Competitive Capture of Public Opinion

October 5th, 2023 IIES

Ricardo Alonso London School of Economics Gerard Padró i Miquel Yale University

- Many actors are interested in influencing public opinion
 - Classical example: political capture of media by government
- But SIG interest playing out over media coverage is much more pervasive
 - Industrial groups versus activists when covering climate, biodiversity and pollution issues (Oreskes and Conway 2011)
 - **Banks** versus **Southern debtors** in narrative over European Debt Crisis (Durante et al 2021)
 - Car manufacturers versus consumer advocacy groups over car recalls (Beattie et al 2021)

- Most of the empirical evidence we have describes biased coverage of issues in traditional media
- But many other information sources to be captured:
 - Social media
 - Scientific white papers
 - Religious leaders

- Presumably, SIG influence public opinion because public opinion influences/constrains policy
- Study of SIG and Government mature area
 - Cheap talk models: correlated preferences
 - Exchanges of money for policy
- Influencing Public Opinion presents a different scenario
 - Multiple Channels
 - Exchanges of **money for coverage**. But:
 - Coverage does not directly enter preferences
 - Objective is the Court of Public Opinion
 - Need to model chain of transmission

• Study of SIG capturing information sources

- What news do captured information sources publish?
- How do rational citizens factor in possible pressure from SIG?
- Do countervailing pressures cancel each other?
- How do SIG distribute their pressure when there is a plurality of information channels?

- We set up a general equilibrium model with:
 - Rational viewers with heterogeneous priors.
 - Multiple information sources
 - Two opposite SIGs exert pressure ("capture") on outlets
 - No commitment to:
 - capture effort by SIGs
 - editorial policy by information sources

This Paper

- Novel supply-side implications on information source bias
 - Capture **polarizes** published news
 - Rational citizens discount informative reports
 - Opposite SIG do not cancel each other: resulting viewer skepticism hinders social learning
 - Capture efforts are strategic substitutes
 - Exacerbates horizontal differentiation in coverage
 - Citizens sort ideologically across sources
 - Differentiated coverage with segregated viewers most likely when SIG are interested in "firing up the base"
 - Higher demand for information can backfire

Related Literature

- Media Capture by Government: Macmillan and Zoido (2004), Besley and Prat (2006), Gehlbach and Sonin (2014), Prat (2015)
- Media Capture by SIG: Petrova (2008), Corneo (2006), Prat (2018). Binary signal, single SIG, homogeneous priors
- Media Differentiation in Slant:
 - Supply side with Motivated actors: Baron (2006), Anderson and McLaren (2012)
 - Demand side (rational viewers): Gentzkow and Shapiro (2006), Chan and Suen (2008), Sobbrio (2014)
 - Demand side (psychological utility): Mullainathan and Shleifer (2005), Bernhardt et al (2008).

Features of Model

- Underlying binary state of the world $\theta \in \Theta = \{-1, 1\}$
 - Fex: "should I worry about global warming?"
- Continuum of citizens with heterogeneous beliefs $p = \Pr[\theta = 1]$
 - Distribution of priors: $F_p(p)$ mass of viewers with prior at most p.
- n information sources cover an issue which is informative about θ
- Two SIG interested in opposite coverage:
 - Left SIG wants public to update towards state -1
 - Right SIG wants public to update towards state 1
- SIG exert covert pressure on each source to capture its coverage of the issue
- If pressure successful, SIG can convey **any** message
- Allow citizen choice of source in later part of talk

Plan of Talk

- Endogenous Capture
 - Monopoly Information Source
 - Multiple Information Sources
 - Endogenous Source Choice
- Conclusions

Model: Honest Coverage

• Source receives an informative report $m \in \mathcal{M} \subset \mathbb{R}$ with

$$\Pr[m|\theta = i] = p_i(m), i \in \{-1, 1\}$$

• Order messages m according to likelihood ratio

$$\lambda_H(m) = \frac{p_1(m)}{p_{-1}(m)}$$

- Distribution of messages $F_{H,\theta}(\lambda) = \Pr[\lambda_H(m) \le \lambda | \theta]$
 - Prior $p: F_H(\lambda; p) = pF_{H,1}(\lambda) + (1-p)F_{H,-1}(\lambda)$

