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Abstract

The introduction of new technologies in agriculture can foster structural transforma-

tion by freeing workers who find occupation in other sectors. The traditional view

is that this increase in labor supply in manufacturing can lead to industrial devel-

opment. However, when workers moving to manufacturing are mostly unskilled,

this process reinforces a country’s comparative advantage in low-skill intensive in-

dustries. To the extent that these industries undertake less R&D, this change in

industrial composition can lead to lower long-run growth. We provide empirical

evidence of this mechanism using a large and exogenous increase in agricultural

productivity due to the legalization of genetically engineered soy in Brazil. Our re-

sults indicate that improvements in agricultural productivity, while positive in the

short-run, can generate specialization in less-innovative industries and have negative

effects on productivity in the long-run.
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1 Introduction

Early development economists perceived the reallocation of workers from agriculture

to “modern” sectors of the economy as fundamental for development and growth.1 This

reallocation of labor from agriculture to manufacturing is generally regarded as positive

for aggregate productivity mainly because of two arguments. First, labor productivity is

usually lower in agriculture than in the rest of the economy (Gollin, Parente, and Roger-

son 2002, Lagakos and Waugh 2013 and Gollin, Lagakos, and Waugh 2014). Second, the

manufacturing sector is characterized by economies of scale and on-the-job accumulation

of human capital, such as learning-by-doing (Krugman 1987, Lucas 1988, Matsuyama

1992a). However, manufacturing productivity does not only depend on the size of the

industrial sector but also on its composition. As shown in the work of Grossman and

Helpman (1991a), the specific industrial sectors in which an economy specializes can

determine its growth path. In this context, an inflow of low-skilled workers into manufac-

turing can induce a relocation of resources towards non-innovating industries, which can

lead to lower long-run growth.

In this paper we study the effect of labor reallocation from agriculture to manufactur-

ing on industrial specialization and productivity growth. Our empirical strategy exploits

the legalization of genetically engineered (GE) soybean seeds in Brazil as a natural exper-

iment. This new technology requires fewer but relatively high-skilled workers, generating

an outflow of low skilled workers from the agricultural sector. Thus, it allows us to

study the effect of a shock to the relative supply of skill on the composition of the local

manufacturing sector.

To capture exogeneous variation in the adoption of this new technology across areas

in Brazil, we use the difference between the potential soy yield in a particular area before

and after the legalization of GE soybeans as in Bustos, Caprettini, and Ponticelli (2016).2

This measure of technical change in soy is a function of weather and soil characteristics of

different areas, and not of actual yields. In addition, we exploit detailed individual infor-

mation from the Brazilian Population Census to trace the flow of workers with different

education levels across sectors, as well as to construct wage measures adjusted for a large

set of individual characteristics. Finally, we use data from the Brazilian Manufacturing

Survey and the Technological Innovation Survey to construct measures of manufacturing

productivity and expenditure in innovative activities.

We start by providing evidence that the introduction of GE soy led to a decrease in

1For instance, Lewis (1954) argued that the movement of workers from a “subsistence” sector with
negligible productivity to a capitalist sector was at the core of the process of economic development,
whereas Kuznets (1973) identified the shift of resources away from agriculture into non-agricultural sectors
as one of the six main characteristics of modern economic growth.

2Our geographical unit of observation are Brazilian micro-regions. Micro-regions consist of a group of
municipalities and can be thought of as small open economies that trade in agricultural and manufacturing
goods but where production factors are immobile.
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local demand for unskilled labor and a reallocation of low-skilled workers towards the

manufacturing sector.3 Our estimates indicate that a micro-region with average increase

in soy technical change experienced a decrease in unskilled employment in agriculture

of around 20%, and no change in high-skilled employment. We also find that micro-

regions more exposed to the introduction of the GE soy technology experienced a larger

increase in the skill premium – i.e. the wage paid to high- relative to low-skilled workers –

consistent with the new technology leading to a reduction in the local demand for unskilled

labor. Despite the outflow of low-skilled workers from agriculture, their average wages

increased in regions more exposed to the new technology. This trend is consistent with

the agricultural sector retaining its best workers, while those leaving agriculture being

negatively selected, not only in terms of education, but also in terms of unobservable

characteristics.4

Second, we study the consequences of this reallocation of unskilled labor from agri-

culture to manufacturing for industrial specialization. From the point of view of the

manufacturing sector, this reallocation of workers amounts to an increase in the relative

supply of unskilled labor. Indeed, we document that the manufacturing industries which

expanded were unskilled-labor-intensive, as predicted by the Rybczynski theorem. In

addition, these industries are less involved in innovative activities as measured by expen-

diture in research and development (R&D). Finally, we find that the increased supply of

low-skilled workers was partly absorbed through changes in factor intensity usage within

industries. In particular, we find reductions in the skill intensity of production tech-

nologies in low-skilled intensive manufacturing industries, consistent with technological

downgrade. Thus, our evidence suggests that the increase in the relative supply of un-

skilled labor not only generated industrial specialization into less innovative industries,

but also the adoption of less skill-intensive production techniques within industries.

We rationalize our findings in light of an endogenous growth, open economy model

with two sectors: agriculture and manufacturing. To study the effect of skill-biased

agricultural technical change, we consider an agricultural sector employing high- and low-

skilled workers, and land. We model the introduction of GE soy seeds as a skilled-labor-

augmenting technical change in agriculture. We show that when high- and low-skilled

workers are imperfect substitutes, but land and labor are strong complements, this type

of technical change leads to an absolute decrease in the demand for low-skilled labor in

agriculture. As a result, low-skilled workers reallocate towards the manufacturing sector.

Next, we analyze the implications of this increase in the relative supply of low-skilled

workers in light of the Grossman and Helpman (1991a) model. In this model, the man-

3We classify skilled workers as those who completed the 8th grade, which is equivalent to graduating
from middle school in the US.

4Note that all our results on wages are obtained after netting out from raw wages a large set of
worker-observable characteristics in Mincerian regression (age, race), to obtain a measure of how much
each labor type is paid.
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ufacturing sector has two industries. In one industry, firms perform R&D to produce

differentiated products using a skill-intensive production technology. In the other in-

dustry, firms produce homogeneous goods using unskilled labor more intensively. Their

findings are reminiscent of the Heckscher-Ohlin model: an increase in the relative supply

of unskilled labor reduces comparative advantage in the creation of knowledge and in

producing differentiated products. As a result, in the long run, the economy conducts less

R&D, exports more homogeneous products in exchange for the differentiated good, and

its manufacturing output grows more slowly.

The negative dynamic effect of agricultural productivity growth discussed above may

mitigate the positive static gains of structural transformation identified in the prior lit-

erature. We show evidence consistent with this idea using data from the Brazilian Man-

ufacturing Survey (PIA). The data allows us not only to directly observe the response of

manufacturing firms to changes in the local supply of unskilled labor, but also to assess

whether these changes led to lower productivity in the manufacturing sector. We show

that micro-regions more exposed to technical change in soy production experienced faster

employment growth in low-skill intensive manufacturing industries in the short-run and

lower average value added per worker in manufacturing in the long-run.

Finally, we quantify the aggregate effects of labor reallocation driven by skill-biased

technical change in agriculture on the innovation-intensity of the Brazilian manufacturing

sector. To this end, we use data from the Technological Innovation Survey (PINTEC),

which monitors the innovative activities of Brazilian manufacturing firms. The data in-

dicates that aggregate R&D expenditure per worker in manufacturing increased by 40

percent in the decade between 2000 and 2010. Reallocation of labor between industries

can explain around one quarter of this change, the other three-quarter being explained by

increases in R&D expenditure within industries. Our estimates suggest that if the aver-

age change in soy potential yields across Brazilian micro-regions had been one standard

deviation smaller, the increase in R&D expenditure per worker in manufacturing during

this period would have been 3.47 percentage points larger.

Overall, our empirical findings indicate that unskilled labor-saving technical change

in agriculture can lead to a reallocation of labor towards low-skilled manufacturing in-

dustries. This leads to an expansion of the industrial sectors with lower R&D intensity

in the economy, thus lowering manufacturing productivity in the long run. We interpret

this result as a cautionary tale on the effects of structural change on productivity growth.

Positive productivity shocks in agriculture may result in static productivity gains in the

primary sector and negative dynamic effects in manufacturing productivity.

Our findings suggest that different forces driving structural transformation can lead

to different types of industrial specialization. In most countries, the process of labor real-

location from agriculture to manufacturing can be ascribed to one of two forces: “push”

forces, such as new agricultural technologies that push workers out of agriculture, or
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“pull” forces, such as industrial productivity growth, that pull workers into manufactur-

ing. We show that when labor reallocation from agriculture to manufacturing is driven

by labor-saving and skill-biased agricultural productivity growth – rather than manufac-

turing labor demand – it can generate an expansion in those manufacturing sectors with

the lowest potential contribution to aggregate productivity. In this sense, our results are

informative for low- to middle-income countries where a large share of the labor force is

employed in agriculture, and who import new agricultural technologies from more devel-

oped countries with high-skilled intensive agricultural sectors. Our results suggest that

positive agriculture productivity shocks coming from technology adoption may be more

effective if coupled with industrial development or education policies.

Related Literature

There is a long tradition in economics of studying the links between agricultural pro-

ductivity and industrial development. Nurkse (1953), Schultz (1953), and Rostow (1960)

argued that agricultural productivity growth was an essential precondition for the indus-

trial revolution. Classical models of structural transformation formalized their ideas by

proposing two main mechanisms through which agricultural productivity can speed up

industrial growth in closed economies. First, agricultural productivity growth increases

income, which can increase the relative demand for manufacturing goods, driving labor

away from agriculture and into manufacturing (see Murphy, Shleifer, and Vishny 1989,

Kongsamut, Rebelo, and Xie 2001, Gollin et al. 2002). Second, if productivity growth in

agriculture is faster than in manufacturing and these goods are complements in consump-

tion, the relative demand for agricultural goods does not grow as fast as productivity

and labor reallocates toward manufacturing (Baumol 1967, Ngai and Pissarides 2007).5

Note that these two mechanisms are not operative in open economies, where high agri-

cultural productivity induces a reallocation of labor towards agriculture, the comparative

advantage sector (Matsuyama (1992b)). However, Bustos et al. (2016) show that, if agri-

cultural technical change is labor-saving, increases in agricultural productivity can lead

to a reallocation of labor towards the industrial sector, even in open economies.

Several scholars argue that reallocating agricultural workers into manufacturing can

increase aggregate productivity. First, there might be large static productivity gains when

labor reallocates from agriculture to manufacturing. Sizable productivity and wage gaps

between agriculture and manufacturing have been measured in several studies and have

been shown to be larger in developing economies (e.g., Caselli 2005, Restuccia, Yang, and

Zhu 2008, Lagakos and Waugh 2013, Lagakos and Waugh 2013, Gollin et al. 2014). To

the extent that these gaps arise from the existence of inefficiencies and frictions in the

economy, a reallocation of labor from agriculture to the other sectors of the economy is

5See also: Caselli and Coleman 2001, Acemoglu and Guerrieri 2008, Buera, Kaboski, and Rogerson
2015.
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both productivity- and welfare-enhancing.6 Second, there can be dynamic productivity

gains when labor reallocates towards manufacturing if this sector is subject to agglom-

eration externalities and knowledge spillovers (Krugman 1987, Lucas 1988, Matsuyama

1992a).

In this paper, we take a different perspective based on endogenous growth theory,

which stresses that manufacturing productivity growth not only depends on the size of

the industrial sector, but also on its composition. In particular, we focus on under-

standing whether a reallocation of unskilled agricultural workers into the manufacturing

sector might discourage innovation and technology adoption as argued in Grossman and

Helpman (1991a) and how this affects the longer-run evolution of productivity in the

manufacturing sector.

Finally, this paper builds upon the literature on the effects of agricultural technical

change, particularly those papers that provide evidence that technological advancements

in agriculture are skill-biased. For instance Foster and Rosenzweig (1996), who study

the effects of the introduction of high-yield varieties in India, show that technological

innovations in agriculture increased the relative demand for skill in agriculture and thus

returns to primary schooling.7 We contribute to this literature by showing that the recent

introduction of GE soy was also skill-biased. More importantly, we study the implications

of skill-biased agricultural technical change for industrialization, which have not previously

been explored.

The rest of the paper is organized as follows. Section 2 describes the institutional

background and the data used in the empirical analysis. Section 3 describes the theoretical

framework. Section 4 explains our identification strategy and empirical results. Finally,

section 5 contains our final remarks.

