C2), the most efficient way to do so is to

increase the probability hi(s) in passing signals s ≥ sp that have a low f(s|ωi−1) and failing

signals s < sp that have a high f(s|ωi−1). In other words, the regulator recommends ωi in

passing signals which a bank that observes ωi−1 thinks are relatively less likely, and in failing

signals that a bank that observes ωi−1 thinks are relatively more likely. By MLRP, higher

types ωi place more weight on higher signals s. This leads to increasing recommendations

in failing signals s < sp and decreasing recommendations in passing signals s ≥ sp. For

passing signals, an additional force leads to decreasing recommendations. When the regulator

observes a higher passing signal s ≥ sp, he is less worried about investment in low states

ω, because by MLRP, these are less likely. Hence, he can recommend a lower investment

threshold.

C.3 Monotone rules

Proposition C1 implies that in general the cutoff disclosure rule from Section 5 need not be

optimal. However, a cutoff rule is optimal if we restrict attention to “monotone disclosure

rules” under which the regulator partitions the signal space into disjoint intervals and reveals

the interval to which the signal belongs.

The idea is as follows. For any set of intervals, the regulator can obtain the same payoff

by merging all the intervals that contain only failing signals into one interval, and all the

intervals that contain only passing signals into a second interval. Hence, without loss of

generality, there are at most three intervals: (i) an interval containing only failing signals,

(ii) an interval containing only passing signals, and (iii) an interval containing both passing

and failing signals.

If there are two intervals or less, a cutoff rule is optimal. Otherwise, we obtain a con-

tradiction as follows. Suppose there are three intervals, which are defined by the cutoffs

s1 and s2, where s1 < sp < s2, and suppose that the message that the regulator sends
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upon observing s ∈ (s1, s2) (“the middle message”) induces the bank to invest if and only if

ω ≥ ω′. If ω′ < ωr, the regulator can obtain a better outcome by reducing s1. If ω′ > ωr, the

regulator can obtain a better outcome by increasing s1. If ω′ = ωr, it is possible to obtain

a better outcome by increasing s2 and reducing s1, so that the middle message continues to

implement ωr.

D No Commitment to Pass/Fail Rule

We discuss the case in which the regulator cannot commit to a pass/fail rule. We first show

that not revealing continues to be strictly preferred to revealing. As a preliminary, observe

that by MLRP, E[v(ω)|s] is increasing in s, and from the first-order condition for VR in

Lemma 2, sRp is the unique s ∈ S that solves E[v(ω)|s] = 0.

Consider a pure strategy equilibrium in which the regulator passes the bank if and only

if s ∈ Sp, where Sp ⊆ S. If the regulator reveals his signal, the bank invests if and only if

s ∈ Sp. In this case, the bank’s action conveys no additional information to the regulator

about ω. Hence, the regulator expects to get E[v(ω)|s] if he passes the bank, and so he

passes the bank if and only if E[v(ω)|s] ≥ 0. Therefore, the regulator follows a cutoff rule,

and the cutoff is the same as under the commitment case. That is, Sp = {s : s ≥ sRp }. So

the outcome that is obtained under commitment to a pass/fail rule is also obtained without

commitment.

Now suppose the regulator does not reveal his signal. Consider an equilibrium in which

the bank invests if and only if ω ∈ ΩB, where ΩB ⊆ Ω and ΩB 6= ∅ (empty set).32

Then the regulator expects to get E[v(ω)|s, ω ∈ ΩB] if he passes the bank. By MLRP,

E[v(ω)|s, ω ∈ ΩB] is strictly increasing in s. Hence, there exists a unique sNCp ∈ S, such that

the regulator passes the bank if and only if s ≥ sNCp .33 (“NC” stands for no commitment

32There are also some uninteresting equilibria in which the bank never invests (e.g., because the regulator
never passes the bank or because the regulator passes the bank only if he observes a very high signal).

33If the regulator always failed the bank, the bank would not invest.
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under not revealing.) Following the logic in Section 4.1, the bank will invest if and only if

ω ≥ ωNR(sNCp ). That is, ΩB = {ω ∈ Ω : ω ≥ ωNR(sNCp )}. The regulator’s payoff is then

VNC ≡
∫
sNC
p
E[v(ω)|s, ω ∈ ΩB]f(s)ds. Since v′ > 0 and ωNR(sNCp ) > ω (by Assumption 4),

E[v(ω)|sRp , ω ∈ ΩB] > E[v(ω)|sRp ] = 0. Hence, sNCp < sRp , implying that

VNC >

∫
sRp

E[v(ω)|s, ω ∈ ΩB]f(s)ds =

∫
sRp

∫
ωNR(sNR

p )

v(ω)f(ω|s)dωf(s)ds.

