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Weak environmental regulation has global consequences. When domestic regulation of carbon-

intensive industries fails, the international community can intervene by targeting these industries

with import tariffs. I argue that import tariffs must possess two features – coordination and com-

mitment – in order to be effective. Without coordination across importers, tariffs are undermined

by leakage to unregulated markets. Without commitment to upholding tariffs over the long term,

tariffs are reduced over time as importers give in to static incentives. I develop a dynamic empirical

framework for quantifying these forces in settings with incomplete regulation and sunk investment,

and I apply it to the market for palm oil, a major driver of deforestation and one of the largest

sources of emissions globally. In particular, I evaluate EU legislation targeting palm oil imports,

primarily from Indonesia and Malaysia. I find coordinated, committed import tariffs to be effec-

tive, reducing carbon emissions relative to observed outcomes by 56% compared to 64% under a

domestic palm oil tax. As coordination breaks down, emission reductions fall from 56% for action

by all importers, to 17% for an EU-China-India coalition, to 2% for unilateral EU action, as tariff

coverage falls from 80% to 35% to 12% of world consumption, respectively. As commitment breaks

down, carbon reductions fall to as low as 0%. Finally, coordination and commitment interact.

Achieving 95% of the full-commitment outcome requires a commitment period of only five years

when importers coordinate, but more than twenty years when the EU acts unilaterally.
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1 Introduction

Carbon emissions have global consequences. The international community may therefore wish

to intervene when countries fail to regulate emissions domestically. Indeed, domestic regulation

often faces significant challenges: low incentives from free riding and political constraints (Oates

and Portney 2003), and implementation barriers from administrative limits and potential corruption

(Burgess et al. 2012; Oliva 2015). The conventional approach attempts to address these challenges,

such as by improving enforcement (Duflo et al. 2018), but doing so at scale can be infeasible. Trade

policy offers an alternative for regulating the 60% of global CO2 emissions embodied in traded

goods (Davis et al. 2011). In particular, import tariffs circumvent domestic obstacles to regulation

by directly targeting the prices emitters receive in world markets.

How effective are international import tariffs as a substitute for domestic regulation? This

paper develops a dynamic empirical framework to answer this question quantitatively. I apply the

framework to study the Indonesian and Malaysian palm oil industry, which accounts for a staggering

5% of global CO2 emissions from 1990 to 2016 – more than the entire Indian economy (figure 1). I

find that well designed import tariffs can be an effective substitute for a domestic palm oil tax, but

that import tariffs generally faces two significant challenges: a leakage problem under incomplete

regulation, and a commitment problem from static incentives to reduce tariffs over time.

I begin by discussing the leakage and commitment problems. First, when importers do not

coordinate, incomplete regulation leads to demand-side “leakage” (Fowlie 2009). That is, although

tariffs lower consumption in regulated markets, in doing so they lower world prices and encourage

consumption in unregulated markets. This offsetting effect constrains the size of tariffs, as large tar-

iffs lead to large leakage and therefore low net benefits. As a result, the losses are disproportionate

as the tariff coalition shrinks. A small coalition covers a small proportion of global consumption,

and leakage concerns further constrain it to small tariffs.

Second, importers face a commitment problem. Most traded emissions are from industries in

which sunk investments make up the bulk of production costs: fossil fuels, manufacturing, mining,

transportation, and agriculture (Peters et al. 2011). The result is a static incentive to reduce

tariffs over time: when investments are sunk, so too are emissions. For agriculture, emissions are

sunk because they are released upon investment. Once land is cleared, the forest is gone. For

other sectors, emissions are often sunk, even if released gradually, because investment leads to low

marginal costs up to capacity. For example, once the costs of identifying, exploring, and drilling

an oil well have already been paid, extraction is cheap and thus likely to proceed to completion.

Palm oil and the resulting deforestation offer an ideal setting for studying environmental reg-

ulation by trade policy. I focus on palm oil from Indonesia and Malaysia, which together produce

84% of global supply. First, the industry is a major polluter. Land clearing for palm oil plantations

in Indonesia and Malaysia threatens peatland forests that are particularly carbon-rich. Second, do-
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Figure 1: CO2 emissions from palm oil plantations over time

(a) Palm (Gt CO2) (b) Global (Gt CO2)

Figure 1a computes palm emissions using data on palm oil plantations (Xu et al. 2020; Song et al. 2018), tree biomass
(Zarin et al. 2016), and peat deposits (Gumbricht et al. 2017). Figure 1b compares palm emissions to CO2 emissions
for the top seven emitters from 1990 to 2016. Palm emissions account for 4.95% of global emissions during this period.
Global data come from the World Resources Institute and Global Carbon Atlas and include land-use change.

mestic incentives to regulate are limited. Despite its global consequences, palm oil is a major source

of export revenue for Indonesia and Malaysia and has lifted millions out of poverty (Edwards 2019).

Some policies even promote palm oil production rather than restricting it: for transportation, In-

donesia and Malaysia mandate that fossil fuels be blended with palm-based biofuels at rates of 30%

and 20%, respectively (USDA 2019a, 2019b). Third, foreign governments are actively discussing

trade-policy interventions, with the EU passing recent legislation targeting palm oil imports (OJEU

2018). Fourth, satellite imagery provides a rich source of spatial data capturing the evolution of

the industry over time and at a granular level.

I build a quantitative empirical model for evaluating palm oil import tariffs. I divide land

into individual sites, which I treat as firms representing potential entrants. Firms deforest land

for plantations, plantations produce fruit for mills, mills process fruit into palm oil for domestic

and foreign consumers, and foreign consumers in regulated markets pay import tariffs. The leakage

problem depends on the elasticity of palm oil demand in unregulated markets. Demand responses in

turn depend on consumers’ substitution between palm and other vegetable oils. The commitment

problem depends on the elasticity of palm oil supply, and how it differs between short- and long-

term tariffs. Supply responses in turn depend on producers’ expectations over future prices. The

value of the structural model is that it accounts explicitly for cross-oil substitution on the demand

side and price expectations on the supply side. A more reduced-form approach – that is, regressing

palm oil demand and supply on prices (with instruments) – would account for neither, resulting in

biased elasticity estimates in addition to ignoring equilibrium effects.

I model palm oil demand by consumer market with an almost ideal demand system in which

consumers choose between palm and other vegetable oils (Deaton and Muellbauer 1980). This
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product-space approach to demand estimation has two advantages: it allows for flexible patterns

of substitution between palm and other vegetable oils, and it avoids the need to specify exactly

which product characteristics consumers value. For estimation, I apply the iterated linear least

squares approach of Blundell and Robin (1999) using annual panel data on vegetable oil prices and

consumption by country. I address price endogeneity by instrumenting with weather shocks to oil

production, which shift supply. I then estimate the extent to which world demand for palm oil

shifts over time, and I use these demand shifts – driven, for example, by changes in total vegetable

oil consumption – as price instruments in estimating supply.

I model palm oil supply with a dynamic model of land development for palm oil. In the model,

forward-looking firms make sunk investment decisions along two margins. On the extensive margin,

firms make a discrete choice over whether to build mills – a prerequisite for plantations. On the

intensive margin, firms with mills make a continuous choice over how much land to develop into

plantations. Data derived from satellite imagery allow me to observe these choices over time and

at a high degree of spatial resolution. Firms’ investments produce palm oil in each period and

generate revenues as a function of world prices, which in turn depend on aggregate investment in

palm oil production. Firms therefore play a dynamic competitive equilibrium as in the entry and

investment game of Hopenhayn (1992). Modeling the dynamic investment decision allows me to

infer firms’ responses to hypothetical tariffs from their responses to observed price variation, while

accounting for price expectations in a disciplined way. Intuitively, in the same way that price shocks

today change both current revenues and expectations over future revenues, tariffs change revenues

both today and in the future.

I take an Euler approach for estimating the supply model, combining standard continuous

Euler methods for the intensive margin with more recent discrete Euler methods for the extensive

margin (Hall 1978; Scott 2013). In both cases, I analyze the intertemporal trade-off in investing

today versus tomorrow: investing today brings forward plantation revenues, but it also brings

forward investment costs. On the intensive margin, I form an Euler equation from the first order

condition for investment. On the extensive margin, I use discrete, short-term perturbations that

hold long-term investment levels fixed. Continuation values difference out, and estimation reduces

to linear regression with instruments. Identification comes from two sources: exogenous variation in

world palm oil prices over time, as induced by the demand shifters discussed above, and exogenous

variation in palm oil yields over space, as induced by differences in sunlight and precipitation. Prices

and yields interact because high prices raise revenues most for high-yield plantations. Furthermore,

while a conventional full-solution approach would need to specify exactly how firms expect the

state of the economy to evolve over the long term, the Euler approach relies instead on the weaker

assumption of rational expectations. The computational advantage is that the Euler approach

avoids solving the model for estimation, while the full-solution approach requires solving repeatedly.

For counterfactuals, specifying firms’ expectations and solving the model are unavoidable, and
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so I solve by backward induction from the steady state. The model assumes no exit and therefore

reaches a steady state when all feasible lands are exhausted. The computational challenge is that

it takes many periods to reach this point, and backward induction over long horizons suffers from

a curse of dimensionality. I address this computational difficulty by iterating on two dimensions.

In the outer loop, I solve over a manageable horizon treating the final period as the steady state. I

then improve the solution by solving over a longer horizon, and I repeat until the solutions converge.

In the inner loop, I backward induct with a limited look-ahead window, then I update the starting

point based on the solution and repeat until finding a fixed point. To quantify emissions, I combine

spatial data on carbon stocks with the model’s spatial predictions for plantation development, and

I assume a social cost of carbon of $40 per ton. I also make the strong assumption that non-

palm deforestation does not expand in response to palm oil tariffs. The primary threat to this

assumption is substitution from palm to acacia plantations, but I assess this substitution and find

it to be empirically small.

I evaluate how coordination and commitment, both individually and in combination, influence

the effects of import tariffs on carbon emissions and social welfare, and I benchmark these effects

against a domestic palm oil tax implemented by Indonesia and Malaysia. The domestic tax avoids

the leakage problem because it covers all production, and it avoids the commitment problem because

it can be imposed upfront with a license fee for new development. In my baseline analysis, all

regulation is set to maximize social welfare and is uniform across units of palm oil, although

I also present extensions that relax each condition. I find that import tariffs can be an effective

substitute for domestic regulation. When coordination and commitment hold, import tariffs reduce

carbon emissions by 56% relative to observed outcomes under business as usual. By comparison,

the domestic tax reduces emissions by 64%. The loss arises because import tariffs cannot regulate

domestic consumption in Indonesia and Malaysia. However, the loss is not disproportionate because

I find Indonesian and Malaysian demand to be inelastic, limiting leakage on this margin.

At the same time, emission reductions diminish as coordination and commitment weaken. Even

under full commitment, relatively elastic demand among importers causes emission reductions to

fall from 56% under full coordination among importers, to 17% under an EU-China-India coalition,

to 2% under unilateral EU action. These emission reductions fall disproportionately more than

tariff coverage – 80%, 35%, and 12% of world consumption, respectively – because leakage concerns

lead to smaller tariffs. Even under full coordination, emission reductions fall from 56% under full

commitment to 0% under no commitment. Time to build accounts for the stark no-commitment

result: it is statically optimal to eliminate tariffs because tariffs today do not affect new develop-

ment, which does not generate taxable production until a later period. Thus, both coordination

and commitment are necessary. When either fails, import tariffs are low and have little effect.

Furthermore, coordination and commitment interact, with weak coordination increasing the

importance of commitment. As a intermediate between full and no commitment, I consider a lim-
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ited commitment scenario in which importers commit to a tariff regime over a fixed number of

periods at a time – e.g., “five-year plans” – and revise tariffs at the end of each regime. Achieving

95% of full-commitment emission reductions requires a commitment period of only five years when

importers coordinate, but more than twenty years when the EU acts unilaterally. The interaction

between leakage and commitment arises because, anticipating the temptation to reduce tariffs in

future periods, importers wish to increase tariffs today. However, leakage makes doing so difficult.

Producers facing large tariffs in regulated markets can make investments and focus sales on un-

regulated markets. Then as tariffs are reduced – because investment is sunk – producers can shift

sales to regulated markets. The more severe the leakage problem, the more unregulated markets

can absorb, and thus the more easily producers can skirt tariffs.

The division of surplus among countries reveals why coordination and commitment are difficult

to achieve in practice. Coordination is difficult because own-surplus-maximizing coalition members

have an incentive to defect. For example, the EU-China-India coalition becomes fragile if China

and India ignore carbon damages and focus on their consumer surplus alone: China and India lose

consumer surplus when they impose tariffs, but they gain when they do not because leakage allows

defectors to free ride on lower world prices. Commitment is difficult when countries value their

consumer surplus alone because longer commitment demands larger sacrifices of consumer surplus

for the sake of reducing emissions. Lastly, for Indonesia and Malaysia, under most tariff scenarios

I find that imposing the socially optimal domestic tax leads to lower surplus. However, Indonesia

and Malaysia prefer domestic regulation if threatened with fully coordinated import tariffs. In

this scenario, the domestic tax has low marginal impact on producer surplus because the outside

option is tariffs that are already high, and the domestic tax raises government revenue that would

otherwise go abroad.

The main contribution of this paper is to develop an empirical framework for assessing trade

policy as a means of environmental regulation. While Shapiro (2020) establishes the negative out-

comes of emission-inattentive trade policy, I show what emission-attentive trade policy can achieve,

and I quantify the challenges in implementing such policy. In particular, I study two problems –

leakage and commitment – that are well recognized individually, and I provide novel analysis of

how the two interact in an empirical setting. A rich literature on environmental regulation in trade-

exposed markets documents how supply-side leakage undermines domestic regulation as polluters

move to unregulated markets, motivating border adjustment taxes (Markusen 1975; Copeland and

Taylor 1994, 1995; Hoel 1996; Rauscher 1997; Elliott et al. 2010; Fowlie et al. 2016; Kortum and

Weisbach 2017). Similarly, demand-side leakage becomes a concern in my context, as free-riding

makes the leakage problem fundamental and adds value to acting in coalition (Nordhaus 2015).

I also build on a literature studying commitment problems in environmental regulation, in which

the dynamic incentives to abate emissions depend critically on whether penalties are upheld over

future periods (Marsiliani and Renström 2000; Abrego and Perroni 2002; Helm et al. 2003; Brunner
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et al. 2012; Harstad 2016, 2020; Battaglini and Harstad 2016; Acemoglu and Rafey 2019).

Methodologically, my framework builds on dynamic models of industry dynamics in the tradi-

tion of Hopenhayn (1992) and Ericson and Pakes (1995), with empirical applications including Ryan

(2012) and Collard-Wexler (2013). I draw on a growing literature, formalized by Aguirregabiria

and Magesan (2013), Scott (2013), and Kalouptsidi et al. (2018), that develops Euler conditional

choice probability (CCP) methods for estimating dynamic discrete choice models. Using standard

dynamic discrete choice techniques from Hotz and Miller (1993) and Arcidiacono and Miller (2011),

this literature adapts classic continuous Euler methods from Hall (1978) and Hansen and Single-

ton (1982) to the discrete setting. In focusing on short-term perturbations in order to simplify

dynamics, these Euler methods are closely related to moment-inequality techniques for revealed

preference (Bajari et al. 2007; Pakes 2010; Pakes et al. 2015), with applications ranging from store

placement to pension plans to export destinations (Holmes 2011; Illanes 2017; Morales et al. 2019).

My contribution is to show how to combine both continuous and discrete Euler techniques in a

single framework, with a model containing discrete entry choices on the extensive margin and con-

tinuous investment choices on the intensive margin. Indeed, many investment decisions involve a

similar combination of extensive- and intensive-margin choices. I also show how to tractably solve

my model in computing a set of counterfactuals unidentified by Euler methods alone.

More broadly, this paper contributes a quantitative analysis of environmental regulation for

one of the world’s largest sources of carbon emissions. Palm oil is ubiquitous, adding value to food

and consumer products worldwide. But these benefits have come with severe costs: the industry

accounts for an enormous 5% of global CO2 emissions over the last three decades. Domestic

regulations have failed to prevent these emissions, but trade policy offers an alternative set of

tools for regulating this and other industries operating in low-regulation environments. Unlike

the domestic programs evaluated in Burgess et al. (2019) and Souza-Rodrigues (2019), or the

conservation contracting of Harstad (2012, 2016) and Harstad and Mideksa (2017), trade policy

does not rely on a domestic government that is willing and able to enforce regulation. And unlike

the payments for ecosystem services of Jayachandran et al. (2017) and Edwards et al. (2020), trade

policy scales readily and does not rely on property rights that are well defined. Furthermore, swift

action can still save vast swathes of forest that remain intact, particularly in Papua. Nonetheless,

as with other forms of international climate action, coordination problems and dynamic concerns

present fundamental challenges. This paper quantifies these challenges in an industry that is pivotal

in the fight against climate change.

2 Illustrative Model

This section studies optimal tariffs for an emission-intensive traded good in a setting with

incomplete regulation and sunk investment. It discusses the leakage and commitment problems.

6



2.1 Import tariffs under incomplete regulation and sunk investment

Consider two markets: an unregulated “domestic” market u and a regulated “foreign” market

r. I study an agricultural good produced in u and consumed in both u and r. Consumers have

consumption utility described by inverse demand curves PDrt (q) and PDut (q). Price-taking farmers

produce the good by establishing plantations, subject to upfront development costs described by

inverse supply curve PSt (q). Investment in plantations is sunk and causes upfront emissions e via

deforestation. Established plantations produce goods every period at zero marginal cost, do not

depreciate, and have zero scrap value. Production begins one period after development.

I study tariffs on regulated consumption, with tariffs set to maximize social welfare. Social

welfare is consumer and producer surplus net of emission damages, and it depends on old develop-

ment Qot+1 = Qot +Qnt , the path of new development {Qnt , Qnt+1, . . .} for Qnt = Qrnt +Qunt , and how

the resulting production is allocated across markets. Given discrete time and discount factor β,

Wt(Q
rn
t , Q

rn
t+1, . . . , Q

un
t , Qunt+1, . . . ;Q

o
t )

=
∞∑
s=0

βsEt
[ ∫ Qrot+s

0
PDrt+s(q)dq +

∫ Quot+s

0
PDut+s(q)dq −

∫ Qot+s+Q
n
t+s

Qot+s

(
PSt+s(q) + e

)
dq

]
.

Domestic regulation

The first best is a domestic Pigouvian tax that reflects the full magnitude of the externality.

τ̃FBt = e ,

where the tilde denotes net present value. There is no leakage problem because direct domestic

regulation of supply achieves complete regulation. There is no commitment problem because the

regulator can target new development with a license fee and thus impose the full tax upfront.