Model: Honest Coverage

- Messages have a commonly understood meaning
- If source is known to be honest, message *m* induces posterior $\mu_H(m;p) = \frac{p_1(m)p}{p_1(m)p + p_{-1}(m)(1-p)} = \frac{1}{1 + \frac{1}{\lambda_{IJ}(m)} \frac{1-p}{n}}$
- Because citizens disagree on priors, they land on different posteriors: but they agree on how to update

Model: Sender's Type

- However, there may be capture:
- Sender S can be of three types: honest, L-biased, R-biased
 - Honest sender is non-strategic and reveals *m* truthfully
 - L-biased sender is captured by L-SIG
 - **R-biased sender** is captured by R-SIG

Model: Sender's Type

- Sender S can be of three types: honest, L-biased, R-biased
 - Honest sender is non-strategic and reveals *m* truthfully
 - L-biased sender is captured by L-SIG
 - R-biased sender is captured by R-SIG
- Strategic R(L)-SIG wants posteriors μ as high (low) as possible
 - $v_R(\mu)$ strictly increasing.
 - $v_L(\mu)$ strictly decreasing.
 - Facing a distribution of viewers' priors $F_p(p)$, indirect utility

$$V_i(m) = \int_0^1 v_i(\mu(m;p)) dF_p(p)$$

- Biased senders can send any message $m \in \mathcal{M}$
 - Message space is type-independent
 - Internal reports are non-certifiable

Model: Competitive Capture

- Covertly devoting costly resources raises capture probability
 - R-SIG selects pressure r, L-SIG selects pressure l.
 - Linear contest: $r = \Pr[S = R]$, $l = \Pr[S = L]$, r + l < 1.
 - Generalizable to $\pi_R(r, l)$ concave
 - Costs of pressure: $C_R(r)$, $C_L(l)$ strictly increasing.
 - Usual conditions: $C'_{i}(x) > 0$, $C''_{i}(x) > 0$, $\lim_{x \to 0} C'_{i}(x) = 0$

Model: Timing

- Timing:
 - Simultaneously, SIGs select capture efforts r and l
 - Nature decides status $S \in \{H, R, L\}$ of the source
 - If captured, SIG decides which $m \in \mathcal{M}$ to publish
 - If honest, source conveys *m* received
 - Citizens update beliefs and payoffs are realized
- Look for PBE of this game.

Communication Equilibria

Proposition (Communication Equilibria)

Fix *r* and *l* with r + l < 1 and let $\tau_R^*(m)$ ($\tau_L^*(m)$) be the prob *R*biased (*L*-biased) media sends message *m*. There are unique $\overline{\lambda} = \lambda_H(\overline{m}^*)$ and $\underline{\lambda} = \lambda_H(\underline{m}^*)$ such that for every communication equilibrium we have:

- $m \in supp(\tau_R^*)$ iff $\lambda_H(m) \ge \overline{\lambda}$, $m \in supp(\tau_L^*)$ iff $\lambda_H(m) \le \underline{\lambda}$
- The equilibrium likelihood ratio of message m satisfies

$$\lambda^{*}(m) = \begin{cases} \frac{\lambda}{\lambda} \text{ if } m \leq \underline{m}^{*} \\ \lambda_{H}(m) \text{ if } \underline{m}^{*} < m < \overline{m}^{*} \\ \overline{\lambda} \text{ if } m \geq \underline{m}^{*} \end{cases}$$

• The maximum equilibrium likelihood ratios $\underline{\lambda}$ and $\overline{\lambda}$ satisfy

$$\int_{\overline{\lambda}}^{\infty} (\lambda - \overline{\lambda}) dF_{H,-1}(\lambda) = \frac{r}{1 - l - r} (\overline{\lambda} - 1)$$
$$\int_{0}^{\underline{\lambda}} (\underline{\lambda} - \lambda) dF_{H,-1}(\lambda) = \frac{l}{1 - l - r} (1 - \underline{\lambda})$$