Moreover, ωNR(sNCp ) < ωr, because if to the contrary ωNR(sNCp ) ≥ ωr, then E[v(ω)|s, ω ∈

ΩB] > 0 for every s ∈ S, which implies that sNCp = s and ωNR(sNCp ) = ω < ωr, a contradic-

tion. Hence,

∫
sRp

∫
ωNR(sNR

p )

v(ω)f(ω|s)dωf(s)ds >

∫
sRp

∫
ω

v(ω)f(ω|s)dωf(s)ds = VR(sRp ).

Hence, VNC > VR(sRp ).

Finally, we can extend the logic above to the case in which the regulator follows a cutoff

disclosure rule. In this case, there exist thresholds sNCpH , s
NC
pL , such that the regulator follows

the following strategy: after sending a high message, he passes the bank if and only if

s ≥ sNCpH , and after sending the low message, he passes the bank if and only if s ≥ sNCpL . We

can construct examples in which partial disclosure gives a better outcome than no disclosure,

even without commitment to a pass/fail rule.

E Proofs for Main Text

Proof of Lemma 1. All the necessary steps for Part 1 and the cutoff rule in Part 2 are

explained in the text. To see why ωNR is continuous and increasing in sp and c, apply the

implicit function theorem to [1 − F (sp|ωNR)]u(ωNR) − F (sp|ωNR)c = 0, i.e., equation (1)

with ω = ωNR and p = 1− F (sp|ωNR).
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Proof of Lemma 2. Consider first revealing. Conditional on observing a failing sig-

nal, the regulator’s payoff is zero. Conditional on observing a passing signal, the payoff is∫
ω≥ω v(ω)f(ω|s)dω. Hence, the expected payoff is

∫
s≥sp

∫
ω≥ω

v(ω)f(ω|s)dωf(s)ds =

∫
ω≥ω

∫
s≥sp

v(ω)f(ω, s)dsdω

=

∫
ω≥ω

v(ω)

∫
s≥sp

f(s|ω)dsg(ω)dω =

∫
ω≥ω

v(ω)[1− F (sp|ω)]dG(ω)

The payoff under not revealing is obtained in a similar fashion, but the integral starts in

ωNR rather than ω.

Proof of Proposition 1. Observe that VNR is continuous in ωNR, and ∂VNR

∂ωNR
=

−v(ωNR)[1 − F (sp|ωNR)]. Hence, ∂VNR

∂ωNR
has an opposite sign to v(ωNR). So VNR strictly

increases from VR > 0 over the interval ωNR ∈ (ω, ωr), and strictly decreases to zero over

the interval (ωr, ω̄]. The first three results follow. The indifference point solves VNR = VR.

Finally, since u(ω) = 0 (Assumption 4), we must have ωNR > ω, because if the bank invests

when ω = ω, it obtains a negative payoff.

Lemma E1. sNRp > s and sRp > s.

Proof. Observe that dVNR

dsp
= ∂VNR

∂sp
+ ∂VNR

∂ωNR

∂ωNR

∂sp
, ∂VNR

∂ωNR
= −[1− F (sp|ωNR]v(ωNR), and

∂VNR
∂sp

= −
∫
ω≥ωNR

f(sp|ω)v(ω)dG(ω) = −f(sp)

∫
ω≥ωNR

v(ω)f(ω|sp)dω (E1)

Since ωNR(s) = ω, it follows that ∂VNR

∂sp
|s = −

∫
ω≥ω f(s|ω)v(ω)dG(ω) = −f(s)E[v(ω)|s] > 0

(Assumption 4). Moreover, v(ω) < 0 (Assumption 1), so ∂VNR

∂ωNR
|s > 0. Finally, since ∂ωNR

∂sp
≥ 0

(Lemma 1), we obtain dVNR

dsp
|s > 0. Hence, sNRp > s. To show that sRp > s, observe that

dVR
dsp
|s = ∂VR

∂sp
|s = −f(s)E[v(ω)|s] > 0.

Proof of Theorem 1. Suppose to the contrary that revealing is weakly preferred:
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VR(sRp ) ≥ VNR(sNRp ). Since VNR(sNRp ) ≥ VNR(sRp ), it follows that VR(sRp ) ≥ VNR(sRp ). Hence,

from Proposition 1, ωNR(sRp ) > ωr. Since ωNR(·) is continuous, increasing, and equals ω at

s, there exists ŝ ∈ (s, sRp ) such that ωNR(ŝ) = ωr. It then follows from Assumption 2 that

VR(sRp ) =

∫
ω≥ω

[1− F (sRp |ω)]v(ω)dG(ω) <

∫
ω≥ωr

[1− F (sRp |ω)]v(ω)dG(ω)

<

∫
ω≥ωr

[1− F (ŝ|ω)]v(ω)dG(ω) = VNR(ŝ) ≤ VNR(sNRp ),

which is a contradiction.34

Proof of Lemma 3. To prove the lemma, we use the observations in the beginning of

Lemma E1. Also, applying the implicit function theorem as in the proof of Lemma 1, we

obtain that ∂ωNR

∂sp
|sNR

p
≥ 0, with strict inequality if ωNR < ω̄.

