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Abstract

This paper studies a directed search equilibrium in a platform setting with homo-
geneous buyers and sellers.We show that a meeting technology, typically controlled
by intermediaries, (e.g., advertisement, interview scheduling, or online search pro-
tocol) determines the matching outcome as follows. First, a meeting technology
that provides full information to market participants is not necessarily efficient.
Second, the seller- and buyer-optimal meeting technologies do not require full
market transparency either; rather, the latter may be achieved even with the min-
imum information. Finally, the efficient matching outcome can be decentralized
by a profit-maximizing platform who adopts a simple fee-setting policy for its
intermediation service.
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1 Introduction

It is widely recognized that an increasing market transparency leads to better allo-

cations in the absence of search frictions because it helps approximate a competitive

market. However, significant search friction exists even in the internet markets which

are supposed to exhibit much lower search costs than in the offline markets. This paper

aims to study the role of market transparency on efficiency and surplus division in an

environment characterized by search frictions. Does allowing one side of the market to

observe more options on the other side always help generate matches in a frictional mar-

ket? Why do some intermediaries deliberately restrict users’ access to potential trading

partners? If intermediaries do so, will it lead to inefficiency? We provide one possible

answer to these questions by studying how meeting technologies adopted by platforms

affect matching efficiency, seller profit, and buyer surplus.

In many search/matching markets, a successful transaction between a buyer and a

seller takes several steps to realize. First, the buyer needs to be aware of the seller,

possibly together with the price and the product features. We refer to this step as

meeting.1 Second, if the buyer meets multiple sellers, she needs to decide which seller

to visit and buy the product. This is the step of search. Finally, if a seller encounters

multiple buyers but only has limited capacity, he can only select a subset of buyers

to trade with. This step is the matching between buyers and sellers. We study how

the information transparency implied by the meeting technology affects buyers’ search

behavior and eventually the matching outcome in a directed search market.

Consider an online platform for service workers such as plumbers, carpenters, or

cleaners. A customer, who wishes to find such a service worker, lodge in a request on

the platform, and then the platform forwards the request to a limited number of workers.

It is often the case that the platform has a large database of qualified workers but only

allows two or three to contact the customer. Each worker only has limited availability

in terms of working hours and needs to decide which customer to contact. With a lack

of coordination among workers over which customer to contact, several workers might

contact the same customer, in which case they need to compete for the customer’s

1The terminology “meeting” has been used in the literature of directed search (e.g. Eeckhout and

Kircher, 2010). See Section 6.1 for a discussion of the relation between our meeting technology to the

ones adopted in Eeckhout and Kircher, 2010).
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request. This leads to the coexistence of unmatched customers and unmatched workers.

Our model captures all the key elements of this example and explores the impact of

limiting the number of workers that a customer can contact.

In particular, we assume that there exists a continuum of product categories on a

monopoly platform and in each category two homogeneous sellers (i.e. customers in the

example), each holding one unit of the product, compete by setting reserve prices. A

meeting technology specifies the number of buyers (i.e. workers in the example) a seller

can meet. A buyer can visit a seller only if she observes this seller, and if more than

one buyer visit the same seller then the seller auctions off the product.

In each product category, we show that there will be two matches, which is the most

efficient outcome, if information spreads appropriately, i.e., if there are two partially

informed buyers, with one buyer only observing seller 1 and the other buyer only ob-

serving seller 2. An unmatched seller exists if: (i) all buyers are fully informed; (ii)

all the fully informed buyers select the same seller. These two conditions jointly create

the matching friction in this market. We refer to the probability of (i) as the extensive

margin of frictions and the probability of (ii) as the intensive margin of frictions.

An increase in the meeting transparency, measured by the number of buyers a seller

can meet, can have a non-monotonic effect on matching efficiency. On the one hand, a

higher degree of transparency always decreases the intensive margin of frictions, thereby

enhancing the match efficiency. On the other hand, it decreases the extensive margin

only if the initial meeting transparency is low. If the initial meeting transparency is

not too low, a further increase in the transparency will increase the extensive margin.

This is because in the latter situation, there are only few remaining uninformed buyers

and so the additional meeting requests are likely to be sent to the same buyer, thereby

increasing the total number of fully informed buyers. When both these effects are at

work, the expected number of total matches is maximized not at the full transparency

level but at an intermediate level of transparency.

We also characterize the optimal degree of meeting transparency for sellers and buy-

ers respectively. Individual seller’s profit is also maximized by an intermediate degree

of transparency. Compared to the full transparency, an intermediate degree of trans-

parency gives a higher probability of having partially informed buyers, which softens

the competition between sellers and allows for a higher reserve price. Compared to the

3



minimum degree of transparency, the probability of making sales under an intermedi-

ate degree of transparency is a lot higher. To the contrary, buyers’ expected utilities

are maximized at the minimum degree of meeting transparency. Although the price

they expect to pay is very high in this situation, buyers can successfully trade for sure

conditional on observing at least one seller.

Finally, we endogenize the meeting transparency. We show that a profit-maximizing

platform implements the efficient meeting transparency. In each product category, the

total volume of transactions is inelastic in fees, provided that agents are still willing

to trade on the platform. Consequently, using a simple transaction fee, the platform

will chooses the meeting technology that maximizes the total number of matches, which

yields the efficient outcome. Our theory thus provides an explanation of why platforms

often limit buyers’ available options in search/matching markets.

Our paper is related to several strands of literature. First, a small stream in the

directed search literature considers the implication of buyers’ information acquisition.

Peters (1984) considers costless advertising in a directed search framework. He studies

the effect of a prohibition on sellers’ advertisement on product-prices and finds that this

type of restrictions may benefit high-cost sellers. Lester (2011) introduces buyers’ het-

erogeneous search costs–some buyers with low search cost can observe all posted prices

and other buyers with high search cost can only observe one price. He shows that an

increase in the number of consumers with low search cost does not necessarily lower

the equilibrium price. Gomis-Porqueras, Julien and Wang (2017) study costly adver-

tisement in a directed-search framework. Due to the probabilistic nature of advertising,

consumers become heterogeneous in terms of the number of prices they observe, similar

as in Lester (2011). All these models do not explore the implication of the exact number

of ads each seller sends, or the exact number of meetings each seller can schedule, which

is the main focus of the current paper.

Second, fee-setting platforms have been systematically studied in the literature of

two-sided markets (Armstrong, 2006, Caillaud and Jullien, 2003, and Rochet and Tirole,

2003, 2006 are the classics). It is widely recognized that platforms facilitate transactions

between buyers and sellers. Frictions are, however, still present in many platforms and

buyers need to search sellers and/or products. The sequential search framework with

differentiated products developed by Wolinsky (1986) and Anderson and Renault (1999)
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has been imbedded into platform settings to investigate various issues such as search

pool quality (Eliaz and Spiegler, 2011), platform targeting (de Corniere, 2016), search

cost reduction (Wang and Wright, 2016), price parity clauses (Wang and Wright, 2020),

and platform steering (Teh and Wright, 2020). Unlike these studies, we use the directed

search approach that applies more appropriately to a different set of markets such as

labor and real estate markets. Kennes and Schiff (2007) and Gautier, Hu and Watanabe

(2019) also consider intermediaries’ role in certifying and market-making in a directed

search environment. Instead of addressing these issues, we introduce meeting technolo-

gies to the directed search environment on a platform and investigate the platform’s

optimal choice of the degree of meeting transparencies.

Third, our work is part of an emerging literature on information design by platforms.

Johnson, Rhodes and Wildenbeest (2020) theoretically and experimentally study a pol-

icy of discriminating sellers on a platform in terms of sales promotion, and its effect

on competition and the platform’s profit. They show that this simple policy can be

pro-competitive. Armstrong and Zhou (2020) introduce a private signal of consumers’

preferences over products, and derive the optimal information structures, which can

be chosen by a platform. Teh (2020) shows that whether the platform’s information

design is distorted towards insufficient or excessive seller competition, depends on the

platform’s fee structure. We study information design problems in a directed-search

environment and show that the full information transparency is often suboptimal in

forming matches. Our finding that the optimal degree of market transparency in a

buyers-sellers equilibrium can be decentralized by a profit-maximizing platform is also

new to this literature.

Fourthly, several papers, though studying very different mechanisms, find that re-

stricting participants’ choices can either improve matching efficiency or maximize a

platform’s profit. In the context of job network formation, Calvó-Armengo and Zenou

(2005) show that having more contacts on average does not necessarily increase the

job matching rate. When the network size grows large enough, the congestion effect

will be sufficiently strong so that it becomes harder for workers to land a job. Instead

of looking into network formation, we derive a matching function endogenously that

is very different from the one used in Calvó-Armengo and Zenou (2005) by explicitly

analyzing participants’ strategic interactions in a finite market. In the industrial or-
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ganization literature on platforms, Casadesus-Masanell and Halaburda (2014) study an

application platform where users can not only enjoy application variety but also benefit

from consumption complementarities. By limiting users’ choices, the platform enables

users to better coordinate consumption and therefore increase the platform value. Hal-

aburda, Piskorski and Yildirim (2018) consider competing dating platforms. Users with

low outside options have higher willingness to pay for a platform who restricts their

choices because it allows them to match more quickly. Our model also exhibits within-

side network effects but these externalities are results of a directed-search setup with

transferrable utilities.

Finally, there are many other possibilities of how and why users’ choices on a plat-

form are limited. A lot of discussions in this direction can be found in the literature of

operation research, information system or marketing. Kanoria and Saban (2017) con-

sidered a dynamic search market in which agents engage in costly search and the match

values are pair-specific. In their models, both sides can screen players on the other side

and make proposal to match. The authors found that the platform can mitigate wasteful

competition in partner search via restricting what agents can see/do. Romanyuk (2017)

also studied a dynamic search model in which the platform controls the information

the sellers observe about the buyers before forming a match. The paper shows that

full information disclosure is inefficient because of excessive rejections by sellers. Li and

Netessine (2019) empirically studied a related problem but from a broader perspective—

whether a higher market thickness increases the matching rate. By using data from an

online peer-to-peer holiday property rental platform, they showed that doubling market

size leads to a 5.6% reduction of matches.