Published News of Captured Sources

• $m \in supp(\tau_R^*)$ iff $\lambda_H(m) \geq \overline{\lambda}$, $m \in supp(\tau_L^*)$ iff $\lambda_H(m) \leq \underline{\lambda}$

Published News of Captured Sources

• $m \in supp(\tau_R^*)$ iff $\lambda_H(m) \geq \overline{\lambda}$, $m \in supp(\tau_L^*)$ iff $\lambda_H(m) \leq \underline{\lambda}$

Capture leads to more polarized reports

Capture leads to citizen skepticism

• Informational content of extreme messages is equalized

$$\lambda^{*}(m) = \begin{cases} \frac{\lambda}{\lambda} \text{ if } m \leq \underline{m}^{*} \\ \lambda_{H}(m) \text{ if } \underline{m}^{*} < m < \overline{m}^{*} \\ \overline{\lambda} \text{ if } m \geq \underline{m}^{*} \end{cases}$$

• Citizens censor informativeness of messages

Capture leads to citizen skepticism

• Informational content of extreme messages is equalized

$$\lambda^{*}(m) = \begin{cases} \frac{\lambda}{\lambda} \text{ if } m \leq \underline{m}^{*} \\ \lambda_{H}(m) \text{ if } \underline{m}^{*} < m < \overline{m}^{*} \\ \overline{\lambda} \text{ if } m \geq \underline{m}^{*} \end{cases}$$

Particularly bad for learning: most informative messages are jammed.

 $f_{\lambda^*}(\lambda;p)$

Comparative Statics of Published Reports

Lemma (Comparative Statics on Informativeness of Lies)

For a communication equilibrium $\overline{\lambda} = \lambda_H(\overline{m}^*)$ and $\underline{\lambda} = \lambda_H(\underline{m}^*)$

- $\overline{\lambda}$ and \overline{m}^* are decreasing in r and $l; \underline{\lambda}, \underline{m}^*$ increasing in l and r
- $\bar{\lambda}$, \bar{m}^* , $\underline{\lambda}$, \underline{m}^* are invariant in F_p
- $\overline{\lambda}$ increases and $\underline{\lambda}$ decreases if honest outlet is Blackwell more informative

Marginal Benefit of Capture

• What is the marginal benefit to R-SIG from increasing capture when citizens expect capture levels \tilde{r}, \tilde{l} ?

$$B_R(r;\tilde{r},\tilde{l}) = V_R(\bar{\lambda}) - \mathbb{E}_H[V_R(\lambda);p_R] = \int_{\underline{\lambda}}^{\lambda} V_R'(\lambda)F_H(\lambda;p_R)d\lambda$$

- Increasing capturing effort by R-SIG replaces honest coverage by message that is always interpreted as $\bar{\lambda}$

- How does increased L-capture change the returns to R-capture?
 - regardless of priors, and source informativeness, we have

$$\frac{\partial B_R(r;\tilde{r},\tilde{l})}{\partial \tilde{l}} = V_R'(\bar{\lambda})F_H(\bar{\lambda};p_R)\frac{\partial \bar{\lambda}}{\partial l} - V_R'(\underline{\lambda})F_H(\underline{\lambda};p_R)\frac{\partial \underline{\lambda}}{\partial l}$$

- How does increased L-capture change the returns to R-capture?
 - regardless of priors, and source informativeness, we have

$$\frac{\partial B_R(r;\tilde{r},\tilde{l})}{\partial \tilde{l}} = V_R'(\bar{\lambda})F_H(\bar{\lambda};p_R)\frac{\partial \bar{\lambda}}{\partial l} - V_R'(\underline{\lambda})F_H(\underline{\lambda};p_R)\frac{\partial \underline{\lambda}}{\partial l}$$

$$\tilde{l} \uparrow$$

$$f_{\lambda_R^*}(\lambda;p)$$

J

λ

λ

 $\frac{\lambda'}{\lambda'} \frac{\bar{\lambda}'}{\lambda'} \qquad \lambda$ Viewers more skeptical of unfavorable messages (L-lies now more favorable to R)

