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Abstract

Following Aumann (1987), we introduce the notion of compre-
hensive state of the world, which unlike Savage’s state, describes a
consequence. Comprehensive states result in Savage’s model when an
act is fixed. We study desirability which is a binary relation defined
on events, that is, subsets of comprehensive states. One of our main
results shows that a desirability relation that satisfies certain axioms
can be represented by probability and utility, by taking conditional
expected utility. Despite the difference of domains, some of our ax-
ioms are analogous to Savage’s axioms. Some other axioms resemble
axioms of Bolker on binary relation on events in a consequenceless
model, that guarantee representation by ratio of two measures. Our
axioms allow for endogenous derivation of consequences from a desir-
ability relation, in contrast to Savage’s model and similar models in
which consequences, which are primitives of the theory, are assumed
exogenously. The representation is not unique and we characterize all
the pairs probability-utility that represent a desirability relation. We
show that when desirability relations for a large set of acts satisfy some
consistency axioms, then there exists a single pair that represents all
of them.
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consequence. Comprehensive states result in Savage’s model when an
act is fixed. We study desirability which is a binary relation defined
on events, that is, subsets of comprehensive states. One of our main
results shows that a desirability relation that satisfies certain axioms
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can be represented by probability and utility, by taking conditional ex-
pected utility. Despite the difference of domains, some of our axioms
are analogous to Savage’s axioms. Some other axioms resemble axioms
of Bolker on binary relation on events in a consequenceless model, that
guarantee representation by ratio of two measures. Our axioms allow
for endogenous derivation of consequences from a desirability relation,
in contrast to Savage’s model and similar models in which consequences
are primitives of the theory and assumed exogenously. The representa-
tion is not unique and we characterize all the pairs probability-utility
that represent a desirability relation. We show that when desirability
relations for a large set of acts satisfy some consistency axioms, then
there exists a single pair that represents all of them.

1 Introduction

1.1 Interactive decision making

The decision maker (DM) in Savage’s theory is facing various acts between
which she has to chose. Each act may results in some possible consequences,
but the DM is uncertain about which consequence will be realized. This
uncertainty is modeled by specifying a set of states of the world . Each state
is a rich enough description of the world that resolves these uncertainties.
Namely, each state determines the consequence of each one of the acts.
Thus, an act can be identified with a function that assigns to each state
a consequence. Obviously, a state of the world does not and should not
describe the act of the DM about which she deliberates. In particular, the
state does not specify any consequence.

The model proposed by Savage is for a single DM. But there is nothing
in the model that excludes the possibility of other decision makers being
there whose decisions may influence the consequence of the the DM act. In
other words, the theory can be applied even when the DM is a player in a
game. In this case, however, the description of the world should specify the
acts of the other DM’s in order to determine the consequence of the DM’s
chosen act.

An extension of the very well known example, taken from Savage (1954),
illustrates this. Our DM considers the problem of breaking an egg and
adding it to a bowl with five eggs previously broken for making an omelette.
There are two states of the world: the sixth egg can be good or rotten. The
omelettere has three possible acts: breaking the egg into the bowl, breaking
it into a saucer for inspection, or throw it away. The consequences describe
the number of eggs in the omelette and the need to wash the saucer in case
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it was used.
Imagine now another decision maker, the egg seller, who sold the sixth

egg to the omelettere. The egg seller has new good eggs and old rotten eggs,
between which he can discern. The egg seller is facing two acts: selling a
good egg or a rotten one. The states of world in the omlettere’s model that
specify wether the egg is good or rotten, describe in the egg seller’s model
the acts available to him.

Consider now the model that describes the egg seller’s decision problem.
He has two acts to choose between. The consequences that matter to him
concern whether the omelettere will come again to buy eggs or not. These
consequence depend on the acts of the omelettere. For example, if the
omelettere throws away the egg, he’ll never discover whether it is rotten
or not and he will continue to buy eggs from this seller. Thus, a state of
the world in the model describing the egg seller’s decision problem should
specify the acts of the omelettere.

1.2 Comprehensive states

The two models that describe the decision problems of the omelettere and
the egg seller are different models. In the model of each of the DMs the
states specify the acts of the other DM, but not those of the DM whose
decision is modeled. This lead Kadane and Larkey (1982) to conclude that
subjective probability of agents in interaction can be derived for each of the
agents separately and game theory is not needed for Bayesian agents.

But if we analyze each agent in his own model we miss an important as-
pect of interaction, namely the reasoning of agents about each other choices.
Interaction of reasoning requires one model for all agents. When interactive
reasoning is studied in one model there are restrictions on the choices made
by the agents that cannot be deduced if we analyze each one of them sep-
arately. This was demonstrated by Aumann (1987) who showed that com-
mon knowledge of rationality implies that the distribution of acts should be
a correlated equilibrium. Such a conclusion cannot be derived by analyzing
separately the choices of the interacting agents. Now, if all agents share
the same model, namely the same set of states, then as we argued before,
each state should describe the actions of each of the decision makers and
hence also the consequences of these acts. We call a state that describes a
consequence a comprehensive state.

Comprehensive states were first studied in Aumann (1987) to facilitate
the analysis of the interactive reasoning of the players in a game. Aumann
claimed in this paper that the use of comprehensive states was the main
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novelty of his proposed model.

The chief innovation in our model is that it does away with the
dichotomy usually perceived between uncertainty about acts of
nature and of personal players. [ . . . ] In our model [ . . . ] the
decision taken by each decision maker is part of the description
of the state of the world. (Aumann, 1987)

However, in order to analyze the implication of Bayesian rationality on
the players’ behavior, Aumann needs the players to have each a subjective
probability distribution on states of the world. In this he relies on Savage’s
framework:

Assume that ... as in Savage (1954), each player has a subjective
probability distribution over the set of all states of the world.

But the subjective probability and the utility in Savage (1954) are de-
rived for a state space in which neither actions no consequences are asso-
ciated with states. How can such probability and utility be derived in a
comprehensive state space in Aumann (1987)?

This is the question we address in this paper. But here we are only
laying the basis for a full fledged study of interactive decision making in
a comprehensive state space. Modeling interaction of multiple agents, like
Aumann (1987) ,requires the introduction of knowledge structures. Here
we are studying a comprehensive state space of a single DM which does not
require the introduction of knowledge structures. The results of this research
will be used in subsequent papers to study the derivation of probability
and utility in comprehensive state spaces of several players with knowledge
structures.

1.3 Desirability

Probability and utility in a comprehensive state space are derived here from
a relation over events in this space, which we call desirability. It is possible
to give this relation few informal intuitive meanings. We can think of one
event as being more desirable than another event if learning that the first
happened would make the DM happier, or more pleased, or more content
than learning that the second happened. Alternatively, we can think of
desirability as reflecting counterfactual choice. Although the DM cannot
bring about one of two events, she can entertain the counterfactual situation
in which she can chose the event that will obtain. Saying that one event
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is more desirable than another means that had she had the opportunity to
chose, she would chose the first event to obtain. The following example
demonstrates a comprehensive state space and a desirability relation on its
events.

Consider Eve who contemplates the submission of her new paper to one
of several equally reputed journals between which she is indifferent. A choice
of a journal is an act. There are only three consequences that matter to her:
acceptance of the paper, rejection, or a request for a revision. Each state of
the world determines the consequence of submitting the paper to each one
of the said journals.

We are now meeting Eve after making her decision to submit the paper
to journal J. Now, each state is comprehensive, namely, it specifies which of
the three consequences holds. In particular, the state space is partitioned
into three consequence events: The event that consists of all states in which
the paper is accepted, the event of rejection, and the event of a required
revision.

Eve has a desirability relation over events and in particular over the
consequence events. It is quite natural to assume that she prefers the event
of acceptance over the event of revision, and the latter over the event of
rejection. But the desirability relation concerns other events too. We may
assume that each state of the world specifies who is the associate editor
who handles the paper, as this is one of the factors that determines the
consequence. It is possible that Eve desires the event that Alice rather than
Bob will be the associate editor that handles the paper. Note that Alice
handling the paper or Bob doing it, are not consequences. Eve’s desire that
the first event obtains rather than the second reflects the different ways
in which these two events are associated with the three consequences. For
example, if it is more likely that the paper is accepted when Alice is the
associate editor, Eve my find the latter event more desirable than the event
the Bob is the associate editor.

There is a simple way to define a desirability relation on a comprehensive
state space when a pair (P, u) of a probability P on the state space, and
utility u of consequences. We define one event to be more desirable than
another one, if the conditional expected utility on the first event is greater
than the conditional expected utility on the second event. This desirability
relation is said to be represented by the pair utility-probability that serves to
define it. The purpose of this paper is to find conditions on the desirability
relation, which are compatible with the intuitive meaning of this relation,
that guarantee that it is represented by a pair probability-utility.
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1.4 Choice and non-choice data

The purpose of economics is to explain and predict how individuals and
other agents behave and choose in economic environments. Utilities and
probabilities can together explain such behavior. In Savage’s theory utilities
and probabilities are derived from many observed choices. But there is no
logical necessity that probabilities and utilities that do explain choice and
behavior are derived from such observed behavior. An example is Aumann
(1987) were acts do not vary, and probability, utility and common knowledge
of rationality explain the choices made in a correlated equilibrium. In this
model our observation is limited to specific choices made by the agents and
not to many choices between pairs of actions. Yet, the explaining compo-
nents can be derived, as we show here, from desirability which is not choice
data. The purpose of economics is fully achieved, only that the data used
to explain behavior comes from non-behavioral data.

But is desirability observable data? An important byproduct of the
revolution in the technologies of communication and information in the last
decades is the influx of reports by individuals about their lives which are
accessible to other individuals and organizations. Part of these reports can
be interpreted as statements of desirability in our sense. Firms including
giants of technology, as well as state organizations, invest a lot of resources
to collect, process, and use this information. Even the non behavioral data,
about opinions, thoughts and desires is used to predict behavior, including
economic behavior.1 This paper is a step in laying theoretical foundations
to the use of non-choice data to explain and predict economic behavior.

Other examples of non-choice data which can be used to predict economic
choices are found in the literature on brain research and other somatic re-
search. For example, Telpaz, Webb and Levy (2015) showed how the cheap
test of electroencephalography (EEG) signals that result from just observing
products without making any choice can predict the choices of these prod-
ucts at a later stage. Previous works showed how the expensive method of
fMRI can achieve this goal. Such techniques can be also used, in principle,
to replace reports in eliciting the desirability relation.

One of the advantages of collecting the non-choice data of desirability
is the ability to use it in order to find out what the consequences that the
decision maker is considering are. In a nutshell, an event is a consequence
events if it is as desirable as its subevents and less or more desirable than
some of its superevents. This is discussed in detail in subsection 2.2 when

12 This usage seems to indicate that the problem of reliability of reports is not crucial.
references.
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axiom Com 5 of Consequence Events is presented. In contrast, within Sav-
age’s framework, or similar setups, it is impossible to infer from the choices
made by the DM what consequence he has in mind. In order to translate
the DM’s observed choices into Savage’s acts, one needs to assume a set of
consequences without being able to confirm that these are indeed the DM’s
consequences.

1.5 Desirability on a fixed comprehensive state space

We sketch the gist of seven axioms, Com 1 to Com 7, on a desirability rela-
tion on a fixed comprehensive state space. These axioms appear to hold
for the intuitive meanings of desirability discussed above. Not surprisingly,
some of the axioms bear resemblance to Savage’s axioms despite the different
domains.

Before the axioms are introduce we define for any binary relation on
events null events. Roughly, an event is null for a given relation if it does
not affect it. More specifically, an event is null for a given relation if set
theoretical addition (union) or subtraction of any subset of it to any event
does not change the relation of the latter to other events.

