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ABSTRACT

We introduce commodity cash-and-carry traders into a limits to arbitrage ex-
tension to the speculative storage framework. Carry traders are assumed to have
access to a market for off-shore storage technology — shipping vessels that can
be chartered to store physical commodity bought in one period for delivery in the
next period. We show that in equilibrium, arbitrage activities of cash-and-carry
traders are linked with the risk premium in commodity prices and the cost of float-
ing storage. We test empirical predictions of the model using a novel data set
with granular information on every tanker that delivered seaborne crude oil into
the United States during 2008-2012. Our empirical results are consistent with the
predictions of the model and are very strongly present in the data.
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Global production of crude oil increased steadily from 64 million barrels per day in
1996 to 73 million barrels per day in 2004. Crude oil prices followed a similar fairly
steady upward pattern. During the subsequent five and a half years—from 2004 to mid-
2010—global crude oil production remained at about the same level of 73-74 million
barrels per day, while prices had a roller coaster ride.

Figure 1: Global Crude Oil Supply and Brent Nearby Futures Prices: 1996–2014

Sources: Data on global crude oil supply is from the U.S. Energy Information Administration.
Brent futures prices are from the Intercontinental Exchange. This figure presents global crude
oil production and Brent nearby futures prices. Global supply is in millions of barrels per day.
Annual average crude oil prices are computed by averaging weekly nearby Brent futures prices.

Starting in about mid–2010, global oil supply began to rise largely due to the use of
new on-shore production technologies such as slant drilling and hydraulic fracturing. In
2010-2011, global oil supply reached 75 million barrels per day while prices rose from 70
to 100 dollars per barrel. In 2012, global crude oil production increased to 76 million
barrels per day while prices fluctuated around 110 dollars per barrel.
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During 2008-2012, the term structure of Brent futures prices has stayed on average
highly upward sloping, a.k.a. in contango, and often very highly upward sloping. Pe-
riods when the term structure was very highly upward sloping were called the times of
supercontango.

Figure 2: Global Crude Oil Supply and the Slope of the Term Structure of Brent Futures
Prices: 1996–2014

Sources: Global crude oil supply data is from the U.S. Energy Information Administration. Brent
futures prices are from the Intercontinental Exchange. This figure presents global crude oil supply
and the slope of the term structure of Brent futures prices. Global production is in millions of
barrels per day. The slope of the Brent futures term structure is in dollars per thousand barrels
calculated as the difference between the futures contracts three months out and the nearby. Annual
averages are computed from daily term structure prices.

A period of contango, let alone supercontango, is likely to be noticed by speculators
– those, who are interested in buying one hundred thousand barrels of crude oil at, say,
50 dollars per barrel now, storing it, and then selling it at 55 dollars per barrel two to
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three months later.
Canonical speculative storage models of Deaton and Laroque (1992, 1996) capture

this logic when deriving an equilibrium relationship between prices, inventories, supply
and demand for a storable commodity like crude oil. In the models, total supply consists
of new production in a given period (assumed for technological reasons to be exogenous)
and inventory that was deliberately put into storage in the previous period. Total
demand for a commodity in a given period consists of stochastic consumer demand and
demand for inventory to be put into storage until the next period. The amount of
storage reflects a speculative decision based on the current and expected future prices
and storage costs.

In equilibrium, current price is predicted to be equal to the expected discounted fu-
ture price minus the cost of storage. If the the expected discounted future price is higher
than the current price and the premium exceeds the cost of storage, the speculators will
have a strong motive to buy a commodity at the current price, put it in storage, and
sell it at the higher price in the future.

Crucially, however, the reverse is not true. Namely, the current price can be much
higher than the expected discounted future price and there is little speculators can do
about it because speculative storage cannot be negative — supply cannot be borrowed
from future periods for current consumption. The canonical commodity price formation
framework with speculative storage is thus able to match a crucial empirical fact of
commodity prices — “long periods of stagnant prices interrupted by sharp upward spikes”
(Deaton and Laroque (2003)).

The framework, however, fails to match other aspects of the commodity price pro-
cess, most critically high autocorrelation of prices to the point of nonstationarity and
autoregressive heteroscedasticity combined with structural breaks. Moreover, the mod-
els of Deaton and Laroque (1992, 1996) and their extensions assume “free entry into
the storage sector as well as risk neutrality, implying that the actions of arbitrageurs
will raise or lower the current price until it is at a level which renders the strategy un-
profitable in expectation” (Dvir and Rogoff (2014)). Assumption of risk neutrality also
implies that the canonical framework has little to say about futures prices as agents do
not have a reason to hedge commodity price risks.

There is, however, a growing theoretical and empirical literature which argues that
because arbitrageurs are capital constrained, arbitrage activities are subject to frictions
and limitations that manifest themselves in both market prices and positions of arbi-
trageurs (see, for example, Shleifer and Vishny (1997)). Moreover, if arbitrage activities
require specialized knowledge, they are delegated to specialized funds operated by asset
managers, who extract the entire surplus from these activities subject to leverage con-
straints — adding to market frictions in the process (see, for example, Berk and Green
(2004)).

Acharya, Lochstoer and Ramadorai (2013) develop a two-period equilibrium model
of commodity markets that includes frictions due to limits to arbitrage. The model
consists of commodity consumers, commodity producers, and asset managers. In each
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period, commodity consumers demand a certain amount of commodity, e.g., crude oil,
in the physical (cash) market. Competitive producing firms supply the physical market
with an inelastic supply of the commodity save for an amount that they choose to store
as inventory and make available in the next period. Risk averse producers also have
access to the futures market where they can hedge their natural long position in the
physical commodity by taking a short futures position. The producers’ hedging demand
in the futures market is accommodated by specialized, capital-constrained commodity
asset managers, who provide the long side of the futures trade in return for appropri-
ate compensation and only up to a limited size. The authors show that frictions and
limitations imposed on the producers and commodity asset managers help explain how
hedging activities in the futures market translate into equilibrium commodity prices as
a function of speculative inventory. By assumption, arbitrageurs in Acharya, Lochstoer
and Ramadorai (2013) trade only in the futures market, but not in the cash market.
Thus, in order to link cash and futures market prices with speculative inventory deci-
sions, the authors rely on the concept of a convenience yield — an assumed reason to
hold inventory for ease of future access or “an embedded timing option” (Routledge,
Seppi and Chester Spatt (2000)).

In this paper, we propose an extension to the equilibrium model of Acharya, Lochstoer
and Ramadorai (2013) by adding commodity cash-and-carry traders—risk averse arbi-
trageurs who possess specialized knowledge and technology to arbitrage between the
physical (cash) and futures markets—and test implications of the model by using a
unique, highly disaggregated data for crude oil imports into the United States.

Cash-and-carry traders are assumed to have access to a market for off-shore floating
storage technology — shipping vessels that can be used to store physical crude oil in one
period and deliver it in the subsequent period.1 The market for off-shore floating storage
technology is assumed to be competitive and driven solely by the demand and supply
of vessels suitable for storage and transportation of crude oil. It is further assumed
that the floating storage market is open only to carry traders at a cost proportional to
the amount stored as floating inventory. In addition to having access to costly floating
storage technology, carry traders possess appropriate knowledge to trade in the crude oil
cash and futures markets. Carry traders are assumed to be risk-averse and constrained
by the size of their unhedged arbitrage position.