The rest of the paper is organized as follows. Section 2 introduces the model and

sets up a benchmark case with full meeting transparency. In Section 3, we first use a

numerical example to illustrates the main idea and provide the full characterization of

the equilibrium. Section 4 identifies the efficient degree of meeting transparency and the

optimal degrees of meeting transparency for buyers and sellers respectively. We provide

discussions on meeting technologies and an extension to more than two sellers in Section

6. Section 7 concludes. All the proofs, and some omitted details, are in the Appendix.
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2 Basic setup and benchmark

We consider an economy with a mass of product categories. Each seller has only one

product category. For simplicity, we assume that there are two sellers in each product

category and categories are independent. The independence between categories captures

the fact that, although platforms usually list many items (a continuum in our model),

there is competition between only a few of them (see Karle, Peitz and Reisinger, 2020).

Hence, we focus attention on a representative product category with two homogeneous

sellers, indexed by i = 1, 2, and B ≥ 2 ∈ N homogeneous buyers. Each seller has one

unit of that product with zero production/inventory costs. The products’s consumption

value to sellers is normalized to one. The market is operated by a platform. The platform

offers a meeting technology which facilitates the trades between buyers and sellers. The

meeting technology determines a subset of buyers who can observe and trade with each

individual seller (see below). For simplicity, we assume that buyers and sellers cannot

trade without using the platform. We shall refer to a buyer who observes both sellers

as a fully informed buyer, a buyer who observes only one seller as a partially informed

buyer, and a buyer who does not observe any seller an uninformed buyer.

� Trading protocols. Individual sellers offer a first-price auction to their buyers.2

Each seller i posts a reserve price, denoted by ri, i = 1, 2. Once observing those prices,

buyers decide which seller to visit without coordination. Each buyer can visit only one

seller. A buyer can visit a seller only if she observes this seller (see below). The reserve

price ri is honoured only when one buyer participates in the seller i’s auction. If more

than one buyer participate, buyers bid for trade. If multiple buyers submit the same

bid then each of them obtain the product with equal probability. Modeling trading

protocols using auction captures the idea that sellers only have limited commitment

power with respect to the posted price.

When attending an auction, a buyer’s bidding strategy depends on the posted reserve

price, ri, and the observed number of participants, denoted by ni, i = 1, 2. Bertrand

2A second-price auction will yield the same outcome in this environment.
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type of reasoning yields the optimal bidding strategy,

b(ri, ni) =

ri if ni = 1;

1 if ni > 1.

Seller i’s realized profit is given by

Πi(ri, ni) =


0 if ni = 0;

ri if ni = 1;

1 if ni > 1.

� Meeting technology/Transparency. The meeting process between buyers and

sellers is determined by the platform’s meeting technologies. The key function of the

meeting technology is to control market transparency, which is summarized by the num-

ber of buyers who observe an individual seller, denoted by N . We can also interpret N

as the number of meetings a seller can schedule or the number of ads a seller can send.

Obviously, 1 ≤ N ≤ B. Both buyers and sellers take N as given. For the moment, we

treat N as an exogenous parameter, but later we will allow the platform to determine

N optimally. We assume the following properties of meeting technologies.

• Symmetry: Any two sellers are treated equally in reaching buyers.

• Anonymity: Any two buyers observe the same seller with equal probability.

• No waste: The N buyers who observe a seller are all distinct buyers.

Note that the “no waste” assumption excludes the advertising technology proposed

in Butters (1977) since Butters allows a buyer to receive multiple ads from a single seller.

One meeting technology we will repeatedly use throughout the paper can be motivated

by the following example.

Example 1 (Scheduling job interviews). Consider two employers, each has one vacancy,

and B job seekers. Each employer can schedule N = {1, 2, ..., B} interviews with job

seekers. The selection of job seekers to interview is at random. Each job seeker is

scheduled at most one interview with each employer.
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With this meeting technology, each job seeker (buyer) receives an interview request

from an employer (seller) with probability N
B

. This meeting technology is the reminis-

cence of the Non-Frictional Matching technology where the short side of the matching

market is always cleared (Stevens, 2007). We therefore refer to it as a Non-Frictional

Meeting (NFM) technology.

Denote by Γ(k|N,B) the probability of having k = 0, ..., N fully informed buyers

(i.e., the probability that k buyers observe both sellers) when each individual seller

is observed by N random buyers out of B buyers (i.e., when each individual seller is

introduced to N ≤ B buyers). As we will see later, this probability function plays the

key role in our analysis. We now compute Γ(k | N,B) with the NFM technology. First,

consider Γ(N | N,B). To introduce seller 1 to N random buyers, there are in total

CN
B = B!

N !(B−N)!
cases. Similarly, to introduce seller 2 to N random buyers, there are

in total CN
B cases. On the other hand, to introduce both sellers 1 and 2 to N random

buyers, there are in total CN
B cases. Hence, the probability that both sellers 1 and 2 are

introduced to N random buyers (i.e., the probability of having N fully informed buyers)

is
CN

B

(CN
B )2

= 1
CN

B
, i.e.,

Γ(N |N,B) =
1

CN
B

. (1)

Next, we compute Γ(N − 1 | N,B). To have N − 1 fully informed buyers, we must

introduce both sellers to N − 1 buyers, and simultaneously have one random buyer who

observes seller 1 but not seller 2, and another random buyer who observes seller 2 but

not seller 1. There are in total CN−1
B C1

B−N+1C
1
B−N such cases. Hence, the probability

of having N − 1 fully informed buyers is given by
CN−1

B C1
B−N+1C

1
B−N

(CN
B )2

, which, by using

CN−1
B = N

B−N+1
CN
B , can be written as

Γ(N − 1|N,B) =
N(B −N)

CN
B

. (2)

The following is another example that is consistent with our assumptions on meeting

technologies.

Example 2 (Jointly displayed ads). Suppose that the two sellers’ ads are jointly dis-

played to randomly selected N out of B buyers. This is as if using a NFM technology

but with sellers 1’s and seller 2’s ads as a bundle (i.e. the two ads are always shown

together on the same page).
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We shall refer to this meeting technology a Bundled Non-Frictional Meeting

(BNFM) technology. Under the BNFM technology, Γ(N |N,B) = 1 and Γ(k|N,B) = 0

for any k < N .

� Timing of the game. The timing of the game is as follows.

• Stage 1: The platform sets fee(s) and a meeting technology summarized by N .

• Stage 2: Sellers and buyers decide whether to join the platform. Participating

sellers set a reserve price.

• Stage 3: Participating buyers’ information sets are realized. The buyers choose a

seller to visit (if not uninformed).

• Stage 4: The chosen sellers and the informed buyers trade through auctions.

The equilibrium concept we use is Subgame Perfect Nash Equilibrium (SPNE).

� A benchmark with full transparency N = B. We first establish a benchmark

case with N = B, i.e., all buyers are fully informed, which corresponds to the setting in

Julien, Kennes and King (2000, hereafter JKK). We use this benchmark case to explain

the basic mechanics of buyers’ directed search and illustrate what when only one type of

friction (search friction) is present but the other friction (i.e. information friction rising

from that not every buyer is fully informed) is absent.

We work backwards and start with buyers’ directed search. Having observed the

posted reserve prices, buyers decide simultaneously which seller to visit. Denote by σi

the symmetric probability that a buyer selects seller i. Because a buyer can get a strictly

positive payoff only when no other buyers visit the same seller, the expected payoff of

visiting seller 1 is

u1(r1, r2) = (1− r1)(1− σ1)B−1,

where (1− σ1)B−1 (= σB−1
2 ) is the probability that all other B − 1 buyers visit seller 2

rather than seller 1. Similarly, the expected payoff of visiting seller 2 is

u2(r1, r2) = (1− r2)σ1
B−1,

where σB−1
1 (= (1− σ2)B−1) is the probability that all other B − 1 buyers visit seller 1

rather than seller 2. The lack of coordination among buyers implies that they must use
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symmetric strategies in equilibrium. It has been shown in JKK that there is unique sym-

metric equilibrium strategy. We can pin down the equilibrium strategy σ1 = σ1(r1, r2)

using the indifference condition, u1(r1, r2) = u2(r1, r2), which leads to

σ1(r1, r2) =
1

1 +
(

1−r2
1−r1

) 1
B−1

.

The visiting probability σ1(r1, r2) is decreasing in the reserve price r1.

Given the buyers’ directed search described above, we next study the sellers’ problem.

Seller 1’s profit equals to zero if no buyer selects him, which occurs with probability

(1−σ1)B, r1 if only one buyer selects him, which occurs with probability Bσ1(1−σ1)B−1,

and 1 otherwise. Thus, seller 1 solves

max
r1

r1Bσ1(1− σ1)B−1 + 1− (1− σ1)B −Bσ1(1− σ1)B−1,

where σ1 = σ1(r1, r2) is decreasing in r1 as shown above. Applying the first-order

condition, we obtain the symmetric equilibrium reserve price, denoted by rN=B (= r1 =

r2),

rN=B =
B − 1

B
. (3)

In what follows, we use the subscript N = 1, .., B for equilibrium variables to index

the meeting technology. The equilibrium matching rate for each individual seller is

1 −
(

1
2

)B
, because σi = 1

2
, i = 1, 2, in equilibrium. Each seller’s equilibrium expected

profit, denoted by πN=B, is

πN=B = 1−
(

1

2

)B−1

. (4)

Let ni be the number of buyers who visit seller i. Then, the equilibrium total number

of matches, denoted by TN=B, is

TN=B = Pr.[n1 ≥ 1]Pr.[n2 = 0] + Pr.[n1 = 0]Pr.[n2 ≥ 1] + 2 · Pr.[n1 ≥ 1]Pr.[n2 ≥ 1]

= 2

(
1−

(
1

2

)B)(
1

2

)B
+ 2

(
1−

(
1

2

)B)2

= 2

(
1−

(
1

2

)B)
. (5)

A buyer’s equilibrium expected payoff, denoted by uN=B, is

uN=B = (1− rN=B)

(
1

2

)B−1

=
1

B

(
1

2

)B−1

. (6)
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3 Equilibrium characterization

In this section, we allow for N < B and examine the effect of imperfect transparency

on the equilibrium. In Section 3.1, we use a numerical example with B = 3 to illustrate

the basic intuition. It turns our that the equilibrium involves sellers’ using symmetric

mixed strategy when N = 1. We generalize our intuition in the main analysis, allowing

for an arbitrary number of buyers and consider the case N ≥ 2 in Section 3.2 and the

case N = 1 in Section 3.3.