Axioms Com 1 - Com 3 are not special to desirability. They have ana-
logues in other axiomatizations like Savage’s, de Finneti’s axioms of quali-
tative probability, von Neumann and Morgenstern axioms and many other
binary relations. The first three axioms are analogous to Savage’s P5, P1,
and P6’ in this order. The non-degeneracy axiom (Com 1) requires that the
relation is non-trivial. This axiom implies that there are non-null events,
which makes the next axiom of weak order (Com 2) non-vacuous. The latter
says that the desirability relation is a complete and transitive order on the
non-null events. This type of axioms predate Savage and von Neumann and
Morgenstern. One of the innovative axioms of Savage that play a crucial role
in proving the existence of a probability is P6’, the axiom of Non-atomicity.
We give the same name to our (Comp 3) as it is essentially the same axiom.
It says that the space can be partitioned into “small” events.2

Axiom Com 4 - Com 7 are special to desirability relations. Axiom Com
4 is a first glimpse into the notion of likelihood which is part of our intuition
about desirability of events. It amounts to saying that if likelihood of con-
sequences in two events are the same than the events are equally desirable.
This is done, of course, in terms of the desirability relation. We illustrate

2Axiom P6’ is imposed on a qualitative probability relation on events. Here, it is
imposed on the desirability relation on events. Axiom P6 is a translation of P6’ for
preference relation on acts.
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axiom Com 5 of Consequence Events in our example. Consider the following
two events. The first is the event that the paper is accepted. The second is
the conjunction of the first event with another one. Specifically the second
event is the event that the paper is accepted and that Alice handled it. The
second event is a subevent of the first and it is more informative. The axiom
requires that these two events are equally desirable. The reason is simple.
In both events the paper is accepted. The fact that in the second event it
was handled by Alice, which is not a consequence, does not matter as long
as the paper is accepted. The axiom requires in general that a consequence
event is equally desired as any of its non-null subevents.

Note that if a desirability relation satisfies axiom Com 5 of Consequence
Events then we can find out what the consequence events are and they do
not have to be given exogenously. More concretely, a consequence event is
one which is as desirable to the DM as all its subevents, but is less or more
desirable than one of its superevents. That is, an event is a consequence
event if more informative events are equally desirable but some less infor-
mative events are more or less desirable. In our example, we can conclude
that acceptance is a consequence, by verifying that the for the DM accep-
tance is as desirable as any of its subevents but is more desirable, say, than
the event that the paper is either acceptable or rejected.3

The axiom of intermediacy (Com 6) says that mixed news, good and
bad, lie, in terms of its desirability, between the good and the bad news.
Thus, in our example the event that the paper is either accepted or rejected
is more desirable than the event of acceptance, but less desirable than the
event of rejection.

Before we discuss the persistency (Com 7) we demonstrate how a likeli-
hood relation between certain events can be deduced from the desirability
relation. Let E and F be events that the DM equally desires, and H be an
event disjoint of E and F and more desirable than both. On a first glance
the event E ∪ H cannot be more desirable than F ∪ H. But on a closer
examination there can be a reason for that. If F is more likely than E,
then the relative likelihood of the “good news” H is higher in E∪H than in
F ∪H. Of course, likelihood is not defined in our setup, but the phenomenon
just described can be used to define it. If E, F , and H are as described,
and E ∪H is more desirable than F ∪H we will say that F is more likely
than E. This definition has one drawback, it depends on the event H. The
axiom of persistency removes this drawback by requiring that the definition

3In Savage’s framework, consequence are given exogenously, and cannot be derived
form the DM’s preferences over acts.
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of being more likely is independent of the event H that is used to define it.
Our first result is:

A desirability relation satisfies axioms Com 1 - Com 7 if and
only if it is represented by of probability-utility pair (P, u).

A given desirability relation can be represented by more than one probability-
utility pair. We characterize the structure of all representing pairs. First, all
the probabilities are uniquely determined on the consequence event, That
is,

• All the probabilities that are part of a representing pair have the same
conditional probability on the consequence events.

Thus, these probabilities can differ only by assigning different probabili-
ties to the consequence events themselves. We call such probability vectors
consequence probabilities. We show that,

• The set of consequence probabilities is an interval in the finite vector
space whose dimension is the size of the finite set of consequences.

We can say more about this interval. For two consequence probability vec-
tors p and q, we say the p is more optimistic than q, if for any pair of
consequences, the likelihood of the more desired one in p is higher than that
likelihood in q. Now,

• The consequence probabilities are arranged in the interval by opti-
mism.

Finally,

• For any representing pair (P, u), the utility u is uniquely determined
by P up to positive affine transformation, and the probability P is
uniquely determined by u.

While the consequence probabilities are arranged linearly by optimism, the
corresponding utilities are ordered by contentment. The utility u is more
content than v if the gains from moving to a more desirable consequences,
measured by the ratio of utility difference is higher in u than in v. If (P, u)
and (Q, v) are representing pairs, and the consequence probability p is more
optimistic than q, then the utility u is less content than v. Thus the optimism
in consequence probabilities is set down by the contentment of the utility
function.
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1.6 Desirability when acts vary

So far we studied a desirability relation on one comprehensive state space
determined by a fixed act. We now consider a family of acts and the corre-
sponding comprehensive state spaces defined by them. We assume that on
each of these spaces a desirability relation on events is defined. We impose
axioms Act 1–Act 3 on the family of these binary relations. Axiom Act 1 of
common null event requires that the set of null events is the same for each
one of the binary relations. Axiom Act 2 of common desirability states that
if two acts coincide on each one of two events, then the desirability relation
between these events is the same in the two comprehensive state spaces de-
fined by these two acts. Finally, axiom Act 3 of Common Likelihood asks
that the likelihood relation defined in terms of the desirability relation is
the same in all the comprehensive state spaces. We then show:

If a family comprehensive state spaces, equipped each with a de-
sirability relation on events, satisfies the axioms Act 1-Act 3, then
there exists a unique probability-utility pair that represents all the
desirability relations.

1.7 Literature survey

Jeffrey (1965) introduced a real valued function on propositions which he
called Desirability. The set of propositions was rigorously modeled by Bolker
(1967) as a complete Boolean algebra. Measures are defined on such algebras
much the same they are defined on fields or sigma fields which are Boolean
algebras of events. The desirability function in Jeffrey (1965) and Bolker
(1967) is the ratio of a signed measure and a probability measure on the
Boolean algebra.

The theory of desirability presented by Jeffrey and Bolker is a depar-
ture from the theories of von Neumann and Morgenstern (1953) and Savage
(1954) in that it does not include consequences (or prizes) and utility func-
tion on consequences. Acts cannot be defined in their theory since there
are no consequences. Bolker comments on the difference between Jeffrey’s
model and Savage’s model: “The states must be unambiguously described.
By so doing we blur the often useful distinctions among acts, consequences
and events” (Bolker, 1967, foonote 7). This lost distinction is reinstated
here where we use Savage’s model in which consequences and acts are the
main features.

Based on a previous work, Bolker (1966), Bolker (1967) considered a
binary relation on propositions, which was not named, and axioms on this
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relation that guarantee that it can be represented by a desirability measure.
He has two axioms that correspond to our axioms Com 6 and Com 7. How-
ever, since their theory does not have consequences and acts it is impossible
to vary the acts and require axioms Act 1–Act 3.4

In addition to the essential difference of having consequences and acts
in our model, it differs from Bolker’s model in other aspects. (1) In Bolker
(1967) the relation is defined on the non-zero elements of a complete non-
atomic Boolean algebra. This corresponds to quotient space of a measurable
space with respect to null events. Thus, null events must be defined prior to
the definition of the desirability relation. In our model, like in Savage’s, null
events are defined in terms of the relation rather than assumed. (2) Bolker
assumes that the relation is continuous and derives representing probabilities
that are σ-additive. We make no continuity assumption and , like Savage
(1954), derive an additive probability.

Bolker (1967) and Jeffrey (1983) describe a linear structure of the set
of probability-utility pairs that represent the binary relation in their model,
a structure that was suggested to Jeffrey by Kurt Gödel (Jeffrey, 1983, p.
143). The characterization of this set in our model depends on its central
feature, the set of consequences. This enables us to demonstrate three fea-
tures of the non-uniqueness in our model: (1) the conditional probability
given a consequence event is uniquely determined; (2) the probabilities of
the consequence events are ordered by optimism; and (3) a cardinal util-
ity for a given probability is uniquely determined and the utility gains are
ordered by contentment.

A binary relation on subsets of a given set were studied in various works.
de Finetti (1931) considered a relation on events in a state space, named
qualitative probability. He proposed several axioms on qualitative proba-
bility, but they were not enough to guarantee that qualitative probability
can be represented by a numeric probability. By adding an axiom of non-
atomicity Savage (1954) showed that a qualitative probability has a unique
representation by an additive probability. Our axiom of non-atomicity,
Com 3, is similar to Savage’s, and we use his result to prove the existence of
a probability on each consequence event.

Kreps (1979) studied preference over subsets of menus. Gul, Lipman and
Pesendorfer (2001) and Dekel, Lipman and Rustichini (2001) followed suit
with preferences over subset of lotteries. Their axioms are different than

4Jeffrey (1983) is a new version of Jeffrey (1965) in which Bolker’s contribution is
presented and discussed. See also Jeffrey (2004) for a summary of the history of their
notion of desirability.
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ours and their presentation theorems differ in form and contend from ours.
Ahn (2008) studied also a preference over lotteries, and his axioms, like ours,
resemble those of Bolker, despite the different domain of the relation. Thus,
his presentation of the relation is expressed as a ratio of some integral on
utility divided by a probability. A representation by ratio similar in form to
our result, in a risk context, is found in Chew (1983), where weighted utility
has the form of a ratio of utility functions which are linear in probability.

Luce and Krantz (1971) used conditional expected utility to represent
a binary relation. However, unlike desirability, the relation they study is
not defined on events but on conditional acts, namely acts that are not a
function on the whole state space but only on an event in this space.

2 The model

Let (Ω,Σ) be a state space where Ω is the set of states and Σ is a σ-algebra
of events. A finite set C = {c1, . . . , cn} with n ≥ 2 is the set of consequences.
An act is a measurable function f : Ω → C that specifies a consequence in
each state.

For a fixed act f we refer to (Ω,Σ, f) as a comprehensive state space
which reflects the fact that each state of the world can be thought of as a
full description of the world, including the consequence at the state specified
by f .

Fixing a comprehensive space (Ω,Σ, f), we consider a binary desirability
relation, %, on Σ. We read E % F as ‘E is at least as desirable as F ’.
We denote by ∼ the symmetric part of %. That is, E ∼ F when E % F
and F % E. We read, E ∼ F as ‘E is as desirable as F ’, or ‘E and F
are equally desirable’. We denote by � the asymmetric part of %. That is,
E � F when E % F but not F % E. The relation E � F is read as ‘E is
more desirable than F ’. We consider below Axioms Com 1–Com 7 (‘Com’
for comprehensive) that desirability relations should satisfy.

2.1 Null events

Given a binary relation % on events we define null events as those that have
no impact on the relation. In the definition that follows, we denote by A∆B,
for events A and B, the symmetric difference of the two events.5

5The symmetric difference of two events consists of all the states in these events that
do not belong to both, that is, A∆B = (A ∪B) \ (A ∩B) = (A \B) ∪ (B \A).
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Definition 1. (Null events) An event N is null for the relation % when for
all events E and F , if E % F (E 6% F ), then also E′ % F ′ (E′ 6% F ′) for
any E′ and F ′ that satisfy (E′∆E) ∪ (F ′∆F ) ⊆ N .

An immediate corollary of the definition is that null events do not affect
any of the relations �, ∼, 6�, and 6∼.

Corollary 1. If E and F satisfy some of the relations �, ∼, 6�, and 6∼,
N is a null event, and (E′∆E) ∪ (F ′∆F ) ⊆ N , then E′ and F ′ satisfy the
same relations as E and F .

We denote by Σ0 the set of null events of %, and by Σ+ the set of non-
null events, namely, Σ+ = Σ \ Σ0. We observe the following properties of
Σ0.