In equilibrium, we preserve the canonical results of Deaton and Larogue, i.e. “long
periods of stagnant prices interrupted by sharp upward spikes.” In addition, we show
that in equilibrium, during the periods of sharp upward spikes in prices in the physical
market, futures prices are also in contango or even supercontango. During these periods,
equilibrium speculative off-shore inventory of commodity carry traders is positive. In
contrast, when the term structure is slightly upward sloping, flat or downward sloping,
equilibrium inventory of commodity carry traders is at zero.

Empirically, we should expect to see a component of inventories associated with
1On the use of floating storage to speculate in the market for crude oil see, for example, Atkins

(2016).
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activities of cash-and-carry traders to begin rising around 2008 until about mid–2010
(when contango is increasing) and then to decline from the second half of 2010 until the
end of 2012 (when contango is decreasing). The amounts put into off-shore speculative
storage should be of relatively limited size due to frictions and limitations of executing
cash-and-carry arbitrage.

Instead of relying on aggregate inventory data as in Kilian and Murphy (2013) and
Kilian and Lee (2014), we are able to use granular data on every tanker that delivered
seaborne crude oil into the United States during 10/01/2008–12/31/2012 to build a
proxy for the speculative floating inventory component. As predicted by theory, we find
that speculative floating inventory is strongly positively related to the slope of Brent
futures prices and negatively related to the costs of using vessels for use as speculative
storage.

We observe that speculative floating inventory imported into the U.S. increased dur-
ing 2008–August 2010 when the global supply response was constrained and then de-
creased to zero during the second half of 2010 and into 2011 when the U.S. was increasing
its domestic production of crude oil even though the term structure of (globally deter-
mined) Brent futures prices remained on average in contango. We also find that price
volatility was lower when the speculative inventory was rising during 2008—mid-2010.

The remainder of the paper is as follows. Section 1 presents the model. Section 2
presents considerations for our empirical strategy to examine the predictions of the model
by using disaggregated U.S. imports data for crude oil. Section 3 presents derivation
of the time series for floating speculative inventory. Section 4 presents our empirical
analysis. Section 5 concludes.

I. An Equilibrium Model of Commodity Prices with

Speculative Storage and Cash-and-Carry Traders

We develop an equilibrium model of commodity prices in the presence of speculative
storage and limits to arbitrage. Our model extends the equilibrium model of Acharya,
Lochstoer and Ramadorai (2013) by adding cash-and-carry traders - arbitrageurs who
possess specialized knowledge and technology to arbitrage between the physical and the
futures markets for crude oil.

There are four types of agents in the two-period equilibrium model: consumers of
crude oil, producers of crude oil, commodity fund managers, and cash-and-carry traders.
The first three types of agents are modeled the exact same way as in Acharya, Lochstoer
and Ramadorai (2013). A description of these agents just sufficient for our purposes is
below. For ease of exposition, wherever possible we preserve the original notation.

A. Consumers

Consumers maximize the following objective function:
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u (C0, Q0) + �E0u (C1, Q1) , (1)

where Qt is the total quantity of crude oil supplied and Ct is consumption of other
goods, respectively in period t = 0, 1.
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is assumed to be a constant elasticity of substitution utility function with the elas-
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where St is the price of crude oil in period t = 0, 1.
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For parsimony, demand for other goods, Ct is assumed to be an exogenous random
variable with E(lnCt) = µ and V ar(lnCt) = �
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where  > 0 is a constant.

B. Producers

There is an infinite number of production firms with a mass normalized to unity. Produc-
tion firms are operated by production managers who have access to three technologies.
Firstly, production managers operate a specialized production technology that exoge-
nously generates a deterministic output of g0 barrels of crude oil in period zero and g1

barrels in period one.
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Secondly, production managers have access to on-shore storage technology for crude
oil. This storage technology is available to all production managers on the same terms
as they collectively own it. Namely, for i barrels of crude oil put into on-shore storage
facility at time zero, a production manager receives i(1��) barrels of crude oil in period
one, where 0 < � < 1 denotes depreciation due to storage in physical terms (barrels).

Thirdly, production managers have access to the crude oil futures market where they
can hedge against fluctuations in spot crude oil prices.

Production managers are assumed to be risk averse maximizers of the value of their
firms (the firms, in turn, are fully owned by consumers) subject to the variance of next
period earnings. To do so, in period zero, a production manager sells g0 � i barrels of
crude oil in the physical market at the period-zero spot price of S0 dollars per barrel.
In addition, the production manager sells hp barrels worth of futures contracts in the
futures market at the price of F dollars per barrel (F is known in period zero). In period
one, the production manager sells i(1��)+g1 barrels of crude oil at the period-one spot
price of S1 dollars per barrel and cash settles the short futures position, hp.

The objective function of a representative production manager is formally described
as follows:

max

i,hp

S0 (g0 � i) + hpF + E {⇤S1 (i(1� �) + g1 � hp)} (6)

��p

2

V ar {S1 (i(1� �) + g1) + hp (F � S1)}

s.t. i � 0,

where �p denotes a representative production manager’s risk aversion coefficient.
The first-order condition with respect to i gives the optimal rule for on-shore inven-

tory:

i

?
(1� �) =

(1� �)E {⇤S1}� S0 + �i

(1� �)�p�
2
s

� g1 + hp, (7)

where �i is the Lagrange multiplier on the on-shore inventory nonnegativity constraint
and �

2
s is the variance of spot crude oil prices.

Optimal on-shore inventory rises with an increase in the amount hedged by the
producer in the futures market and falls with an increase in the risk aversion coefficient
of the producer, spot price volatility and production in the next period. In the event
of an on-shore inventory stock-out, �i > 0 and the current spot price S0 can be higher
than expected discounted future spot price as in the speculative storage framework of
Deaton and Laroque (1992, 1996).

The first-order condition with respect to hp gives the optimal rule for hedging de-
mand:

h

?
p =

F � E {⇤S1}
�p�

2
s

+ i

?
(1� �) + g1. (8)
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Notably, if F = E {⇤S1} indicating that the futures and spot crude oil markets are free
of frictions and limitations, then it is optimal for a representative production manager
to be fully hedged, i.e., to set h

?
p = i

?
(1� �) + g1. In contrast, if E {⇤S1} > F , then it

is optimal for a representative production manager to be less than fully hedged, i.e., to
demand a smaller short open position in the futures markets.

C. Commodity fund managers

Commodity fund managers are risk-averse long-only speculative investors who possess
a specialized knowledge to invest in spot and futures markets for crude oil; they do not
have capacity to invest in oil producing firms nor have access to the physical crude oil
storage technology of any kind. Their optimization decisions are constrained by the
variance of their net speculative position. In period zero, a commodity fund manager
goes long hs barrels of futures contracts in the futures market at a price of F dollars per
barrel. In period one, the commodity fund manager cash settles the entire long position
at the period-one spot price of S1 dollars per barrel.

The objective function of a representative commodity fund manager is described as
follows:

max

hs

hs (E {⇤S1}� F )� �s

2

V ar (hs (S1 � F )), (9)

where �s denotes a representative commodity fund manager’s risk aversion coefficient.
The first-order condition with respect to hs gives the optimal rule for the optimal

long speculative position in the futures market:

h

?
s =

E {⇤S1}� F

�s�
2
s

. (10)

If E {⇤S1} > F , commodity fund managers are optimally willing to provide a greater
long open interest.