2 Institutional Background and Data

2.1 Background

This section describes the technological change introduced in Brazilian agriculture by

GE soybean seeds and some basic stylized facts on soy production in Brazil. GE soy seeds

are genetically engineered in order to resist a specific herbicide (glyphosate). The main

advantage of this technology, relative to traditional seeds, is the reduction in production

6More recently, Herrendorf and Schoellman (2018) measure and compare agricultural wage gaps in
countries in different stages of the structural transformation process. They find that the implied bar-
riers to labor reallocation from agriculture are smaller than usually thought in the macro-development
literature, and argue that labor heterogeneity and selection are important drivers of such gaps. Other
scholars emphasize that structural change can be growth-enhancing or growth-reducing depending on the
correlation between changes in employment shares and productivity levels (McMillan and Rodrik (2011)
and McMillan, Rodrik, and Sepulveda (2017)).

7In related recent work, Bragança (2014) shows that investments in soybean adaptation in Central
Brazil in the 1970s induced positive selection of labor in agriculture.
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costs. First, the use of GE seeds allows farmers to spray their fields with glyphosate

without harming soy plants. Thus, the adoption of GE soybean seeds reduces labor

requirements – and therefore costs – for weed control.8 In addition, GE soy seeds increase

agricultural profitability because they require fewer herbicide applications, allow a higher

density of the crop on the field and reduce the time between cultivation and harvest.9

The first generation of GE soy seeds (Monsanto’s Roundup Ready) was commercially

released in the U.S. in 1996 and legalized in Brazil in 2003.10 The 2006 Brazilian agri-

cultural census reports that, only three years after their legalization, 46.4% of Brazilian

farmers producing soy were using GE seeds with the “objective of reducing production

costs” (IBGE 2006, p.144). According to the Foreign Agricultural Service of the USDA,

by the 2011-2012 harvesting season, GE soy seeds covered 85% of the area planted with

soy in Brazil (USDA 2012). The legalization of GE soy seeds was followed by a fast

expansion of the area planted with soy. According to the two most recent agricultural

censuses, the area planted with soy increased from 9.2 to 15.6 million hectares between

1996 and 2006 (IBGE 2006, p.144).

The adoption of GE soy affected labor demand in the agricultural sector through two

different channels: the within-crop effect and the across-crop effect. Within soy produc-

tion, GE soybeans decreased the number of agricultural workers per hectare required to

cultivate soy. Bustos et al. (2016) document that labor intensity in soy production fell

from 29 workers per 1000 hectares in 1996 to 17 workers per 1000 hectares in 2006. In

addition, the expansion of area cultivated with soy came at the expense of the produc-

tion of other crops. This across-crop effect reduced the labor intensity of production in

the agricultural sector because soy production is one of the least labor-intensive agricul-

tural activities, requiring 17 workers per 1000 hectares in 2006, while seasonal crops and

permanent crops require 84 and 127, respectively.11

Figure 1 panels (a) and (b) document that while the area planted with soy in Brazil

increased from 11 to 19 million hectares between 2000 and 2010, the number of workers

employed in the soy sector decreased substantially. In panel (c) of Figure 1 we decompose

the decrease in employment in the soy sector between skilled workers and unskilled workers

(a worker is considered as skilled if it has completed at least the 8th grade). As shown, the

decrease in employment in the soy sector is entirely driven by low-skilled workers, while

the skilled ones were retained. This is consistent with the fast adoption of GE soy seeds

8The planting of traditional seeds is preceded by soil preparation in the form of tillage, the operation
of removing the weeds in the seedbed that would otherwise crowd out the crop or compete with it for
water and nutrients. In contrast, planting GE soy seeds requires no tillage, as the application of herbicide
selectively eliminates all unwanted weeds without harming the crop. As a result, GE soy seeds can be
applied directly onto last season’s crop residue.

9Fields cultivated with GE soybeans require an average of 1.55 sprayer trips against 2.45 for conven-
tional soybeans (Duffy and Smith 2001; Fernandez-Cornejo, Klotz-Ingram, and Jans 2002). No tilling
allows for greater density of the crop on the field (Huggins and Reganold 2008).

10See law 10.688 of 2003 and law 11.105 – the New Bio-Safety Law – of 2005 (art. 35).
11See Table 1 in Bustos et al. (2016).
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across Brazilian farmers observed in this period, as this new technology requires fewer

but relatively high-skilled workers.

Figure 1 goes around here

2.2 Data

The four main data sources used in this paper are the FAO-GAEZ database, the

Brazilian Population Census, the Annual Industrial Survey (PIA), and the Industrial

Survey of Technological Innovation (PINTEC ) which we describe in detail in this section.

In our analysis, we use microregions as our unit of observation. Microregions are statistical

units defined by the Brazilian Statistical Institute (IBGE) and consist of a group of

municipalities. There are 557 microregions in Brazil, with an average population of around

300,000 inhabitants. We use microregions as an approximation of the local labor market

of a Brazilian worker. They can be thought of as small, open economies that trade in

agricultural and manufacturing goods but where production factors are immobile.

To construct our measure of technical change in soy production, we use estimates

of potential soy yields across microregions from the FAO-GAEZ database. This dataset

reports the maximum attainable yield for a specific crop in a given geographical area.

In addition, it reports maximum attainable yields under different technologies or input

combinations. Yields under the low technology are described as those obtained planting

traditional seeds, with no use of chemicals or mechanization. Yields under the high

technology are obtained using improved high-yielding varieties, with optimum application

of fertilizers and herbicides, and mechanization.

Following Bustos et al. (2016), we define technical change in soy production as the

difference in potential yields between high and low technology. This measure aims to cap-

ture the effect on soy yields of moving from traditional agriculture to the use of improved

seeds and optimum weed control, among other characteristics. Technical change in soy

production in microregion k is therefore defined as:

∆Asoyk = Asoy,Highk − Asoy,Lowk

where Asoy,Lowk is equal to the potential soy yield under the low technology and Asoy,Highk is

equal to the potential soy yield under the high technology. Figure 2 shows the geographical

variation in our measure of technical change in soy across microregions.

Figure 2 goes around here
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We obtain information on employment, wages and other worker characteristics from

the Brazilian population census conducted by the IBGE. We focus on the two most recent

surveys of the census (2000 and 2010), which respectively precede and follow the 2003

legalization of GE soybeans. Note that the population census collects information on

both formal and informal workers, and therefore provides a more accurate description

of employment in each microregion than social security data, which is only available for

formal workers.

In the population census, we focus on individuals with strong labor force attachment.

In particular, we include individuals aged between 25 and 55 that work more than 35

hours a week.12 Moreover, we only consider individuals not enrolled in the education

system at the time of the survey. For each individual, we define the sector of occupation

as the sector of their main job during the last week. The population census also provides

information on the number of hours worked during the last week and the monthly wage.

Therefore, we compute hourly wages as the monthly wage divided by 4.33 times the hours

worked last week. For each microregion, we compute employment shares as the number

of workers in each sector divided by total employment.13

We use information on education from the population census to categorize individuals

as unskilled or skilled. We define a worker as skilled if they have completed at least the

8th grade. This level should be attained when an individual is 14 or 15 years old and is

equivalent to graduating from middle school in the US. We define unskilled individuals as

those who have not completed the 8th grade. We use this data to characterize manufac-

turing industries by their skill intensity. In particular, we split manufacturing industries

into two groups: low-skill-intensive industries and high-skill-intensive industries. To this

end, we first compute the share of skilled workers over total workers in each industry

in the baseline year (2000). Then, we split the distribution of industries at the median,

weighting industries by the total number of workers, so that each of the two groups has

roughly 50% of the total manufacturing employment in Brazil.

Table 1 goes around here

Table 1 reports summary statistics of individual level characteristics for workers oper-

ating in agriculture, low-skill manufacturing, high-skill manufacturing and services.14 As

12In order to deal with extreme observations, we focus on individuals whose absolute and hourly wages
are between the 1st and the 99th percentile for the distribution of wages in their respective year, and
who work less than the 99th percentile of hours.

13Each worker is weighted according to their respective sampling weights.
14We define agriculture, manufacturing and services by following the classification of the CNAE Domi-

ciliar of the 2000 census. Agriculture includes Sections A and B (agriculture, cattle, forestry, and fishing).
Manufacturing includes Section D, which corresponds to the transformation industries. Services include:
construction, commerce, lodging and restaurants, transport, finance, housing services, domestic workers,
and other personal services. We exclude the following sectors because they are mostly under government
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shown, there is large heterogeneity in skill intensity of workers across these broad sectors.

As much as 93.5% of workers in agriculture had not completed the 8th grade in 2000,

against the 80.7% in low-skill manufacturing, 61.8% in high-skill manufacturing, and 69%

in services.

We use data from the population census to compute “composition-adjusted” wages

(i.e., wages net of observable worker’s characteristics). To this end, we estimate a Mince-

rian regression of log hourly wages on observable characteristics for the two census years

of 2000 and 2010, as follows:

ln(wikt) = γkt +HiktβHt + εikt for t=2000, 2010 (1)

where ln(wijkt) is the log hourly wage of individual i, working in sector j in microregion

k at time t, and γkt is a microregion fixed effect, while Hijkt is a vector of individual

characteristics, which includes dummies for sector, skill group, age group, race, and all the

interactions between these variables. We estimate the previous Mincerian regression for

each microregion and for each broad sector separately. Also, we estimate these regressions

constraining the sample to either unskilled or skilled labor only, recovering the unit price

of labor in each microregion for each type of labor in both cross sections. Since the

existing literature documented how Brazil has experienced a considerable reduction in

its gender pay gap (Ferreira, Firpo, and Messina 2017), we estimate equation (1) only

for male workers. Observations are weighted by their corresponding population census

weight. Next, we use the microregion fixed effects estimated above as the unit price of

labor for a given skill group in a given microregion, and we compute the change in unit

prices of labor in microregion k between 2000 and 2010 as ∆γk = γk,2010 − γk,2000, which

gives us the change in the composition-adjusted wages at microregion level.

Table 2 goes around here

Table 2 provides summary statistics for the main variables used in the empirical anal-

ysis at microregion level. For each variable, we report the mean and standard deviation

of their level in the baseline year (2000) and of their change between 2000 and 2010.

Finally, we use data from the two different manufacturing surveys mentioned above

to investigate the dynamic effects of labor reallocation on industrial output. To construct

our measure of R&D expenditure per worker in manufacturing we source data on R&D

expenditure from the Industrial Survey of Technological Innovation (PINTEC ) – which

is designed to capture innovation activities of Brazilian firms – and data on number of

workers in manufacturing from the Population Census. Specifically, we use the 2000 and

control: public administration, education, health, international organizations, extraction, and public
utilities.
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2008 waves of the PINTEC survey to construct aggregate measures of R&D expenditure

per worker by industry. To study the dynamic effect of labor reallocation on employ-

ment and value added per worker we use data on number of workers and value added

from the Annual Industrial Survey (PIA).15 This data comes aggregated at micro-region

level and is constructed using manufacturing firms with more than 30 employees. Since

firms with 30 or more employees are sampled with probability one in the PIA survey, we

have a representative sample at the microregion level. We focus on firms operating in

manufacturing as defined by the CNAE 1.0 classification (codes between 15 and 37) and

use the aggregate microregion-level data from 2000 to 2009. For both PINTEC and PIA,

we map their industry classification to our definition of low-skill-intensive industries and

high-skill-intensive industries explained above.

3 Theoretical Framework

3.1 General setting

In this section we describe the theoretical framework that guides our empirical exercise.

For this we combine the key insights from the theoretical work in Bustos et al. (2016) –

extended to two labor types in production using Acemoglu (2002) – and the endogenous

growth model developed in Grossman and Helpman (1991a). The combination of these

two open economy models gives rise to a number of predictions that are useful to interpret

the evidence that we present below. In this section we discuss these insights in some depth.

We provide further details of the model and prove the different results in Appendix B.

The model has three sectors and three factors of production: agriculture, low-skill

intensive manufacturing, and high-skill intensive manufacturing that use land, low- and

high-skilled workers. Hence, it is a three-factor, three sector model, where prices of final

goods are determined by world markets. To talk more easily about structural transforma-

tion we denote as high- and low-skilled intensive industries the two sectors in manufactur-

ing. Structural transformation in this context is the movement of workers from agriculture

to manufacturing. Growth in the model is determined by sectoral composition.