Claim 1. The set of null events Σ0 satisfies:

1. ∅ ∈ Σ0;

2. If N , M are in Σ0 then also N ∪M ∈ Σ0;

3. If N ∈ Σ0 and event M satisfies M ⊆ N , then M ∈ Σ0.

Proof. Part 1 and 3 follow trivially from the definition of a null event.
For part 2, assume N and M are null events, E % F , and (E′∆E) ∪

(F ′∆F ) ⊆ N ∪M . We need to show that E′ % F ′.
By our assumptions there are events N0 ⊆ N , N ′0 ⊆ N and M0 ⊆ M ,

M ′0 ⊆ M such that E \ E′ = N0 ∪M0 and E′ \ E = N ′0 ∪M ′0. Let Ê =
(E ∩ E′) ∪M0 ∪ N ′0. Then, (E \ Ê) ⊆ N0, and (Ê \ E) ⊆ N ′0, and hence
E∆Ê ⊆ N . We analogously define F̂ such that F∆F̂ ⊆ N , and since N is
null, we conclude that Ê % F̂ . Now, E′ \ Ê ⊆ M ′0 and Ê \ E′ ⊆ M0, thus
Ê∆E′ ⊆ M . A similar relation holds for F̂ and F ′. Thus, as M is null, we
conclude that E′ % F ′. The proof for the case that E 6% F is similar.

The three properties of Σ0 in Claim 1 make Σ0 an ideal of events in Σ.
Savage (1954) also proves that the null events defined in his model form an
ideal. Finally, the set of null events of a probability measure is obviously an
ideal.

Without making any assumption about %, it is possible that all events
are null. However, we next show that if this relation is not trivial, then there
must be some non-null events.

Claim 2. If there are vents E and F such that E � F , then there are
non-null events.
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Proof. Assume that E � F and suppose that contrary to the claim, all
events are null. Set E′ = F and F ′ = E. Then E′∆E and F ′∆F are null,
and thus E′ % F ′, that is, F % E. Thus, E ∼ F , contrary to our assumption
that E � F .

Finally, it is easy to show that,

Claim 3. If Σ0 is the set of null events of %, and %′ is the restriction of %
to the non-null events of %, that is to (Σ+)2, then Σ0 is also the set of null
events of %′.

2.2 The axioms of desirability

The first three axioms are typical of many binary relations and do not reflect
the intuitive meaning of desirability. The first axiom requires that the desir-
ability relation is non-degenerate. It is a mild assumption since without it
there is nothing of interest to say about the given relation. Non-degeneracy
assumption is assumed also in Savage (1954) as well as in the axioms of
qualitative probability in de Finetti (1931).

Com 1. (Non-degeneracy) There are events E and F such that E � F .

Axiom Com 1 of Non-degeneracy guarantees, by Claim 2, that there are
non-null events. We are interested in the desirability relation only between
the non-null events of %. In the next axiom we require that % is defined only
on pairs of non-null event, and on these events it is a weak order, namely
complete and transitive. Since we are going to compare the desirability of
only non-null events, we could allow, by Claim 3, that % can be defined on
pairs that either both are, or one of them is null and require only that the
restriction of % to the non-null event is a weak order.

Com 2. (Weak Order) % is contained in (Σ+)2 and it is a complete and
transitive relation.

Next, we require that given a strict desirability relation between two
events, the state space can be partitioned into events that are small in the
sense that they do not effect the given relation. This axiom is a slight
variation of property P6’ in Savage (1954).

Com 3. (Non-atomicity) For two events E and F such that E � F there
exists a partition of Ω, Π = (Π1, . . . ,Πm), such that for each i, if F ′∆F ⊆
Πi, then E � F ′, and if E′∆E ⊆ Πi, then E′ � F .
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The next four axioms capture the intuitive meaning of desirability. We
first introduce some notations. For c ∈ C we denote by C the event that the
consequence of f is c. Namely, C = {ω | f(ω) = c }. We call the events
C, consequence events. For each E and c we write Ec for E ∩ C. Thus, the
event E is the disjoint union of the events Ec for all consequences c.

In the penultimate paragraph of subsection 1.3 we explained that the
desirability of an event E depends on the likelihood of the subevents Ec.
Thus, if the likelihood of the events Ec in E and the events Fc in F are the
same, then E and F should be equally desirable. But to verify this equality
of likelihood it is enough to check them for pairs. More specifically, for any
pair of consequences c and d, it is enough to show that either Ec ∪ Ed and
Fc ∪ Fd are both null, or else both are non-null and the likelihood of Ec

and Ed in Ec ∪ Ed is the same as the likelihood of Fc and Fd in Fc ∪ Fd.
The latter condition is equivalent to saying that the two unions are equally
desirable. Thus we can capture some aspects of likelihood purely in terms
of desirability.

Com 4. (Pairs) Let E and F be non-null events. If for each pair of distinct
consequences, c and d, Ec ∪ Ed and Fc ∪ Fd are either both null or both
non-null and in the latter case Ec ∪ Ed ∼ Fc ∪ Fd, then E ∼ F .

The next axiom addresses the nature of consequence events that distin-
guishes them from other events. Such distinction does not exist in Savage’s
setup, as consequence events do not exist. The axiom says that when the
agent is informed that a consequence c occurs then any additional informa-
tion is irrelevant to desirability. Hence the following axiom:

Com 5. (Consequence Events) For any consequence c and a non-null event
E ⊆ C, E ∼ C.

The following axiom formalizes the idea that a mixture of good news
and bad news is more desirable than the bad news and less desirable than
the good news. It has the same spirit as the averaging condition in Bolker
(1967). We illustrate it with the example discussed in the introduction. Let
E be the event Alice handles the paper and F , which is disjoint from event
E, that Bob handles the paper. Suppose that E is weakly more desirable
than F , that is E % F . The event E ∪ F is mixed news. Therefore E, the
good news, must be at least as desirable as E ∪ F , and E ∪ F must be at
least as desirable as the less desirable event F .

Com 6. (Intermediacy) Let E and F be disjoint non-null events. Then the
relations E % F , E ∪ F % F , and E % E ∪ F are equivalent.
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As we have said, desirability of events is determined by the way they are
related to the likelihood of consequences. Consider in the previous example
the events A = acceptance and B = acceptance and Alice handles the paper,
which by axiom Com 5 of Consequence Events are equally desirable. Note,
however, that as B ⊆ A, B is less likely than A. Now consider the event G =
revision, which is disjoint from A and B, and the events A ∪G and B ∪G.
The likelihood of acceptance in A ∪ G is higher than in B ∪ G. Therefore
A ∪ G should be more desirable than B ∪ G. Note, that if G is an event
disjoint from A and B that is less desirable than both, then we expect that
the relation of desirability between A ∪G and B ∪G would be reversed.

The implication in this example is based on an informal, intuitive notion
of likelihood relation. But we can reverse the reasoning and use such an
implication to formally define a restricted concept of likelihood relation.

Definition 2. Suppose that A ∼ B, and G is a non-null event such that
G ∩ (A ∪B) = ∅. Then A is at least as likely as B according to G if either
A � G and A ∪G % B ∪G, or G � A and B ∪G % A ∪G.

If the relation of likelihood according to G is to capture the likelihood
of equally desirable events then this relation should not depend on G. That
is, if we take instead of G another event H with the same properties, then
the relation of likelihood according to H should be the same. This is the
content of the next axiom which is in the spirit of the impartiality property
in Bolker (1967).

Com 7. (Persistency) Suppose A ∼ B, and G,H are non null events disjoint
of A and B such that G 6∼ A and H 6∼ A. If A is at least as likely as B
according to G, then also A is at least as likely as B according to H.

We can now define for two equally desirable events A and B, the relation
A is at least as likely as B. This relation holds if A is at least as likely as
B according to some G. By axiom Com 7 of Persistency, this likelihood
relation is well defined.

2.3 Consistency of desirability relations

We will prove that a desirability relation for a given act f is represented
by a probability-utility pair. However this representation is not unique.
We consider next desirability relations for a family of acts and formulate
four axioms concerning this family that guarantee the existence of a unique
probability-utility pair that represents all the desirability relations in this
family.
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We say that an act f is full, if for each consequence c, Cf = f−1(c) is
non-null. Let F be a set of acts that contains all full acts. For each f ∈ F
let %f be a desirability relation on (Ω,Σ, f). We denote D = {%f | f ∈ F}.
From now on we tag desirability relations inD, as well as consequence events,
and representing probabilities and utilities with a superscript of the act for
which they are defined.

Act 1. (Common Null Events) All the desirability relations in D have the
same set of null events.

By axiom Act 1 of Common Null Events we can refer to null or non-null
events without specifying a desirability relation in D.

The following axiom requires that the desirability relation between two
events is independent of the value of the acts outside these events. For two
acts f and g and an event E in Ω, we write f =E g if f(ω) = g(ω) for each
ω ∈ E.

Act 2. (Common Desirability) Let A and B be non-null such that f =A g
and f =B g. Then, A %f B if and only if A %g B.

Using axiom Com 7 of Persistency, we defined at the end of subsection
2.2, the relation of being at least as likely for two equally desirable events.
This relation is defined for a given desirability relation. The next axiom
requires that the relation of being at least as likely is the same for all %f

in D. Since the relation is defined only on equally desirable events, the
requirement that the relation is the same for %f and %g in D can be applied
only to two events that are equally desirable for both %f and %g.

Act 3. (Common Likelihood) Let A and B be non-null events such that
A ∼f B and A ∼g B. If A is as at least as likely as B for %f , then A is as
at least as likely as B for %g.

3 The main theorems

Our first result concerns the representation of a desirability relation in a
comprehensive state space. For this we define how a probability-utility pair
represents a desirability relation.

Definition 3. (Representation) Consider a pair (P, u), where P is a non-
atomic probability on (Ω,Σ, f) and u : C → R. We say that (P, u) represents
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a binary relation % on Σ if the set of null events of % is the set of P -null
events, and for all non-null events A and B, A % B if and only if

(1)
n∑

i=1

u(ci)P (Ci|A) ≥
n∑

i=1

u(ci)P (Ci|B).

Note that if Inequality (1) holds, then it holds also for any positive affine
transformation of u. That is u 7→ αu+ β where α > 0.

Theorem 1. For a comprehensive state space (Ω,Σ, f), a relation % on Σ
satisfies axioms Com 1–Com 7 if and only if there exists a pair (P, u) that
represents it.

We illustrate the relation between probability-utility pairs and desirabil-
ity relations in the following example.

Example 1. Let the state space (Ω,Σ) be the unit interval with the σ-
algebra of Borel sets. The set of consequences is C = {c1, c2, c3}. The act
f is defined by f(ω) = c1 for ω ∈ [0, 1/3), f(ω) = c2 for ω ∈ [1/3, 2/3),
and f(ω) = c3 for ω ∈ [2/3, 1]. Thus, the consequence events are: C1 =
[0, 1/3), C2 = [1/3, 2/3), and C3 = [2/3, 1]. The comprehensive state space
is (Ω,Σ, f).

Consider the pair (P, u), where P is the uniform probability distribution,
and the utility function, u : C → R, is given by u(c1) = u1 = 0, u(c2) = u2 =
1/2, and u(c3) = u3 = 1. Denote by Pi, for i = 1 . . . 3, the conditional
probability of P on Ci. For a P -non-null event E, let xi = P (E|Ci). Then
the conditional utility given E is:

[(0)(1/3)x1 + (1/2)(1/3)x2 + (1)(1/3)x3]/[(1/3)x1 + (1/3)x2 + (1/3)x3].

The conditional expectation defines a desirability relation % on the P -
non-null events, which it represents. The null events of % are the P -null-
events. Note, that the conditional expectation given E is determined by the
x’s. Thus, in particular, if two events have the same conditional probability
given each Ci, then they are similar.