The leakage problem

Regulation is incomplete because import tariffs miss unregulated consumption. To isolate the

leakage problem, suppose importers can commit to upholding tariffs. The optimal tariff is

τ̃Ct =

(
εSt

εSt −
Quot+1

Qot+1
εDut+1

)
e < τ̃FBt ,

where εSt > 0 and εDut+1 < 0 are elasticities of supply and unregulated demand, and “C” indicates

full commitment. Even within the regulated market, the tariff is smaller than the first-best tax.

First, leakage lowers the benefits of the tariff relative to the first best. Although tariffs decrease

regulated consumption, net emission reductions are smaller because tariffs also increase unregulated
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consumption as they lower world prices. Second, leakage raises the costs of the tariff. Tariffs shift

consumption from higher willingness-to-pay consumers in the regulated market to lower willingness-

to-pay consumers in the unregulated market, and in doing so produce allocative inefficiency.

The commitment problem

Import tariffs tax consumption – not development directly – and thus are applied over time.

But sunk investment, time to build, and leakage together induce a commitment problem. Tariffs

have no benefit today: they cannot prevent prior development, which is sunk, and they cannot

prevent new development, which under time to build does not generate taxable production until a

future period. Furthermore, tariffs are costly: under leakage, they create allocative inefficiency in

distorting consumption between markets. In combination, these forces make it statically optimal

to set tariffs to zero. In the no-commitment case, importers follow these static incentives in each

period and never levy tariffs at all.

Under limited commitment, I assume that importers can commit to upholding tariffs for L

periods at a time. In other words, they revise tariffs every L periods. I consider a special case with

time-invariant demand and supply curves in order to highlight intuition and solve for tariffs in closed

form. The empirical exercise avoids these assumptions by solving numerically. Importers remove

tariffs at the beginning of each L-period regime, and they set tariffs in other periods anticipating

these periodic breaks. Tariffs have net present value

τ̃LCt (L) =

(
εSt

εSt −
Quot+1

Qot+1
εDut+1

[
1 + Λ(L, ε)

])e ,
for Λ(L, ε) = (1−β)βL

β−βL
PDut+L
PDut+1

(
1− Qot+1ε

S
t

Qrot+Lε
Dr
t+1+Q

uo
t+Lε

Du
t+1

)
> 0. Tariffs are increasing in L and approach full

commitment as L→∞.

0 = τ̃NC
t < τ̃LCt (L) < τ̃Ct = lim

L→∞
τ̃LCt (L)

In the more general case, the statically optimal tariff also decreases over time because tariffs do less

to reduce emissions as the stock of sunk investment grows. At the extreme, tariffs are set to zero

when all lands are exhausted because tariffs cannot reduce emissions when there are no forests left

to save. The above formula nests this case in which the elasticity of supply is zero.

The commitment problem is particularly stark in this setting with deforestation, which causes

emissions to be released upon development. But note that the same framework can apply even

when emissions are released over time, either in production or consumption. In particular, if

sunk investment in a brown technology leads to permanently low marginal costs of production,

then production continues in each period. Thus, emissions are committed upon investment, and

externality e becomes the net present value of emission damages.
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Table 1: Palm oil statistics by country (1988-2016)

Production Consumption Exports Imports

Indonesia 0.44 0.14 0.41 0.00
Malaysia 0.40 0.06 0.48 0.02
European Union 0.00 0.12 0.00 0.17
China 0.00 0.11 0.00 0.15
India 0.00 0.12 0.00 0.16
Rest of world 0.16 0.45 0.10 0.50

Data are from the USDA Foreign Agricultural Service. Columns show ratios of global totals and each sum to one.

How leakage and commitment interact

The key mechanism is that producers shift sales across markets as tariffs change. That is,

producers focus on the unregulated market when tariffs are high, and shift toward the regulated

market when tariffs are low. As a result, leakage and commitment interact. Intuitively, the regulator

can only compensate for low future tariffs by imposing high tariffs while tariffs are in place. But

these high tariffs suffer from leakage, and so the regulator cannot compensate fully. In particular,

incomplete regulation allows producers to skirt high tariffs in any given period by directing sales to

the unregulated market until tariffs fall. Thus, leakage exacerbates the commitment problem. The

greater the leakage problem, the more the unregulated market can absorb, and thus the greater the

loss from failures of commitment.

3 Empirical Setting and Data

This section provides institutional details and describes the data. Both make the world market

for palm oil an ideal setting for studying environmental regulation by trade policy.

3.1 Empirical setting

Palm oil is among the most widely used plant products in the world. High yields drive its low

price point, with oil palm producing more oil per hectare of land than any comparable oilseed. Palm

oil is used as a cooking oil, particularly in Asia, and is a common ingredient in processed foods,

where it has replaced trans fats. Palm oil also has non-food uses ranging from soaps to cosmetics to

biofuels. At the country level, table 1 shows that Indonesia and Malaysia account for 84% of global

production, 90% of exports, and 20% of consumption, with the European Union, China, and India

accounting for another 35% of global consumption. At the firm level, the market is unconcentrated:

the largest producer (FGV Holdings Berhad) accounts for 4% of global production (POA 2017),

and the largest consumer (Unilever) accounts for 2% of global consumption (WWF 2016).
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Figure 2: Palm oil plantations and mills over time

(a) Plantations, 1988 (b) Plantations, 2016

(c) Mills, 1988 (d) Mills, 2016

Data on plantations come from Xu et al. (2020) and Song et al. (2018), and data on mills come from the World
Resources Institute and the Center for International Forestry Research. The study area is Sumatra, Kalimantan, and
Riau of Indonesia and all of Malaysia, covering virtually all palm production in Indonesia and Malaysia.

This empirical setting is appealing for several reasons. First, palm oil is among the largest

sources of global carbon emissions. Deforestation for palm oil plantations has such severe conse-

quences because Indonesia and Malaysia are rich in peatland forests, which contain deep layers of

carbon-rich peat. I compute palm-related emissions in figure 1a and find that emissions from peat

deposits exceed those from tree biomass by five to ten times.1 Figure 1b shows that palm emissions

account for more CO2 from 1990 to 2016 than the entire Indian economy.

Second, there are significant challenges in implementing regulation domestically. Free-riding

limits incentives to pass regulation, and weak enforcement hampers regulation that does pass. In

2010, Norway pledged US $1 billion to Indonesia in cash incentives, with the goal of promoting

domestic efforts to curb deforestation. As a case study, consider Indonesia’s primary response: a

2011 moratorium on new forest concessions. Busch et al. (2015) cite problems of weak regulation

and weak enforcement. The moratorium failed to regulate forests within existing concessions, and

1 Converting peatlands to croplands involves draining peatlands and clearing the land with fire, releasing large
amounts of carbon. Even without clearing by fire, unsubmerged peat releases carbon as it decomposes. Further-
more, fire spreads quickly on dried-out peat, and in 2015 slash-and-burn practices combined with dry El Niño
conditions caused an estimated 100,000 deaths and $16 billion in damages (Koplitz et al. 2016; World Bank 2016).
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Figure 3: Palm oil production vs. world prices over time

(a) New plantations (b) New mills

Data on plantation development come from Xu et al. (2020) and Song et al. (2018), and data on mill construction
from the Universal Mill List. Prices combine palm and palm kernel oil prices from the International Monetary Fund.

regulating all concessions would still have been insufficient because most deforestation occurred

(illegally) outside of concessions, including in protected areas.

Third, foreign governments are actively discussing trade-policy interventions, particularly in

Europe. French parliament debated a “Nutella” tax on palm oil in food products in 2016, although

it failed to pass. Furthermore, the European Union initially provided green subsidies for palm-based

biofuels, but policymakers later recognized the consequences of palm-driven deforestation. Recent

policy therefore moves to eliminate green subsidies for palm-based biofuels, cap production, and

achieve a complete phase-out by 2030. As well, palm-based biofuels face the further loss of green

tax incentives in France and an outright ban in Norway, both by 2020. While none of these policies

explicitly imposes tariffs across all palm oil imports, they all leverage European buying power to

influence emissions abroad in the same way that tariffs do.

3.2 Data

I compile data on palm oil production and consumption, with data sources and construction

detailed in appendix B. I measure production with spatial panel data at a resolution of 30 arc-

seconds – approximately 1 km2 – that records plantations and mills from 1988 to 2016 using

satellite imagery. Figure 2 maps their widespread expansion over this period. For plantations,

Xu et al. (2020) analyze PALSAR and MODIS satellite data to measure the expansion of palm

oil plantations from 2001 to 2016. Using data on tree cover loss from 1988 to 2016 from Song

et al. (2018), who draw on Landsat and MODIS satellite data, I estimate the (positive) relationship

between plantation development and tree cover loss, and I use this relationship to impute plantation

development back to 1988. For mills, I rely on geocoded data on present-day mills from the World

Resources Institute and the Center for International Forestry Research, and I manually cross-
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Figure 4: Land characteristics

(a) Potential palm oil yields (b) Port distance

(c) Road distance (d) Urban distance

(e) Carbon stocks, tree biomass (f) Carbon stocks, peat deposits

Darker blue indicates high yields, farther distances, and larger carbon stocks. Yields are computed with the PALMSIM
agronomic model (Hoffmann et al. 2014). Ports and roads are from the 2019 World Port Index, World Port Source,
and Global Roads Inventory Project. Urban areas are administrative cities (kota) in Indonesia and federal territories
in Malaysia. Carbon stocks are from Zarin et al. (2016) and Gumbricht et al. (2017).

reference historical satellite data to identify construction dates back to 1988. The Indonesian data

focus on Sumatra, Kalimantan, and Riau but remain exhaustive, covering 97% of mills. I compare

my measures of plantations and mills to aggregate government statistics and find that they align

closely. Figure 3 compares investment in plantations and mills to fluctuations in world prices over

time, with world price data from the International Monetary Fund and World Bank.

12



Figure 4 maps land characteristics, which I measure at a resolution of 30 arc-seconds. I use

an agronomic model of the oil palm plant (Hoffmann et al. 2014) to compute potential palm oil

yields as a function of climate. These potential yields are time-invariant but computable at high

resolution, allowing me to downscale data on actual yields over time from provincial government

statistics. Euclidean distances to the nearest major port, road, and urban district generate spatial

heterogeneity via transport costs. I compute carbon stocks from geospatial data on tree biomass and

peat deposits (Zarin et al. 2016; Gumbricht et al. 2017), which record how much carbon would be

released in developing any given plot of land and thus link counterfactual production to emissions.

For consumption, I compile annual panel data from 1988 to 2016 on palm oil and its substitutes.

Consumption data by country come from the USDA Foreign Agricultural Service. Palm oils include

palm and palm kernel, and other oils include coconut, olive, rapeseed, soybean, and sunflower. To

address price endogeneity, I measure weather shocks to oil production. Rainfall and temperature

data come from the Global Meteorological Forcing Dataset, which includes daily measures during

the study period at 0.25◦ resolution. I identify producing regions – primarily states and provinces –

with production data from the USDA Foreign Agricultural Service. For each crop, year, and region,

I compute weather shocks as total absolute deviations from optimal levels during the growing season,

with optimal levels given by the FAO Crop Ecological Requirements Database (ECOCROP). I then

aggregate over regions, weighting by production, to obtain shocks by crop and year.

4 Empirical Model

This section specifies empirical models of palm oil demand and supply. The resulting demand

and supply curves correspond to the functions PDrt (q), PDut (q), and PSt (q) of section 2.

4.1 Demand: an almost ideal demand system

I model aggregate demand for vegetable oils with a two-stage almost ideal demand system as

in Deaton and Muellbauer (1980) and Hausman et al. (1994). First, consumers make an upper-

level choice over total vegetable oil consumption. Second, given this total, they make a lower-level

choice between palm and other oils, aggregated by Stone price index ln pit =
∑

j ωjt ln pjt. Relative

to the characteristic-space approach, such as in Berry et al. (1995), this product-space approach

allows for flexible substitution patterns and avoids the need to specify which product characteristics

consumers value. Market-specific demand curves allow me to obtain PDrt (q) and PDut (q) separately.

For a given consumer market, the specifications are as follows. For the lower level,

ωit = α0
i + α1

i t+
∑
j

γij ln pjt + βi ln

(
Xt

Pt

)
+ εit , (1a)

lnPt = α0 +
∑
j

(α0
j + α1

j t) ln pjt +
1

2

∑
j

∑
k

γjk ln pjt ln pkt , (1b)
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for expenditure shares ωit, palm and other oil prices pjt, total vegetable oil expenditures Xt = QtPt,

and translog price index Pt. For the upper level,

lnQt = α0 + α1t+ γ lnPt + Ztβ + εt , (2)

where Qt is the quantity of total vegetable oil consumption, and Pt is the price index above.

Demand shifters Zt include GDP and the CPI, which capture overall income and prices.2

Both specifications are standard. For the upper level, an alternative is to specify total con-

sumption in expenditure shares as in the lower level. However, vegetable oil expenditures are only

0.15% of GDP, and the resulting elasticities are unstable with expenditure shares so close to zero.

Furthermore, the uncompensated price elasticities show why both levels are necessary.

eijt =
∂ ln qit
∂ ln pjt

= −δij +
γij
ωit

+

(
βiγ

ωit
+ γ + 1

)(
∂ lnPt
∂ ln pjt

)
, (3)

where ∂ lnPt
∂ ln pjt

= α0
j + α1

j t + 1
2

∑
k(γjk + γkj) ln pkt, Kronecker δij = 1[i = j], and qit = ωitXt

pit
. The

lower level allows substitution between palm and other oils (via γij), and the upper level allows

total category demand to respond to changes in prices (via γ).

As is typical, prices are endogenous. Unobservables εit and εt shift demand and therefore affect

equilibrium prices pjt. I instrument with weather shocks to oil production as a supply shifter. The

exclusion restriction is that these shocks affect vegetable oil demand only through their impact on

prices. However, domestic shocks might also affect demand by impacting incomes or expenditures

more broadly. I address this concern by isolating shocks to crops in producing states and provinces

during the growing season, and also by directly testing for income and expenditure effects.

4.2 Supply: a dynamic model with sunk investment

Land is divided into sites, which I assume are small, independent, and managed by long-lived

owners. Forward-looking sites generate profits by making sunk investments on two margins. On

the extensive margin, sites make a binary choice over whether to build a mill. On the intensive

margin, sites with mills make a continuous choice over how much land to develop into plantations.3

Figure 5 shows the timeline.

2 An important part of EU demand for palm oil is for biofuels. I do not include fossil fuels in the choice set because
the EU has biofuel targets, such as for 14% of fuel for transportation to be renewable by 2030. Thus, higher palm
oil prices arguably require substitution toward other vegetable oils rather than to fossil fuels. Including fossil fuels
in the choice set would allow me to account for the substitution that occurs in the absence of these targets.

3 This model abstracts away from negotiations with smallholders, which account for 40% of production but are
often vertically integrated into the production chain. In particular, smallholders are commonly bound by contracts
that require selling harvests to specific mills in exchange for investment support (Cramb and McCarthy 2016).
Even without vertical contracting, the intensive-margin model holds as long as investment is efficient, and the
extensive-margin model holds as long as mills extracts all surplus from plantations. Indeed, the perishability of
harvest fruit gives mills spatial market power that helps in extracting rents.
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Figure 5: Supply model timeline
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An empty site makes a binary choice over whether to construct a mill. If not, then the site faces the same binary
choice in the following period. If so, then the site makes a continuous choice over how much land to develop into
plantations. In future periods, the site faces more continuous choices over plantation expansion.

Intensive margin (plantation development)

In each period t, sites i with mills make a continuous choice ait over how much land to

develop into plantations. Plantations have no scrap value and are sunk, such that development

today affects plantation size sit in all future periods according to law of motion sit+1 = sit + ait.

Profits depend on publicly observed state wit = {Yit, xi, st, dt} and privately observed state εit.

Site-specific yields Yit affect revenues, while site-specific cost factors xi and shocks εit affect costs.

Aggregate supply st =
∑

i Yitsit and aggregate demand dt affect world prices P (st, dt), which in

turn affect revenues. Supply evolves endogenously, while demand evolves exogenously. Aggregate

supply measures total production across plantations, with high supply leading to low prices. As in

Hopenhayn (1992), atomistic sites affect world prices collectively but not individually, and firms play

a dynamic competitive equilibrium in which collective action coincides with individual expectations.

Aggregate demand captures world demand for palm oil, with high demand leading to high prices.

Each period, sites with mills realize state (wit, εit) and make investment choice ait, which incurs

costs in the current period and begins generating revenues in the following one.

The value, revenue, and cost functions are as follows, with shorthand Eit[·] ≡ E[·|sit,wit, εit].

V (sit;wit, εit) = max
ait

{
r(sit;wit)− c(ait;wit, εit) + βEit[V (sit+1;wit+1, εit+1)]

}
, (4a)

r(sit;wit) = YitP (st, dt)sit , c(ait;wit, εit) =

(
1

2
δait + xiγ + κm + αmt+ εit

)
ait . (4b)

Expectations are over next-period state (wit+1, εit+1). Revenues are linear in plantation size and

increasing in yields and world prices. Yields are affected by weather shocks εYit during production,

but these shocks are unrealized at the time of investment and thus do not enter here: sites in-
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vest based on climate and not weather. Costs are quadratic and convex in investment, spreading

investment over time and reflecting diseconomies of scale such as credit and local factor market

constraints. Sites do not distinguish between upfront and future flow costs, and thus either inter-

pretation is valid. Linear revenues and convex costs ensure unique optima. Cost factors xi capture

observed heterogeneity by site, while fixed effects κm and time trends αm accommodate unobserved

heterogeneity by region. Cost shocks εit can be correlated across sites and over time.

Extensive margin (mill construction)

In each period t, sites i without mills make a binary choice aeit over whether to construct a mill.

Plantations require mills because unmilled palm fruit decays quickly after harvest, and palm fruit is

not consumed directly. Mills have no scrap value and are sunk, with law of motion seit+1 = seit+aeit.

Profits depend on publicly observed state wit = {Yit, xi, st, dt} and privately observed state εeit,

which captures mean-zero logit shocks {εeit0, εeit1} with standard deviation σe. Each period, sites

without mills realize state (wit, ε
e
it) and make investment choice aeit. If they choose not to invest,

then the period ends. If they choose to invest, then they immediately face the intensive-margin

problem, realizing shock εit and making choice ait before the period ends.

