Labor Scarcity, Technology Adoption and Innovation: Evidence from the Cholera Pandemics in 19th Century France^{*}

Raphaël Franck[†]

Abstract

To analyze the impact of labor scarcity on technology adoption and innovation, this study uses the differential spread of cholera across France in 1832, 1849 and 1854, before the transmission mode of this disease was understood. The results suggest that a larger share of cholera deaths in the population, which can be causally linked to summer temperature levels, had a positive and significant short-run effect on technology adoption and innovation in agriculture but a negative and significant short-run impact on technology adoption in industry. These results can be explained by the positive impact of labor scarcity on human capital formation.

Keywords: Epidemics, Labor Scarcity, Technology Adoption, Technology-Skill Complementarity.

JEL classification: I15, N13, O33.

^{*}I thank Yoshiaki Azuma, Graziella Bertocchi, Bruno Caprettini, Francesco Cinnirella, Cédric Chambru, Eve Colson-Sihra, Nicola Fuchs-Schündeln, Oded Galor, Véronique Gille, Tarek Harchaoui, Mariko Klasing, Petros Milionis, Masao Ogaki, Niklas Potrafke, Carla Salvo, Shmuel San and Joseph Zeira, conference participants at the CEPR Macroeconomics and Economic Growth Meeting, Economic History Society, European Public Choice and Royal Economic Society, as well as seminar participants at CesIfo, Doshisha University, Graduate Institute of Policy Studies, Hebrew University of Jerusalem, HSE Moscow, IAST Toulouse, Keio University, Kyoto University, Paris-Dauphine University, University of Groningen, University of Southern Denmark and University of Tokyo for helpful comments. Part of this article was written at the CesIfo Research Institute in Munich whom I thank for its hospitality. Idan Been provided excellent research assistance. I remain solely responsible for any mistakes.

[†]The Hebrew University of Jerusalem, Department of Economics, Mount Scopus, Jerusalem 91905, Israel, CEPR, CesIfo and GLO. Raphael.Franck@mail.huji.ac.il

1 Introduction

To explain technology adoption, theoretical studies have developed the macroeconomic implications of production factors which can be either complementary or substitute (see, e.g., Aghion and Howitt, 1992; Zeira, 1998; Howitt, 1999; Acemoglu, 2007, 2010; Alesina et al., 2018). If labor and technology are complementary factors of production, then labor scarcity, whereby skilled and/or unskilled workers are needed to operate machinery, is detrimental to technology adoption.¹ If they are substitute, then labor scarcity leads to high wages and is conducive to technology adoption. However, there is no clear empirical answer regarding the effects of labor scarcity on technology adoption because obtaining a quasi-experimental framework that could provide causal evidence has turned out to be challenging.

This study makes use of data about the cholera pandemics in 1832, 1849 and 1854 across France to provide reduced form estimates for the effect of labor scarcity on technology adoption and innovation.² In so doing, it asks the following questions: (i) is labor scarcity conducive to technology adoption in agriculture and in industry or not, i.e., are production factors in agriculture and in industry complementary or substitute? (ii) is labor scarcity conducive to technological innovation? and (iii) is labor scarcity conducive to technological innovation? and (iii) is labor scarcity conducive to technological innovation?

 19^{th} c. France appears well suited for such an empirical analysis. First, the country was hit harshly by the cholera epidemics: it lost 102,739 individuals in 1832, 102,500 in 1849 and 142,749 in 1854, i.e., about 1% of the population died over 22 years.³ However some areas were hit more intensely than others. For instance, the department of Ariège in the South-West of France lost 4.2% of its population during the 1854 pandemic. Second, it was one of the first countries to experience the industrial revolution. Third, the French territory had been divided in small administrative divisions of nearly equal size in 1790 and thus, before the spread of cholera. During the period under study, there were 85 departments which were subdivided into 357 arrondissements: their average size was 6,000 km² and 660km²

¹Several studies (e.g., Kremer, 1993; Ashraf and Galor, 2011) noted that historically, technological innovation occurred in densely-populated areas.

²This paper thus differs from studies which use CES and/or Cobb-Douglas production functions to assess the rate of substitution between labor and technology. In this literature (e.g., Knoblach and Stöckl, 2019, for a recent survey), specific assumptions on estimation equations and technology dynamics have a substantial impact on the estimated parameters. We do not attempt to reproduce our main reduced form regression results with a CES production function given the specificities of our data as we discuss below.

³To put these figures in perspective, estimates suggest that the Spanish flu in France killed about 0.61% of the population after WWI (238,000 out of 39,108,000 inhabitants) while the Covid-19 pandemic had killed 0.19% by 31 December 2021 (123,805 out of 66,314,842 inhabitants) (Ansart et al., 2009).

respectively.

In the course of the 19^{th} c., scientists offered competing theories on the spread of cholera and its cure. Although English physician John Snow had already published his first findings in 1849, it was only in 1855 with the second edition of his book that he conclusively demonstrated the role of contaminated water in the spread of the disease (Snow, 1855). And while Italian scientist Filippo Pacini had isolated the Vibrio Cholerae Bacterium in 1854, it was only in 1884 that German scientist Robert Koch would identify the Vibrio Cholerae Bacterium as the source of the disease and subsequently provide a treatment (Koch, 1884). Scientists have, by now, identified the different modes of transmission of cholera (Glass and Black, 1992). In particular, for a country like France whose weather is not warm throughout the year, cholera is particularly prone to transmission in the summer and specifically, in regions which are humid. In such an environment, transmission is often possible because the Vibrio cholerae bacterium can survive for six to seven weeks on dry clothes which were previously damp and sweaty. In fact, because the basic rules of microbe transmission and social distancing were unknown at the time, cholera was often spread during funeral wakes when mourners would touch the body of the dead and his/her dry clothes, thereby leading to the mistaken belief that the disease spread through airborne "miasmas".

But even if the spread of cholera before 1855 was not understood and could not be prevented, it is possible to conjecture in hindsight that the diffusion of the pandemics was correlated with local characteristics. While our empirical strategy controls for time-invariant characteristics with fixed effects, it might be the case that cholera spread more easily in areas near rivers where population density increased between 1832 and 1854. Moreover, the relationship between labor scarcity and technology adoption may ultimately reflect the potential effect of institutional, geographical, and cultural characteristics on the joint evolution of the labor supply and technological progress. Given the potential endogeneity in the relationship between labor scarcity and technology, and in light of the historical evidence linking summer temperature levels and humidity to the spread of cholera in France (Delaporte, 1986; Bourdelais and Raulot, 1987), this paper uses the historical weather data of Luterbacher et al. (2004), Luterbacher et al. (2006) and Pauling et al. (2006) to establish the causal impact of the cholera on technology adoption. The empirical analysis shows that summer temperatures in 1832, 1849 and 1854 have a causal impact in the local intensity of cholera deaths in the population of each department. This finding is robust to using Acemoglu et al. (2020)'s maximum likelihood strategy that accounts for interpolation concerns in the measurement of temperature across geographic units. More generally, our results are robust to falsification

tests showing showing that the share of cholera deaths cannot be explained by other seasonal temperature and rainfall levels in other years as well as to pre-trends tests for observable demographic and economic characteristics.

The results establish that in the short-run, a larger share of cholera deaths in the population had a positive and significant effect on technology adoption and innovation in agriculture but a negative and significant impact on technology adoption in industry. As such, our results suggest that labor and capital are substitute factors of production in agriculture and complementary in the industrial sector, in line with recent studies on the impact of labor scarcity that rely on policy variations in migration (e.g., Abramitzky et al., forthcoming; San, forthcoming). However our findings indicate that the effects of the cholera pandemics on technology adoption and innovation were quantitatively limited.⁴ A department experiencing a median loss in population because of the cholera epidemics (0.057%) would have adopted 0.28 additional mechanized ploughs per day laborer over the following years but would have had 3.68 fewer steam-powered machines per worker in the year after each epidemic. These results are robust to accounting for spatial autocorrelation using Colella et al. (2020)'s approach as well as for heterogeneous treatment effects using the two-way fixed effects estimators of de Chaisemartin and D'Haultfoeuille (2020).

Moreover, our study suggests that the positive impact of labor scarcity on human capital accumulation can explain our main results. As population loss increased the expected returns to literacy and literate workers were sought out in industrial work (e.g., Katz and Margo, 2014; Atack et al., 2019; Franck and Galor, 2022), the rise in the share of literacy workers in the population offset the immediate negative effect of the population losses on technology adoption in industry. In parallel, this increase in literate workers, who would most likely avoid low-paying work in agriculture, fostered agricultural mechanization. Additional regressions show that this human capital channel for our results is robust to accounting for migration, urbanization, a cultural shift as proxied by a change in religiosity, fertility and nuptiality patterns as well as local financial intermediation.

This study is related to three strands of the economics literature but seeks to provide a different perspective. First, it is related to research on pandemics, income shocks and economic growth (e.g., Chakraborty et al., 2010; Adda, 2016; Rasul, 2020; Albanesi and

⁴It is possible that pandemics only have a major economic effect on economies when the death toll reaches a high threshold, e.g., when one third of the population died during the Black Death in the Middle Ages. However, since the 19^{th} c., no pandemic in countries out of the Malthusian trap has killed that many people. The public policy implications of our results therefore call for a careful approach as the economic consequences of pandemics may not be as disruptive as one would think.

Kim, 2021). Pandemics could spur growth by increasing available resources to surviving individuals, especially for economies at the Malthusian stage of development (Lagerlöf, 2003; Young, 2005; Siuda and Sunde, 2021).⁵ However, it is difficult to ascertain the impact of pandemics for countries out of the Malthusian trap: while Ambrus et al. (2020) find a long-term impact of the 1854 cholera pandemic on poverty within London, studies on the 1918-1920 Spanish flu (e.g., Barro et al., 2020; Jordà et al., 2020; Lin and Meissner, 2020) concur that it had short-term negative effects but differ as to its actual long-run persistence.

Second, this paper is related to research seeking to explain technology adoption during the industrial revolution in the 19th century (e.g., Mokyr, 2009; Aidt and Franck, 2015; Akcigit et al., 2017; Juhász, 2018; Caprettini and Voth, 2020). Research starting with Habakukk (1962) has argued that labor scarcity, and the ensuing high wages, led to the adoption of machinery. It is however unclear whether high wages in England and the USA actually stemmed from the relative abundance of coal or land, or from the presence of skilled workers with high levels of productivity(see, e.g., Kelly et al., 2014; Stephenson, 2018).

Third, this study is related to research assessing the impact of labor market conditions on the adoption of labor-saving technology: these include Acemoglu and Finkelstein (2008) on healthcare, Manuelli and Seshadri (2014) and Hornbeck and Naidu (2014) on agriculture, Lewis (2011) on manufacturing, Acemoglu and Restrepo (2022) on the link between demographic factors and technology adoption as well as Dechezleprêtre et al. (2019) on the effects of labor costs on automation.⁶ In this respect, most of the recent literature on labor scarcity takes advantage of changes in migratory policies in the short- and mid-run (e.g., Moser et al., 2014; Clemens et al., 2018; Abramitzky et al., forthcoming; San, forthcoming). This study however seeks to give a different perspective by providing causal evidence over a 50-year period for the effects of labor scarcity caused by a disease whose transmission mode was then not understood and which had no cure.

The remainder of this article is as follows. Section 2 presents the data and Section 3 the empirical strategy. Section 4 discusses the results. Section 5 shows that the increase in human capital explains our main results and establishes that alternative mechanisms do not provide convincing explanations. Section 6 concludes.

⁵The Black Death in Western Europe seems to have been conducive to growth in the long-run but its effects were different in Eastern Europe (e.g., Voigtländer and Voth, 2013; Jedwab et al., 2019).

⁶Other studies dealing with the relative scarcity of production factors on technological adoption include Newell et al. (1999) and Hassler et al. (2021) on the rise of energy prices and scarce natural resources as well as Hanlon (2015) on cotton.

2 Data

The dataset comprises information on the 85 departments and 357 arrondissements in mainland France, as well as on individuals living across the country, during and after the 1832, 1849 and 1854 cholera pandemics.⁷ As we note below, information is sometimes missing for some outcome variables immediately after 1832 and we are therefore compelled to restrict the sample to the aftermath of the 1849 and 1854 pandemics. Table A.1 reports the descriptive statistics for the variables in the empirical analysis across the departments and arrondissements as well as for the variables used in the individual-level analysis. Tables A.2 and A.3 provide descriptive statistics for the additional variables employed in falsification tests and robustness analyses.

2.1 Cholera Outbreaks

Figure 1: Cholera Deaths, 1832, 1849 & 1854

To build the main explanatory variable on the intensity of cholera outbreaks in 1832, 1849 and 1854, the study uses the official statistics provided by the French government on the share of cholera deaths within the population of each department (France, 1862). As can be seen in Figure 1, the three cholera pandemics mainly affected the north of France and the

⁷The analysis is restricted to mainland France and excludes Corsica where no death from cholera was recorded in 1832 and 1849, and where there were only 220 cholera deaths out of 236,251 inhabitants in 1854 (0.09% of the population). Moreover, three new departments (Alpes-Maritimes, Haute-Savoie and Savoie) were added to France in 1860. Since they were not part of France during the 1832, 1849 and 1854 pandemics, they are excluded from the analysis.

Atlantic Coast. The south of France was only hit harshly in 1854.⁸ Only 11 departments located in the hinterland south-west of the French territory were spared in the three cholera outbreaks (Cantal, Corrèze, Creuse, Dordogne, Gers, Landes, Lot, Lozère, Hautes-Pyrénées, Vienne and Haute-Vienne).

Here two remarks are important. First it must be noted that before 1855, the transmission mode of the cholera had not been conclusively established. At a time where basic knowledge about microbes was just being discovered, some scientists were mistakenly arguing that there were airborne "miasmas" which explained the diffusion of the disease. As such, avoiding polluted water sources, as well as proper hygiene and social distancing, did not play a role in the behavior of individuals: since no-one knew how the disease spread, it was not even clear that running away from areas affected by the cholera could offer any protection.⁹ Second, the disease was a problem for the central State, the local governmental authorities, the Church as well as the local associations. However there was no health policy which any government or organization could implement to stop the disease.

Table 1: The Distribution of the Percentage of Cholera Deaths in the Population across FrenchDepartments in 1832, 1849 & 1854

	Mean	25^{th}	50^{th}	75^{th}	90^{th}	99^{th}
1832	0.26	0	0.01	0.26	0.86	2.35
1849	0.20	0	0.02	0.22	0.88	1.70
1854	0.46	0.009	0.16	0.61	1.36	4.20
All Years Combined	0.31	0	0.06	0.30	0.90	2.84

Note: This table reports descriptive statistics for the percentage of cholera deaths in the population across the 85 French departments in 1832, 1849 & 1854. The total French population amounted to 32,443,430 inhabitants in 1832, 36,910,360 in 1849 and 35,782,708 in 1854.

As can be seen in Table 1, the distribution of cholera deaths within the population of each department is skewed: the 25^{th} percentile is equal to 0, the median 0.057%, the 75^{th} percentile 0.30% and the 99^{th} percentile 2.84%. This reflects the fact that the disease reached most departments at least once in either 1832, 1849 and 1854, but only a few were hit harshly. Nonetheless, 20 departments lost more than 1% of their population in at least one of the three outbreaks.

⁸Anecdotal evidence suggests that each time, the cholera came by boat from England. It only spread to the south-east of France in 1854 because of the French soldiers who embarked from the southern harbors of Toulon and Marseille to fight the war in Crimea.

⁹The French population soon came to refer to the cholera as the "blue fear" (peur bleue) because of the blue coloration that the faces of sick individuals would take just before dying. The expression "peur bleue" is still commonly used in French and refers to something which is terrifying.

		0			
		(1)	(2)	(3)	
		Female	Male	p-value	
	All	0.0047	0.0045	0.818	
		[0.008]	[0.008]		
	Age 0-20	0.0031	0.0032	0.916	
		[0.0005]	[0.0006]		
	Age 20-40	0.0032	0.0031	0.927	
	-	[0.0006]	[0.0006]		
	Age 40-60	0.0059	0.0058	0.946	
	-	[0.001]	[0.001]		
	Age 60 and above	0.012	0.011	0.658	
	0	[0.002]	[0.002]		
				c	
Panel B.	Test of means: a	across ag	ge groups	s for sam	e

Table 2:	Share of Cho	lera Deaths in	Population	by Gender	and Age in	1854
	Panel A.	Test of means:	age groups	across ger	nder	

	Female Age 60 and above	0.525	Male Age 60 and above	0.417
-				

Female Age 0-20 Male Age 0-20

Male Age 20-40

Male Age 40-60

(2)

p-value

0.452

0.703

(1)

p-value

0.626

0.446

Female Age 20-40

Female Age 40-60

Note: This table shows that the share of cholera deaths was not statistically different across the population of departments by age or gender. Standard deviations in brackets in Columns (1) and (2) of Panel A.

Tables 2 and 3 provide additional descriptive statistics and tests regarding the share of cholera deaths in the population. Table 2 distinguishes between the gender and age of the victims during the 1854 pandemic while Table 3 focuses on the share of victims by distinguishing departments by their mean and median population in each of the three pandemics.

The tests of means reported in both Tables 2 and 3 are never significant, thereby alleviating concerns that some sections of the population would be more (or less) likely to die from exposure to the cholera. In particular, the tests in Table 2 suggest that our results cannot be driven by the gender and/or age of the cholera victims within the population of the departments hit by the cholera while those in Table 3 indicate that they cannot be driven by the size of the departmental population and hence by the propensity of the victims to inhabit urban or rural departments.

	Panel A. Test of means:	: Mean Population Density	
	(1)	(2)	(3)
	Below Mean Population Density	Above Mean Population Density	p-value
1832	0.0276	0.0288	0.391
	[0.0007]	[0.0013]	
1849	0.0260	0.0268	0.444
	[0.0005]	[0.0011]	
1854	0.0303	0.0275	0.160
	[0.0014]	[0.0011]	
	Panel B. Test of means:	Median Population Density	
	(1)	(2)	(3)
	Below Median Population Density	Above Median Population Density	p-value
1832	0.0278	0.028	0.756
	[0.0009]	[0.0010]	
1849	0.0256	0.0271	0.155
	[0.0005]	[0.0009]	
1854	0.0303	0.0280	0.239
	[0.0017]	[0.00097]	

Table 3: Share of Cholera Deaths in Population by Population Density, 1832, 1849 & 1854

Note: This table shows that the share of cholera deaths was not statistically different in departments with high or low population density. Standard deviations in brackets in Columns (1) and (2).

It is worth noting that there were additional cholera outbreaks in 19^{th} c. France, i.e., in 1884 and 1892. However, they occurred after 1855, when the transmission mode of the cholera had been finally established by Snow (1855). As a result, it is preferable to restrict the main analysis to the pre-1855 cholera outbreaks: this avoids endogeneity concerns that specific areas might become more efficient than others in preventing the spread of the disease once the mode of contagion was known. In this respect, we show in Table C.1 that the spread of cholera before 1855 was not correlated with its spread in 1884 and 1892 whose consequences were more limited because local authorities then understood and could prevent the diffusion of the disease. Table C.2 further shows that the 1832, 1849 and 1854 cholera pandemics were not correlated with the various causes of deaths in each department in 1855. Moreover, Tables C.3 and C.4 show that cholera pandemics in 1832, 1849 and 1854 are not correlated with the spread of illnesses before and after the 19^{th} c.: there is no correlation with the number of towns hit by the spread of the plague in the 18^{th} c. in each department, or with the spread of viral diseases (flu, acute diarrhea and chicken pox) in 1992, 2009 and 2014, i.e., 160 years later.

2.2 Summer temperature in 19th century France

As established by modern research (e.g., Glass and Black, 1992), the Vibrio Cholerae Bacterium quickly spreads in humid environments where temperatures are above 15 degrees Celsius. This implies two predictions for the diffusion of cholera in France. First, cholera mainly spreads during the summer because this is the season when temperatures in France are above 15 degrees Celsius for a long time period. Second, cholera is more likely to spread in the North than in the South of France because relative humidity is always higher in northern areas where temperatures are always relatively lower. While this second point might seem slightly counter-intuitive to the reader because humans feel humidity more accurately (and hence experience more discomfort) at higher levels of temperature, it is actually the case that relatively lower temperatures entail more relative humidity because they enable for less water evaporation (Wallace and Hobbs, 1977; Lutgens and Tarbuck, 2015). In the case of France, the regression results in Table B.1 use modern weather data from 42 weather stations in 2018 and establish that lower temperatures are indeed associated with higher relative humidity, accounting for weather station fixed effects as well as month-, day- and hour- fixed effects.¹⁰

Given the properties of the Vibrio Cholerae Bacterium and the historical context, our identification strategy predicts that (1) temperatures in the summer of 1832, 1849 and 1854, and not in any other season or in any other year, are significantly correlated with the spread of cholera because this is the only time period where temperatures remain above 15 degrees Celsius and that (2) summer temperature levels in 1832, 1849 and 1854 would be negatively correlated with the spread of cholera because northern French departments experienced relatively lower temperatures, and hence more relative humidity, than southern departments. Anecdotal evidence on the monthly spread of cholera in 1854 seems to support this prediction: Figure 2 shows that the disease spread from the north of the country and claimed the highest number of victims in July, August and September.

¹⁰The negative correlation between temperature and relative humidity is not specific to France. For instance, Huang et al. (2019, Table 1) report that in China, where temperatures in the North are lower than in the South, there is a negative correlation between mean temperature and relative humidity throughout the year that is only significant at the 5% level during the summer. For the sake of the argument, it should also be noted that the Sahara desert is located to the South of the Mediterranean sea and that this desertic area is dryer than the coastal Mediterranean areas of North Africa.