D. Cash-and-carry traders

Cash-and-carry traders are a new type of agent that we introduce into the model of
Acharya, Lochstoer and Ramadorai (2013). These traders possess a specialized knowl-
edge to arbitrage between the cash (physical) and futures markets for crude oil. In the
cash market, they are assumed to have access to off-shore costly storage technology —
shipping vessels that can be used to store physical crude oil in period zero for delivery
in period one. The floating storage market is open only to carry traders at a cost pro-
portional to the amount stored as floating inventory. The market for off-shore floating
storage technology is assumed to be competitive and driven solely by the demand and
supply of vessels suitable for storage and transportation of crude oil. To that end, it is
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assumed that between period zero and one, the market for floating storage is unaffected
by any frictions, limitations, quantities and prices in the physical or futures markets for
crude oil. Carry traders are further assumed to not have access to the on-shore storage
facilities owned and operated by the producers. Lastly, in addition to having access to
costly floating storage technology, carry traders possess appropriate knowledge to trade
in the cash and futures markets for crude oil.

Carry traders are risk averse. Their optimization decisions are constrained by the
variance of the value of their speculative position. In period zero, a carry trader buys
y barrels of crude oil in the at the period-zero spot price of S0 dollars per barrel and
puts the entire inventory into floating storage at a cost R0 dollars per barrel. The carry
trader also sells short hc barrels worth of futures contracts at the price of F dollars per
barrel. In period one, the floating inventory is delivered and the carry trader sells the
physical inventory and cash settles the short position at the period-one spot price of S1

dollars per barrel.
The objective function of a representative carry trader is described as follows:

max

y,hc

�yS0 � yR0 + hcF + E {⇤S1} (y � hc)�
�c

2

V ar {S1 (y � hc)} (11)

s.t. y � 0,

where �c denotes a representative carry trader’s risk aversion coefficient.
The first-order condition with respect to y gives the optimal rule for the optimal

floating inventory:

y

?
=

E {⇤S1}� S0 �R0 + �y

�c�
2
s

+ hc, (12)

where �y is the Lagrange multiplier on the off-shore inventory nonnegativity constraint.
Optimal off-shore inventory rises with an increase in the amount hedged by the carry

trader in the futures market and falls with the cost of floating storage, an increase in the
risk aversion of the carry trader and spot price volatility. In the event of an off-shore
inventory stock-out, �y > 0 and the current spot price S0 can be higher than expected
discounted future spot price.

The first-order condition with respect to hc gives the optimal rule for a carry trader’s
optimal (short) arbitrage position in the futures market:

h

?
c =

F � E {⇤S1}
�c�

2
s

+ y

?
. (13)

Note that if E {⇤S1} > F , then it is optimal for a carry trader to demand a smaller
short position. This is in the same direction as the producer (who is also short futures)
and in the opposite direction from the asset manager (who is providing the long side).
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E. Equilibrium

The market for physical crude oil clears the same was as in Acharya, Lochstoer and
Ramadorai (2013) with an addition of the speculative floating oil. Recall that unlike
on-shore storage technology that results in a loss of physical oil of size 0 < � < 1 between
periods zero and one, floating storage is costly, but does not result in any intertemporal
loss of physical oil. Accordingly, in equilibrium, supply in period one,

Q1 = Y

?
+ I

?
0 (1� �) +G1, (14)

where Y

? is the aggregate optimal off-shore inventory, I?0 the aggregate on-shore inven-
tory carried over from period one, and G1 is the aggregate production in period one.

Futures market clears in accordance under the zero net supply condition

h

?
p + h

?
c = h

?
s, (15)

with long-only positions established by commodity fund managers having to be exactly
equal to the sum of short positions demanded by the commodity producers and the carry
traders. Note that both commodity carry traders and commodity producers demand a
short position in the futures markets against the limited capacity of capital-constrained
commodity asset managers to provide the long side. This introduces additional limits
to hedging for commodity producing firms and translates into equilibrium prices.

Substituting Equations (8), (10), and (13) into Equation (15), and then substituting
Equation (14) for the market clearing optimal supply results in

E {⇤S1}� F = ��

2
sQ1 (Y

?
, I

?
0 ) , (16)

where � > 0 is defined such that 1
� =

1
�p

+

1
�s

+

1
�c

. Further substituting Equation (5)
for �

2
s results in

E {⇤S1}� F = �Q

1� 2
✏

1 (Y

?
, I

?
0 ) , (17)

Substituting out the futures price using the equilibrium arbitrage condition (19) and
the period one equilinrium supply (14) results in

E {⇤S1 (Y
?
, I

?
0 )}� S0 (Y

?
, I

?
0 )�R0 + �y (Y

?
) = � (Y

?
+ I

?
0 (1� �) +G1)

1� 2
✏
, (18)

an equation that combines spot prices and aggregate supply as functions of equilibrium
on-shore and off-shore inventory.

F. Model predictions and other considerations

Combining the two first-order conditions for the cash-and-carry trader given by Equa-
tions (12) and (13) results in an equilibrium arbitrage condition of the form:

F � S0 �R0 + �y (y
?
)

�c�
2
s

= 0. (19)
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Equation (19) gives predictions about the relationship between the slope of the term
structure of futures prices, F � S0, speculative floating inventory, y?, and the cost of
floating storage, R0.

Intuitively, when F > S0 + R0, i.e., the (deferred) futures price is higher than the
current spot (or nearby futures) price and the cost of off-shore storage, it is optimal to
set y? > 0 and profit from the carry trade. In contrast, when F  S0 +R0, it is optimal
to set y? = 0 (and �y > 0). From this intuition, a change in �y is negatively related to a
change in y

?, and there is a non-linearity or a regime change at the level of the “floating
inventory stockout” when y

?
= 0.

Model predictions reflect the assumption that producers operate a specialized pro-
duction technology that exogenously generates g0 barrels of crude oil in period zero
and g1 barrels in period one. This is the same assumption as in Deaton and Laroque
(1992, 1996). Dvir and Rogoff (2009, 2014) extend the canonical speculative storage
framework by allowing for endogenous supply response. The authors derive equilibrium
responses to higher current oil prices under two stylized regimes: constrained supply and
unconstrained supply. They show that if the supply of oil in the current period is tech-
nologically or otherwise unconstrained, then, in (a rational expectations) equilibrium,
suppliers respond by selling oil in the current period until the temporarily elevated cur-
rent price declines to the level where current price and the expected future price minus
storage costs equalize. In this regime, inventories held in speculative storage decline;
possibly all the way to zero.

However, if for technological, regulatory or other reasons, the supply of oil in the
current period is constrained while the demand for oil is expected to remain elevated,
the equilibrium dynamics of prices and inventories follows a different pattern. In the
constrained supply regime, in equilibrium, both (already high) current price and ex-
pected future price will increase because as the authors put it “rising prices due to rising
demand can be seen as a process which is likely to continue.” All in all, the expected
future price minus storage costs rises to the level of the elevated current price because
the supply response is not expected to be forthcoming. Equilibrium inventories held in
speculative storage also increase.