1. Suppose to the contrary that ωNR(sNRp ) ≥ ωr. Then v(ωNR(sNRp )) ≥ 0 (Assumption

2). Hence, ∂ωNR

∂sp
|sNR

p
≥ 0, ∂VNR

∂sp
|sNR

p
< 0, and ∂VNR

∂ωNR
|sNR

p
≤ 0. Hence, dVNR

dsp
|sNR

p
< 0, which

implies that sNRp = s. But from the proof of Theorem 1, Assumption 4 implies that sNRp > s.

2. By Part 1, ωNR(sNRp ) < ωr. Hence, ∂ωNR

∂sp
|sNR

p
> 0 and ∂VNR

∂ωNR
|sNR

p
> 0. Moreover, sNRp <

s̄, because sNRp = s̄ would imply that ωNR(sNRp ) = ω̄. Hence, dVNR

dsp
|sNR

p
≤ 0. Hence, ∂VNR

∂sp
< 0,

which implies
∫
ω≥ωNR

v(ω)f(ω|sNRp )dω > 0. By continuity, there exists a neighborhood

[s′, sNRp ] such that s ∈ [s′, sNRp ] implies
∫
ω≥ωNR(sNR

p )
v(ω)f(ω|s)dω > 0.

Proof of Lemma 4. As explained in the text, pL(ω) and pH(ω) are increasing in ω.

Consider the low message. If sd ≤ sp, then pL(ω) = 0 and the bank’s payoff (Equation (1))

is −c < 0. So the bank does not invest: ωL(sd, sp) = ω̄. If sd > sp, then pL(ω) = 1− F (sp|ω)

F (sd|ω)
,

and the bank’s investment threshold ωL solves pL(ω)[u(ω) + c] − c = 0. The left-hand side

is increasing in ω and sd. So by the implicit function theorem, ∂
∂sd
ωL(sd, sp) < 0. If sd = 1,

then pL(ω) = 1 − F (sp|ω) which is the same as the posteriors under no disclosure. So

34The proof also works if ŝ is chosen such that ωNR(ŝ) ∈ (ωr, ωI), where ωI is the indifference point in
Proposition 1 when sp = sRp .
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ωL(sd, sp) = ωNR(sp).

Next, consider the high message. If sd ≤ sp, then pH(ω) = 1−F (sp|ω)

1−F (sd|ω)
, and the bank’s

investment threshold ωL solves pH(ω)[u(ω)+c]−c = 0. Since the left-hand-side is increasing

in ω and sd, it follows that ∂
∂sd
ωH(sd, sp) < 0. If sd = 0, then pH(ω) = 1− F (sp|ω), which is

the same as the posteriors under no disclosure. So ωH = ωNR(sp). If sd > sp, then pH(ω) = 1,

and the bank’s payoff is u(ω) > 0, so it’s clearly optimal to invest: ωH(sd, sp) = ω.

Proof of Lemma 5. From equation (4) and the observation that conditional on s < sp,

the payoff is zero, we obtain that if sd < sp, the regulator’s payoff is

∫
s≥sp

∫
ω≥ωH(sd,sp)

v(ω)f(ω|s)f(s)dωds =

∫
ω≥ωH(sd,sp)

v(ω)

∫
s≥sp

f(ω|s)f(s)dsdω

=

∫
ω≥ωH(sd,sp)

v(ω)

∫
s≥sp

f(s|ω)dsg(ω)dω =

∫
ω≥ωH(sd,sp)

v(ω)[1− F (sp|ω)]dG(ω).

If sd > sp, then since ωH(sd, sp) = ω, the regulator’s payoff is

∫
s∈(sp,sd)

∫
ω≥ωL(sd,sp)

v(ω)f(ω|s)f(s)dωds+

∫
s≥sd

∫
ω≥ω

v(ω)f(ω|s)f(s)dωds

=

∫
s≥sp

∫
ω≥ωL(sd,sp)

v(ω)f(ω|s)f(s)dωds

−
∫

s≥sd

∫
ω≥ωL(sd,sp)

v(ω)f(ω|s)f(s)dωds+

∫
s≥sd

∫
ω≥ω

v(ω)f(ω|s)f(s)dωds

=

∫
s≥sp

∫
ω≥ωL(sd,sp)

v(ω)f(ω|s)f(s)dωds+

∫
s≥sd

∫ ωL(sd,sp)

ω

v(ω)f(ω|s)f(s)dωds

=

∫
ω≥ωL(sd,sp)

v(ω)

∫
s≥sp

f(s|ω)ds g(ω)dω +

∫ ωL(sd,sp)

ω

v(ω)

∫
s≥sd

f(s|ω)ds g(ω)dω

=

∫
ω≥ωL(sd,sp)

v(ω)[1− F (sp|ω)]dG(ω) +

∫ ωL(sd,sp)

ω

v(ω)[1− F (sd|ω)]dG(ω).
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Proof of Proposition 2.