The agricultural sector produces combining labor and land in a constant elasticity of

substitution (CES) production function. In turn, labor is a CES composite of high- and

low-skilled labor. In equations, the local agricultural production function is defined by:

Qa = KAN [γ(ALLa)
σ−1
σ + (1− γ)(ATTa)

σ−1
σ ]

σ
σ−1 (2)

15We construct our measure of employment based on the aggregation of variable V0194, which is defined
in the original documentation as: Total pessoal ocupado em 31/12 or end-of-year number of workers and
value added as the difference between output value and production costs. Specifically, the value of output
is defined as the sum of revenue from industrial sales, the value of production used for investment and the
changes in inventories, whereas production costs are equal to the sum of the cost of industrial operations
and the cost of materials used.
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where AN is a Hicks-neutral technology shifter, γ governs the weight of labor in the

production function, AL and AT are labor-augmenting and land-augmenting technical

change, respectively, and σ is the elasticity of substitution between labor (La) and land

(Ta). K is the knowledge in the local economy which is driven by high-skilled intensive

manufacturing output as we discuss below. The main difference to Bustos et al. (2016)

is that, in our context, La is not just raw labor, but rather a CES aggregate of high- and

low-skilled labor:

La = [θ(AUUa)
ε−1
ε + (1− θ)(ASSa)

ε−1
ε ]

ε
ε−1 (3)

where θ is the weight of low-skilled labor and ε is the elasticity of substitution between

high- and low-skilled labor.

In this model there are two manufacturing industries. In one industry, profit-seeking

entrepreneurs invest human capital and labor to invent new input varieties of a differen-

tiated product. Total output in this heterogeneous, monopolistically competitive input

industry takes the form:

Qh
m =

K∑
j=1

AhmF
h
m(Uh

jm, S
h
jm) = KAhmF

h
m(Uh

m, S
h
m) (4)

Where K is the total amount of varieties in the industry, which we call knowledge.

Grossman and Helpman (1991a) provide two alternative interpretations of K. In one

interpretation K is the total amount of varieties in the sector. An alternative interpre-

tation is that K represents the quality of varieties. The fact that K affects productivity

in each sector is important for the balanced growth path. If knowledge did not affect the

productivity in one of the sectors, the sector would shrink until disappearing.

In the other homogeneous-good manufacturing industry, firms produce a homogeneous

good under conditions of perfect competition according to:

Q`
m = KA`mF

`
m(U `

m, S
`
m) (5)

Both sectors combine low- and high-skilled labor (or human capital as is labeled in

Grossman and Helpman (1991a)). The only difference across industries is that the mo-

nopolistically competitive industry h is relatively more intensive in high-skilled labor than

the homogeneous good industry `.

The growth rate of the economy (g) is determined by the composition of the local

economy and the production resources of the high-skilled intensive industry devoted to

expanding K:16

16Define total output byQ = Qa+Q`m+Qhm, this is equal toQ = K(Fa+F `m+Fhm), if we log-differentiate

this expression we are going to obtain: Q̇/Q ≡ g = K̇
K + ωaF̂a + ω`mF̂

`
m + ωhmF̂

h
m.
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g =
K̇

K
+ ωaga + ω`mg

`
m + ωhmg

h
m (6)

where the ωj’s determine the weight of each sector in total output and gj is the growth

rate of each sector. When total output in the manufacturing high-skilled industry ωhm is

larger then the growth rate of the economy g depends to a larger extent on this sector’s

growth rate.

We further assume that the only sector with endogenous growth forces is high-skilled

manufacturing. In particular, we assume that the size of industry h determines the speed

at which new varieties are invented which, in turn, determines long-run growth in the

sector. Accordingly we assume that:

K̇ = αQh
m

This assumption is micro-founded in Chapter 3 of Grossman and Helpman (1991a),

where α is the share of resources spent in innovation or R&D activities. As emphasized in

Romer (1986) and Romer (1990), the presence of increasing returns to scale and monop-

olistic competition generates some rents in the production of inputs that can be invested

in expanding the set of inputs used in final production. We would obtain similar results

if instead of using knowledge spillovers across sectors, we assumed that inventing new

varieties is increasingly expensive, as is done in Aghion and Howitt (1992).

3.2 Structural transformation

With the agricultural production function introduced before we can apply the results

in Bustos et al. (2016) and Acemoglu (2002) to think about the relative and absolute

demands for low-skilled labor in the primary sector. Hence, we first investigate how agri-

cultural technical change affects the distribution of high- and low-skilled workers between

agriculture and manufacturing. To do so, we proceed in two steps. We first look at the

relative demand and then at the absolute demand for low-skilled labor in agriculture.

Theorem 1. An increase in As in agriculture, leads to an increase in the relative demand

for high skilled workers in agriculture if and only if the elasticity of substitution between

high- and low-skilled workers is greater than one (ε > 1).

Proof. See Appendix B.

This result essentially follows from Acemoglu (2002). When it is relatively easy to

substitute low- for high-skilled labor, then when the latter becomes more productive

firms want to hire relatively more skilled labor.

Note that, at the same time, this increase in AS makes the whole CES aggregate La

increase its output, which is akin to the increase in the productivity of labor AL studied
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in Bustos et al. (2016). That paper shows that an increase in AL leads to a relocation of

labor from agriculture to manufacturing, provided that the elasticity between land and

labor (σ) is smaller than the share of land in production. Thus, by combining the insights

in Acemoglu (2002) and Bustos et al. (2016) we obtain, under certain conditions, that

technology which improves the productivity of high-skilled workers in agriculture leads to

the relocation of low-skilled workers away from agriculture.

Theorem 2. Whether an increase in As in agriculture leads to an absolute decrease in

the demand for low skilled workers in agriculture depends on whether labor and land are

strong complements (σ < εΓ).

Proof. See Appendix B. Note that Γ =

(
(1−γ)(ATTa)

σ−1
σ

γ(ALLa)
σ−1
σ +(1−γ)(ATTa)

σ−1
σ

)
is the share of land

in agricultural production, and ε is the elasticity of substitution between high- and low-

skilled workers.

Theorem 2 extends the logic of Bustos et al. (2016) to two labor types and in doing

so we obtain interesting new insights. With only labor and land in agriculture, labor

augmenting technical change may lead to a decrease in the demand of labor only if land

and labor are sufficiently strong complements. When there are two labor types, the

argument is a little bit more nuanced. If one of the labor types becomes more productive,

then on the one hand we would like to use more of it if it can substitute the other type of

labor. On the other hand, however, we want to use less labor overall if labor and land are

strong complements. As a result, when skill-biased-factor-augmenting technologies (As)

improve, as may be the case in many developing countries when importing technologies

from more developed countries, the demand for unskilled labor decreases if high- and low-

skilled workers are good substitutes and land and labor are strong complements. With

two labor types, strong complementarity is weaker than with just one labor type. The

reason for that is that part of the adjustment takes place within labor.

3.3 Industrial specialization and economic growth

From the view point of the manufacturing sector, the release of low-skilled workers

from agriculture looks like an exogenous increase in the relative supply of labor. To be

able to think about the effects that this has both for the sector and for the long-run growth

we rely on the model presented in Chapter 6 of Grossman and Helpman (1991a).17

Theorem 3. An increase in low-skilled workers into manufacturing, which occurs when

land and labor are strong complements (i.e. when σ < εΓ) and when high-and low-skilled

17See also Grossman and Helpman (1991b) for a continuous sector version of the model, Helpman (1993)
and Bayoumi, Coe, and Helpman (1999) – where knowledge transfers across countries are analyzed –,
Aghion and Howitt (1992), and Grossman and Helpman (1994) for a review of (some fundamental aspects
of) this literature.
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workers are imperfect substitutes (i.e. when ε > 1), is absorbed through an expansion of

low-skill intensive manufacturing industries.

Proof. In Appendix B we provide a proof of this theorem assuming that the economy is

inside the factor price equalization set. For a full discussion of what happens outside the

factor price equalization set we refer the reader to chapter 6 in Grossman and Helpman

(1991a), and especially to Grossman and Helpman (1990).

The intuition for this results follows from standard Hecksher-Ohlin international trade

theory. When low-skilled workers released from agriculture enter manufacturing, they

expand the low-skilled intensive industry more than proportionately and shrink the high-

intensive industry. The reason for that is that if all resources are put in the low-skilled

intensive sector total output would increase by more than if they were put in the high-

skilled intensive one. Given our assumption of a small open economy, prices are fixed.

Hence, if output of the high-skilled intensive good does not change and all the extra low-

skilled labor enters the low-skill intensive sector, the marginal product of high-skilled labor

would be higher in the low-skilled intensive industry. Hence, some high-skilled labor would

leave the high-skilled intensive industry towards the low-skilled intensive one. As a result,

the high-skill intensive industry shrinks and all the labor that entered manufacturing plus

some high-skilled labor enter the low-skilled intensive industry expanding its size.

The final result in this section, relates industrial composition and economic growth.

The growth rate of the economy depends on the growth rate in each sector weighted by

its size. Hence, technical change in agriculture affects the (instantaneous) growth rate in

the economy, and given that sectors change size, the overall longer-run growth rate.

Theorem 4. When land and labor are strong complements (i.e. when σ < εΓ) and when

high-and low-skilled workers are imperfect substitutes (i.e. when ε > 1), an exogenous

change in skill-biased-factor-augmenting technologies As results in:

1. Static gains from increased productivity in the agricultural sector.

2. Dynamic losses shaped by the decrease in the size of the R&D manufacturing indus-

try.

In equations we have that:18

∂g

∂As
= α

∂Qh
m

∂As
+ ωa

∂ga
∂As

+
∂ωa
∂As

ga +
∂ωlm
∂As

glm +
∂ωhm
∂As

ghm

In the long-run, the growth rate in every sector is exclusively driven by exogenous

changes to productivity, and hence gj = 0. Only the high-skilled intensive manufacturing

industry contributes to growth by expanding knowledge (K), using a fraction α of its

18From equation 7 we have that: g = αQhm + ωaga + ω`mg
`
m + ωhmg

h
m
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resources to that. Thus, how much knowledge expands depends exclusively on the size of

the high-skilled intensive sector:

∂g

∂As
= ωa

∂ga
∂As

+ α
∂Qh

m

∂As
(7)

The first term of equation 7 is positive since, on impact, increases in As increase total

output in agriculture. The second term in this equation is negative, because output in

high-skilled manufacturing decreases with an increase in As. Hence, improvements in skill-

biased-factor-augmenting agricultural technologies, like the introduction of genetically

modified crops, possibly result in static gains and dynamic losses.

In what follows, we explore whether these theoretical insights can help us understand

the patterns in the data.

4 Empirics

This section reports the main estimates of the paper. We start the section by discussing

our identification strategy in more detail in sections 4.1. We then turn, in sections 4.2

and 4.3, to documenting how low-skilled labor relocated away from agriculture towards

manufacturing and services in micro-regions more exposed to technical change in soy, while

high-skilled agricultural employment was not affected. Thus, we first establish that the

soy shock was both labor-saving and skill-biased. We then consider the wages of high- and

low-skilled workers. The estimates show that wages (especially of high-skilled workers) in

agriculture increased, which we interpret as evidence that the soy shock was skill-biased

and that favored the “best” among both high- and low-skilled workers in the agricultural

sector. The workers that were “freed” from agriculture moved into both services and

(especially) manufacturing.

In section 4.4 we show that workers that moved to manufacturing were mostly absorbed

into low-skilled-intensive industries, which led to an expansion of the less innovation-

intensive industrial sectors in the economy, as measured by R&D expenditure as a share

of sales. This pattern is in line with an extended version of the theoretical insights in

Bustos et al. (2016) and Grossman and Helpman (1991a), as discussed in Section 3. There,

we argue that, if land and labor are strong complements, an increase in high-skilled-labor

agricultural productivity leads low-skilled workers to relocate towards manufacturing.

Given that manufacturing has high- and low-skilled-intensive industries, this “freed” labor

is absorbed mainly into low-skill-intensive industries, which, in turn, has implications for

manufacturing productivity and long-term growth. We test empirically these implications

in Subsections 4.5 and 4.6.
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4.1 Identification Strategy

To estimate the causal effect of the change in the potential soy yields on different

outcomes, we use regressions of the following form:

∆Yk = α + β∆Asoyk + ϕXk + εk (8)

where ∆Yk is the change in the variable of interest in microregion k between 2000 and

2010, ∆Asoyk corresponds to our exogenous measure of technical change in soy, and Xk is

a vector of controls of microregion k. In our baseline specification, we include the share

of rural population in 1991 and a measure of technical change in maize as controls. The

lagged share of rural population controls for microregion specific trends in the outcome

variable relates to starting conditions that differ across regions, whereas the technical

change in maize at the microregion level is included because it might have affected some

of the outcomes and is partially correlated with the soy shock. In our extended specifica-

tion, we also control for the initial level of income per capita, alphabetization rate, and

population density in 1991 in each microregion. Again, these should control for poten-

tially different trends related to these baseline observables. This specification captures

the reduced-form causal effect of technical change on a number of outcomes.