3.1 A numerical example

Consider a numerical example with B = 3 and the NFM technology (see Example 1).

First consider the case N = 3 (just like in JKK). Then, using (3) to (6), we have

rN=3 = 2
3
, πN=3 = 3

4
, TN=3 = 7

4
and uN=3 = 1

12
≈ 0.083.

Consider next the case N = 2. With imperfect transparency, i.e., N < B, note that

buyers’ information is dispersed: potentially, there exist buyers who observe no seller,

one seller, and two sellers. If a buyer observe no seller, then she has no one to visit and

her payoff is zero. If a buyer observes one seller, she is a partially informed buyer and

she visits the seller with probability one. Her payoff depends on whether the seller in

question receives visits from other buyers (see below).

We now describe the visiting strategy of a fully informed buyer who observes two

sellers. Let σ1 ∈ (0, 1) be the symmetric equilibrium probability that a fully informed

buyer attends seller 1’s auction. She obtains a positive payoff from seller 1 only if she is

the only one to choose him. This occurs only when there is another fully informed buyer

(otherwise, other two buyers are both partially informed, implying either of them should

select seller 1 for sure) and that buyer does not select seller 1. Hence, given the buyer

in question is fully informed, there is another fully informed buyer with probability 1
2

(where one buyer observes both sellers and the other buyer observes none), and so her

expected payoff from attending seller 1’s auction is

u1(r1, r2) = (1− r1)
1

2
(1− σ1),

where we note that the other fully informed buyer chooses seller 1 with probability σ1.

12



Similarly, her expected payoff from attending seller 2’s auction is

u2(r1, r2) = (1− r2)
1

2
σ1.

Given the directed search described above, seller 1 obtains profit r1 if he meets only

one buyer and profit 1 if he meets more than one buyer. He meets no buyer if there

are two fully informed buyers and neither select him (remember that each seller can

meet two buyers at most when N = 2). Hence, the seller 1’s probability of meeting no

buyer is Pr.[n1 = 0] = 1
3
(1 − σ1)2. The seller 1’s probability of meeting one buyer is

Pr.[n1 = 1] = 2
3
(1 − σ2

1), because he meets one buyer if either (i) there are two fully

informed buyers and only one of them selects seller 1 (which occurs with probability

2
3
σ1(1− σ1)), or (ii) there is only one fully buyer informed and she does not select seller

1 (which occurs with probability 2
3
(1− σ1)). So, seller 1’s expected profit becomes

r1
2

3
(1− σ2

1) + 1− 1

3
(1− σ1)2 − 2

3
(1− σ2

1),

where σ1 = σ1(r1, r2) is determined by u1 = u2, which leads to dσ1
dr1

= −(1−σ1)2

1−r2 . Taking

the first-order conditions, we obtain the equilibrium prices which are symmetric,

rN=2 =
3

4
.

Each seller’s equilibrium profit3 is

πN=2 =
19

24
.

The total number of matches in equilibrium is

TN=2 = Pr.[n1 ≥ 1]Pr.[n2 = 0] + Pr.[n1 = 0]Pr.[n2 ≥ 1] + 2 · Pr.[n1 ≥ 1]Pr.[n2 ≥ 1]

= 2

(
1− 1

3

(
1

2

)2
)

1

3

(
1

2

)2

+ 2

(
1− 1

3

(
1

2

)2
)2

= 2

(
1− 1

3

(
1

2

)2
)

=
11

6
.

3It is worth noting that a seller i does not want to deviate to set ri = 1 to exclusively sell to partially

informed consumers. When ri is sufficiently higher than 3
4 , only those consumers who only observe

seller i will buy from seller i. Given that the demand is completely inelastic for this range of ri, the

optimal deviating price is ri = 1. When N = 2 and B = 3, the probability of having such a partially

informed buyer is 2
3 . The corresponding deviating profit is therefore 2

3 , which is strictly lower than the

equilibrium profit 19
24 .
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We now compute the buyers’ expected utility. As mentioned before, a buyer, no

matter whether she observes only one seller or both sellers, can get a strictly positive

payoff only if there exists a fully informed buyer who chooses to visit a seller different

than the one she chooses. If a buyer already observes both sellers which happens with

probability
(

2
3

)2
), the probability of having another fully informed buyer is 2

(C1
2 )2

= 1
2
. If

a buyer observes only one seller (which happens with probability 2× 2
3
×
(
1− 2

3

)
), say

seller 1, one opportunity to meet seller 1 and two opportunities of meeting seller 2 are

randomly allocated between the other two buyers subject to the no-waste constraint. In

this case, the probability of having another fully informed buyer is 1. To sum up, each

buyer’s equilibrium expected payoff is

uN=2 = (1− rN=2)

[(
2

3

)2

× 1

2
+ 2× 2

3
×
(

1− 2

3

)
× 1

]
1

2
=

1

12
≈ 0.083.

Finally, consider the case N = 1. There are only two possibilities, either one fully in-

formed buyer exists (which happens with probability 1
3
) or two partially informed buyers

exist (which happens with probability 2
3
). In the former case, sellers have incentive to

reduce reserve prices to compete for, while in the latter case, sellers want to raise reserve

price to exploit. As we show below, the symmetric equilibrium should involve mixed

strategy. Denote by the symmetric equilibrium mixed strategy a distribution function

F (r) on [r, r]. By the standard argument given in Varian (1980), there is no gap in the

support of F (r) and no mass point. Note that all reserve prices in [r, r] should yield

the same profit, denoted by π(r). Suppose r < 1. Then at r, only a partially informed

consumer will buy. However, seller i can instead set r = 1 without losing demand, and

hence can make a strictly higher profit. So we must have r = 1. By the definition of

mixed strategies, for any r ∈ [r, r],

π(1) =
2

3
= r

(
1− F (r)

3
+

2

3

)
= π(r).

So F (r) = 3 − 2
r
. Finally, from F (r) = 0, r = 2

3
. Therefore, the symmetric mixed-

strategy equilibrium is characterized by the distribution function F (r) = 3 − 2
r

with

r ∈ [2
3
, 1]. The expected equilibrium reserve price is E[rN=1] = ln(9

4
). Moreover, the
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total number of matches in equilibrium is given by

TN=1 = Pr.[n1 = 1]Pr.[n2 = 0] + Pr.[n1 = 0]Pr.[n2 ≥ 1] + 2× Pr.[n1 = 1]Pr.[n2 = 1]

= 2

(
1− 1

3
× 1

2

)
1

3
× 1

2
+ 2

(
1− 1

3
× 1

2

)2

= 2

(
1− 1

3
× 1

2

)
=

5

3
.

The equilibrium expected profit is πN=1 = 2
3

and each buyer’s equilibrium expected

payoff is uN=1 = (1− E[rN=1])[1− (2
3
)2] = [1− ln(9

4
)]5

9
≈ 0.105.

To summarize the above analysis, we have:

πN=2 > πN=3 > πN=1,

TN=2 > TN=3 > TN=1,

uN=1 > uN=2 = uN=3.

Given B = 3, the expected total number of matches is maximized when the infor-

mation transparency level is moderate, N = 2. For all values of N , the total number of

matches in equilibrium is decreasing in the probability that a seller receives no buyer.

Recall that Pr.[ni = 0] =
(

1
2

)3
for N = 3, Pr.[ni = 0] = 1

3

(
1
2

)2
for N = 2, and

Pr.[ni = 0] = 1
3

(
1
2

)
for N = 1. This probability is clearly minimized at N = 2. Note

also that this probability is the product between the probability of having N fully in-

formed buyers and the probability that the N buyers select the same seller. The former

probability is a measure of the extensive margin of market frictions, while the latter is a

measure of the intensive margin of market frictions. When N = 3, the extensive margin

is too high–actually, every buyer is fully informed so that the former probability equals

one. When N = 1, the intensive margin is too high–actually, the fully informed buyer

can only select one seller so that the latter probability is the highest, equals one half.

The moderate transparency level, N = 2, achieves the balance in minimizing these two

margins and achieves the highest number of matches.

Similarly, an individual seller’s expected payoff is maximized whenN = 2. Compared

to the case with full transparency (N = 3), with the imperfect transparency (N = 2)

the competition between sellers is softened and therefore rN=2 > rN=3. Moreover, from

the seller’s point of view, the probability of trading is higher under N = 2 than under

N = 3. Compared to the minimum transparency (N = 1), while the expected reserve
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price is lower (E(rN=1) ≈ 0.811 > 0.75 = rN=2), the trading probability is much higher

under N = 2 (11
12
> 5

9
), giving a good balance between trade efficiency and price.

Finally, a buyer’s ex-ante payoff is maximized at the minimum level of information,

i.e. N = 1. Notice that there is essentially no competition among buyers when N = 1,

because there is either one fully informed buyer, or two partially informed buyers who

will visit different sellers. Thus, whenever a buyer trades, she only pays the reserve

price. Because of this, the probability of a buyer getting positive payoff under N = 1

is extremely high. Therefore, despite reaching the maximum expected reserve price,

N = 1 is most favored by buyers.