The ex-ante value function, choice-specific conditional value functions, and cost function are

V e(wit) = Eeit[max{ve(0;wit) + εeit0, v
e(1;wit) + εeit1}] , (5a)

ve(0;wit) = βEeit[V e(wit+1)] , (5b)

ve(1;wit) = −ce(wit) + Eeit[V (0;wit, εit)] , (5c)

ce(wit) = xiγ
e + κem + αemt , (5d)

where the e superscript indicates the extensive margin with shorthand Eeit[·] ≡ Ee[·|wit]. In equation

5a, expectations are over logit shocks εeit that imply mill construction probabilities

pe(wit) =
exp[ve(1;wit)]

exp[ve(0;wit)] + exp[ve(1;wit)]
, (6)

more precisely written pem(wit) given regional heterogeneity in the cost function. In equation 5b,

choosing not to build leads to the same decision in the following period, subject to expectations over

next-period state wit+1. The outside option is never constructing a mill, with utility normalized to

zero given mean-zero shocks εeit. In equation 5c, choosing to build incurs mill construction costs in

return for the value of plantation development on the intensive margin, where new plantations start

with size sit = 0. Expectations are over intensive-margin shock εit. In equation 5d, cost factors xi

capture observed heterogeneity by site, while fixed effects κem and time trends αem accommodate

unobserved heterogeneity by region. Cost shocks come from logit shocks εeit, which are uncorrelated

over time and across sites and also uncorrelated with intensive-margin shocks εit.
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Unobserved heterogeneity and endogeneity

The primary restriction on both margins is that unobserved heterogeneity is allowed only at the

regional level. Within regions, sites can receive differential shocks but otherwise have no persistent

heterogeneity beyond that explained by observables. On the intensive margin, identifying site-level

unobserved heterogeneity would require a long panel of plantation development decisions, which I

only have for sites with early development. On the extensive margin, I would require multiple mill

construction decisions per site, but each site constructs no more than one mill in the model.

There is also an endogeneity problem on the intensive margin: both prices Pt and yields Yit are

correlated with cost shocks εit. First, collectively low costs induce entry, raising supply and lowering

prices. Second, attained yields depend on unobserved, costly effort. Assuming uncorrelated cost

shocks across sites addresses the first concern, but this assumption is a strong one. Instead, I

instrument for prices with demand shifters dt and for yields with potential yields Y p
i . Demand

shifters come from the estimated world demand curves in each period.

ln pt = φ̂ ln qt + d̂t

The intercept captures the level of demand over time, which I interpret as a demand shifter.

Variation in total oil consumption lnQt drives this demand shifter, and indeed instrumenting

directly with lnQt leads to similar results. Potential yields are a function of climate, which is

exogenous, and instrumenting also mitigates bias from mismeasured yields. These concerns do not

arise on the extensive margin because mills themselves do not affect prices or yields, and because

extensive- and intensive-margin cost shocks are assumed to be uncorrelated with each other.

I take cost factors xi to be exogenous. Port distance considers only major ports, which predate

plantations. Road distance considers only major roads, and not small roads that develop endoge-

nously around plantations. Urban distance considers officially designated urban districts, which

cover only major cities and do not include palm oil settlements. Carbon stocks are predetermined.

5 Estimation

This section describes how I estimate the demand and supply models specified in section 4. I

take an iterated linear least squares approach for demand and an Euler approach for supply.

5.1 Demand: iterated linear least squares

I adopt the iterated linear least squares approach of Blundell and Robin (1999) to estimate the

lower-level demand system. I start by estimating a linear approximate version, using a Stone price

index instead of translog. I then construct the translog price index with the resulting estimates

and iterate until convergence, thereby avoiding nonlinear estimation. Each iteration imposes the

17



standard adding-up, homogeneity, and symmetry restrictions. Given the lower-level estimates, I

estimate the upper level by linear IV. Throughout, I instrument for prices with weather shocks to

oil production, and Newey-West standard errors account for serial correlation. I compute demand

elasticities by market and year, and I obtain standard errors with the delta method.

5.2 Supply: Euler approach

I take an Euler approach for estimation, focusing on the timing of observed investment as in

Hall (1978) and Scott (2013). On the intensive margin, I form Euler equations from the first order

conditions for investment; on the extensive margin, I compare discrete, short-term perturbations

that hold long-term investment levels fixed. Continuation values difference out. I assume a discount

factor of β = 0.9, as the discount factor is typically unidentified in dynamic discrete choice models

(Magnac and Thesmar 2002). Estimation proceeds in three steps.

Step 1: defining site boundaries

I divide land into operational and potential sites using observed mills and plantations as a guide.

I identify the palm oil industry’s most developed provinces and imagine bringing all provinces to

this level of development. By several metrics, I obtain a target density of one mill per 521 km2.

I then define sites by k-means clustering on geographic coordinates, where the number of clusters

k in each province is chosen to reach this target density. I impose that clusters separate observed

mills and that observed plantations be assigned to clusters with observed mills. This procedure

results in 2,135 contiguous sites: 1,467 operational sites with one observed mill and some observed

plantations, and 668 potential sites with zero observed mills or plantations.

Step 2: estimating the intensive-margin model (plantation development)

The first order condition for investment and the envelope theorem deliver an Euler equation.

c′(ait;wit, εit) = βEit[V ′(sit+1;wit+1, εit+1)] ,

V ′(sit;wit, εit) = r′(sit;wit) + βEit[V ′(sit+1;wit+1, εit+1)] ,

where the first line is the first order condition for ait and the second line applies the envelope

theorem to equation 4a. Together, these equations imply the Euler equation

c′(ait;wit, εit) = βEit[r′(sit+1;wit+1) + c′(ait+1;wit+1, εit+1)] , (7)

which captures the intertemporal trade-off in investing in period t compared to t + 1. With the

functional form assumptions of equation 4b, the Euler equation specializes to

ait − βEit[ait+1] =
β

δ
Eit[Yit+1Pt+1]−

1− β
δ

xiγ −
1− β
δ

κm −
1

δ
αmt̃−

1

δ
εit +

β

δ
Eit[εit+1] ,
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with shorthand Pt ≡ P (st, dt) and t̃ ≡ t− β(t+ 1). Sites develop today instead of tomorrow when

the marginal benefit is high and the marginal cost low. I implicitly assume an interior solution,

otherwise the first order condition may not hold. Indeed, 99.5% of observed intensive-margin

decisions are interior: 0.5% involve zero development, and 0% exceed sites’ total area.

For estimation, I take realized values as noisy measures of expectations, which are unobserved,

subject to expectational errors ηit as in Hall (1978). I obtain the regression equation

ait − βait+1 =
β

δ
Yit+1Pt+1 −

1− β
δ

xiγ −
1− β
δ

κm −
1

δ
αmt̃−

1

δ
εit +

β

δ
εit+1 + ηit , (8)

subject to shocks εit that are correlated across sites and over time, as well as expectational errors

ηit = βEit[ait+1]− βait+1 +
β

δ
Eit[Yit+1Pt+1]−

β

δ
Yit+1Pt+1 +

β

δ
Eit[εit+1]−

β

δ
εit+1

=
∞∑
t′=1

βt
′

δ

(
Eit[Yit+t′Pt+t′ ]− Eit+1[Yit+t′Pt+t′ ]

)
.

Rational expectations are correct on average and use all available information, in which case ex-

pectational errors are mean-zero and orthogonal to sites’ period-t information sets.4 Investment

choices, yields, prices, and cost factors are data, where cost factors include port, road, and urban

distances, as well as carbon stocks. I cluster by region to address correlated cost shocks. I instru-

ment for yields and prices with potential yields and demand shifters as discussed above, and I use

lagged instruments that are within sites’ period-t information sets. Figure 3 plots the time-series

variation in world prices, and figure 4a plots the spatial variation in yields. Identification relies on

both sources of variation: intuitively, price increases are more valuable for sites that produce more

palm oil. Since revenues Yit+1Pt+1 are measured directly, parameters γ, κm, and αm are inter-

pretable in dollar terms. While production begins one period after investment in this exposition, I

instead impose the typical three-year lag for palm maturity in estimation.5

Step 3: Estimating the extensive-margin model (mill construction)

Discreteness precludes the use of a first order condition and the envelope theorem. Instead,

I obtain an Euler equation by differencing and finite dependence. I compare sequences of actions,

with differences in likelihoods reflecting differences in payoffs. Finite dependence facilitates the

comparison: under finite dependence, I can choose sequences that lead to common states – and

therefore common payoffs – in all future periods (Arcidiacono and Miller 2011).

As before, I compare investing today and tomorrow. More precisely, I compare two sequences

of extensive- and intensive-margin actions: (1, a∗it, a
∗
it+1) and (0, 1, a′it+1) for a′it+1 = a∗it+a

∗
it+1. The

4 Equation 8 forms a telescoping series that implies ait =
∑∞
t′=1

βt′

δ
Eit[Yit+t′Pt+t′ ] − 1

δ
xiγ − 1

δ
κm − 1

δ
αmt− 1

δ
εit.

5 Each year is one period. Yt+1 terms become Yit+3 and Pt+1 terms become Pt+3, but ait+1 does not change because
the intertemporal comparison is between developing today and tomorrow.
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first constructs a mill today, then develops a∗it plantations today and a∗it+1 plantations tomorrow; the

second constructs a mill tomorrow, then develops a′it+1 plantations tomorrow. Finite dependence

holds because, for both sequences, by period t + 2 the mill is constructed and plantation size is

a∗it + a∗it+1. To form the Euler equation, I first evaluate the payoffs for each sequence.

ve(1, a∗it, a
∗
it+1;wit) = −ce(wit) + Eeit[−c(a∗it;wit, εit) + βr(a∗it;wit+1)− βc(a∗it+1;wit+1, εit+1)]

+ β2Eeit[V (a∗it + a∗it+1;wit+2, εit+2)] ,

ve(0, 1, a′it+1;wit) = −βEeit[ce(wit+1) + c(a′it+1;wit+1, εit+1)] + β2Eeit[V (a′it+1;wit+2, εit+2)]

The continuation values align: β2Eeit[V (a∗it + a∗it+1;wit+2, εit+2)] = β2Eeit[V (a′it+1;wit+2, εit+2)] be-

cause a′it+1 = a∗it + a∗it+1. I then write these payoffs in terms of choice-specific conditional value

functions ve(1;wit) and ve(0;wit), which the Hotz-Miller inversion links to choice probabilities.

ln

(
pe(wit)

1− pe(wit)

)
= ve(1;wit)− ve(0;wit) , (9)

as follows from equation 6 (Hotz and Miller 1993).

For the first sequence, ve(1;wit) = ve(1, a∗it, a
∗
it+1;wit) by definition, where a∗it ≡ a∗it(0;wit, εit)

and a∗it+1 ≡ a∗it+1(a
∗
it;wit+1, εit+1). For the second sequence, ve(0, 1, a′it+1;wit) involves choices that

may differ from the optimal choices implied by ve(0;wit). The difference in payoffs is

ve(0;wit)− ve(0, 1, a′it+1;wit) =
1

2
βEeit[c′′(a′it+1;wit+1, εit+1)(a

∗
it+1 − a′it+1)

2]− βEeit[ln pe(wit+1)] ,

where a∗it+1 ≡ a∗it+1(0;wit+1, εit+1). Substituting into equation 9, I obtain an Euler equation in

which continuation values cancel. Applying the functional forms of revenues and costs, and noting

a∗it+1(a
∗
it;wit+1, εit+1) = a∗it+1(0;wit+1, εit+1) given linear revenues,

ln

(
pe(wit)

1− pe(wit)

)
− βEeit

[
ln pe(wit+1)

]
= Eeit[Iit+1]− (1− β)xiγ

e − (1− β)κem − αemt̃ ,

for t̃ = t−β(t+1) and Iit+1 = [βYit+1Pt+1−(1−β)xiγ−(1−β)κm−αmt̃ ]a∗it+δ[−1
2a
∗
it
2+βa∗ita

∗
it+1].

Intuitively, developing earlier brings forward plantation revenues, but also investment costs.

I apply expectational errors ηeit and substitute estimated values to obtain a regression equation.

ln

(
p̂e(wit)

1− p̂e(wit)

)
− β ln p̂e(wit+1) = Îit+1 − (1− β)xiγ

e − (1− β)κem − αemt̃+ ηeit (10)

I estimate conditional choice probabilities p̂e(wit) from the data. I use the predicted values from

a logit regression of observed investment choices on a flexible set of basis terms: piecewise linear

splines in Yit+1, Pt+1, xi, and t̃, as well as their interactions. I do so separately for each region

and therefore account non-parametrically for regional heterogeneity. Consistent with the model,
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this procedure accommodates unobserved heterogeneity by region while allowing only observed

heterogeneity by site. I estimate intensive-margin choices â∗it in the same way, but with OLS

instead of a logit regression. Dollar-denominated intensive-margin profits Îit+1 provide a scale

normalization that allows parameters γe, κem, and αem to be interpreted in dollar terms. Intercepts

κem are only identified relative to the outside option, as is typical with discrete choice models.

Discussion

This Euler approach to estimation has several advantages. I can address endogeneity concerns

using standard instrumental variable techniques because estimation reduces to linear regression.

Furthermore, while I do need to assume that agents have rational expectations, for estimation I do

not need to model exactly what these expectations are. This flexibility is a significant advantage

over a conventional full-solution approach that would require explicit structure on expectations. The

full-solution approach also requires solving the model repeatedly for estimation, with each iteration

involving the time-consuming calculation of continuation values. The Euler approach sidesteps

this computational burden because it estimates the model without solving it. Other methods have

similar computational advantages in the discrete case, but they cannot accommodate the non-

stationarity of the problem in my setting (Aguirregabiria and Mira 2007; Bajari et al. 2007; Pakes

et al. 2007; Pesendorfer and Schmidt-Dengler 2008).

One disadvantage is that rational expectations can still be a strong assumption. Biased ex-

pectations load onto costs, with pessimism over future prices having the same effect as high costs.

Regional effects κm capture cost heterogeneity across regions and therefore absorb expectational

bias to the extent that it is fixed within regions. This approach is similar to Diamond et al. (2017),

who difference out expectational bias by assuming that it is constant among individuals within

a group. For counterfactuals, the assumption is that expectational bias remains uninfluenced by

trade policy. A more careful treatment of expectations would require separate variation in actual

and expected profits, as well as specifying how trade policy changes expectations.

Another disadvantage is that tractability relies on several assumptions that may also be strong.

First, the Euler comparison between investing today or tomorrow implicitly assumes property

rights. If delaying investment risks losing land claims, then sites will be biased toward investing

today. Regional effects κm also help here: low costs make delayed investment less appealing,

and so regions susceptible to land grabbing will appear to have low costs. Second, I assume

independent, atomistic sites because finite dependence does not hold otherwise. If a price-maker

delays investment, then competitors will respond, thereby changing the state of the economy in

all future periods. Independence also rules out spatial competition. In particular, although sites

are all price-takers in the global palm oil market, even small sites can be price-makers in local

input markets for land, labor, and capital. Furthermore, spatial interdependence introduces a

dimensionality problem that makes estimation intractable. Third, I assume that plantation age
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Table 2: Weather shocks as price instruments

All All Palm Other

Rainfall shocks (100 mm) 0.208*** 0.212*** 0.139*** 0.224***
(0.0317) (0.0278) (0.0325) (0.0318)

Temperature shocks (◦C) 0.297*** 0.308*** 0.681 0.315***
(0.0335) (0.0315) (0.804) (0.0334)

Oil FE x x
Oil-year trend x
Year trend x x
Observations 174 174 29 145
F-statistic 40.94 49.25 10.56 48.90

Each column is a regression, and the outcome variable is log prices. Data are annual and cover coconut, olive,
palm, rapeseed, soybean, and sunflower oils from 1988 to 2016. Weather shocks are absolute deviations from optimal
conditions during the growing season, aggregated over producing regions. Oil fixed effects and oil-specific time trends
differentiate between palm and other oils. Newey-West standard errors account for serial correlation. Significance
levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

does not affect profits, again such that finite dependence holds. If younger plantations are more

productive, then delaying investment changes profits in all future periods.

6 Results

This section describes both demand and supply estimates. Demand estimates suggest inelastic

Indonesian and Malaysian demand, while supply estimates quantify palm oil production costs.

6.1 Demand estimates

In the first stage, table 2 shows that both rainfall and temperature shocks significantly increase

world oil prices. The first two columns pool across oil products and show that weather shocks

have significant price effects, both controlling for year trends and not. The last two columns

show estimates for palm and other oils separately. For palm oil, a smaller sample size means less

precision, but the point estimates are relatively close to those of the pooled specifications, and the

instruments remain strong. Temperature effects are perhaps imprecisely estimated because palm oil

is grown in tropical climates with limited year-to-year variation in temperatures. Toward assessing

the exclusion restriction, I show in the appendix that these weather shocks do not affect overall

incomes or expenditures, both of which would influence demand directly.

Figure 6 plots the estimated demand curves and implied demand shifters. Price-responsive

demand among non-EU importers suggests that unilateral EU action is susceptible to leakage,

particularly because non-EU importers account for a substantial 68% of global consumption (table

1). By contrast, Indonesia and Malaysia have nearly perfectly inelastic demand, limiting leakage
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Figure 6: Palm oil demand

(a) Mean demand by market (b) World demand by year

(c) World demand over time (state dt) (d) dt vs. total vegetable oil expenditures

The demand estimation underlying these curves draws on annual data that cover coconut, olive, palm, rapeseed,
soybean, and sunflower oils from 1988 to 2016, and it instruments for prices with weather shocks to oil production.
Figures 6a and 6b show palm oil demand curves, with means computed over the study period. Figures 6c and 6d
plot the world quantity demanded at price ln p = 6.25 – roughly the mean price over the study period – in order to
illustrate the rightward shift of the world demand curve over time.

if importers coordinate on regulation. As producers, Indonesia and Malaysia consume much more

palm oil than other oils – consistent with home bias – and limited scope for substitution leads to

inelastic palm oil demand.6

One limitation is that the demand model is static. I can rule out significant bias from stock-

piling because I observe oil stocks held in storage facilities and find that they are small. However,

demand may be sticky because switching between oils requires reformulating recipes and rewrit-

ing contracts with suppliers. If so, then larger long-run elasticities imply more leakage. Another

concern is that palm oil tariffs may encourage unregulated markets to supply regulated markets

with palm oil in other forms, such as palm-based biofuels. Static demand estimates do capture

the short-term responses of existing industries, as the consumption data include palm oil used as

inputs. However, static demand cannot capture the long-term response of new industries short of

6 Palm oil accounts for 90% of vegetable oil expenditures in Indonesia and Malaysia, but only 20% in other markets.
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Table 3: Intensive-margin supply regressions

OLS IV First stage

ait − βait+1 ait − βait+1 Yit+3Pt+3

Yield × price (Yit+3Pt+3) 0.113*** 0.200***
(0.00714) (0.0355)

Potential yield × demand (Y p
i dt) 30.58***

(1.220)

Province FE x x x
Province-year trend x x x
Observations 17,181 17,181 17,181
F-statistic 628

Each column is one regression, and each observation is a site-year. The dependent variables are shown in the column
headings. The first column is OLS, and the second column IV. The IV specification uses the interaction of potential
yields and demand shifters to instrument for the interaction of yields and prices, with the third column showing the
first stage. Potential yields are computed using the agronomic model of Hoffmann et al. (2014). Demand shifters are
computed during demand estimation. Prices combine palm and palm kernel oil prices and are inflation-adjusted to
year 2000 dollars. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

modeling them. This concern is mitigated by the fact that most palm oil is exported in raw form,

but nonetheless a simple response is for import tariffs to cover both palm oil and palm oil content.