Figure 2: Cholera Deaths: January-December 1854

Figure 3: Summer Temperature, 1832, 1849 & 1854

Our study relies on the historical weather data of Luterbacher et al. (2004), Luterbacher et al. (2006) and Pauling et al. (2006). These data were reconstructed using various sources such as lake sediments and tree rings as well as historical records for every season over the 1500-1900 period at a resolution of 0.5 by 0.5 decimal degrees. There are therefore concerns about measurement error and the interpolation of climatic data over departments, i.e., two cells per department on average. Still Luterbacher et al. (2004), Luterbacher et al. (2006) and Pauling et al. (2006) show that the quality of the data improve over time, especially from the end of the 18^{th} c. onward. Figure 3 maps those data for the summers of 1832, 1849 and 1854 and shows that temperature levels were relatively lower in the north than in the south of France during each of those summers.

Table 4: Summer Temperatures across French Departments in 1832, 1849 & 1854

Mean	Std. Dev.	Min	Max
17.72	1.43	13.88	21.77
17.46	1.30	14.71	21.24
17.15	1.23	13.32	20.72
	Mean 17.72 17.46 17.15	MeanStd. Dev.17.721.4317.461.3017.151.23	MeanStd. Dev.Min17.721.4313.8817.461.3014.7117.151.2313.32

Note: All variables have 85 observations. Source: Luterbacher et al. (2004), Luterbacher et al. (2006) & Pauling et al. (2006).

It is worth noting that summer temperatures in 1832, 1849 and 1854 were rather mild. As the descriptive statistics in Table 4 indicate, the average summer temperatures in 1832, 1849 and 1854 were around 17C, ranging from 13.3C to 21.7C. In other words, as we show in the robustness checks in the Appendix and in particular in Table D.4, summer temperature levels, but not summer temperature shocks, explain the local spread of cholera.

2.3 Measures of technology adoption and human capital

2.3.1 Technology adoption, wages and production in agriculture and industry

This study relies on the governmental surveys of agriculture carried out in 1852 and 1862 (France, Ministère de l'agriculture du commerce et des travaux publics, 1852, 1862). They provide department-level information on the number of agricultural day laborers and their wages, as well as agricultural tools and cereal production (millet, oats, rye and wheat). It is worth noting that, in line with the historical evidence (e.g., Agulhon et al., 2003), the descriptive statistics in Table A.1 show that there were more mechanized ploughs than day laborers: the average number of mechanized ploughs per day laborer in our sample is 2.80, with a standard deviation of 3.17. This is because the majority of landowners in 19th c. France were small farmers who were themselves engaging in agricultural work and who would only hire day laborers during the harvest season.¹¹

Furthermore, the empirical analysis takes advantage of the data on the French mining industry in the successive volumes of the *Statistique des Mines*: this official governmental publication provides information on the types of machines, the production of coal and peat, as well as the number and wages of workers working inside the mines. While the department-level data in the *Statistique des Mines* are restricted to one industrial sector, they are available every year from the late 1830s onwards and pertain to an industry which had used steam engines since the 18^{th} c. (Woronoff, 1994). These data thus enable a refined analysis of the short- and long-run effects of labor scarcity on technology adoption.

In addition, the study uses the governmental surveys of the French industries which were carried out in 1839-47 and 1860-65 at the arrondissement level. For firms in the textile sector, which was the other leading industrial sector in 19^{th} c. France, they provide information on water-powered, wind-powered and steam-powered machines as well as on wages and workers. A drawback of these surveys is their lack of consistency which prevents us from using them in a panel data setting: the 1839-47 survey reports data on the number of machines while the 1860-65 reports data on the horse power of machines.

A potential concern for our analysis is that the prices of tools in agriculture and industry would be different, thereby driving mechanization in one sector at the expense of the other. Anecdotal evidence (Désert, 1984, p.206) suggests that both industrial and agricultural tools

¹¹It is beyond the scope of the article to discuss why there were few large landowners and many small farmers in 19^{th} c. France. French historiography still debates whether 18^{th} c. France was already characterized by the presence of small landowners or whether the policies of the 1789 French revolutionaries led to the dismemberment of many large land estates (see, e.g., Bodinier and Teyssier, 2000)

were expensive during our sample period and were either bought by a rich entrepreneur and/or landlord, or by a cooperative of small farmers .¹² In any case, to assuage concerns regarding the prices of machinery in agriculture and industry, we run in Table 5 a test of means on the prices and tariffs levied on imports of steam-powered engines, other industrial machines as well as scythes (a basic agricultural tool) over the 1827-1856 period. The p-values of the tests show no difference between the value of those imported goods, suggesting that price differences could not have constrained French producers to invest in agriculture or in industry.

(1)	(2)	(3)
Steam-Powered Machines	Other Machines	p-value
878.7	630	0.284
[202.5]	[91.5]	
(4)	(5)	(6)
Steam-Powered Machines	Scythes	p-value
878.7	851.7	0.904
[202.5]	[817.8]	

Table 5: Value of Imported Steam-Powered Machines, Other Machines & Scythes, 1827-1856

Note: This table presents test of means showing that there was no statistically significant difference in the price of imported steam-powered machines, other machines & scythes, 1827-1856. Standard deviations in brackets.

2.3.2 Technological innovation

19.

17. Fine arts, music, engraving, painting, lithography, typography 18.

Leather and skins

1. Agriculture, milling, bakery, viticulture 2. Agricultural hydraulics, watercourses, irrig	gations, artesian wells
3. Railways, steam engines, engines 4. Textile materials	
5. Machines and tools 6. Navigation	
7. Constructions, carpentry 8. Metallurgy, mining	
9. Hardware, plumbing, locksmith, cutlery 10. Bodywork, carpentry, saddler, harn-	ess, brushwork
11. Artillery 12. Precision instruments, watchmaking,	physics, surgery
13. Ceramic, brickyard, glass works 14. Chemical products and food su	ubstances
15. Lighting and heating 16. Clothing	

 Table 6: Categories of Patents

To test the hypothesis that labor scarcity spurred technological innovation, this study takes advantage of the data on patents from the French Institute for Intellectual Property (Institut National de la Propriété Intellectuelle) which was established in 1791. Since the patent

20

Paper, Binding, Parisian Articles and Stationery

Miscellaneous items

¹²For instance, in the 1830s-1850s, French-made water pumps used in factories in the Seine department cost between 400 and 2400 francs while in the Normandie region, threshing machines cost between 500 to 1600 francs (Brocchi, 1834; Désert, 1984; Dupré, 1993). For the sake of comparison, the average daily wage of an agricultural day laborer in our sample is 1.81 francs.

documents provide the purpose of the invention as well as the location of the inventor, it is possible to determine whether local labor scarcity triggered more innovation. Furthermore, the patents are listed in 20 categories shown in Table 6, thus enabling us to examine which sectors of the French economy spearheaded innovation in the wake of the cholera pandemics.

2.3.3 Human capital: literacy and schooling

The empirical analysis explores potential channels which could have fostered technology adoption in the aftermath of each cholera outbreak. Human capital could be such a channel, especially in light of recent studies which highlight the complementarity between education and technological change during the 19^{th} century (e.g., Katz and Margo, 2014; Atack et al., 2019; Franck and Galor, 2022).

For this purpose, the empirical analysis uses individual data from the Enquête des 3000 familles (Survey of the 3000 Families). This survey follows during the 19^{th} c. men and women from families whose last name starts by the three letters TRA. It provides information on their ability to sign their wedding licenses, as opposed to mark it with a cross, as well as on their birth year and birth department.¹³ It also provides this same information for their spouses (whose last name does not start with these three letters).¹⁴ Furthermore, in additional tests, we use the data of the Enquête des 3000 familles to assess the impact of the cholera on the age at marriage and on inheritance value.

Moreover, the empirical analysis relies on governmental data on the departmental shares of literate individuals among the French army conscripts, i.e., 20-year old men reporting for military service in the area where their father lived (France - Ministère de la Guerre, 1839-1937). These yearly data are not subject to selection bias because every Frenchman had to report for military service, although changes in conscription rules meant that every man did not eventually serve during the 19^{th} century (Crépin, 2009).

The empirical analysis also uses various measures of formal education at the department level from the *Statistique Générale de la France*. These data pertain to primary school attendance as well as to spending on primary schooling by the three tiers of the French government (communes, departments and the central State). They also provide information on courses for male and female adults and apprentices, as well as public spending on these

 $^{^{13}\}mathrm{Arguably},$ signing a wedding license provides a lower bound on literacy. It does not fully assess the ability to read and write.

¹⁴There might be concerns with respect to this dataset and its representativeness of the whole French population in the 19^{th} century. However Abramitzky et al. (2011) show that it is representative of nuptiality patterns while Daudin et al. (2019) find it to map accurately the patterns of internal migration.

courses for men (the data on public spending for the courses for women are not available in the time frame of our study). These courses for adults and apprentices can be thought of as the 19^{th} c. equivalent of workers' retraining classes insofar as they sought to provide basic technical knowledge and literacy skills (Marchand, 2005).

2.4 Characteristics of departments

The empirical analysis controls for the characteristics of departments that may be correlated with the adoption of new technology. These time-varying characteristics might actually be viewed as "bad controls" in the terminology of Angrist and Pischke (2008) as they could be correlated with the spread of cholera and the adoption of new technology.

First, we use Bazot (2014)'s data on the GDP per capita of each department. These data are reconstructed from official documents and provide a measure of local income.

Second, we control for the possibility that summer rainfall shocks might have contributed to the diffusion of the cholera since this disease spreads in humid environments. For this purpose, we use the historical weather data of Luterbacher et al. (2004), Luterbacher et al. (2006) and Pauling et al. (2006) to define a measure of seasonal rainfall shocks $R_{s,d,t}$ in season s in department d in year t such that $R_{s,d,t} \equiv \left[(\mu_{s,d,t} - \mu_{s,d})/\sigma_{s,d}\right]^2$ where the average rainfall $\mu_{s,d,t}$ is standardized by mean $\mu_{s,d}$ and standard deviation $\sigma_{s,d}$ of rainfall in each department. In what follows, both $\mu_{s,d}$ and $\sigma_{s,d}$ are computed over the 25-year period before each pandemic but additional regressions available upon request show that our results are also robust to using 10-, 15- and 20-year periods before each pandemic.

Finally, as discussed in detail below, the empirical strategy relies on a panel data approach with fixed effects that account for the time-invariant characteristics of the administrative areas. It is however possible that some time-invariant characteristics might have a different impact over time, especially if they are correlated with technology adoption. For this purpose, our empirical analysis includes interaction variables between year-fixed effects and specific geographic variables whose impact might have changed over time. These are the administrative areas' share of carboniferous area (Fernihough and O'Rourke, 2021), their land suitability (Ramankutty et al., 2002) as well as dummies indicating their location on the border with a foreign country and on the seashore.

3 Empirical strategy

The empirical analysis examines whether areas which lost a large share of their population during cholera outbreaks, and where consequently, labor scarcity became more acute, experienced greater adoption of labor-saving technology in the agricultural and industrial sectors. A priori, it is unclear whether production factors in agriculture and industry are complementary or substitute. It is also unclear what the dominant effect of labor scarcity on wages and production is in a general equilibrium framework. On the one hand, labor scarcity increases wages, and so does the adoption of machines which increases the productivity of workers. On the other hand, the adoption of machines could also lower wages. Furthermore, if production factors are complementary, labor scarcity would decrease production. However if production factors are substitute, then technology adoption is a cost-cutting measure: producers may choose to increase production, but may also produce the same quantity at a lower cost, or may even decrease production if demand has declined.

3.1 Empirical model

The empirical specification can be presented in two stages and estimated with 2SLS. The second stage can be written as

$$Y_{it} = \alpha_i + \alpha_t + \beta_1 C_{it} + \beta_2 \mathbf{X}'_{it} + u_{it}, \tag{1}$$

where Y_{it} is one of our measures of technology adoption and innovation in administrative area i in year t, C_{it} is the share of deaths caused by the cholera pandemics within the population of administrative area i in year t, X'_{it} is a vector of geographical and pre-industrial economic characteristics of administrative area i in year t, α_i and α_t are administrative-area- and year-fixed effects while u_{it} is an i.i.d. error term for administrative area i in year t.

In the first stage, C_{it} is instrumented by T_{it} , which represents summer temperature levels in administrative area *i* in year *t*

$$C_{it} = \gamma_i + \gamma_t + \delta_1 T_{it} + \delta_2 \mathbf{X}'_{it} + v_{it}, \qquad (2)$$

where X'_i is the same vector of geographical and economic characteristics of administrative area *i* in year *t* used in Equation 1, γ_i and γ_t are administrative area- and year-fixed effects while v_{it} is an i.i.d. error term for administrative area *i* in year *t*.

3.2 Summer temperatures and cholera deaths in the population: first-stage regression results and tests for pre-trends

3.2.1 First-stage regression results

Table 7: Summer Ten	perature Levels a	and Share of	Cholera Dea	ths in the	e Population
---------------------	-------------------	--------------	-------------	------------	--------------

	(1)	(2)	(3)
First stage: the instrumented variable is S	hare of Chole	era Deaths in	n Population
Summer Temperature	-0.118^{***}	-0.141^{***}	-0.140***
	[0.0271]	[0.0303]	[0.0308]
	{0.044}***	{0.058}**	$\{0.061\}^{**}$
	. ,		
1st stage F-stat	19.012	21.652	20.788
Moran I	-0.008	-0.008	-0.008
Moran I p-value	0.212	0.209	0.210
Department and Year Fixed Effects	Yes	Yes	Yes
Deviation from Summer Rainfall	No	Yes	Yes
Geographic Controls * Year Fixed Effects	No	Yes	Yes
GDP per capita	No	No	Yes
Clusters	85	85	85
Observations	255	255	255

Note: This table reports the first stage estimates relating summer temperature levels to the share of cholera deaths in the population in 1832, 1849 and 1854. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. All variables are in logarithm. Robust standard errors clustered at the department level are reported in brackets. Robust standard errors clustered at the department level using the Maximum Likelihood approach of Acemoglu et al. (2020) are reported in curly brackets. ***p < 0.01,** p < 0.05,* p < 0.1.

In line with the historical evidence on the spread of cholera in 19^{th} c. France, where the disease mainly hit northern departments during the summers of 1832, 1849 and 1854, Table 7 shows that the summer temperature instrument has a negative and significant effect on the share of cholera deaths in the population (the complete specifications with the control variables are shown in Table D.1). In all the specifications using robust clustered standard errors at the department level, this negative effect is significant at the 1% level. To ensure the robustness of our results, we also compute the standard errors with the maximum likelihood estimation strategy of Acemoglu et al. (2020) that corrects for measurement error and geographic correlation in rainfall measurement. These standard errors are reported in curly brackets in Table 7 and confirm the significant and negative effect of summer temperature on the share of cholera deaths in the population.

The estimate in Column 1 of Table 7 suggests that a 1% decrease in summer temperature levels increased the share of cholera deaths in the population by 11.8%. Hence, for a department experiencing a decrease in temperature from the 75th percentile of summer temperature (18.10 degrees Celsius) to the 50th percentile (i.e., 17.38 degree Celsius), this 4.03% decrease in temperature would entail 0.6% more in the share of cholera deaths in the population, i.e., a decline equal to one standard deviation. Thus, in line with the historical evidence, these computations suggest that the successive cholera pandemics entailed a substantial loss of population.

3.2.2 Falsification tests and robustness checks for pre-trends

To enhance the credibility of our identification strategy, we present several falsification tests and robustness checks for pre-trends. They show that neither summer temperatures nor cholera deaths are correlated with potentially omitted variables pertaining to the pre-existing characteristics of the departments that could drive their vulnerability to the cholera epidemics and their subsequent adoption of technology.

Note that we already discussed the following robustness checks in Section 2: (i) Tables 2 and 3 show that all population groups (distinguished by age or gender, urban or rural) were equally affected by the cholera; (ii) Tables C.1 and C.2 show that the numbers of victims in the 1832, 1849 and 1854 cholera pandemics were not correlated with the numbers of victims in the minor cholera outbreaks in 1884 and 1892 (which occurred after the transmission mode of the disease was understood); (iii) Tables C.3 and C.4 show that the diffusion of cholera pandemics in 1832, 1849 and 1854 is neither correlated with the number of towns hit in each department by the spread of the plague in the 18^{th} c., nor correlated with the spread of viral diseases in 1992, 2009 and 2014, i.e., 160 years later; and (iv) Table 5 shows that there are no significant differences in the prices of imported machinery in agriculture and industry that could potentially drive the results.

In what follows, we summarize the additional falsification tests which we carry out in support of our identification strategy. In the Appendix, we present the data sources and report the regression results.

Cholera, temperatures and rainfall. Because weather data are correlated over time, a potential concern regarding the identification strategy is that the significant effect of summer temperature levels on cholera deaths in the year of each pandemic can be attributed to the general effect of summer temperatures in other years, and is correlated with temperatures in other seasons and with rainfall. Reassuringly, the share of cholera deaths is not correlated with summer temperatures in the years just before or after the cholera outbreaks in Table D.2. Moreover, in the years of cholera outbreaks, the share of cholera deaths in the population is not correlated with temperatures in spring, fall and winter in Table D.3, with summer temperature shocks in Table D.4 and with rainfall in Table D.5.

Pre-pandemic trade and industry. A potential concern regarding the exogeneity of the relationship between summer temperature and cholera deaths pertains to trade and industry. In particular, it is possible that the transport of goods within France, and the associated circulation of people, would be correlated with weather conditions and would have an impact on the spread of the pandemic. Reassuringly, both Tables D.6 and D.7 show that there is no relationship between internal trade and temperature as well as between internal trade and the spread of cholera.

In addition, Table D.8 shows that summer temperature and technology adoption in industry were not correlated before the first cholera pandemic in 1832. Namely, in 1789, 1811 and 1815, summer temperatures had no significant impact on the numbers of iron forges and mechanical mills in the cotton industry. Furthermore, Column (1) of Table D.12 shows that the spread of the cholera was not associated with the trade cost caused by the Napoleonic blockade that shifted the geographic pattern of the French textile industry (Juhász, 2018).

Pre-pandemic characteristics of the population. Table D.9 shows that the first stage relationship is not influenced by omitted variables linking summer temperatures and the number of deaths in each department over time. Furthermore, Tables D.10 and D.11 show that summer temperatures and cholera deaths were not correlated with the number and density of inhabitants as well as with the age structure of each department prior to the 1832, 1849 and 1854 cholera pandemics.

Pre-pandemic human capital & wealth. It could be conjectured that the share of cholera deaths in the population was correlated with the relative presence of poor/rich individuals or of educated/uneducated individuals. While there is no historical evidence suggesting that the cholera victims were characterized by specific social statuses or income levels, Tables D.12-D.15 are meant to assuage concerns regarding a possible link between cholera deaths, education and wealth.

Thus, Columns (2)-(4) of Table D.12 show that the share of cholera deaths in the population was not correlated with the higher tail of human capital in the 18^{th} c. as proxied by the number of subscribers to the Quarto edition of the *Encyclopédie* (Darnton, 1973; Squicciarini and Voigtländer, 2015) or with the changes in the social composition of the population triggered by the French Revolution as measured by the shares of *émigrés* and terror victims in each department (Finley et al., 2021; Franck and Michalopoulos, 2017).

Moreover, in line with the historical evidence, Table D.13 shows that the cholera claimed victims among different occupational groups, whether rich (e.g., shipowners), poor (e.g., tenant farmers) or educated (e.g., clergymen, professors & teachers). Furthermore, Table D.14 shows that there is no significant relationship between the share of cholera deaths in the population, the probability that the dead left an inheritance as well as the value of the inheritance. Finally, Table D.15 shows that the cholera pandemics were not correlated with human capital as proxied by the likelihood that individuals born one to 20 years before each pandemic could sign their wedding license (as opposed to mark it with a cross).

4 Results

This section explores the effect of the cholera pandemics on technology adoption and innovation in agriculture and industry. The regression results in Tables 8-11 suggest that the cholera epidemics had short-term and quantitatively small effects on technology adoption and innovation (Appendix E reports the regression results with the full set of controls). These effects were conducive to technology adoption in agriculture but not in the industrial sector. The results are robust to the inclusion of control variables, including GDP per capita, thereby making it unlikely that they are driven by short-term negative income effects.

In our results, our IV estimates for the effect of the cholera epidemics on technology adoption are two to three times larger than the OLS coefficients. A possible interpretation of these findings is that our regressions suffer from errors in variables and attenuation bias: while there is no evidence that the local civil servants who collected data on the number of cholera deaths sought to minimize or inflate the impact of the epidemics, some might have collected data more diligently than others. Another explanation is that our IV estimates reflect the expectations of individuals regarding the consequences of the cholera epidemics. These expectations, which might be viewed as self-fulfilling, explain the different effects of labor scarcity on technology adoption in agriculture and in industry. Finally, another interpretation is that the OLS estimates, unlike the IV estimates, underestimate the actual impact of the cholera epidemics on technology adoption.