1. In this case, we know from Lemma 4 and its proof that if sd ∈ [s, sp], ωH(sd, sp) is

continuous and decreasing in sd from ωNR(sp) > ωr to ω < ωr. Hence, there exists sd ∈ (s, sp)

such that ωH(sd, sp) = ωr. This sd achieves the maximal attainable payoff to the regulator,

because the bank invests according to the regulator’s ideal rule whenever it passes the test.

Hence, this sd is optimal. Any other sd leads to either under- or over-investment for each

signal realization s, and hence is suboptimal.

2. If ωNR(sd, sp) = ωr, so the bank invests according to the regulator’s ideal investment

rule, then no disclosure achieves the maximal attainable payoff and hence is optimal.

3. Setting sd ∈ (s, sp) is suboptimal because it leads to ωH(sd, sp) < ωNR(sp), which

reduces the regulator’s payoff compared to no disclosure. Hence, either sd ∈ {s, s̄} (no

disclosure) or sd ∈ [sp, s̄) is optimal, and without loss of generality, sd ∈ [sp, s̄]. In this case,

the partial derivative of the regulator’s payoff in Lemma 5 with respect to sd is:

− ∂ωL
∂sd

v(ωL)[F (sd|ωL)− F (sp|ωL)]−
∫ ωL

ω

v(ω)f(sd|ω)dG(ω) (E2)

A necessary condition for no disclosure to be optimal is that the partial derivative in (E2)

evaluated at sd = s̄ is nonnegative. Since ωL(s̄) = ωNR (Lemma 4), the necessary condition

reduces to:

−
∫ ωNR

ω

v(ω)f(s̄|ω)dG(ω) ≥ ∂ωL
∂sd

∣∣∣
sd=s̄

v(ωNR)[1− F (sp|ωNR)] (E3)

If this necessary condition is violated, partial disclosure is optimal. Hence, equation (5)

is a sufficient condition for partial disclosure. Finally, if sd ∈ [sp, s̄), then ωL(sd, sp) ∈

(ωNR(sp), ωr], as follows. From Lemma 4, ωL(sd, sp) > ωNR(sp). If to the contrary

ωL(sd, sp) > ωr (underinvestment), the regulator can gain by increasing sd so that

ωL(sd, sp) = ωr. From the proof of Lemma 4, such sd exists. Setting this sd increases

the regulator’s payoff because upon receiving the low message the bank invests according to
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the regulator’s ideal investment rule, and because a higher sd increases the probability that

the low message rather than the high message is sent.

Proof of Lemma 6.

1. If sd ≥ sp, then by Lemma 4, ωH(sd, sp) = ω < ωr. If sd < sp, then by Lemma 5,

the regulator’s payoff is
∫
ω≥ωH(sd,sp)

v(ω)[1 − F (sp|ω)]dG(ω), and we can apply the proof of

Lemma 3, replacing ωNR(sP ) with ωH(sd, sp).

2. By Theorem 2, there are two cases: s∗d ∈ {s, s̄} or s∗d ∈ (sp, s̄). If s∗d ∈ {s, s̄},

apply the proof of Lemma 3, part 2. If s∗d ∈ (s∗p, s̄), then by Theorem 2, ωL(s∗d, s
∗
p) < ωr,

and so ∂ωL

∂sp
> 0. The first-order condition ∂V

∂sp
= 0 and equation (E4) then imply that∫

ω≥ωL
v(ω)f(s∗p|ω)dG(ω) > 0. Since

∫
ω≥ωL

v(ω)f(ω|s∗p)dωf(s∗p) =
∫
ω≥ωL

v(ω)f(s∗p|ω)dG(ω),

the result follows by continuity.

Proof of Theorem 2. All of the necessary steps are explained in the text.

Explanation for Equation (6). Denote the regulator’s payoff in Lemma 5 when sd ≥ sp

by V . Then

∂V

∂sp
= −∂ωL

∂sp
v(ωL)[F (sd|ωL)− F (sp|ωL)]−

∫
ω≥ωL

v(ω)f(sp|ω)dG(ω) (E4)

∂V

∂sd
= −∂ωL

∂sd
v(ωL)[F (sd|ωL)− F (sp|ωL)]−

∫
ω≤ωL

v(ω)f(sd|ω)dG(ω) (E5)

From Theorem 1, we know that full disclosure is suboptimal, i.e., s∗d 6= s∗p. Hence if s∗d ∈

(s∗p, s̄), we must have ∂V
∂sd

∣∣∣
s∗d,s
∗
p

= 0. Next, by Assumption 4, s∗p > s. Moreover, if sp = s̄, the

regulator’s payoff is zero, which is less than what he obtains under no disclosure (Lemma

3). Hence, s∗p ∈ (s, s̄). Hence, ∂V
∂sp

∣∣∣
s∗d,s
∗
p

= 0. Since ∂ωL

∂sd
< 0 and ∂ωL

∂sp
> 0, we can write the

first-order condition as in equation (6).