While we maintain the exogenous supply assumption for commodity producers as
in Deaton and Laroque (1992, 1996), the presence of cash-and-carry traders effectively
introduces a mechanism to adjust oil supply between adjacent periods, albeit of limited
capacity. It is, thus, straightforward to extend our empirical predictions regarding float-
ing storage to regimes with constrained and unconstrained supply of Dvir and Rogoff
(2009, 2014) as long as we can pinpoint these regimes in the data.
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II. Considerations for the empirical strategy

A. Practical considerations

Understanding the practicalities of setting up a cash-and-carry trade in crude oil is useful
for considerations for our empirical strategy. In practice, a speculative cash-and-carry
trade that links physical and futures markets for crude oil is set up very similarly to the
way it is described in the theoretical model.2

Consider the following simplified cash-and-carry trade between the Arabian Gulf and
the U.S. Gulf. At time t, a carry trader buys Yt barrels of crude oil in the Arabian Gulf
at the price St dollars per barrel. The trader also charters a vessel at the daily cost Rt

dollars per barrel in order to ship Yt barrels to the U.S. Gulf. The vessel is expected to
be at sea (both en route and as floating storage) for T days. Knowing that, the trader
sells Yt

St+RtT
F t+T
t

barrels worth of crude oil futures contracts, where F

t+T
t is the time t price

of the futures contract that matures in t+T . After T days, Yt barrels of crude oil arrive
in the U.S. Gulf. Of this amount, Yt

St+RtT
F t+T
t

barrels are delivered at the expiration of the
futures contract to settle the short futures position. If F t+T

t > St + RtT , then there is
Yt(1� St+RtT

F t+T
t

) additional barrels to sell at F

t+T
t per barrel, earning F

t+T
t Yt(1� St+RtT

F t+T
t

)

dollars in profits or Yt(F
t+T
t �St �RtT ). The carry trader will continue buying, storing

and shipping multiples of Yt if F t+T
t � St � RtT > 0 subject to leverage or financing

constraints, as well as additional frictions. Additional frictions include, for example,
costs per vessel over and above the costs of shipping.

For illustrative purposes, consider the following numerical example closely based on
actual data.

Yt is 2 million barrels, the capacity of a Very Large Cargo Carrier (VLCC).
F

t
t , the price of the nearby Brent futures contract, which we assume to be

approximately equal to St, is 57 dollars per barrel. T is 180 days. This
includes the estimated time at sea for the route from Ras Tanura, Saudi
Arabia to Houston, TX at an average speed of 13.5 knots. This time also
includes loading time and unloading times (using Aframax vessels), adverse
weather conditions adjustments, laytime, and possible use of the VLCC as
floating storage. F

t+180
t , the price of the Brent futures contract expiring in

180 days is 66 dollars. Daily time charter of the VLCC, Rt, is 47,000 dollars
per day. Futures contracts with delivery in 180 days sold short, Yt

F t
t+RtT

F t+T
t

is
1,855,455 barrels or 1,856 contracts of Brent futures contracts (per contract
specifications, the size each contact is 1,000 barrels). VLCC charter costs
add up to 4.23 dollars per barrel. Additional costs include monthly VLCC
hull cleaning, two days steaming to remove growth and idle bunkering costs,
as well as cargo insurance, lease of Aframax vessels for unloading, possible

2For cash-and-carry trades, see also Knittel and Pindyck (2013) and Frankel (2014).
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demurrage charges, margin and financing costs and trading fees. Based on
the industry estimates, these costs add up to about 4.4 million dollars or 2.19
dollars per barrel. Under these assumptions, total profits per VLCC amount
to about 5.16 million dollars or 2.58 dollars per barrel. If the price of the
six months out futures contracts drops from 66 to 63.42 dollars per barrel, a
cash-and-carry speculator becomes indifferent between engaging in the trade
or not.

B. Regression setup

Suppose that at time t, we are able to observe a proxy for the aggregate speculative
floating inventory Yt. Based on the implications of the equilibrium model as specified in
Equation (19), we can set up the following empirical specification written in a form of a
linear regression

F

t+T
t � F

t
t = �1Yt + �2TRt + ✏t, (20)

where F

t+T
t � F

t
t is the slope of the term structure of futures prices, and Rt is the daily

cost of chartering a vessel. The variables F

t+T
t � F

t
t and Rt, which are expressed in

dollars per barrel, are market determined and observable. The coefficients �1 and �2 are
expected to be positive. The residual is denoted by ✏t.

The empirical specification should also account for a possibility of two separate
regimes associated as per Dvir and Rogoff (2009, 2014) with constrained and uncon-
strained overall supply. If the supply is unconstrained, the amount of speculative float-
ing inventory might be quite small even though the slope of the term structure may
be positive and steep and the costs of shipping may be relatively low. If the supply is
constrained, however, an increase in the amount of the speculative floating inventory
should be positively associated with the slope of the term structure of crude oil futures
prices for given costs of floating storage.

C. Nuanced data considerations

As mentioned before, it is very difficult to empirically single out inventory associated
with speculative storage activity out of total global inventories. As noted by Kilian and
Murphy (2013) and Kilian and Lee (2014), data on global crude oil inventories is not
publicly available; the two studies construct proxies for global crude oil inventories using
publicly available data from the U.S. Energy Information Administration (EIA) and the
Energy Intelligence Group, respectively. Furthermore, the component of global crude oil
inventories associated with speculative activity is also not publicly observable. It is even
more difficult to extract speculative floating inventory, Yt out of the publicly available
data.
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In this paper, we use granular data on every tanker that delivered seaborne crude oil
into the United States during 2008-2012 to derive a proxy for the speculative floating
inventory component. Before we describe the data, however, we establish a number of
nuanced data considerations that will help us formulate our empirical analysis.

Firstly, increase in global oil supply from mid–2010 on is primarily associated with
the surge in oil production in one country – the United States – due to the use of new
on-shore technologies such as slant drilling and hydraulic fracturing. Figure 3 illustrates
that after a prolonged period of decline, U.S. oil production has been on the steady rise
starting in mid–2010, while the supply response from the rest of the world remained flat.

Figure 3: Global Crude Oil Production With and Without the U.S.: 1996–2014

Sources: U.S. Energy Information Administration. The top line plots the total global production
of crude oil in million of barrels per day averaged lever a year. The bottom line plots global
production minus production of crude oil in the United States. The difference between the two
lines is crude oil production in the U.S. in million barrels per day averaged over a year.

If practically the entire increase in the global oil supply can be associated with the
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increase in on-shore oil production in the U.S., then the change in the supply regime
from constrained to unconstrained can be traced to the U.S.

Secondly, due to the export ban that has been in effect between 1975 and 2015, U.S.
producers could not export any of its produced crude oil prior to 2015. Thus, while
the global oil supply remained constrained, the U.S. oil supply became unconstrained.
However, because the additionally produced crude oil could not be exported, it needed
to be first stored in the available U.S. storage facilities and then transported to and
processed by U.S. refineries for both domestic consumption and export (as there was
no ban on exports of refined oil products from the U.S.). Consequently, as Figure 4
illustrates, available inland storage facilities experienced a steady increase in inventories.