In order to simplify the formulation of the following results we make two
assumptions.

Assumptions.

1. for each consequence c, the event C is non-null,
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2. Cn � Cn−1 � · · · � C1.

The main thrust of the second assumption is that no two distinct events
Ci and Cj are similar. The ordering of desirability according to the indices
is made, of course, without loss of generality.

The question that usually arises in representation theorems is the unique-
ness of presentation. In our case the set of pairs that represent % is not a
singleton. In the following theorems we characterize this set. We denote
by P(%) the set of all probability measures P such that for some u, (P, u)
represents %.

We decompose a probability P on (Ω,Σ) into two parts: The conditional
part (Pi)

n
i=1 where for each i, Pi(·) = P ( · | Ci), and the consequential

part, p, in the simplex ∆(C) where pi = P (Ci). Thus, for each event E,
P (E) =

∑n
i=1 piPi(E). It turns out that the conditional part is uniquely

determined for the given desirability relation, while the consequential part
is not. In order to describe this non-uniqueness we introduce the notion of
optimism.

For two positive probabilities p and q in ∆(C), we say that p is more
optimistic than q, and write p � q if for each i < j, pj/pi > qj/qi. The
reason why this inequalities describe optimism follows from Assumption 2.
If p � q, then for each two consequences the likelihood of the preferred
one is higher in p than in q. Let ρ(p) be the n − 1 dimensional vector
defined by ρi(p) = pi+1/pi for i = 1, . . . n−1. We say that p likelihood-ratio
dominates6 q if ρ(p) > ρ(q). Obviously, p is more optimistic than q if and
only if p likelihood-ratio dominates q.

An open interval of positive probabilities (p, q) = {αp+(1−α)q | 0 < α <
1} is ordered by optimism if for each α > α′, αp+(1−α)q � α′p+(1−α′)q.
The interval is maximal if p and q are on the boundary of the simplex.

We are now ready to describe the multiplicity of the probabilities in the
representing pairs.

Theorem 2. A set of probabilities P is P(%) for some relation % on Σ that
satisfies axioms Com 1–Com 7 and Assumptions 1,2 if and only if:

1. The conditional parts of the probabilities in P are the same. That is,
for each P and Q in P, (Pi) = (Qi),

2. The consequential parts of probabilities in P form a maximal interval
ordered by optimism.

6It is straightforward to see that Likelihood-ratio dominance implies stochastic domi-
nance.
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Finally, we characterize the utilities in the representing pairs.

Theorem 3. For every P ∈ P(%), there exists a unique utility u, up to a
positive affine transformation, such that (P, u) represents %. Moreover, if
(P, u) and (Q, u) represent %, then P = Q.

We can say more about the representing utilities. Denote ui = u(ci) and
define the vector of utility gains ∆u = (∆ui)

n−1
i=1 by ∆ui = ui+1 − ui. By

Theorem 1∗, ∆u > 0. For two utility vectors u and v we say that u is more
content than v if for each i < j between 2 and n, ∆uj/∆ui < ∆vj/∆vi.
The n − 2 dimensional vector ρ(∆u), where ρi(∆u) = ∆ui+1/∆ui for i =
2, . . . , n − 1 is the vector of the utility-gain ratio. Obviously, u is more
content than v if and only if ρ(∆v) > ρ(∆u), that is, ∆v � ∆u. Note that
ρ(u) is invariant under positive affine transformations of u.

Roughly speaking, being more optimistic means giving higher probabil-
ity to more desirable consequences, and being more content means giving
less utility to such consequences. The next theorem says that being more
optimistic is balanced by being more content.

Theorem 4. For each i = 2, . . . , n − 1, the product ρi(∆u)ρi(p)ρi−1(p) is
the same for all (P, u) that represent %. Thus, if (P, u) and (Q, v) represent
%, and ρ(p) > ρ(q), then ρ(∆u) < ρ(∆v).

Example 2. The desirability relation in Example 1 can be represented by
other pairs (Q, v). By Theorem 2, the conditional probability of Q given
each Ci is Pi. Thus, Q = q1P1 + q2P2 + q3P3 for some probability vector
q = (q1, q2, q3). If we choose q = (1/6, 1/3, 1/2) and v1 = 0, v2 = 3/4
and v3 = 1, then (Q, v) also represents %. This can be easily verified by
checking that the conditional expected utilities of the two pairs are similarly
ordered. Note that ρ(q) = (2, 3/2) while for p = (1/3, 1/3, 1/3), in Example
1, ρ(p) = (1, 1). Thus, ρ(q) > ρ(p), and therefore q is more optimistic than
p. Also ∆u = (1/2, 1/2), ∆v = (3/4, 1/4), and hence ρ(∆u) = (1) and
ρ(∆v) = (1/3) which demonstrates Theorem 4.

In Section 5, we show how to compute the maximal interval of probability
vectors that are ordered by optimism guaranteed by Theorem 2.

So far we have dealt with the representation of desirability for a given
comprehensive state space with a given fixed act. We now vary the act in
some family of acts F that contains all full acts. Each act in the family
defines a comprehensive state space. For each f ∈ F the agent has a desir-
ability relation %f on the associated comprehensive state space. We denote
the family of these desirability relation be D. When the families F and D
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satisfy axioms Act 1–Act 3, then there exists a single probability-utility pair
that represents all the desirability relations in this family.

Theorem 5. The families of acts F and binary relations D, satisfy axioms
Act 1–Act 3 if and only if there exists a unique pair (P, u) that represents
%f for all acts f ∈ F , where u is uniquely determined up to a positive affine
transformation.

Example 3. Consider the state space of Example 1, and the pair (P, u) in
this example. This pair defines a preference relation over all acts by taking
the expected utility for each act. Moreover, by Savage (1954) this pair is the
unique pair that represents this preference relation. Theorem 5 shows that
this pair can be uniquely determined by desirability relations rather than a
preference relation on acts.

Let F be the set of all acts f such that for each i, f−1(ci) is P -non-null.
For each f ∈ F , the pair (P, u) defines a desirability relation %f on events
in the comprehensive state space (Ω,Σ, f). The family of these relations
satisfies axioms Act 1–Act 3. By Theorem 5, the pair (P, u) is the only pair
that satisfies these axioms.

4 Proofs

4.1 An outline of the proofs

We omit the proof of the simple “if” part of Theorem 1. We prove first a
restricted version of Theorem 1 under the Assumptions 1 and 2, and then
show how Theorem 1 can be derived from this version.

Theorem 1*. For a comprehensive state space (Ω,Σ, f), a relation % on Σ
satisfies axioms Com 1–Com 7 and Assumptions 1 and 2 if and only if there
exists a pair (P, u) that represents it, such that for i = 1, . . . , n, P (Ci) > 0
and u(cn) > u(cn−1) > · · · > u(c1).

In subsection 4.2 we derive for each consequence c a probability Pc on
Σc, the σ-field of events in C, that will serve as the conditional probability
of the probability P in Theorem 1*. Definition 2 enables us to define a
likelihood relation on a family of similar events. Since, by axiom Com 5 of
Consequence Events, all non-null subevents of C are similar, we manage to
define a likelihood relation on Σc. This relation is shown to be a qualita-
tive probability. By axiom Com 3 of Non-atomicity it follows by a theorem
of Savage that there exists a unique non-atomic probability on Σc, which
represents the qualitative likelihood relation on Σc.
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In subsection 4.3 we show that the desirability relation between events
depends only on the n-dimensional vector of their conditional probabilities
(Pc(E ∩ C))c∈C . Moreover, it is homogeneous in this vector.

This enables us to translate, in subsection 4.4, the desirability relation
on events to a relation on the positive orthant of RC . We show that the sets
defined by this latter relation are convex, and characterize their topological
properties.

In subsection 4.5 we again use Definition 2 to define a relation of be-
ing more likely on each equivalence class of points in RC . We characterize
the convexity of sets defined in terms of this relation and their topological
properties.

We show in subsection 4.6 that the sets of being more likely than x and
less likely than x, in the set of points equivalent to x, can be separated
by a probability vector. Moreover this vector is independent of x. Such a
probability vector will be the probability of the consequence events.

In subsection 4.7 we characterize the space of separating functionals of
the previous subsection in terms of exchange rates of coordinates in the
Euclidean space. These exchange rates help us to derive the utility in the
next subsection.

Using the conditional utility in subsection 4.2, the probabilities derived
in subsection 4.5, and the utility derived in subsection 4.8, we go back to
the desirability relation and prove Theorems 1-4. In the last subsection we
prove Theorem 5.

4.2 The conditional probability over consequences

The following are three immediate corollaries of axioms Com 6 of Interme-
diacy and Com 2 of Weak Order. The first is not only a corollary of the two
axioms, but combined with axiom Com 2 implies axiom Com 6.

Corollary 2. If E and F are disjoint non-null events, then the relations
E � F , E ∪ F � F , and E � E ∪ F are equivalent.

Corollary 3. If E and F are disjoint non-null events, then the relations
E ∼ F and E ∪ F ∼ F are equivalent. Hence, if E1, . . . , Ek are non-
null events that are disjoint in pairs, and E1 ∼ E2 ∼ · · · ∼ Ek, then
∪ki=1E

i ∼ E1.

Corollary 4. Let E and F be disjoint events. If A � E and A % F , then
A � E ∪ F . If E � A and F % A, then E ∪ F � A.
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Proof. For the first part, if E % F , then by intermediacy A � E % E∪F . If
F � E, then by Corollary 1, A % F � E ∪ F . The second part is similarly
proved.

We denote by Σc the σ-algebra that Σ induces on C, namely, Σc = {E |
E ⊆ C,E ∈ Σ}.

We begin with a derivation of a non-atomic probability distribution Pc

on Σc for each consequence c. This is done by defining a relation ' on
Σc, in terms of the relation %, and showing that it satisfies the axioms of
qualitative probability.

Fix for now a consequence c and the corresponding event C. Choose a
non-null event G such that G ∩ C = ∅ and G 6∼ C. By Assumption 2,
and since n ≥ 2, there exists such a G, as Cj for j 6= i satisfies it. Note,
that since G is non-null, for any A ∈ Σc, including the null events, A ∪G is
non-null. We define a binary relation ' on Σc as follows.

Definition 4. For A,B ∈ Σc, A ' B if either C � G and A ∪G % B ∪G,
or G � C and B ∪G % A ∪G.

Observe, that non-null events A and B in Σc are similar events by axiom
Com 5 of Consequence Events, and therefore A ' B if and only if A is more
likely than B according to G, as in Definition 2. Thus, ' is an extension of
the latter relation to all events in Σc. We write A ≈ B when A ' B and
B ' A, and A > B when it is not the case that B ' A.

Proposition 1. There exists a unique probability measure Pc on Σc such
that for any A,B ∈ Σc, A ' B if and only if Pc(A) ≥ Pc(B). The probability
Pc is non-atomic.

Proof. We first show that ' is a qualitative probability on Σc. That is,
it satisfies the following properties for all A,A′, and B in Σc such that
B ∩ (A ∪A′) = ∅.

1. ' is transitive and complete;

2. A ' A′ if and only if A ∪B ' A′ ∪B ;

3. A ' ∅, C > ∅.

Since G 6∼ C, either G � C or C � G. We assume that C � G. The
proof for the other case is analogous.

By Weak Order either A∪G % B ∪G, in which case A ' B, or B ∪G %
A ∪ G, in which case B ' A. Thus, ' is complete. Suppose that A1 ' A2
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and A2 ' A3. Then, A1 ∪ G % A2 ∪ G % and A2 ∪ G % A3 ∪ G. By Weak
Order A1 ∪G % A3 ∪G, and thus A1 ' A3. Therefore ' is transitive.