In addition, three series of robustness checks support our main regression results. First, while our main regression results focus on the number of machines and tools per worker, Tables F.1-F.3 show the robustness of their sign and significance when the dependent variables are only the number of machines and tools. Second, we show that our main regression results are robust to accounting for spatial autocorrelation in two ways. In line with Kelly

(2019), we compute the Moran I test and its p-value over the residuals of each regression and are unable to reject the null hypothesis of no spatial autocorrelation at the 1%-level (these statistics are reported with the full specifications in Tables E.4-E.18 and Tables I.1-I.7). We also show in Tables G.1-G.6 that our main regression results are robust to using a weighting matrix based on the great-circle distance between the department's administrative centers (Colella et al., 2020). Third, we show in Tables H.1-H.2 that they are also robust to accounting for heterogeneous treatment effects using the two-way fixed effects estimators of de Chaisemartin and D'Haultfoeuille (2020).

4.1 Technology adoption, wages and production in industry

In the mining industry. The effects of the 1849 and 1854 cholera pandemics on the mining industry suggest that labor and capital are complementary factors of production. The upper part of Table 8 shows that the cholera had a negative and significant effect on the average number and horse power of steam-powered machines per worker inside mines in the year that followed each outbreak. Similarly, the lower part of Table 8 indicates that the cholera had a significant negative impact on the average numbers of steam generators and boilers per worker inside mines one year after each outbreak.

However the negative and significant effects of labor scarcity on technology adoption are quantitatively small. The IV regression results in Table 8 suggest that a department at the median of the distribution of the share of cholera deaths in the population (0.057%) would have had 3.68 fewer steam-powered machines (0.11 of the sample mean), 5.22 fewer horse power in steam-powered machines (0.01 of the sample mean), 4.23 fewer steam generators per worker (0.10 of the sample mean) and 5.66 fewer boilers per worker (0.19 of the sample mean). Furthermore, additional regressions available upon request show that these negative and significant effects of cholera on technology adoption in the mining sector do not persist in subsequent years. These limited quantitative effects may explain why we find no significant effect on wages and the number of workers in the year after each outbreak in the upper part of Table 9.

Moreover, the lower part of Table 9 shows that the cholera had no effect on the production of coal but led the mining industry to reduce the production of peat over the next three years. This is most likely because peat is cheaper than coal as the combustion of the former produces less energy than that of the latter. In other words, the complementarity of production factors led producers to make a rational decision and reduce the production of

Table 8: The Effects of the Cholera in 1849 & 1854 on the Number and Horse Power of Machinesper Worker in the Mining Industry One Year after each Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Ave	rage Numbe	r of Steam-I	Powered Mag	chines	Average	Horse Pov	ver of Stea	am-Powered	Machines
		per	Worker Yea	r t+1		0-	per	Worker Ye	ar t+1	
		1					1			
Share of Cholera Deaths in Population	-24 33***	-30 79***	-28 51***	-75 52**	-64 49**	-32 98**	-37 52**	-34 61**	-104 7**	-91 55**
Share of Cholera Deaths in Fopulation	[8 538]	[0.632]	[8 720]	[31 71]	[28 28]	[13.66]	[15,18]	[1/ 38]	[46.60]	[43.80]
	[0.000]	[9.032]	[0.720]	[51.71]	[20.20]	[13.00]	[10.10]	[14.50]	[40.00]	[45.60]
	V	v	V	17	v	v	v	v	v	v
Department and Year Fixed Effects	res	res	res	Yes	Yes	Yes	Yes	res	Yes	res
Deviation from Summer Rainfall	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Geographic Controls	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
GDP per capita	No	No	Yes	No	Yes	No	No	Yes	No	Yes
Within R2	0.174	0.228	0.255			0.123	0.137	0.155		
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
	110	110	110	110	110	110	110	110	110	110
		First	stage: the in	nstrumented	variable is S	hare of Ch	olera Deat	ths in Pop	ulation	
а т				0 100***	0.1=0***				0 100***	0.150***
Summer Temperature				-0.180***	-0.179***				-0.180***	-0.179***
				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577
				Reduced F	form: the dep	pendent va	riable is			
	Ave	rage Numbe	r of Steam-I	Powered Mac	chines	Average	Horse Pov	ver of Stea	m-Powered	Machines
		per	Worker Yea	r t+1		0	per	Worker Ye	ear t+1	
		1					1			
Summer Temperature				13 60**	11 53**				18 86**	16 37**
Summer remperature				[5.077]	[5 357]				[8.08]	[8 172]
				[0.911]	[0.557]				[0.000]	[0.172]
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Average N	umber of St	eam Genera	tors		Avera	age Numb	er of Boilers	
		pe	er Worker Y	ear t+1			pe	r Worker	Year t+1	
-							-			
Share of Cholera Deaths in Population	-21.29**	-27.51***	-24.89***	-86.21**	-74.20**	-13.64	-20.14*	-20.51*	-90.47**	-99.37**
2	[8 887]	[10.31]	[9.427]	[34.05]	[30.86]	[10.50]	[10.35]	[10.36]	[38 90]	[41.65]
	[0.001]	[10:01]	[0:121]	[01:00]	[00100]	[10:00]	[10:00]	[10:00]	[00.00]	[11:00]
Demonstration of Very Elizad Effects	V	V	V	V	V	V	V	V	V	V
Department and Year Fixed Effects	res	res	res	res	res	res	res	res	res	res
Deviation from Summer Rainfall	INO	res	Yes	res	Yes	No	Yes	res	Yes	Yes
Geographic Controls	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
GDP per capita	No	No	Yes	No	Yes	No	No	Yes	No	Yes
Within R2	0.131	0.182	0.215			0.211	0.329	0.330		
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		Finat	stage the i	nstrumented	variable is S	hare of Ch	olera Deat	ths in Pop	ulation	
		Flist	otage: the h							
		Flist	brager the h	0.100***	0.1=0****				0.1000	0.1 = 0.44
Summer Temperature		Filst	ougo: the h	-0.180***	-0.179***				-0.180***	-0.179***
Summer Temperature		Flist		-0.180*** [0.0471]	-0.179*** [0.0485]				-0.180*** [0.0471]	-0.179*** [0.0485]
Summer Temperature		FIISt	ouger the h	-0.180*** [0.0471]	-0.179*** [0.0485]				-0.180*** [0.0471]	-0.179*** [0.0485]
Summer Temperature 1st stage F-stat		Filst		-0.180*** [0.0471] 14.602	-0.179*** [0.0485] 13.577				-0.180*** [0.0471] 14.602	-0.179*** [0.0485] 13.577
Summer Temperature 1st stage F-stat		Flist		-0.180*** [0.0471] 14.602	-0.179*** [0.0485] 13.577				-0.180*** [0.0471] 14.602	-0.179*** [0.0485] 13.577
Summer Temperature 1st stage F-stat		Flist		-0.180*** [0.0471] 14.602 Reduced F	-0.179*** [0.0485] 13.577 Form: the dep	pendent va	riable is		-0.180*** [0.0471] 14.602	-0.179*** [0.0485] 13.577
Summer Temperature 1st stage F-stat	Average	Number of S	team Gener	-0.180*** [0.0471] 14.602 Reduced F rators per We	-0.179*** [0.0485] 13.577 form: the dep orker Year t-	pendent va +1 Avera	riable is ge Numbe	r of Boiler	-0.180*** [0.0471] 14.602 s per Worke	-0.179*** [0.0485] 13.577 r Year t+1
Summer Temperature 1st stage F-stat	Average 1	Number of S	team Gener	-0.180*** [0.0471] 14.602 Reduced F rators per We	-0.179*** [0.0485] 13.577 Form: the dep prker Year t-	pendent va +1 Avera	riable is ge Numbe	r of Boiler	-0.180*** [0.0471] 14.602 s per Worke	-0.179*** [0.0485] 13.577 r Year t+1
Summer Temperature 1st stage F-stat Summer Temperature	Average 1	Number of S	team Gener	-0.180*** [0.0471] 14.602 Reduced F rators per We 15.53**	-0.179*** [0.0485] 13.577 Form: the dep orker Year t- 13.26**	pendent va +1 Averaş	riable is ge Numbe	r of Boiler	-0.180*** [0.0471] 14.602 s per Worke 16.30**	-0.179*** [0.0485] 13.577 r Year t+1 17.76**

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number and horse power of steam-powered machines per worker as well as to the number of boilers and steam generators per worker in the mining sector in the year after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

Table 9: The Effects of the Cholera in 1849 & 1854 on Employment, Wages and Production in the Wake of Each Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	S OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Average N	umber of	Workers Ye	ear $t+1$	A	verage W	age per W	/orker Year	t+1
Share of Cholera Deaths in Populati	on 3.96	0 9.768	8 1 2 8	38.65	30.41	-94.46	-11 48	-12.78	00.52	101.0
Share of Cholera Deaths in 1 optiati	1 5.50 [7.68	5] [0.736	[8 017]	[33 55]	[31.01]	[22.63]	[22 71]	[22.10	[03.35]	[02 01]
	[7.00	0] [5.150] [0.917]	[55.55]	[51.01]	[22.03]	[22.11]	[22.23]	[55.55]	[92.91]
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Deviation from Summer Rainfall	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Geographic Controls	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
GDP per capita	No	No	Yes	No	Yes	No	Yes	No	Yes	No
Within R2	0.06	4 0.326	0.341			0.009	0.130	0.131		
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		First :	stage: the	instrument	ed variable	is Share o	of Cholera	Deaths in	1 Population	1
Summer Temperature				-0.180***	-0.179**	*			-0.180***	-0.179***
*				[0.0471]	[0.0485]				[0.0471]	[0.0485]
				-	-					-
1st stage F-stat				14.602	13.577				14.602	13.577
				Reduced	l Form: th	e depende	nt variable	e is		
		Average N	umber of	Workers Ye	ear t+1	Â	verage W	age per W	/orker Year	t+1
Summer Temperature				6.061	5 496				17.02	18.06
Summer Temperature				-0.901	-0.430				-17.95	-18.00
				[0.389]	[0.804]				[10.01]	[15.70]
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Averag	ge Value o	f Extracted	l Coal (t+	2)-(t+3)	Avera	ge Value o	of Extract	ed Peat (t+	2)-(t+3)
hare of Cholera Deaths in Population	-2.765	-2.409	3.615	-2.625	2.732	-9.316**	-11.37**	-10.98**	-25.95**	-24.71
	[2.242]	[1.832]	[6.429]	[1.867]	[6.724]	[4.672]	[5.090]	[5.254]	[12.06]	[13.79
	17	17	17		17	17			17	
epartment- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
epartment- & Year Fixed Effects eviation from Summer Rainfall	Yes No	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes No	Yes Yes	Yes Yes	Yes Yes	Yes Yes
epartment- & Year Fixed Effects eviation from Summer Rainfall eographic Controls	Yes No No	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes No No	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes
epartment- & Year Fixed Effects eviation from Summer Rainfall eographic Controls DP per capita	Yes No No No	Yes Yes No	Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes No	Yes No No No	Yes Yes No	Yes Yes Yes	Yes Yes No	Yes Yes Yes Yes
Pepartment- & Year Fixed Effects Deviation from Summer Rainfall Reographic Controls IDP per capita Vithin R2	Yes No No 0.091	Yes Yes No 0.157	Yes Yes Yes 0.162	Yes Yes Yes Yes	Yes Yes No	Yes No No 0.367	Yes Yes No 0.464	Yes Yes Yes 0.467	Yes Yes No	Yes Yes Yes
epartment- & Year Fixed Effects leviation from Summer Rainfall deographic Controls DP per capita Vithin R2 dusters	Yes No No 0.091 85	Yes Yes No 0.157 85	Yes Yes Yes 0.162 85	Yes Yes Yes 85	Yes Yes No 85	Yes No No 0.367 85	Yes Yes No 0.464 85	Yes Yes Yes 0.467 85	Yes Yes No 85	Yes Yes Yes Yes
Department- & Year Fixed Effects Deviation from Summer Rainfall deographic Controls IDP per capita Vithin R2 flusters Observations	Yes No No 0.091 85 170	Yes Yes No 0.157 85 170	Yes Yes Yes 0.162 85 170	Yes Yes Yes 85 170	Yes Yes No 85 170	Yes No No 0.367 85 170	Yes Yes No 0.464 85 170	Yes Yes Yes 0.467 85 170	Yes Yes No 85 170	Yes Yes Yes 85 170
Department- & Year Fixed Effects Neviation from Summer Rainfall deographic Controls DP per capita Within R2 Justers Observations	Yes No No 0.091 85 170	Yes Yes No 0.157 85 170 First :	Yes Yes Yes 0.162 85 170 stage: the	Yes Yes Yes 85 170	Yes Yes No 85 170 ed variable	Yes No No 0.367 85 170	Yes Yes No 0.464 85 170 of Cholera	Yes Yes Yes 0.467 85 170 Deaths in	Yes Yes No 85 170 1 Population	Yes Yes Yes Yes 85 170
Department- & Year Fixed Effects Deviation from Summer Rainfall leographic Controls IDP per capita Vithin R2 Usters Deservations	Yes No No 0.091 85 170	Yes Yes No 0.157 85 170 First :	Yes Yes Yes 0.162 85 170 stage: the	Yes Yes Yes 85 170	Yes Yes No 85 170 ed variable	Yes No No 0.367 85 170 • is Share o	Yes Yes No 0.464 85 170 of Cholera	Yes Yes Yes 0.467 85 170 Deaths in	Yes Yes No 85 170 • Population -0 180***	Yes Yes Yes 85 170
epartment- & Year Fixed Effects eviation from Summer Rainfall eographic Controls DP per capita Vithin R2 lusters bservations	Yes No No 0.091 85 170	Yes Yes No 0.157 85 170 First :	Yes Yes Yes 0.162 85 170 stage: the -0.180**** [0.0471]	Yes Yes Yes 85 170	Yes Yes No 85 170 ed variable 0.179*** [0.0485]	Yes No No 0.367 85 170	Yes Yes No 0.464 85 170 of Cholera	Yes Yes Yes 0.467 85 170 Deaths in	Yes Yes No 85 170 • Population -0.180*** [0.0471]	Yes Yes Yes 85 170 1 • -0.179*
Department- & Year Fixed Effects Deviation from Summer Rainfall Geographic Controls DP per capita Vithin R2 Usters Deservations	Yes No No 0.091 85 170	Yes Yes No 0.157 85 170 First	Yes Yes Yes 0.162 85 170 stage: the -0.180*** [0.0471]	Yes Yes Yes 85 170	Yes Yes No 85 170 ed variable 0.179*** [0.0485]	Yes No No 0.367 85 170	Yes Yes No 0.464 85 170 of Cholera	Yes Yes Yes 0.467 85 170 Deaths in	Yes Yes No 85 170 • Population -0.180*** [0.0471]	Yes Yes Yes 85 170 • • • •••••••••••••••••••••••••••••
Pepartment- & Year Fixed Effects leviation from Summer Rainfall leographic Controls 2DP per capita Vithin R2 lusters bbservations ummer Temperature st stage F-stat	Yes No No 0.091 85 170	Yes Yes No 0.157 85 170 First :	Yes Yes Yes 0.162 85 170 stage: the -0.180*** [0.0471] 14.602	Yes Yes Yes 85 170 instrument	Yes Yes No 85 170 ed variable 0.179*** [0.0485] 13.577	Yes No No 0.367 85 170 • is Share o	Yes Yes No 0.464 85 170 of Cholera	Yes Yes Yes 0.467 85 170 Deaths in	Yes Yes No 85 170 • Population -0.180*** [0.0471] 14.602	Yes Yes Yes 85 170 1 (0.048 13.57
Pepartment- & Year Fixed Effects leveration from Summer Rainfall leographic Controls DP per capita Vithin R2 dusters abservations ummer Temperature st stage F-stat	Yes No No 0.091 85 170	Yes Yes No 0.157 85 170 First :	Yes Yes Yes 0.162 85 170 -0.180*** [0.0471] 14.602	Yes Yes Yes 85 170 instrument Reduced (Coal (t+'	Yes Yes No 85 170 ed variable 0.179*** [0.0485] 13.577 1 Form: th 2)-(t+3)	Yes No No 0.367 85 170 : is Share of e depended Avera	Yes Yes No 0.464 85 170 of Cholera nt variable ge Value of	Yes Yes Yes 0.467 85 170 Deaths in	Yes Yes No 85 170 • Population •0.180*** [0.0471] 14.602 ed Peat (t+	Yes Yes Yes 85 170 - .0.179* [0.048 13.57 2)-(t+3)
Department- & Year Fixed Effects Deviation from Summer Rainfall Geographic Controls DP per capita Vithin R2 Usters Deservations ummer Temperature st stage F-stat	Yes No No 0.091 85 170 Averag	Yes Yes No 0.157 85 170 First :	Yes Yes Yes 0.162 85 170 -0.180*** [0.0471] 14.602 f Extracted	Yes Yes Yes 85 170 instrument Reduced I Coal (t+:	Yes Yes No 85 170 ed variable 0.179*** [0.0485] 13.577 1 Form: th 2)-(t+3)	Yes No No 0.367 85 170 is Share of e depended Avera	Yes Yes No 0.464 85 170 of Cholera nt variable ge Value o	Yes Yes Yes 0.467 85 170 Deaths in	Yes Yes No 85 170 • Population •0.180*** [0.0471] 14.602 ed Peat (t+	Yes Yes Yes 85 170 • -0.179* [0.048 13.57 2)-(t+3)
Department- & Year Fixed Effects Deviation from Summer Rainfall Geographic Controls IDP per capita Vithin R2 Plusters Deservations ummer Temperature st stage F-stat ummer Temperature	Yes No No 0.091 85 170 Averag	Yes Yes No 0.157 85 170 First : ge Value o	Yes Yes Yes 0.162 85 170 -0.180*** [0.0471] 14.602 f Extracted -0.651	Yes Yes Yes 85 170 instrument Reduced 1 Coal (t+:	Yes Yes No 85 170 ed variable 0.179*** [0.0485] 13.577 1 Form: th 2)-(t+3) -0.488	Yes No No 0.367 85 170 • is Share of e depender Avera	Yes Yes No 0.464 85 170 of Cholera nt variable ge Value of	Yes Yes Yes 0.467 85 170 Deaths in	Yes Yes No 85 170 • Population •0.180*** [0.0471] 14.602 ed Peat (t+ 4.675**	Yes Yes Yes 85 170 • -0.179* [0.048 13.57 2)-(t+3) 4.417

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number and wage of workers in the mining sector in the year after each cholera outbreak and to the values of extracted coal and peat two and three years after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01,** p < 0.05,* p < 0.1. the least valuable good.

In the textile industry. Tables E.8 and E.9 report the effects of the 1832 and 1854 cholera pandemics on the textile industry in 1839-47 and 1860-65 at the arrondissement level. As we noted above, these data cannot be used in a panel data framework, thereby leading us to run Equations (1) and (2) without fixed effects.

In line with the results in Tables 8 and 9, Tables E.8 and E.9 show that the pandemics had a negative and significant but quantitatively limited on the number and horse-power of water-, wind- and steam-powered machines in the textile industry. For instance, the OLS regression in Column (5) in Table E.9 shows that an area at the median distribution of the share of cholera deaths (0.057%) would have 1.84% fewer horse power of steam engines in 1860-65. In addition, in Table E.9, the 1854 cholera epidemic is shown to have a negative and significant effect on the total number of workers in the 2SLS regression in Column (8) as well as a negative impact on the wages of male, female and child workers in the OLS regressions in Columns (9), (11) and (13). These effects are however quantitatively small: in an area experiencing the median share of cholera deaths in the population (0.057%), the wages of men, women and children would only decline by 0.24%, 0.27% and 0.55% respectively.

Overall, the negative effects of labor scarcity on technology adoption in the mining and textile industries were short-lived and quantitatively limited.¹⁵ In other words, our analysis suggests that areas that were hit the harshest by the cholera epidemics only momentarily stopped replacing old machines with new ones. This result thus contrasts with that of Abramitzky et al. (forthcoming) on the effects of the 1920 U.S. quotas where the negative effect of labor scarcity on technology adoption in mining persisted over time. Before venturing a mechanism, we examine the effect of labor scarcity on technology adoption, wages and production in agriculture.

4.2 Technology adoption, wages and production in agriculture

The effects of the 1849 and 1854 cholera pandemics on the agricultural sector in 1852 and 1862 suggest that labor and capital are substitute factors of production. Columns (1)-(5) in the upper part of Table 10 show that the share of cholera deaths in the population had a significant and positive but quantitatively limited impact on the number of mechanized

¹⁵Additional results confirm that the cholera pandemics did not have any long-term effects: they show that the share of cholera deaths did not have any impact on the shares of the industrial workforce and of professionals (e.g., doctors, lawyers, etc...) 40 years after each cholera outbreak while Table E.7 shows that it did not have an effect on GDP per capita 150 years afterwards.