3.2 Imperfect transparency: N ≥ 2

We generalize the above intuition using the same setup with an arbitrary number of

buyers, B ≥ 2. Let us start with the case N ≥ 2. Consider the problem of a fully

informed buyer. As before, in the presence of another buyer who is a partially informed

and hence has no other choice than attending a seller’s auction, the ex post competition

would shift all buyer surplus to the seller. Hence, a fully informed buyer gets positive

surplus from selecting seller 1 only if all other N − 1 buyers are fully informed, which

happens with probability Γ(N − 1 | N − 1, B − 1), and none of them select seller 1,

which happens with probability (1− σ1)N−1. Her expected payoff of selecting seller 1 is

u1(r1, r2) = (1− r1)Γ(N − 1|N − 1, B − 1)(1− σ1)N−1.

Her expected payoff of selecting seller 2 can be similarly derived. The equilibrium

selecting strategy σ1 is implicitly determined by u1 = u2.

Consider next the seller 1’s problem to choose r1. Let n1 be the realized number of

buyers who select seller 1. Then, the seller 1’s expected profit is

π1(r1, r2) = r1Pr(n1 = 1) + Pr(n1 > 1) = 1− Pr(n1 = 0)− Pr(n1 = 1)(1− r1).

Note that n1 = 0 when there are N fully informed buyers and none of them select seller

1. The probability of this event is Γ(N |N,B)(1 − σ1)N . Also, n1 = 1 when (i) there

are N fully informed buyers but only one of them select seller 1, which happens with

probability Γ(N |N,B)Nσ1(1−σ1)N−1; or (ii) there are N−1 fully informed buyers (and
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therefore two partially informed buyers) but none of them select seller 1, which happens

with probability Γ(N−1|N,B)(1−σ1)N−1–note that in this case, it is a partially informed

buyer who only observes seller 1 that participates in the seller 1’s auction. Then,

π1(r1, r2) =1− Γ(N |N,B)(1− σ1)N

− [Γ(N |N,B)Nσ1 + Γ(N − 1|N,B)](1− σ1)N−1(1− r1)

From u1 = u2, we can get

dσ1

dr1

=
−(1− σ1)N

(N − 1)(1− r2)(σ1)N−2
.

Applying the first-order conditions, we obtain the symmetric equilibrium reserve price,

rN≥2 = 1− Γ(N |N,B)N

Γ(N |N,B)N2 + 2Γ(N − 1|N,B)(N − 1)
. (7)

In the Appendix, we show that the first order condition is necessary and sufficient, and

(7) is indeed a unique equilibrium. If the meeting technology is NFM, the equilibrium

reserve price is given by

rN≥2 = 1− 1

N + 2(N − 1)(B −N)
. (8)

We now compute the equilibrium payoffs and total number of matches. Given rN≥2,

each seller’s equilibrium matching rate is 1−Γ(N |N,B)(1
2
)N and their equilibrium profit

is

πN≥2 = 1− Γ(N |N,B)

(
1

2

)N
−

[Γ(N |N,B)N
2

+ Γ(N − 1|N,B)]Γ(N |N,B)N(1
2
)N−1

Γ(N |N,B)N2 + 2Γ(N − 1|N,B)(N − 1)
.

(9)

If the meeting technology is NFM, applying (1) and (2), we have

πN≥2 = 1− 1

CN
B

(
1

2

)N−1
[

1 +
1

N
B−N + 2(N − 1)

]
. (10)

To write down a buyer’s ex ante expected payoff in equilibrium, we need to take

into account not only the fully informed case (as already described above) but also the

partially informed case. In either case, note that, as before, a buyer can get a positive

payoff from a seller only if all other N − 1 buyers are fully informed and none of them

select the seller. With a slight abuse of notation, we use Γ(N − 1|(N − 1, N), B − 1)
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to denote the probability of having N − 1 fully informed buyers out of B − 1 buyers

when one seller can be observed by N buyers and the other seller can be observed by

N−1 buyers. We need this adjustment of the probability because if a partially informed

buyer obtains a strictly positive payoff from a seller, then the seller should be observed

by N − 1 fully informed buyers who also observe the other seller. Let φ1 and φ2 be

the probability of her being partially and fully informed, respectively. Then, a buyer’s

expected payoff when N ≥ 2 is

uN≥2 = (1− rN≥2) [φ1Γ(N − 1|(N − 1, N), B − 1) + φ2Γ(N − 1|N − 1, B − 1)]

(
1

2

)N−1

.

(11)

Under the NFM technology, φ1 = 2N
B

(
1− N

B

)
and φ2 =

(
N
B

)2
. Also, (1) implies

Γ(N − 1|N − 1, B − 1) = 1

CN−1
B−1

. To compute Γ(N − 1|(N − 1, N), B − 1), suppose that

a buyer observes seller 1 but not seller 2. Among the other B − 1 buyers, N − 1 buyers

should observe seller 1 and N (≤ B − 1) buyers should observe seller 2. There are in

total CN
B−1C

N−1
B−1 such cases. On the other hand, for N − 1 of them to be fully informed,

both of the sellers must be introduced to N−1 buyers, which has CN−1
B−1 cases, and seller

2 should be introduced to one of the (B − 1) − (N − 1) = B − N remaining buyers,

which has C1
B−N = B −N . To sum up, the probability of having N − 1 fully informed

buyers when there is already a partially informed buyer is
(B−N)CN−1

B−1

CN
B−1C

N−1
B−1

= B−N
CN

B−1
, and so a

buyer’s expected payoff for N ≤ B − 1 is given by

uN≥2 = (1− rN≥2)

[
2
N

B

(
1− N

B

)
B −N
CN
B−1

+

(
N

B

)2
1

CN−1
B−1

](
1

2

)N−1

. (12)

For N = B, it is given by (6).

Finally, we compute the expected total number of matches. Whenever there are

partially informed buyers, which occurs with probability 1 − Γ(N |N,B), both sellers

can make sales and there are two matches. Otherwise, there are N fully informed

buyers, and there are two matches with probability strictly less than one: there will

be only one match with probability 2(1
2
)N = (1

2
)N−1; there will be two matches with
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probability 1− (1
2
)N−1. So the expected total number of matches is

TN≥2 = Γ(N |N,B)

[(
1

2

)N−1

+ 2

(
1−

(
1

2

)N−1
)]

+ 2(1− Γ(N |N,B))

= 2−

[(
1

2

)N−2

−
(

1

2

)N−1
]

Γ(N |N,B)

= 2

[
1−

(
1

2

)N
Γ(N |N,B)

]
(13)

If the meeting technology is NFM, we have

TN≥2 = 2

[
1−

(
1

2

)N
1

CN
B

]
. (14)

We can summarize the analysis so far as follows.

Theorem 1. Consider a model of imperfect transparency with the parameter N ∈ [2, B]

for an arbitrarily number of buyers, B ≥ 2. A directed search equilibrium exists and

is unique with the symmetric equilibrium reserve price given by (7). With the NFM

meeting technology, the symmetric equilibrium reserve price given by (8).

3.3 Imperfect transparency: N = 1

Now we switch to the special case of N = 1, where it is obvious that the analysis above

does not readily extend. Indeed, there is no symmetric pure-strategy equilibrium when

N = 1. If both sellers set some r1 = r2 > 0, one of them can undercut the reserve price

slightly and get the fully informed buyer for sure. But neither seller will set zero reserve

price since they can make positive expected profit by setting a positive reserve price and

selling to the partially informed buyer with positive probability.

When N = 1, there are two possible scenarios regarding buyers’ information: (i)

a single buyer observes both sellers; (ii) one buyer observes only seller 1 and another

buyer observes only seller 2. If a buyer is fully informed, she will select the seller with

lower reserve price. If a buyer is partially informed, she will select the observed seller

provided the reserve price is no greater than 1. Note that the ex post bidding never

takes place when N = 1 as each seller can meet at most one buyer.
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Let the symmetric mixed strategy equilibrium be denoted by the distribution func-

tion F (r) with support [r, r̄]. By the similar argument as we made in the numerical

example, we must have r = 1. Also, there should be no gap in the support of F (r) and

no mass point, just like in Varian (1980).

We now derive an individual seller’s (say, seller 1’s) expected profit and the lower

bound of the equilibrium price distribution, r. There is a fully informed buyer with

probability Γ(1|1, B) and, given that seller 2 mixes using the price distribution F (·),

seller 2’s price is higher than a price r1 with probability 1−F (r1), in which case the fully

informed buyer will buy from seller 1. On the other hand, with probability Γ(0|1, B),

there is a partially informed buyer who can only buy from seller 1. To sum up, seller

1’s expected profit with a reserve price r1 is

π1(r1, F (r)) = r1[Γ(1|1, B)(1− F (r1)) + Γ(0|1, B)].

In equilibrium, sellers use a mixed strategy, and so they must be indifferent between

any r ∈ [r, 1) and r = 1, which yields an expected profit Γ(0|1, B). The indifference

condition is then

r[Γ(1|1, B)(1− F (r)) + Γ(0|1, B)] = Γ(0|1, B)

This condition generates the equilibrium price distribution,

F (r) = 1− Γ(0|1, B)

Γ(1|1, B)

(
1

r
− 1

)
. (15)

Further, the equilibrium must satisfy F (r) = 0, which in turn yields an expected profit

r = Γ(0|1, B). Hence, the reserve price distribution (15) with support [Γ(0|1, B), 1]

constitutes an equilibrium.

We now compute the equilibrium payoffs and outcomes. The above analysis shows

that the equilibrium expected profit of individual sellers is

πN=1 = Γ(0|1, B). (16)

When N = 1, a buyer who observes any seller can trade with probability one since there

will be no competitors between buyers. So a buyer’s equilibrium expected payoff is

uN=1 = (1− E[rN=1])(φ1 + φ2) (17)
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where the equilibrium expected reserve price is

E(rN=1) =

∫ 1

Γ(0|1,B)

rdF (r) = −Γ(0|1, B)

Γ(1|1, B)
ln(Γ(0|1, B)).