Figure 4: U.S. Commercial Crude Oil Inventories: 1996–2015

Sources: U.S. Energy Information Administration. The solid line plots U.S. end of the month
commercial crude oil inventories in millions of barrels. The horizontal dashed line plots capacity
utilization of U.S. on-shore storage facilities (in percent). For technological reasons, 85 percent
capacity utilization means that on-shore storage facilities are full.
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Thirdly, as the supply of inland crude oil in the U.S. became unconstrained while
global seaborne supply remained constrained, a persistent positive spread developed
between global seaborne benchmark Brent and U.S. inland benchmark, West Texas
Intermediate (WTI). According to Figure 5, the Brent–WTI spread became persistently
positive after August 2010.

Figure 5: Brent–WTI Spread: 2008–2012

Sources: Intercontinental Exchange and New York Merchantile Exchange. The line plots the
difference between the average monthly price of the Brent nearby futures contract and the average
monthly price of the WTI nearby futures contract.

At times, a barrel of global Brent crude traded for more than 20 dollars more than
a barrel of U.S. inland WTI crude. Yet, in spite of the glut of inland crude oil, for a
variety of technological reasons, inland crude could not be readily transported to or used
in a large number of refineries in the U.S., especially along the Eastern seaboard.3

While these technological reasons were being partially worked out, imports of seaborne
crude into the United States remained above U.S. domestic production of crude oil until
the end of 2012. Trends in U.S. domestic production and seaborne imports into the U.S.
are illustrated in Figure 6.

These observations suggest an empirical strategy that can be employed to examine
the predictions of speculative storage framework under limits to arbitrage by using U.S.
imports data for crude oil.

According to speculative storage theory, restricted supply should be associated with
a build-up of speculative inventories and unrestricted supply should be associated with
a decline in speculative inventories. Supply of crude oil in the U.S. became unrestricted

3We thank Vikas Raman for bringing the Brent–WTI spread as an indicator of a possible structural
break in the crude oil market.
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Figure 6: U.S. Crude Oil Imports and Production: 1996–2014

Sources: U.S. Energy Information Administration. The top series is average monthly crude oil
imports (in million barrels per day), including Strategic Petroleum Reserve. The middle series
is average monthly crude oil imports (in million barrels per day), including Strategic Petroleum
Reserve, but excluding Canada and Mexico. The bottom series is average monthly crude oil
production (in million barrels per day).

starting in about August 2010, while it remained restricted globally because of the ban
on the export of crude oil from the U.S. Theory predicts that we should see speculative
U.S. inventories increase from 2008 until about August 2010 and then decline. However,
because crude oil could not be exported from the U.S. at the time, additionally produced
oil was being added to the available U.S. on-shore storage facilities, quickly filling them
up. As a result, total U.S. inventories were rising toward total available storage capacity
from 2008. At the same time, while the U.S. was producing more domestically, it was
still consuming more than it was producing which created a need to import additional
crude oil primarily by sea while the term structure of futures prices stayed in contango.
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It is possible then that seaborne imports into the U.S.–while on a declining trend–can
contain a component that can identified as speculative floating inventory.

III. Floating Inventory Data

A. Bill of Lading

Our source data consists of 200,930 individual Bills of Lading (BOL) for all seaborne
imports of crude oil and energy products into the United States during 2008–2012 made
available to us by DataMyne, a data aggregator and analytics company.

A Bill of Lading (BOL) is “a document that establishes the written evidence of a
contract for the carriage and delivery of goods sent by sea for a certain freight.”4 It
serves as evidence of the right to entry into the U.S.5 For illustrative purposes, a stylized
Bill of Lading is presented in Figure 7.6

<Insert Figure 7>

Analogously to customs declarations that must be submitted by individuals entering
the United States, Bills of Lading must be mandatorily submitted by all cargo carriers
entering U.S. ports to the U.S. Customs and Border Protection (CBP) — the federal
law enforcement agency of the United States Department of Homeland Security with the
mandate to enforce laws and regulations related to the collection of customs duties and
the crossing of U.S. borders. The enforcement mandate of the CBP ensures that BOL
source data is accurate as counteparties are obligated to accurately report the name of
the transportation company, the vessel, and the route. In addition, as a BOL is typically
linked to a Letter of Credit and associated payments, counterparties are motivated to
report the date of arrival in a U.S. port as close to the verified date of arrival as possible
so they get paid faster.

Not all of the BOL information, however, is fully standardized. As the responsi-
bility for filing BOL and assigning classification codes is delegated to transportation
companies, product description codes and counterparty codes could vary. We utilize
internal standardization protocols for company names, products and destinations im-
plemented by DataMyne, which first collected source BOL data for each arriving vessel
from the CBP under the U.S. Freedom of Information Act and then standardized them
for subsequent analytics.

Furthermore, some important information is not required to be reported in a BOL.
This information consists of the date of a vessel’s departure and whether some or all of the

4Mason v. Lickbarrow, 1 H. Bl. 359.
5Trade Act of 2002, U.S. Customs and Border Protection
6Figures and tables on the data and empirical results are at the end of the paper.
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cargo is being used as floating storage. As described below, we will employ statistical
learning tools to classify some vessels to a speculative floating storage category. The
BOLs also do not contain information on the price or value of the cargo.

To check the completeness of the granular BOL data, we calculated monthly statistics
for the volume of seaborne oil imports and compared them to aggregate seaborne oil
import statistics reported by the U.S. Energy Information Administration (EIA) — all
imports minus imports from Canada and Mexico which have a land border with the U.S.
We found that statistics calculated from the granular BOL source data nearly perfectly
match statistics reported by the EIA. This is important as the EIA data is compiled
from summary reports by importers and refineries, while the BOL data is compiled from
reports by transportation companies for individual vessels entering U.S. ports. The
difference between the two series is about 3 percent (BOL series is smaller than the EIA
series) or approximately five to six days of seaborne import flow and could be associated
with a time lag between dates in BOLs and custom declarations, as well as, differences
in methodologies for identifying the country of origin and sea/land routes.

B. Data Transformation—Nodes

We represent information on U.S. seaborne import shipments imbedded in source BOL
data as a directed dynamic acyclic graph Gt = (Vt, Et) consisting of a set of notes, Vt,
and edges, Et, at time t, from 01/012008 to 12/31/2012, where t denotes one day.

Specifically, Vt consists of shippers and receivers at time t. The entire 2008–2012
data sample allows us construct V — a finite set of size n 2 N that represents all n
companies shipping and receiving shipments during the sample period. We construct
the reference set V with the unique numbered vertices as 1, 2,. . . , n such that Vt 2 V for
each t. Et set represents instances of Bills of Lading or transactions between shipping
u

i
t and receiving v

j
t companies, where transactions, edges, are indicated by the ordered

pair (u

i
t, v

j
t ) with ut, vt 2 V .

To help us better identify receiving nodes, we have further augmented information
associated with each receiving node with the data about the U.S. port of arrival for each
particular vessel. Thus, vertices for US buyers (consignees) v

j
t are defined by a pair of

fields “Company ID” and “U.S. Port of Arrival”, while vertices for seller (shipper) ui
t are

defined only by “Company ID.”
For illustrative purposes, Figure 8 presents a network representation of BOL ship-

ments during 2011.

<Insert Figure 8>

Following the initial representation, we further transform the data by adding infor-
mation on ownership structure and a coarse industry classification of the owner — P for
producer and T for trader.
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Figure 9 presents a network representation of BOL shipments during 2011 with this
additional information.