Example (Informativeness of Regulator’s Signal). The garbling we consider is

a mixture between the original signal s ∈ [0, 1] that is drawn from a distribution f(s|ω)
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satisfying MLRP and a signal that is drawn from a uniform distribution on [0, 1], where

the mixture weight is φ ∈ (0, 1). Formally, define the stochastic transformation density

g(s′|s) ≡ φ · δ(s′ − s) + (1 − φ) · 1, where δ(·) is the Dirac delta function. Then f̂(s|ω) =∫ 1

0
g(s|t)f(t|ω)dt = φ · f(s|ω) + (1 − φ) · 1 is the density of the garbled signal, and it also

satisfies MLRP. If the original signal is garbled k times, the resulting density is f̂k(s|ω) =

φk · f(s|ω) + (1− φk) · 1, so less weight is placed on f(s|ω) the more garbling occurs. We let

α ≡ 1 − φk be a measure of uninformativeness, define fα(s|ω) = (1 − α)f(s|ω) + α · 1, and

consider the regulator’s disclosure policy as α increases from zero to 1.

For example, suppose Ω = [0, 1], S = [0, 1], u(ω) = ω4, v(ω) = ω− 0.5, sp = 0.5, c = 1.1,

and f(s|ω) is a truncated normal distribution with mean ω and standard deviation 0.1,

truncated to the interval [0, 1]. Numerical computations show in this case that not revealing

is strictly preferred if uninformativeness α is in (.07, .66), and revealing is strictly preferred

otherwise. So the optimal disclosure regime is nonmonotonic in the uninformativeness of the

signal.

F Proof for Appendix B

Proof of Proposition B1. For a given distribution Hi denote Ii(ω, sp) ≡ Hi([F (sp|ω)−1−

1]u(ω)). So VNR(sNRp ) =
∫
ω
[1− F (sNRp |ω)]Ii(ω, s

NR
p )v(ω)dG(ω). Also, as a preliminary, ob-

serve that from Proposition 2 and Assumption 2, VR(sRp ) =
∫
ω
[1 − F (sRp |ω)]v(ω)dG(ω) ≤∫

ωr
v(ω)dG(ω). Moreover, VR(sRp ) ≥ VR(s) = E[v(ω)], and VR(sRp ) ≥ VR(s̄) = 0.

Hence, VR(sRp ) ≥ max{E[v(ω)], 0}. Hence, there exists ν ∈ [0, 1] such that VR(sRp ) =

(1− ν)
∫
ωr
v(ω)dG(ω) + ν max{E[v(ω)], 0}.35

35This equation says that VR(sRp ) is a weighted average of two extremes: the payoff under a perfectly
informative signal (weight 1 − ν) and the payoff under a perfectly uninformative signal (weight ν). To see
that, note that in the first case, the regulator can set the passing threshold so that the bank invests and passes
the test if and only if ω ≥ ωr. So the regulator’s payoff is

∫
ω≥ωr

v(ω)dG(ω). In the second case, the regulator

either bans investment completely or always approves it. So the regulator’s payoff is max{E[v(ω)], 0}.
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To prove the proposition, assume that ν < 1/2.36 So, VR(sRp ) > 0. Fix a small ε > 0.

From the assumptions on {Hi}∞i=1, there exists N > 0, such that |Ii(ω, s) − 1/2| < ε for all

i ≥ N , ω ∈ Ω, and s ∈ [s + ε, s̄ − ε]. Suppose i ≥ N . We will show that if ε is sufficiently

small, then VNR(sNRp ) < VR(sRp ) for any possible sNRp . Specifically, if sNRp ∈ [s + ε, s̄ − ε],

then

VNR(sNRp ) <

∫ ωr

ω

[1− F (s|ω)]

(
1

2
− ε
)
v(ω)dG(ω) +

∫ ω̄

ωr

[1− F (s|ω)]

(
1

2
+ ε

)
v(ω)dG(ω)

=
1

2
VR(sNRp ) + ε

(∫ ω̄

ωr

[1− F (s|ω)]v(ω)dG(ω)−
∫ ωr

ω

[1− F (s|ω)]v(ω)dG(ω)

)
,

where the inequality follows from Assumption 2. Hence, for a small enough ε, VNR(sNRp ) <

VR(sNRp ) ≤ VR(sRp ). Next, if sNRp > s̄ − ε, then VNR(sNRp ) ≤
∫ ω̄
ωr

[1 − F (sNRp |ω))]v(ω)dG(ω),

which is less than VR(sRp ), for a small enough ε. Finally, if sNRp < s + ε, then Ii(ω, s
NR
p ) ≥

Ii(ω, s+ ε) > 1
2
− ε. Moreover, if ε is small enough, 1− F (sNRp |ω) > 2ν

1−2ε
(because v < 1/2

implies that 2ν
1−2ε

< 1). Hence, [1− F (sNRp |ω)]Ii(ω, s
NR
p ) > ν. Hence,

= VNR(sNRp ) < ν

∫ ωr

ω

v(ω)dG(ω) +

∫ ω̄

ωr

v(ω)dG(ω)

= ν

∫ ω̄

ω

v(ω)dG(ω) + (1− ν)

∫ ω̄

ωr

v(ω)dG(ω)

≤ ν max{E[v(ω)], 0}+ (1− ν)

∫ ω̄

ωr

v(ω)dG(ω) = VR(sRp ).