Finally, when N = 1, there is one fully informed buyer (and so one match) with proba-

bility Γ(1|1, B), and there are two partially informed buyer (and so two matches) with

probability Γ(0|1, B). Hence, the expected total number of matches is

TN=1 = Γ(1|1, B) + 2Γ(0|1, B) = 2

[
1− Γ(1|1, B)

2

]
. (18)

When the meeting technology is NFM, the equilibrium is described by the price

distribution

F (r) = 1− (B − 1)

(
1

r
− 1

)
(19)

with support [1− 1
B
, 1]. Further, we have:

πN=1 = 1− 1

B
; (20)

uN=1 = (1− E[rN=1])

[
1−

(
1− 1

B

)2
]

(21)

where

E(rN=1) = (B − 1) ln

(
B

B − 1

)
;

and

TN=1 = 2− 1

B
. (22)

Theorem 2. Consider a model of imperfect transparency with the parameter N =

1 for an arbitrarily number of buyers, B ≥ 2. A directed search equilibrium exists

and is unique, characterized by a non-degenerate distribution of reserve prices (15) on

Γ(0|1, B), 1. With the NFM meeting technology, the equilibrium distribution of reserve

prices is give by (19) on [1− 1
B
, 1].

4 Optimal meeting transparency

Given the equilibrium results derived above, we study the optimal meeting transparency

from the viewpoint of the society (Section 4.1), sellers (Section 4.2) and buyers (Section

4.3). We show that the intuition obtained from the numerical example in Section 3.1 is

valid with the more general case with an arbitrary number of buyers.
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4.1 Match-maximizing meeting

We first consider the degree of transparency N that maximizes the total matches, de-

noted by N∗. Before turning our focus to the NFM technology, we first present a

sufficient condition under which the full meeting transparency is optimal in generating

matches.

Proposition 1. Under the general meeting technology, the total number of matches is

maximized at the full transparency, N∗ = B, if the probability of having N fully informed

buyers, Γ(N |N,B), is non-increasing in N .

The proof is trivial from (13) and (18). A meeting technology that satisfies this

requirement is the BNFM technology (see Example 2) where it holds that Γ(N |N,B) = 1

for any N and therefore Γ(N |N,B) is non-increasing in N . The result is quite intuitive.

Under the BNFM, partially informed buyers never exist and so the extensive margin

of market frictions, captured by the probability of having N fully informed buyers,

Γ(N |N,B), is constant. Therefore, the number of total matches only depends on the

intensive margin of market frictions, captured by the probability that N buyers choose

the same seller,
(

1
2

)N
. The intensive margin is strictly decreasing in N . Therefore,

N = B generates the greatest number of total matches.

In what follows, let us focus on the NFM technology with B ≥ 3.4 The next

proposition is our first main result which shows that an intermediate level of meeting

transparency is optimal in generating matches.

Proposition 2. With the NFM meeting technology, the total number of matches is

maximized at some intermediate level of transparency, N∗ ∈ (1, B).

As mentioned before, the expected total number of matches TN≥2 in (13) depends

negatively on two probabilities, which in combination lead to the probability of having

just one match: one is the probability that all the N fully informed buyers visit the

same seller, (1
2
)N , capturing the intensive margin of frictions, and the other one is the

4The case B = 2 is somewhat trivial and so we omit it in our presentation.
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probability of having N fully informed buyers, Γ(N | N,B), capturing the extensive

margin of frictions. The former probability decreases as N increases since it become

harder for fully informed buyers to concentrate on visiting the same seller if there are

more of them. This effect improves match efficiency. As for the latter probability, noting

CN
B = B+1−N

N
CN−1
B , observe that

Γ(N | N,B) =
1

CN
B

>
1

CN−1
B

= Γ(N − 1 | N − 1, B)⇐⇒ N >
B + 1

2
.

That is, given values of B, the probability of having N fully informed buyers decreases

in N first and then increases. Intuitively, when N is relatively small, due to the no

waste, it is not likely that additional meeting opportunities with each seller can be

concentrated on particular buyers among the remaining B − N buyers (e.g. imagine

N = 2 versus B = 100000). When N is relatively large, it is likely that additional

meeting opportunities reach at the targeted buyers (e.g. imagine an increase from

N = B − 1 to N = B).

To sum up, when N is low, both the intensive and extensive margins of frictions

decrease in N , improving match efficiency, and so within this region a greater N helps

generate more matches. AsN increases further, the extensive margin starts to increase in

N . In order to generate more matches, we need to tradeoff a higher probability of having

N fully informed buyers, which decreases match efficiency, against a lower probability

of allocating all the N fully informed buyers to the same seller, which increases match

efficiency. This results in an interior optimum, N∗ ∈ (1, B).

4.2 Seller-optimal meeting

We next explore the seller-optimal transparency level, denoted by NS, that maximizes

each individual seller’s expected profit. Remember that under the NFM, a seller’s

expected profit is given by (10) when N ≥ 2, and is given by (20) when N = 1.

Proposition 3. With the NFM meeting technology, sellers’ profits are maximized at

some intermediate level of transparency, NS ∈ (1, B).

The logic for the interior optimum, i.e., NS ∈ (0, B), is similar to the one for the

match-maximizing meeting. A seller cannot sell if there are N fully informed buyers and
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all of them select the rival seller. When N is relatively large, the probability of having

N fully informed buyer increases with N , which makes N = B suboptimal. When N

is relatively small, increasing N lowers both the probability of having N fully informed

buyer and the probability that all these fully informed buyers choose the rival seller. As

a result, NS ∈ (0, B). Further, by comparing (10) and (13), it is clear that the only

difference between the per seller match rate
TN≥2

2
and the equilibrium profit πN≥2 is the

term related to competition,

2

[
1 +

1
N

B−N + 2(N − 1)

]
,

which is strictly decreasing in N . Hence, we have the optimal meeting transparency

required for maximizing each seller’s profit is higher than the one required for maximizing

the total number of matches.

Corollary 1. With the NFM meeting technology, NS > N∗.

4.3 Buyer-optimal meeting

We next consider the buyer-optimal level of transparency, denoted by NB. The goal

is to maximize each individual buyer’s expected payoff. Under the NFM technology, a

buyer’s expected payoff is given by (12) when N ≥ 2 and by (21) when N = 1.

Proposition 4. With the NFM meeting technology, buyers’ expected utility is maximized

at the minimum transparency level, NB = 1.

Proposition 4 implies that buyers prefer the minimum level of meeting transparency,

which is somewhat counter-intuitive. The major reason why buyers prefer N = 1 is

because they do not face any competition once they are informed and therefore can

always receive positive payoffs through trading. Hence, in spite of the low probability

of becoming informed, buyers prefer N = 1 due to the removal of competition on the

buyer side.
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5 Profit-maximizing platform

So far, we have treated N as an exogenous parameter. In this section, we allow the

platform to be profit–maximizing, and to determine the transparency level. The plat-

form could charge a fee to the participating agents and/or to the realized transactions.

Just for the sake of illustration, we assume here that the platform can charge each seller

a transaction fee denoted by f ≥ 0. That is, a seller needs to pay the platform f if

he makes a sale. As it will be clear shortly, incorporating other types of fees does not

affect our results. The platform’s objective is to set f and N to maximize its own profit,

which is given by Π = f ·TN , subject to the buyers’ and the sellers’ participation, where

TN is the total expected number of trades in equilibrium described above conditioned

on the value of N = 1, ..., B.

Following the platform’s choice of f and N , sellers play the same game as before

except that their profit margins are now either 1−f , if the sale price is 1, or r−f , if the

sale price is the reserve price r. No matter what f is, sellers play the symmetric-strategy

equilibrium in the continuation subgames.

With the transaction fee, the fully informed buyers’ problem of choosing sellers is

the same as before. With N ≥ 2, seller 1’s expected profit is

π1(r1, r2, f) = (r1 − f)Pr(n1 = 1) + (1− f)(1− Pr(n1 = 0)− Pr(n1 = 1))

= (1− f)(1− Pr(n1 = 0))− (1− r1)Pr(n1 = 1).

Seller 2’s profit can be similarly derived. Following the same steps as in Section 3.2, we

can derive the symmetric equilibrium reserve price for given values of f with the NFM

meeting technologies as

r(f) = 1− 1− f
N + 2(N − 1)(B −N + 1)

.

Observe that r(f) = 1 when f = 1 which is in fact the highest possible fee the platform

can charge without causing sellers and buyers to withdraw.

It is important to note that the fee does not influence the total number of matches

in the symmetric equilibrium where r1 = r2 and fully informed buyers select any seller

with probability 1
2

so that the total number of matches is independent of reserve prices.

Hence, the platform can charge a fee without fear of losing trades, and so optimally
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selects f ∗ = 1 for any given N ≥ 2. Given f ∗ = 1, as for the selection of N , the platform

cares only about the total expected number of matches. We know from Proposition 2

that it is maximized at N = N∗ ∈ (1, B).

Under the solution f = 1 and N∗ ∈ (0, B), the platform indeed obtains the maximum

profit, Π = TN=N∗ , and implements the full surplus extraction, leaving both the buyers

and sellers zero utility/profit. The solution is indeed optimal, i.e., it dominates any

other f < 1 and N 6= N∗ (including N = 1). Further, it is worth noting that in general,

it holds that TN = 2πN + BuN , where πN (uN) is the expected profit (utility) derived

above conditioned on the value of N = 1, 2, ..., B. This implies that the total expected

number of trades equals total welfare in equilibrium, and so we can interpret our solution

as a welfare maximizing solution.

Proposition 5. Consider a profit-maximizing platform who is able to determine the

transparency level, and charges a transaction fees for its intermediation service. Then,

the platform selects N = N∗. i.e., it maximizes the expected total number of matches.

We find this result particularly interesting. Despite the potential complexity intro-

duced by imperfect transparency, the efficient meetings, which maximize the expected

total number of matches or surplus, can be implemented by a profit-maximizing platform

who adopts a simple fee-setting policy for its intermediation service. In other words, the

efficient matching outcome can be decentralized by a profit-maximizing platform who

introduces imperfect transparency to its participants.