<Insert Figure 9>

In the figure, all subsidiaries of a company are represented by one node — the par-
ent. For example, the node “Exxon Mobil” represents all 35 subsidiaries and companies
working under the Exxon Mobil umbrella in the market. This transformation leads to
a decrease in the number of nodes from 348 to 174 and a reduction in the number of
edges from 1318 to 623. It modifies the type of a graph from directed acyclic to directed
and allows for self-loops. Self-loops are shipments from a foreign to a domestic division
(child) of the same parent company. Note that we keep industry classification at the
level of children companies, while connections among companies at the level of parent
companies. We do not use an industry attribute for parent companies due to high degree
of vertical integration in the oil industry, where a parent is often a company managing
upstream, downstream, logistic and/or trading children divisions (companies).

C. Data Transformation—Edges

Having transformed the nodes or companies, we now proceed to transform the edges that
follow very similar patterns into a single edge using the intuitive concept of a “trading
agreement.” According to a “trading agreement”, a buyer and a seller agree that within
a calendar year, the seller will deliver a certain total quantity of a certain blend of crude
oil to the buyer at a certain U.S. port with a certain periodicity. For example, during
2012, A agrees to deliver to B a total of 120 metric tons of light sweet crude oil to a
specific port in the U.S. Gulf by delivering 10 metric tons of the specified crude oil every
month.

We do not observe actual long-term and short-term trading agreements between
importers and exporters, but we believe that the arrival of each shipment that we do
observe (at time t+T ) is associated with entering into such an agreement at some prior
date t. The fields we use to learn about latent trading agreements are the unique ID
for a US buyer (consignee) with US port of arrival, u

pi 2 V

p, the unique ID for an
international seller (shipper) v

pj 2 V

p, the product (custom code group HS 2709 crude
oil), the quantity (in metric tons) {X1, ..., Xnt}, and the date of arrival t.

Trading agreements that we construct do not contain prices, because BOL data does
not include prices. However, each trading agreements can be further associated with over
240 different brands and blends of crude oil within the product code HS 2709. Thus, we
can use available price data for each brand and blend of crude oil at each date in each
location to put a price on each arrival. Then, we can calculate average price for each
trading agreement and validate this information against customs data provided by the
US Census.
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D. Data Categories

Having transformed the data on both nodes and edges, we proceed to characterize
patterns in the data for the following categories: PPEdges, PPTPPTLoops, TPPTT-
TEgdes, and TTLoops. PPEdges represent shipments from producers to other pro-
ducers. PPTPPTLoops represent shipments from a producer to itself, from a trader
owned by a parent company to a producer owned by the same parent company or from
a producer owned by a parent company to a trader owned by the same parent company.
TPPTTTEgdes represent shipments from a producer to a trader, from a trader to a pro-
ducer or from a trader to another trader. TTLoops represent shipments from a trader
to itself.

Figure 10 presents monthly shipments in millions of barrels per day.

<Insert Figure 10>

PPEdges are blue, PPTPPTLoops are orange, TPPTTTEgdes are green, and TT-
Loops are red.

E. Speculative Floating Oil

We define Speculative Floating Oil (SFO), an empirical proxy for Yt, as shipments from
a trader to itself: TTLoops. SFO is a fraction of crude oil and oil products imported
into the U.S. by sea during 2008-2012. Figure 11 presents monthly shipments of SFO
during 2008-2012 in millions of barrels per day.

<Insert Figure 11>

Table I presents summary statistics for monthly time series of SFO in levels, in
differences, in logs, and in log-differences. Statistically, SFO monthly series in levels, Yt

is well approximated by a non-stationary ARIMA(1,1,1) process while the SFO series
in differences, �Yt is well approximated by a stationary ARIMA(1,0,1) process. The
process �Yt, is presented in Figure 12 below.

<Insert Figure 12>

Visually, Figure 12 indicates that the volatility of �Yt is lower after about mid-2010.
In order to formally empirically test for a change in regime of the �Yt process, we
assume that it follows an autoregressive process of order 1 and test for the instability in
variance. Figure 13 shows the time series of Wald test statistic for an unknown regime
change point. The the Wald test statistic peaks at September 2010. These results are
also presented in Table II.
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<Insert Figure 13>

The presence of the two regimes in speculative floating oil before and after September
2010 is an empirical regularity of the SFO series that we have found without conditioning
on world oil prices, US production or global demand. Yet, it is worth recalling that as we
have previously mentioned, starting in August 2010, a persistent positive spread began
to develop between global seaborne benchmark Brent and U.S. inland benchmark, WTI
just as surge in oil production in the U.S. due to new technologies became the dominant
reason behind the increase in global oil supply.

IV. Empirical analysis

Our model predicts that the slope of Brent futures prices should be strongly positively
related to speculative floating inventory after accounting for charter (freight) costs.

A. Data on oil futures and freight costs and timing considerations

Source data for the slope of the Brent term structure — log twelve month deferred
minus the log nearby — in dollars per barrel are from the Intercontinental Exchange.
To create a time series of futures prices, the roll date was set for the first day of each
month. No price adjustments were made to eliminate artificial jumps in the prices of
consecutive futures contracts. Brent futures contract is specified for 1000 barrels; to get
to the dollars per barrel specification, we divided the series by 1000. Monthly series are
computed by averaging daily data over each month.

Source data for the daily cost of chartering a vessel for the route between the Arabian
Gulf and the U.S. Gulf is from the Platts Oilgram Price Report. These are monthly
flat spot dirty tanker rates for a route Arab Gulf to the U.S. Gulf Coast for a 270,000
metric tons tanker. By Platts methodology, contracted as “the average rate for routes
Ras Tanura - LOOP (via Quoin island, L&B via: Cape), Mina al-Ahmadi - Houston via
Cape (via Quoin island), Kharg Island - Corpus Christi (via: Quoin Island, L&B via:
Cape).” Monthly series are computed by averaging over weekly published source data.

Since we only observe when loaded vessels enter U.S. ports, we need to make an
assumption to align the date when the oil arrives in the U.S., i.e., the time t + T , with
the date t when the associated carry trade might have been put in. We assume that
T = 180 days. This way, when we observe that on January 1, 2008, a vessel loaded with
what we classify as speculative floating oil enters the U.S., we will statistically relate it
to the data for the term structure of Brent crude oil futures prices and for the costs of
chartering a vessel as of July 1, 2007, i.e., lagged six months, which is when we believe
the carry trade was put in.
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B. Baseline regression

To check the prediction of theory, we specify a baseline regression of the slope of the
term structure of futures prices on the changes in speculative floating oil controlled for
the costs of chartering a vessel.

L

6
(F

t+12
t � Ft) = ↵ + �1�Yt + �2tL

6
Rt + ⇢�Yt�1 + �Yt�1 + ✏t,

where �Yt denotes changes in monthly shipments of speculative floating oil, (F t+12
t �

Ft) is the slope of Brent term structure (log twelve month deferred futures minus log
nearby) in dollars per barrel, Rt is the daily cost of chartering a vessel for the route
between the Arabian Gulf and the U.S. Gulf, the relative time trend t is as a fraction
of T=180 days, and L

6 denotes a six-months lag operator. The regression specification
accounts for the autoregressive empirical properties of the �Yt process. The regres-
sion specification also accounts for the fact that �Yt are arithmetic rather logarithmic
differences by including the previous period price Yt�1.