This concludes the proof.

36This assumption says that the weight on the payoff under the more informative signal, as explained in
footnote 35, is at least 1

2 .
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G Proofs for Appendix C

Proof of Lemma C1. Consider a disclosure rule (M,h). We first show that for any m ∈M

such that hm(s) > 0 for some s ≥ sp, the posterior distribution f(s|ω,m) satisfies MLRP.

That is, if ω′ > ω, the ratio f(s|ω′,m)/f(s|ω,m) is strictly increasing in s. To see this,

observe that hm(s) = f(m|s) = f(m|s, ω) = f(m|s, ω′). Hence, from Bayes’ rule,

f(s|ω′,m)

f(s|ω,m)
=
f(m|s, ω′)f(s|ω′)

f(m|ω′)
f(m|ω)

f(m|s, ω)f(s|ω)
=

f(s|ω′)
f(m|ω′)

f(m|ω)

f(s|ω)
,

which is increasing in s by Assumption 3.

We now prove the lemma. A bank that observes state ω and receives message m forms

posterior belief pm(ω) ≡ Pr(s ≥ sp|ω,m). So the payoff from investing in the risky asset is

um(ω) ≡ u(ω)pm(ω) − c[1 − pm(ω)]. If the bank receives a message m such that hm(s) > 0

for some s ≥ sp, then by the result above, pm(ω) is strictly increasing in ω. Hence, um(ω)

is strictly increasing in ω, and the bank follows a cutoff rule. If instead the bank receives

a message m such that hm(s) = 0 for every s ≥ sp, then pm(ω) = 0. Hence, um(ω) = −c,

implying the bank does not invest regardless of the value of ω.

Proof of Lemma C2. If the bank follows the regulator’s recommendations, the regula-

tor’s payoff is (C1), as explained in the text. The regulator’s problem is to choose a disclosure

rule to maximize (C1) such that the bank follows the recommendations. The obedience con-

straints are as follows. When the bank observes state ω ∈ Ω and obtains recommendation

ωi ∈ Ω′, it expects to pass the test with probability pi(ω). So the payoff from investing is

ui(ω) ≡ u(ω)pi(ω)− c[1− pi(ω)]. The bank will follow recommendation ωn+1, if and only if

un+1(ω) ≤ 0 for every ω < ωi, and it will follow recommendation ωi ∈ Ω if and only if (i)

ui(ω) ≥ 0 for every ω ∈ [ωi, ωn], and (ii) ui(ω) ≤ 0 for every ω < ωi. By the proof of Lemma

C1, ui(ω) is either strictly increasing in ω or equals to −c. Hence, the obedience constraints
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reduce to

ui(ωi) ≥ 0 if i ∈ {1, ..., n} (G1)

ui(ωi−1) ≤ 0 if i ∈ {2, ..., n+ 1}. (G2)

Equation (G2) reduces to (C2), using (C4). Moreover, if the regulator never recommends

ωi (so hi(s) = 0 for every s ∈ S), then (C2) is clearly satisfied Hence, a solution to the

regulator’s problem satisfies (C2) and (C3).

To complete the proof, we show that if {hi(s)}i,s solves the problem in Lemma C2, then

(G1) is satisfied. Suppose to the contrary that there exists i ∈ {1, ..., n} such ui(ωi) <

0. If ui(ωk) < 0 for every k ∈ {i + 1, ..., n}, let j = n + 1. Otherwise, let j be the

lowest k ≥ i + 1 such that ui(ωk) ≥ 0. If j ≤ ir, we obtain a contradiction because

the regulator can increase his payoff without violating the constraints by recommending

ωj instead of ωi. If j > ir, there exists a function q(s) that satisfied the following: (i)

u(ωir−1)
∑

s≥sp f(s|ωir−1)q(s) − c
∑

s<sp
f(s|ωir−1)q(s) = 0; (ii) for every s < sp, q(s) ≤

hi(s), with at least one strict inequality; and (iii) for every s ≥ sp, q(s) = hi(s). The

regulator can increase his payoff without violating the constraints if in each state s, instead

of recommending ωi with probability hi(s), he recommends ωr with probability q(s) and

ωn+1 with probability hi(s)− q(s).

Proof of Lemma C3. Suppose {hi(s)}i,s solves the regulator’s problem.