 $f_{\lambda_{H}^{*}}(\lambda;p)$

- How does increased L-capture change the returns to R-capture?
 - regardless of priors, and source informativeness, we have

$$\frac{\partial B_R(r;\tilde{r},\tilde{l})}{\partial \tilde{l}} = V_R'(\bar{\lambda})F_H(\bar{\lambda};p_R)\frac{\partial \bar{\lambda}}{\partial l} - V_R'(\underline{\lambda})F_H(\underline{\lambda};p_R)\frac{\partial \underline{\lambda}}{\partial l}$$

 \tilde{l} \uparrow

- How does increased L-capture change the returns to R-capture?
 - regardless of priors, and source informativeness, we have $\partial B_R(r; \tilde{r}, \tilde{l}) = \sqrt{2} \sqrt{2} \sqrt{2}$

$$\frac{\partial B_R(r;\tilde{r},\tilde{l})}{\partial \tilde{l}} = V_R'(\bar{\lambda})F_H(\bar{\lambda};p_R)\frac{\partial \bar{\lambda}}{\partial l} - V_R'(\underline{\lambda})F_H(\underline{\lambda};p_R)\frac{\partial \underline{\lambda}}{\partial l} \le 0$$

Capturing efforts are strategic substitutes!

 This insight is robust to the presence of an arbitrary fraction of naïve viewers

Strategic Substitutes

Proposition (Strategic Substitutes)

Let $\pi_i(r, l)$ be the probability that an i-sender captures the news outlet given effort levels r and l with $i \in \{H, R, L\}$ and suppose that capture by one sender weakly decreases both the probability that the message is generated by the other sender and by an honest source. If

$$\frac{\partial^2 \pi_i}{\delta r \delta l} = 0,$$

then $B_R(r; \tilde{r}, \tilde{l})$ decreases in \tilde{l} and $B_L(l; \tilde{r}, \tilde{l})$ decreases in \tilde{r} .

Example:

- $\pi^R(r,l) = r \eta l$
- $\pi^L(r,l) = l \eta r$

Audience Priors and Incentives to Capture

• SIGs capture incentives depend on expected audience.

$$V_i'(\lambda) = \int_0^1 \partial v_i (\mu(\lambda; p)) / \partial \lambda dF_p(p)$$

- An R-SIG (L-SIG) wants to *fire up the base* if $\partial v_i(\mu(\lambda; p))/\partial \lambda$ increases (decreases) with the prior *p*.
- If the opposite is true, then SIG wants to moderate the opposition
- We show this depends on curvature of v_i :
 - If preferences concave enough: moderate the opposition
 - If preferences convex enough: fire up the base

Lemma (Firing-up-the-base): Suppose $v_R(\mu) = g_R\left(\frac{\mu}{1-\mu}\right)$ and

 $v_L(\mu) = g_L\left(\frac{1-\mu}{\mu}\right)$ with g_i increasing and convex. Then both SIGs want to fire up their base.

Plan of Talk

- Endogenous Capture
 - Monopoly Information Source
 - Multiple Information Sources
 - Endogenous Source Choice
- Conclusions

Multiple Sources

- *n* (possibly heterogeneous) information sources
 - SIGs exert vector of pressure $r_j, l_j, j \in \{1, ..., n\}$
 - Costs of pressure $C_R(\sum_{j=1}^n \beta_R^j r_j), C_L(\sum_{j=1}^n \beta_L^j l_j)$