4.2 Effect of Technical Change on Labor Reallocation and Skill

Intensity

As argued in Bustos et al. (2016), the soy shock in Brazil was labor-saving. Microre-

gions that could benefit more from the new technology saw a number of agricultural

workers move to the manufacturing sector. In this paper we argue that this technological

change was not only labor-saving, but also high-skill biased, which has consequences for

the economy that were unexplored in Bustos et al. (2016), as argued in Section 3. That is,

with this technical change the higher-skilled workers had relatively more opportunities in

the agricultural sector than the low-skilled, something that led low-skill workers to enter

manufacturing. Tables 3 and 4 document this process. We start in Table 3 by document-

ing that the soy shock moved labor from agriculture into manufacturing (i.e., it led to

structural transformation). This reproduces the main finding in Bustos et al. (2016). The

first two columns investigate whether there was a significant change in total employment

across microregions related to technical change. If anything, microregions that became

more productive in agriculture lost a little bit of population, but the magnitude is rela-

tively small, and when controlling for the starting conditions in Column 2, the estimates

are not distinguishable from 0. Thus, the employment changes that we document in what

follows are not driven by migration between microregions or by changes in the number

of workers working across regions. All the changes are, instead, driven by changes across
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sectors within microregions.

Table 3 goes around here

In Columns (3) to (8), we investigate within-region labor relocation. As shown in

Bustos et al. (2016), the positive technological shock in soy production led to a decrease

in the total number of workers in agriculture. The estimates suggest that agriculture

lost around 6% of its employment share for the mean change in potential soy yields.19

This estimate is remarkably stable to the inclusion of various types of controls, as can

be observed when comparing Columns (3) and (4). These low-skilled workers moved

into manufacturing and services. Manufacturing employment shares increased by around

4 percentage points at the mean change in soy-yield potential, which can be seen in

Columns (5) to (8), hence absorbing the bulk of these low-skilled workers released from

agriculture. This adjustment shows that the soy shock was labor-saving and “freed” many

workers, who moved into manufacturing.

In Table 4, we investigate whether the soy shock was skill-biased. More specifically,

we investigate whether the workers who left agriculture were high- or low-skilled. To do

so, we proceed in two steps. We first look at whether, for each skill type, regions most

favorably affected by the shock gained or lost employment in this factor type. We then

consider whether there are significant differences across sectors within microregions. In

Panel A of Table 4, we show that the soy shock had small but, if anything, negative

effects on the employment of low-skilled workers at the microregional level, as recorded in

Columns (1) and (2). Columns (3) to (8) investigate whether there was some relocation

across sectors within regions by looking at the change in the share of workers employed in

each sector, relative to the overall low-skilled employment. It is clear from Columns (3)

and (4) in Panel A of Table 4 that agriculture lost low-skilled employment, both relative

to total employment and in absolute terms.20 These low-skill employees moved primarily

into manufacturing, as observed in Columns (5) to (8).

Table 4 goes around here

Panel B of Table 4 repeats the exercise of Panel A, but instead focuses on high-

skilled employment. Contrary to what happened with low-skill employment, microregions

positively affected by the soy shock gained high-skilled employment, as shown in Columns

(1) and (2). Columns (3) to (8) explore whether there is some heterogeneity across sectors

19The mean increase in potential soy yields is almost 2, as shown in Table 2. Thus, to obtain the
employment effects of the mean change in potential soy yields, we only need to multiply the coefficient
in the employment regressions by a factor of 2.

20Absolute numbers are easier to read in Table A2 in the Appendix.
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in terms of how much high-skilled employment each sector gained. Our estimates suggest

that, on the one hand, in microregions more exposed to the shock, agriculture lost high-

skilled employment in relative terms, but not in absolute terms (i.e., the size of high-skilled

employment in agriculture stayed constant despite experiencing a labor-saving technical

change).21 On the other hand, we observe that manufacturing gained relatively more

high-skilled workers, while services also gained high-skilled workers, but at the average of

the microregion. Altogether, our estimates show that manufacturing gained both high-

and low-skilled employees, whereas agriculture lost low-skilled workers.

To explore whether the soy shock affected the skill intensity of the different regions and

sectors within these microregions, we estimate in Panel C the effect of the soy shock on

skill intensity, measured as the (log) ratio of high-skilled workers over low-skilled workers.

As could have been expected from Panels A and B, microregions positively affected by

the soy shock became more skill-intensive, a consequence of the increase in high-skill

employment. However, not all sectors in these microregions became more skill-intensive.

Only services and especially agriculture became more skill-intensive as a result of the soy

shock.

In sum, Table 4 shows that soy-shock regions gained high-skilled employment. At the

same time, low-skilled workers left agriculture and moved mainly into manufacturing. In

this sense, Table 4 shows that the soy shock was both labor-saving and skill-biased. It also

shows that manufacturing absorbed a large fraction of this excess supply of low-skilled

workers. It is crucial, thus, to understand how these workers that moved into manu-

facturing were absorbed across manufacturing industries. Before showing these results,

however, we investigate wage changes.

4.3 Effect of Technical Change on Wages and Skill Premia

So far, we have seen evidence consistent with a relative increase in the demand for

high-skill labor in agriculture. If labor supply across sectors or microregions is imperfectly

elastic, some of these results should also be observable in wage changes. We investigate

whether that is the case in this section.

Following the structure in Tables 3 and 4, we first look at what happens to the average

worker in the local economy, then we distinguish between factor types. Table 5 shows

that (composition-adjusted) wages increased in microregions with positive soy shocks.

These modest wage gains come entirely from agriculture, the sector that became more

productive. This change can be seen in Columns (3) and (4) of Table 5. It is important to

remember that we use composition-adjusted wages, as explained in Section 2.2, because we

are interested in distinguishing changes in the unit price of labor from factor composition.

This means that we always net out all the observable characteristics of the workers in

21Also see Table A2 in the Appendix.
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Mincerian regression, to obtain a measure of how much each factor type is paid.

Table 5 goes around here

Given the evidence presented in Subsection 4.2, it is very likely that Table 5 hides

important differences across factor types. We investigate this in Table 6. As before, we

first look at each factor type separately, then we look at relative (composition-adjusted)

wages. Panel A of Table 6 indicates that average (composition-adjusted) wages of low-

skilled workers in microregions positively affected by the soy shock did not increase sub-

stantially, as shown in Columns (1) and (2). Only low-skilled workers in agriculture (the

sector that became more productive) gained somewhat, despite the fact that many low-

skilled workers left the sector. We interpret this pattern as evidence that only the “best”

low-skilled workers (in terms of unobservable characteristics) stayed in agriculture. In

other words, the low-skilled workers that moved into manufacturing were negatively se-

lected, both in terms of observable characteristics, as documented in the previous section,

and possibly in terms of unobservable characteristics.22

Table 6 goes around here

In Panel B of Table 6, we look at the labor-market price of high-skilled workers.

Consistent with the increase in employment of high-skill workers, wages in microregions

positively affected by the soy shock increased. This trend is true in every sector, but

the increase is disproportionate in agriculture, as shown in Columns (3) and (4). This is

in line with the idea that agriculture experienced a relative increase in the demand for

high-skilled workers, which is partly observable in employment and partly in wages.

In Panel C, we investigate whether the increase in the relative demand for high-skilled

workers in agriculture led to systematic differences in the relative rewards across factors

in the different sectors of the economy. As can be seen in this panel, the estimates in each

sector are similar in magnitude, which is consistent with the idea that factor relocation

across sectors is relatively elastic.

In sum, the evidence from wage regressions is consistent with what we learn from

the employment responses, which gives further support to the idea that the soy shock –

affecting the agricultural sector directly – was both labor-saving and skill-biased. The

results in this section also imply that readjustment across sectors was, over this period,

quite flexible, which suggests that it may be particularly interesting to investigate labor

relocation within sectors more deeply. We turn to this point in the following subsection.

22The fact that there is selection in unobservable characteristics has been used in previous literature to
explain cross-sectoral results: For an example, see Autor, Dorn, and Hanson (2013). Monras, Vazquez-
Grenno, and Elias (2018) show that there is selection in “observables” and “unobservables” that goes in
the same direction, in labor market adjustments induced by a large amnesty program.
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4.4 Reallocation within Manufacturing

As discussed in Section 3, the way in which the excess supply of low-skilled workers in

agriculture is absorbed into manufacturing is likely to have important long-term conse-

quences for industrial specialization and, possibly, welfare. In this section, we document

which industries absorbed the low-skilled workers who relocated away from agriculture.

To investigate this point, we distinguish between industries in manufacturing that are

low-skill-intensive and industries that are high-skill-intensive. We make a split of the

various industries by employment, which means that we rank industries by skill intensity

and we nominate as high-skill-intensive industries the sectors that are at the top of this

rank, which also host 50% (or other percentiles of the employment distribution) of total

employment. The rest of the manufacturing industries are labeled as low-skill-intensive.

We also show results where the split follows R&D intensity.

To show these results, we start by plotting the change in employment between 2000

and 2010 as a function of the skill and R&D intensity in the sector across microregions

and the intensity of the soy shock change. More concretely, in Figure 3 we split industrial-

skill intensities into quartiles and plot the estimate for each of these quartiles. This figure

shows, non-parametrically, the effect of the soy shock on employment relocation.

Figures 3 and 4 go around here

Figure 3 shows very clearly that employment gains are concentrated in the most low-

skill-intensive industries. In a small, open economy, these are the industries that can

absorb the excess supply of low-skilled labor “freed” from agriculture more easily. These

is in line with the logic of classical Heckscher-Ohlin theory, which is what drives the

results of Grossman and Helpman (1991a) discussed above. Furthermore, in Figure 4

we show how these relocations concentrated more explicitly in low R&D sectors, which –

through the lens of Grossman and Helpman (1991a) – has implications for long-run growth

potential. Thus, the exogenous increase (from the viewpoint of manufacturing) of low-

skilled labor is absorbed through increases in low-skilled, low-R&D-intensive industries,

as predicted in the Grossman and Helpman (1991a) model.

We quantify these results using regressions in Table 7. Column (1) of Panel A in Table

7 shows that manufacturing gained low-skilled workers, which is something that we already

documented when discussing Table 4 above. Interestingly, this increase in low-skilled

employment in manufacturing concentrated exclusively in the low-skill-intensive industries

within manufacturing. As can be seen in Column (3), high-skill-intensive industries did

not increase low-skilled employment. In terms of magnitudes, the share of low-skilled

workers moving into low-skilled-intensive industries or low R&D industries increased by

around 5 percentage points for the mean change in soy productivity.
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Table 7 goes around here

Panel B of Table 7 investigates whether similar patterns emerge when looking at high-

skilled employment, as documented before. First, Column 1 shows that manufacturing

gained high-skilled employment, in line with the fact that microregion positively affected

by the shock gained high-skilled employment. Columns (2) and (3) in Panel B show,

however, that there are not large differences in the increase of high-skilled workers in

high- vs low-skilled-intensive sectors. These relatively small numbers are also obtained

when splitting industrial sectors between high and low R&D expenditures. Using this

R&D split, we find that, if anything, some high-skilled workers moved into low-R&D-

intensive industries, consistent with the Rybczynski logic that the two-factor types move

to the same type of sectors. As previously argued, this same logic underlies Grossman

and Helpman 1991a’s model.

The combination of Panels A and B seems to suggest that skill intensities within

manufacturing changed as a result of the soy shock.23 We show this explicitly in Panel C

of Table 7. The first column shows that manufacturing became more low-skill-intensive.

However, there are important differences across industries within manufacturing. As we

can see in Columns (2) and (3) of Panel C, low-skill-intensive industries became more low-

skill-intensive with the soy shock. In Columns (4) and (5), we show the split of industries

using R&D expenditures.24 In line with what is shown in Columns (2) and (3), we see

that the industries that could expand to accommodate the excess supply of low-skilled

labor that left agriculture were industries with low R&D expenditures and presumably

low growth potential.

We view this finding, as argued in the introduction and in Section 3, as a cautionary

note on the potential benefits of structural change. When structural change is driven by

“push” factors, the workers leaving agriculture may be negatively selected, and may, thus,

favor the expansion of sectors in manufacturing with lower innovation-intensity. We test

the implications of this result on manufacturing productivity in what follows.

4.5 Development Dynamics

Through the lens of the theoretical framework we argued that one of the threats of the

reallocation of low-skilled workers from agriculture towards manufacturing is that this may

lead to specialization in low R&D, low-skilled intensive sectors. This in turn, may push

the economy towards a lower path in the evolution of GDP given that the manufacturing

sector becomes less productive. We provide in this section evidence consistent with this

theoretical framework.

23In classical H-O theory, factor intensities may change only when the economy is outside of the factor-
price equalization set.