1. We first show there exists s′ ≥ sp such that hir(s
′) < 1. If not, then

u(ωir−1)
∑
s≥sp

f(s|ωir−1) · 1− c
∑
s<sp

f(s|ωir−1)hi(s)

≥ u(ωir−1)
∑
s≥sp

f(s|ωir−1)− c
∑
s<sp

f(s|ωir−1) > 0,

where the strict inequality follows since ωNR < ωr. But this contradicts (C2). Hence, there
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also exists j 6= ir such that hj(s
′) > 0. Next, we show that {hi(s)}i,s satisfies (C2) with

equality. For i = ir, this is true because otherwise, the regulator could improve his payoff

without violating the constraints by raising hir(s
′) by some ∆ > 0 and reducing hj(s

′) by

∆ > 0. Now suppose to the contrary that (C2) is slack for some i /∈ ir. Then there exists

s′′ < sp such that hi(s
′′) > 0. The regulator can reduce hi(s

′′) by some ∆ > 0, raise hir(s
′′)

by ∆, raise hir(s
′) by ∆′ ≡ ∆cf(s′′|ωir−1)/[u(ωir−1)f(s′|ωir−1)], and reduce hj(s

′) by ∆′. If

∆ is small enough, then (C2) and (C3) continue to hold, and the regulator increases his

payoff by f(s′)∆′(vir(s
′)− vj(s′)) > 0, contradicting optimality.

2. Suppose to the contrary there exists s ∈ S and i > ir such that hi(s) > 0. Then there

exists s′′′ < sp such that hi(s
′′′) > 0. But then the regulator can improve his payoff without

violating the constraints by adjusting the disclosure rule in the manner described in part 1.

Hence a contradiction.

Proof of Proposition C1. As a preliminary, observe that the Lagrangian of the regu-

lator’s problem is L =
∑

s≥sp f(s)
∑n

i=1 vi(s)hi(s) −
∑n+1

i=2 λi[u(ωi−1)
∑

s≥sp f(s|ωi−1)hi(s) −

c
∑

s<sp
f(s|ωi−1)hi(s)] −

∑
s∈S µs

∑n+1
i=1 hi(s), where λi ≥ 0 and µs are the lagrange multi-

pliers on (C2) and (C3), respectively. From the definition of vi(s) and since f(ω|s)f(s) =

f(s|ω)g(ω), we obtain that

di(s) ≡
∂L

∂hi(s)
=

 λicf(s|ωi−1)− µs if s < sp∑
ω≥ωi

v(ω)f(s|ω)g(ω)− λiu(ωi−1)f(s|ωi−1)− µs if s ≥ sp.
(G3)

The first-order conditions imply the following: (i) if hi(s) = 1, then di(s) ≥ 0; (ii) if

hi(s) ∈ (0, 1), then di(s) = 0; and (iii) if hi(s) = 0, then di(s) ≤ 0. Also note that by Lemma

C3, hi(s) > 0 implies that ωi ≤ ωr. We are now ready to prove the proposition.

Suppose ωi > ωj and hi(s) > 0. If λi = 0, we can show that the regulator never

recommends ωj. Specifically, for every s′′ ≥ sp, dj(s
′′) − di(s′′) =

∑ωi−1

ωj
v(ω)f(s|ω)g(ω) −

λju(ωi−1)f(s|ωi−1), which is negative by Assumptions 2 and 1. Hence, dj(s
′′) < di(s

′′), and
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the first-order conditions imply that hj(s
′′) = 0 for every s′′ ≥ sp. Lemma (C3) part 1 then

implies that hj(s
′) = 0 for every s′ < sp. The rest of the proof assumes λi > 0.

1. If s < s′ < sp, the first order conditions imply that di(s) ≥ 0 ≥ dj(s). Hence,

λicf(s|ωi−1) ≥ λjcf(s|ωj−1). Hence, λic
f(s|ωi−1)
f(s|ωj−1)

≥ λjc. From MLRP, f(s′|ωi−1)
f(s′|ωj−1)

> f(s|ωi−1)
f(s|ωj−1)

.

Hence, λic
f(s′|ωi−1)
f(s′|ωj−1)

≥ λjc. Hence, di(s
′) > dj(s

′). Hence, hj(s
′) = 0.

2. Suppose s > s′ ≥ sp. Following the logic in part 1, it is sufficient to show that

di(s) ≥ dj(s) implies that di(s
′) > dj(s

′). This follows from Assumptions 2 and 1, MLRP,

and the observation that

di(s)− dj(s)
f(s|ωj−1)

=

ωj−1∑
ωi

v(ω)
f(s|ω)

f(s|ωj−1)
g(ω)− λiu(ωi−1)

f(s|ωi−1)

f(s|ωj−1)
+ λju(ωj−1).
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Fernández-Villaverde, Jesús, Pablo Guerrón-Quintana, Keith Kuester, and Juan Rubio-

Ramı́rez (2015). “Fiscal volatility shocks and economic activity”. American Economic

Review 105.11, pp. 3352–84.

Flannery, Mark J (2019). “Transparency and Model Evolution in Stress Testing”. Available

at SSRN 3431679.

Fuchs, William (2007). “Contracting with repeated moral hazard and private evaluations”.