The coefficients of the baseline regression are as follows (standard errors are given in
parenthesis below the coefficients):

L

6
(F

t+12
t � Ft) = �0.008

(0.002)
+ 0.033

(0.007)
�Yt + 0.276

(0.227)
L

6
(Rt)

�0.015

(0.007)
�Yt�1 + 0.063

(0.007)
Yt�1 + ✏t

The goodness–of–fit statistics of the regression are: Multiple R

2
= 0.67; Adjusted

R

2
= 0.64; F -statistic = 26.31 on 4 and 53 DF; p-value = 0.0000. The length of the

times series is 58 months. The coefficient on the slope of the speculative floating oil is
positive and statistically significant at the one percent level and the coefficient on the
shipping cost is positive but statistically insignificant.

C. Regression with regime change

In order to account for the regime change in the SFO series due a change in the supply
regime from constrained to unconstrained, we adjust the regression specifications as
follows:

L

6
(F

t+12
t � Ft) = D

C
t {↵C

+ �

C
1 �Yt + �

C
2 tL

6
Rt + ⇢

C
�Yt�1 + �

C
Yt�1}

+D

U
t {↵U

+ �

U
1 �Yt + �

U
2 tL

6
Rt + ⇢

U
�Yt�1 + �

U
Yt�1}+ ✏t,

where D

C
t = 1 during Jan 2008 - July 2010 and zero, otherwise, and D

U
t = 1 during

Aug 2010 - Dec 2012 and zero, otherwise. The subscripts C and U denote constrained
and unconstrained supply regimes, respectively.
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The coefficients of the regression with the regime change dummies are as follows
(standard errors are given in parenthesis below the coefficients):

L

6
(F

t+12
t � Ft) = D

C
t {�0.012

(0.002)
+ 0.030

(0.007)
�Yt + 1.389

(0.392)
tL

6
Rt � 0.015

(0.007)
�Yt�1 + 0.064

(0.008)
Yt�1}

+D

U
t {0.003

(0.004)
+ 0.026

(0.016)
�Yt � 1.014

(0.402)
tL

6
Rt � 0.023

(0.014)
�Yt�1 + 0.045

(0.017)
Yt�1}

+✏t,

The goodness–of–fit statistics of the regression are: Multiple R

2
= 0.79; Adjusted

R

2
= 0.75; F -statistic = 18.44 on 10 and 48 DF; p-value = 0.0000. The length of the

time series is 58 months.
As predicted by theory, the regression coefficient on speculative floating oil is positive

and statistically significant at the one percent level during the constrained regime and
remains positive, but is not statistically significant during the unconstrained regime. The
coefficient on the cost of shipping cost is positive and statistically significant at the one
percent level during the constrained regime, but turns negative and nearly statistically
insignificant during the unconstrained regime.

To check for nonstationarity in individual time series we conduct an efficient ADF,
DF-GLS unit root tests (see Table III). According to the tests, Yt is mean-reverting
along a trend, I(0) at 1% significance level, in the Restricted Supply regime. After the
structural break, Yt starts following a stochastic I(1) trend in the Unrestricted Supply
regime. Slope, L6

(F

t+12
t � Ft) is a I(1) process consistently. Freight cost, L6

Rt is trend
stationary in the full sample, but I(1) in both subsamples.

D. Cointegration

According to theory, arbitrage activities of commodity cash-and-carry traders in the
physical and futures markets impact the risk premium because both commodity carry
traders and commodity producers demand a short position in the futures markets against
the limited capacity of capital-constrained commodity asset managers. This introduces
additional limits to hedging for commodity producing firms and manifests itself in the
risk premium. Thus, the time series for the risk premium, storage costs, and floating
inventory are likely to exhibit a conitegrating relationship.

We test for the presence a cointegrating relationship in the three times times series
both with and without a structural break. Johansen (1991) test results for the full times
series without accounting for a possible structural break are in Table IV. As shown in
the table, we fail to reject the null hypotheses that the number of cointegration vectors is
less than one, but reject the hypothesis the at the number of cointegration vector is less
than two against the alternative that there is one cointegrating vector. However, after
adjusting for the small sample size, the statistical significance of test results weakens.

We repeat the test using a modified test by Johansen et al. (2000) that accounts
for known structural breaks in the cointegrating relationship. Results of the Johansen
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et al. (2000) test are presented in Table V. As shown in the table, the results strongly
statistically confirm the presence of a single cointegration vector linking the three times
series.

Fitting cointegrating vectors estimated under the two regimes gives rise to a the two
fitted series for speculative floating oil. The fitted speculative floating oil series under
the two regimes as plotted in Figure 14.

<Insert Figure 14>

There is a clear difference both in the level and the variance of the two fitted series,
but the signs and the sizes of coefficients are as expected — positive signs on the slope
of the term structure of futures prices and negative signs on the cost of shipping.

V. Conclusion

We introduce commodity cash-and-carry traders, who arbitrage between the physical
and futures markets, into the limits to arbitrage extension to speculative storage frame-
work by Acharya, Lochstoer and Ramadorai (2013). Carry traders are assumed to have
access to off-shore costly storage technology — shipping vessels that can be used to
store physical commodity in one period and deliver it in the subsequent period. We
show that in equilibrium, arbitrage activities of commodity carry traders are associated
with additional limits to hedging for commodity producing firms and affect equilibrium
commodity prices.

We test empirical predictions of the model using a novel data set with granular
information on every tanker that delivered seaborne crude oil into the United States
during 2008-2012. As predicted by the model, we find that the slope of Brent futures
prices is strongly positively related to speculative floating inventory, which we derive
from the total seaborne crude imported into the U.S. after taking into account the costs
of using vessels for use as speculative storage.

In addition, consistent with extensions to the canonical speculative storage frame-
work by Dvir and Rogoff (2009, 2014), speculative floating inventory imported into the
U.S. increased during January 2008–August 2010 when the global supply response was
constrained and then decreased to zero during the second half of 2010 and into 2011
when the U.S. was increasing its domestic production of crude oil even though the term
structure of (globally determined) Brent futures prices remained in contango.
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Table I: Speculative Floating Oil: January 2008 - December 2012

Yt ln(Yt) �Yt �ln(Yt)

Mean 0.14 -2.18 0.00 0.00
STD 0.09 0.73 0.07 0.65
Skewness 0.83 -0.75 0.51 0.43
Kurtosis 3.23 3.64 4.00 3.66
ADF probability 0.35 0.40 0.01 0.01

⇢1
0.68
(0)

0.60
(0)

-0.27
(0.03)

-0.35
(0.01)

⇢3
0.46
(0)

0.51
(0)

-0.08
(0.11)

0.09
(0.02)

⇢6
0.30
(0)

0.35
(0)

-0.06
(0.34)

0.11
(0.02)

⇢9
0.26
(0)

0.35
(0)

0.03
(0.6)

0.17
(0.02)

⇢12
0.11
(0)

0.17
(0)

-0.06
(0.76)

-0.04
(0.06)