Table 10: The Effects of the Cholera in 1849 & 1854 on the Number of Mechanized Ploughs and Animal-Powered Threshing Machines per Day Laborer and on the Number and Wage of Agricultural Day Laborers in 1852 & 1862

	(1)	(0)	(9)	())	(٣)	(0)	(7)		0)	(0)	(10)
	(1)	(2)	(3)	(4)	(5)	(0)	(7)		8)	(9)	(10)
	OLS	, OLS	OLS	281	JS 2	SLS	OLS		5 0		2SLS	2SLS
	Mechanized Floughs per Day Laborer Animal-Powered Threshing Machines per Day Labor								Day Laborer			
Share of Chalana Daatha in Danulation	67 20**	FF 00*	F0.9F*	202 C	**** 960	0***	10.00*	10.90	** 10	F0**	0.709	2,000
Share of Cholera Deaths in Population	67.29*** [00.96]	55.09* [20.67]	58.35*	323.0	305	05 11	18.90*	18.32	18.	58	2.708	3.002
	[28.30]	[29.67]	[29.65]	[117	.4] [1	35.1]	[9.529]	[8.50	[8.	510]	[7.922]	[7.940]
	V	v	v	v		v	v	v		,	v	v
Department- & Year Fixed Effects	Yes	Yes	Yes	Ye	s ,	res	res	Yes	5 1	es ,	Yes	Yes
Deviation from Summer Rainfall	NO	Yes	Yes	Ye	s ,	res	INO	Yes	5 1	es	Yes	Yes
Geographic Controls	NO	res	Yes	Ye	s ,	res	INO	Yes	5 1	es	Yes	Yes
GDP per capita	NO 0.615	N0 0.670	Yes 0.674	INC	D	res	INO 0.954	ING		(es	INO	res
Within R2	0.615	0.672	0.674	0.		0 F	0.354	0.48	8 0	.49	~~	~ ~
Clusters	85	85	85	88)	85	85	85		55	85	85
Observations	170	170	170	17	0.	170	170	170) 1	70	170	170
		First	stage:	the inst	rumented	variable	is Sha	re of C	holera I	Deaths in	n Population	
Summer Temperature				-0.180)*** -0.1	.79***				-	0.180***	-0.179***
				[0.04]	[71] [0.	0485]					[0.0471]	[0.0485]
1st stage F-stat				14.6	602 13	3.577					14.602	13.577
							1	1 /				
	Ma	1 :	D1	1 	Reduced F	orm: the	e depei	ident v	ariable i	S	f 1. :	D I-1
	Mee	namzed	Ploughs	s per Da	ay Labore.	ſ	Amma	I-Power	ed 1 nre	sning N	factimes per	Day Laborer
Summer Temperature				-58.20		19***					-0.488	-0.537
Summer remperature				-00.2.	40] [1	9.991					[1 521]	[1.540]
				[10.	49] [1	0.20]					[1.001]	[1.049]
	(1)	(0)		(2)	(4)	(5)		(6)	(7)	(0)	(0)	(10)
		(2)	s d	(3))1 S	291 S	281	c	015	018	(0)	(9) 281 S	251 5
	OLD	OL. Nu	mbor of	Dov L	aborors	201	5	OLS	Averag	o Woro	of Day Labo	2010
		INU	mber of	Day La	aborers				Averag	e wage	of Day Labor	1015
Share of Cholore Deaths in Population	15 56***	\$ 19.30)** 11	20**	13 10***	38.86	*** 0	0072	0.0051	0.0030	0.0353**	0.0304*
Share of Cholera Deaths in 1 optiation	[5 440]	-12.55	7] [5	.52 459]	[14.68]	-30.00	0 21 [i	0.0072	[0,006]	0.0035	0.0355	[0.018]
	[0.445]	[0.40	1 [0	.402]	[14.00]	[14.0	J [0.000]	[0.000]	[0.000	[0.010]	[0.010]
Department, & Year Fixed Effects	Ves	Ves		Ves	Ves	Ves	2	Ves	Ves	Ves	Ves	Ves
Deviation from Summer Bainfall	No	Vos	, ,	Voc	Vor	Voc	,	No	Vec	Vor	Ves	Ves
Coographia Controls	No	Vor	, ,	Voc	Voc	Voc	,	No	Voc	Voc	Vos	Voc
CDP per conito	No	No	, ,	Voc	No	Voc	,	No	No	Voc	No	Vor
Within B2	0.924	0.03	4 0	936	110	1 CS	,	0.464	0.576	0.503	110	100
Clusters	85	85	т 0.	85	85	85		85	85	85	85	85
Observations	170	170) 1	170	170	170)	170	170	170	170	170
	110	110			110		,	110	110	110	110	
		First	stage:	the inst	rumented	variable	is Sha	re of C	holera I	Deaths in	n Population	
					0.100***	0.150	***				0 100444	0.150***
Summer Temperature					-0.180***	-0.179					-0.180***	-0.179***
					[0.0471]	[0.048	85]				[0.0471]	[0.0485]
lst stage E stat					14 609	19 55	77				14 609	19 577
isi siage r-stat					14.002	13.57					14.002	13.377
				T	Reduced F	form: the	e dener	ident v	ariahle i	s		
		Nu	mber of	Dav L	aborers	orini. ent	s acpei	100110 10	Averag	e Wage	of Dav Labo	rers
				- 20, 10								
Summer Temperature					7.780***	6.947*	***				-0.00637**	-0.00543*
*					[2.428]	[2.59	6]				[0.00315]	[0.00324]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of mechanized ploughs and animal-powered threshing machines per day laborer. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

ploughs per day laborer. The IV estimate in Column (5) in the upper part of Table 10 suggests that departments at the 50th percentile of the distribution of the share of cholera deaths in the population (0.057%) would have experienced an increase of 0.21 in the number of mechanized ploughs per day laborer (0.075 of the sample mean). In addition, Columns (6)-(10) in the upper part of Table 10 show that the cholera epidemics had a positive effect on animal-powered threshing machines per day laborer, even though that result is only significant in the OLS regressions while Table E.12 shows that they had no significant effect on the adoption of steam-powered threshing machines, which were then the most technology advanced agricultural tools available to French farmers.

The pandemics also had a significant but quantitatively limited effect on employment and wages in agriculture. Columns (1)-(5) in the lower part of Table 10 indicate that the cholera had a significant and negative impact on the number of agricultural day laborers (Table E.10 shows the full regressions) while Columns (6)-(10) in the lower part of Table 10 show the positive effect of labor scarcity on wages, although that effect is only significant in the IV regressions. Namely, Column (10) in the lower part of Table 10 suggests that agricultural day laborers in a department experiencing a median loss in population (0.057%) would benefit from a 0.17% wage increase. As such, these results are in line with those of Clemens et al. (2018) and San (forthcoming) that the adoption of labor-saving technologies offset the anticipated increase in wages.

Furthermore, Tables E.13, E.14, and E.15, show that the effects of the cholera on land rents were limited. Labor scarcity had a slightly positive and significant effect on the rents of meadows of "first and second class" (i.e., highest and medium quality), but no such impact on the rents of meadows of "third class" (i.e., lowest quality) as well as no significant effect on the rents of arable land and vineyards, irrespective of quality.

Finally, Tables E.16 and E.17 show that the cholera pandemics had a slightly negative and significant effect on the production of wheat and rye but none on the production of millet, oats and corn. This negative impact of labor scarcity on wheat and rye may reflect lower demand for these crops or may suggest that the investments for a capital-intensive crop like wheat were not sufficient to prevent a decline in production.¹⁶ In addition, it might have been conjectured that the cholera pandemics would have driven out less efficient farmers but the results suggest that the pandemics and their associated toll on economic activity did not cause any major change in land concentration that could have directly increased mechanization in agriculture.

¹⁶Wheat is a capital-intensive crop, unlike labor-intensive crops like corn and hay (Lafortune et al., 2015).

Overall, our results establish that labor scarcity had a positive, limited and significant effect on the adoption of agricultural tools in the short-run, suggesting that production factors in agriculture are complementary. The adopted tools were not however the most advanced ones, which were steam-powered, but rather mechanized ploughs and animal-powered threshing machines. The most straightforward explanation is that acquiring steam-powered engines was not profitable enough for most farmers, all the more so as coal was scarcer in France than in England and Germany (Cameron and Neal, 2015). However, faced with labor scarcity and higher wages, it can be hypothesized that French landowners would try to cut production costs, notably by looking for more efficient irrigation tools and fostering innovation in agricultural hydraulic technologies. This is what we explore in the next section.

4.3 Innovation

Table 11: The Effects of	Cholera in 1832, 18	49 & 1854 on the	Number of Patents	and the Share
of Agricultural Hydraulic	Patents in the Ten	Years following e	ach Pandemic	

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Tota	l Number	r of Patents		Sh	are of Ag	ricultural 1	Hydraulic P	atents
					Year t+	t+1 to t+10				
Share of Cholera Deaths in Population	2.307	0.500	1.525	27.69^{*}	29.69^{*}	0.127	-0.0260	-0.00630	4.047^{**}	4.106^{**}
	[9.408]	[9.496]	[8.919]	[15.52]	[15.47]	[0.413]	[0.433]	[0.425]	[1.728]	[1.783]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Deviation from Summer Rainfall	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Geographic Controls	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
GDP per capita	No	No	No	No	Yes	No	No	No	No	Yes
Within R2	0.692	0.708	0.718			0.003	0.031	0.032		
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	255	255	255	255	255	255	255	255	255	255
		First s	stage: the	e instrument	ed variable	is Share	of Choler	a Deaths i	n Populatio	1
Summer Temperature				-0 141***	-0 140***				-0 141***	-0 140***
Summer Temperature				[0.0303]	[0.0308]				[0.0303]	[0.0308]
				[0.0000]	[0.0000]				[0.0000]	[0.0000]
1st stage F-stat				21.652	20.788				21.652	20.788
				Reduce	d Form: the	depende	nt variab	lo is		
		Tota	l Number	r of Patents	a ronn. enc	sh	are of Δa	ricultural]	Hydraulic P	atonte
	Year t+1 to t+10							aterits		
					icai t j	1 10 1 1	.0			
Summer Temperature				-3.900	-4.165*				-0.570***	-0.576***
*				[2.364]	[2.257]				[0.209]	[0.211]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of patents and the share of agricultural hydraulic patents in the decade after each outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

In this section, Table 11 assesses the impact of the cholera pandemics in 1832, 1849 and 1854 on innovation in the ten years after each pandemic. Columns 1-5 in Table 11 show

that the cholera pandemics entailed a rise in the total number of patents in the following ten years. However, this positive effect is only significant in the IV regressions at the 10% level. Furthermore, Columns 6-10 in Table 11 indicate that the general increase in the number of patents was spearheaded by the rise in agricultural hydraulic patents but that this effect was only significant in the IV regressions. The IV estimate in Column 10 of Table 11 suggests that departments at the median of the distribution of the share of cholera deaths in the population (0.057%) would have experienced a significant, albeit limited, increase of 0.44%in the share of agricultural hydraulic patents.

Overall, in line with our analysis above regarding technology adoption in agriculture, we find that labor scarcity was conducive to innovation in agricultural irrigation, although its impact was quantitatively limited. Additional results available upon request show that the cholera had no systematically significant effect on the shares of other patent categories, and in particular on patents in the industrial sector.

5 Mechanism: human capital

In this section, we offer a mechanism to explain our main results: we argue that labor scarcity provided incentives to invest in literacy as it increased the expected returns to human capital. Because of the complementarity between education and technology (Katz and Margo, 2014; Atack et al., 2019; Franck and Galor, 2022), this increase in literate workers canceled out the negative effect of population losses on technology adoption in industry. In addition, labor scarcity made menial jobs in agriculture less appealing to literate workers, thereby leading to more technology adoption and innovation in agriculture to cut production costs as cheap labor was harder to find. If this conjecture is correct, areas hit by the cholera epidemics would have experienced increases in (i) literacy and in (ii) child and adult education as well as in public spending on education.

5.1 Literacy

Table 12 captures the relationship between the cholera pandemics and literacy at the individual level: it focuses on the ability of brides and grooms born in each department between one to 20 years after each cholera outbreak to sign their wedding license, as opposed to mark it with a cross (Table I.1 displays the regression results with the full set of controls). The regression results suggest that the cholera pandemics had a positive and significant effect at the 1% level on the literacy of brides and grooms. The IV estimate in Column 6 of Table 12 suggests that individuals in departments at the median (0.057%) of the distribution of the share of cholera deaths in the population would have experienced an increase of 1.60% in their ability to sign a wedding license one to 20 years later (relative to sample mean of 80%).

	(1)	(0)	(0)	(4)	(٣)	(0)			
	(1)	(2)	(3)	(4)	(6)	(0) (0)			
	OLS	OLS	OLS	2SLS	2SLS	2SLS			
Signature of Wedding Licer	se For Indi	viduals Boi	m 1 to 20 Y	lears after Ea	ach Epidemic	;			
	0 - 004444	H o o o shikiki	-						
Share of Cholera Deaths in Population	6.739***	5.969***	5.538***	27.87***	25.65***	28.09***			
	[1.324]	[1.377]	[1.683]	[4.936]	[5.942]	[6.721]			
Male	-0.009	-0.009	-0.009	-0.009	-0.009	-0.009			
	[0.007]	[0.007]	[0.007]	[0.007]	[0.007]	[0.007]			
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes			
Deviation from Summer Bainfall	No	Yes	Yes	No	Yes	Yes			
Geographic Controls	No	Yes	Yes	No	Yes	Yes			
GDP per capita	No	No	Ves	No	No	Ves			
B^2	0.190	0 194	0 194	0.179	0.185	0.185			
Clusters	3085	3085	3085	3085	3085	3085			
Observations	11 953	11 953	11 953	11 953	11 953	11 953			
O boot various	11,000	11,000	11,000	11,000	11,000	11,000			
First stage: the instrumented variable is Share of Cholera Deaths in Population									
				0.0000000000	0.05000000	0.0000			
Summer Temperature				-0.0826***	-0.0709***	-0.0629***			
				[0.006]	[0.006]	[0.005]			
1st stage F-stat				208.6	168.1	185.9			
Reduced Form: the dependent variable is									
Signature of Wedding License For Individuals Born Years t+1 - t+20 after Each Epidemic									
Summer Temperature				-9 301***	-1 810***	-1 767***			
Summer remperature				[0 400]	[0 414]	[0 416]			
				[0.100]	[0.111]	[0.110]			

Table 12: The Effects of the Cholera in 1832, 1849 & 1854 on the Signatures of Wedding Licenses by Spouses Born One to 20 Years after Each Cholera Pandemic

The positive and significant but quantitatively limited effects of labor scarcity on literacy are confirmed by Table I.2 that focuses on the departmental share of literate army conscripts (i.e., 20-year old men who could read and write) born during the year of each pandemic, as well as 20 and 35 years later. The IV estimates in Columns 5 and 10 of Table I.2 show that departments at the median (0.057%) of the distribution of the share of cholera deaths in the population would have experienced a quantitatively small but significant increase in their share of literate conscripts by 0.86% 20 years later (relative to sample mean of 77%) and by 0.66% 40 years later (relative to a sample mean of 88%). Furthermore, Columns

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the ability of brides and grooms born one to 20 years after each outbreak to sign their wedding license. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the year-department level. ***p < 0.01,** p < 0.05,* p < 0.1.

11-15 of Table I.2 show that the cholera did not have a significant impact on the literacy of conscripts born 35 years after each outbreak. This lack of significance can be explained by the fact that those army conscripts were born in 1867, 1884 and 1899, i.e., two of these three cohorts were born after the adoption of the 1881-1882 laws on free and mandatory schooling until age 13 for boys and girls. These policies thus offset the long-term positive effect of the cholera pandemics on literacy.

Overall, in line with our main analysis, the results in this section suggest that labor scarcity had a positive and significant effect on literacy. This effect was persistent but quantitatively small. As such, it was probably sufficient to compensate for the negative effect of the population loss on technology adoption, but not sufficiently large for the increase in literacy and skilled workers to give an edge in technology adoption and innovation to areas heavily hit by the cholera epidemics.

5.2 Child & adult education and public spending on education

While the previous section establishes the positive effect of the epidemics on literacy, it raises the question as to whether labor scarcity immediately gave adults incentives to invest in their human capital but also gave parents incentives to invest in their children's human capital, notably through higher school attendance rates and greater public spending.

Table I.3 assesses the effect of the cholera on the number of participants in courses for male adults and apprentices in 1837, 1850 and 1863 and female apprentices in 1850 and 1863 while Table I.4 analyzes the effect of the pandemics on the number of available courses for men and women as well as public spending on courses for men (data on spending for courses for women are not available). They show that the pandemics increased the number of participants in courses for male adults and apprentices as well as public spending on these courses. However, labor scarcity neither had a significant effect on the number of courses for female adults and apprentices nor on the number of participants in these courses. A potential explanation for this result is that agricultural mechanization mainly reduced the demand for male labor, thereby leading men to invest more in human capital and seek work in industry where literacy skills were necessary (e.g. Franck and Galor, 2022).

Table I.5 shows that the impact of the cholera pandemics in 1832, 1849 and 1854 on the primary school attendance rate of boys and girls out of the population age 5-15 in 1837, 1851 and 1856 is positive but not significant in all the specifications. Moreover, Tables I.6 and I.7 assess the effect of the cholera on public spending on primary schooling by the three tiers of the French government, i.e., the central state, the departments and the communes. Because of data limitations, they only focus on the impact of the 1854 cholera pandemic. Whether we consider total education spending or education spending per inhabitant, the results suggest that the pandemic had a negative impact on the departments' spending but none on that of the communes and of the central state, and overall, no effect on total public spending on primary schooling.

As such, in line with our analysis that views labor and technology as complementary factors of production in industry and substitute in agriculture, labor scarcity entailed a rise in human capital in the aftermath of the cholera pandemics. This increase did not stem from the rising importance of state-funded primary schooling. Instead it resulted from private investments made by parents in their own human capital as well as that of their children.

5.3 Alternative explanations

Other than the increase in human capital, factors such as migration, urbanization, fertility, age at marriage, religiosity or local financial intermediation, could provide alternative explanations for our main results. In this section, we briefly present the tests which we carry out to assess the importance of such factors and provide more detailed explanations, including the data sources, in the Appendix. Reassuringly, our tests show that these factors were not correlated with the spread of cholera or with summer temperatures in 1832, 1849 and 1854.

Migration and urbanization. 19^{th} c. France was characterized by a high rate of internal migration (Daudin et al., 2019) but no historical evidence connects migration and urbanization to the cholera epidemics. If anything, the potential effects of labor scarcity on migration and urbanization are not straightforward. Labor scarcity entails higher wages and may attract immigrants but the adoption of new technology may lower wages and hence trigger emigration (e.g., Fadinger and Mayr, 2014). It may also be the case that individuals would leave areas hit by the cholera to escape death and would not come back. Tables J.1 and J.2 show that migration and urbanization were not correlated with the spread of cholera and cannot therefore drive our main results (it nonetheless bears pointing out that both Tables do not rule that migration and urbanization could have played a role in technology adoption and innovation).

Religiosity. To account for research highlighting the link between natural disasters (such as pandemics) and religiosity (e.g., Bentzen, 2019), we explore whether the cholera outbreaks could be correlated with changes in religiosity and potentially with a deeper cultural

shift that could delay or accelerate technology adoption and innovation. Table J.3 shows that the pandemics had a positive and significant but quantitatively small effect on the share of seminarians in the population, and no significant impact on the share of religious community members in the population. Overall, these results suggest that religiosity was not affected by the cholera pandemics and cannot therefore explain their impact on technology adoption.

Fertility and nuptiality. Mortality shocks triggered by pandemics could have an impact on optimal fertility behavior (Boucekkine et al., 2009; Siuda and Sunde, 2021). However, given that the fertility decline in France had begun in the late 18^{th} c. (e.g., Galor, 2011), it is not clear whether the spread of cholera could have an impact on fertility rates and on the age at marriage. Tables J.4 and J.5 show that indeed, the cholera epidemics had no systematic significant effect on fertility and nuptiality patterns, thereby suggesting that those channels did not affect our results.

Local financial intermediation. Because of the relationship between financial intermediation, economic growth and innovation(e.g., Gorodnichenko and Schnitzer, 2013; Gennaioli et al., 2014), we examine whether labor scarcity fostered technological adoption through the presence of local banks. Table J.6 reports the impact of the cholera pandemics on the amount of deposits per capita in the savings banks of each department averaged over the five year period which followed each pandemic. The effect is insignificant in all the specifications. These results thus suggest that local financial development was not correlated with the cholera outbreaks and cannot therefore drive our results pertaining to technology adoption and innovation.

6 Conclusion

This paper examines the impact of labor scarcity entailed by the cholera epidemics in 1832, 1849 and 1854 in France on subsequent technology adoption and innovation. The results show that in the short-run, labor scarcity had a positive and significant impact on technology adoption and innovation in agriculture while it had a negative impact on technology adoption in industry. As labor scarcity increased the expected returns to human capital, individuals invested more in their own literacy: this increase in the share of literate individuals in the population canceled out the negative effect of the population loss on technology adoption. Moreover, menial agricultural work became less appealing to literate workers, thereby leading to more technology adoption and innovation in agriculture.

There are three main implications of this study. First, it suggests that in the 19^{th}

century, labor and technology were substitute factors of production in agriculture but complementary in industry. Second, it provides some support for the notion that agricultural mechanization in 19^{th} c. France was partly fostered by labor scarcity. Third, it provides a moderate view on the effects of repeated pandemics on economic growth. Notwithstanding the human losses, the economic consequences of pandemics in societies that escaped the Malthusian trap appear quantitatively limited in the short-run and disappear in the mid- to long-run.