24Table A3 shows the full list of industries considered.
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To guide this discussion we use data from PIA, previously described. This allows to

track the local economies at a much higher frequency. Instead of using ten year differences,

we can see the evolution of soy-shocked regions every year. To provide evidence in this

context we use the following event-type estimation equation:

ln yk,t = δt + δk +

j=2009∑
j=2001

βj∆A
soy
k +

j=2009∑
j=2001

γj∆A
mze
k + tX ′k,1991ω + εk,t (9)

where ∆Asoyk is the change in our exogenous measure of technical change in soy in

microregion k between 2000 and 2009, and ln yk,t is our outcome of interest in microregion

k at time t. δk and δt are microregion and year fixed effects, respectively. βj estimates

the effect of the change in the productivity of soy in each of the years of the decade.

2000 is the omitted category. Thus, we flexibly allow βj to capture the effect of the

decadal change in productivity, in each year. Given that the change in productivity of

soy was spread across years, and genetically modified soy was only introduced in 2003,

we would expect significant changes starting at around 2004 and increased intensity over

the years, to conclude that the changes in the outcome can be attributed to the change

in productivity induced by the genetically modified soy.

Figure 6 goes around here

Using this estimating equation we investigate three different outcomes. First, we show

that the movement of labor towards low-skill intensive manufacturing tracks well the

evolution of soy production, shown in Figure 1. In regions positively affected by soy

productivity increases, more labor – mainly low-skilled labor as documented using census

data – enters low-skilled manufacturing.25 This can be seen in the left graph of Figure

6. Especially after 2003, the amount of labor entering low-skill intensive sectors starts to

increase substantially. Second, we show that high skilled intensive manufacturing did not

expand disproportionately in high soy shock regions. We show this in the graph on the

right of Figure 6. This corroborates the main results shown using Census data.

Figure 7 goes around here

The third result investigates the effect of soy technical change on manufacturing pro-

ductivity. Ideally, we would like to use total factor productivity in manufacturing as an

outcome. However, the Brazilian Manufacturing Survey does not report information on

25With PIA data we cannot separate high and low-skilled workers accurately, which is why we have
used Census data in the previous sections.
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the book value of physical capital. Thus, we use value added per worker in a given micro-

region as a proxy for manufacturing productivity. We define value added per worker in a

micro-region as the sum of value added of all firms in that region divided by their total

employment. Figure 7 shows the differential dynamics in value added per worker as a

function of the change in soy productivity. The graph shows that micro-regions more

exposed to the soy shock experienced a relative decline in value added per worker. The

effect becomes apparent in 2005 and increases in magnitude over the decade.

Figure 7 provides further empirical evidence for one of the key aspects of the model

discussed in Section 3. While an increase in productivity in the agricultural sector is

good for the microregion, the fact that the new technology is skilled biased means that

low-skilled workers are the ones moving towards manufacturing. This expands the sectors

within manufacturing that are least productive. Thus, compared to a counterfactual

where workers leaving agriculture enter the most vibrant and R&D intensive sectors,

this evidence suggests that it is not necessarily the case that structural transformation

necessarily leads the economy from a “subsistence” sector with negligible productivity to

a capitalist and high growth potential sector, as argued by Lewis (1954) and Kuznets

(1973). Depending on the circumstances, the workers leaving agriculture may expand the

“wrong” industries, leading to lower productivity growth in the long-run than what was

believed in this early literature.

4.6 Within-Between Decomposition

In this section we attempt to quantify the effect of labor reallocation driven by skill-

biased technical change in agriculture on the innovation-intensity of the manufacturing

sector in Brazil. As a measure of innovation-intensity of the manufacturing sector we use

R&D expenditure per worker. We source data on R&D expenditure from the Industrial

Survey of Technological Innovation (PINTEC ) – which is designed to capture innovation

activities of Brazilian firms – and data on number of workers in manufacturing from

the Population Census. In particular, we use the 2000 and 2008 waves of the PINTEC

survey and the 2000 and 2010 Population Censuses. We compute R&D expenditure as the

sum of expenditure in internal R&D and expenditure in external R&D, both expressed

in thousands of R$.26 Combining data from PINTEC and Population Census, we find

that R&D expenditure per worker in the Brazilian manufacturing sector increased by 40

percent in the decade between 2000 and 2010.27

Change in R&D expenditure per worker in Brazilian manufacturing can be driven by

26Internal R&D consists on systematic creative work with the objective of increasing the knowledge
pool and the use of this knowledge to develop new products or processes, and the development of software
or scientific advancements. External R&D encompasses the same activities as internal R&D with the
difference that they are carried out by another organization (either other companies or technological
institutions) and acquired by the firm (IBGE 2010).

27We use data from the 2008 wave of the PINTEC survey as a proxy for R&D expenditure in 2010.
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two forces. First, the increase in R&D expenditure per worker within each manufacturing

sector. Second, a reallocation of workers across manufacturing sectors that have different

initial R&D intensities. These two forces correspond to the two terms in equation (10),

which shows a decomposition of the decadal change in R&D expenditure per worker:

∆
RD

LM
≈ RDh

2000

LhM,2000

∆
LhM
LM

+
RD`

2000

L`M,2000

∆
L`M
LM︸ ︷︷ ︸

Between

+ ∆
RDh

LhM

LhM,2000

LM,2000

+ ∆
RD`

L`M

L`M,2000

LM,2000︸ ︷︷ ︸
Within

(10)

The superscripts h and l in equation (10) capture high-skill and low-skill intensive

manufacturing industries – defined as described in section 2.2 –, ∆ indicates decadal

changes between 2000 and 2010, RD indicates value of expenditure in research and devel-

opment, and L captures employment in number of workers. Using data from the PINTEC

survey for RDh and RDl, and from the Population Census for LhM and LlM , we find that

approximately three-quarters of the change in R&D expenditure per worker in Brazilian

manufacturing between 2000 and 2010 was driven by increases in expenditure within

industries, one-quarter by reallocation of labor between industries.

Next, we focus on the between part of the decomposition – reported in equation (11)

– and study the effect of labor reallocation driven by skill-biased technical change in

agriculture on ∆RD
LM Between

.

∆
RD

LM Between

≈ RDh
2000

LhM,2000

∆
LhM
LM

+
RD`

2000

L`M,2000

∆
L`M
LM

(11)

In section 4.4 we document that technical change in soy affected labor reallocation

across manufacturing industries. In particular, the increase of low-skilled labor supply

due to technological upgrade in agriculture was mostly absorbed by low-skill intensive

manufacturing industries. Thus, we are interested in studying the effect of the soy shock

on the between part of the decomposition through labor reallocation across manufacturing

industries as captured by ∆
LhM
LM

and ∆
L`M
LM

in equation (11).28

To estimate the effect of the soy shock on the between component, we decompose the

change in employment share of a given industry k = h, l as described in Appendix A.2

and compute the implied change in ∆
LkM
LM

for a given change in ∆Asoy. Our estimates

suggest that if the average change in soy potential yields across micro-regions had been

one standard deviation smaller, the aggregate increase in R&D expenditure per worker

in Brazil between 2000 and 2010 would have been 3.47 percentage points larger. The

28Data on R&D expenditure per worker in 2000 for both high-skill and low-skill intensive industries in
equation (11) are computed combining the R&D expenditure values from PINTEC and the employment

from the Population Census data. Specifically in 1000$ reais per worker, the R&D intensities are
RDH

2000

LH
M,2000

≈

1.707 and
RDL

2000

LL
M,2000

≈ 0.175.
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intuition is that, other things being equal, lower skill-biased technical change in agricul-

ture would have generated lower labor reallocation towards low skill-intensive industries

within manufacturing. Section A.2 in the Appendix of the paper describes in detail this

quantification.

5 Conclusions

The reallocation of labor from agriculture into manufacturing is generally regarded

as positive in economic development literature. Several studies have documented that

the manufacturing sector has, on average, higher productivity and pays higher wages.

However, little is known about which type of workers are released from the agricultural

sector and which manufacturing industries absorb them during the process of structural

transformation.

Our paper contributes to the literature by showing that the forces driving structural

transformation can shape the type of industries in which a country specializes. In most

countries, the process of industrialization can be ascribed to one of two forces: “push”

forces, such as new agricultural technologies that push workers out of agriculture, or

“pull” forces, such as industrial growth that pull workers into manufacturing. We show

that when labor reallocation from agriculture to manufacturing is driven by labor-saving

agricultural productivity growth – rather than manufacturing labor demand – it can gen-

erate an expansion in those manufacturing sectors with the lowest potential contribution

to aggregate productivity. In addition, we find that, following an increase in low-skilled la-

bor supply from the agricultural sector, industries using low-skilled labor more intensively

become even more low-skilled-intensive, which is consistent with technological downgrade.

We show that this translates into lower valued added per worker in manufacturing at the

microregion level. Taken together, our findings indicate that structural transformation

obtained through labor-saving and skill-biased technical change in agriculture can atten-

uate the standard gains from reallocation into manufacturing emphasized by the existing

literature.
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6 Figures and Tables

Figure 1: Soy Production and Employment
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(c) Soy: Employment by Skill Group
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Notes: First two figures taken from Bustos et al. (2016). Data sources of Panel A is CONAB and of Panel B and C
is PNAD. The states of Rondonia, Acre, Amazonas, Roraima, Pará, Amapá, Tocantins, Mato Grosso do Sul, Goias, and
Distrito Federal are excluded due to incomplete coverage by PNAD in the early years of the sample. In Panel C, an
individual is classified as skilled if it has at least completed the 8th grade. This level should be attained when an individual
is 14 or 15 years old and is equivalent to graduating from middle school.
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Figure 2: ∆ in Potential Soy Yield 2000-2010
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No data

Notes: Authors’ calculations from FAO-GAEZ data. Technical change in soy production for each microregion is computed
by deducting the average potential yield under low inputs from the average potential yield under high inputs.
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Figure 3: Employment Share Growth by Quartile of Skill Inten-
sity
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Notes: The plot shows the βi coefficients of the following regression:

∆
Lkm,i

Lkm
= α+ βi∆Asoy × γi + θi∆Amze × γi + γi + ϕXk,1991 + εik

for i = 1, 2, 3, 4 where γi is a dummy for the different quartiles of skill intensity. We are splitting splitting manufacturing
industries in quartiles according to their level of skill intensity in such a way that roughly 25% of the Brazilian manufac-
turing employment is in each group. Changes in dependent variables are calculated over the years 2000 and 2010 (source:
Population Censuses). We define skill intensity as the share of skilled individuals in a particular industry in Brazil at
baseline and we source it from the 2000 Population Census.
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Figure 4: Employment Share Growth by Quartile of R & D Ex-
penditure
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Notes: The plot shows the βi coefficients of the following regression:

∆
Lkm,i

Lkm
= α+ βi∆Asoy × γi + θi∆Amze × γi + γi + ϕXk,1991 + εik

for i = 1, 2, 3, 4 where γi is a dummy for the different quartiles of R&D activity. We are splitting splitting manufacturing
industries in quartiles according to their level of R&D activity in such a way that roughly 25% of the Brazilian manufac-
turing employment is in each group. Changes in dependent variables are calculated over the years 2000 and 2010 (source:
Population Censuses). Our measure of R&D activity is R&D expenditure as a share of total sales at baseline and we source
it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC).
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Figure 5: Correlation between Skill Intensity and R & D Expen-
diture
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Notes: We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we
source it from the 2000 Population Census. Our measure of R&D activity is R&D expenditure as a share of total sales at
baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica ](PINTEC). The correlation between these
variables is approximately 0.33.
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Figure 6: Effect of the Soy Shock on Manufacturing Employment
by Type of Industry
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(b) High-skill intensive
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Notes: The plot shows the point estimates and the 95% confidence intervals for the estimates of the βj coefficients of the
following regression:

ln yk,t = δt + δk +

j=2009∑
j=2001

βj∆A
soy
k +

j=2009∑
j=2001

γj∆A
mze
k + tX′k,1991ω + εk,t

ln yk,t corresponds to aggregate log. employment in microregion k at the end of year t for each group of industries (Source:
PIA). We are splitting manufacturing industries across the median according to their level of skill intensity at baseline in
such a way that roughly 50% of the Brazilian manufacturing employment is at both sides of the median.
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Figure 7: Effect of the Soy Shock on Manufacturing Productivity
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Notes: The plot shows the point estimates and the 95% confidence intervals for the estimates of the βj coefficients of the
following regression:

ln yk,t = δt + δk +

j=2009∑
j=2001

βj∆A
soy
k +

j=2009∑
j=2001

γj∆A
mze
k + tX′k,1991ω + εk,t

ln yk,t corresponds to aggregate log. value added per worker in microregion k at the end of year t for each group of industries
(Source: PIA). We are splitting manufacturing industries across the median according to their level of skill intensity at
baseline in such a way that roughly 50% of the Brazilian manufacturing employment is at both sides of the median.
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Table 1: Summary Statistics of the Sam-
ple of Individuals by Sector

2000 2010

Agriculture
Age 38.0 39.0
Male (% of the Total) 89.3 81.2
White (% of the Total) 55.4 48.6
Education level (highest degree obtained)