6 Discussions and extensions

6.1 Meeting technologies

Eeckhout and Kircher (2010) distinguished meeting from matching in the directed search

framework. The meeting considered in their model is ex post in the sense that buyers

first search submarkets where individual sellers post prices and then meeting takes

place in the submarkets according to the meeting technology. In contrast, the meeting

technology proposed in our model generates submarkets or a network of contacts between
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buyers and sellers within which buyers can search individual sellers. As in Eeckhout

and Kircher (2010), our meeting technologies, in particular the NFM technologies, can

captures various types of rivalry in meeting, including rival, non-rival, and partially

rival meetings. Namely, the meeting technology is rival when N = 1 where a meeting

schedule between a seller and a buyer implies that any other buyers are not allowed

to meet the seller. The meeting technology is non-rival when N = B where a meeting

between a seller and a buyer does not affect the meeting opportunity between this

seller and any other buyers. Finally, the meeting technology is partially rival when

N ∈ (1, B), where a meeting opportunity between a seller and a buyer reduces the

opportunity for other buyers to meet this seller but it is not completely eliminated.

Unlike in Eeckhout and Kircher (2010), we use auction as the trading mechanism, and

explore the optimal meeting technology for the society, sellers and buyers respectively.

Further, we endogenize the meeting technology with a profit maximizing platform and

show that the social optimum can be decentralized.

We now discuss other assumptions of our meeting technologies. The assumption of

“anonymity” rules out the trivial case that the buyers’ probability of receives meeting

requests from each seller can depend on their identity (which opens a room for removing

search frictions in the first place). If the assumption of “symmetry” is violated, sellers

could fully extract all the surplus and the platform can transfer that surplus to itself by

setting a listing fee. Consider, for example, a case of two sellers and two buyers. Allow

seller 1 to send one meeting request but seller 2 to send two. Then, seller 2 knows that

there exists one buyer who only receives request from him so he can set r2 = 1 to fully

extract surplus of that buyer. Knowing this, seller 1 can also set r1 = 1. The buyer

who observes both sellers is indifferent between which seller to visit. So we assume she

selects seller 1. Then, seller 1 also obtains a profit equal to 1. The platform can set

each seller a listing fee equal to 1 and extract the whole surplus.

The “no waste” assumption is important for our analysis. If this property is violated,

the analysis becomes less straightforward. In particular, there can be an unmatched

seller even when there exists a partially informed buyer. Consider, for example, a case

of three buyers and N = 3. Then, it is possible that buyer 1 receives only one meeting

request from seller 1, buyer 2 receives two meeting requests from seller 2 and one meeting

request of seller 1, and buyer 3 receives one meeting request from each seller. In this
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case, it is possible that all buyers end up selecting seller 1, leaving seller 2 unmatched.

So, when the “no waste” assumption does not hold, the total number of matches does

not take the simple form as in (13). A related analysis of advertising in the directed

search environment which violates the “no waste” assumption can be found in Gomis-

Porqueras, Julien and Wang (2017).

6.2 More than two sellers

Our analysis so far with two sellers in each product category was mainly because of

analytical tractability. In this section we shall illustrate the difficulty associated with a

more than two sellers setup. The main modification would be that partially informed

buyers, who have no choice other than visiting the single observed seller with the two

sellers setup, may now have a choice of which seller visit. As seen below, this additional

decision would complicate the equilibrium analysis significantly. However, we should

emphasize that even with this extension, our main insight that the full transparency is

not necessarily optimal would be still valid.

Consider the same setup as before with three sellers and thee buyers. When N = 1,

the situation is very similar to the one in Burdett and Judd (1983). There exist, in

each case with positive probability, fully informed buyers, partially informed buyers

who observe two sellers, and partially informed buyers who observe only one seller. The

key trade-off we described in Section 3.3 is still valid here, except that sellers need to

compete not only for the fully informed buyers but also those partially informed buyers

who observe two sellers. As in Section 3.3, the equilibrium exhibits dispersion in reserve

prices.

Analysis changes significantly when N = 2. Except those observing only one seller,

fully informed and partially informed buyers need to estimate the possible information

sets and the associated visiting strategies of other buyers. For example, a fully informed

buyer knows that there are only two possible scenarios she could be in: (i) there exists

another fully informed buyer and an uninformed buyer, or (ii) there is a partially in-

formed buyer who observes two sellers and another partially informed buyer who only

observes one seller. The fully informed buyer needs to trade-off the reserve price and

the possibility of overlapping with each type of the buyers. In addition, a partially
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informed buyer who observes two sellers faces a similar trade-off and needs to determine

her optimal visiting strategy. Given all these possibilities, each seller needs to assign

probabilities to each possible scenario regarding the distribution of buyers’ information

sets. We solve for the equilibrium with symmetric reserve prices.

Comparing the three specifications of N (see the Appendix for the detailed deriva-

tion), we have

πN=1 > πN=3 > πN=2,

TN=1 = TN=3 > TN=2,

uN=3 > uN=1 > uN=2.

Compared to the case with two sellers, the efficient number of meetings is further

restricted and the total number of matches is maximized at N = 1 when there are

three sellers. With more sellers, the probability that an additional meeting request

from each seller overlaps at the same buyer can be high even when the initial meeting

transparency is low. So, in order to maximize the total number of matches, the meeting

transparency needs to stay at the low level. An individual seller’s expected profit is also

maximized at N = 1 as the competition among sellers is greatly softened under N = 1.

In addition, compared to the two-seller case, the probability of sales under N = 2 is

no longer significantly higher than when N = 1. Finally, consumers will prefer N = 3.

This is in stark contrast to the two-seller case where the buyer-optimal meeting requires

N = 1. With more sellers, the probability of overlapping at the same seller is mitigated

while a lower reserve price matters more for buyers.

7 Conclusion

This paper studied how meeting technologies, typically controlled by intermediaries,

can affect the matching efficiency, seller profits and buyer surplus in a directed search

equilibrium. In a market with a continuum of duopoly product categories, we are able to

identify the optimal meeting technology. In particular, we show that the full-information

meeting technology does not necessarily lead to the best outcome. We further consider

a profit-maximizing platform that can choose the degree of meeting transparency and
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charge with fees for its intermediation service. We show that this profit-maximizing

platform can implement the efficient allocation.

Various market characteristics, such as sellers’ entry and exit, ex ante agent het-

erogeneity, or idiosyncratic match values, are not included in our model. The main

purpose of this paper is, by using a stylized model with a fixed number of homogeneous

participants, to show that there is a straightforward rationale of why platform may

want to restrict participants’ meeting choices. As a future extension, the additional

market characteristics mentioned above could be incorporated. In particular, it would

be interesting to study the optimal fee structure and market transparency when the

buyer side of the market is featured by heterogeneous outside options and free entry. In

such an extension, a change of meeting technology affects not only the existing buyers’

information sets and selection strategies, but also the total number of buyers who partic-

ipate in the market. We expect an imperfect meeting technology continues to dominate

the full transparency in generating matches. However, a profit-maximizing platform is

unlikely to be able to achieve the full efficiency with a simple transaction fee and the

decentralization result may require more complicated fee schemes.
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Appendix.

Proof of Theorem 1. We have shown in the main text the equilibrium reserve prices

in (7) satisfies the first-order condition. We next show that the second-order condition

is satisfied. The second-order derivative of firm 1’s profit at the symmetric equilibrium

price r∗ is equal to

−2−1−N [N2Γ(NIN,B) + (2N − 3)Γ(N − 1|N,B)][N2Γ(N |N,B) + (2N − 2)Γ(N − 1|N,B)]

N(N − 1)Γ(N |N,B)
,

which is negative given that N ≥ 2. Finally, we check that a unilateral deviation to

setting r = 1 and only selling to partially informed consumers is not profitable. It is a
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matter to compare (9) with πd = 1× (1−Γ(N |N,B)). After simplification, choosing r∗

is better if the following condition holds(
2N − 1

) N2Γ(N |N,B) + 2Γ(N − 1|N,B)(N − 1)

N2Γ(N |N,B) + 2Γ(N − 1|N,B)N
≥ 1.

But this inequality always holds for N ≥ 2. Since the second-order derivative of firm

1’s profit is strictly negative, r∗ is a local maximizer. Moreover, it yields a profit greater

than when choosing r = 1 and therefore is also a global maximizer. �

Proof of Theorem 2.

In text. �

Proof of Proposition 1.

In text. �

Proof of Proposition 2. First, to compare TN=1 = 2 − 1
B

and TN=B = 2 −
(

1
2

)B−1
,

we can instead compare ln
(

1
B

)
and ln

((
1
2

)B−1
)

since the log function is a monotone

transformation. The difference of the two terms is − ln(B) + (B − 1) ln(2), which is

strictly positive when B = 3. The derivative of the difference is ln(2) − 1
B
> 0 for any

B ≥ 3. We can conclude that 1
B
>
(

1
2

)B−1
and so TN=1 < TN=B for any B ≥ 3.

Second, for any B ≥ 3, observe that

TN=B − TN=B−1 = −
(

1

2

)B−1

[Γ(B | B,B)− 2Γ(B − 1 | B − 1, B)]

= −
(

1

2

)B−1(
1− 2

B

)
< 0.

Therefore, N = B cannot be optimal, and so we must have N∗ ∈ (1, B). �

Proof of Proposition 3. First, πN=1 = 1− 1
B

and πN=B = 1−
(

1
2

)B−1
. By using the

logarithm transformation, it is easy to show that πN=1 < πN=B, and so N = 1 is never

optimal. Second, observe that

πN=B − πN=B−1 = −
(

1

2

)B−1

+
1

B

(
1

2

)B−2 [
1 +

1

B − 1 + 2(B − 2)

]
= −

(
1

2

)B−1 [
1− 2

B

(
1 +

1

B − 1 + 2(B − 2)

)]
= −

(
1

2

)B−1
3B2 − 11B + 8

B(3B − 5)
< 0
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for any B ≥ 3. Therefore, N = B cannot be optimal, and so we must have NS ∈ (1, B).