To show 2, we consider the following four cases. (a) B is null. In this
case, A∪B ∪G % A′ ∪B ∪G if and only if A∪G % A′ ∪G, which yields 2.
(b) A is null and A′ is not. This case is impossible when A ' A′, because
by Corollary 2, A′ ∪ G � G ∼ A ∪ G. (c) A is non-null and A′ is null. By
Intermediacy A ∪G % G ∼ A′ ∪G. Thus, in this case, necessarily A ' A′.
Since B � G, A ∼ B % B ∪G, and hence by axiom Com 6 of Intermediacy,
A∪B ∪G % B ∪G ∼ A′ ∪B ∪G. Thus, in this case it is also necessary that
A∪B ' A′∪B. (d) All three events A, A′ and B are non-null. In this case,
A ' A′ means that A is more likely than A′ according to G. As B ∼ C � G,
it follows by Corollary 2 that C ∼ B � B ∪G. Also (B ∪G)∩ (A∪A′) = ∅.
Thus, by axiom Com 7 of Persistency, A is more likely than A′ according
to G if and only if A is more likely than A′ according to B ∪ G. Hence,
A ∪G % A′ ∪G iff and only if A ∪B ∪G % A′ ∪B ∪G.

If A is non-null, then by Corollary 2, A∪G � G = ∅∪G. Hence it is not
the case that ∅ ∪ G % A ∪ G, and therefore A > ∅. In particular, C > ∅.
If A is null then A ∪G ∼ ∅ ∪G. Which show that for all A, A ' ∅. This
proves 3.

Next, we prove a property of ' which is named by Savage P6’:
If E > F , then there exists a finite partition of C, (Πi)

k
i=1, such that for

each i, E > F ∪Πi.
Since E > F , it follows that E ∪ G � E ∪ G. Let {Π′i | i = 1, . . . ,m}

be the partition the existence of which is guaranteed by axiom Com 3 of
Non-atomicity for the last relation. Then, the set of nonempty events of
the form Πi = Π′i ∩ C is a partition of C and for each such event Πi,
(F∪G∪Πi)∆(F∪G) = Pi ⊆ Π′i. Thus, by the said axiom, E∪G % F∪G∪Πi,
which means E > F ∪Πi.

This property with the properties of ' as qualitative probability imply
the claim of the proposition as is shown in Savage (1954).

In the next subsection we show that the desirability of an event E de-
pends only on the probabilities Pc(Ec). Here, we show that the question
whether E is null or not depends only on these probabilities.

Definition 5. Let π : Σ→ RC be defined by π(E) = (Pc(Ec))c∈C.

Proposition 2. An event N is null if and only π(N) = 0.

Proof. Since Σ0 is closed under unions, and inclusion, an event N is null if
and only if for each c, Nc is null. Thus, it is enough to show that Nc is null
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if and only if Pc(Nc) = 0. If Nc is null then for any non-null H, Nc∪H ∼ H
and therefore Nc ≈ ∅ and thus, Pc(Nc) = 0. For the converse suppose
Pc(Nc) = 0. We need to show that if E % F , E∆E′ ⊆ Nc, and F∆F ′ ⊆ Nc

then E′ % F ′. For this it suffices to show that E ∼ E′ and F ∼ F ′. Note that
E\C = E′\C. Now, if E\C ∼ C, then by Corollary 3 E = Ec∪(E\C) ∼ C
and similarly E′ ∼ C and we are done. Otherwise, E \ C 6∼ C. Now,
Ec = (Ec∩E′c)∪N1

c for someN1
c ⊆ Nc. Since Pc(N

1
c ) = 0, it follows by axiom

Com 7 of Persistency, that E = (Ec∩E′c)∪N1
c ∪(E\C) ∼ (Ec∩E′c)∪(E\C).

Similarly E′ ∼ (Ec ∩ E′c) ∪ (E′ \ C). Since E \ C = E′ \ C, it follows that
E ∼ E′. Similarly, F ∼ F ′.

4.3 The homogeneity of desirability

In this subsection we prove:

Proposition 3. If there exists t > 0 such that π(E) = tπ(F ) 6= 0, then
E ∼ F .

To prove it we use the following three lemmas.
For each non-null G, the support of G is C(G) = {c | Gc is non-null}.

We split the support into two parts C−(G) = {c ∈ C(G) | G � Gc} and
C+(G) = {c ∈ C(G) | Gc % G}.

Lemma 1. The set C+(G) is not empty, and if |C(G)| ≥ 2, then also C−(G)
is not empty.

Proof. Suppose that C+(G) = ∅. Then G = ∪c∈C−(G)Gc. By Corollary 4,
G � ∪c∈C−(G)Gc, which is impossible. Assume now that |C(G)| ≥ 2 and
suppose that C−(G) = ∅. Then for some c and d in C+(G), Gc � Gd.
Again by Corollary 4, G = ∪c∈C+(G)Gc � G.

Lemma 2. Let G be an event such that |C(G)| ≥ 2. Denote for each event
X such that C(X) = C(G), X+ = ∪c∈C+(G)Xc and X− = ∪c∈C−(G)Xc. If
G+ ⊂ X+ and X− ⊂ G−, and the events G+\X+ and X−\G− are non-null,
then X � G.

Proof. By Corollary 4, G � G− \ X−. This implies that X− ∪ G+ � G,
because if G % X− ∪ G+, then G � (X− ∪ G+) ∪ (G− \ X−) = G. Also,
X+ \G+ % G. Hence, (X− ∪G+) ∪ (X+ \G+) � G. Since C(X) = C(G) it
follows that X ∼ (X− ∪G+) ∪ (X+ \G+) and thus X � G.

Next, we describe a simple result of axiom Com 3 of Non-atomicity. If
F � E, and E1 ⊆ E is non-null, then there exists D ⊆ E1 such that
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D ∩E1 is non-null and F � E \D. Indeed, choose the partition Π in axiom
Com 3, and select an element Πi of Π such that Πi ∩E1 is non-null, and set
D = Πi ∩ E1. This result can be generalized as follows.

Lemma 3. If F � E, and E1, ..., Em are non-null subevents of E. Then
there exists D ⊆ ∪mi=1E

i such that for each i, D ∩ Ei is non-null and F �
E \D.

Proof. Prove by induction on m. In the k stage we have Dk that satisfies
the condition for E1, ..., Ek. Since F � E \Dk, we can apply axiom Com 3
of Non-atomicity and choose Pi such that Pi ∩ Ek+1 is non-null. We let
Dk+1 = (Dk ∪ Pi) ∩ ∪k+1

i=1E
i.

Proof of Proposition 3. By Proposition 2, C(E) = C(F ) = {c | pc(Ec) =
pc(Fc) > 0}. If this set, which we denote by C, is a singleton c, then both E
and F are similar to C and we are done. We assume therefore that |C| ≥ 2.

We prove first for t = 1. By the definition of pc and axiom Com 7 of
Persistency, for each d 6= c in C, Ec ∪ Fd ∼ Fc ∪ Fd. Similarly, by the
definition of pd, Ec ∪ Fd ∼ Ec ∪ Ed. Thus, Ec ∪ Ed ∼ Fc ∪ Fd. It follows by
axiom Com 4 of Pairs that E ∼ F .

Suppose that t = k/m for some integers k and m. By the non-atomicity
of pc, there exists for each c ∈ C, a partition E1

c , . . . , E
k
c of Ec into k

equally pc-probable events and a partition F 1
c , . . . , F

m
c of Fc into m equally

pc-probable events. Then pc(E
i
c) = pc(F

j
c ) for all c ∈ C and i, j. Let

Ei = ∪c∈CEi
c and F j = ∪c∈CF j

c . Then, by the claim for t = 1, Ei ∼ F j for
all i and j. As all the Ei’s are disjoint in pairs and similar, it follows by
Corollary 3 that ∪ki=1E

i ∼ E1. In the same way, ∪mj=1F
j ∼ F 1. Since for

all c 6∈ C, Ec and Fc are null, E ∼ ∪ki=1E
i and F ∼ ∪mj=1F

j . But, E1 ∼ F 1,
and therefore E ∼ F .

Let t be an irrational number. Suppose that contrary to the claim,
F � E. This can be assumed without loss of generality, because if E � F
we write π(F ) = t′π(E) for t′ = 1/t.

We derive a contradiction. By Lemma 1, C−(F ) is not empty. By Lemma
3, there exists an event D such that F � E \ D, D ⊆ ∪c∈C−(F )Ec, and
D ∩ Ec is non-null for each c ∈ C−(F ). We denote Hc = Ec \ D. Let
ε = min{pc(Ec ∩ D) | c ∈ C−(F )}. Then, ε > 0 and we can choose a
rational number k/n such that t − ε < k/m < t. Given this relation we
have by the non-atomicity of the probabilities pc an event G ⊆ E such that
π(G) = (k/m)π(F ). Moreover, for c ∈ C−(F ), we can choose Gc to satisfy
Hc ⊆ Gc where the difference is a non-null event.
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As we have shown, G ∼ F . Therefore, if F � Fc then G ∼ F � Fc ∼ Gc.
Thus, C−(G) = C−(F ), and similarly, C+(G) = C+(F ). We apply Lemma 2
to X = E \D. The event X− is H = ∪c∈C−(G)Hc ⊂ G−, and X+ = E+ ⊃
G+. We conclude that F � E \D � G ∼ F which is a contradiction.

4.4 From desirability to a relation in a Euclidian space

Using Proposition 3, we describe a binary relation on RC . We use the no-
tation % for both this relation and the relation on events, and call both
desirability relations. No confusion will result.

Definition 6. Denote by RC+ the set of all point x ∈ RC such that x ≥ 0 and
x 6= 0. We define a relation on RC+ by x % y if there exist events E and F
and positive numbers t and s such that π(E) = tx, π(F ) = sy, and E % F .

Note that if x % y then by Proposition 3, E′ % F ′ for any pair of events
E′ and F ′ such that π(E′) = t′x and π(F ′) = s′y, for t′, s′ > 0.

Denote M(x) = {y | y % x}, M+(x) = {y | y � x}, L(x) = {y | x % y},
L−(x) = {y | x � y}, and E(x) = {y | y ∼ x}.

The next proposition addresses the convexity of these sets.

Proposition 4.

1. The relation % on RC+ is complete and transitive.

2. For each x, the setsM(x), M+(x), L(x), L−(x), and E(x) are convex
cones.

Proof. 1. For x and y in RC there exist small enough positive t and s such
that for some events E and F , π(E) = tx and π(F ) = sy. Since at least one
of the relations E % F or F % E holds, it follows that at least one of x % y
or y % x must hold.

Suppose x % y and y % z. Then there are events E, F , and positive
numbers tE and tF , such that π(E) = tEx, π(F ) = tF y, and E % F .
There are also events G and H, and positive numbers tH and tG, such that
π(G) = tGy, and π(H) = tHz, where G % H. Since π(G) = tGt

−1
H π(H), it

follows by Propostion 3 that G ∼ H. Hence, E % H and therefore x % z.
2. The sets in this part of the proposition are cones by the definition of

%. Consider the set M(x). To prove that it is convex it is enough to show
that for any z, w ∈ M(x), z + w ∈ M(x). Let G be an event such that
π(G) = rx. For small enough t > 0 there are disjoint events E and F such
that π(E) = tz and π(F ) = tw. Hence, E % G and F % G. By Corollaries
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3 and 4, E ∪F % G. But π(E ∪F ) = t(z+w) and thus z+w ∈M(x). The
proof for the rest of the sets is similar.

Next, we discuss the topological properties of these sets. We denote by
ec the unit vector of the coordinate c, and write ei for eci .

Proposition 5. For each x ∈ RC+:

1. the sets M+(x) and L−(x), are open subsets in RC+. If x 6= e1 then
L−(x) 6= ∅. If x 6= en then M+(x) 6= ∅;

2. the sets M(x), L(x), and E(x) are closed subsets in RC+;

3. the interior of E(x) is empty.