6.2 Supply estimates

Tables 3 and 4 present supply estimates. Table 3 shows that higher revenues – whether they be

from higher yields or higher prices – indeed lead to more development, with a larger effect in the IV

specification. Table 4 shows the estimated model parameters, all of which are interpretable in dollar

terms. On the intensive margin, I estimate the average lifetime costs of plantation development

to be $10 thousand per hectare in net-present-value terms, ranging from $6 thousand at the 10th

percentile to $15 thousand at the 90th percentile across provinces. By comparison, accounting

estimates suggest costs of $7 thousand per hectare: $4 thousand upfront and $3 thousand for

operations (Butler et al. 2009). I estimate costs to be decreasing at an annual rate of $400 on

average, again with some heterogeneity across provinces. Within provinces, I find costs to be

similar across sites with different characteristics (conditional on mill construction).

On the extensive margin, I estimate lifetime mill construction costs of $23 million on average,

ranging from $16 million at the 10th percentile to $30 million at the 90th percentile. By comparison,

accounting estimates suggest costs of $20 million: $5 million upfront and $15 million for operations

(Man and Baharum 2011). I estimate costs to be increasing at an annual rate of $88 thousand on

average, with large heterogeneity across provinces. I estimate the standard deviation of the logit

shock to be $3 million, suggesting that changing producer behavior requires incentives measured

in the millions of dollars. Within provinces, site characteristics have a significant impact on costs,
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Table 4: Supply model parameter estimates

Mean SE
10th

percentile
90th

percentile

Province-specific costs (κm) 9,674*** (856) 6,398 14,655
Province-specific cost trends (αm) -374*** (21) -729 -99
Quadratic costs (δ) 4.50*** (0.80) – –
Cost factors (γ)

Log port distance, km -711 (486) – –
Log road distance, km -333* (199) – –
Log urban distance, km -278 (278) – –
Log carbon in tree biomass, t 206 (540) – –
Log carbon in peat deposits, t -93 (68) – –

Province-specific costs (κem) 22,881,886*** (391,964) 15,804,464 29,636,816
Province-specific cost trends (αem) 88,477*** (15,261) -483,608 625,779
Logit scale (σe) 3,075,006*** (107,831) – –
Cost factors (γe)

Log port distance, km 685,682*** (194,359) – –
Log road distance, km 506,299*** (88,269) – –
Log urban distance, km 267,636** (129,626) – –
Log carbon in tree biomass, t 706,172*** (174,548) – –
Log carbon in peat deposits, t 835 (30,598) – –

The top panel shows intensive-margin parameters, and the bottom panel shows extensive-margin parameters. All
estimates are interpretable in dollar terms (inflation-adjusted to year 2000 dollars). For region-specific parameters, I
include the 10th and 90th percentiles for estimates across regions. I report province-specific costs κm and κem for a
mean year and at mean values for cost factors. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

which are increasing in distances from major ports, roads, and urban centers. This transportation-

cost effect is smallest for distance from urban areas, with higher transportation costs partially offset

by lower land and labor costs in remote regions. Furthermore, tree biomass does discourage mill

construction, as entering heavily forested areas demands significant effort in land development and

may face scrutiny from local governments and native populations. But peat deposits – the main

source of carbon emissions – have little effect on mill construction. Indeed, palm oil producers fail

to internalize their carbon externalities.

7 Counterfactuals: Assessing Coordination and Commitment

This section evaluates the individual and combined roles of coordination and commitment in

determining the impacts of import tariffs. I find that import tariffs can be an effective substitute

for domestic regulation, but only when both coordination and commitment hold.
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7.1 Setting tariffs

I set tariffs to maximize social welfare, penalizing emission damages while also weighing con-

sumer surplus from palm oil use and producer surplus for Indonesia and Malaysia. The domestic

tax, which serves as a benchmark, is also set to maximize social welfare. Unlike the domestic tax,

however, tariffs sidestep domestic obstacles to regulation by directly targeting the prices producers

receive in world markets. In particular, prices equalize across markets in each period t.

PDrt (Qrot )− τt = PDut (Quot )

For example, new EU tariffs cause revenues from EU sales to decline relative to other sales, and

so producers respond by shifting sales to other markets. I assume zero trade costs for simplicity,

but adding exogenous trade costs would be inconsequential because they would be invariant across

tariffs. Furthermore, the above equation connects the three components of the empirical model:

tariffs, demand, and supply. Tariff τt changes world price Pt depending on demand curves PDrt (q)

and PDut (q), and world price Pt in turn affects the investments that produce supply Qrot +Quot .

I focus on uniform tariffs that treat all palm oil equally. The alternative is to condition on

the emissions specific to each unit of palm oil. For example, if palm oil can be certified as green,

then tariffs can differentiate by certification status. In practice, however, tracking production

histories to this extent is difficult. Similarly, I focus on a uniform domestic tax because of its

administrative convenience: it can be applied at the point of sale without the need to monitor

production. Indeed, uniform taxes are common despite being “second-best” relative to a Pigouvian

tax. For example, fuel taxes are uniform despite heterogeneity across vehicles in tailpipe emissions

(Knittel and Sandler 2018). Nonetheless, an alternative is to condition on emissions with site-

specific license fees or ex-post penalties, and my framework can readily accommodate such policies.

I quantify the effects of coordination and commitment by studying the following scenarios. For

coordination, I study tariffs set under three tariff coalitions: all importers together, an EU-China-

India partnership, and the EU alone. For commitment, I study full, no, and limited commitment.

Full commitment assumes that, once set, tariffs are upheld in perpetuity. No commitment assumes

that tariffs are reset every period, with the result being sequential static optimization. Limited

commitment assumes commitment to L-period tariff plans revised every L periods, similar to “five-

year plans” in Indonesia and China or any policy based on decennial census results.

7.2 Solving the model

Counterfactuals require solving the supply model and thus involve an additional set of as-

sumptions over how firms set expectations. I model the non-stationary evolution of demand dt

with an ARIMA process, and I assume firms’ expectations are given by this process. Supply st is

determined endogenously as the result of an entry game in which beliefs are correct in equilibrium.
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Intuitively, if firms believe all other firms will enter, then they will anticipate low prices and not

enter, in which case their beliefs are not consistent with reality. I assume that yields Yit evolve at

a constant and exogenous rate per year. Finally, I assume that while firms know current-period

cost shocks εit and εeit, they only know the distribution of future shocks. Note that estimation does

not rely on these assumptions because the Euler approach estimates the model without solving it.

And while I do need to solve the model for counterfactuals, I still avoid the computational burden

of solving it repeatedly for estimation.

For a given set of tariffs, I solve the model by backward inducting from the steady state.

Suppose the steady state is reached in period S. At this point, all feasible lands are developed

and there is no further development, but plantations continue to generate revenues over the infinite

horizon. Finite lands ensure that such a period exists, but the challenge is that it takes many periods

to exhaust all available land. Backward induction over such a long horizon is computationally

intensive. I address this computation burden in two ways. First, I solve each subproblem using an

iterative algorithm that approximates the solution with a fixed look-ahead horizon instead of always

looking ahead to the end of the game tree. This algorithm breaks the usual curse of dimensionality

in which the state space grows exponentially in the length of the look-ahead window. Second, I

approximate period S by choosing an arbitrary period T < S and solving as if it were the steady

state. This approach is biased if substantial development occurs after period T , but I resolve taking

periods T + 5, T + 10, and so on as the steady state until the solutions converge. Intuitively, entry

today becomes less appealing when competitors have a longer window of opportunity to enter, but

discounting means a diminishing marginal impact of extending this window.

7.3 Quantifying emissions

I quantify carbon emissions by combining the model’s site-level predictions for plantation

development with site-level data on carbon stored both aboveground in trees and belowground in

peat. Assuming plantation development releases carbon stocks completely, these data provide a

direct link to counterfactual emissions.

On the demand side, I ignore the carbon effects of substitution to other oils. I therefore do

not account for substitution to South American soybean oil, which potentially involves Amazonian

deforestation. Three facts mitigate the resulting bias. First, South American soybean oil is only one

of several close substitutes for palm oil: soybean oil is only 32% of total oil consumption, and South

America supplies less than half of soybean crops globally. Second, South American soy does not

destroy peatlands. Amazonian peatlands are concentrated deep in the Amazon, while deforestation

is primarily at the Amazon’s outskirts (Gumbricht et al. 2017; Song et al. 2018). Thus, the carbon

consequences are smaller than those of palm oil, and indeed palm oil emissions would be five to

ten times smaller without peatland destruction. Third, South American deforestation is driven

primarily by cattle and not soy (Souza-Rodrigues 2019).
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On the supply side, I ignore the carbon effects of substitution to other land uses. The primary

threat is substitution to acacia plantations, which also destroy peatlands. I compile data on the

acacia industry and estimate the reduced-form relationship between acacia and palm oil plantation

development in appendix E.2. I find the magnitude of the relationship to be small, at least in partial

equilibrium, with a one-percent reduction in palm oil plantation development corresponding to a

0.02% increase in acacia plantation development. Capturing general equilibrium effects would

require a two-industry model in which producers first choose between palm oil and acacia, then

proceed with the extensive- and intensive-margin investment decisions of the baseline model. But oil

palm is more profitable than other crops – seven times more so than acacia (Sofiyuddin et al. 2012)

– and thus acacia expansion is unlikely to fully offset palm reductions. Conceptually, substitution

toward acacia plantations is a source of supply-side leakage that makes tariffs less effective, and the

policy response is to levy acacia tariffs alongside palm oil tariffs. Mining and selective logging also

drive deforestation in the region, but mining relies on the exogenous distribution of deposits, and

selective logging does not destroy peatlands.

7.4 Import tariffs can be an effective substitute for domestic regulation

Table 5 shows that import tariffs can be effective in reducing carbon emissions. When importers

coordinate on import tariffs, and when they commit to upholding them, carbon emissions are

reduced by 56%. By comparison, the socially optimal domestic tax reduces carbon emissions by

64%. The difference arises from leakage to domestic consumption in Indonesia and Malaysia, which

is not exported and therefore not subject to import tariffs. However, the loss is not disproportionate

because demand in Indonesia and Malaysia is quite inelastic. Indeed, importers impose tariffs nearly

as large as the domestic tax given limited leakage concerns. Finally, the magnitude of the emission

externality leads to a domestic tax that is itself quite large at several times observed prices.

7.5 But only when both coordination and commitment hold

Emission reductions diminish as coordination and commitment weaken. Figure 7a plots emis-

sion reductions under each of the scenarios in table 5. First, weak coordination decreases the level

of achievable emission reductions because importers have relatively elastic demand. Emissions fall

by at most 56% under full coordination among all importers, 17% under an EU-China-India coali-

tion, and 2% under unilateral EU action. These emission reductions fall disproportionately more

than tariff coverage – 80%, 35%, and 12% of world consumption, respectively – because leakage

concerns lead to smaller tariffs. Second, weak commitment can significantly undermine emission

reductions. This effect is especially stark when the commitment period does not exceed time to

build, in which case tariffs and emission reductions are zero. In this case, tariffs have no effect on

new development because new development does not generate taxable production until after the

commitment period has passed. Third, coordination and commitment interact. Figure 7b shows
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Table 5: Counterfactual experiments

$/t NPV ∆% ∆% surplus $/t CO2

Experiment Tax CO2 EU
China

India
Other

Indo

Malay
Avg
cost

Domestic regulation 20,487 -64 -93 -65 -31 -61 20

Import tariffs: full coordination
Full commitment 19,718 -56 -86 -58 -25 -71 24
Limited commitment (20 years) 19,665 -56 -86 -58 -24 -71 24
Limited commitment (10 years) 19,476 -55 -85 -57 -24 -70 24
Limited commitment (5 years) 18,639 -53 -80 -54 -22 -67 24

Import tariffs: EU, China, India
Full commitment 11,573 -17 -49 -32 45 -21 16
Limited commitment (20 years) 11,156 -16 -47 -30 43 -20 16
Limited commitment (10 years) 9,882 -14 -40 -25 38 -18 16
Limited commitment (5 years) 6,445 -9 -23 -13 25 -12 15

Import tariffs: EU only
Full commitment 6,785 -2 -11 10 5 -3 10
Limited commitment (20 years) 6,445 -2 -10 10 5 -3 9
Limited commitment (10 years) 5,466 -2 -7 8 4 -2 9
Limited commitment (5 years) 3,197 -1 -3 5 2 -1 8

The first column shows the net present value of taxes or tariffs in dollars per ton of palm oil. The second column
shows percentage changes in carbon emissions relative to observed net present values, and the third, fourth, fifth,
and sixth columns show percentage changes in surplus by market. Figures for Indonesia and Malaysia combine
consumer and producer surplus, and all figures include government tax or tariff revenue where applicable. The
last column shows average social surplus losses per ton of carbon averted. The first panel is for a socially optimal
domestic tax in Indonesia and Malaysia. The second, third, and fourth panels are for foreign import tariffs under
full coordination among importers, under an EU-China-India coalition, and for the EU alone. Each shows several
commitment scenarios: full commitment over all future periods, and limited commitment in which commitment is
only for five, ten, or twenty years at a time. Under no commitment, tariffs have no effect because they do not affect
new development given time to build. The discount factor is β = 0.9.

how weak coordination increases the importance of commitment. A five-year commitment period

achieves 95% of full-commitment outcomes when all importers coordinate, but does much less under

an EU-China-India coalition or unilateral EU action. These scenarios instead require twenty-year

commitment periods to approach full-commitment outcomes.

The division of surplus highlights why coordination and commitment are difficult to achieve

when countries focus only on their individual outcomes. For coordination, importers gain by defect-

ing from the tariff coalition because they can free-ride on the emission reductions that the coalition

achieves. Furthermore, defectors benefit from leakage as the tariff coalition cuts its consumption

and world prices fall in response. For example, focusing on full commitment, other importers have

25% lower consumer surplus when they join the EU, China, and India in imposing tariffs, but

45% higher consumer surplus when they unilaterally defect. For commitment, acting importers
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Figure 7: Counterfactual emissions

(a) Emission reductions (b) Relative to full commitment

Figure 7a shows emission reductions under several scenarios. Starting at the top, the dotted line shows reductions
under unilateral EU action for each of the commitment periods listed on the x-axis. Emission reductions are zero when
the commitment period does not exceed time to build because otherwise tariffs do not influence new development.
The dashed line shows emission reductions when the EU, China, and India coordinate on import tariffs. The solid
line involves coordination among all importers, excluding domestic consumption in Indonesia and Malaysia. The light
blue line corresponds to the socially optimal domestic tax. Figure 7b rescales emission reductions for the first three
scenarios relative to their levels under full commitment.

have higher surplus when commitment levels are low because low commitment leads to low tariffs

and thus limited sacrifices in consumer surplus. For example, focusing on full coordination, all

importers have higher surplus under five-year commitment than they do under full commitment.

More broadly, the same considerations underscore why Indonesia and Malaysia have not im-

plemented the socially optimal domestic tax. If importers cannot coordinate, then the domestic

tax greatly reduces producer surplus, leaving Indonesia and Malaysia better off accepting import

tariffs. But if importers threaten coordinated tariffs, then the domestic tax becomes appealing.

It has low marginal impact on producer surplus since coordinated tariffs are already high, and it

generates government revenue that would otherwise go to foreign governments.

7.6 Robustness and extensions

Table 6 shows that the qualitative results hold across a series of robustness checks. First,

the baseline model assumes a discount factor of β = 0.9, but effects are larger for lower discount

factors, which imply larger benefits from delaying development. Second, the baseline result relies on

inelastic demand in Indonesia and Malaysia, but elastic demand increases leakage and lowers carbon

reductions, although coordinated, committed tariffs continue to have large effects. Third, I allow

importers under limited commitment to revise their L-year plans several years before the end of

each plan. Early planning prevents tariffs from being set to zero at the start of each regime because

of time to build, and thus lessens the difference between long and short commitment periods.
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Table 6: Robustness and extensions, carbon emission reductions (∆% CO2)

Coordination: All importers EU-China-India EU alone

Commitment: 20-year 5-year 20-year 5-year 20-year 5-year

Baseline -56 -53 -16 -9 -2 -1

Discount factor
β = 0.8 -75 -71 -21 -12 -3 -2
β = 0.85 -65 -61 -18 -11 -3 -1
β = 0.95 -48 -46 -14 -8 -2 -1

Demand elasticity, Indonesia/Malaysia
εDI , εDM = 0.22 -50 -43 -13 -7 -2 -1
εDI , εDM = 0.44 -44 -34 -10 -5 -2 -1
εDI , εDM = 0.66 -39 -28 -8 -4 -1 -1

Limited commitment, early planning -56 -55 -16 -14 -2 -2

Objective function, own surplus only -57 -54 -3 -2 -0 -0

Conditioning on unit-specific emissions -80 -75 -22 -12 -2 -1

Static supply -5 -4 -1 -0 -0 -0

Each cell is one counterfactual experiment. The first panel corresponds to table 5. The second panel changes the
discount factor. The third panel changes the elasticities of Indonesian and Malaysian demand, where 0.66 is the
demand elasticity for other importers. The fourth panel allows planning for the next L-year plan under limited
commitment to begin before the end of each plan. This early planning prevents tariffs from being set to zero at the
beginning of each L-year tariff regime. The fifth panel assumes tariffs are set to maximize the surplus of the acting
coalition, net of its own costs of carbon as computed by Ricke et al. (2018). The sixth panel allows import tariffs to
condition on the emissions specific to each unit of palm oil. The last panel assumes a static supply model.

I also consider other extensions. First, I set tariffs to maximize the acting coalition’s wel-

fare rather than social welfare. I assume the coalition considers only its own proportion of the

social costs of carbon: 1%, 17%, 80%, and 2% for the EU, China/India, other importers, and In-

donesia/Malaysia, respectively, based on pooling the country-level estimates of Ricke et al. (2018).

When importers coordinate, tariffs rise because they improve terms of trade – importers no longer

value Indonesian and Malaysian producer surplus – and importers internalize nearly the full social

cost of carbon. When importers do not coordinate, tariffs decline sharply because small coalitions

internalize only a small part of the social cost of carbon. Second, baseline tariffs are uniform across

all units of palm oil, but conditioning on unit-specific emissions leads to larger carbon reductions

by more efficiently targeting peatland destruction. A non-uniform domestic tax achieves similar

gains: a carbon reduction of 91% relative to 64% in the baseline. Finally, a static supply model

leads to low supply elasticities and much smaller effects for tariffs. Dynamics matter quantitatively.
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8 Conclusion

The conventional approach to environmental regulation focuses on domestic intervention, but

domestic regulation can face major challenges. Governments may prioritize local profits over global

consequences or lack the capacity to enforce regulation. Trade policy offers the international com-

munity a set of tools to intervene when domestic policies fail. This paper argues that trade policy

requires both coordination and commitment to be effective. Without coordination, tariffs are un-

dermined by leakage to unregulated markets. Without commitment, tariffs are reduced over time

as importers give in to static incentives.