Less than Middle School (% of the Total) 86.1 72.7
Completed Middle School (% of the Total) 7.4 13.8
High School Graduates (% of the Total) 5.2 11.4
University Graduates (% of the Total) 1.3 2.1

Average log real hourly wage 0.81 1.06
For skilled labor 1.39 1.38
For unskilled labor 0.71 0.95

Low-Skill Manufacturing
Age 36.7 37.3
Male (% of the Total) 61.1 61.0
White (% of the Total) 62.2 54.0
Education level (highest degree obtained)

Less than Middle School (% of the Total) 61.8 43.5
Completed Middle School (% of the Total) 18.9 21.5
High School Graduates (% of the Total) 16.5 30.4
University Graduates (% of the Total) 2.9 4.5

Average log real hourly wage 1.23 1.41
For skilled labor 1.51 1.54
For unskilled labor 1.06 1.25

High-Skill Manufacturing
Age 36.4 37.0
Male (% of the Total) 80.0 72.4
White (% of the Total) 65.9 56.5
Education level (highest degree obtained)

Less than Middle School (% of the Total) 40.2 26.6
Completed Middle School (% of the Total) 21.5 19.9
High School Graduates (% of the Total) 28.8 43.1
University Graduates (% of the Total) 9.4 10.4

Average log real hourly wage 1.78 1.73
For skilled labor 2.03 1.84
For unskilled labor 1.40 1.42

Services
Age 37.1 37.8
Male (% of the Total) 67.3 62.1
White (% of the Total) 58.9 50.8
Education level (highest degree obtained)

Less than Middle School (% of the Total) 51.1 36.0
Completed Middle School (% of the Total) 17.9 19.3
High School Graduates (% of the Total) 23.4 34.3
University Graduates (% of the Total) 7.6 10.4

Average log real hourly wage 1.42 1.51
For skilled labor 1.77 1.67
For unskilled labor 1.01 1.24

Notes: The data comes from the Population Censuses for years 2000 and

2010. These summary statistics come from our final sample of individuals as

detailed in 2.2. An individual is classified as skilled if it has at least com-

pleted the 8th grade. This level should be attained when an individual is 14

or 15 years old and is equivalent to graduating from middle school. Manufac-

turing industries are classified according to their skill intensity at baseline.

We are splitting manufacturing industries across the median according to

their level of skill intensity in such a way that roughly 50% of the Brazilian

manufacturing employment is at both sides of the median. We define of skill

intensity as the share of skilled individuals in a particular industry in Brazil

at baseline and we source it from the 2000 Population Census.
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Table 2: Summary Statistics of the Sample of Microregions

2000 2000-2010

Source: Mean SD Mean SD Observations

Potential Yields FAO-GAEZ
Soy 0.286 0.135 1.787 0.740 557
Maize 1.847 0.9984 3.082 1.639 557

Employment Shares Population Census
Agriculture 0.279 0.140 -0.050 0.055 557
Low-Skill Manufacturing 0.100 0.055 -0.009 0.037 557
High-Skill Manufacturing 0.048 0.047 0.016 0.021 557
Services 0.573 0.118 0.044 0.057 557

Skill Intensity S
S+U Population Census

Local Economy 0.289 0.089 0.165 0.039 557
Agriculture 0.13 0.70 0.127 0.053 557
Low-Skill Manufacturing 0.305 0.101 0.191 0.091 557
High-Skill Manufacturing 0.446 0.147 0.153 0.134 557
Services 0.376 0.866 0.176 0.042 557

Log. Employment Population Census
Agriculture 8.268 0.890 0.122 0.249 557
Low-Skill Manufacturing 7.353 1.346 0.154 0.382 557
High-Skill Manufacturing 6.359 1.287 0.746 0.522 554
Services 9.194 1.887 0.404 0.175 557

Notes: The data comes from the Population Censuses for years 2000 and 2010. These summary statistics represent the mean values

for the different variables of the set of 557 Brazilian microregions defined by the IBGE. Changes in the variables are calculated over

the years 2000 and 2010. An individual is classified as skilled if it has at least completed the 8th grade. This level should be attained

when an individual is 14 or 15 years old and is equivalent to graduating from middle school. Manufacturing industries are classified

according to their skill intensity at baseline. We are splitting manufacturing industries across the median according to their level of

skill intensity in such a way that roughly 50% of the Brazilian manufacturing employment is at both sides of the median. We define of

skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we source it from the 2000 Population

Census.
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Table 3: Effect of technical change in soy on employment shares

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. L ∆ Log. L ∆La

L ∆La

L ∆Lm

L ∆Lm

L ∆Ls

L ∆Ls

L

∆Asoy -0.033** -0.011 -0.034*** -0.033*** 0.020*** 0.023*** 0.014*** 0.009**
[0.015] [0.013] [0.005] [0.005] [0.004] [0.005] [0.005] [0.004]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 557 557 557 557
R-squared 0.023 0.154 0.218 0.242 0.086 0.107 0.251 0.311

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit of

observation is the micro-region. All the regressions include the baseline specification controls which are the share of rural population in

1991 and a measure of technical change in maize. The regressions with all controls also include income per capita (in logs), population

density (in logs), literacy rate, all observed in the 1991 Population Census. Robust standard errors reported in brackets. Significance

levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 4: Effect of technical change in soy on employment shares
by skill group

Panel A: Reallocation of Unskilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. U ∆ Log. U ∆Ua

U ∆Ua

U ∆Um

U ∆Um

U ∆Us

U ∆Us

U

∆Asoy -0.062*** -0.023 -0.033*** -0.033*** 0.025*** 0.028*** 0.008* 0.005
[0.017] [0.014] [0.006] [0.006] [0.005] [0.005] [0.005] [0.004]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 557 557 557 557
R-squared 0.136 0.301 0.106 0.120 0.092 0.100 0.117 0.142

Panel B: Reallocation of Skilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. S ∆ Log. S ∆Sa

S ∆Sa

S ∆Sm

S ∆Sm

S ∆Ss

S ∆Ss

S

∆Asoy 0.032* 0.052*** -0.015*** -0.016*** 0.012** 0.013** 0.002 0.003
[0.019] [0.017] [0.004] [0.004] [0.005] [0.005] [0.005] [0.005]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 557 557 557 557
R-squared 0.301 0.446 0.030 0.043 0.057 0.076 0.032 0.069

Panel C: Log. of Skill Intensity

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ log S

U ∆ log Sa

Ua
−∆ log S

U ∆ log Sm

Um
−∆ log S

U ∆ log Ss

Us
−∆ log S

U

∆Asoy 0.094*** 0.075*** 0.010 0.007 -0.086*** -0.100*** -0.025*** -0.012
[0.017] [0.016] [0.028] [0.030] [0.027] [0.026] [0.009] [0.008]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 556 556 557 557
R-squared 0.174 0.213 0.065 0.074 0.021 0.041 0.131 0.150

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit

of observation is the micro-region. All the regressions include the baseline specification controls which are the share of rural

population in 1991 and a measure of technical change in maize. The regressions with all controls also include income per capita

(in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census. In columns (5) and (6) of Panel

C, because there are no unskilled manufacturing workers in our sample in the microregion of Amapá (IBGE ID 16002) in 2010.

Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 5: Effect of technical change in soy on wages by sector

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Overall Overall Agriculture Agriculture Manufacturing Manufacturing Services Services

∆Asoy 0.012 0.023*** 0.044*** 0.048*** 0.014 0.016 0.004 0.018*
[0.009] [0.008] [0.012] [0.012] [0.012] [0.011] [0.010] [0.009]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 557 557 557 557
R-squared 0.035 0.177 0.121 0.179 0.039 0.087 0.023 0.195

Notes: Changes in dependent variables are calculated over the estimates of the Mincerian regression detailed in Section 2.2 using the male individuals

working in each sector in our sample: ∆γk = γk,2010 − γk,2000. The unit of observation is the micro-region. All the regressions include the baseline

specification controls which are the share of rural population in 1991 and a measure of technical change in maize. The regressions with all controls

also include income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census. We recover the

estimates of the dependent variable from a first stage Mincerian regression in which we estimate a regression of the log. hourly wage on a microregion

fixed effect, and a vector of individual characteristics that includes dummies for the sector, for skill group, age group, race, and all the interactions

between these variables. Naturally, when we estimate this regression for a particular sector we do not include the sector dummy. Robust standard

errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 6: Effect of technical change in soy on wages by skill group

Panel A: Wages of Unskilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Overall Overall Agriculture Agriculture Manufacturing Manufacturing Services Services

∆Asoy -0.011 0.010 0.038*** 0.045*** 0.004 0.007 -0.004 0.011
[0.009] [0.009] [0.012] [0.012] [0.014] [0.013] [0.010] [0.010]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 556 556 557 557
R-squared 0.181 0.262 0.118 0.170 0.027 0.068 0.018 0.169

Panel B: Wages of Skilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Overall Overall Agriculture Agriculture Manufacturing Manufacturing Services Services

∆Asoy 0.033*** 0.036*** 0.115*** 0.070*** 0.052*** 0.050*** 0.028** 0.037***
[0.011] [0.010] [0.021] [0.020] [0.019] [0.018] [0.012] [0.012]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 555 555 557 557
R-squared 0.063 0.164 0.058 0.164 0.034 0.070 0.030 0.157

Panel C: Skill Premia

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Overall Overall Agriculture Agriculture Manufacturing Manufacturing Services Services

∆Asoy 0.043*** 0.025*** 0.077*** 0.025 0.052** 0.042** 0.033*** 0.026***
[0.009] [0.009] [0.020] [0.019] [0.022] [0.020] [0.010] [0.010]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 554 554 557 557
R-squared 0.081 0.121 0.028 0.098 0.012 0.014 0.018 0.025

Notes: In Panels A and B, changes in dependent variables are calculated over the estimates of the Mincerian regression detailed in Section 2.2 using

the male individuals working in each sector in our sample: ∆γk = γk,2010 − γk,2000. In Panel C, we use our estimates for the unit price of skilled and

unskilled labor and we define the skill premia at period t as Skill Premiak,t = γSk,t − γ
U
k,t, so that our dependent variable is ∆Skill Premiak . All the

regressions include the baseline specification controls which are the share of rural population in 1991 and a measure of technical change in maize. The

regressions with all controls also include income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population

Census. In columns (4) and (5) of Panel A, we have one observation less because there are no unskilled manufacturing workers in our sample in the

microregion Amapá (IBGE ID 16002) in 2010. In columns (4) and (5) of Panel B, we have two we have one observation less because there are no skilled

male manufacturing workers in our sample in the microregions of Japurà (IBGE ID 13002) and Chapadas Das Mangabeiras (IBGE ID 21021) in 2000.

The missing observations in columns (4) and (5) of Panel C follow from the above. We recover the estimates of the dependent variable from a first stage

Mincerian regression in which we estimate a regression of the log. hourly wage on a microregion fixed effect, and a vector of individual characteristics

that includes dummies for the sector, for skill group, age group, race, and all the interactions between these variables. Naturally, when we estimate this

regression for a particular sector and skill level we do not include the sector and skill group dummies. Robust standard errors reported in brackets.

Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 7: Reallocation of Labor to Manufacturing by Skill Group

Panel A: Unskilled Labor ∆UM
U

(1) (2) (3) (4) (5)
∆UM

U ∆UM

U ∆UM

U ∆UM

U

VARIABLES ∆Um

U Skill Intensity=Low Skill Intensity=High R&D Expenditure=Low R&D Expenditure=High

∆Asoy 0.028*** 0.025*** 0.002 0.024*** 0.004
[0.005] [0.004] [0.002] [0.004] [0.003]

Baseline Controls Yes Yes Yes Yes Yes
All Controls Yes Yes Yes Yes Yes

Observations 557 557 557 557 557
R-squared 0.100 0.103 0.034 0.120 0.031

Panel B: Skilled Labor ∆SM
S

(1) (2) (3) (4) (5)
∆SM

S ∆SM

S ∆SM

S ∆SM

S

VARIABLES ∆Sm

S Skill Intensity=Low Skill Intensity=High R&D Expenditure=Low R&D Expenditure=High

∆Asoy 0.013** 0.006 0.007** 0.013*** 0.000
[0.005] [0.004] [0.003] [0.004] [0.003]

Baseline Controls Yes Yes Yes Yes Yes
All Controls Yes Yes Yes Yes Yes

Observations 557 557 557 557 557
R-squared 0.076 0.051 0.038 0.053 0.056

Panel C: Skill Intensity ∆ log SM
UM
−∆ log S

U

(1) (2) (3) (4) (5)
∆ log Sm

Um
∆ log Sm

Um
∆ log Sm

Um
∆ log Sm

Um

VARIABLES ∆Sm

Um
Skill Intensity = Low Skill Intensity=High R&D Expenditure=Low R&D Expenditure=High

∆Asoy -0.100*** -0.157*** 0.011 -0.105** -0.054
[0.026] [0.034] [0.050] [0.041] [0.037]

Baseline Controls Yes Yes Yes Yes Yes
All Controls Yes Yes Yes Yes Yes

Observations 556 556 544 551 552
R-squared 0.041 0.034 0.063 0.022 0.036

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit of observation is the micro-region.