Proof. 1. Let y ∈ M+(x) and suppose that π(E) = ty and π(F ) = sx. We
may assume without loss of generality that tyc < 1 for each c. As E � F
we can apply axiom Com 3 of Non-atomicity. Consider a consequence c.
If Pc(Ec) > 0, then Ec is non-null, and we can find an element Πi of the
partition Π such that Πi ∩ Ec is non-null. Denote Dc = Ec ∩ Πi. Then
E\Dc � F . As π(E\Dc) = ty−pc(Dc)ec, it follows that y−t−1pc(Dc)ec � x.
Thus, at a point y which is not on the face yc = 0, we can decrease the c-
coordinate and remain inM+(x). Similarly, since C \Ec is non-null, per our
assumption on ty, we can choose an element Πi of the partition Π, such that
(C \Ec)∩Πi is non-null. By setting Dc = (C \Ec)∩Πi, we have E∪Dc � F .
In this way we show that y + t−1pc(Dc)ec � x. Thus, we can increase the
c-coordinate and remain in M+(x). Since M+(x) is convex, to prove that
it is open it is enough to show that for each point y in M+(x) an interval
along the c-coordinate containing y is in M+(x). If x 6= en, then en � x
and hence M+(x) is not empty. The proof for the set L−(x) is similar.

2. The sets M(x) and L(x) are the complements in RC+ of L−(x) and
M+(x) correspondingly, and hence they are closed. The set E(x) is the
intersection of M(x) and L(x) and hence closed.

3. Let y ∈ E(x). There exists c such that either y � ec or ec � y.
Suppose the first holds. We can assume without loss of generality that
y = π(E) and yc < 1. Choose Fc ⊆ C, such that Fc∩E = ∅ and pc(Fc) < ε.
Then E � E∪Ec. This means that y � y+εec, and therefore y+εec 6∈ E(x).
This shows that y is not in the interior of this set. The proof for the case
ec � y is similar.

For x 6∈ {e1, en}, the three setsM+(x), L−(x) and E(x) form a partition
of RC+. The first two are disjoint open convex cones. Since E(x) does not
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have an interior point, it is the closure of each of the first two sets. These two
convex open sets can be separated by a hyperplane. Since 0 is in the closure
of the separated sets, the hyperplane is an (n − 1)-dimensional subspace
S(x). As E(x) is the closure of both sets, it must be the intersection of S(x)
with RC+. Since the two separated sets are open, E(x) contains an interior
point of RC+. Thus we conclude:

Corollary 5. For x 6∈ {e1, en}, the set E(x) is the intersection of RC+ with
an (n − 1)-dimensional subspace, S(x). This intersection is of dimension
n− 1, that is, it contains interior points of RC+.

4.5 Likelihood relation in the Euclidean space

Using the desirability relation of events we defined a likelihood relations %H

on events which are equally desirable. We now show how such relations are
transformed to a relation in RC .

For v 6∼ x we define a relation %∗v on E(x).

Definition 7. For y, z ∈ E(x), if x � v, then y %∗v z when y + v % z + v,
and if v � x then y %∗v z when z + v % y + v.

By axiom Com 7 of Persistency, if u, v 6∼ x then %∗u=%∗v. We denote
this relation which is independent of the choice of v, by %∗. We study the
following sets that are defined in terms of this relation.

For each y ∈ E(x), we define five subsets of E(x): M∗(y) = {z | z %∗ y},
M∗+(y) = {y | z �∗ y}, L∗(y) = {z | y %∗ z}, L∗−(y) = {z | y �∗ z}, and
E∗(y) = {z | z ∼∗ y}.

First, we describe the convexity properties of these sets.

Proposition 6.

1. The relation %∗ on E(x) is complete and transitive.

2. For each y ∈ E(x), the sets M∗(y), M∗+(y), L∗(y), L∗−(y), and E∗(y)
are convex.

Proof. 1. Since either y + v % z + v or z + v % y + v, it follows that either
y %v z or z %v y. Suppose y %v z and z %v w. Then y + v % z + v % w + v
and therefore y %v w.

2. Let z, w ∈ M∗(y) and α ∈ (0, 1). Then for some v such that x � v,
z + v % y + v and w + v � y + v. Therefore, αz + αv % y + v, and
(1− α)w + (1− α)v % y + v. By intermediacy, αz + (1− α)w + v % y + v.
That is, αz + (1 − α)w ∈ M∗(y). The proof for the rest of the sets is
similar.
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The following lemma is used in the next proposition that describes the
topological properties of these sets.

Lemma 4. For all y, z ∈ E(x):

1. z + y �∗ y;

2. if y ∼∗ z and t > 0 then ty ∼∗ tz.

Proof. 1. Let x � v. By intermediacy, z ∼ y � y+v. Therefore, z+y+v �
y + v. Hence z + y �∗ y.

2. If y ∼∗ z then for some v such that x � v, y + v ∼ z + v. Therefore,
ty + tv ∼ tz + tv and thus ty ∼∗ tz.

Proposition 7. For each y ∈ E(x):

1. the sets M∗+(y) and L∗−(y), are non-empty open subsets in E(x);

2. the sets M∗(y), L∗(y), and E∗(y) are closed subsets in E(x);

3. the interior of E∗(y) in E(x) is empty.

Proof. 1. By Lemma 4, y + εy �∗ y �∗ y − εy and thus M∗+(y) and L∗−(y)
are not empty. This also shows that close enough to E∗(y) there are points
not in this set, which proves 3. If z+ v � y+ v, then by Proposition 5 there
is a ball B around z + v such that for each w ∈ B, w � y + v. Therefore,
there is a ball B′ around y such that for each w′ ∈ B′, w′+ v � y+ v. Thus
y ∈ B′ ∩ E(x) which shows that M∗+(y) is open. The proof for L∗−(y) is
similar.

2. The first two sets are complements of open sets, and the third is the
intersection of the first two.

4.6 Separation

By Propositions 6 and 7 we can separateM∗(y) and L∗(y) by a hyperplane.
Since E∗(y) is the boundary of each of these sets it is contained in this hy-
perplane. As the separated sets are of dimension n−1, E∗(y) is of dimension
n− 2. Thus,

Corollary 6. For y ∈ E(x), there exists a unique subspace L(x, y) of di-
mension n− 2 such that E∗(y) = (L(x, y) + y) ∩ E(x)

We next show in two steps that the space L(x, y) is independent of x
and y.
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Proposition 8. There exists an (n − 2)-dimensional subspace L such that
for all x and y ∈ E(x), L(x, y) = L.

We prove it with the next three lemmas. We first fix x and vary y.

Lemma 5. For each x there exists L(x) such that for all y ∈ E(x), L(x, y) =
L(x).

Proof. Let y′ ∈ E(x). By the separation, the ray ty must intersect E∗(y′),
and thus, for some t > 0, y′ ∼∗ ty and hence E∗(y′) = E∗(ty). By Lemma 4,
E∗(ty) = tE∗(y). But tE∗(y) = t[L(x, y) + y)∩ E(x)] = (L(x, y) + ty)∩ E(x).
Thus, L(x, y′) = L(x, y).

In order to show that L(x) is independent of x we use the next lemma.

Lemma 6. For each x,y, and z, if x ∼∗ y, then x+ z ∼∗ y + z.

Proof. If x ∼∗ y, then by definition x ∼ y. Suppose x � z. As x ∼∗ y it
follows that x+z ∼ y+z. In order to show that x+z ∼∗ y+z it is enough to
find some v such that x+z � v, and x+z+v ∼ y+z+v. Indeed, take v = z,
then by Intermediacy x + z � z, and as x ∼∗ y, x + (z + z) ∼ y + (z + z).
The proofs for the cases that z � v and z ∼ z are similar.

Lemma 7. There exists L such that for all x, L(x) = L.

Proof. For x and x′ choose y ∈ E(x) and y′ ∈ E(x′) such that y′−y = z ∈ RC+.
By Lemma 6, E∗(y) + z ⊆ E∗(y′). But, E∗(y′) = (L(x′) + y′) ∩ E(x′), and
E∗(y) + z is an (n − 2)-dimensional subset of L(x) + y + z = L(x) + y′.
Therefore, L(x) = L(x′).

This completes the proof of Proposition 8.
Since L is of dimension n−2 there are many linear functionals p such that

pw = 0 for all w ∈ L. By the definition of L, each such functional separates
M∗(y) and L∗(y), and contains E∗(y) for every x and y ∈ E(x). The sep-
arating functional p is going to play the role of consequential probabilities.
Therefore we need the following claim.

Proposition 9. The functional p can be chosen to be a strictly positive
probability vector.

Proof. Let p′ be a separating functional. By Lemma 4, for fixed x and
y ∈ E(x), and for any w ∈ E(x), y+w ∈M∗+(y). Therefore, p′(y+w) 6= p′y
and thus p′w 6= 0.
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Since E(x) is the intersection of RC+ with a subspace S of dimension n−1,
there exists a non-zero functional q ∈ RC such that for each w ∈ RC+, qw = 0
if and only if w ∈ E(x).

Consider the two-dimensional space αp′ + βq. We show that it contains
a point in RC+. Suppose to the contrary that {αp′+βq | α, β ∈ R}∩RC+ = ∅.
Then, the two sets can be separated by a non-zero functional w. Since the
first set is a subspace, w(αp′+βq) = 0 for each α and β, and we can assume
that wr ≥ 0 for all r ∈ RC+ which implies that w ∈ RC+. By the separation,
wq = 0 and wp′ = 0. The first equality implies that w ∈ E(x). But then
the second equation is impossible because we proved that p′w 6= 0 for each
w ∈ E(x). Therefore, we can choose p = αp′+βq in RC+. By the definition of
q, for every z ∈ E∗(y), pz = αp′z = αp′y = py, which shows that p vanishes
on L.

To see that p is strictly positive, note that for ec, pec = pc. By Lemma
4, ec + ec �∗ ec and therefore 2pc > pc, which shows that pc > 0. We can
assume that p is normalized and therefore it is a strictly positive probability
vector.

4.7 The family of separating functionals

When n = 2 the dimension of L is 0. The probability vector p can be chosen
in this case to be any vector (a, 1− a) for 0 < a < 1. We now assume that
n > 2 and construct a basis for L.

Proposition 10. For each i = 2, . . . , n−1 there is a unique pair of positive
numbers δi, ηi, such that the vector di, defined by (dii−1, d

i
i, d

i
i+1) = (δi,−1, ηi)

and dj = 0 for all j 6∈ {i − 1, i, i + 1}, is in L. The vectors di form a basis
of L.

Proof. For i = 2, . . . , n− 1, let R(i) be the subspace of RC spanned by ei−1,
ei, and ei+1, and R+(i) = R(i)∩RC

+. Since the dimension of L is n− 2, the
dimension of L ∩ R(i) is at least 1, and it cannot be higher than 1 because
then there are x, y ∈ R(i) such that x > y and x−y ∈ L, contrary to Lemma
4. Thus, L ∩ R(i) is of dimension 1.

Choose two distinct points x and y in the interior of R+(i) such x−y ∈ L.
We show that xi 6= yi. Suppose to the contrary that xi = yi. Since x−y ∈ L,
it follows that pi−1(yi−1 − xi−1) + pi+1(yi+1 − xi+1) = 0. Since p > 0,
yi−1 − xi−1 and yi+1 − xi+1 are of different signs. But eci−1 � x � eci+1 and
thus by Lemma 2 either y � x or x � y, which contradicts the assumption
that x ∼ y.
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Thus, we can assume without loss of generality that yi < xi. Now,
pi−1(yi−1− xi−1) + pi(yi− xi) + pi+1(yi+1− xi+1) = 0, and since the middle
term is negative, pi−1(yi−1 − xi−1) + pi+1(yi+1 − xi+1) > 0. Thus it is
impossible that yi−1 − xi−1 ≤ 0 and yi+1 − xi+1 ≤ 0. Also, as eci−1 � y �
eci+1 , it is impossible that one difference is positive and the other is non-
negative, because this would imply contrary to x ∼ y, that either y � x or
x � y. Therefore both are positive. Let,

(2) δi =
yi−1 − xi−1
xi − yi

and

(3) ηi =
yi+1 − xi+1

xi − yi
.