American Economic Review 97.4, pp. 1432–1448.

Gissler, Stefan, Jeremy Oldfather, and Doriana Ruffino (2016). “Lending on hold: Regulatory

uncertainty and bank lending standards”. Journal of Monetary Economics 81, pp. 89–

101.

Goldstein, Itay and Yaron Leitner (2018). “Stress tests and information disclosure”. Journal

of Economic Theory 177, pp. 34–69.

— (2020). “Stress Tests Disclosure: Theory, Practice, and New Perspectives”. (to appear

in) Financial Stress Testing. Ed. by Farmer, Kleinnijenhuis, Wetzer, and Schuermann.

Cambridge University Press.

Goldstein, Itay and Haresh Sapra (2014). “Should banks’ stress test results be disclosed? An

analysis of the costs and benefits”. Foundations and Trends in Finance 8.1, pp. 1–54.

54



Grenadier, Steven, Andrey Malenko, and Nadya Malenko (2016). “Timing decisions in orga-

nizations: Communication and authority in a dynamic environment”. American Economic

Review 106.9, pp. 2552–81.

Harris, Milton and Artur Raviv (2008). “A theory of board control and size”. Review of

Financial Studies 21.4, pp. 1797–1832.

Holmstrom, Bengt (1982). On the theory of delegation. Northwestern University.

Huang, Jing (2019). “Optimal Stress Tests in Financial Networks”. Available at SSRN

3465799.

Inostroza, Nicolas (2019). “Persuading Multiple Audiences: Disclosure Policies, Recapital-

izations, and Liquidity Provision”.

Inostroza, Nicolas and Alessandro Pavan (2017). Persuasion in global games with application

to stress testing.

Jehiel, Philippe (2015). “On transparency in organizations”. Review of Economic Studies

82.2, pp. 736–761.

Jensen, Michael C (1986). “Agency costs of free cash flow, corporate finance, and takeovers”.

American Economic Review 76.2, pp. 323–329.

Julio, Brandon and Youngsuk Yook (2012). “Political uncertainty and corporate investment

cycles”. Journal of Finance 67.1, pp. 45–83.

Kamenica, Emir and Matthew Gentzkow (2011). “Bayesian persuasion”. American Economic

Review 101.6, pp. 2590–2615.

Kolotilin, Anton (2018). “Optimal information disclosure: A linear programming approach”.

Theoretical Economics 13.2, pp. 607–635.

Kolotilin, Anton, Tymofiy Mylovanov, Andriy Zapechelnyuk, and Ming Li (2017). “Persua-

sion of a privately informed receiver”. Econometrica 85.6, pp. 1949–1964.

Lazear, Edward P (2006). “Speeding, terrorism, and teaching to the test”. Quarterly Journal

of Economics 121.3, pp. 1029–1061.

55



Leitner, Yaron (2014). “Should regulators reveal information about banks”. Federal Reserve

Bank of Philadelphia Business Review, Third Quarter.

Leitner, Yaron and Bilge Yilmaz (2019). “Regulating a model”. Journal of Financial Eco-

nomics 131.2, pp. 251–268.

Levin, Jonathan (2003). “Relational incentive contracts”. American Economic Review 93.3,

pp. 835–857.

Levit, Doron (2020). “Words speak louder without actions”. The Journal of Finance 75.1,

pp. 91–131.

MacLeod, W Bentley (2003). “Optimal contracting with subjective evaluation”. American

Economic Review 93.1, pp. 216–240.

Mathevet, Laurent, David Pearce, and Ennio Stacchetti (2019). “Reputation and information

design”. New York University.

Milgrom, Paul R (1981). “Good news and bad news: Representation theorems and applica-

tions”. Bell Journal of Economics, pp. 380–391.

Orlov, Dmitry, Pavel Zryumov, and Andrzej Skrzypacz (2018). “Design of macro-prudential

stress tests”.

Parlatore, Cecilia and Thomas Philippon (2018). “Designing Stress Scenarios”. New York

University.

Quigley, Daniel and Ansgar Walther (2020). “Inside and outside information: reverse unrav-

eling and stress test design”. Unpublished Working Paper.

Shapiro, Joel D and Jing Zeng (2019). “Stress testing and bank lending”. Available at SSRN

3432291.

Williams, Basil (2017). “Stress tests and bank portfolio choice”. WP, New York University.

56


	Introduction
	Related Literature
	Model
	Revealing vs. Not Revealing
	Bank's investment
	Regulator's payoff
	Preferred regime
	Exogenous passing threshold
	Endogenous passing threshold


	Optimal disclosure
	Bank investment
	Regulator's payoff
	Exogenous passing threshold
	Endogenous passing threshold

	Discussion
	Conclusion
	Capital plans
	Heterogeneous banks
	General disclosure
	Regulator's problem
	Properties of optimal disclosure rules
	Monotone rules

	No Commitment to Pass/Fail Rule
	Proofs for Main Text
	Proof for Appendix B
	Proofs for Appendix C