I develop an empirical framework for quantifying these forces, and I apply it to the market for

palm oil. The palm oil industry is of first-order importance: deforestation for palm oil plantations

accounts for more CO2 emissions over the last three decades than the entire economy of India.

My framework quantifies the extent to which import tariffs could have reduced these emissions. It

accounts for leakage to unregulated consumer markets, and it captures firms’ dynamic considera-

tions over sunk investment in palm oil plantations and mills. Using data from satellite imagery,

it delivers predictions of plantation development – and therefore deforestation – at a fine level of

spatial disaggregation.

I find coordinated, committed trade policy to be effective, reducing carbon emissions by 56%

compared to 64% under domestic regulation. In the case of Europe, where recent legislation has

targeted palm oil imports, EU import tariffs are most effective when coordinated with other major

importers like China and India, and when regulators can commit to upholding them over the long

term. Coordination and commitment are complements: when either fails, EU action has limited

effects. These findings underscore the significance of the Paris Agreement, as well as the implications

of US withdrawal.

I leave several directions open for future work. First, despite its environmental consequences,

oil palm yields significantly more oil per hectare than any comparable oilseed. Future work might

take a global view of oilseed production and account more explicitly for substitution to other oilseed

crops, including soybeans from the Amazon. Second, given my estimates of the social welfare gains

from coordination, future work might study the dynamic bargaining game that the EU, China,

and India face in deciding whether to form a coalition. Lastly, spatial interaction across palm oil

plantations might create path dependence, which tariffs can leverage to protect carbon-rich regions

by conditioning on where a given unit of palm oil is produced.
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Hoffmann, Munir, Alba Castañeda-Vera, Mark van Wijk, Ken Giller, Thomas Oberthuer, Christopher
Donough, and Anthony Whitbread. Simulating Potential Growth and Yield of Oil Palm (Elaeis Guineen-
sis) with PALMSIM: Model Description, Evaluation and Application. Agricultural Systems, 131:1–10,
2014.

Holmes, Thomas. The Diffusion of Wal-Mart and Economies of Density. Econometrica, 79(1):253–302, 2011.

Hopenhayn, Hugo. Entry, Exit, and Firm Dynamics in Long Run Equilibrium. Econometrica, 60(5):1127–
1150, 1992.

Hotz, V. Joseph and Robert Miller. Conditional Choice Probabilities and the Estimation of Dynamic Models.
Review of Economic Studies, 60(3):497–529, 1993.

Illanes, Gastón. Switching Costs in Pension Plan Choice. 2017.

Jayachandran, Seema, Joost de Laat, Eric Lambin, Charlotte Stanton, Robin Audy, and Nancy Thomas.
Cash for Carbon: A Randomized Trial of Payments for Ecosystem Services to Reduce Deforestation.
Science, 357:267–273, 2017.

Johnson, Harry. Optimum Tariffs and Retaliation. Review of Economic Studies, 21(2):142–153, 1953.

Kalouptsidi, Myrto, Paul Scott, and Eduardo Souza-Rodrigues. Linear IV Regression Estimators for Struc-
tural Dynamic Discrete Choice Models. 2018.

Knittel, Christopher and Ryan Sandler. The Welfare Impact of Second-Best Uniform-Pigouvian Taxation:
Evidence from Transportation. American Economic Journal: Economic Policy, 10(4):211–242, 2018.

Koplitz, Shannon, Loretta Mickley, Miriam Marlier, Jonathan Buonocore, Patrick Kim, Tianjia Liu, Melissa
Sulprizio, Ruth DeFries, Daniel Jacob, Joel Schwartz, Montira Pongsiri, and Samuel Myers. Public
Health Impacts of the Severe Haze in Equatorial Asia in September–October 2015: Demonstration of
a New Framework for Informing Fire Management Strategies to Reduce Downwind Smoke Exposure.
Environmental Research Letters, 11:094023, 2016.

Kortum, Samuel and David Weisbach. The Design of Border Adjustments for Carbon Prices. National Tax
Journal, 70(2):421–446, 2017.

35



Magnac, Thierry and David Thesmar. Identifying Dynamic Discrete Decision Pro- cesses. Econometrica, 70
(2):801–816, 2002.

Man, Elaine Lau Ying and Adam Baharum. A Qualitative Approach of Identifying Major Cost Influencing
Factors in Palm Oil Mills and the Relations towards Production Cost of Crude Palm Oil. American
Journal of Applied Sciences, 8(5):441–446, 2011.

Markusen, James. International Externalities and Optimal Tax Structures. Journal of International
Economics, 5:15–29, 1975.

Marsiliani, Laura and Thomas Renström. Time Inconsistency in Environmental Policy: Tax Earmarking as
a Commitment Solution. Economic Journal, 110(462):C123–C138, 2000.

Morales, Eduardo, Gloria Sheu, and Andrés Zahler. Extended Gravity. Review of Economic Studies, 86:
2668–2712, 2019.

Nordhaus, William. Climate Clubs: Overcoming Free-riding in International Climate Policy. American
Economic Review, 105(4):1339–1370, 2015.

Oates, Wallace and Paul Portney. The Political Economy of Environmental Policy. Handbook of
Environmental Economics, 1:325–354, 2003.

Official Journal of the European Union. European Parliament Resolution of 4 April 2017 on Palm Oil and
Deforestation of Rainforests, 2018.

Oliva, Paulina. Environmental Regulations and Corruption: Automobile Emissions in Mexico City. Journal
of Political Economy, 123(3):686–724, 2015.

Pakes, A., J. Porter, Kate Ho, and Joy Ishii. Moment Inequalities and Their Application. Econometrica, 83
(1):315–334, 2015.

Pakes, Ariel. Alternative Models for Moment Inequalities. Econometrica, 78(6):1783–1822, 2010.

Pakes, Ariel, Michael Ostrovsky, and Steven Berry. Simple Estimators for the Parameters of Discrete
Dynamic Games (with Entry/Exit Examples). RAND Journal of Economics, 38(2):373–399, 2007.

Palm Oil Analytics. Essential Palm Oil Statistics. Technical report, 2017.

Parks, Richard. Efficient Estimation of a System of Regression Equations when Disturbances are Both
Serially and Contemporaneously Correlated. Journal of the American Statistical Association, 62(318):
500–509, 1967.

Pesendorfer, Martin and Philipp Schmidt-Dengler. Asymptotic Least Squares Estimators for Dynamic
Games. Review of Economic Studies, 75:901–928, 2008.

Peters, Glen, Jan Minx, Christopher Weber, and Ottmar Edenhofer. Growth in Emission Transfers via
International Trade from 1990 to 2008. Proceedings of the National Academy of Sciences, 108(21):8903–
8908, 2011.

Rauscher, Michael. International Trade, Factor Movements, and the Environment. Oxford University Press,
Oxford, 1997.

Ricke, Katharine, Laurent Drouet, Ken Caldeira, and Massimo Tavoni. Country-Level Social Cost of Carbon.
Nature Climate Change, 8:895–900, 2018.

Ryan, Stephen. The Costs of Environmental Regulation in a Concentrated Industry. Econometrica, 80(3):
1019–1061, 2012.

Scott, Paul. Dynamic Discrete Choice Estimation of Agricultural Land Use. 2013.

36



Shapiro, Joseph. The Environmental Bias of Trade Policy. 2020.

Sofiyuddin, Muhammad, Arief Rahmanulloh, and S. Suyanto. Assessment of Profitability of Land Use
Systems in Tanjung Jabung Barat District, Jambi Province, Indonesia. Open Journal of Forestry, 2(4):
252–256, 2012.

Song, Xiao-Peng, Matthew Hansen, Stephen Stehman, Peter Potapov, Alexandra Tyukavina, Eric Vermote,
and John Townshend. Global Land Change from 1982 to 2016. Nature, 560:639–643, 2018.

Souza-Rodrigues, Eduardo. Deforestation in the Amazon: A Unified Framework for Estimation and Policy
Analysis. Review of Economic Studies, 86:2713–2744, 2019.

USDA Foreign Agricultural Service. Indonesia Biofuels Annual Report 2019. Technical report, 2019a.

USDA Foreign Agricultural Service. Malaysia Biofuels Annual Report 2019. Technical report, 2019b.

Wagstaff, Kiri, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained K-means Clustering with
Background Knowledge. Proceedings of the Eighteenth International Conference on Machine Learning, 1:
577–584, 2001.

Warren, Matthew, Kristell Hergoualc’h, J. Boone Kauffman, Daniel Murdiyarso, and Randall Kolka. An
Appraisal of Indonesia’s Immense Peat Carbon Stock Using National Peatland Maps: Uncertainties and
Potential Losses from Conversion. Carbon Balance and Management, 12:12, 2017.

World Bank. The Cost of Fire: An Economic Analysis of Indonesia’s 2015 Fire Crisis. Technical report,
World Bank Group, Washington, DC, 2016.

World Wildlife Fund. Palm Oil Buyers Scorecard: Measuring the Progress of Palm Oil Buyers. Technical
report, 2016.

Xu, Yidi, Le Yu, Wei Li, Philippe Ciais, Yuqi Cheng, and Peng Gong. Annual Oil Palm Plantation Maps in
Malaysia and Indonesia from 2001 to 2016. Earth System Science Data, 12:847–867, 2020.

Zarin, Daniel, Nancy Harris, Alessandro Baccini, Dmitry Aksenov, Matthew Hansen, Claudia Azevedo-
Ramos, Tasso Azevedo, Belinda Margono, Ane Alencar, Chris Gabris, Adrienne Allegretti, Peter Potapov,
Mary Farina, Wayne Walker, Varada Shevade, Tatiana Loboda, Svetlana Turubanova, and Alexandra
Tyukavina. Can Carbon Emissions from Tropical Deforestation Drop by 50% in 5 Years? Global Change
Biology, 22:1336–1347, 2016.

37



A Appendix: Theory

I derive optimal tariffs, illustrating the leakage and commitment problems, and I consider
extensions for heterogeneous emissions and terms-of-trade effects.

A.1 Import tariffs under incomplete regulation and sunk investment

Domestic regulation

In the absence of an unregulated market, I denote the total inverse demand curve by PDt (q).
Social welfare depends on the path of new development {Qnt , Qnt+1, . . .}, as well as prior, old
development Qot , which is sunk. New development becomes old development by law of motion
Qot+1 = Qnt +Qot . For discount factor β,

Wt(Q
n
t , Q

n
t+1, . . . ;Q

o
t ) =

∞∑
s=0

βsEt
[ ∫ Qot+s

0
PDt+s(q)dq −

∫ Qot+s+Q
n
t+s

Qot+s

(
PSt+s(q) + e

)
dq

]
,

where Qot+s = Qot +Qnt +Qnt+1 + · · ·+Qnt+s−1. Domestic regulation can directly target new develop-
ment in the current period with an upfront development tax τ̃t. In equilibrium, new development
equalizes marginal cost and expected revenue.

PSt
(
Qo∗t+1(τ̃t)

)
=
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s=1

βsEt
[
PDt+s

(
Qo∗t+s(τ̃t)

)]
− τ̃t .

Assuming an interior solution Qn∗t (τ̃t) > 0, the first order condition and resulting tax are

dWt

dτ̃t
= (τ̃t − e)

dQnt
dτ̃t

= 0 , τ̃FBt = e ,

where upfront tax τ̃t only directly affects contemporaneous new development Qnt , and where I apply
the envelope theorem in ignoring second-order effects on new development in future periods.

The leakage problem

To isolate the leakage problem, I first suppose that importers are able to impose tariff τ̃t on
development directly, as is possible under domestic regulation. The difference is that producers can
choose between regulated market r and unregulated market u. Social welfare is

Wt(Q
rn
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un
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t )

=
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)
dq

]
.

New development equalizes marginal cost and revenue and is indifferent across markets.

PSt
(
Qo∗t+1(τ̃t)

)
=

∞∑
s=1

βsEt
[
PDrt+s

(
Qro∗t+s(τ̃t)

)]
− τ̃t =

∞∑
s=1

βsEt
[
PDut+s

(
Quo∗t+s(τ̃t)

)]
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Development tariff τ̃Lt only directly affects new development Qnt . Assuming an interior solution,
the first order condition and resulting tariff are

dWt

dτ̃t
= (τ̃t − e)

dQrnt
dτ̃t

− edQ
un
t

dτ̃t
= 0 , τ̃Lt =

(
εSt

εSt −
Quot+1

Qot+1
εDut+1

)
e < τ̃FBt , (11)

for elasticities εSt > 0 and εDut+1 < 0 evaluated at quantities Qot+1 ≡ Qo∗t+1(τ̃
L
t ) and Quot+1 ≡ Quo∗t+1(τ̃

L
t ),

respectively. Elasticity of regulated demand εDrt+1 < 0 does not enter the tariff itself, although tariffs
do have smaller effects on quantities and welfare as εDrt+1 shrinks. If Quot+1 = 0, then τ̃Lt = τ̃FBt .

The leakage problem is limited when supply is elastic or unregulated demand is inelastic. In
the first case, tariffs have limited effects on world prices; in the second case, world prices do fall
but unregulated consumption does not increase in response. In both cases, tariffs do not affect
unregulated consumption, and so they approach the size of the first-best tax. The leakage problem
is also limited when the unregulated share of consumption is small. Conversely, elastic unregulated
demand leads to a severe leakage problem and pushes tariffs to zero. Tariffs also go to zero when
supply is inelastic, in which case tariffs produce allocative inefficiency without reducing emissions.

The commitment problem

In reality, importers cannot impose an upfront tax τ̃t directly on new development Qnt . Rather,
they can only target individual units of consumption at each point in time. This constraint has
two consequences. First, given time to build, this constraint means that tariffs today cannot target
new development directly. Time to build implies that new development does not begin production
until the next period, and so this new development is unaffected by tariffs on consumption today.
New development is instead governed by the stream of future tariffs {τt+1, τt+2, . . .}. Second, the
allocation of consumption between markets can shift from period to period depending on the tariffs
in place. This shifting occurs because producers reallocate sales toward higher-priced markets in
each period until the prices they receive are equalized. Such reallocation does not occur with
upfront tax τ̃t because producers that have paid taxes upfront have no further cost of selling to the
regulated market and therefore no incentive to reallocate sales.

To see the implications, it becomes convenient to rewrite social welfare as

Wt(Q
ro
t , Q

ro
t+1, . . . , Q

uo
t , Q

uo
t+1, . . . ;Q

o
t )

=
∞∑
s=0

βsEt
[ ∫ Qrot+s

0
PDrt+s(q)dq +

∫ Quot+s

0
PDut+s(q)dq −

∫ Qot+s+1

Qot+s

(
PSt+s(q) + e

)
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,

with the following equilibrium conditions for all s ≥ 0.

PSt+s
(
Qo∗t+s+1(τ)

)
=

∞∑
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)
.

The first order condition and resulting tariff for s = 0 show the source of the commitment problem.

dWt

dτt
= τt

dQrot
dτt

= 0 , τt = 0

From the perspective of time t, tariffs τt have no effect on new development because of time to
build, and no effect on prior development because it is sunk. In the presence of leakage, tariffs
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distort the allocation of consumption across markets, and as such are set to zero. Importers that
sequentially choose static optima in a no-commitment scenario will therefore never impose tariffs.

τ̃NC
t = τNC

t = 0

In the absence of leakage, there is no such problem:
dQrot
dτt

= 0, and the first order condition is
satisfied without setting tariffs to zero.

Under limited commitment, I assume that importers commit to L-period tariff plans that get
revised every L periods. Indeed, this scenario is common in practice: Indonesia and China both
conduct national planning under “five-year plans,” and the US revises many policies based on
decennial census results. In each new commitment regime, importers treat prior development as
sunk and thus set the regime’s initial tariffs to zero.

τLCt = τLCt+L = τLCt+2L = · · · = 0

The remaining tariffs are set anticipating these periodic breaks. With the goal of highlighting
intuition and obtaining manageable closed-form expressions, I simplify the problem by assuming
that the demand and supply curves are constant over time. I relax this simplifying assumption in
the empirical implementation by solving numerically.

Under time-invariant demand and supply curves, the problem simplifies because the non-zero
tariffs will also be time-invariant. To see why, note that the first order condition for a tariff τt+s is

dWt

dτt+s
= [βτt+s − (1− β)e]

dQrot+s
dτt+s

− (1− β)e
dQuot+s
dτt+s

= 0 ,

nesting dWt
dτt+s

= τt+s
dQrot+s
dτt+s

= 0 given
dQot+s
dτt+s

= 0 for s ∈ {0, L, 2L, . . .}. But
dQrot+s
dτt+s

and
dQuot+s
dτt+s

are
time-invariant because the demand and supply curves are time-invariant, and thus τt+s = τ for all
s 6∈ {0, L, 2L, . . .}. Furthermore, any response to announced tariffs will occur in the initial period.
To see why, suppose not. Development in a later period must be profitable in that period, but if
so then developing in the first period and generating revenues for the interceding periods is more
profitable: flow profits do not decrease over time because demand, supply, and tariffs are fixed.
Thus, development in a later period is not profit-maximizing.7

Social welfare therefore depends only on two allocations of consumption across markets: that
under zero-tariff periods and that under non-zero-tariff periods. The key mechanism is that these
allocations differ because producers can shift sales away from the regulated market where tariffs
are in place, and toward the regulated market when they are not.
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]
−
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Qot

(
PS(q) + e

)
dq ,

7 A benefit of developing later is that it delays development costs. But if firms prefer to delay, then they will do so
forever given constant supply and demand over time. In this case, developing later is not optimal to begin with.
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with (Qrot+1, Q
uo
t+1) when tariffs are in place and (Qrot+L, Q

uo
t+L) when they are not. In equilibrium,
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∀ t, given τt+s =
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,

and Qrot+1 +Quot+1 = Qrot+L +Quot+L. The first order condition is
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dτ
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β
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τ − e
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dτ
− e
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Assuming an interior solution, the net present value of the stream of tariffs given by τ is

τ̃LCt (L) =

(
εSt
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Quot+1

Qot+1
εDut+1

[
1 + (1−β)βL
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for elasticities εSt > 0 and εDrt+1, ε

Dr
t+L, ε

Du
t+1, ε

Du
t+L < 0, and quantities and prices evaluated at τLC.

For simplicity I assume constant elasticities of demand. Per-period tariff τLC is

τLCt (L) =

(
β

1− β
− βL

1− βL

)−1
τ̃LCt (L) .