All the regressions include the baseline specification controls which are the share of rural population in 1991 and a measure of technical change in maize. The

regressions with all controls also include income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census.

In Panel C, we lose observations because of the logs. In these regressions, we are splitting manufacturing industries across the median according to their level

of skill intensity and R&D activity in such a way that roughly 50% of the Brazilian manufacturing employment is at both sides of the median. We define of

skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we source it from the 2000 Population Census. Our measure

of R&D activity is R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC).

Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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A Appendix: Empirics

A.1 Figures and Tables

Table A1: Reallocation of Labor to Manufacturing

(1) (2) (3) (4) (5)
∆LM

L ∆LM

L ∆LM

L ∆LM

L

VARIABLES ∆Lm

L Skill Intensity=Low Skill Intensity=High R&D Expenditure=Low R&D Expenditure=High

∆Asoy 0.023*** 0.019*** 0.004* 0.019*** 0.004
[0.005] [0.004] [0.002] [0.004] [0.003]

Baseline Controls Yes Yes Yes Yes Yes
All Controls Yes Yes Yes Yes Yes

Observations 557 557 557 557 557
R-squared 0.107 0.079 0.046 0.092 0.044

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit of observation is the micro-

region. All the regressions include the baseline specification controls which are the share of rural population in 1991 and a measure of technical change

in maize. The regressions with all controls also include income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991

Population Census. In these regressions, we are splitting manufacturing industries across the median according to their level of skill intensity and R&D

activity in such a way that roughly 50% of the Brazilian manufacturing employment is at both sides of the median. We define of skill intensity as the share

of skilled individuals in a particular industry in Brazil at baseline and we source it from the 2000 Population Census. Our measure of R&D activity is R&D

expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Robust standard errors

reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A2: Effect of technical change in soy on Log. Employment
by Sector

Panel A: Employment of Unskilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. U ∆ Log. U ∆ Log. Ua ∆ Log. Ua ∆ Log. Um ∆ Log. Um ∆ Log. Us ∆ Log. Us

∆Asoy -0.062*** -0.023 -0.154*** -0.113*** 0.117*** 0.172*** -0.033* -0.006
[0.017] [0.014] [0.025] [0.024] [0.032] [0.033] [0.017] [0.016]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 556 556 557 557
R-squared 0.136 0.301 0.077 0.129 0.033 0.095 0.276 0.431

Panel B: Employment of Skilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. S ∆ Log. S ∆ Log. Sa ∆ Log. Sa ∆ Log. Sm ∆ Log. Sm ∆ Log. Ss ∆ Log. Ss

∆Asoy 0.032* 0.052*** -0.050 -0.031 0.123*** 0.148*** 0.036* 0.057***
[0.019] [0.017] [0.038] [0.039] [0.036] [0.036] [0.020] [0.018]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 557 557 557 557
R-squared 0.301 0.446 0.178 0.217 0.086 0.100 0.298 0.481

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit of observation is the

micro-region. All the regressions include the baseline specification controls which are the share of rural population in 1991 and a measure of technical

change in maize. The regressions with all controls also include income per capita (in logs), population density (in logs), literacy rate, all observed

in the 1991 Population Census. In columns (5) and (6) of Panel C, because there are no unskilled manufacturing workers in our sample in the

microregion of Amapá (IBGE ID 16002) in 2010. Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A3: Classification of Manufacturing Industries by Skill Intensity

IBGE Code Description Skill Intensity R&D Share of Sales

20000 Wooden products 0.247 0.052
26091 Ceramic products 0.275 0.049
37000 Recycling 0.304 0.045
19011 Tanning and other preparations of leather 0.325 0.018
15041 Manufacturing and refining of sugar 0.334 0.021
19020 Footwear 0.348 0.018
23400 Alcohol production 0.350 0.014
15010 Slaughtering and preparation of meat and fish 0.355 0.021
26092 Miscellaneous products of non-metallic minerals 0.382 0.049
36010 Pieces of furniture 0.402 0.036
18001 Making of clothing articles and accessories - except on order 0.425 0.021
15043 Other food products 0.426 0.021
17002 Manufacturing of textile objects based on cloth - except for garments 0.433 0.036
15030 Dairy products 0.433 0.021
18002 Making clothing articles and accessories - on order 0.435 0.021
15022 Vegetable fat and oil 0.446 0.021
19012 Leather objects 0.453 0.018
27003 Foundries 0.462 0.063
17001 Processing of fibers, weaving and cloth making 0.471 0.036
15021 Preserves of fruit, vegetables and other vegetable products 0.484 0.021
23010 Coke plants 0.487 0.014
35010 Construction and repair of boats 0.493 0.059
28001 Metal products - except machines and equipment 0.496 0.035
16000 Tobacco products 0.496 0.011
15042 Roasting and grinding of coffee 0.499 0.021
28002 Foundries, stamping shops, powder metallurgy and metal treatment services 0.502 0.035
25020 Plastic products 0.543 0.045
15050 Beverages 0.555 0.021
34003 Reconditioning or restoration of engines of motor vehicles 0.556 0.071
25010 Rubber products 0.567 0.045
26010 Glass and glass products 0.576 0.049
36090 Miscellaneous products 0.576 0.036
21002 Corrugated cardboard, packaging, and paper and cardboard objects 0.577 0.039
35090 Miscellaneous transportation equipment 0.581 0.059
31002 Electrical material for vehicles 0.599 0.058
21001 Pulp, paper and smooth cardboard, poster paper and card paper 0.602 0.039
29001 Machines and equipment - except appliances 0.605 0.041
35020 Construction and assembly of locomotives, cars and other rolling stock 0.632 0.059
24090 Miscellaneous chemical products 0.635 0.040
34002 Cabins, car bodies, trailers and parts for motor vehicles 0.637 0.071
27002 Non-ferrous metals 0.644 0.063
24010 Paints, dyes, varnish, enamels and lacquers 0.656 0.040
24030 Soap, detergents, cleaning products and toiletries 0.658 0.040
27001 Steel products 0.659 0.063
31001 Machines, equipment and miscellaneous electric material - except for vehicles 0.678 0.058
18999 Making of clothing articles and accessories - on order or not 0.690 0.021
22000 Editing, printing and reproduction of recordings 0.702 0.033
33004 Equipment, instruments and optical, photographic and cinematographic material 0.709 0.050
29002 Appliances 0.709 0.041
33002 Measuring, testing and control equipment - except for controlling industrial processes 0.725 0.050
34001 Manufacturing and assembly of motor vehicles 0.738 0.071
33005 Chronometers, clocks and watches 0.751 0.050
33001 Medical equipment 0.753 0.050
32000 Electronic material and communications equipment 0.757 0.048
23020 Products in oil refining 0.763 0.014
24020 Pharmaceutical products 0.809 0.040
23030 Production of nuclear fuels 0.830 0.014
33003 Machines, equipment for electronic systems for industrial automation, and control 0.848 0.050
30000 Office machines and data-processing equipment 0.852 0.031
35030 Construction, assembly and repair of airplanes 0.875 0.059

Median 0.432 0.035

Notes: The industry codes correspond to the CNAE-Domiciliar, the industry classification used in the 2000 Population Census. Industries are sorted by their skill intensity at

baseline. We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we source it from the 2000 Population Census. Our measure

of R&D activity is R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). The correlation

between these variables is approximately 0.33. We are splitting manufacturing industries across the median according to their level of skill intensity and R&D activity in such

a way that roughly 50% of the Brazilian manufacturing employment is at both sides of the median. Thus, industries below the median are classified as low and the ones above

the median as high.
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A.2 Within-Between Decomposition

This appendix describes the quantitative exercise that analyzes the effect of labor real-

location driven by skill-biased technical change in agriculture on the aggregate innovation-

intensity of the manufacturing sector in Brazil in subsection 4.6 of the paper. We can

approximate the decadal change in R&D expenditure per worker as follows:

∆
RD

LM
≈ RDh

2000

LhM,2000

∆
LhM
LM

+
RD`

2000

L`M,2000

∆
L`M
LM︸ ︷︷ ︸

Between

+ ∆
RDh

LhM

LhM,2000

LM,2000

+ ∆
RD`

L`M

L`M,2000

LM,2000︸ ︷︷ ︸
Within

(12)

We compute R&D expenditure as the sum of expenditure in internal R&D and expen-

diture in external R&D, both expressed in thousands of R$. Internal R&D consists on

systematic creative work with the objective of increasing the knowledge pool and the use

of this knowledge to develop new products or processes, and the development of software

or scientific advancements. External R&D encompasses the same activities as internal

R&D with the difference that they are carried out by another organization (either other

companies or technological institutions) and acquired by the firm (IBGE 2010). We deflate

the nominal values to 2000 reais.

In particular, we are interested in the contribution of the labor reallocation to this

change so we are interested in the between component:

∆
RD

LM Between

≈ RDh
2000

LhM,2000

∆
LhM
LM

+
RD`

2000

L`M,2000

∆
L`M
LM

(13)

To compute the effect of the introduction of GE soy in ∆RD
LM Between

we proceed in the

following steps:

1. We start by using the aggregate information on internal and external R&D for

each 3-digit CNAE manufacturing industry, which we map to the 5-digit CNAE-

Domiciliar industry. For most of the industries, there is a one-to-one mapping

between both classifications. However, in the cases there are one to many or many

to many correspondences, we assign industries a proportional weight according to

the employment shares within the class at baseline.

2. Once we have made this mapping, we can compute the expenditure in R&D per

worker at baseline in low-skill-intensive industries and in high-skill-intensive indus-

tries,
RD`2000
L`M,2000

and
RDh2000
LhM,2000

, directly from the data. Specifically in 1000$ reais per

worker,
RDH2000
LHM,2000

≈ 1.707 and
RDL2000
LLM,2000

≈ 0.175.

Moreover, with the R&D expenditure data from waves 2000 and 2008 from PINTEC

and the employment data from the Census, we can compute the decomposition in
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Equation 10. Our estimates suggest that R$D expenditure per worker in Brazil

increased in 400 reais per worker, of which 22.3% comes from the between compo-

nent and 71.3% from the within component. The remaining term corresponds to a

covariance term.

3. To make this accounting exercise consistent with our estimates we need to further

decompose the changes in employment as

LkM
LM

=
LkM
L

L

LM

which implies that for any industry k in manufacturing we can decompose the change

in its employment share as

∆

(
LkM
LM

)
= ∆

(
LkM
L

)
L

LM
+
LkM
L

∆

(
L

LM

)
(14)

Finally, we need an expression for ∆
(

L
LM

)
. Notice, that this is only:

∆

(
L

LM

)
= ∆

(
1
LM
L

)
≈ −

(
LM
L

)−2

×∆

(
LM
L

)
(15)

4. Since we are interested in making a claim about the change in the aggregate R&D

intensity of Brazil caused by the labor relocation due to the increase in agricultural

productivity, we need to use estimates coming from weighted regressions. For this

exercise, we weight each observation by the percentage of manufacturing workers

located in the microregion at baseline.

Using the regression estimates in Tables A5 and A6, and the magnitude of one

(weighted) standard deviation of the soy shock (St.Dev. in ∆Asoy = 0.712 as shown

in Table A4) we know that the effect of the soy shock on the changes in the previous

formula are:

• ∆
(
LM
L

)
= 0.014× 0.712 = 0.010

• ∆
(
L`M
L

)
= 0.014× 0.712 = 0.010

• ∆
(
LhM
L

)
= 0.000× 0.712 = 0.000

Moreover, at baseline we know that the mean employment shares are (see Table

A4):

• LM
L

= 0.227

• L
LM

= 1
0.227

= 4.412
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• L`M
L

= 0.110

• LhM
L

= 0.117

5. Finally, we plug these estimates into equations 13, 14 and 15 to get:

∆
RD

LM Between

≈ 0.1754× 0.0228 + 1.7066×−0.0227 ≈ −0.0347 (16)

Table A4: Weighted Summary Statistics of the Sample of Microre-
gions

2000 2000-2010

Source: Mean SD Mean SD Observations

Potential Yields FAO-GAEZ
Soy 0.277 0.107 1.913 0.712 557
Maize 1.614 0.828 2.799 1.621 557

Employment Shares Population Census
Manufacturing 0.227 0.088 -.009 0.036 557
Low-Skill Manufacturing 0.110 0.067 -0.017 0.027 557
High-Skill Manufacturing 0.117 0.068 0.008 0.025 557

Skill Intensity S
S+U Population Census

Local Economy 0.461 0.111 0.166 0.031 557
Low-Skill Manufacturing 0.400 0.079 0.187 0.048 557
High-Skill Manufacturing 0.568 0.108 0.151 0.060 557

Notes: Observations weighted by their share of manufacturing employment at baseline. We are defining Low- and High-Skill

manufacturing in the same way we defined it on the paper, based on whether is above or below the median industry in terms of skill

intensity..