References

- Abramitzky, Ran, Adeline Delavande and Luis Vasconcelos (2011), 'Marrying up: The role of sex ratio in assortative matching', *American Economic Journal: Applied Economics* **3**(4), 124–157.
- Abramitzky, Ran, Philipp Ager, Leah Platt Boustan, Elior Cohen and Casper W. Hansen (forthcoming), 'The effects of immigration on the economy: lessons from the 1920s border closure', *American Economic Journal: Applied Economics* -(-), -.
- Acemoglu, Daron (2007), 'Equilibrium bias of technology', *Econometrica* **75**(5), 1371–1409.
- Acemoglu, Daron (2010), 'When does labor scarcity encourage innovation?', Journal of Political Economy 118(6), 1037–1078.
- Acemoglu, Daron and Amy Finkelstein (2008), 'Input and technology choices in regulated industries: evidence from the health care sector', *Journal of Political Economy* **116**(5), 837–880.
- Acemoglu, Daron, Giuseppe de Feo and Giacomo Davide De Luca (2020), 'Weak states: causes and consequences of the Sicilian Mafia', *Review of Economic Studies* 87, 537–581.
- Acemoglu, Daron and Pascual Restrepo (2022), 'Demographics and automation', Review of Economic Studies 89(1), 1–44.
- Adda, Jérôme (2016), 'Economic activity and the spread of viral diseases: evidence from high frequency data', Quarterly Journal of Economics 131(2), 891–941.
- Aghion, Philippe and Peter Howitt (1992), 'A model of growth through creative destruction', Econometrica **60**(2), 323–51.
- Agulhon, Maurice, Gabriel Désert and Robert Specklin (2003), Histoire de la France Rurale Vol.
 3. Apogée de la civilisation paysanne, Editions du Seuil, Paris.
- Aidt, Toke S. and Raphaël Franck (2015), 'Democratization under the threat of revolution: evidence from the Great Reform Act of 1832', *Econometrica* 83(2), 505–547.
- Akcigit, Ufuk, John Grisby and Tom Nicholas (2017), 'Immigration and the rise of American ingenuity', *American Economic Review* **107**(5), 327–331.
- Albanesi, Stefania and Jiyeon Kim (2021), 'Effects of the COVID-19 recession on the US labor market: occupation, family, and gender', *Journal of Economic Perspectives* **35**(3), 3–24.

- Alesina, Alberto, Michele Battisti and Joseph Zeira (2018), 'Technology and labor regulations: theory and evidence', *Journal of Economic Growth* **23**(1), 41–78.
- Ambrus, Attila, Erica Field and Robert Gonzalez (2020), 'Loss in the time of cholera: Long-run impact of a disease epidemic on the urban landscape', American Economic Review 110(2), 475– 525.
- Angrist, Joshua D. and Jörn-Steffen Pischke (2008), Mostly Harmless Econometrics: An Empiricist's Companion, Princeton University Press, Princeton, NJ.
- Ansart, S., C. Pelat, P.Y. Boelle, F. Carrat, A. Flahault and A.J. Valleron (2009), 'Mortality burden of the 1918-1919 influenza pandemic in europe', *Influenza and Other Respiratory Viruses* 3(3), 99–106.
- Ashraf, Quamrul and Oded Galor (2011), 'Dynamics and stagnation in the Malthusian epoch', American Economic Review **101**(5), 2003–41.
- Atack, Jeremy, Robert A. Margo and Paul W. Rhode (2019), "Automation" of manufacturing in the late nineteenth century: the Hand and Machine Labor study", *Journal of Economic Perspectives* 33(2), 51–70.
- Barro, Robert J., José F. Ursúa and Joanna Weng (2020), The coronavirus and the great influenza pandemic: lessons from the "Spanish flu" for the coronavirus's potential effects on mortality and economic activity, Working Paper 26866, NBER.
- Bazot, Guillaume (2014), 'Interregional inequalities, convergence, and growth in France from 1840 to 1911', Annals of Economics and Statistics 113-114, 309–345.
- Belotti, Federico, Gordon Hughes and Andrea Piano Mortari (2013), XSMLE: Stata module for spatial panel data models estimation, Statistical Software Components S457610, Boston College.
- Bentzen, Jeanet Sinding (2019), 'Acts of God? Religiosity and natural disasters across subnational world districts', *Economic Journal* **129**(622), 2295–2321.
- Bodinier, Bernard and Éric Teyssier (2000), L'événement le plus important de la Révolution: la vente des biens nationaux (1789-1867) en France et dans les territoires annexés, Société des études robespierristes, Editions du CTHS, Paris.
- Bonneuil, Noël (1997), Transformation of the French Demographic Landscape, 1806-1906, Clarendon Press, Oxford, UK.
- Boucekkine, Raouf, Rodolphe Desbordes and Hélène Latzer (2009), 'How do epidemics induce behavioral changes?', *Journal of the Economic Growth* **14**(3), 233–264.
- Bourdelais, Patrice and Jean-Yves Raulot (1987), Une peur bleue. Histoire du choléra en France 1832-1854, Payot, Paris.
- Brocchi, Aug. (1834), 'Pompe américaine importée en France par M. Farcot, ingénieur mécanicien', Revue commerciale et industrielle européenne 1(1), 15–19.
- Cameron, Rondo and Larry Neal (2015), A Concise Economic History of the World from Paleolithic

Times to the Present, 5th edn, Oxford University Press, New York.

- Caprettini, Bruno and Hans-Joachim Voth (2020), 'Rage against the machines: labor-saving technology and unrest in industrializing England', American Economic Review: Insights 2(3), 305– 320.
- Chakraborty, Shankha, Chris Papageorgiou and Fidel Pérez Sebastián (2010), 'Diseases, infection dynamics and development', *Journal of Monetary Economics* 57(7), 859–872.
- Châtelain, Abel (1977), *Les migrants temporaires en France de 1800 à 1914*, Publications de l'Université de Lille, Lille, France.
- Clemens, Michael A., Ethan G. Lewis and Hannah M. Postel (2018), 'Immigration restrictions as active labor market policy: evidence from the Mexican Bracero exclusion', American Economic Review 108(6), 1468–1487.
- Colella, Fabrizio, Rafael Lalive, Seyhun Orcan Sakalli and Mathias Thoenig (2020), Inference with arbitrary clustering, Discussion Paper 12584, IZA.
- Crépin, Annie (2009), Histoire de la conscription, Gallimard, Folio Histoire, Paris.
- Darnton, Robert (1973), 'The Encyclopédie wars of prerevolutionary France', American Historical Review 78(5), 1331–1352.
- Daudin, Guillaume, Raphaël Franck and Hillel Rapoport (2019), 'Can internal migration foster the convergence in regional fertility rates? Evidence from nineteenth century France', *Economic Journal* 129(620), 1618–1692.
- de Chaisemartin, Clément and Xavier D'Haultfoeuille (2020), 'Two-way fixed effects estimators with heterogeneous treatment effects', *American Economic Review* **110**(9), 2964–2996.
- de la Croix, David and Faustine Perrin (2018), 'How far can economic incentives explain the French fertility and education transition?', *European Economic Review* **108**, 221–245.
- Dechezleprêtre, Antoine, David Hémous, Morten Olsen and Carlo Zanella (2019), Automating labor: evidence from firm-level patent data, Discussion Paper 24421, CEPR.
- Delaporte, Jacques (1986), Disease and civilization. The cholera in Paris 1832, MIT Press, Cambridge, MA.
- Désert, Gabriel (1984), 'Machinisme et agriculture dans la France du XIXe siècle', *Historical Papers* **19**(1), 185–216.
- Dupré, Philippe (1993), 'Les industriels du Calvados et la vapeur', Cahier des Annales de Normandie 25, 35–124.
- Fadinger, Harald and Karin Mayr (2014), 'Skill-biased technological change, unemployment, and brain drain', Journal of the European Economic Association 12(2), 397–431.
- Fernihough, Alan and Kevin H. O'Rourke (2021), 'Coal and the European industrial revolution', *Economic Journal* 131(635), 1135–1149.
- Finley, Theresa, Raphaël Franck and Noel D. Johnson (2021), 'The effects of land redistribution:
evidence from the French revolution', Journal of Law and Economics 64(2), 233–267.

- Franck, Raphaël and Noel D. Johnson (2016), 'Can public policies lower religiosity? Evidence from school choice in France, 1878-1902', *Economic History Review* 69(3), 915–944.
- Franck, Raphaël and Oded Galor (2022), 'Technology-skill complementarity in early phases of industrialization', *Economic Journal* 132(642), 618–643.
- Franck, Raphaël and Stelios Michalopoulos (2017), Emigration during the French revolution: consequences in the short & longue durée, Working Paper 23936, NBER.
- Galor, Oded (2011), Unified Growth Theory, Princeton University Press, Princeton, NJ.
- Gennaioli, Nicola, Andrei Shleifer and Robert Vishny (2014), 'Finance and the preservation of wealth', *Quarterly Journal of Economics* **129**(3), 1221–1254.
- Glass, Roger I. and Robert E. Black (1992), The epidemiology of cholera, in D.Barua and W. B.Greenough, eds, 'Cholera', Springer, New York, NY, pp. 129–154.
- Gorodnichenko, Yuriy and Monika Schnitzer (2013), 'Financial constraints and innovation: why poor countries don't catch up', *Journal of the European Economic Association* **11**(5), 1115–1152.
- Habakukk, H.J. (1962), American and British technology in the nineteenth century, Cambridge University Press, Cambridge, UK.
- Hanlon, W. Walker (2015), 'Necessity is the mother of invention: input supplies and directed technical change', *Econometrica* 83(1), 67–100.
- Hassler, John, Per Krusell and Conny Olovsson (2021), 'Directed technical change as a response to natural resource scarcity', *Journal of Political Economy* **129**(11), 3039–3072.
- Hornbeck, Richard and Suresh Naidu (2014), 'When the levee breaks: black migration and economic development in the American South', *American Economic Review* **104**(3), 963–990.
- Howitt, Peter (1999), 'Steady endogenous growth with population and R&D inputs growing', *Journal of Political Economy* **107**(4), 715–730.
- Huang, Danqing, Peiwen Yan, Xiucheng Xiao, Jian Zhu, Xiaowen Tang, Anning Huang and Jing Cheng (2019), 'The tri-pole relation among daily mean temperature, atmospheric moisture and precipitation intensity over China', *Global and Planetary Change* 179, 1–9.
- Jedwab, Remi, Noel D. Johnson and Mark Koyama (2019), Pandemics, places, and populations: evidence from the Black Death, Working Paper 7524, CESifo.
- Jordà, Öscar, Sanjay R. Singh and Alan M. Taylor (2020), 'Longer-run economic consequences of pandemics', Covid Economics Vetted and Real-Time Papers 1, 1–15.
- Juhász, Réka (2018), 'Temporary protection and technology adoption: evidence from the Napoleonic blockade', American Economic Review 108, 3339–3376.
- Katz, Lawrence F. and Robert A. Margo (2014), Human capital in history: the American record, in L. P.Boustan, C.Frydman and R. A.Margo, eds, 'Technical change and the relative demand for skilled labor: The United States in historical perspective', University of Chicago Press, Chicago,

Ill, pp. 15–57.

Kelly, Morgan (2019), The standard errors of persistence, Discussion Paper 13783, CEPR.

- Kelly, Morgan, Joel Mokyr and Cormac ÓGráda (2014), 'Precocious Albion: A new interpretation of the British industrial revolution', Annual Review of Economics 6(1), 363–389.
- Knoblach, Michael and Fabian Stöckl (2019), What determines the elasticity of substitution between capital and labor? A literature review, Discussion paper, DIW.
- Koch, Robert (1884), 'Sechster Bericht der Leiters der Deutschen wissenschaftlichen Commission zur Erforschung der Cholera', *Deutsche medizinische Wochenscrift* **10**(12), 191–192.
- Kremer, Michael (1993), 'Population growth and technological change: One million b.c. to 1990', The Quarterly Journal of Economics 108(3), 681–716.
- Lafortune, Jeanne, José Tessada and Carolina González-Velosad (2015), 'More hands, more power? Estimating the impact of immigration on output and technology choices using early 20th century us agriculture', *Journal of International Economics* **97**(2), 339–358.
- Lagerlöf, Nils-Petter (2003), 'From Malthus to modern growth: can epidemics explain the three regimes?', *International Economic Review* 44(2), 755–777.
- Lewis, Ethan (2011), 'Immigration, skill mix and capital skill complementarity', *Quarterly Journal* of Economics **126**(2), 1029–1069.
- Lin, Peter Zhixian and Christopher M. Meissner (2020), 'A note on long-run persistence of public health outcomes in pandemics', *Covid Economics Vetted and Real-Time Papers* 15, 1–25.
- Luterbacher, Jürg, Daniel Dietrich, Elena Xoplaki, Martin Grosjean and Heinz Wanner (2004), 'European seasonal and annual temperature variability, trends, and extremes since 1500', *Science* **303**(5663), 1499–1503.
- Luterbacher, Jürg, Daniel Dietrich, Elena Xoplaki, Martin Grosjean and Heinz Wanner (2006), 'European seasonal temperature reconstructions', IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2006-060, NOAA/NCDC Paleoclimatology Program.
- Lutgens, Frederick K. and Edward J. Tarbuck (2015), *The atmosphere: an introduction to meteo*rology, 13th edn, Prentice Hall, New York, NY.
- Manuelli, Rodolfo E. and Ananth Seshadri (2014), 'Frictionless technology diffusion: the case of tractors', American Economic Review 104(4), 1368–1391.
- Marchand, Philippe (2005), 'L'enseignement technique et professionnel en France 1800-1919', *Tech*niques & Culture **45**(1), 3–4.
- Mokyr, Joel (2009), The Enlightened Economy, Yale University Press, New Haven.
- Moser, Petra, Alessandra Voena and Fabian Waldinger (2014), 'German Jewish émigrés and US invention', *American Economic Review* **104**(10), 3222–3255.
- Newell, Richard G., Adam B. Jaffe and Robert N. Stavins (1999), 'The induced innovation hypothesis and energy-saving technological change', *Quarterly Journal of Economics* **114**(3), 941–975.

- Pauling, Andreas, Jürg Luterbacher, Carlo Casty and Heiz Wanner (2006), 'Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to largescale circulation', *Climate Dynamics* 26, 387–405.
- Ramankutty, Navin, Jonathan A. Foley, John Norman and Kevin McSweeney (2002), 'The global distribution of cultivable lands: current patterns and sensitivity to possible climate change', *Global Ecology and Biogeography* 11(5), 377 – 392.
- Rasul, Imran (2020), 'The economics of viral outbreaks', AEA Papers and Proceedings 110, 265–268.
- San, Shmuel (forthcoming), Labor supply and directed technical change: evidence from the abrogation of the Bracero program in 1964, AEJ Applied Economics -, -.
- Schaffer, Marc E. (2005), XTIVREG2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, LIML and k-class regression for panel data models, Statistical Software Components S456501, Boston College.
- Siuda, Fabian and Uwe Sunde (2021), 'Disease and demographic development: the legacy of the plague', *Journal of Economic Growth* **26**(1), 1–30.
- Snow, John (1855), On the mode of communication of cholera, 2 edn, John Churchill, London, UK.
- Squicciarini, Mara P. (2020), 'Devotion and development: religiosity, education, and economic progress in 19th century France', *American Economic Review* **110**(11), 3454–3491.
- Squicciarini, Mara P. and Nico Voigtländer (2015), 'Human capital and industrialization: evidence from the age of enlightenment', *Quarterly Journal of Economics* 130(4), 1–40.
- Stephenson, Judy Z. (2018), "Real" wages? Contractors, workers, and pay in London building trades, 1650-1800', *Economic History Review* 71(1), 106–132.
- Voigtländer, Nico and Hans-Joachim Voth (2013), 'The three horsemen of riches: plague, war and urbanization in early modern Europe', *Review of Economic Studies* **80**(2), 774–811.
- Wallace, John M. and Peter V. Hobbs (1977), Atmospheric science: an introductory survey, Academic Press, San Diego, CA.
- Woronoff, Denis (1994), Histoire de l'industrie en France, du XVIe siècle à nos jours, Seuil, Paris.
- Young, Alwyn (2005), 'The gift of the dying: the tragedy of AIDS and the welfare of future African generations', *Quarterly Journal of Economics* **120**(2), 423–466.
- Zeira, Joseph (1998), 'Workers, machines and economic growth', Quarterly Journal of Economics 113(4), 1091–1113.

Appendix

Labor Scarcity, Technology Adoption and Innovation: Evidence from the Cholera Pandemics in 19th century France

A Descriptive statistics

Table A.1: Descriptive statistics: department-, arrondissement and individual-level variables

	Obs	Mean	Std.dev	Min	Max
Measures of technological progress and human capital at the department level					
Number of Mechanized Ploughs per Day Laborer	170	2.80	3.17	0.20	18.65
Average Daily Wage per Day Laborer	170	1.81	1.10	0.32	4.59
Number of Animal-Powered Threshing Machines per Day Laborer	170	0.096	0.268	0.000	2.010
Number of Steam-Powered Threshing Machines per Day Laborer	170	0.002	0.004	0.000	0.034
WORKERS	170	117.48	3/3.04 5021 C2	0.05	2/07
Average wage	170	00.04	0201.00 100.40	0.05	0104.848
Bollers per Workers	170	29.50 49.10	133.43	1	1400
Steam Generator per worker	170	42.19	115.45	1	1001
Horse Power of Steam Powered Machines per Worker	170	04.74 250-11	105.60	1	952 6726
Average Value of Extracted Coal $(t+2)$ $(t+3)$	170	0.53	0.65	0	2 20
Average Value of Extracted Coar $(1+2)$ - $(1+3)$	170	0.00	0.05	0	2.20 6.52
Share of Literate Conscripts 20 Vears after Cholera (Born the Vear of the Cholera)	246	0.23 0.77	0.00	0.31	0.52
Share of Literate Conscripts 20 Years after Cholera (Born 20 Years After Cholera)	240 246	0.11	0.15	0.51	0.994
Share of Literate Conscripts 55 Years after Cholera (Born 25 Years After Cholera)	246	0.00	0.11	0.60	0.999
Share of Agricultural Hydraulic Patents - Year $t+1$ to $t+10$	255	0.051	0.054	0.01	0.33
Total Patents - Year $t+1$ to $t+10$	255	232.15	1129.01	0	15834
Number of Participants in Courses for Male Adults and Apprentices	255	873.30	1366.80	0	12650
Number of Participants in Courses for Female Adults and Apprentices	170	97.19	302.68	Õ	2367
	110	01110	002.00	Ŭ	2001
Measures of technological progress at the arrondissement level					
Number of Water-Powered Engines Per Worker – Textile 1839-47	355	0.002	0.008	0	0.083
Number of Wind-Powered Engines Per Worker – Textile 1839-47	355	0.00003	0.0003	0	0.005
Number of Steam-Powered Engines Per Worker – Textile 1839-47	355	0.0007	0.005	0	0.087
Number of Workers – Textile 1839-47	355	844.58	3626.11	0	40300
Average Wage of Male Workers – Textile 1839-47	181	178.87	54.12	60	435
Average Wage of Female Workers– Textile 1839-47	167	90.12	26.10	30	175
Average Wage of Child Workers – Textile 1839-47	144	55.96	16.19	20	125
Horse Power of Water-Powered Engines Per Worker – Textile 1860-65	357	0.032	0.180	0	2.75
Horse Power of Wind-Powered Engines Per Worker – Textile 1860-65	357	5.58e-06	0.0001	0	0.002
Horse Power of Steam-Powered Engines Per Worker – Textile 1860-65	357	.008	.034	0	0.275
Number of Workers – Textile 1860-65	357	577.79	3855.95	0	55739
Average Wage of Male Workers – Textile 1860-65	151	217.23	59.18	90	450
Average Wage of Female Workers – Textile 1860-65	122	113.2552	30.8193	48.75	200
Average Wage of Child Workers – Textile 1860-65	83	78.39	19.92	30	122
Individuals Born 1 to 20 Years After each Epidemic					
Age	11953	24.72	4.61	15	58
Male	11953	0.470	0.50	0	1
Signature	11953	0.80	0.40	0	1
Maximum of 1.1 and a second to					
Measure of labor scarcity	95 F	0.002	0.006	0.000	0.049
Share of Cholera Deaths in Population (department-level)	200	0.005	0.000	0.000	0.042
Share of Cholera Deaths in Population 1852 (arrondissement-level)	257	0.003	0.000	0	0.041 0.067
Share of Cholera Deaths in Population 1854 (arrondissement-level)	207	0.004	0.009	0	0.007
Characteristics of departments					
GDP per capita	255	0.40	0.20	0.16	1 76
Deviation from Summer Rainfall in Year (t) (Baseline Years (t-1)-(t-25))	255	-0.11	0.84	-1.99	1.48
Land suitability	255	0.75	0.18	0.21	0.98
Share of carboniferous area in department	255	0.10	0.15	0.00	0.71
Border department	255	0.20	0.40	0	1
Maritime Department	255	0.26	0.44	Ő	1
r ·····				~	-
Instrumental variable					
Summer Temperature	255	17.44	1.34	13.32	21.77