Total tariffs τ̃LCt (L) are increasing in L, with L→∞ corresponding to full commitment and L = 2
to the minimum binding level of commitment.

τ̃LCt (L) <

(
εSt

εSt −
Quot+1

Qot+1
εDut+1

)
e = lim

L→∞
τ̃LCt (L) = τ̃Ct = τ̃Lt .

Lastly, the same mechanism also applies in the more general case if tariffs are declining over
time. Indeed, importers that take a sequential static approach to setting tariffs will be governed by
equations 11, which imply declining tariffs if the elasticity of supply is declining over time. Such will
be the case when the marginal costs of development are increasing as development progresses from
more suitable lands to less suitable lands. At the extreme, tariffs are set to zero once all feasible
lands are exhausted: at this point, tariffs cannot reduce emissions because prior development is
sunk, and no new development is possible. Thus, as tariffs decline, producers will be able to
reallocate sales toward the regulated market as shown above.

How leakage and commitment interact

I study how leakage (given εDut+1, ε
Dr
t+1, and εSt ) and commitment (given L) interact to determine

total tariffs τ̃LCt (L). First, τ̃LCt (L) increases more rapidly in L for smaller |εDut+1|.

lim
εDut+1→0

τ̃LCt (L) = e > 0 = lim
εDut+1→−∞

τ̃LCt (L)
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Figure A1: Total tariffs by leakage and commitment
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For various values of each leakage-relevant elasticity – namely elasticity of unregulated demand εDu, elasticity of
regulated demand εDr, and elasticity of supply εS – I plot the relationship between total tariffs τ̃LC and the length
of commitment L. The solid navy lines show the relationship for large values of the elasticities, the dashed navy lines
for small values, and the light blue lines for intermediate values. Each of the values differs by an order of magnitude.
Emissions e represents the externality, and M is an arbitrarily large number.

Second, τ̃LCt (L) increases more rapidly in L for larger |εDrt+1|, although this effect is relatively small.
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Third, τ̃LCt (L) increases more rapidly in L for larger εSt .
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Figure A1 graphs these relationships. As above, the leakage problem is most severe when unreg-
ulated demand is elastic or supply is inelastic. The elasticity of regulated demand plays a more
limited role.8

A.2 Heterogeneous emissions

The baseline model treats emissions as homogeneous over space, but in reality there is spatial
variation in carbon stocks. In the absence of leakage, the first-best regulation is Pigouvian, with
higher tariffs for higher-emission goods. In practice, however, tracing goods to their emissions is

8 It affects the scope for shifting but not the mechanism itself. In particular, commitment is more important when
regulated demand is inelastic, in which case the need to shift toward the unregulated market is small: the tariff
displaces only a small quantity, and regulated consumers bear the brunt of the tariff.
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difficult and imperfect.9 I therefore focus on a uniform tariff that treats all goods equally.

Consider incomplete regulation under commitment. The regulator considers consumption util-
ity, for which clean and dirty products are perfect substitutes, and production costs, which vary
both privately and socially. I again focus on the simple case of an initial period with no prior devel-
opment and time-invariant demand and supply curves. Social welfare depends on the consumption
of each good in each market.
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(
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)
dq ,

where 0 < ec < ed. In equilibrium, new development – clean and dirty – equalizes marginal cost
and marginal revenue. The equilibrium conditions bind when sales of a given product to a given
market are positive, otherwise marginal cost exceeds marginal revenue. For per-period tariffs τk,
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If clean and dirty consumption must face equal tariffs (τ c = τd = τ), then all four equilibrium
conditions bind simultaneously. The first order condition and optimal tariff are
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for εSc, εSd > 0, εDu < 0, and Q1 = Qc1 +Qd1 = Qr1 +Qu1 . The first best is special case Qu1 = 0.
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ed > τC

In both cases, these “second-best” uniform tariffs are weighted averages of emission levels as in
Diamond (1973), with weights given by level-specific supply elasticities.

A.3 Terms-of-trade effects

The baseline model also rules out terms-of-trade effects. This classic motivation for import
tariffs arises because tariffs in large markets can change world prices and therefore improve terms
of trade at the expense of other countries (Johnson 1953). The objective function in the baseline

9 Several certification schemes exist for palm oil, with the Roundtable on Sustainable Palm Oil being most prominent.
Two tiers of differentiation – certified or not – is common and insufficient for a Pigouvian tax that differentiates
across emission levels. Furthermore, these schemes have their own commitment problems. A common criticism is
that they certify palm oil from previously deforested lands on the grounds that it involves no new emissions.
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model is global social welfare, and so the regulator fully internalizes these effects by construction.

Suppose instead that the regulator considers only consumer surplus in the regulated market
alongside the emissions externality. For simplicity, I analyze an initial period with no prior devel-
opment and time-invariant demand and supply curves. For per-period tariff τ under commitment,
the objective function is

W1(Q
r
1, Q

u
1) =

1

1− β

∫ Qr1

0

(
PDr(q)− PDr(Qr1) + τ

)
dq −

∫ Q1

0
edq .

In equilibrium, marginal entry is indifferent between markets.

PS
(
Q∗1(τ)

)
=

1

1− β

(
PDr

(
Qr∗1 (τ)

)
− τ
)

=
1

1− β

(
PDu

(
Qu∗1 (τ)

))
Assuming Qr∗1 (τ), Qu∗1 (τ) > 0, the first order condition and optimal per-period tariff are

dW1

dτ
= −Qr1

dPDr

dQr1

dQr1
dτ

+ τ
dQr1
dτ

+Qr1 − (1− β)e
dQ1

dτ
= 0 ,

τC = (1− β)

(
εS

εS − Qu1
Q1
εDu

)
e︸ ︷︷ ︸

emissions

+ (1− β)

( Qr1
Q1
PS

εS − Qu1
Q1
εDu

)
︸ ︷︷ ︸

terms of trade

,

for quantities Qk1 ≡ Qk∗1 (τ), prices PS ≡ PS∗(τ), and elasticities εS > 0 and εDu < 0. The first-best
tariff is the special case with Qu1 = 0.

τFB = (1− β)

(
e+

PS

εS

)
> τC

In both cases, I obtain an additional terms-of-trade term, although this term is dominated when
the emissions externality is large.
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B Appendix: Data

This section lists data sources and discusses the construction of data on palm oil plantations,
mills, yields, and carbon stocks.

B.1 Data sources

Table B1: Palm oil plantations and mills

Source Period Coverage Description

Xu et al. (2020) 2001-2016
Indonesia,
Malaysia

Palm oil plantations over time, 100m resolution

Song et al. (2018) 1982-2016 World Land cover change over time, 5.6km resolution

WRI Universal
Mill List

2018
Indonesia,
Malaysia

List of mill coordinates

CIFOR mill list 2017 Indonesia List of mill coordinates

Economic census 2016 Indonesia Palm oil firms by village

Malaysian Palm
Oil Board

2016 Malaysia Palm oil mills by region

Google Earth 1987-2018 Indonesia Historical satellite images of mill coordinates

Table B2: Yields

Source Period Coverage Description

WorldClim 1970-2000 World Average monthly solar radiation and precipitation

World Bank
INDO-DAPOER

1996-2010 Indonesia Annual yields by province

Indonesian Ministry
of Agriculture

2011-2017 Indonesia Annual yields by province

Malaysian Palm
Oil Board

1990-2018 Malaysia Annual yields by state

Table B3: Land characteristics

Source Period Coverage Description

World Port Index 2019 World Port coordinates

World Port Source 2020 World Port coordinates

Global Roads
Inventory Project

2018 World Road networks

Gumbricht et al. (2017) 2011 World Peatlands and depth, 231m resolution

Zarin et al. (2016) 2000 World Aboveground biomass, 30m resolution

Hansen et al. (2013) 2001-2018 World Tree cover loss, 30m resolution
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Table B4: Consumption and world prices

Source Period Coverage Description

USDA Foreign
Agricultural Service

1960-2019 World
Annual consumption, production, area harvested,
imports, and exports by country and oilcrop

IMF, World Bank 1980-2019 World Monthly prices by oilcrop

World Bank 1980-2019 World Inflation

Global Meteorological
Forcing Dataset

1980-2016 World Daily precipitation and temperature, 28km resolution

Database of Global
Administrative Areas

2018 World GIS maps of administrative boundaries

B.2 Plantations and mills

Spatial panel data on palm oil plantations from 2001 to 2016 come from Xu et al. (2020), who
construct the data at a resolution of 100 meters from Phased Array type L-band Synthetic Aperture
Radar (PALSAR), PALSAR-2, and Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite imagery. The data measure how much of each tile is covered by palm oil plantations,
inclusive of both young and mature palm as well as both industrial and smallholder plantations.
I use midpoints of the upper and lower bounds in years where bounds are provided, and point
estimates otherwise. I aggregate the data to the 30-arc-second resolution (approximately 1 km2)
by averaging. As discussed in Xu et al. (2020), I impose that development is uni-directional, such
that the proportion of development for each tile is non-decreasing over time. Xu et al. (2020)
restrict their attention to Sumatra, Kalimantan, Riau, and Malaysia, and I do the same in my
analysis. These regions cover virtually all palm production in Indonesia and Malaysia during the
period of study, although Papua and Sulawesi remain important frontiers for future expansion.

I extend the plantations data back to 1988 using data on tree canopy cover from Song
et al. (2018), who analyze satellite imagery from the Advanced Very High Resolution Radiometer
(AVHRR), MODIS, and Landsat Enhanced Thematic Mapper Plus (ETM+). These data extend
from 1982 to 2016, overlapping the Xu et al. (2020) data from 2001 to 2016. Focusing on tiles
that the Xu et al. (2020) data identify as having plantation development, I estimate the empirical
relationship between plantation development and tree cover loss during the period of overlap, and
I use these estimates to impute plantation development prior to 2001. For tiles i in years t,

∆Plantation it =

3∑
s=0

βs∆Tree coverit−s + εit , (12)

where ∆Plantation it is new plantation development and ∆Tree coverit−s terms are tree cover loss
in the preceeding periods. The Song et al. (2018) data are at 5.6-km resolution, so I downscale
them to match the 1-km resolution of the aggregated Xu et al. (2020) data. Table B5 shows the
resulting estimates: negative coefficients indicate that more plantation development corresponds
to higher tree cover loss, especially over the preceeding two years. For each tile, I combine the
predicted changes in plantation development with the observed levels in 2001 to impute pre-2001
plantation development, imposing a minimum of zero for plantation development. The downscaling
of the coarser Song et al. (2018) implies that the imputed data should not be analyzed below a
resolution of 5.6km, and indeed my core analysis analyzes aggregated sites and not individual tiles.
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Table B5: Xu et al. (2020) plantation vs. Song et al. (2018) tree cover data, 2001-2016

∆Plantationt ∆Plantationt ∆Plantationt

∆Tree covert -0.00314*** -0.00253*** -0.00261***
(0.000156) (0.000155) (0.000153)

∆Tree covert−1 -0.00524*** -0.00441*** -0.00435***
(0.000192) (0.000191) (0.000190)

∆Tree covert−2 -0.00102*** 0.000203 0.000414**
(0.000194) (0.000193) (0.000193)

∆Tree covert−3 -0.000672*** 6.42e-05 7.27e-05
(0.000162) (0.000161) (0.000160)

Year FE x x x
District FE x
Tile FE x
Observations 9,098,040 9,098,040 9,098,040

Each observation is a 30-arc-second tile in a given year, and each column is a regression. The dependent variable is
from Xu et al. (2020), which measures the ratio of each tile that has been developed into palm oil plantations over
time. The independent variables come from Song et al. (2018), which measures the ratio of each tile that is covered
by tree canopy over time. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure B1 plots the resulting data. First, imposing uni-directional development rules out exit.
Indeed, there is little exit in the data to begin with, and in any case plantation development releases
carbon emissions irreversibly. Second, the tree cover data imply a reasonable pattern of plantation
development pre-2001. Third, I verify the quality of the satellite data, both observed and imputed,
by comparing them to aggregate figures from government statistics. The data match well, although
the satellite data reveals modestly higher levels of plantation development in later years.

Spatial data on palm oil mills come from the 2018 Universal Mill List (UML), a joint effort
led by the World Resources Institute and Rainforest Alliance that collects data from palm oil
processors, traders, corporate consumers, and NGOs. Mills are geocoded and manually verified by
satellite. I combine these data with the 2017 Center for International Forestry Research (CIFOR)
database, an independent effort that combs traceability reports for major palm oil processors and
also verifies coordinates manually by satellite. I merge the datasets spatially, matching mills within
one kilometer of each other, and I validate mills with Landsat and DigitalGlobe satellite images
from Google Earth by identifying nearby plantations, storage tanks, and effluent ponds. I omit mills
in Java, which houses refineries and administrative offices but few plantations. I correct coordinates
where necessary, and I use historical satellite images from Google Earth to determine the timing
of mill construction. For each mill, I record the first year in which I observe mill construction.

In this way, I identify 1,521 palm mills as of 2016. I verify the data by comparing them to
official government data from the Indonesian economic census and Malaysian Palm Oil Board.10

Table B6 shows that the total number of mills matches well, as does the overall spatial distribution.
Discrepancies in regional counts are concentrated in the Indonesian data, where the census often
records firm locations based on administrative offices and not milling facilities.

10 The 2016 Indonesian economic census contains 1,248 palm-oil establishments, of which 1,154 are located outside
of Java. Focusing on firms involved in extracting crude oil from crops, I obtain 1,070 firms that produce either
crude palm or palm kernel oil (KBLI codes 10431 and 10432, respectively).
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Figure B1: Total plantations over time (Mha)

(a) With vs. without exit (b) Observed vs. extended (c) Satellite vs. government data

The left figure shows how imposing no exit affects the Xu et al. (2020) data. The middle figure shows the Xu et al.
(2020) data in navy and the extended data in light blue, where I extend the data using tree cover data from Song
et al. (2018) (based on table B5). The right figure compares the satellite data to USDA FAS data.

Table B6: Mill counts by region, mill data vs. government figures

Mill data
Government

figures

Indonesia 1050 1070
Kalimantan 328 260
Central Sumatra 264 358
North Sumatra 225 237
South Sumatra 204 178
Sulawesi 21 30
Papua 8 7

Malaysia 471 453
Peninsular Malaysia 266 247
Sabah 132 129
Sarawak 73 77

Total 1521 1523

Mill data and government figures are both for 2016. Mill data come from the Universal Mill List and CIFOR. Indonesia
government data come from the economic census, and Malaysian government data come from the Malaysian Palm
Oil Board. Regions are in descending order by number of mills. Kalimantan includes the provinces of North, South,
East, West, and Central Kalimantan; Central Sumatra includes West Sumatra, Riau, and Kepulauan Riau; North
Sumatra includes North Sumatra and Aceh; South Sumatra includes South Sumatra, Bangka Belitung, Bengkulu,
Jambi, and Lampung; Sulawesi includes North, South, Southeast, West, and Central Sulawesi, and Gorontalo; Papua
includes Papua and West Papua. Peninsular Malaysia includes all states other than Sabah and Sarawak.

I lightly harmonize to ensure consistency between the plantation and mill data. First, I assign
plantations to the nearest mill in 2016, and I assume these assignments are consistent over time.
Second, I drop plantations and mills that do not meet industry standards. Plantations must be
within 50 kilometers of a mill, as oil palm fruit deteriorates rapidly after harvest and thus cannot be

48



Figure B2: Harmonized plantation and mill data over time

(a) Total plantations (Mha) (b) Total mills

Light blue lines show unharmonized data, and navy lines harmonized data. Harmonization drops plantations and
mills cannot be made consistent with each other, and dashed light blue lines show the effects of dropping these data.

Table B7: Proportion of data impacted by harmonization

All Within province

Plantations Mills Plantations Mills

Dropped (%) 1.83 0.91 2.06 1.06
Adjusted (%) 11.98 12.23 11.95 11.95

Total (%) 13.80 13.14 14.00 13.01

The table shows the proportion of plantations and mills affected by harmonization. The first two columns assign
plantations to the nearest existing mill within 50 kilometers, while the last two columns further impose that plantations
be in the same province as their assigned mills. Harmonization adjusts the timing of plantation and mill investment
to avoid plantations that predate their assigned mills, dropping data that cannot be reconciled in this way.

processed without nearby mills. Mills must have at least 1,000 hectares of plantations, which is the
minimum required to run a small mill at capacity.11 Third, I adjust the data to avoid plantations
that pre-date their assigned mills.12 I weight the plantation and mill data equally, which balances
delaying plantation development against advancing mill construction.

Figure B2 and table B7 show the modest impacts of harmonization. I further impose that
plantations be linked to mills within the same province (Indonesia) or state (Malaysia). This
assumption simplifies computation in defining potential sites because it allows me to define sites
separately by region, and table B7 shows that it has little marginal effect.13

11 Each year, 1,000 hectares with a yield of 3 tons of palm oil per hectare will produce 3,000 tons, matching the
capacity of a small mill that processes 1 ton per hour for 10 hours per day for 300 days per year.

12 The plantation data record when young palm trees have been established, and the mill data record when mill
construction begins. Proximity to an under-construction mill ensures that young palm trees will have access to an
operational mill by the time they reach maturity and begin to bear fruit.

13 There is also anecdotal support for plantations’ staying within these borders to avoid licensing with multiple
regional governments. Since they are small and contain no mills, I combine Kuala Lumpur, Labuan, Perlis, and
Putrajaya with neighboring states Selangor, Sabah, Kedah, and Selangor.
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Figure B3: Potential palm oil yields

(a) Simulated vs. flattened yield curve (b) Potential yield at maturity by site

Yield curves are computed from the PALMSIM model (Hoffmann et al. 2014) using field-level average monthly solar
radiation and precipitation from WorldClim. To facilitate computation, I aggregate climate inputs and run the
PALMSIM model at the site level, with sites defined in appendix section D.1. On the left, the light blue curve shows
the average output of the PALMSIM model, and the navy blue line flattens the curve to two levels – “immature”
(zero-yield) and “mature” – while maintaining the same average over time. Shaded areas show standard deviations.
On the right, I show the dispersion of (flattened) mature yields across sites.

B.3 Yields

I construct data on palm oil yields by site over time by combining cross-sectional, site-level data
on potential yields from the PALMSIM model of Hoffmann et al. (2014) with panel, province-level
data on attained yields from government statistics.

First, I compute potential yields by site using the agronomic PALMSIM model of Hoffmann
et al. (2014), which predicts yields under optimal growing conditions as a function of climate. As
inputs, I use average monthly solar radiation and precipitation from WorldClim, which measures
these variables at a resolution of 30 arc-seconds. I aggregate to the site level, where sites are as
defined in appendix section D.1, and I run the PALMSIM model for each site. Figure B3a shows the
resulting 30-year yield curve, which starts at zero before increasing steeply then declining gradually.
Because the data on attained yields distinguish only between “immature” and “mature” crops, I
flatten the curve to these levels while holding fixed the average yield over time. Figure B3b shows
the variation in the flattened yields at maturity. These data are time-invariant because yields under
optimal conditions are an inherent characteristic of the oil palm plant.