Then y − x = (xi − yi)di. Since x − y ∈ L, it follows that di ∈ L. Since
L ∩ R(i) is a line, δi and ηi are uniquely determined.

Since the vectors d2, . . . , dn−1 are n − 2 independent vectors they are a
basis of L.

The following proposition is a corollary of the proof of Proposition 10.

Proposition 11. The vector p is in L if and only if for each i = 2, . . . , n−1,
and x and y in R(i) that satisfy x ∼ y and x ∼∗ y,

(4) δipi−1 + ηipi+1 = pi.

4.8 Utility

We now construct a utility vector u = (uc), where we write ui for uci . We
say that u is monotonic if ui < ui+1 for i = 1, . . . , n− 1.

Proposition 12. There exists a monotonic vector u such the function

û(x) =
∑
c

pcxcuc/px

on RC+ is constant on E(x0), for each x0 ∈ RC+. The vector u is uniquely
determined up to transformations u → α(u1 + β, u2 + β, . . . , un + β), for
α > 0.
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Proof. When n = 2, E(x0) is simply the ray {tx0 | t > 0}. Since û is
homogeneous, the claim of the proposition holds for any monotonic vector
(u1, u2). Assume now that n > 2.

Consider first x ∈ E∗(x0). Since px = px0, û(x) = û(x0) is equivalent to∑
c

pc(xc − x0c)uc = 0.

By Proposition 10, for small enough t, x = x0 + tdi ∈ E∗(x0). The last
equality in this case is equivalent to:

(5) δipi−1ui−1 + ηipi+1ui+1 = piui.

Using equation (4), equation (5) can be written as

(6) δipi−1(ui−1 − ui−1) + ηipi+1(ui+1 − ui−1) = pi(ui − ui−1).

This gives rise to: (ui+1 − ui−1)/(ui − ui−1) = pi/(ηipi+1). Denoting ∆ui =
ui−ui−1 for i = 2, . . . , n, Equation (6) is (∆ui+1 + ∆ui)/∆ui = pi/(ηipi+1),
or

(7)
∆ui+1

∆ui
=

pi
ηipi+1

− 1 =
δipi−1
ηipi+1

,

where the right-hand side is positive. Thus, choosing arbitrarily u1 < u2,
the rest of the coordinates of u are determined by 7, and as the ∆ui’s are
positive, u is monotonic. Obviously, a vector v solves (5) if and only if for
some β ∈ RC and a positive α, v = α(u1 + β, u2 + β, . . . , un + β).

Now, considering tx0. Obviously, û(tx0) = û(x0). Thus the function û
is constant on ∪t>0E∗(tx0), which is E(x0).

Proposition 13. x % y if and only if û(x) ≥ û(y).

Proof. In the previous proposition we constructed u such that if x ∼ y then
û(x) = û(y). It is enough now to show that y � x if and only if û(y) > û(x).

Denote by Xi the set of point in RC+ such that xk = 0 for all k 6∈ {i, i+1}.
Clearly, for x ∈ Xi, û(x) ∈ [ui, ui+1] and ei+1 % x % ei. Let X = ∪n−1i=1 X

i.
We first prove the claim for points in X. Suppose x, y ∈ Xi. We can assume
that yi = xi. By the definition of Pi+1, y � x if and only if yi+1 > xi+1.
But this holds if and only if û(y) ≥ û(x).

Next, suppose that y ∈ Xi and x ∈ Xj for j 6= i. Then, y � x if and
only if i + 1 ≤ j and it is not the case that i + 1 = j and x ∼ y ∼ ej . But
this is equivalent to û(y) > û(x).
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Observe now that for every x ∈ RC+ there exists a point x′ ∈ X such
that x′ ∼ x. Indeed, there exists i such that ei+1 % x % ei. Consider the
sets M(x) ∩ Xi and L(x) ∩ Xi. By Propositions 4 and 5 these are closed
cones. The first contains ei and the second ei+1. Therefore there exist x′ in
Xi which belong to both. Thus x′ ∼ x. Now, x � y if and only if x′ ∼ y′,
which is equivalent to û(x′) > û(y′). But, û(x′) = û(x) and û(y′) = û(y),
which completes the proof.

4.9 Proofs of Theorems 1-4

To complete the proof of Theorem 1* we define a probability P on Σ by
P (E) = pπ(E) =

∑
c pcPc(Ec). Note, that as p > 0, an event E is P -null if

and only if π(E) = 0, which holds, by Proposition 2, if and only if E is null.
Now,

∑
ci
uiP (E | Ci) = û(π(E)). Since E % F if and only if π(E) % π(F ),

(P, u) represents % on Σ by Proposition 13.

Proof of Theorem 1. To prove the “only if” part of Theorem 1 we con-
struct a new state space (Ω̂, Σ̂), a new set of consequences Ĉ, and a new

relation %̂ on Σ̂. The set Ω̂ is obtained by eliminating from Ω all events Ci

that are null. The σ-algebra Σ̂ consists of the events in Σ which are subsets
of Ω̂. For Ĉ, we partition the set of consequence for which Ci is non-null into
equivalence classes such that ci and cj belong to the same class if Ci ∼ Cj .
The consequences in Ĉ are these equivalence classes.

We need to show that Ĉ has at least two points, that is that there are i
and j such that Ci and Cj are non-null and Ci � Cj .

Let I be the set of indices i such that Ci is non-null. The set I is not
empty, because otherwise, Ω = ∪iCi is null, and hence all events are null,
contrary to Non-degeneracy. Suppose that all the events Ci with i ∈ I are
similar. Let E be a non-null event. For each i 6∈ I, Eci is null, and hence,
E ∼ ∪i∈IEci . For some indices i ∈ I, Eci must be non-null. Let I∗ be the
subset of I of such indices. Then, E ∼ ∪i∈I∗Eci . Choose i∗ ∈ I∗. Then by
Corollary 3, E ∼ Eci∗ . By axiom Com 5 of Consequence Events, E ∼ Ci∗ .
Since this holds for all non-null events E, and all the Ci∗ are similar, all
non-null events are similar, contrary to Non-degeneracy.

Finally, the relation %̂ is the restriction of % to the events in Σ̂. We skip
the simple proof that %̂ satisfies axioms Com 1–Com 7 as well as Assump-
tions 1 and 2. By Theorem 1* there exists a pair (P̂ , û) that represents

%̂. We define a probability P on Σ by setting P (E) = P̂ (E ∩ Ω̂). The
utility u is defined arbitrarily on ci that correspond to null Ci, and for all
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other ci, u(ci) = û(ĉj) where ĉj is the equivalence class of ci. We omit the
straightforward proof that (P, u) represents %.

Proof of Theorem 2. Assume that % satisfies the said properties and (P, u)
represents %. We show that the conditional probability P (· | C) represents
the qualitative probability relation ' in Definition 4. Since, by Proposition
1 there exists a unique probability on Σc that represents this relation, it
follows that the conditional parts of probabilities in P(%) are the same.

Consider an event A ⊆ C and event H such that H ∩ C = ∅. Then, the
expected utility given A ∪H is

(8)
P (C)P (A | C)uc +

∑
c′ 6=c P (C ′)P (H | C ′)uc′

P (C)P (A | C) +
∑

c′ 6=c P (C ′)P (H | C ′)
.

Choose H such that C � H (if there is none, we choose H such that H � C
and the argument is similar). Then uc is greater than the expected utility
given H. It follows that the derivative of (8) with respect to P (A | C) is
positive. Thus, For A,B ⊆ C, A∪H % B∪H, which is equivalent to A ' B,
holds if and only if P (A | C) ≥ P (B | C).

A probability vector p is a consequential part of some P ∈ P(%) if and
only if it is a positive solution of the n − 2 equations in (4). The set of
positive solutions of these equations in the simplex form a maximal interval.
Dividing equation (4) by pi we obtain for i = 2, . . . , n,

(9) ri =
1− δi/ri−1

ηi
,

where r = ρ(p). The function (1− δi/x)/ηi is monotonic in x > 0. Thus, if
q is in the said interval, s = ρ(q), and r1 > s1, then r2 > s2, which implies
that r3 > s3 and so on. That is, p� q. It is easy to check that the maximal
interval that contains p and q is ordered.

Conversely, suppose that a family of probability P satisfies the two prop-
erties of the theorem. Let (Pi) be the unique conditional part of probabilities
in P. Let p 6= q be two elements in the interval of consequential probabilities
of P, such that q � p. Consider the two equations λipi−1 + ηipi+1 = pi and
λiqi−1 + ηiqi+1 = qi with variables δi and ηi. It is easy to see that these two
equations have a unique solution and that it is positive. We define now a
monotonic vector u by equation (7). The vectors p and u satisfy equations
(4) and (5). Let P =

∑
piPi and let % be the desirability relation defined

by the pair (P, u). Then, equations (2) and (3) are satisfied and thus, the
set of consequential probabilities of P(%) is the set of positive solutions of
equation (4). Since q is also in this set, P = P(%).
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Proof of Theorems 3 and 4. equation (7) shows that ∆ui+1/∆ui is uniquely
determined by the consequential probability vector (pi) = (P (Ci)), which
means that u is determined up to a positive affine transformation. Moreover,
it satisfies the equation in Theorem 4.

4.10 Proof of Theorem 5

Proposition 14. There exists a unique probability measure P on (Ω,Σ)

such that for each f ∈ F , Cf
i which is non-null, and P f ∈ P(%f ),

P f (· | Cf
i ) = P (· | Cf

i ).

Proof. Let E+ be the set of non-null events with non-null complements. Let
H ∈ E+, and f and g be acts such that H = Cf

i and H = Cg
j . Let A,B ⊆ H.

By axiom Com 5 of Consequence Events, A ∼f B and A ∼g B. Thus, by
axiom Act 3 of Common Likelihood, 'f

i ='g
j which implies that P f

ci = P g
cj .

We denote this probability on H, which is independent on the consequence,
and the act by PH .

Let H ⊆ G be events in E+. We show that PH(·) = PG(· | H). Let

f be an act such that H = Cf
i and g an act such that G = Cg

i . For
A,B ⊆ H, again apply axiom Com 5 of Consequence Events and axiom
Act 3 of Common Likelihood to conclude that A 'f

i B if and only in A 'g
i B,

which means that PG(A) ≥ PG(B) if and only if PH(A) ≥ PH(B). But this
means that PH(·) = PG(· | H).

We complete the proof by showing that there exists a unique non-atomic
probability P on Σ such that for each H ∈ E+, PH(·) = P (· | H).

Let (A,B,X) be a partition of Ω into three non-null events. Then the
three events, and the union of each two of them, are all in E+. We show
that PA∪X and PB∪X determine PH for each H ∈ E+. Obviously, PH∩A(·) =
PA∪X(· | H ∩ A), PH∩B(·) = PB∪X(· | H ∩ B), and PH∩X(·) = PA∪X(· |
H ∩ X) = PB∪X(· | H ∩ X). It remains to show that PA∪X and PB∪X
determine PH(H ∩A) = α, PH(H ∩B) = β, and PH(H ∩X) = 1− (α+ β).
Let PA∪X(H ∩ A) = p and PB∪X(H ∩ B) = q. Assume first that H ∩ X
is non-null. In this case, p < 1 and q < 1. Then α/(1 − (α + β)) =
p/(1− p) and β/(1− (α+ β)) = q/(1− q). These two equations determine
α = (p − pq)/(1 − pq) and β = (q − pq)/(1 − pq). If H ∩ X is null, then
let X ′ ⊂ X be a non-null event such that X \ X ′ is also non-null. Thus,
H ∪ X ′ ∈ E+. Now, PH∪X′ is determined, and as H ⊆ H ∪ X ′, PH is
determined.