This table presents summary statistics for the monthly time series of Speculative
Floating Oil, Yt (in mln barrels per day). ADF probability refers to the p-value
of the ADF test for the null of unit root with two lags used for error term correc-
tion. ⇢⌧ is autocorrelation ⇢ at lag ⌧ . Values in brackets below autocorrelation
coefficients refer to p-values of the Portmanteau Q-test for no serial correlation at
1,3,6,9,12 lags, Ljung & Box (1978).
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Table II: Tests for Constancy of Autoregression Parameters and Error Variance

�Yt = ↵ + ⇢�Yt�1 + et

AR(1) parameter, ⇢ Intercept, ↵ Joint, ⇢ and ↵ Variance, �2

supW 5.8 1.31 8.49 10.61**
expW 1.08 0.11 2.07 3.72***

This table presents test results for a change in regime of the �Yt process assuming it
follows an autoregressive process of order 1 and test for the instability in variance of the
residuals. Variance of the residuals is calculated as a sum of squared residuals divided by a
sample size, n, 1

n

P
e

2
t . We used the Quandt Likelihood Ratio (QLR) (Quandt, 1960) a.k.a.

maximum Wald statistic (supW ) and the logarithm of Andrews and Ploberger exponential
Wald statistic (expW ). The tests check for structural breaks under the assumption of
unknown break date. The supW test statistic is the largest value of all the sequence of
Wald F-statistic calculated for each candidate breakdate and the expW test statistic is the
exponential transformation of the F-statistic. We use restricted time interval for candidate
breakdates, ⇧ = [.15n, .85n], where n denotes the length of the sample size as suggested in
Andrews (1993). Significance: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05.
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Table III: DF-GLS Unit Root Tests

Full Sample,
Jan 2008 - Dec 2012

Restricted Supply,
Jan 2008 - Aug 2010

Unrestricted Supply,
Sept 2010 - Dec 2012

Constant,
trend Constant Constant,

trend Constant Constant,
trend Constant

L

6
(F

t+12
t � Ft) -1.57*** -1.37*** -1.47** -1.37** -1.42*** -1.25***

L

6
Rt -2.52* -2.17* -2.18 -1.68 -2.3*** -2.03***

Yt -2.43*** -2.08*** -2.63** -2.03** -1.81*** -1.45***
�Yt -5.29*** -4.82*** -5.14***

This table presents test results for nonstationarity in individual time series using efficient ADF, DF-GLS
unit root tests. Yt denotes monthly speculative floating oil. L

6(F t+12
t � Ft) denotes six month lag of

the slope of the terms structure of Brent futures prices. L6
Rt denotes lagged freight costs. Significance:

‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05.
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Table IV: Johansen (1991) Tests for the Existence of Cointegrating Vectors: January
2008 - December 2012

Restricted Supply,
Jan 2008 - Jul 2010

Unrestricted Supply,
Aug 2010 - Dec 2012

Cointegrating Rank, r 0 1 2 0 1 2
Trace Statistics 33.78*** 16.51*** 6.36 54.77*** 16.42*** 4.71
Trace Statistics,
adjusted 27.24** 13.31 5.13 44.17*** 13.24** 3.8

10 % Critical Value 39.06 22.76 10.49 39.06 22.76 10.49
5 % Critical Value 42.44 25.32 12.25 42.44 25.32 12.25
1 % Critical Value 48.45 30.45 16.26 48.45 30.45 16.26
Number of
observations 31 29

Lags 2 2

This table presents test results for the existence of cointegration vectors using Johansen (1991)
trace test. Adjusted trace statistics adjust for small sample size as suggested in Ahn and Reinsel
(1990). P-values are calculated according to the approximation method proposed by Doornik
(1998). Significance: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05.
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Table V: Johansen et al. (2000) Modified Trace Test for Cointegration in the Presence
of a Single Known Structural Break: January 2008 - December 2012

Cointegrating Rank

0 1 2
Trace Statistics 72.41*** 34.00*** 13.18*
Trace Statistics, adjusted 63.17*** 30.60*** 11.86
10 % Critical Value 55.46 34.46 16.77
5 % Critical Value 59.09 37.42 18.90
1 % Critical Value 66.32 43.41 23.35

This table presents test results for the existence of cointegration vectors using Jo-
hansen et al. (2000) modified trace test in the presence of a single known structural
break. Adjusted trace statistics adjust for small sample size as suggested in Ahn
and Reinsel (1990). P-values of adjusted statistics are calculated according to the
approximation method proposed by Doornik (1998). Asymptotic critical values are
from Giles and Godwin (1991) for one breakpoint and its relative location in the
sample. Significance: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05.
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Figure 7: A Bill of Lading
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Figure 8: A Network Representation of All BOL Shipments During 2011

Sources: Calculations of the authors. Vertices represent companies and directed edges represent
individual shipments from overseas companies to receivers in the U.S. The graph layout uses a
force-based algorithm proposed by Fruchterman and Reingold (purely for aesthetics) “to position
the nodes of a graph so that all the edges are of more or less equal length and there are as few
crossing edges as possible.” (See, “Modern Advances in Intelligent Systems and Tools” by Wei
Ding, He Jiang, Moonis Ali, Mingchu Li, 2012).
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Figure 9: A Network Representation of All BOL Shipments During 2011 With Ownership
Information and Industry Classification of Companies

Sources: Calculations of the authors. Vertices represent parent companies and directed edges
represent individual shipments from overseas companies to receivers in the U.S. Blue vertices
denote producers and green vertices denote traders. Loops represent shipments from one company
owned by a parent company to another company owned by the same parent company.
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Figure 10: Shipments Using Transformed Data

Sources: Calculations of the authors. Monthly shipments in millions of barrels per day. PPEdges
are blue, PPTPPTLoops are orange, TPPTTTEgdes are green, and TTLoops are red.
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Figure 11: Speculative Floating Oil: 2008-2012

Sources: Calculations of the authors. Monthly shipments in millions of barrels per day.
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Figure 12: Speculative Floating Oil in differences, �Yt: January 2008 - December 2012

Sources: Calculations of the authors. Changes in monthly shipments, �Yt = Yt�Yt�1, in millions
of barrels per day.
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Figure 13: Wald Sequence for Variance: November 2008 - April 2012

Sources: Calculations of the authors. The plot presents time series of Wald statistics,
W (⇡), as a function of a single break date, T1. The specification is �Yt = ↵ +

⇢�Yt�1 + et. The break dates, T1, are on the x-axis and W (⇡) is on the y-axis.
Dotted horizontal black line shows asymptotic critical value at 5%. Restricted time
interval of candidate break dates, ⇧ = [.15n, .85n], is used as suggested in Andrews
(1993). The Sup⇡2⇧W (⇡) value of the test is 10.61, where ⇡ = T1

n , k = 1, 5%
asymptotic critical value = 9.84, Asymptotic p-value=0.031.
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Figure 14: Cointegrating vector {�Yt�1, �1L
6
(F

t+12
t � Ft), �2L

6
Rt} in Restricted and

Unrestricted Supply Regimes

Sources: Calculation by the authors. Cointegrating vector in restricted supply regime
is �1.12Yt�1 + 13.53L6(F t+12

t � Ft)� 15.93L6
Rt; in unrestricted supply regime it is

�0.84Yt�1 + 4.06L6(F t+12
t � Ft)� 5.13L6

Rt.
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