	Obs	Mean	Std. Dev.	Min	Max
Spring, Fall and Winter Temperature					
Spring Temperature	255	9.44	1.57	1.00	12.50
Fall Temperature	255	10.41	1.82	0.00	14.24
Winter Temperature	255	3.35	2.00	-1.62	7.85
Summer Temperature Lagood and Forwarded					
Summer Temperature (Veer t-1)	255	17.65	1 31	13.60	21 55
Summer Temperature (Vear t 2)	255	17.63	1.01	13.03 13.70	21.00 21.37
Summer Temperature (Vear $t+1$)	255	17.03	1.25	13.13	21.57
Summer Temperature (Vear $t+1$)	255	18.08	1.51	14.03	21.42
Summer remperature (rear t+2)	200	10.00	1.41	14.05	22.41
Summer, Fall, Winter and Spring Rainfall					
Summer Rainfall	255	224.69	61.65	82.73	420.92
Spring Rainfall	255	171.46	87.30	76.98	630.64
Fall Rainfall	255	119.14	51.21	56.24	361.71
Winter Rainfall	255	150.28	48.65	71.95	337.80
Mortality	055	10003 20	FOFF OF (0574	40000
Deaths Excluding Cholera (Year t)	255	10096.69	5255.354	3574	47906
Share of Deaths in Population (Year t-1)	255	0.024	0.004	0.008	0.037
Share of Deaths in Population (Year t-2)	255	0.024	0.004	0.008	0.041
Share of Deaths in Population (Year t-3)	255	0.024	0.003	0.007	0.034
Share of Deaths in Population (Year t-4)	255	0.023	0.004	0.006	0.039
Share of Deaths in Population (Year $t+1$)	255	0.024	0.005	0.007	0.043
Share of Deaths in Population (Year $t+2$)	255	0.025	0.004	0.006	0.039
Share of Deaths in Population (Year $t+3$)	255	0.024	0.004	0.007	0.050
Share of Deaths in Population (Year $t+4$)	255	0.023	0.004	0.007	0.035
Towns Hit by Pest in 18th Century	85	0.14	0.62	0	4
Incidence Rate, Acute Diarrhea, per 100,000 Inhabitants	36	124.08	35.89	57.3	206.02
Incidence Rate, Influenza, per 100,000 Inhabitants	36	92.37	67.22	22.74	264.08
Incidence Rate, Chicken Pox, per 100,000 Inhabitants	36	21.83	8.54	9.81	48.94
Cholora Deaths in 1881 and 1800					
Cholore Doaths in 1884 and 1802	164	64 30	347.81	1	2011
Cholera Deaths in 1004 and 1092	104	04.39	347.01	1	3911
Causes of Deaths of Men and Women in 1855					
Fever	80	314.88	704.21	12	5966
Cardio-Vascular Illness	80	127.11	278.60	12	2414
Digestive Illness	80	492.45	1152.65	22	9755
Renal Disease	80	9.43	24.04	0	163
Bladder Disease	80	17.05	30.23	0	246
Breast & Chest Disease	80	9.95	22.90	Õ	197
Skeletal Disease	80	23.92	43 46	1	319
Nervous System Illness	80	59.33	157 993	1	1411
Articular Illness	80	13.94	25 70	0	210
Skin Illness	80	17.06	37 37	0	202
Burn Cancer & Dropsy	80	73.08	144 49	6	1230
Accidents Murders & Suicides	80	559 55	1094 15	45	7013
reciacitos, murdero de outendos	00	000.00	1004.10	-10	1010
Life Expectancy at Age 15 Before Each Epidemic					
Life Expectancy 5 Years Before Each Epidemic	255	39.79	6.66	23.3	53.3
Life Expectancy 10 Years Before Each Epidemic	255	40.44	7.04	19.4	52.7
Life Expectancy 15 Years Before Each Epidemic	255	39.17	7.26	21	52.4
Life Expectancy 20 Years Before Each Epidemic	255	38.51	6.76	23.1	51.3
Life Expectancy 25 Years Before Each Epidemic	255	39.26	7.38	19.4	52.7
- v 1					
Number of Inhabitants Before Each Epidemic					
Number of Inhabitants 5 Years Before Each Epidemic	255	404303.5	173862.5	129102	1422065
Number of Inhabitants 10 Years Before Each Epidemic	255	382044.2	160179.5	124763	1364467
Number of Inhabitants 20 Years Before Each Epidemic	254	365706.2	145840.4	110732	1106891

Table A.2: Descriptive statistics: variables for falsification tests

	Obs.	Mean	Std.dev	Min	Max
Temperature and Relative Humidity in 2018					
Temperature (C)	121619	13.38	7.60	-16.6	38
Relative Humidity	121619	75.28	17.72	1	100
T					
Internal Trade					
Quantity of Merchandises (Ton) in Warehouses, Year t	255	10.36	52.07	0	548.52
Value of Merchandises (Million French Francs) in Warehouses, Year t	255	5234.70	30353.77	0	263388
Agricultural Production					
Average Value of Wheat Production	170	19.14	3 11	13 43	31.24
Average Value of Millet Production	170	14.86	3 10	0	21.41
Average Value of Oats Production	170	13.33	10.72	9.36	149 92
Average Value of Rye Production	170	7.17	1.74	0.52	12.77
Individuals Born 1 to 20 Years Before each Pandemic					
Signature	9587	0.65	0.48	0	1
Male	9587	0.46	0.50	0	1
Land Rents					
Rent Vineyard 1st class	170	134.54	51.40	49	337
Rent Vineyard 2nd class	170	95.12	37.77	36	234
Rent Vineyard 3rd class	170	63.76	38.95	25	445
Rent Arable Land 1st class	170	83.70	46.22	19	416
Rent Arable Land 2nd class	170	58.08	28.36	12	203
Rent Arable Land 3rd class	170	37.67	21.56	7	171
Rent Vineyard 1st class	170	98.34	61.35	0	285
Rent Vineyard 2nd class	170	69.72	44.25	0	242
Rent Vineyard 3rd class	170	46.79	32.92	0	207
י ב תו יי ארי יי ארי יי ארי איי ארי א					
Schooling, Fertility, Religiosity, Migration and Financial Development		0.000	0.005	0.010	0.04
Crude Birth Rate - Year t+1 to t+10	255	0.028	0.005	0.010	0.04
Deposits per Capita - Average t+1-t+5	170	(.(Ə 0.11	1.10	1.38	48.21
Stock of Emigrants	245	0.11	0.05	0.002	0.524
Stock of Infinigrants	245	0.09	0.07	0.000	0.004
Number of Courses for Mole Adults and Appropriates 1837–1850 & 1863	255	41.91	55 41	0.08	0.97
Sponding on Courses for Male Adults and Apprentices 1837, 1850 & 1863	255	6660 51	19/38 /5	0	135377
Number of Courses for Female Adults and Apprentices 1850 & 1863	170	2.04	12450.45	0	27
Primary School Attendance Bate in Year t	255	0.521	0.210	0 126	1
Total Education Spending by Communes Vears $(t+1)$ - $(t+5)$	85	1212444	563261.2	277701	2923468
Total Education Spending by Departments $Veas(t+1)(t+5)$	85	190829.9	182752.1	0	1120905
Total Education Spending by the Central State Years $(t+1)$ - $(t+5)$	85	164209.5	212693.3	0	928150
Total Education Spending by Communes Years $(t+1)$ - $(t+10)$	85	2684896	1180611	636259	6437829
Total Education Spending by Departments Years $(t+1)$ - $(t+10)$	85	359101.6	320026	0	1873060
Total Education Spending by the Central State $Years(t+1)-(t+10)$	85	288052.2	392399.5	0	1814290
Share of Seminarians in Population, 1841 1851 & 1856	252	0.0006	0.0005	0	0.002
Share of Religous Community Members in Population, 1841 1851 & 1856	252	0.0009	0.001	0	0.006
• • /					
Occupations in 1856					
Clergy	87	3280.58	15152.70	385	142705
Naval construction workers	87	716.90	3433.16	0	31185
Professors & Teachers	87	3843.70	17869.14	83	167201
Radiator merchants	87	136.30	634.33	0	5929
Restaurant owners and employees	87	15352.85	70998.27	1481	667849
Tenant farmers	87	57624.44	268016.3	0	2506663
Textile & tissue industry workers	87	43176.85	202901	0	1878193
Transport employees	87	23629.61	109545	916	1027888
Shipowners	87	149.6552	717.8934	0	6510
Wheelwrights & blacksmiths	87	8139.95	37664.07	287	354088
18th c. and 19th c. Political and Institutional Features	075	00.01	145 50	~	1050
Encyclopedie Subscriptions	255	82.84	145.78	0	1078
Trade Cost Shock	252	1.21	0.67	0.23	2.73
Share of Lerror Victims in Population	252	0.0006	0.002	0 000 (0.010
Snare of Emigres in Population	252	0.005	0.006	0.0004	0.046

Table A.3: Descriptive statistics: variables for robustness checks

B Temperature and Relative Humidity in France

In this appendix, we discuss the relationship between temperature and relative humidity following the presentation of Wallace and Hobbs (1977) and Lutgens and Tarbuck (2015). We then report regression results on the negative and significant relationship between temperatures and relative humidity in France.

Relative humidity is defined as the ratio of the air's actual water-vapor content compared with the amount of water vapor required for saturation at that temperature, where saturation is "the equilibrium state where the rate of evaporation of molecules from the water will be equal to their rate of condensation on the water from the moist air" (Wallace and Hobbs, 1977, p.72). It is usually expressed as a relationship between air temperature and the dew point temperature which is the temperature where air is cool enough at constant pressure for water to condense on a plane surface. It follows that, for a given level of pressure p, the relationship between relative humidity RH, air temperature T and dew point temperature TD can be approximated with¹⁷

$$RH \approx 100 - 5(T - TD)$$

As discussed by Lutgens and Tarbuck (2015), relative humidity can change in two ways. First, if the amount of water vapor increases, relative humidity will increase until saturation occurs, i.e., there is 100% relative humidity. Second, cooler air temperatures will increase relative humidity when the water-vapor content of air remains constant (intuitively, water vapor evaporates less at cooler than at higher temperatures).

France experiences different levels of temperature and humidity throughout its territory. Usually, the North is colder than the South. Moreover, northern and western coastal regions on the North Sea and the Atlantic Ocean are usually humid because their climate is influenced by cold sea breezes. However the Mediterranean coast is dryer because of a warm sea and the influence of land breezes. Areas that are removed from the coast are slightly drier, although there are variations because of the nature of the soil, the presence of mountains as well as exposure to wind and sun.

In Table B.1, we report regression results between temperature and relative humidity using intra-day data from the French Meteorology Agency for 42 weather stations collected every day and every three hours throughout 2018. Accounting for time-invariant character-

 $^{^{17}}$ Relative humidity can be formally defined using the saturation mixing ratio of dew point and air temperature for a given pressure *p*. See Eq. (2.67) in Wallace and Hobbs (1977, pp. 71-76).

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS
						Rel	ative Humi	dity					
	Whole Year	January	February	March	April	May	June	July	August	September	October	November	December
Temperature (C)	-1.513*** [0.0466]	-1.511^{***} [0.192]	-0.421*** [0.118]	-2.486^{***} [0.165]	-2.994*** [0.0833]	-3.063*** [0.0960]	-2.677^{***} [0.0979]	-3.392*** [0.0929]	-2.880*** [0.0887]	-2.690*** [0.107]	-2.721*** [0.136]	-1.794*** [0.136]	-1.397*** [0.163]
Weather Station Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hour Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Day Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month Fixed Effects	Yes	No	No	No	No	No	No	No	No	No	No	No	No
R2	0.533	0.544	0.560	0.551	0.748	0.738	0.814	0.833	0.786	0.757	0.653	0.553	0.552
Clusters	42	42	42	42	42	42	42	42	42	42	42	42	42
Observations	121,619	10,376	9,385	10,270	10,048	10,396	10,038	10,195	10,349	10,019	10,274	10,001	10,268

Table B.1: Temperature and Relative Humidity in 2018 in France

Note: This table present regression results that use modern weather data from 42 weather stations in 2018 in France to establish that lower temperatures are associated with higher relative humidity, accounting for weather station fixed effects as well as month-, day- and hour- fixed effects. Constant not reported. Standard errors clustered at the weather-station level. ***p < 0.01, ** p < 0.05, * p < 0.1.

istics with weather-station fixed effects, as well as with month-, day- and hour-fixed effects, Table B.1 shows that colder temperatures are negatively and significantly associated at the 1%-level with relatively humidity. In other words, Table B.1 shows that northern areas of France are colder and relatively more humid than southern areas, thereby vindicating the negative (and significant) relationship which we find between summer temperatures and the spread of cholera in Table 7.

C Cholera Pandemics in 1832, 1849 & 1854 and Other Pandemics

Table C.1: Cholera Pandemics in the 19^{th} c. after 1855	
--	--

	(1)	(2)	(3)	(4)
	OLS	OLS	2SLS	2SLS
	Chole	ra Death	s in 1884	& 1892
Share of Cholera Deaths in Population 1832 & 1849	50.17*		-400.8	
-	[29.77]		[434.3]	
Share of Cholera Deaths in Population 1849 & 1854		-13.38		-7,432
-		[16.38]		[63, 651]
Adjusted R2	0.007	-0.004		
Clusters	82	82	82	82
Observations	164	164	164	164

Note: This table reports OLS and 2SLS regression results showing that there is no statistically significant relationship between the share of cholera deaths in 1832, 1849 and 1854 and the share of cholera deaths in 1884 and 1892. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(.)	(-)	(-)	(1)	()	(-)	(-)	(-)	(-)	()	()
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS
	Fever	Cardio-Vascular	Digestive	Renal	Bladder	Breast &	Skeletal	Articular	Skin	Burn, Cancer &	Accidents,
		Illness	Illness	Disease	Disease	Chest Disease	Disease	Illness	Illness	Dropsy	Murders & Suicides
Share of Cholera Deaths in Population 1832	-12 21	-3 844	-9.620	-10 47	-23 68	-2.338	-26.05	-24 29	-15 13	-5.028	-6 722
bilate of choicia boatils in Population, 1002	[10,14]	[16 79]	[15.84]	[24 33]	[18 34]	[17 25]	[24 39]	[24.21]	[16.59]	[19.77]	[20.29]
	[10.14]	[10.75]	[10.04]	[24.00]	[10.04]	[17.20]	[24.00]	[24.21]	[10.05]	[10.11]	[20.25]
Geographic Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted B2	0.408	0 471	0.510	0.257	0.359	0.379	0.352	0 173	0.387	0.407	0.350
Observations	80	80	80	80	80	80	80	80	80	80	80
	00	00	80	00	00	00	00	80	00	00	00
	(19)	(12)	(14)	(15)	(16)	(17)	(19)	(10)	(20)	(91)	(22)
	(12)		(14)	(13)	(10)		(10)	(19)	(20)	(21)	(22)
	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS
	Fever	Cardio-Vascular	Digestive	Renal	Bladder	Breast &	Skeletal	Articular	Skin	Burn, Cancer &	Accidents,
		Illness	Illness	Disease	Disease	Chest Disease	Disease	Illness	Illness	Dropsy	Murders & Suicides
Share of Cholera Deaths in Population, 1849	39.99	32.52	16.99	30.35	16.36	11.28	-1.465	8.583	22.85	14.60	32.48
	[32.88]	[25.81]	[27.15]	[36.21]	[27.77]	[24.42]	[24.79]	[34.24]	[27.36]	[22.55]	[31.85]
Geographic Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R2	0.429	0.483	0.494	0.252	0.326	0.403	0.404	0.186	0.384	0.438	0.340
Observations	80	80	80	80	80	80	80	80	80	80	80
	00		00	00	00		00		00	00	
	(23)	(24)	(25)	(26)	(27)	(28)	(20)	(30)	(31)	(32)	(33)
		OI S	015		015		015				
	Eerron	Candia Vascular	Dimention	Denal	Dladdon	Dreast fr	Clalatal	Anticular	Claim	Dum Concer le	Assidente
	rever	Cardio-Vascular	Digestive	nenai	Diadder	Dreast &	Skeletal	Articular	SKIII	burn, Cancer &	Accidents,
		lliness	Illness	Disease	Disease	Chest Disease	Disease	Illness	Illness	Dropsy	Murders & Suicides
	2 425		2 211		- 105	11 50					0.000
Share of Cholera Deaths in Population, 1854	2.438	-7.048	2.211	11.46	7.196	-11.72	-7.817	11.35	-4.174	-6.579	-6.963
	[9.619]	[6.253]	[8.861]	[11.26]	[13.48]	[11.48]	[10.44]	[16.02]	[11.24]	[6.352]	[10.29]
Geographic Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R2	0.416	0.484	0.527	0.302	0.386	0.383	0.367	0.247	0.446	0.401	0.393
Observations	80	80	80	80	80	80	80	80	80	80	80

Table C.2: Cholera Pandemics in 1832, 1849 & 1854 and Causes of Deaths of Men and Women in 1855

Note: This table reports OLS regression results showing that there is no statistically significant relationship between the share of cholera deaths in 1832, 1849 and 1854 and the causes of deaths

of men and women in 1855. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm.

	(1)	(2)	(3)
	OLS	OLS	OLS
	Towns	Hit by Pes	t in 18th Century
Share of Cholera Deaths in Population 1832	-6 955		
Share of Cholera Deaths in Population 1002	[4.253]		
Share of Cholera Deaths in Population 1849		-5.457	
		[7.946]	
Share of Cholera Deaths in Population 1854			6.447
			[4.451]
Geographic Controls	Yes	Yes	Yes
Adjusted R2	-0.004	-0.014	0.010
Observations	85	85	85

Table C.3: Cholera Pandemics in 1832, 1849 & 1854 and Pest in 18^{th} c. France

Note: This table reports OLS regression results showing that there is no statistically significant relationship between the share of cholera deaths in 1832, 1849 and 1854 and the number of towns in each department hit by the pest in 18^{th} c. France. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. ***p < 0.01,** p < 0.05,* p < 0.1.

Table C.4: Cholera Pandemics in 1832, 1849 & 1854 and Viral Diseases in 1992, 2009 & 2014

	(1)	(2)	(3)
	OLS	OLS	OLS
	Incidence Rate	Incidence Rate	Incidence Rate
	Acute Diarrhea	Influenza	Chicken Pox
	per	100,000 inhabita	nts
Share of Cholera Deaths in Population	-1.778	-1.726	0.759
	[1.540]	[2.961]	[1.670]
Department Fixed Effects	Yes	Yes	Yes
Year Fixed Effects	Yes	Yes	Yes
Clusters	12	12	12
Observations	36	36	36
Within R2	0.675	0.760	0.469

Note: This table reports OLS regression results showing that there is no statistically significant relationship between the share of cholera deaths in 1832, 1849 and 1854 and the spread of viral diseases in 1922, 2009 & 2014. Data and robust standard errors clustered at the regional level. Constant not reported. All variables are in logarithm. ***p < 0.01, **p < 0.05, *p < 0.1.

D First Stage Regressions and Robustness Checks

D.1 Summer Temperature Levels and Share of Cholera Deaths in the Population in 1832, 1849 & 1854: First Stage Estimates

Table D.1: Summer Temperature Levels and Share of Cholera Deaths in the Population in 1832, 1849& 1854 and : First Stage Estimates

	(1)	(2)	(3)
First stage: the instrumented variable is Shar	re of Cholera	a Deaths in	Population
Summer Temperature	-0.118***	-0.141***	-0.140***
	[0.0271]	[0.0303]	[0.0308]
Deviation from Summer Rainfall in Year (t)		-0.0007	-0.0007
(Baseline Years $(t-1)-(t-25)$)		[0.0007]	[0.0007]
Land Suitability * Year Dummies		0.0002^{**}	0.0002^{**}
		[9.23e-05]	[9.04e-05]
Border Department * Year Dummies		0.0002^{**}	0.0002^{**}
		[8.98e-05]	[8.88e-05]
Maritime Department * Year Dummies		0.00001	0.00001
		[5.04e-05]	[4.81e-05]
Share of Carboniferous Area * Dummies		-0.0001	-0.00004
		[0.0001]	[0.0001]
GDP per capita			-0.0023
			[0.005]
1st stage F-stat	19.012	21.652	20.788
Moran I	-0.008	-0.008	-0.008
Moran I p-value	0.212	0.209	0.210
Department and Year Fixed Effects	Yes	Yes	Yes
Clusters	85	85	85
Observations	255	255	255

Note: This table reports the first stage estimates relating summer temperature levels to the share of cholera deaths in the population in 1832, 1849 and 1854. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. ***p < 0.01, ** p < 0.05, * p < 0.1.

D.2 Falsification tests and robustness checks for first stage regression results

In this section, we discuss our falsification tests and robustness checks. They enhance the credibility of our identification strategy as they show that neither summer temperatures nor cholera deaths are correlated with potentially omitted variables pertaining to the prepandemic characteristics of the departments that could drive the adoption of technology.

Note that we already discussed the following robustness checks in Section 2: (i) Tables 2 and 3 show that all population groups (distinguished by age or gender, urban or rural) were equally affected by the cholera; (ii) Tables C.1 and C.2 show that the numbers of victims in the 1832, 1849 and 1854 cholera pandemics were not correlated with the number of victims from various causes of death in each department in 1855 or with the number of victims in the minor pandemics in 1884 and 1892 (which occurred after the transmission mode of the disease was understood); (iii) Tables C.3 and C.4 show that the diffusion of cholera pandemics in 1832, 1849 and 1854 is neither correlated with the number of towns hit in each department by the spread of the plague in the 18^{th} c., nor correlated with the spread of viral diseases in 1992, 2009 and 2014, i.e., 160 years later; and (iv) Table 5 shows that there are no significant differences in the prices of machinery in agriculture and industry which could potentially drive the results.

In what follows, we show that summer temperature levels in the years of the pandemics are the relevant instrument for cholera deaths because (v) cholera deaths are not correlated with summer temperatures in the years just before or after the cholera outbreaks (Table D.2). Moreover, in the years of cholera outbreaks, the share of cholera deaths in the population is not correlated with (vi) temperatures in spring, fall and winter (Table D.3), (vii) with summer temperature shocks (Table D.4) or (viii) with rainfall (Table D.5). Finally, we show that our results cannot be explained by the pre-pandemic economic characteristics of the departments, i.e., (ix) industry and trade (Tables D.6-D.8), or by the pre-pandemic characteristics of the population, i.e., (x) the mortality rate (Table D.9), the population number and density (Table D.10), the age structure of the population (Table D.11), as well as with (xi) human capital and wealth (Tables D.13-D.15).

D.2.1 Cholera, temperatures and rainfall

Because weather data are correlated over time, a potential concern regarding the instrumentation strategy is that the significant effect of summer temperature on cholera deaths in the year of each pandemic can be attributed to the general effect of summer temperatures in other years, and is correlated with temperatures in other seasons and with rainfall. Tables D.2-D.5 are meant to assuage those concerns.