Table A5: Effect of technical change in soy on employment shares

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. L ∆ Log. L ∆La

L ∆La

L ∆Lm

L ∆Lm

L ∆Ls

L ∆Ls

L

∆Asoy -0.023 -0.021 -0.017*** -0.017*** 0.014** 0.015*** 0.003 0.002
[0.028] [0.016] [0.003] [0.003] [0.006] [0.004] [0.005] [0.004]

Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Observations 557 557 557 557 557 557 557 557
R-squared 0.153 0.419 0.404 0.445 0.196 0.324 0.083 0.161

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The

unit of observation is the micro-region. All the regressions include the baseline specification controls which are the share of

rural population in 1991 and a measure of technical change in maize. The regressions with all controls also include income per

capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census. Observations weighted

by their share of manufacturing employment at baseline. Robust standard errors reported in brackets. Significance levels:
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

50



Table A6: Reallocation of Labor to Manufacturing

(1) (2) (3) (4)

∆
Lk

M

LM
∆
Lk

M

LM
∆
Lk

M

LM
∆
Lk

M

LM

VARIABLES Skill Intensity=Low Skill Intensity=High R&D Expenditure=Low R&D Expenditure=High

∆Asoy 0.014*** 0.000 0.014*** 0.000
[0.005] [0.005] [0.004] [0.004]

Baseline Controls Yes Yes Yes Yes
All Controls Yes Yes Yes Yes

Observations 557 557 557 557
R-squared 0.087 0.343 0.213 0.193

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit of observation is

the micro-region. All the regressions include the baseline specification controls which are the share of rural population in 1991 and a measure

of technical change in maize. The regressions with all controls also include income per capita (in logs), population density (in logs), literacy

rate, all observed in the 1991 Population Census. In these regressions, we are splitting manufacturing industries across the median according

to their level of skill intensity and R&D activity in such a way that roughly 50% of the Brazilian manufacturing employment is at both sides of

the median. We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we source it from the

2000 Population Census. Our measure of R&D activity is R&D expenditure as a share of total sales at baseline and we source it from from the

2000 Pesquisa de Inovação Tecnológica (PINTEC). Observations weighted by their share of manufacturing employment at baseline. Robust

standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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B Appendix: Theory

In this appendix we provide the proofs of Theorems 1 to 3.

Preliminaries

We assume that Brazil is a collection of microregions interpreted as small open economies

with segmented labor markets. There are three sectors, namely agriculture, low-skill-

intensive manufacturing that produces a homogeneous good, and high-skill-intensive,

monopolistically-competitive input industry. We assume that the economy is populated

by U unskilled workers and S skilled workers, supplying labor inelastically. The agricul-

ture sector also uses land which is fixed. Finally, we assume that for any set of wages, the

low-skill intensive industry is uses unskilled labor more intensively. We can express this

more precisely in terms of the unit factor demands in each industry. Defining ω = ws
wu

we

have that the following condition holds:29

aUhm(ω)

aShm(ω)
<
aU`m(ω)

aS`m(ω)

For the following statements we assume that we are in the Factor Price Equalization set.

Theorem 1. An increase in As in agriculture, leads to an increase in the relative demand

for high skilled workers in agriculture if and only if the elasticity of substitution between

high- and low-skilled workers is greater than one (ε > 1).

Proof. Take the agriculture sector. Solving for the inner nest we get that the conditional

factor demands Sa(ws, wu, La), Ua(ws, wu, La) and the cost function C(ws, wu, La) for

agriculture labor La are given by:

Sa(ws, wu, La) =

(
ws
As

)−ε
La

As [w1−ε
s Aε−1

s + w1−ε
u Aε−1

u ]
ε
ε−1

(18)

Ua(ws, wu, La) =

(
wu
Au

)−ε
La

Au [w1−ε
s Aε−1

s + w1−ε
u Aε−1

u ]
ε
ε−1

(19)

C(ws, wu, La) = La

[(
ws
As

)1−ε

+

(
wu
Au

)1−ε
] 1

1−ε

(20)

Thus, the relative demand for skilled workers in agriculture is given by:

29In particular for the manufacturing sectors since the monopolistic sector is more intensive in skilled
labor, this means that for any ω = ws

wu
:

det

(
aU`

m
(ω) aUh

m
(ω)

aS`
m

(ω) aSh
m

(ω)

)
> 0 (17)
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Sa
Ua

=

(
wu
ws

)ε(
As
Au

)ε−1

(21)

Theorem 2. Whether an increase in As in agriculture leads to an absolute decrease in

the demand for low skilled workers in agriculture depends on whether labor and land are

strong complements (σ < εΓ).

Proof. From the production function we can can compute the marginal productivity for

each raw labor type:

MPUa = AnKγΘ
1

σ−1A
σ−1
σ

L L
−(ε−σ)
εσ

a A
ε−1
ε

u U
−1
ε
a (22)

MPSa = AnKγΘ
1

σ−1A
σ−1
σ

L L
−(ε−σ)
εσ

a A
ε−1
ε

s S
−1
ε
a (23)

where Θ = γ(ALLa)
σ−1
σ + (1− γ)(ATTa)

σ−1
σ . Clearly, can see that

∂Θ

∂As
= γ

σ − 1

σ
A

σ−1
σ

L L
σ−ε
σε
a S

ε−1
ε

a A
−1
ε
s

Moreover,

∂Lma
∂As

= mL
m−1+ 1

ε
a S

ε−1
ε

a A
−1
ε
s

Therefore,

∂MPUa
∂As

= AnKγA
σ−1
σ

L A
ε−1
ε

u U
−1
ε
a

 1

σ − 1
Θ

2−σ
σ−1

∂Θ

∂As
L
−(ε−σ)
εσ

a + Θ
1

σ−1
∂L

−(ε−σ)
εσ

a

∂As



∂MPUa
∂As

= AnKγA
σ−1
σ

L A
ε−1
ε

u U
−1
ε
a Θ

1
σ−1L

−(ε−σ)
εσ

a︸ ︷︷ ︸
κ

(
1

σ − 1
Θ−1 ∂Θ

∂As
− (ε− σ)

εσ
L−1
a

∂La
∂As

)

Notice that κ > 0. Thus,

∂MPUa
∂As

= κ

(
γ

σ
Θ−1A

σ−1
σ

L L
σ−ε
σε
a S

ε−1
ε

a A
−1
ε
s −

(ε− σ)

εσ
L

1−ε
ε

a S
ε−1
ε

a A
−1
ε
s

)
∂MPUa
∂As

=
κ

σ
L

1
ε−1
a S

ε−1
ε

a A
−1
ε
s

(
γΘ−1A

σ−1
σ

L L
σ−ε
σε
a − (ε− σ)

ε
L

1−ε
ε

a

)
Since κ

σ
L

1
ε−1
a S

ε−1
ε

a A
−1
ε
s > 0
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∂MPUa
∂As

< 0 ⇐⇒ γΘ−1A
σ−1
σ

L L
σ−ε
σε
a − (ε− σ)

ε
L

1−ε
ε

a < 0

∂MPUa
∂As

< 0 ⇐⇒ σ < ε

(
γ(ALLa)

σ−1
σ + (1− γ)(ATTa)

σ−1
σ − γ (ALLa)

σ−1
σ

Θ

)

∂MPUa
∂As

< 0 ⇐⇒ σ < ε

(
(1− γ)(ATTa)

σ−1
σ

Θ

)
(24)

Theorem 3. An increase in low-skilled workers into manufacturing, which occurs when

land and labor are strong complements (i.e. when σ < εΓ) and when high-and low-skilled

workers are imperfect substitutes (i.e. when ε > 1), is absorbed through an expansion of

low-skill intensive manufacturing industries.

Proof. Consider the factor market clearing equilibrium conditions,

aTaQa = T (25)

aSaQa + aS`mQ
`
m + aShmQ

h
m = S (26)

aUaQa + aU`mQ
`
m + aUhmQ

h
m = U (27)

Log-differentiating Equations 25, 26 and 27 we get that:

aTadQa + daTaQa = dT

aSadQa + daSaQa + aS`mdQ
`
m + aShmdQ

h
m = dS

daUaQa + aUadQa + aU`mdQ
`
m + aUhmdQ

h
m = dU

Now, define a hat-variable as X̂ = dX
X

and λij =
aIjQj
I

, i.e the share of factor I in industry

j. Therefore, dividing at both sides of the equalities by the respective factor endowment,

we can write the previous expressions as follows:

aTadQa + daTaQa = T̂ (28)

λSaQ̂a + daSa
Qa

S
+ λS`mQ̂

`
m + λShmQ̂

h
m = Ŝ (29)

λUaQ̂a + daUa
Qa

U
+ λU`mQ̂

`
m + λUhmQ̂

h
m = Û (30)
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Since in our economy the factor endowments are unchanged, dT = dS = dU = 0. This

simplifies the expressions above in the following way:

Q̂a = −âTa (31)

λSaQ̂a + λS`mQ̂
`
m + λShmQ̂

h
m = −daSa

Qa

S
(32)

λUaQ̂a + λU`mQ̂
`
m + λUhmQ̂

h
m = −daUa

Qa

U
(33)

Combining these expressions, we arrive to:

λS`mQ̂
`
m + λShmQ̂

h
m = −âSaλSa + λSaâTa = λSa(âTa − âSa)︸ ︷︷ ︸

γs

(34)

λU`mQ̂
`
m + λUhmQ̂

h
m = −âUaλUa + λUaâTa = λUa(âTa − âUa)︸ ︷︷ ︸

γu

(35)

Thus, using Cramer rule, the change in Q̂`
m and Q̂h

m is given by:

Q̂h
m =

λU`mγs − λS`mγu
∆

(36)

Q̂`
m =

λShmγu − λUhmγs
∆

(37)

Q̂`
m − Q̂h

m =
γu [1− λSa]− γs [1− λUa]

∆
(38)

where ∆ ≡ λU`mλShm − λUhmλS`m and ∆ > 0 by Condition 17. Q̂h
m < 0 iff

λU`m
λS`m

<
γu
γs

=
λUa(âTa − âUa)
λSa(âTa − âSa)

A sufficient condition for this inequality is that (âTa−âUa)
(âTa−âSa)

> 1 which only requires that

âSa > âUa
30.

Likewise, Q̂`
m > 0 iff

λUhm
λShm

<
γu
γs

=
λUa(âTa − âUa)
λSa(âTa − âSa)

To prove this the same condition as above is sufficient.

Finally we are going to prove that âSa > âUa. This condition basically says that

the elasticity of the agricultural unit factor demand with respect to As is larger for the

skilled factor than for the unskilled factor, i.e ∂lnaSa
∂lnAs

> ∂lnaUa
∂lnAs

. Now, take the marginal

30Since by assumption λUa

γSa
> 1.
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productivities for skilled and unskilled labor in agriculture (Equations 22 and 23) and

equate them to their factor price:

wu = MPUa

ws = MPSa

and notice that we can write the following conditional labor demand equations:

U
1
ε
a =

1

wu
AnKγΘ

1
σ−1A

σ−1
σ

L L
−(ε−σ)
εσ

a A
ε−1
ε

u

S
1
ε
a =

1

wu
AnKγΘ

1
σ−1A

σ−1
σ

L L
−(ε−σ)
εσ

a A
ε−1
ε

s

Log-differentiating both expressions with respect to As :

∂lnUa
∂lnAs

= ε

[
1

σ − 1

∂lnΘ

∂lnAs
− (ε− σ)

εσ

∂lnLa
∂lnAs

]
∂lnSa
∂lnAs

= ε

[
1

σ − 1

∂lnΘ

∂lnAs
− (ε− σ)

εσ

∂lnLa
∂lnAs

+
ε− 1

ε

]
Therefore,

âSa > âUa ⇐⇒
∂lnaSa
∂lnAs

>
∂lnaUa
∂lnAs

⇐⇒ ∂lnSa
∂lnAs

>
∂lnUa
∂lnAs

⇐⇒ ε− 1 > 0 (39)

Therefore, Q̂h
m < 0 and Q̂`

m > 0. Upon the technical change in agriculture, the low-skill

intensive industry expands and the high-skill intensive industry contracts.
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