Second, I compile data on attained yields by province and year from government statistics,
namely the Indonesian Ministry of Agriculture, the World Bank INDO-DAPOER database (via
the Indonesian MoA), and the Malaysian Palm Oil Board. Each reports yields for mature crops,
omitting immature crops that do not yet produce fruit. Figure B4a shows that, on average, these
yields are increasing over time as technology improves, although attained yields fall far short of the
maximum potential yields in all provinces and years.14 Across provinces and years, the average
observed annual yield per hectare is 3.30 tons.

14 Compositional changes in the age mix of palm oil crops may also account for changes in realized yields over time.
However, there are two effects that potentially offset each other: newly planted crops increase average yields as
they reach their peak yields, while aging crops decrease average yields as their yields decline with age.
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Figure B4: Attained and attainable palm oil yields over time

(a) Attained yields by province-year (t/ha/year) (b) Attainable yields by site-year (t/ha/year)

On the left, each observation is the annual attained yield for a given province (Indonesia) or state (Malaysia) as
recorded in government statistics. Data come from the Indonesian Ministry of Agriculture, World Bank INDO-
DAPOER, and Malaysian Palm Oil Board. On the right, each observation is the annual attainable yield for a given
site computed by combining site-level potential yields from PALMSIM with province-year-level attained yields from
government statistics. For both, fitted lines show common time trends accounting for province/state fixed effects.

Lastly, I combine these data to produce estimates of attainable yields by site and year. Suppose
the desired attainable yields Yit in sites i and years t are products of site-specific, time-invariant
potential yields Y p

i and province-specific, time-varying yield gaps γmt.

Yit = (1− γmt)Y p
i (13)

The underlying restriction is that, while potential yields are allowed to vary by site, yield gaps are
fixed across sites in a given province-year. Yield gaps are a function of known quantities.∑

i∈Im Yitdit∑
i∈Im dit

= Ymt ⇒ γmt = 1− Ymt
(∑

i∈Im Y
p
i dit∑

i∈Im dit

)−1
,

where attained yields Ymt, potential yields Y p
i , and plantation development dit are known. To

isolate the underlying levels and trends of these yield gaps, I estimate the specification

γmt = αm + βt+ εmt ,

and I use the fitted values to estimate attainable yields Yit with equation 13. In doing so, I
extrapolate back before 1990 for Malaysia and 1996 for Indonesia. Figure B4b shows the resulting
estimates, which combine the uptrend of figure B4a with the site-level dispersion of figure B3b.

B.4 Carbon stocks

I compute carbon stocks over space using two datasets, which I aggregate to a resolution of
30 arc-seconds: Zarin et al. (2016) measures aboveground tree biomass at a resolution of 30m, and
Gumbricht et al. (2017) measures belowground peat biomass at a resolution of 231m. Plantation
development releases both. To convert aboveground biomass to carbon, I use a biomass-to-carbon
conversation factor of 0.5. To convert belowground biomass, I use the conversation factor of 65.1 kg
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Figure B5: Plantation development vs. CO2 emissions over time

Data on plantation development come from Xu et al. (2020) and Song et al. (2018), and data on carbon emissions
from Zarin et al. (2016) and Gumbricht et al. (2017).

C/m3 peat in Warren et al. (2017). I convert carbon to carbon dioxide emissions with a molecular-
weight conversion factor of 3.67. I focus on CO2 emissions because the carbon content of peatlands
is well documented and because they account for 73% of total greenhouse gas emissions during
the study period. Palm oil production also involves the release of methane and nitrous oxide, but
precise estimates of these emissions are not yet well established.

I treat carbon stocks as predetermined, but they are not measured before the study period.
Tree biomass is measured for the year 2000, and peat deposits for 2011. The data may therefore miss
carbon stocks destroyed before these years. For tree biomass, I impute 1988 values by combining
the 2000 values with the proportion of tree cover loss between 1988 and 2000, as measured in
the Song et al. (2018) data. For peat deposits, bias is limited because Gumbricht et al. (2017)
rely primarily on precipitation and topography – predetermined features – in order to identify
wetlands as areas where water is likely to pool because precipitation exceeds evapotranspiration.
MODIS satellite imagery from 2011 then allow the authors to distinguish between different kinds
of wetlands. Indeed, figure B5 shows that the relationship between plantation development and
the resulting emissions is consistent over time. If the data missed peatlands destroyed before 2011,
then peatland emissions would be much smaller for plantation development before 2011.

B.5 Weather shocks to oil production

Weather data come from the Global Meteorological Forcing Dataset, which records daily rain-
fall and average surface temperature from 1988 to 2016 at 0.25◦ resolution. I use these data to
construct annual measures of weather shocks to the production of coconut, olive, palm, rapeseed,
soybean, and sunflower oils over the study period. I omit cottonseed and peanut oils given a lack
of price data and relatively small volumes at 5% of vegetable oil consumption volume in 2016.

First, I isolate day-pixel observations within oil-producing regions and during the growing
season. I define oil-producing regions as countries that account for at least 5% of world production
for any of the aforementioned oils during the study period, as measured by data from the USDA
Foreign Agricultural Service. Table B8 lists these countries for each oil (aggregating EU countries).

52



Table B8: Oil producers

Oil Producers

Coconut Philippines 52%, Indonesia 33%, India 15%
Olive EU 86%, Tunisia 8%, Turkey 6%
Palm Indonesia 49%, Malaysia 45%, Nigeria 6%
Rapeseed EU 36%, China 27%, Canada 23%, India 14%
Soybean US 44%, Brazil 29%, Argentina 18%, China 8%
Sunflower EU 29%, Russia 23%, Ukraine 23%, Argentina 17%, China 8%

Data are from the USDA Foreign Agricultural Service. Production pools over the study period (1988-2016), and for
each oil I omit producers accounting for less than 5% of world production.

For Argentina, Brazil, Canada, China, India, Indonesia, Malaysia, Russia, and the United States,
I further consider subnational regions – namely states and provinces – using data from both the
USDA and local government sources. I define the growing season for rapeseed, soybean, and
sunflower oils to be those specified by country-specific crop calendars from the USDA, and I take
the growing season for coconut, olive, and palm oils to be year-round.

Second, I compute crop-specific weather shocks at the year-pixel level. For rainfall, I first
aggregate from daily to monthly values for each pixel, as daily variation in rainfall is not detrimental
to crop growth in the same way that daily variation in temperatures can be. I then compute shocks
as absolute deviations from optimal levels for each crop. The FAO Crop Ecological Requirements
Database records optimal windows by crop for both rainfall and temperature, and I take the
midpoint of these windows as optimal levels. The FAO database specifies optimal annual rainfall,
which I divide by twelve to obtain optimal monthly rainfall. Having computed monthly deviations
from optimal levels for rainfall, as well as daily deviations for temperature, I aggregate over time
to obtain average deviations by year for each pixel.

Third, I aggregate to obtain annual weather shocks by oil. I do so by averaging over pixels
for each oil-producing region, then averaging across oil-producing regions for each oil in proportion
to production volumes. I weight by total production over the study period rather than annual
production, as annual production is a direct function of annual weather. In this final step, I
can isolate foreign shocks for each consumer market by omitting shocks to domestic oil-producing
regions, and I do so in checking robustness.
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C Appendix: Demand

In estimating the lower-level demand system, I impose the standard adding-up, homogeneity,
and symmetry restrictions. The adding-up restrictions are

∑
i α

0
i = 1,

∑
i α

1
i = 0,

∑
i βi = 0,∑

i γij = 0 ∀ j and are automatically satisfied since expenditure shares sum to one. Homogeneity
imposes

∑
j γij = 0 ∀ i, such that proportional changes in prices and income have no impact on

demand. Symmetry imposes γij = γji ∀ i, j. Given a choice between two products – palm vs. other
oils – imposing homogeneity imposes symmetry, and vice versa. A choice between two products
also allows me to estimate the demand system on palm oil expenditure shares alone, as the adding-
up restriction requires the dropping of one product. Thus, I apply linear IV and use Newey-West
standard errors to account for serial correlation in the error terms. The typical case with more than
two products applies seemingly unrelated regression to estimate a system of regression equations.
Serial correlation can then by accounted for with a Prais-Winsten transformation as in Parks (1967).

On instruments, table C1 shows that weather shocks do not affect domestic incomes or ex-
penditures for any consumer market. Such effects would influence demand directly – as opposed
to through the channel of oil prices – and therefore violate the exclusion restriction. These results
also provide reassurance that the instruments do not simply capture idiosyncratic fluctuations in
macroeconomic conditions. Table C2 shows the first stage for foreign weather shocks, which are
also strong instruments. In omitting domestic shocks within a given consumer market, these in-
struments go one step further toward avoiding violations of the exclusion restriction. However, the
baseline analysis favors the use of all weather shocks because they greatly simplify the construction
of aggregate demand curves.15 Furthermore, the baseline instruments already target oil producers
explicitly, and they pass the test above.

Table C3 presents demand elasticities for palm oil by market. Table C4 shows the lower-
and upper-level parameter estimates that I use to compute these elasticities, and table C5 shows
demand elasticities for vegetable oils in general. I obtain reasonable estimates with negative own-
price elasticities that are statistically significant and positive cross-price elasticities. For Malaysia,
elasticities for other oils have larger standard errors because other oils account for only 3% of con-
sumption in the data. Table C6 shows elasticities computed without price instruments, indicating
clear bias in the form of positive own-price and negative cross-price elasticities, some of which are
statistically significant. Figure C1 indicates why, with a high correlation between palm and other
oil prices effectively dampening observed price variation. Instruments leverage differential weather
shocks across oils, and indeed the instrumented price series are much less correlated.

Finally, I observe oil stockpiles and find that they are limited in this context. In particular,
stockpiles are 12.5% of average annual consumption by volume, compared to an estimated 342%
of average weekly consumption for ketchup in Erdem et al. (2003) and 188% of median weekly
consumption for laundry detergent in Hendel and Nevo (2006). Temporal aggregation explains the
difference: the vegetable oil data measure annual consumption, and substitution across years may
be less salient than substitution across weeks for consumer products sold for regular discounts. As
well, national consumption aggregates over the stockpiling of individual consumers.

15 For example, to estimate demand for the combined Indonesian-Malaysian market, I can aggregate their consump-
tion data then estimate an aggregate curve directly. With foreign weather shocks, I must estimate separate curves
for Indonesia and Malaysia then aggregate the curves themselves. Each demand curve relies heavily on the AIDS
functional form at its extremes, and aggregating curves exacerbates this problem, particularly for markets with
different consumption levels. Aggregating curves is also theoretically inconsistent with AIDS microfoundations.
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Table C1: Weather shocks vs. incomes and expenditures

Rainfall Temperature

Market Outcome Estimate SE Estimate SE Obs

CPI 0.00362 (0.00275) 0.00264 (0.00245) 174
GDP 0.00530 (0.00762) 0.00408 (0.00736) 174

European Union GDE 0.00587 (0.00783) 0.00437 (0.00748) 174
GDE (hh) 0.000190 (0.000257) 0.000147 (0.000245) 174
GDE (gov) 0.000241 (0.000303) 0.000169 (0.000292) 174

CPI 0.00632 (0.0109) 0.00346 (0.0113) 174
GDP 8.10e-05 (0.0103) -0.00344 (0.00986) 174

China/India GDE -0.00163 (0.00969) -0.00434 (0.00922) 174
GDE (hh) -5.51e-05 (0.000343) -0.000148 (0.000327) 174
GDE (gov) 4.56e-05 (0.000281) -6.68e-05 (0.000263) 174

CPI 0.00571 (0.00776) 0.000995 (0.00787) 174
GDP 0.00360 (0.00448) 0.00180 (0.00411) 174

Other importers GDE 0.00429 (0.00415) 0.00235 (0.00373) 174
GDE (hh) 0.000138 (0.000130) 8.12e-05 (0.000117) 174
GDE (gov) 0.000181 (0.000182) 9.07e-05 (0.000162) 174

CPI -0.0231 (0.0246) -0.0221 (0.0242) 174
GDP 0.0113 (0.0154) 0.00539 (0.0157) 174

Indonesia/Malaysia GDE 0.00920 (0.0147) 0.00424 (0.0152) 174
GDE (hh) 0.000384 (0.000536) 0.000202 (0.000555) 174
GDE (gov) 0.000283 (0.000769) 5.96e-05 (0.000798) 174

Each row is a regression. Data are annual and cover coconut, olive, palm, rapeseed, soybean, and sunflower oils from
1988 to 2016. For outcome variables, GDPs and GDEs are in logs, GDEs measure total, household, and government
expenditures, and CPIs aggregate national data weighted by household GDE. Weather shocks are absolute deviations
from optimal conditions during the growing season, aggregated over producing regions. I control for oil fixed effects
and oil-specific time trends, which differentiate between palm and other oils. Newey-West standard errors account
for serial correlation. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table C2: Foreign weather shocks as price instruments

European
Union

China India
Other

importers
Indonesia Malaysia

Rainfall shocks (100 mm) 0.000499 0.217*** 0.197*** 0.111** 0.185*** 0.199***
(0.0419) (0.0179) (0.0307) (0.0443) (0.0236) (0.0297)

Temperature shocks (◦C) 0.150*** 0.343*** 0.275*** 0.240*** 0.295*** 0.300***
(0.0523) (0.0178) (0.0356) (0.0514) (0.0302) (0.0327)

Observations 174 174 174 174 174 174
F-statistic 12.76 200.5 30.12 12.22 48.22 45.83

Each column is a regression, and the outcome variable is log prices. Data are annual and cover coconut, olive, palm,
rapeseed, soybean, and sunflower oils from 1988 to 2016. Foreign weather shocks are absolute deviations from optimal
conditions during the growing season, aggregated over foreign producing regions. I control for oil fixed effects and
oil-specific time trends, which differentiate between palm and other oils. Newey-West standard errors account for
serial correlation. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C3: Mean demand elasticities for palm oil

Market Estimate SE

European Union (E) -0.510*** (0.181)
China/India (CN) -0.667*** (0.210)
Other importers (R) -0.558*** (0.134)
Indonesia/Malaysia (IM) -0.026 (0.171)
World (ECNRIM) -0.447*** (0.133)

Market Estimate SE

Importers (ECNR) -0.555*** (0.134)
Producers (IM) -0.026 (0.171)
EU/China/India (ECN) -0.437*** (0.164)
Not EU/China/India (RIM) -0.482*** (0.129)
Not EU (CNRIM) -0.602*** (0.113)

Each row of each table shows the palm oil demand elasticity for an individual or group of consumer markets. I
present mean elasticities over the study period, and I compute standard errors with the delta method. The demand
estimation underlying these elasticities draws on annual data that cover coconut, olive, palm, rapeseed, soybean, and
sunflower oils from 1988 to 2016. It instruments for prices with weather shocks to oil production, and it accounts for
serial correlation with Newey-West standard errors. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table C4: Demand parameter estimates

European Union China/India Other importers Indonesia/Malaysia

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

α0
1 0.162 (0.155) 0.328* (0.168) 0.345*** (0.069) 0.662*** (0.127)
α1
1 0.003*** (0.001) 0.004 (0.003) 0.005*** (0.001) 0.009*** (0.002)

γ11 0.038 (0.026) 0.027 (0.030) 0.017 (0.016) 0.022 (0.029)
β1 0.012 (0.029) 0.035 (0.032) 0.033*** (0.011) -0.025 (0.024)
γ -0.198 (0.122) -0.416 (0.339) -0.090 (0.235) 0.215 (0.159)

Each pair of columns is a demand system, and subscript i = 1 refers to palm oil. The first four rows describe the
lower level of demand, and the last row the upper level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table C5: Mean demand elasticities for vegetable oils

Estimates SEs

Market Palm Other Palm Other

European Union
Palm -0.510*** 0.290 (0.181) (0.206)
Other 0.105 -0.301* (0.148) (0.171)

China/India
Palm -0.667*** 0.172 (0.210) (0.302)
Other 0.187 -0.584*** (0.159) (0.224)

Other importers
Palm -0.558*** 0.454** (0.134) (0.180)
Other 0.350*** -0.436*** (0.113) (0.149)

Indonesia/Malaysia
Palm -0.026 0.234* (0.171) (0.120)
Other 0.707 -0.416 (0.474) (0.478)

Each panel shows uncompensated price elasticities for a consumer market. I present mean elasticities over the study
period, and I compute standard errors with the delta method. The demand estimation underlying these elasticities
draws on annual data that cover coconut, olive, palm, rapeseed, soybean, and sunflower oils from 1988 to 2016. It
instruments for prices with weather shocks to oil production, and it accounts for serial correlation with Newey-West
standard errors. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

56



Table C6: Mean demand elasticities for vegetable oils without price instruments

Estimates SEs

Market Palm Other Palm Other

European Union
Palm -0.075 0.018 (0.116) (0.150)
Other -0.347** 0.196 (0.149) (0.184)

China/India
Palm 0.606 -0.113 (0.693) (0.556)
Other 0.850** -0.617* (0.342) (0.359)

Other importers
Palm -0.484*** 0.224 (0.051) (0.143)
Other -0.279** -0.139 (0.135) (0.221)

Indonesia/Malaysia
Palm 0.730* -0.685* (0.424) (0.403)
Other 0.417 -0.477 (0.576) (0.518)

Each panel shows uncompensated price elasticities for a consumer market. I present mean elasticities over the study
period, and I compute standard errors with the delta method. The demand estimation underlying these elasticities
draws on annual data that cover coconut, olive, palm, rapeseed, soybean, and sunflower oils from 1988 to 2016. It does
not instrument for prices, but it does account for serial correlation with Newey-West standard errors. Significance
levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure C1: Vegetable oil prices over time

(a) Prices (b) Instrumented prices

Data on vegetable oil prices come from the International Monetary Fund and the World Bank. Palm oils aggregate
palm and palm kernel, and other oils aggregate coconut, olive, rapeseed, soybean, and sunflower. I aggregate with a
Stone price index, drawing on expenditure shares computed with data from the USDA Foreign Agricultural Service.
The left figure shows observed prices, and the right figure shows predicted prices using weather shocks to oil production
as instruments.

57



Figure D1: Potential sites

Blue shading indicates different potential sites, and gray shading indicates omitted regions. Orange dots are palm oil
mills observed by 2016. There are 2,135 sites and 1,467 observed mills.

D Appendix: Supply

This section contains details on the defining of potential sites, the estimation of both intensive-
and extensive-margin supply models, and the computation of supply elasticities.