Table D.2:	Falsification	Test:	Cholera in	1832,	1849 &	1854 and	Summer	Tem	peratures	in	Other	Years
------------	---------------	-------	------------	-------	--------	----------	--------	-----	-----------	----	-------	-------

	(1)	(2)	(3)
	2SLS	2SLS	2SLS
First stage: the instrumented variable is Share of	f Cholera De	eaths in Pop	ulation
Summer Temperature (Year t of Cholera Epidemic)	-0.140^{***}	-0.169^{***}	-0.141***
	[0.0308]	[0.0296]	[0.0357]
Summer Temperature (Year t-1)		0.0656	
		[0.0402]	
Summer Temperature (Year t+1)		-0.0886	
		[0.108]	
Summer Temperature (Year t-2)			-0.0255
			[0.0269]
Summer Temperature (Year t+2)			-0.0333
			[0.0459]
1st stage F-stat	20.788	14.536	9.778
Moran I	-0.008	-0.008	-0.008
Moran I p-value	0.210	0.209	0.208
Reduced Form: the dependent	t variable is		
Share of Agricultural Hydraulic Patent	ts - Year t+	1 to t+5	
Summer Temperature (Year t of Cholera Epidemic)	-1.063***	-1.079^{***}	-0.709**
	[0.318]	[0.380]	[0.311]
Summer Temperature (Year t-1)		0.0379	
		[0.423]	
Summer Temperature (Year $t+1$)		-0.0652	
		[0.785]	
Summer Temperature (Year t-2)			0.0868
			[0.383]
Summer Temperature (Year $t+2$)			1.282^{***}
			[0.470]
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes
Department and Year Fixed Effects	Yes	Yes	Ves
		100	105
Clusters	85	85	85

Note: This table reports first stage estimates and reduced form regressions (using the Share of Agricultural Hydraulic Patents) showing that there is a statistically significant relationship between summer temperatures in 1832, 1849 and 1854 and the share of cholera deaths in 1832, 1849 and 1854, but not between the latter and summer temperatures in other years before or after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. ***p < 0.01,** p < 0.05,* p < 0.1.

In Table D.2, where we build upon the specification in Column 3 of Table 7, we find in both first-stage and reduced form regressions that the instrument Summer Temperature

Table D.3: Falsification Test: Cholera in 1832, 1849 & 1854, Summer Temperatures and Temperatures in Other Seasons

	(1)	(2)	(3)	(4)
First stage: the instrumented va	ariable is Sh	are of Chole	ra Deaths in P	opulation
Summer Temperature	0.140***	0.134***	0.110***	0.126***
Summer Temperature	[0.0308]	[0.0416]	[0.0271]	[0.0320]
Spring Temperature	[0.0000]	-0.0088	[0:0211]	[0:0020]
opring remperature		[0.0214]		
Fall Temperature		[0:0=1-1]	-0.0106***	
I I I I I I I I I I I I I I I I I I I			[0.0031]	
Winter Temperature				0.0008
				[0.0040]
1st stage F-stat	20.788	18.671	18.276	10.875
Moran I	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.210	0.210	0.206	0.211
Reduced Form: the dependent variable is	Share of Ag	ricultural H	draulic Patent	s - Year t+1 to t+5
Summer Temperature	-1.063***	-0.983**	-1 118***	-0 742**
Samiler Temperature	[0.318]	[0.408]	[0.367]	[0.286]
Spring Temperature	[0.020]	-0.108	[0.001]	[000]
		[0.318]		
Fall Temperature			0.0280	
•			[0.0422]	
Winter Temperature				0.0656^{**}
				[0.0301]
	V	V	V	N.
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes	Yes
GDP per capita	res	res	res	res
Department and Year Fixed Effects	res	res	res	res
Clusters	85	85	80	80
Observations	255	255	255	255

Note: This table reports first stage estimates and reduced form regressions (using the Share of Agricultural Hydraulic Patents) showing that there is a statistically significant relationship between summer temperatures in 1832, 1849 and 1854 and the share of cholera deaths in 1832, 1849 and 1854, but not between the latter and temperatures in other seasons in those years. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithms. *** p < 0.01, ** p < 0.05, * p < 0.1.

during cholera pandemics (i.e., in year t) keeps its significant and negative sign when we include Summer Temperatures in the two years before or after year t (for the sake of the argument, we use the Share of Agricultural Hydraulic Patents as the dependent variable in the reduced form regressions.) Furthermore, in both first-stage and reduced form regressions, the instrument Summer Temperature in year t retains its sign and significance when temperatures in spring, fall and winter in year t are included in Table D.3; when deviations from standardized temperatures in spring, summer, fall and winter in year t are included in Table D.4; and when rainfalls in spring, summer, fall and winter in year t are included in Table D.5.

	(1)	(2)	(3)	(4)
First stage: the instrumented variable is	Share of C	holera Death	s in Populati	on
Summer Temperature	-0.146**	-0.0997***	-0.0976***	-0.0803***
•	[0.0697]	[0.0208]	[0.0189]	[0.0180]
Deviation from Summer Temperature in Year (t)	0.003	L]		
(Baseline Years (t-1)-(t-25))	[0.003]			
Deviation from Spring Temperature in Year (t)	[]	-0.0007		
(Baseline Years $(t-1)$ - $(t-25)$)		[0.0007]		
Deviation from Autumn Temperature in Year (t)		[010001]	-0.001*	
(Baseline Years $(t-1)$ - $(t-25)$)			[0.0008]	
Deviation from Winter Temperature in Year (t)			[010000]	-0.0006
(Baseline Years $(t-1)-(t-25)$)				[0 0004]
				[0.0001]
1st stage F-stat	10.806	11.950	14.475	10.881
Moran I	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.209	0.210	0.210	0.209
Geographic Controls * Year Fixed Effects	No	No	No	No
GDP per capita	No	No	No	No
Department- and Year- Fixed Effects	No	No	No	No
Clusters	85	85	85	85
Observations	255	255	255	255

Table D.4: Falsification Test: Cholera in 1832, 1849 & 1854, and Temperature Shocks

Note: This table reports first stage estimates showing that there is a statistically significant relationship between summer temperatures and the share of cholera deaths in 1832, 1849 and 1854 when accounting for summer temperature shocks, i.e., abnormal deviations from summer temperatures. $\text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** $p < 0.01, ** $p < 0.05, * $p < 0.1$. } \\ \text{Constant not reported. Robust standard errors clustered at the department level. } \\ \text{Constant not reported at the department level. } \\ \text{Constant not reported at the department level. } \\ \text{Constant not reported at the department level. } \\ \text{Constant not reported at the department level. } \\ \text{Constant not reported at the department level. } \\ \text{Constant not reported at the department level. } \\ \text{Constant not reported at t$

Table D.5: Falsification Test: Cholera in 1832, 1849 & 1854 and Rainfall

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
		First st	age: the inst	rumented	variable is a	Share of C	Cholera Deat	ths in Po	pulation	
Summer Temperature	-0.0887***		-0.0838***		-0.108^{***}		-0.116^{***}		-0.103^{***}	-0.124^{***}
	[0.021]		[0.016]		[0.025]		[0.027]		[0.025]	[0.025]
Summer Rainfall		0.009^{**}	0.002							-0.002
		[0.004]	[0.003]							[0.004]
Spring Rainfall				-0.002	-0.006***					-0.004*
				[0.002]	[0.002]					[0.002]
Fall Rainfall						0.0003	-0.004***			-0.001
						[0.0007]	[0.001]			[0.002]
Winter Rainfall								0.003	0.006^{***}	0.004
								[0.002]	[0.002]	[0.004]
1st stage F-stat	18.494	5.017	13.135	1.724	9.337	0.132	9.152	1.744	8.838	5.445
Moran I	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.210	0.210	0.205	0.209	0.204	0.210	0.202	0.201	0.208	0.204 9
	Reduced	l Form: tl	ie dependent	variable i	is Share of A	Agricultur	al Hydraulic	Patents	- Year t+1	to t+5
						~				
Summer Temperature	-0.536**		-0.630**		-0.622***		-0.713***		-0.564^{**}	-0.875***
•	[0.218]		[0.255]		[0.216]		[0.242]		[0.219]	[0.289]
Summer Rainfall		0.024	-0.032						. ,	-0.043
		[0.029]	[0.032]							[0.037]
Spring Rainfall				-0.0058	-0.029					-0.017
1 0				[0.026]	[0.025]					[0.031]
Fall Rainfall				[]	L]	0.0002	-0.028			-0.0289
						[0.017]	[0.018]			[0.021]
Winter Bainfall						[0:011]	[0:010]	-0.006	0.012	-0.009
Willow Realized								[0.021]	[0.020]	[0.030]
								[0:021]	[0:020]	[0:000]
Geographic Controls * Year Fixed Effects	No	No	No	No	No	No	No	No	No	No
GDP per capita	No	No	No	No		No	No	No	No	
· · · · · · · · · · · · · · · · · · ·			110	110	No	110			110	No
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	No Yes	Yes	Yes	Yes	Yes	No Yes
Department and Year Fixed Effects Clusters	Yes 85	Yes 85	Yes 85	Yes 85	No Yes 85	Yes 85	Yes 85	Yes 85	Yes 85	No Yes 85

Note: This table reports first stage estimates and reduced form regressions (using the Share of Agricultural Hydraulic Patents) showing that there is a statistically significant relationship between summer temperatures in 1832, 1849 and 1854 and the share of cholera deaths in 1832, 1849 and 1854, but not between the latter and rainfall in those years. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. $^{***}p < 0.01,^{**}p < 0.05,^{*}p < 0.1.$

D.2.2 Summer Temperatures, Cholera, Industry and Trade

A potential concern regarding the exogeneity of the relationship between summer temperature and cholera deaths pertains to trade. It is possible that the transport of goods within France, and the associated circulation of people, would be correlated with weather conditions and would have an impact on the spread of the pandemic. To test for this conjecture, we collect data on the quantity and the value (in million French Francs) of merchandises in warehouses as provided by the successive volumes of the French government's trade statistics (*Tableau décennal du commerce de la France*). Table D.6 shows there is no significant correlation between Summer Temperature and the quantity and value of merchandises in the year before, during or after each pandemic. Moreover, Table D.7 shows there is no significant relationship between the quantity and value of merchandises in the year before, during or after each pandemic and the share of cholera deaths in the population. As such, both Tables indicate that there is no relationship between internal trade and temperature as well as between internal trade and the spread of cholera.

	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	OLS	OLS	OLS	OLS	OLS
	Quant	ity of Merc	handises	Valu	e of Mercha	andises
	Year t	Year t+1	Year t-1	Year t	Year t+1	Year t-1
Summer Temperature (Year t)	8.631	4.989	4.200	10.96	7.999	6.079
	[10.98]	[10.78]	[10.64]	[9.541]	[9.199]	[8.886]
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes	Yes
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.414	0.448	0.434	0.559	0.598	0.597
Moran I -0.009	-0.009	-0.009	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.163	0.171	0.151	0.202	0.195	0.191
Clusters	85	85	85	85	85	85
Observations	255	255	255	255	255	255

Table D.6: Falsification Test: Summer Temperature in 1832, 1849 & 1854 and Quantity (in Ton) and Value (in Million French Frances) of Merchandises in Warehouses

Note: This table reports OLS regressions showing that there is no significant relationship between summer temperatures in 1832, 1849 and 1854 and the quantity or value of merchandises in warehouses across the French territory. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. ***p < 0.01,** p < 0.05,* p < 0.1.

Table D.7: Falsification Test: Cholera Deaths in Population in 1832, 1849 & 1854 and Quantity (in Ton) and Value (in Million French Francs) of Merchandises in Warehouses

	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	OLS	OLS	OLS	OLS	OLS
		Share of	Cholera De	eaths in Po	opulation	
Quantity of Merchandises (ton) in Warehouses, Year t	-0.0002 [0.0002]					
Quantity of Merchandises (ton) in Warehouses, Year t+1		-0.0001				
Quantity of Merchandises (ton) in Warehouses, Year t-1		[0.0002]	-8.21e-06 [0.0002]			
Value of Merchandises (millions French Francs) in Warehouses, Year t				-0.0003		
Value of Merchandises (millions French Francs) in Warehouses, Year t+1				[0.0002]	-0.0002 [0.0003]	
Value of Merchandises (millions French Francs) in Warehouses, Year t-1						-0.0001 [0.0003]
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes	Yes
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.100	0.098	0.097	0.106	0.100	0.098
Moran I	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.219	0.218	0.218	0.218	0.218	0.218
Clusters	85	85	85	85	85	85
Observations	255	255	255	255	255	255

Note: This table reports OLS regressions showing that there is no significant relationship between the share of cholera deaths in 1832, 1849 and 1854 and the quantity or value of merchandises in warehouses across the French territory. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
	Forges		Mechani	ical Mills
	1789	1811	1789	1815
Summer Temperature 1789	-0.0107		0.141	
	[0.837]		[0.188]	
Summer Temperature 1811		0.295		
		[0.712]		
Summer Temperature 1815				-1.166
*				[0.959]
Deviation from Summer Rainfall	No	No	No	No
Geographic Controls * Year Fixed Effects	No	No	No	No
GDP per capita	No	No	No	No
Department and Year Fixed Effects	No	No	No	No
Adjusted R2	-0.012	-0.011	-0.010	0.005
Observations	85	85	85	85

Table D.8: Summer Temperatures & Technology Adoption in 1789, 1811 & 1815

Note: This table reports OLS regressions showing that there is no significant relationship between the share of cholera deaths in 1832, 1849 and 1854 and the presence of iron forges in 1789, 1811 and 1815 in each department. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithms.*** p < 0.01,** p < 0.05,* p < 0.1.

In addition, Table D.8 shows that summer temperature and technology adoption were not correlated before the first cholera pandemic in 1832. Namely, in 1789, 1811 and 1815, summer temperatures have no impact on the numbers of iron forges and mechanical mills in the cotton industry in those years.

Finally, Column (1) of Table D.12 shows that the spread of the cholera was not associated with the trade cost caused by the Napoleonic blockade that shifted the geographic pattern of the French textile industry (Juhász, 2018).

D.2.3 Summer temperatures, cholera and pre-pandemic characteristics of the population

Table D.9 shows that the first stage relationship in Table 7 is not influenced by omitted variables linking summer temperatures and the number of deaths in each department over time. While Column 1 of Table D.9 reports a first stage regression where Summer Temperature in year t is not significantly correlated with the number of deaths in Year t that were not caused by cholera, Columns 2 to 9 of Table D.9 report first stage regressions where Summer Temperature in year t is not significantly correlated with the Share of Deaths in the Population in the four years before and after each cholera pandemic.

Table D.9: Falsification Test: Summer Temperatures in 1832, 1849 & 1854 and Mortality Statistics

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			First	Stage: the	dependent	variable is			
	Deaths Excluding			Sh	are of Dea	ths in Popu	lation		
	Cholera Year t	Year t-4	Year t-3	Year t-2	Year t-1	Year t+1	Year $t+2$	Year t+3	Year t+4
Summer Temperature	-0.892	-0.280	-0.413	-0.0140	0.914	0.973	-0.397	-0.183	-0.165
	[0.558]	[0.606]	[0.595]	[0.554]	[0.593]	[0.643]	[0.629]	[0.655]	[0.632]
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
1st stage F-stat	2.558	0.214	0.482	0.001	2.373	2.287	0.398	0.078	0.069
Moran I	-0.008	-0.006	-0.007	-0.007	-0.007	-0.007	-0.006	-0.007	-0.006
Moran I p-value	0.240	0.320	0.267	0.294	0.293	0.259	0.305	0.293	0.313
Clusters	85	85	85	85	85	85	85	85	85
Observations	255	255	255	255	255	255	255	255	255

Note: This table reports OLS regressions showing that there is no significant correlation between summer temperatures in 1832, 1849 and 1854 and the share of deaths not attributed to the cholera in each department, as well as the share of deaths in the department population in the years before or after each cholera outbreak. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. ***p < 0.01, ** p < 0.05, * p < 0.1.

Furthermore, using the data on the French population from the successive volumes of the *Statistique Générale de la France* and those on life expectancy computed by Bonneuil (1997), Tables D.10 and D.11 show that summer temperatures and cholera deaths were not correlated with the number and density of inhabitants as well as with the age structure of each department prior to the 1832, 1849 and 1854 cholera pandemics.

	(1)	(2)	(3)	(4)	(5)	(6)
	2SLS	2SLS	2SLS	2SLS	2SLS	2SLS
	Num	ber of Inhab	itants	Dens	ity of Inhab	itants
	25 Years	10 Years	5 Years	25 Years	10 Years	5 Years
			Before Eac	h Epidemic		
Share of Cholera Deaths in Population	-0.601	-0.776	-2.294	-0.601	-0.776	-2.294
	[2.388]	[2.452]	[1.439]	[2.388]	[2.452]	[1.439]
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes	Yes
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Moran I	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007
Moran I p-value	0.266	0.274	0.257	0.266	0.274	0.257
Clusters	85	85	85	85	85	85
Observations	254	255	255	254	255	255
First stage: the instrument	ted variable	is Share of	Cholera Dea	aths in Popu	ilation	
Summer Temperature	-0.143^{***}	-0.140^{***}	-0.140^{***}	-0.143^{***}	-0.140^{***}	-0.140^{***}
	[0.0314]	[0.0308]	[0.0308]	[0.0314]	[0.0308]	[0.0308]
1st stage F-stat	20.621	20.788	20.788	20.621	20.788	20.788
		Reduced	Form: the o	lependent v	ariable is	
	Num	ber of Inhab	itants	Dens	ity of Inhab	itants
	25 Years	10 Years	5 Years	25 Years	10 Years	5 Years
			Before Eac	h Epidemic		
Summer Temperature	0.0856	0.109	0.322	0.0856	0.109	0.322
	[0.347]	[0.352]	[0.199]	[0.347]	[0.352]	[0.199]

 Table D.10:
 Pre-Pandemic Characteristics of Departments: Number of Inhabitants

Note: This table reports OLS regressions showing that there is no significant correlation between the share of cholera deaths in 1832, 1849 and 1854 and the number of inhabitants in each department prior to each cholera outbreak. The Tarn-et-Garonne department was only established in 1808 and is therefore missing from the regression in Column 1. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. ***p < 0.01, **p < 0.05, *p < 0.1.

	(1)	(2)	(3)	(4)	(5)
	2SLS	2SLS	2SLS	2SLS	2SLS
		I	life Expecta	ncy	
	25 Years	20 Years	15 Years	10 Years	5 Years
		Befo	ore Each Ep	idemic	
Share of Cholera Deaths in Population	-2.569	-2.295	-2.268	-0.994	-1.952
	[2.141]	[2.222]	[2.330]	[1.995]	[2.204]
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes
Moran I	-0.008	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.232	0.232	0.232	0.232	0.232
Clusters	85	85	85	85	85
Observations	255	255	255	255	255
First stage: the instrumented v	ariable is Sł	nare of Chol	era Deaths	in Populatio	n
Summer Temperature	0.140***	0.140***	0.140***	0.140***	0.140***
Summer Temperature	[0.0308]	[0.0308]	[0.0308]	[0.0308]	[0.0308]
1st stage F-stat	20.788	20.788	20.788	20.788	20.788
	Reduced F	form: the de	ependent va	riable is Life	Expectancy
	25 Years	20 Years	15 Years	10 Years	5 Years
		Befo	ore Each Ep	idemic	
Summer Temperature	0.360	0.322	0.318	0.139	0.274
Summer remperature	[0.323]	[0.313]	[0 324]	[0.202]	[0.200]

Table D.11: Pre-Pandemic Characteristics of Departments: Life Expectancy at Age 15

Note: This table reports OLS regressions showing that there is no significant correlation between the share of cholera deaths in 1832, 1849 and 1854 and life expectancy at age 15 in each department in each outbreak. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

D.2.4 Summer temperatures, cholera, human capital and wealth

Tables D.12, D.13, D.14 and D.15 examine whether the share of cholera deaths in the population could be explained by the sex ratio, the relative age distribution, the relative presence (or absence) of poor/rich individuals, or of educated/uneducated individuals. While there is no historical evidence suggesting that the cholera victims were characterized by specific social statuses or income levels, Tables D.12, D.13, D.14 and D.15 are meant to assuage concerns regarding a possible correlation between cholera deaths, education, wealth and the probability that a technology is patented and/or adopted after the pandemics.

(1)	(2)	(3)	(4)
OLS	OLS	OLS	OLS
Trade Cost	Encyclopedie	Share of Terror Victims	Share of Emigres
Shock	Subscriptions	in Population	in Population

Yes

Yes

Yes

Yes

85

0.211

255

Yes

Yes

Yes

Yes

85

0.051

252

Yes

Yes

Yes

Yes

85

0.051

252

Yes

Yes

Yes

Yes

85

0.157

252

Department and Year Fixed Effects

Deviation from Summer Rainfall

Geographic Controls

GDP per capita

Adjusted R2

Observations

Clusters

Table D.12: Pre-Pandemic Characteristics of Departments: 18^{th} c. and Early 19^{th} c. Political and Institutional Features

Note: This table reports OLS regressions showing that the share of cholera deaths in the population is not correlated with pre-pandemic political
and institutional features of the departments. Constant not reported. Robust standard errors clustered at the department level. All variables
are in logarithm. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of
carboniferous area and dummies for border and maritime departments. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

Columns (2)-(4) of Table D.12 show that the share of cholera deaths in the population was not correlated with the higher tail of human capital in the 18^{th} c. as proxied by the number of subscribers to the Quarto edition of the *Encyclopédie* (Darnton, 1973; Squicciarini and Voigtländer, 2015) or with the changes in the social composition of the population triggered by the French Revolution as measured by the shares of *émigrés* and terror victims in each department (Finley et al., 2021; Franck and Michalopoulos, 2017).