�

Proof of Corollary 1. In text. �

Proof of Proposition 4. Our numerical example shows uN=1 > uN≥2 when B = 3.

So we can focus on the case when B ≥ 4. The proof proceeds case by case: we show

the claim uN=1 > uN≥2 in separation for (i) N = 2; (ii) N = 3, 4, ..., B − 1; (iii) N = B.

Since these cases altogether cover all the possible values of N = 2, 3, ...., B for all B ≥ 4,

we prove the claim in the proposition.

(i) Case 1 (N = 2). Applying N = 2 to (12), we get uN=2 = 2B−3
B2(B−1)2

. Then,

uN=1 − uN=2 =
1

B2(B − 1)2

[
(2B − 1)

[
B(B − 2)− (B − 1)3 ln

B

B − 1

]
+ 2

]
.

In what follows, we show that the term

B(B − 2)− (B − 1)3 ln
B

B − 1

is positive. Since this term can be re-written as

(B − 1)2

(
1− (B − 1) ln

B

B − 1

)
− 1,

it is sufficient to show that 1− (B − 1) ln
(

B
B−1

)
> 1

(B−12)
, or using 1

2B
> 1

(B−1)2
,

Υ(B) ≡ 2B − 1

2B
− (B − 1) ln

(
B

B − 1

)
> 0.

Observe that: Υ(4) ≈ 0.012 > 0;

Υ′(B) =
1

2B2
+

1

B
− ln

(
B

B − 1

)
.

Note that Υ′(4) = −0.006 and lim
B→∞

Υ′(B) = 0. Also, Υ′′(B) = 1
B3(B−1)

> 0. Therefore,

Υ′(B) < 0 for all B ≥ 4. Since Υ(4) > 0 and lim
B→∞

Υ = 0, we then can conclude

Υ(B) > 0 for all B ≥ 4. This completes the proof of the case N = 2.

(ii) Case 2 (N ∈ [3, B − 1]). Using (8) and CN
B−1 = B−N

N
CN−1
B−1 , we can re-write (12)

as

uN≥2 =

[
1

N + 2(N − 1)(B −N)

][(
N

B

)2
1 + 2(B −N)

CN−1
B−1

(
1

2

)N−1
]
. (A1)
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We prove the claim case by case in separation: B = 4 and B ≥ 5.

• Case 2-1 (B = 4). Note that when B = 4, the only admissible parameter value is

N = 3. Applying these values to (21) and (12), we get: uN=1 =
(
1− 3 ln 4

3

) (
1−

(
3
4

)2
)
≈

0.0599; u3 = 1
7

(
3
4

)2 3
C2

3

(
1
2

)2 ≈ 0.0201. Hence, uN=1 > uN=3.

• Case 2-2 (B ≥ 5). Decomposing (A1) into two terms, we will compare the first

term in the expression of uN=1 in (21) with the first term in (A1) and the second term

in the expression of uN=1 in (21) with the second term in (A1). Below, we show that

both terms in the expression of uN=1 are greater in (21) for N = 1 than in (A1) for

N ∈ [3, B − 1]. Note that the term N + 2(N − 1)(B − N) takes the minimum when

N = B − 1, which equals 3B − 5 (> 2B) for all B ≥ 5. Hence, the first term in (A1)

is strictly smaller than 1
2B

, and so to show 1 − (B − 1) ln
(

B
B−1

)
> 1

N+2(N−1)(B−N)
, it is

sufficient to show 1− (B − 1) ln
(

B
B−1

)
> 1

2B
. But we have already shown it above, i.e.,

Υ(B) > 0.

We next show that 1−
(
B−1
B

)2
>
(
N
B

)2 1+2(B−N)

CN−1
B−1

(
1
2

)N−1
. Given that CN−1

B−1 = CN
B
N
B

,

this inequality can be written as

2B − 1

1 + 2(B −N)
>
BN

CN
B

(
1

2

)N−1

.

Note further that CN
B >

(
B
N

)N
.5 Thus, to show the inequality in question, it is sufficient

to show the following inequality:

Ψ(B)≡ 2B − 1

1 + 2(B −N)
− BN(

B
N

)N (1

2

)N−1

=
2B − 1

1 + 2(B −N)
−N2

(
N

2B

)N−1

> 0.

Observe that: Ψ(5) = 9
11−2N

− N2
(
N
10

)N−1
: when N = 4, Ψ(5) = 9

3
− 42

(
4
10

)3
= 3 −

1.024 = 1.976; when N = 3, Ψ(5) = 9
5
−32

(
3
10

)2
= 1.8−0.81 = 0.99; limB→∞Ψ(B) = 1;

Ψ′(B) = − 4(N − 1)

[1 + 2(B −N)]2
+
N2(N − 1)

B

(
N

2B

)N−1

.

Since min{Ψ(5),Ψ(∞)} > 0, if Ψ(B) is monotone in all B ≥ 5 then Ψ(B) > 0 for all

B ≥ 5. Suppose otherwise, i.e., Ψ(B) is non-monotone in B. Then, there is a possibility

of the existence of a minimum at some interior B̃ ∈ (5,∞), satisfying Ψ′(B̃) = 0. We will

5To show CN
B ≥

(
B
N

)N
, it is sufficient to observe that CN

B = B
N

B−1
N−1 ...

B−(N−1)
1 , where each of these

N terms is no less than B
N .
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check whether the possible minimum attains a positive or negative value. The marginal

condition Ψ′(B̃) = 0 gives N2
(
N
2B̃

)N−1

= 4B̃

[1+2(B̃−N)]
2 . Plugging this into Ψ(B), we have

Ψ(B̃) =
2B̃ − 1

1 + 2(B̃ −N)
− 4B̃[

1 + 2(B̃ −N)
]2 =

4B̃2 − 4(N + 1)B̃ + 2N − 1[
1 + 2(B̃ −N)

]2 > 0,

where the last inequality follows from the fact that the numerator takes the minimum

at N = B − 1, which equals 2B − 3 > 0. Hence, we can conclude that Ψ(B) > 0 for all

B ≥ 5. This completes the proof of the case N ∈ [3, B − 1].

(iii) Case 3 (N = B). From (6), uN=B = 1
B

(
1
2

)B−1
= 1

2B

(
1
2

)B−2
. To compare it

with uN=1 =
(
1− (B − 1) ln B

B−1

) (
1−

(
B−1
B

)2
)

, note first that 1− (B − 1) ln
(

B
B−1

)
>

1
2B

, as already shown above, i.e., Υ(B) > 0. Hence, what remains here is to show that

1−
(
B−1
B

)2
>
(

1
2

)B−2
or

Φ(B) ≡ 2B − 1−B2

(
1

2

)B−2

> 0.

This can be show by observing that: Φ(4) = 7− 42
(

1
2

)2
= 3; Φ′(B) = 2− 2B

(
1
2

)B−2
+

B2
(

1
2

)B−2
ln 2 > 0 where the last inequality follows from B

(
1
2

)B−2
< 4

(
1
2

)2
= 1. This

completes the proof of the case N = B. �

Proof of Proposition 5.

In text. �

Omitted details in Section 6.2.

• N = 3. This is the JKK model with three sellers and three buyers. The symmetric

equilibrium reserve price is rN=3 = 1
3
. In equilibrium, each buyer visits a particular seller

with probability 1
3
. A seller cannot make a sale if no buyer selects him, which happens

with probability
(

2
3

)3
= 8

27
, makes a sale at price r if only one buyer selects him, which

happens with probability C1
3

(
1
3

) (
2
3

)2
= 12

27
, and makes a sale at a price equal to 1 if

at least two buyers select him, which happens with probability 1 −
(

8
27

)
−
(

12
27

)
= 7

27
.

Hence, a seller’s expected profit is πN=3 =
(

1
3

)
·
(

12
27

)
+ 1 ·

(
7
27

)
= 11

27
.

A buyer can get positive payoff by selecting a seller only if the other two buyers select

a different seller, which happens with probability (2/3)2 = 4
9
. So a buyer’s expected

payoff is uN=3 =
(
1−

(
1
3

))
·
(

4
9

)
= 8

27
.
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Finally, there is only one match if all buyers select the same seller. This happens

with probability 3
(

1
3

)3
= 1

9
. There are three matches if each buyer selects a different

seller. This happens with probability P 3
3

(
1
3

)3
= 2

9
. There are two matches with the

reaming probability 1− 1
9
− 2

9
= 2

3
. The expected total number of matches is then given

by TN=3 = 1 ·
(

1
9

)
+ 2 ·

(
2
3

)
+ 3 ·

(
2
9

)
= 19

9
.

• N = 1. With probability 6
(

1
3

)2
= 2

9
, each buyer observes a distinct seller and

selects the seller she observes. With probability 3
(

1
3

)3
= 1

9
, a buyer observes all sellers

and the other two buyers observe nothing. In this case, the fully informed buyer selects

the seller with the lowest reserve price. Finally, with probability 2 · 3 · 3 ·
(

1
3

)3
= 2

3
,

one buyer observes two sellers while another buyer observes one seller. In this case,

the buyer who observes two sellers goes to the one with lower reserve price. As in the

two-sellers case, the co-existence of buyers who observe only one seller and buyers who

observe more than one seller causes sellers to play a mixed strategy in equilibrium. Let

F (r) on [r, r] be the symmetric equilibrium price distribution. By the same argument

as before, the upper bound of the support is r = 1. Suppose seller 1 sets a reserve price

r. If there is a fully informed buyer, the buyer will buy from seller 1 if r is the lowest

reserve price. This happens with probability (1 − F (r))2. If there are three buyers,

each observes a distinct seller, seller 1 can get a profit equal to r with probability 1. If

there is one buyer who observes both seller 1 and another seller, seller 1 can sell with

probability 1− F (r). In sum, seller 1’s expected profit with a reserve price r is

r

[
1

9
(1− F (r))2 +

(
2

9
+

2

9

)
(1− F (r)) +

(
2

9
+

2

9

)]
.