Multiple Sources

- Sources can be heterogeneous *ex ante*
 - Ease of capture β_R^j and β_L^j
 - Informativeness if not captured $(p_{-1}^{j}(m), p_{1}^{j}(m))$
 - Audience: prior distribution among citizens who watch it
- Strategic substitutes exacerbates differences across sources
 - Any cost/return reason that gives relative advantage to one SIG gets amplified
 - Because of general equilibrium considerations, these differences spread across the information source landscape:

Multiple Sources

- Supply driven mechanism for differentiation in slant: if one source is dominated by your rival, other things equal, you want to go to the neutral source
 - Bezos bought the Washington Post, not Fox News

Plan of Talk

- Endogenous Capture
 - Monopoly Information Source
 - Multiple Information Sources
 - Endogenous Source Choice
- Conclusions

Endogenous Citizen choice of Source

- Allow citizens choice of source anticipating capture (r_i^*, l_i^*) .
 - Fraction 1γ of viewers sorted exogenously across outlets
 - Fraction γ viewers pick most informative channel to them

Citizens Choice of Source

- Viewers who are interested in information endogenously sort according to ideology
 - Rightwing viewers need a credible low message to change *action*: no point watching media with a high $\underline{\lambda}$
 - Leftwing viewers need a credible high message to change *action*: no point watching media with a low $\overline{\lambda}$
- Partial sorting if degree of capture or precision of honest coverage not identical across outlets
- Similar as Suen(2004) but specific mechanism is very different:
 - We do not impose filtering
 - Value of media decreases for all viewers as capture increases

Polarized Media Landscape

- Capturing efforts being strategic substitutes generates horizontal differentiation
- Viewer sorting:
 - Exacerbates differentiation if SIG want to fire up the base
 - Ameliorates differentiation if SIG want to demobilize the opposition

Polarized Media Landscape

- Capturing efforts being strategic substitutes generates horizontal differentiation
- Viewer sorting:
 - Exacerbates differentiation if SIG want to fire up the base
 - Ameliorates differentiation if SIG want to demobilize the opposition
- Information landscape characterized by
 - very polarized coverage
 - segmented audiences

can be generated with **fully rational audiences** provided SIG are interested in firing up the base

Demand for Information can Backfire!

Proposition (Viewers Sorting increases Polarization)

Consider two media, A and B, and $v_R(\mu) = g_R\left(\frac{\mu}{1-\mu}\right)$ and $v_L(\mu) = q_R\left(\frac{\mu}{1-\mu}\right)$

 $g_L\left(\frac{1-\mu}{\mu}\right)$ with g_i increasing and convex. Both media have the same entertainment value. Fix an asymmetric equilibrium with $\overline{\lambda}_A$ ($\underline{\lambda}_B$) the highest (lowest) likelihood ratio in the R-dominated media outlet A (L-dominated media B). Suppose that citizen priors are such that their most informative source is ideologically aligned.

Then any increase in γ increases the degree of media polarization.

Demand for Information can Backfire!

Intuition:

- Public split according to ideology (action absence news);
 - Viewers with p > 1/2 (right-leaning) choose to act, need strong evidence not to act
 - Viewers with p < 1/2 (left-leaning) do not act, need strong evidence to act
- SIG prefer to fire-up-their-base
- Increased sorting according to value of information:
 - Increases the prior distribution of right-captured media (in the FOSD sense) decreases it for left-leaning media.
 - This polarizes their respective bases and increases incentives to capture the respective outlet and abandon the other outlet
- If there was full differentiation to begin with: unambiguous reduction in information

Plan of Talk

- Communication Equilibria
- Endogenous Capture
 - Monopoly Information Source
 - Multiple Information Sources
 - Endogenous Source Choice
- Conclusions

Conclusions

- Pressure on information landscape: polarized reports but viewers' skepticism
- Symmetric pressure does not cancel and hurts social learning
- SIGs capture leads to ideologically more differentiated landscape
- Citizens sorting according to value of information may exacerbate capture (when SIGs seek to fire up their base) or dampen capture (when SIGs seek to demobilize opposition).
- Increased demand for information can exacerbate coverage polarization and reduce equilibrium informativeness of information landscape

Thank You!