It is enough now to show that there exists a probability P such that
PA∪X(·) = P (· | A∪X), and PB∪X(·) = P (· | B ∪X). Denote p = PA∪X(A)
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and q = PB∪X(B). Let P = αPA + βPB + (1 − (α + β))PX . Then, for the
conditionals of P on A∪X and B∪X to be as desired, α and β should satisfy
the same equations as above, which have indeed a unique solution.

Proposition 15. The probability P is the unique element in ∩f∈FP(%f ).

Proof. To prove that P is in ∩f∈FP(%f ), we fix f ∈ F and omit all super-
scripts referring to this act. We use the machinery of subsection 4.7, and
make the assumption made there that f is a full act and Cn � Cn−1,� · · · �
C1. The argument for the general case is similar to the one used in the proof
of Theorem 1.

By Proposition 14, the projection of Σ to RC is given by π(E) = (P (E |
Ci)) = (P (E ∩ Ci)/P (Ci)). We need to show that p = (P (Ci)) satisfies
equation (4) in Proposition 11. Let x and y be in R(i) such that x = π(E),
y = π(F ), where x ∼ y and x ∼∗ y. By equations (2) and (3),

(10) δi =
yi−1 − xi−1
xi − yi

=
P (F ∩ Ci−1)− P (E ∩ Ci−1)

P (E ∩ Ci)− P (F ∩ Ci)

P (Ci)

P (Ci−1)
,

(11) ηi =
yi+1 − xi+1

xi − yi
=
P (F ∩ Ci+1)− P (E ∩ Ci+1)

P (E ∩ Ci)− P (F ∩ Ci)

P (Ci)

P (Ci+1)
.

Since, x ∼∗ y it follows that P (F ∩ Ci−1) + P (F ∩ Ci) + P (F ∩ Ci+1) =
P (E∩Ci−1) +P (E∩Ci) +P (E∩Ci+1). This, with equations (10) and (11),
imply that δiP (Ci−1) + ηiP (Ci+1) = P (Ci) as required by equation (4).

To prove the uniqueness it is enough to present two acts f and g in
F , such that if P f = P g then necessarily P f = P . Chose a full act f in
F . Then, for each E, P f (E) =

∑
i piP

f (E | Cf
i ), for some consequential

probability vector (pi). By Proposition 14, P f (E) =
∑

i piP (E | Cf
i ). To

show that P f = P , we need to show that pi = P (Cf
i ).

Let g be an act such that for each i and j, P (Cf
i ∩ C

g
j ) > 0. Then

f is a full act and therefore f ∈ F . Now, P g(E) =
∑

i qiP (E | Cg
i ), for

some consequential probability vector (qi). Suppose P f = P g. Then for

each j and k,
∑

i piP
f (Cf

j ∩ C
g
k | C

f
i ) =

∑
i qiP

g(Cf
j ∩ C

g
k | C

g
i ). All the

added terms in each of these two sums are 0 but one. We conclude that
pjP

f (Cf
j ∩ C

g
k | C

f
j ) = qkP

g(Cf
j ∩ C

g
k | C

g
k). These n2 equations plus the

equations
∑

i pi =
∑

i qi = 1 as equations in the 2n variables (pi) and (qi)

are independent and hence can have at most one solution. Since pi = P (Cf
i )

and qi = P (Cg
i ) solve these equations, they are the unique solution.
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We say that the full acts f and g overlap if for each i, Cf
i ∩ C

g
i is a

non-null event.

Lemma 8. For all full acts f and g there exists a full act h such that f and
h overlap and g and h overlap.

Proof. By the non-atomicity of the measures P we can choose for each i and
j, a partition of Cf

i ∩ C
g
j into two events Ei,j and Fi,j of equal probability.

Let Ei = ∪j Ei,j and Fj = ∪i Fi,j . Since P (Ei) = (1/2)P (Cf
i ) > 0, Ei is non-

null, and similarly Fj is non-null. Thus the act h defined by Ch
k = Ek ∪ Fk

is in F . Hence, for each i, Ei ⊆ Cf
i ∩ Ch

i , f and h overlap. Similarly, g and
h overlap.

Proposition 16. For all full acts f, g and i and j, Cf
i %f Cf

j if and only
if Cg

i %g Cg
j .

Proof. Assume first that f and g overlap. By axiom Com 5 of Consequence
Events, Cf

i %f Cf
j if and only if Cf

i ∩ C
g
i %f Cf

j ∩ C
g
j . By axiom Act 2 of

Common Desirability this relation holds if and only if Cf
i ∩C

g
i %g Cf

j ∩C
g
j ,

which, again, by axiom Com 5 of Common Consequences, holds if and only
if Cg

i % Cg
j . By Lemma 8, the claim holds also for non-overlapping acts.

By Proposition 16 we can assume without lose of generality that for all
full acts f ,

(12) Cf
n %f Cf

n−1 %
f · · · %f Cf

1 ,

By Lemma 15 there exists a unique P that belongs to P(%f ) for all
f ∈ F . For each such f there exists a unique utility uf (determined up to
a positive affine transformation) such that (P, uf ) represent %f . We now
show that the same u serves for all f .

Proposition 17. There exists a unique utility vector u which is determined
up to a positive affine transformation, such that (P, u) represents %f for
each f ∈ F .

Proof. We assume first that f is a full act and that the desirability relations
in equation (12) are strict. The argument for the general case is similar to
the one used in the proof of Theorem 1.

We fix f ∈ F and omit all superscripts referring to this act. By Propo-
sition 14, P ∈ P(%f ) and thus, By equations (7), (10), and (11), the vector
u is determined by,

(13)
∆ui+1

∆ui
=
δipi−1
ηipi+1

=
P (F ∩ Ci−1)− P (E ∩ Ci−1)

P (E ∩ Ci+1)− P (F ∩ Ci+1)
.
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Suppose that f and g overlap. Then, it is possible to choose the events E
and F in ∪iCf

i ∩C
g
i . For such events, E∩Cf

j = E∩Cg
j for all j and similarly

for F . Thus, when we compute the utility vector of g the right-hand side of
equation (13) is the same for g and f . We conclude that for the same utility
u, (P, u) represents both %f and %g. By Lemma 8, (P, u) represent all %f

for all full f .
For acts f which are not full, the definition of overlapping acts cannot

be used. In this case we say that a full act h covers an act f if the events
Ch
i ∩C

f
j is non-null for all i and all j such that Cf

j is non-null. The existence
of a joint covering for any two acts can be easily proved similarly to Lemma
8. The rest of the proof easily follow.

5 An example

We discuss here the desirability relation % from Examples 1, which is rep-
resented by the pair (P, u) where P is the uniform probability distribution
on the unit interval. We construct the family of all the probability-utility
pairs that represent %. We choose an example with three consequences be-
cause the case of two consequences is trivial. In this case all of ∆(C) is
an interval ordered by optimism, and all utility functions are positive affine
transformation of each other (with Assumption 1).

We project the P -non-null events in Σ to R3
+, the non-negative orthant

of R3 without 0, by π(E) = (P (E | Ci))i. By inequality (1) in Definition 3,
the desirability relation between two events E and F depends only on π(E)
and π(F ). Moreover, if π(E) and π(F ) are proportional then E ∼ F . This
last property makes it possible, just for convenience, to extend % to all of
R3
+.

These claims on the relation % on R3
+ follow easily from the fact that

he relation is defined by a probability-utility pair by inequality (1). In the
proof of Theorem 1 we need to show that they follow from the axioms.

For x ∈ R3
+, let δ and η be the increase in x1 and x3 respectively, per

a decrease of one unit of x2, required for maintaining the same probability
and the same conditional expected utility. Recalling that P (Ci) = 1/3 for
i = 1, 2, 3, δ and η should satisfy:

(14) (1/3)δ + (1/3)η = (1/3)(1),

(15) (1/3)(0)δ + (1/3)(1)η = (1/3)(1)(1/2).

40



Equation (14) reflects the preservation of probability. Since, the probabil-
ity is kept fixed, equation (15) reflects that preservation of the conditional
expected utility. Observe also, that these equations are the same for all x.

Equations (14) and (15) are derived from the given pair (P, u). In the
proof of Theorem 1 we show how they can be derived from the axioms on
%.

The solution of (14) and (15) is δ = η = 1/2. Thus, if the difference x−y
of two points x and y in R3

+ is in the direction (1/2,−1, 1/2), the two points
are similar, that is x ∼ y and have the same probability, that is

∑
i(1/3)xi =∑

i(1/3)yi. In Figure 1, the difference between x = (1/4, 0, 1/2) and y =
(0, 1/2, 1/4) is in this direction. Therefore, the whole interval between x and
y consists of points which are similar and have the same probability. By the
homogeneity of similarity, the cone generated by x and y consists of similar
points, and all the points in an interval parallel to the interval [x, y] in this
cone have the same probability.

1

2

3

1/4

1/2

x

y

1/2

1/4

The cone generated by x and y consists of similar points. Each doted line consists

of points which as well as being similar have also the same probability.

Figure 1: Similarity and same probability

We now show the other pairs (Q, v) that represent the same relation %.
First, we know by Theorem 2 that Q(· | Ci) = P (· | Ci) for each i. Thus, the
projection of the Q-non-null events to R3

+ is the same as the projection of the
P -non-null events. Also, since (P, u) and (Q, v) present the same desirability
relation, the relation % on R3

+ is the same for both representations.
We show in the proof that having the same probability for two events

that are similar is defined in terms of the desirability relation using axiom
Com 7 of Persistency. Since (Q, v) and (P, u) represent the same desirability
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relation, the picture of similarity and having the same probability for (Q, v)
should look the same as the one in Figure 1. Thus, the direction of having
similarity and same probability should be (1/2,−1, 1/2). Hence, the vector
of consequential probability q = (Q(Ci))i and v should satisfy the following
equations:

(16) q1(1/2) + q3(1/2) = q3(1),

(17) q1v1(1/2) + q3v3(1/2) = q2v2(1).

The positive probabilities that solve (16) form an open interval of prob-
abilities between (2/3, 1/3, 0) and (0, 1/3, 2/3) as in Figure 2. The point
(1/3, 1/3, 1/3) with which we started is, of course, on this line. The closer
the point in this interval is to (0, 1, 3, 2/3) the more optimistic it is. Thus,
the likelihood ratio vector for (1/3, 1/3, 1/3) is (1, 1), while for (1/6, 1/3, 1/2)
it is (2, 3/2) which dominates the first vector.

1 2

3

(2/3, 1/3, 0)

(0, 1/3, 2/3)

(1/3, 1/3, 1/3)

(1/6, 1/3, 1/2)

The closer the point is to (0, 1/3, 2/3) the more optimistic it is.

Figure 2: The interval of consequential probabilities

Fixing q that solves (16) and solving for v in (17) we find that (v3 −
v2)/(v2 − v1) = q1/q3 = (q1/q2)(q2/q3), which is the equality in Theorem 4.
Thus, v is uniquely determined by q, up to a positive affine transformation.
Moreover, if q is more optimistic than p then the ratio of utility gains of v
is dominated by that of u.

6 Concluding comments

A reader who even skimmed through the previous sections would be aware
of some obvious or less obvious open questions and possible continuations
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of this work. We mention here just two of them.
First, the idea of comprehensive state spaces, as introduced by Aumann

(1987), is one of the ideas that inspired our work. However, we have dealt
only with comprehensive state spaces for a single individual. The next step
should be the derivation of probability and utility in multi-agent compre-
hensive state spaces, and the study of rationality and equilibrium, as in
Aumann (1987), in such spaces.

Second, we followed here the orthodoxy of the theory of decisions that
considers binary choices as observable (in principle). Modern research in
psychology and brain sciences redefines the concept of observability. It in-
cludes reportable statements, expressing for example desirability, but ex-
cludes utility and probability and gives up observable (in principle) binary
choices of acts. Bridging between desirability as discussed here and this
modern research calls for a different type of work.
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