D.1 Defining sites

To divide land into sites, I first compute the maximum number of sites k̄ for each province:
k̄ = max{floor(area/521),number of observed mills}. I use a benchmark site size of 521 km2, which
I obtain as the average of three calculations. First, I consider provinces with high mill density. At
the 75th percentile, there is one mill per 455 km2. Second, I consider provinces without mill
construction in the last five years of the study period, reflecting plateaued expansion. The median
such province has one site per 553 km2. These two methods thus imagine bringing site density for
all provinces to that of the most developed provinces. A third method considers circular sites that
reflect the upper end of plantation-mill distances observed in the data. The 75th percentile of these
distances implies radii of 13.3 km and site sizes of 553 km2.

Second, I define sites by k-means clustering on geographic coordinates. I ensure consistency
with the plantations and mills observed in 2016 by imposing (1) that observed mills be assigned
to unique sites and (2) that observed plantations be clustered with observed mills. I do so with a
version of the constrained k-means clustering algorithm described in Wagstaff et al. (2001), and I
apply multiple starts because convergence is to local optima.

1. Choose initial cluster centers C1, C2, . . . , Ck.
2. For the m mills observed in the data, move the m closest centers to the mill coordinates.
3. Assign points to the nearest cluster centers.
4. Update each cluster center by averaging over the points assigned to it.
5. Repeat (2) to (4) until convergence.
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6. For clusters without mills but significant plantations, reassign points to clusters with mills.

Step (2) ensures consistency with observed mills, and step (6) observed plantations. In step (6), I
define clusters with more than 10 30-arc-second tiles of plantations as having “significant” planta-
tions. I drop the 0.3% of plantations that remain unassigned to clusters with mills. A lower cutoff
would drop fewer plantations at the cost of losing more clusters. This procedure results in 2,135
sites, of which 1,467 contain an observed mill by 2016. Figure D1 plots the potential sites.

D.2 Extensive-margin model (mill construction)

Lemma 1. ve(0;wit)− ve(0, 1;wit) = −βEeit[ln pe(wit+1)].

Proof. Comparing choice-specific conditional value functions ve(0;wit) and ve(0, 1;wit),

ve(0;wit)− ve(0, 1;wit) = βEeit[ln(exp(ve(0;wit+1)) + exp(ve(1;wit+1)))]− βEeit[ve(1;wit+1)]

= βEeit[ve(1;wit+1)− ln pe(wit+1)]− βEeit[ve(1;wit+1)]

= −βEeit[ln pe(wit+1)] .

The first line applies the logit log-sum formula for expected utilities, and the second line applies
the expression for logit choice probabilities. Arcidiacono and Ellickson (2011) document this result
as the logit special case of Arcidiacono and Miller (2011) Lemma 1.

Lemma 2. ve(1;wit)− ve(1, ait;wit) = 1
2E

e
it[c
′′(ait;wit, εit)(a

∗
it − ait)2].

Proof. Comparing choice-specific conditional value functions ve(1;wit) and ve(1, ait;wit),

ve(1;wit)− ve(1, ait;wit)

= Eeit[−c(a∗it;wit, εit) + c(ait;wit, εit) + βV (a∗it;wit+1, εit+1)− βV (ait;wit+1, εit+1)]

= Eeit
[
− c′(ait;wit, εit)(a

∗
it − ait)−

1

2
c′′(ait;wit, εit)(a

∗
it − ait)2 + βV ′(ait;wit+1, εit+1)(a

∗
it − ait)

]
= Eeit

[
− c′(ait;wit, εit)(a

∗
it − ait)−

1

2
c′′(ait;wit, εit)(a

∗
it − ait)2 + c′(a∗it;wit, εit)(a

∗
it − ait)

]
=

1

2
Eeit[c′′(ait;wit, εit)(a

∗
it − ait)2],

where a∗it ≡ a∗it(0;wit, εit). The first equality is definitional. The second equality applies that costs
are quadratic and revenues linear. The third equality applies the first order condition that holds at
a∗it and the linearity of revenues. The last equality again applies that costs are quadratic, and thus
that c′ is linear. For convex costs, the last line is positive, and indeed ve(1;wit) ≥ ve(1, ait;wit).

Result. ve(0;wit)−ve(0, 1, a′it+1;wit) = 1
2βE

e
it[c
′′(a′it+1;wit+1, εit+1)(a

∗
it+1−a′it+1)

2]−βEeit[ln pe(wit+1)].

Proof. Comparing choice-specific conditional value functions ve(0;we
it) and ve(0, 1, a′it+1;w

e
it),

ve(0;wit)− ve(0, 1, a′it+1;wit) = ve(0, 1;wit)− ve(0, 1, a′it+1;wit)− βEeit[ln pe(wit+1)]

= βEeit[ve(1;wit+1)]− βEeit[ve(1, a′it+1;wit+1)]− βEeit[ln pe(wit+1)]

=
1

2
βEeit[c′′(a′it+1;wit+1, εit+1)(a

∗
it+1 − a′it+1)

2]− βEeit[ln pe(wit+1)] ,

where a∗it+1 ≡ a∗it+1(0;wit+1, εit+1). The first line substitutes Lemma 1, the second line is defini-
tional, and the third line substitutes Lemma 2.
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E Appendix: Counterfactuals

This section describes how I solve the model and quantify carbon emissions.

E.1 Solving the model

I impose additional assumptions on expectations over the evolution of the state variables, and
I solve by backward induction.

Expectations over aggregate states dt and st

Expectations over the evolution of demand dt and supply st together determine the expected
path of prices P (st, dt). I make explicit assumptions about expectations for demand dt, which I
describe below. Supply st is determined endogenously as the result of an entry game in which
beliefs are correct in equilibrium.

I model the non-stationary evolution of demand dt with an ARIMA process, and I assume
expectations for all firms are given by this process. Table E1 evaluates log likelihoods over a range
of ARIMA specifications and finds that an ARIMA(2, 1, 2) process produces the best fit to the
data. In this specification, changes dt − dt−1 in demand follow an ARMA(2,2) process.

dt − dt−1 = c+ υt +
2∑

t′=1

(
ϕt′(dt−t′ − dt−t′−1)− θt′υt−t′

)
Since the demand curve is specified in logs, this ARIMA process can sometimes predict infinite
exponential growth in demand. Such unbounded growth leads to unrealistically stark predictions:
exponentially rising demand (at a rate that dominates discounting β) implies infinite returns to
development and therefore immediate development of all undeveloped lands. Thus, I shrink the
ARIMA estimates toward a sigmoid function fit to observed demand. Expectations are therefore

Eit[dt+t′ ] =

(
V̂ SIG

V̂ ARIMA
t+t′ + V̂ SIG

)
d̂ARIMA
t+t′ +

(
V̂ ARIMA
t+t′

V̂ ARIMA
t+t′ + V̂ SIG

)
d̂ SIG
t+t′ for t′ ≥ 1 , (14)

where I weight by inverse variances, with the variance of the sigmoid predictions given by the mean
squared error. The ARIMA predictions have increasing variance for expectations taken farther
into the future, implying greater reliance on the fitted sigmoid function in these periods. Figure
E1 plots both ARIMA and shrunk demand expectations. Indeed, shrinking toward the sigmoid
function helps in bounding demand expectations.

Expectations over site-specific states Yit, xi, εit, and εeit

I assume that yields Yit evolve at a constant and exogenous rate per year. Thus, no expecta-
tional error arises from changes in yields. There is no need to define expectations over cost factors
xi because they are constant. I assume that while firms know current-period cost shocks εit and
εeit, they only know the distribution of future shocks.

I obtain estimates of intensive-margin cost shocks εit from the residuals of equation 8. The
complication is that these residuals combine cost shocks and expectational errors.

υit = −1

δ
εit + ηit
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Table E1: ARIMA(p, d, q) log likelihoods for demand dt

ARMA(p, q)

(0,0) (1,1) (2,2)

Differencing (d)
0 -69.17 -6.91 -6.37
1 -2.41 -0.53 1.44
2 -14.82 -4.53 -0.37

An ARIMA process with d = 0, the random variable is itself modeled as an ARMA process. For d = 1 it is the
difference xt−xt−1, and for d = 2 it is the change in differences (xt−xt−1)− (xt−1−xt−2). I take (p, d, q) = (2, 1, 2),
which has the highest log likelihood, as my baseline specification.

Figure E1: Demand expectations Eit[dt+s]

(a) ARIMA predictions, 1999 (b) Shrunk predictions, 1999

(c) ARIMA predictions, all years
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(d) Shrunk predictions, all years
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All figures show expectations for the evolution of demand state dt. I estimate these demand states in section 5.1, and
I plot the realized values as “actual.” These realized values coincide with figure 6c. The top row shows predictions
and the 95% confidence band from the perspective of a single year, while the bottom row shows such predictions
for all years. The left column shows predictions arising from an ARIMA(2,1,2) process that I fit on observed values
preceding each prediction year. This specification has the highest log likelihood among those tested in table E1. The
right column shows the results of shrinking the ARIMA predictions toward a sigmoid function fit to realized values.
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Substituting the expression for expectational errors and applying the above assumptions on expec-
tations, I obtain

εit − βεit+1 = −δυit +
∞∑
t′=1

βt
′
Yit+t′

(
Et[Pt+t′ ]− Et+1[Pt+t′ ]

)
.

Thus, I can estimate cost shocks as a function of residuals υit and price expectations. The demand
expectations of equation 14 translate into price expectations as a function of supply elasticities.
Figure E1 shows that expectational errors for demand are relatively small in each period, so I
approximate price expectations with the partial-equilibrium supply elasticities of table 3.

I do not obtain estimates of extensive-margin cost shocks εekt. Instead, counterfactuals evaluate
the ex-ante value function and yield predicted probabilities of extensive-margin investment.

Backward induction from steady state

I solve the model by backward inducting from the steady state – period S – at which point all
feasible lands have been developed. After period S, there is no further entry, but firms continue to
generate revenues over the infinite horizon based on past entry. The existence of such a period is
asymptotically guaranteed in my model: the total amount of development is non-decreasing given
no exit, there are new cost shocks in each period, and there is a finite amount of land that can be
developed. The challenge is that it may take many years for every hectare of available land to be
developed.

I address this computation burden in two ways. First, I solve each subproblem using an
iterative algorithm that uses a fixed look-ahead horizon instead of always looking ahead to the end
of the game tree. Given initial state of development s1, I backward induct from period S as follows.

1. Initialize the algorithm by solving for a1 given s1 assuming no further entry after period 1,
then for a2 given s2(a1) assuming no further entry after period 2, and so on until aS . With aS
and sS(aS−1), compute sS+1. Note that sS(aS−1) is shorthand for sS(aS−1, aS−2, . . . , a1, s1).

2. Taking sS+1 as fixed, work backward from period S. First, solve for aS−1 given sS−1 as a
starting state and {sS(aS−1), sS+1} as the future states (with sS+t′ = sS+1 for all t′ > 1 given
no future entry). Revise sS given the previous solution to aS−1. Second, solve for aS−2 given
sS−2 as a starting state and {sS−1(aS−2), sS , sS+1} as the future states. Revise sS−1 given
the previous solution to aS−2. Continue until a1, noting that all states get revised except for
initial state s1, which must be taken as given.

3. To restart the chain of revisions, solve for aS given sS as the starting state and sS+1(aS) as
the future state given no further entry.

4. Repeat steps 2 and 3 until convergence in {a1, a2, . . . , aS}.

This algorithm breaks the usual curse of dimensionality in which the state space grows exponentially
in the length of the look-ahead window.

Second, I approximate period S by choosing an arbitrary period T < S and solving as if it
were the steady state. In setting an earlier period T , computation is faster because the backward
induction window is shorter, but there is more bias in ignoring post-T entry because there are more
periods after T . My solution is to resolve taking periods T + 1, T + 2, and so on as the steady state
until the solutions converge. Intuitively, entry today becomes less appealing when competitors have
a longer window of opportunity to enter, but discounting means a diminishing marginal impact of
extending this window.
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Defining notation, world supply and entry in period t are functions of previous and new de-
velopment, respectively.

st =
∑
i

Yitsit , at =
∑
i

(
seitait + (1− seit)peitait

)
, (15)

where for sites without mills in period t (seit = 0), new development depends on both extensive-
margin probability peit of mill construction and intensive-margin choice ait of plantation develop-
ment. “Entry” involves plantation development in my context, so I refer to entry and development
interchangeably. Entry determines future supply

st+1 = st + at ,

and therefore future world prices

P (st+1, dt+1, τt+1) = P (st+1(at, st), dt+1, τt+1) .

To proceed, consider period T and suppose there is no further entry after this period. For sites
with a mill in period T (seiT = 1), the first order condition for aiT determines development.

aiT =
1

δ

∞∑
t′=1

βt
′
EiT
[
YiT+t′P (sT+1, dT+t′ , τT+t′)− xiγ − κm − αm(T + t′)− εiT+t′

]
, (16)

subject to constraint 0 ≤ aiT ≤ s̄i−siT . For sites without a mill in period T (seiT = 0), development
also depends on mill construction, which occurs with probability

peiT =
exp

(
− xiγe − κem − αemT + EeiT [V (0;wiT , εiT )]

)
1 + exp

(
− xiγe − κem − αemT + EeiT [V (0;wiT , εiT )]

) , (17)

where the one in the denominator arises from ve(0;wiT ) = 0 since there is no further entry after
period T (for an outside option normalized to zero).16 In both cases, entry depends on world prices,
which in turn depend on world supply.

The result is an entry game in which the returns to entry for a given firm depends on how
many other firms enter. Intuitively, developing a given site has low returns when other sites develop
extensively because high supply means low prices. In equilibrium, each firm’s entry decision must
be consistent with total entry. If all firms enter today, then future prices will be low and some firms
are better off not entering; if no firm enters, then future prices will be high and some firms are
better off entering. I solve by selecting an arbitrary level of total development aT , computing the
site-specific development choices by equations 16 and 17, and calculating the implied total a′T by
equation 15. If the implied total is higher (lower) than the initial total, then for the next iteration
I start with a higher (lower) initial total. In this way, I obtain site-specific period-T development
aT = {aiT , aeiT } as a function of previous development sT = {siT , seiT }.

16 To determine the probability of extensive-margin entry, I compute intensive-margin profits assuming EeiT [εiT ] = 0
because I assume that firms make extensive-margin decisions before observing intensive-margin shocks. When
computing actual intensive-margin entry, however, I use realized intensive-margin shocks εit. Furthermore, since
intensive-margin profits EeiT [V (0;wiT )] are not linear in εiT (even though choices aiT are), I cannot simply apply
EeiT [εiT ] = 0 and must instead compute expected intensive-margin profits based on the distribution of εiT , which
I assume firms know.
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The problem is computationally fast to solve. First, prices are monotonically decreasing in
total entry aT , so the solution is unique and standard root-finding algorithms work well. Second, I
can iterate on total development aT instead of site-specific development aT because world prices are
influenced only by total supply and not the spatial distribution of supply. This simplification rules
out spatial competition concerns, which would otherwise generate a severe curse of dimensionality
by requiring iteration over the I-dimensional space aT . Third, as in Hopenhayn (1992), I invoke
that firms are small enough to approximate a continuum: by the law of large numbers, the implied
total is simply the expected value resulting from extensive-margin entry probabilities peiT . By
contrast, with a small number of large firms, the extensive-margin entry probabilities induce a
binomial distribution over total entry. In dealing with a scalar instead of a distribution, I avoid the
computational burden of computing outcomes over each point of the distribution.

Working backward, consider development aT−1 in period T − 1. Taking previous development
sT−1 as given, I solve for new development aT−1 as follows.

1. I make an initial guess for total new development aT−1.
2. I divide this total new development aT−1 into site-specific new development aT−1. Since the

first order condition is monotonic in prices, only one such division exists.
3. With sT−1 and aT−1, I obtain site-specific sT and therefore total sT .
4. Given sT , I solve the subproblem for aT using the solution algorithm described above for entry

in period T , after which there is no further entry. With sT and aT , I obtain site-specific sT+1

and therefore total sT+1.
5. Given totals sT and sT+1, I compute site-specific aT−1 with analogues of equations 16 and

17.17

6. Finally, I check if site-specific new development aT−1 sums to the guess for total new devel-
opment aT−1. If so, then aT−1 is the solution. If not, then I repeat the above steps with a
different guess for aT−1.

Solving for entry in period T − 2 and in earlier periods follows similarly, where I can solve the
subproblems in step four by recursively applying the same algorithm.

E.2 Quantifying carbon emissions

I account for substitution to paper pulp (acacia) plantations by estimating the observed re-
lationship between paper pulp and palm oil plantation development. I estimate this relationship
using data on paper pulp plantation development as of 2016 on the island of Borneo (Gaveau et al.
2019), as mapped in figure E2.

acaciai = β0 + β1palmi + β2mill distancei + αm + εi , (18)

17 For intensive-margin entry in equation 16, the analogue in period T−1 is similar except that prices depend on sT in
period T and sT+1 thereafter. A firm’s expected development aiT in period T does not enter. For extensive-margin
entry probabilities in equation 17, the expression is simplified in period T because ve(0;wiT ) = 0 given no further
entry. In earlier periods t, ve(0;wit) is instead given by the logit log-sum formula

ve(0;wit) = βEeit[V e(wit+1)]

= ln(eE
e
it[v

e(1;wt+1)] + (eE
e
it[v

e(1;wt+2)] + · · · + (eE
e
it[v

e(1;wT )])β)β)β .

I account explicitly for the distribution of future intensive-margin cost shocks εit+s, which do not fall out because
intensive-margin profits V (0;wit, εit) are not linear in εit, although development ait is.
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for sites i and regions m (provinces for Indonesia and states for Malaysia), and where I control
for distance to the nearest paper pulp mill. Table E2 shows that lower levels of palm development
are indeed associated with higher levels of paper pulp development, although the magnitude of the
relationship does not seem to be large.

Figure E2: Plantation development, 2016

(a) Paper pulp (b) Palm oil

The figures map plantations as of 2016 for the island of Borneo, which is shared by Indonesia, Malaysia, and Brunei.
The shaded out region is Brunei. On the left, data on paper pulp plantations come from Gaveau et al. (2019), and
orange dots mark paper pulp mill locations based on information from the Indonesian Pulp and Paper Association.
On the right, data on palm oil plantations come from Xu et al. (2020).

Table E2: Paper pulp vs. palm oil plantation development

Palm plantation development (%) -0.0195*** -0.0235***
(0.00610) (0.00734)

Log paper pulp mill distance (km) -0.0265*** -0.0210***
(0.00447) (0.00452)

Province FE x
Observations 1,060 1,060

Each column is one cross-sectional regression using 2016 data, and each observation is a site. The sample is restricted
to the island of Borneo, where data on paper pulp plantations are available (Gaveau et al. 2019). Significance levels:
*** p < 0.01, ** p < 0.05, * p < 0.1.
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