By the definition of mixed strategy, seller 1 will be indifferent between any r in [r, 1] and

r = 1. If r = 1, seller 1 can only sell to the buyers who only observe seller 1. There is a

buyer who only observes seller 1 with probability 4
9
. The following indifferent condition

must hold

r

[
1

9
(1− F (r))2 +

(
2

9
+

2

9

)
(1− F (r)) +

(
2

9
+

2

9

)]
=

4

9
.

The equilibrium price distribution is

F (r) = 3− 2√
r
.

Moreover, F (r) = 0 implies r = 4
9
. Hence, the equilibrium reserve price distribution is

described by F (r) = 3 − 2√
r

on
[

4
9
, 1
]
. The expected equilibrium reserve price is given
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by

E(rN=1) =

∫ 1

4
9

rdF (r) =
2

3
.

Each seller’s expected profit is πN=1 = 4
9
.

A buyer who observes at least one seller can trade by paying rN=1 for sure since

she will face no competition from other buyers. A buyer’s expected payoff is therefore

(1− E(rN=1))
[
1− (2

3
)3
]

= 19
81

.

With probability 1
9
, there is a fully informed buyer, which results in only one match.

With probability 2
9
, each buyer observes a distinct seller and there are three matches.

With the remaining probability 1 −
(

1
9

)
−
(

2
9

)
= 2

3
, there are two matches. Summing

them up all, we have TN=1 = 3(2
9
) + 2(2

3
) + 1(1

9
) = 19

9
.

• N = 2. There are in total (C2
3)3 = 27 scenarios. Three of them are such that two

buyers are fully informed. This means that the probability of having two fully informed

buyers is 3
27

= 1
9
. Another possibility is that each buyer observes two sellers. There are

in total 6 such cases, and so the probability of this scenario is 6
27

= 2
9
. Also, it could

be that one buyer is fully informed, another buyer observes two sellers, and the third

buyer only observes one seller. There are in total 18 such cases, and so the probability

of this scenario is 18
27

= 2
3
.

Suppose a buyer is fully informed. There can be only two situations: (i) there exists

another fully informed buyers, or (ii) there exists another buyer who observes two sellers

i and j and a third buyer who observes seller k 6= i, j. Hence, conditional on the buyer in

question being fully informed, the probability that case (i) happens is 2
2+6

= 1
4
, and the

probability that case (ii) happens is 6
2+6

= 3
4
. Now, consider a situation in which seller

1 deviates to a price r1 while the other two sellers set an equilibrium price r. Denote by

µ(z) the probability that a buyer who observes z = 1, 2, 3 sellers chooses to visit seller 1.

Clearly, µ(1) = 1. If this fully informed buyer selects seller 1, then her expected payoff,

denoted by u1(3), is

u1(3) = (1− r1)

[
1

4
· (1− µ(3)) +

3

4
· 2

3
· (1− µ(2))

]
.

If this buyer is the only visitor to seller 1, she obtains 1− r1. With probability 1
4
, there

is another fully informed buyer, and with probability 1−µ(3), this buyer does not select

seller 1. With probability 3
4
, there are two partially informed buyers. In this event, one
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possibility is that seller 1 is in the information set of the buyer who observes two sellers

(which happens with probability 2
3
). This buyer will not choose seller 1 with probability

1− µ(2). Another possibility is that seller 1 is in the information set of the buyer who

only observes one seller (which happens with probability 1
3
). In this case the buyer will

select seller 1 for sure.

If the fully informed buyer instead chooses a non-deviating seller (who sets r), her

expected payoff, denoted by u(3), is

u(3) = (1− r)
[

1

4
·
(

1− 1− µ(3)

2

)
+

3

4

(
1

3
· 1

2
+

1

3
· µ(2)

)]
If there is another fully informed buyer (which happens with probability 1

4
), she will

choose to visit the same non-deviating seller with probability 1−µ(3)
2

. If the other two

buyers are partially informed (one observes two sellers and one observes one seller),

there are three scenarios. First, seller 1 is observed by the buyer who only observes

one seller. This happens with probability 1
3
. In this case, the other buyer visits the

two non-deviating sellers with equal probability. Second, seller 1 and the non-deviating

seller in question are observed by the same buyer. This happens with probability 1
3
. In

this case, the buyer will visit seller 1 with probability µ(2). Finally, the non-deviating

seller in question is observed by the other buyer who only observes one seller. In this

case, selecting this seller yields zero payoff.

We next describe the decision problem of a partially informed buyer who observes

two sellers. If a buyer only observes the two non-deviating sellers, she will choose each of

them with probability 1
2
. If a buyer observes seller 1 and a non-deviating seller, which we

name seller 2, her strategy depends on both r1 and r. Conditional on this event, there

are two possible scenarios: (i) there is a fully informed buyer and another buyer who

only observes the other non-deviating seller, seller 3, which happens with probability

1
2
, or (ii) two other partially-informed buyers, with one observing sellers 1 and 3 and

the other observing sellers 2 ad 3, which happens with probability 1
2
. If the buyer in

question (who observes sellers 1 and 2) decides to select seller 1, her expected payoff,

denoted by u1(2), is

u1(2) = (1− r1)

[
1

2
(1− µ(3)) +

1

2
(1− µ(2))

]
In scenario (i), seller 1 must be in the information set of the fully informed buyer. This

fully informed buyer will not choose seller 1 with probability 1− µ(3). In scenario (ii),
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firm 1 is in the information set of a buyer who observes two sellers. Then this buyer

will not select seller 1 with probability 1− µ(2).

If the buyer in question decides to select seller 2, her expected payoff, denoted by

u(2) is

u(2) = (1− r)
[

1

2

(
1− 1− µ(3)

2

)
+

1

2
· 1

2

]
.

In scenario (i), seller 2 must be in the information set of the fully informed buyer. This

fully informed buy will not select seller 2 with probability 1 − 1−µ(3)
2

. In scenario (ii),

seller 2 must be in the information set of another buyer who observes two non-deviating

sellers, i.e., seller 2 and 3. This buyer will not select the same non-deviating seller with

probability 1
2
.

Using the indifference condition u1(3) = u(3) and u1(2) = u(2), we obtain the buyers’

equilibrium selection strategies,

µ(2) =
r1 − 1

r + r1 − 2
and µ(3) =

2 (−r2 + rr1 + r + r1
2 − 3r1 + 1)

(r + r1 − 2)(r + 2r1 − 3)
.

We now turn to seller 1’s problem. In the case of two fully informed buyers, the

probability of getting zero visitor is (1 − µ(3))2, of getting one visitor is 2µ(3)(1 −

µ(3)), and of getting two visitors is (µ(3))2. In the case of having one fully informed

buyer and two partially informed buyers, the probability of having zero visitor is (1 −

µ(3))(1 − µ(2))2
3

+ (1 − µ(3)) · 0 · 1
3

= (1 − µ(3))(1 − µ(2))2
3
, of having one visitor

is [µ(3)(1 − µ(2)) + µ(2)(1 − µ(3))]2
3

+ (1 − µ(3))(1 − µ(2))1
3
, of having two buyers

is 1
3
(µ(2)µ(3) + µ(2) + µ(3)). In the case with three partially informed buyers, the

probability of having zero visitor is (1− µ(2))2, of having one visitor is 2µ(2)(1− µ(2)),

and having two visitor is (µ(2))2. Aggregating the probabilities over the three scenarios,

we get the followings: the probability of having zero visitor,

Pr[n1 = 0] =
1

9
(1− µ(3))2 +

2

3
(1− µ(3))(1− µ(2))

2

3
+

2

9
(1− µ(2))2,

the probability of having one visitor,

Pr[n1 = 1] =
1

9
[2µ(3)(1− µ(3))] +

2

3

[
[µ(3)(1− µ(2)) + µ(2)(1− µ(3))]

2

3
+ (1− µ(3))

1

3

]
+

2

9
[2µ(2)(1− µ(2))],

the probability of having two visitors,

Pr[n1 = 2] =
1

9
(µ(3))2 +

2

3

[
2

3
µ(3)µ(2) +

1

3
µ(3)

]
+

2

9
(µ(2))2.
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Holding r fixed, seller 1 solves

π1 = Pr[n1 = 1]r1 + Pr[n1 = 2],

subject to u1(3) = u(3) and u1(2) = u(2). Using the first-order conditions, we obtain

the symmetric equilibrium reserve price,

rN=2 =
59

232
.

Each seller’s expected profit is

πN=2 =
733

2088
≈ 0.351.

A fully informed buyer’s expected payoff is u(3) = 865
2784

, a partially informed buyer with

two observations has an expected payoff u(2) = 1211
2784

, and a partially informed buyer

with one observation has an expected payoff u(1) = (1 − 1/3)(1/2)(1 − r) = 173
696

. A

buyer is fully informed with probability φ3 = (1/3)3 = 1/27, partially informed with

two observations with probability φ2 = 3(1/3)2(2/3) = 2/9, and partially informed with

one observation with probability φ1 = 3(1/3)(2/3)2 = 4/9. So a buyer’s expected payoff

when N = 2 is

uN=2 =
∑
i

φiu(i) =
16435

75168
≈ 0.219.

Each seller’s match probability is 1− Pr(n = 0) = 112
152

. So the total number of matches

is

TN=2 = 3 · 112

162
≈ 2.07.

• Comparison. Comparing the above equilibrium outcome/payoffs for the three-

by-three case, we have

πN=1 = 0.444 > πN=3 = 0.407 > πN=2 = 0.351,

TN=1 = TN=3 = 2.111 > TN=2 = 2.07,

uN=3 = 0.296 > uN=1 = 0.235 > uN=2 = 0.219.
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