Table D.13 examines the effect of the share of cholera deaths in the population in 1854 on various occupational groups listed in the 1856 French census. In line with the historical evidence, Table D.13 shows that the cholera claimed victims among different occupational groups, whether rich (e.g., shipowners), poor (e.g., tenant farmers) or educated (e.g., cler-

gymen, professors & teachers).¹⁸

Table D.13: Cholera in 1854 & Number of Members from Selected Occupational Groups in	1856
--	------

	(4)	(2)	(2)	(1)	(*)
	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	OLS	OLS
	Tenant	Textile	Naval construction	Wheelwrights &	Transport
	farmers	industry workers	workers	blacksmiths	employees
Summer Temperature	-8.520***	-12.21***	-8.755**	-2.314*	-2.148*
-	[2.102]	[3.038]	[3.993]	[1.351]	[1.230]
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes
Adjusted R2	0.281	0.171	0.347	0.425	0.525
Observations	85	85	85	85	85
	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	OLS	OLS
	Badiator	Restaurant owners &	Shipowners	Professors &	Clergy
	merchants	employees	Shipowhois	Teachers	010185
Summer Temperature	5 269*	2 605**	0 919**	2 609**	9 620***
Summer Temperature	[2.848]	[1.458]	[3.790]	[1.277]	[0.767]
Coorrenhia Controls * Voor Fired Effects	Vor	Voe	Vos	Vos	Vor
GDP per capita	Yes	Yes	Yes	Yes	Yes
For orking	200	200	200	200	200
Adjusted R2	0.067	0.197	0.671	0.222	0.268
Observations	85	85	85	85	85

Note: This table reports OLS regressions showing that individuals who died from cholera were not from specific occupational groups characterized by either low or high education and wealth. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. Geographic and economic variables are included. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table D.14: Cholera in 1832, 1849 & 1854: Individual Level Analysis on Age, Gender, Occupationand Inheritance

	(4)	(2)	(2)		(=)	(2)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	OLS	OLS	OLS	OLS	OLS	OLS	OLS
	Age	Woman	Agriculture	Industry	Services	Inheritance	Inheritance Value
	1 400	0.107	1.017	1.000	0.114	0.400	CE 051
Summer Temperature	1.460	-0.197	1.817	-1.932	0.114	0.490	-65,271
	[3.840]	[0.999]	[1.500]	[1.416]	[1.533]	[0.919]	[70,766]
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Age	No	Yes	Yes	Yes	Yes	Yes	Yes
Gender	Yes	No	Yes	Yes	Yes	Yes	Yes
Occupation	No	No	No	No	No	Yes	Yes
Geographic Controls * Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GDP per capita	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R2	0.033	0.002	0.175	0.046	0.137	0.024	-0.005
Clusters	83	83	82	82	82	82	82
Observations	1,953	1,953	865	865	865	865	865

Note: This table reports OLS regressions showing that individuals in the Enquête des 3000 familles (Survey of the 3000 Families) dataset who died in 1832, 1849 & 1854 do not differ on their observable characteristics. There is no data for Meuse and Nièvre, and no data, except for gender and age, for Allier as well. Constant not reported. Robust standard errors clustered at the department level. All variables are in logarithm. Geographic and economic variables are included. ***p < 0.01, ** p < 0.05, * p < 0.1.

¹⁸Regressions available upon request show that not all occupational groups listed in the 1856 survey were hit by the cholera, but the groups which were spared cannot be distinguished by any specific characteristic, e.g., wealth or education.

Furthermore, Table D.14 relates the share of cholera deaths in the population in 1832, 1849 and 1854 to a dummy variable which indicates whether people who died during these three years left an inheritance (Column 1) and to the value of this inheritance (Column 2), controlling for the age, gender and occupation (i.e., with dummies for occupations in agriculture and industry) of the dead. Reassuringly, Table D.14 shows that there is no significant relationship between the share of cholera deaths in the population and these two variables.

Finally, Table D.15 shows that the cholera pandemics were not correlated with human capital as measured by the likelihood that individuals born one to 20 years before each pandemic, could sign their wedding license (as opposed to mark it with a cross).

Table D.15: Falsification test: Cholera in 1832, 1849 & 1854 and Signatures of Wedding Licenses by Spouses Born before 1 to 20 Years before each Cholera Pandemic

	(1)	(2)	(3)
	2SLS	2SLS	2SLS
Signature of Wedding License For Individuals Bor	n One to 20	Years before	each Epidemic
	1 4 4 5	0.000	0.000
Share of Cholera Deaths in Population	1.445	0.339	0.238
24.1	[2.960]	[2.950]	[2.948]
Male	-0.0140	-0.0141	-0.0141
Deviction from Common Deinfellin Verse (t)	[0.00931]	[0.00931]	[0.00931]
Deviation from Summer Rainfall in Year (t)		0.00038	0.00621
(Baseline Years (t-1)-(t-25))		[0.00517]	[0.00517]
Land Suitability * Year Fixed Effects		0.000769	0.000752
Dender Denester of * Vern Eined Effecte		[0.00212]	[0.00213]
Border Department · Year Fixed Enects		-0.00113	-0.00115
Maritina Demontry and * Very Einsel Effects		[0.00109]	[0.00109]
Maritime Department · Year Fixed Effects		-0.000798	-0.000800
Shane of Carboniferous Area * Veen Fixed Effects		0.000950	0.000951]
Share of Carbonnerous Area · Tear Fixed Ellects		0.00218	0.00238
CDR non conito		[0.00402]	0.0200
GDF per capita			-0.0299
			[0.0051]
Department, and Vear-Fixed Effects	Vos	Vos	Vos
B-squared	0 191	0 102	0 192
Moran I	0.000	0.192	0.000
Moran I p-value	0.250	0.000	0.000
Observations	9.587	9.587	9.587
Observations	5,001	5,001	5,001
First stage: the instrumented variable is Sha	re of Cholera	a Deaths in H	opulation
Summer Temperature	-0.138***	-0.148***	-0.149^{***}
I I I I I I I I I I I I I I I I I I I	[0.00705]	[0.00769]	[0.00772]
	[]	[]	[]
1st stage F-stat	385.7	372.4	370.4
Reduced Form: the deper	ident variabl	le is	
Signature of Wedding License For Individuals Bor	n One to 20	Years before	each Epidemic
Summer Temperature	-0.200	-0.0503	-0.0353
-	[0.412]	[0.440]	[0.441]

Note: This table reports IV regressions showing that there is no significant relationship between the share of cholera deaths in 1832, 1849 & 1854 and the ability of brides and grooms in the *Enquête des 3000 familles* (Survey of the 3000 Families) dataset to sign their wedding license. Constant not reported. Robust standard errors clustered at the year-department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

E. Main Results (with the full set of control variables)

Table E.1: The Effects of the Cholera in 1849 & 1854 on the Number and Horse Power of Steam-Powered Machines per Worker in the Year following each Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Aver	age Number	of Steam-P	owered Mac	chines	Averag	e Horse Pow	ver of Stear	n-Powered 1	Machines
		per '	Worker Year	• t+1			per	Worker Yea	ar t+1	
Chang of Cholene Deaths in Dopulation	01 99***	20 70***	00 E1***	75 50**	64 40**	20.00**	97 E0**	94 61**	104 7**	01 55**
Share of Cholera Deaths in Fopulation	-24.33 [0 E 20]	-30.79	-26.01	-70.02 ⁺⁺	-04.49 ¹	-32.98 [19 cc]	-37.32 · ·	-34.01 · ·	-104.7	-91.00
Deviation from Summer Painfall in Veer (t)	[6.556]	[9.032]	[0.720]	0.0522	[20.20]	[13.00]	[13.16]	0.0102	[40.00]	0.0685
(Paseline Vers $(t, 1)$ $(t, 25)$)		-0.0007 [0.127]	-0.0331	[0.147]	[0 124]		[0.187]	-0.0102	[0.214]	[0.104]
(Daseline Tears (t-1)-(t-25))		0.0265	[0.150]	[0.147]	[0.154]		0.000562	[0.162]	0.0697	0.0504
Land Suitability · Year Fixed Effects		0.0200	0.0191	0.0720	0.0572		-0.000503	-0.0101	0.0087	0.0504
Bandar Danastraant * Vaar Einad Effante		[0.0480]	[0.0501]	[0.0485]	[0.0449]		[0.0655]	[0.0603]	[0.0736]	[0.0664]
Border Department · Year Fixed Enects		0.0549	0.0043	0.100	0.103		0.0325	0.0444	0.109	0.105
		[0.0366]	[0.0395]	[0.0635]	[0.0588]		[0.0535]	[0.0557]	[0.0911]	[0.0870]
Maritime Department * Year Fixed Effects		-0.0659	-0.0629	-0.0863	-0.0797		-0.0704	-0.0666	-0.101	-0.0932
		[0.0490]	[0.0463]	[0.0540]	[0.0487]		[0.0740]	[0.0705]	[0.0828]	[0.0748]
Share of Carboniterous Area * Year Fixed Effects		-0.164	-0.201	-0.143	-0.177		-0.0872	-0.135	-0.0565	-0.0967
		[0.119]	[0.121]	[0.125]	[0.121]		[0.218]	[0.227]	[0.222]	[0.229]
GDP per capita			1.119		0.878			1.430		1.049
			[0.741]		[0.652]			[1.167]		[1.126]
Department and Year Fixed Effects	Yes	Yes	Yes	Ves	Yes	Ves	Yes	Ves	Yes	Yes
Within B2	0.174	0.228	0.255	105	105	0 123	0.137	0.155	105	105
Moran I	-0.012	-0.013	-0.013	-0.013	-0.013	-0.012	-0.012	-0.012	-0.012	-0.012
Moran I n-value	0.200	0.183	0.177	0.191	0.183	0.221	0.213	0.210	0.210	0.215
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
C DSCI Valibilis	110	110	110	110	110	110	110	110	110	110
		First	stage: the in	nstrumented	l variable is	Share of C	holera Deat	hs in Popu	lation	
~										dubub
Summer Temperature				-0.180***	-0.179***				-0.180***	-0.179***
				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577
				D 1 1		1				
	A		of Charmer D	Reduced I	Form: the d	ependent v	ariable is	ion of Ct	Domons 11	Machinas
	Aver	age Number per	Worker Year	owered Mac t+1	chines	Averag	e norse Pow per '	ver of Stear Worker Yea	ar t+1	viacnines
		*					*			
Summer Temperature				13.60^{**}	11.53^{**}				18.86^{**}	16.37^{**}
				[5, 977]	[5, 357]				[8 808]	$[8\ 172]$

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number and horse power of steam-powered machines per worker in the mining sector in the year after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table E.2: The Effects of the Cholera in 1849 & 1854 on the Number of Boilers and Steam Generators per Worker in the Year following each Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Average	Number of S	Steam Gener	rators per W	Vorker Year t+1	Averag	ge Number	of Boilers	per Worker	Year t+1
					an e a state				a a construit.	
Share of Cholera Deaths in Population	-21.29**	-27.51***	-24.89***	-86.21**	-74.20**	-13.64	-20.14*	-20.51*	-90.47**	-99.37**
	[8.887]	[10.31]	[9.427]	[34.05]	[30.86]	[10.50]	[10.35]	[10.36]	[38.90]	[41.65]
Deviation from Summer Rainfall in Year (t)		0.0125	-0.0248	0.0832	0.0434		-0.358**	-0.353**	-0.274	-0.244
(Baseline Years (t-1)-(t-25))		[0.134]	[0.134]	[0.160]	[0.144]		[0.148]	[0.154]	[0.194]	[0.214]
Land Suitability * Year Fixed Effects		-0.00412	-0.0127	0.0564	0.0397		0.0778	0.0790	0.150^{***}	0.163^{***}
		[0.0525]	[0.0530]	[0.0540]	[0.0478]		[0.0579]	[0.0579]	[0.0563]	[0.0565]
Border Department * Year Fixed Effects		0.0621^{*}	0.0728^{*}	0.129^{*}	0.126^{*}		0.0250	0.0235	0.105	0.108
		[0.0371]	[0.0387]	[0.0708]	[0.0648]		[0.0436]	[0.0446]	[0.0882]	[0.0940]
Maritime Department * Year Fixed Effects		-0.0638	-0.0603	-0.0905	-0.0834		-0.0581	-0.0586	-0.0902	-0.0955*
-		[0.0507]	[0.0475]	[0.0581]	[0.0518]		[0.0558]	[0.0553]	[0.0585]	[0.0580]
Share of Carboniferous Area * Year Fixed Effects		-0.201	-0.244*	-0.174	-0.211		-0.136	-0.130	-0.104	-0.0768
		[0.136]	[0.139]	[0.141]	[0.137]		[0.131]	[0.131]	[0.124]	[0.126]
GDP per capita		[]	1.286^{*}	L- 1	0.956		[]	-0.181	[·]	-0.709
obr per capita			[0 769]		[0.693]			[0 736]		[0 933]
			[0.100]		[0.000]			[0.100]		[0.000]
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.131	0.182	0.215			0.211	0.329	0.330		
Moran I	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.013	-0.013	-0.013	-0.013
Moran I p-value	0.214	0.202	0.198	0.209	0.203	0.202	0.177	0.178	0.186	0.192
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		Firs	t stage: the	instrumente	ed variable is Sha	are of Ch	olera Deat	hs in Popu	lation	
Summer Temperature				-0.180^{***}	-0.179^{***}				-0.180^{***}	-0.179^{***}
				[0.0471]	[0.0485]				[0.0471]	[0.0485]
				14,000	10 577				14,000	10 577
1st stage F-stat				14.602	13.577				14.602	13.577
				Reduced	Form: the depe	ndent va	riable is			
	Average	Number of S	Steam Gener	rators per W	Vorker Year t+1	Averas	e Number	of Boilers	per Worker	Year t+1
	interage	. amou or .	steam Gener	ators per w	ornor rour t 1	1110148	se munifici	5. Donois	Por Horker	1001 0 11
Summer Temperature				15.53**	13.26**				16.30**	17.76**
r				[6.325]	[5 718]				[7 479]	$[7\ 237]$
				[0.020]	[0.110]				[1.110]	[1.201]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of boilers and steam generators per worker in the mining sector in the year after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Average Nu	umber of Wo	orkers Year t	+1	Α	verage W	/age per V	Vorker Year	t+1
Share of Cholera Deaths in Population	3.960	9.768	8.128	38.65	30.41	-24.46	-11.48	-12.78	99.52	101.0
	[7.685]	[9.736]	[8.917]	[33.55]	[31.01]	[22.63]	[22.71]	[22.23]	[93.35]	[92.91]
Deviation from Summer Rainfall in Year (t)	. ,	-0.0784	-0.0550	-0.113	-0.0858		0.136	0.155	0.00227	-0.00267
(Baseline Years (t-1)-(t-25))		[0.116]	[0.123]	[0.115]	[0.114]		[0.323]	[0.332]	[0.356]	[0.353]
Land Suitability * Year Fixed Effects		0.229***	0.234***	0.199**	0.211**		-0.250	-0.245	-0.364*	-0.366*
v		[0.0777]	[0.0868]	[0.0860]	[0.0924]		[0.182]	[0.175]	[0.202]	[0.197]
Border Department * Year Fixed Effects		-0.134***	-0.140***	-0.167***	-0.164***		-0.308*	-0.313*	-0.434**	-0.435**
		[0.0397]	[0.0410]	[0.0576]	[0.0544]		[0.156]	[0.159]	[0.208]	[0.208]
Maritime Department * Year Fixed Effects		0.0595	0.0573	0.0726	0.0677		-0 143	-0.145	-0.0926	-0.0917
Martinic Department Total Third Directo		[0.0522]	[0.0498]	[0.0578]	[0.0530]		[0 108]	[0 108]	[0.125]	[0 126]
Share of Carboniferous Area * Year Fixed Effects		0.460***	0.487***	0 447***	0 472***		-0.591*	-0.570*	-0.642*	-0.647*
Share of Carbonnerous Area - Tear Tixed Eneces		[0 139]	[0 1/8]	[0 1/2]	[0 1/8]		[0.345]	[0.321]	[0.388]	[0.381]
CDP per capita		[0.100]	0.805	[0.142]	0.656		[0.040]	0.642	[0.000]	0.110
GDI per capita			-0.805		[0.608]			-0.043 [1.502]		0.119 [1.556]
			[0.703]		[0.008]			[1.505]		[1.550]
Department and Vear Fixed Effects	Vos	Vos	Vos	Vos	Vos	Vos	Vos	Vos	Vos	Vos
Within B2	0.064	0.326	0.341	105	105	0.000	0.130	0.131	105	105
Moran I	-0.013	-0.013	-0.013	-0.013	-0.013	-0.011	-0.011	-0.011	-0.012	-0.012
Moran I n value	0.181	0.180	0.176	0.183	0.178	-0.011 0.937	0.011	0.011	0.222	0.223
Clustore	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
Observations	170	170	170	170	170	170	170	170	170	170
		First s	tage the in	strumented	variable is S	Share of (Tholera D	eaths in F	opulation	
		1 1150 5	tage. the m	strumenteu	variable is c	mare or c	JHOICI' D		opulation	
Summer Temperature				-0.180***	-0 179***				-0.180***	-0 179***
Summer remperature				[0.0471]	[0.0485]				[0.0471]	[0.0485]
				[0.0471]	[0.0400]				[0.0471]	[0.0400]
1st stage F-stat				14.602	13.577				14.602	13.577
				Reduced F	orm: the de	pendent •	variable is	3		
		Average Nu	umber of Wo	orkers Year t	;+1	A	verage W	/age per V	Vorker Year	t+1
								J. I		
Summer Temperature				-6.961	-5.436				-17.93	-18.06

Table E.3: The Effects of the Cholera in 1849 & 1854 on the Number and Wage of Workers in the Year following each Pandemic

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number and wage of workers in the mining sector in the year after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

[6.389]

[5.804]

[16.01]

[15.70]

Table E.4: The Effects of the Cholera in 1849 & 1854 on the Values of Extracted Coal & Peat Two and Three Years after each Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Avera	age Value	of Extracted	l Coal (t+	2)-(t+3)	Aver	age Value o	f Extracted	Peat $(t+2)$	-(t+3)
Share of Cholera Deaths in Population	-2.765	-2.409	3.615	-2.625	2.732	-9.316**	-11.37**	-10.98**	-25.95**	-24.71*
	[2.242]	[1.832]	[6.429]	[1.867]	[6.724]	[4.672]	[5.090]	[5.254]	[12.06]	[13.79]
Deviation from Summer Rainfall in Year (t)		-0.0461	-0.0533	-0.0430	-0.0504		-0.0849	-0.0905	-0.0674	-0.0715
(Baseline Years (t-1)-(t-25))		[0.0343]	[0.0345]	[0.0336]	[0.0329]		[0.0549]	[0.0558]	[0.0630]	[0.0672]
Land Suitability * Year Fixed Effects		-0.0161	-0.0223	-0.0154	-0.0211		0.0293	0.0280	0.0443^{*}	0.0426
		[0.0159]	[0.0161]	[0.0154]	[0.0151]		[0.0190]	[0.0181]	[0.0242]	[0.0260]
Border Department * Year Fixed Effects		-0.0191	-0.0260	-0.0200	-0.0257		-0.000544	0.00105	0.0161	0.0157
		[0.0136]	[0.0163]	[0.0137]	[0.0158]		[0.0208]	[0.0206]	[0.0282]	[0.0278]
Maritime Department * Year Fixed Effects		-0.0168	-0.0140	-0.0171	-0.0146		-0.0161	-0.0155	-0.0227	-0.0220
-		[0.0111]	[0.0118]	[0.0110]	[0.0118]		[0.0181]	[0.0182]	[0.0176]	[0.0181]
Share of Carboniferous Area * Year Fixed Effects		-0.0454	-0.0482	-0.0419	-0.0455		-0.152***	-0.158***	-0.145***	-0.149***
		[0.0345]	[0.0361]	[0.0332]	[0.0345]		[0.0522]	[0.0493]	[0.0522]	[0.0509]
GDP per capita				-0.106	-0.0703			0.191		0.0992
For orphic				[0.129]	[0.137]			[0.302]		[0.351]
				[0.120]	[0.101]			[0:002]		[0:001]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.091	0.157		0.162		0.367	0.464	0.467		
Moran I	-0.012	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011
Moran I p-value	0.226	0.240	0.241	0.236	0.236	0.263	0.265	0.266	0.264	0.264
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		Firs	st stage: the	instrumer	nted variabl	e is Share	of Cholera I	Deaths in Po	opulation	
Summer Temperature			-0.180^{***}		-0.179^{***}				-0.180^{***}	-0.179^{***}
			[0.0471]		[0.0485]				[0.0471]	[0.0485]
1			14 600		10 577				14,000	10 577
1st stage F-stat			14.002		13.377				14.002	13.377
				Reduc	ed Form: tl	ne depende	nt variable i	is		
	Average Value of Extracted Coal (t+2)-(t+3) Average Value of Extracted Coal (t+2)-(t+3)							f Extracted	Peat $(t+2)$	-(t+3)
				`					, /	
Summer Temperature			-0.651		-0.488				4.675^{**}	4.417
			[1.157]		[1.213]				[2.330]	[2.660]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the average values of extracted coal & peat two and three years after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

Table E.5: Cholera in 1832, 1849 & 1854: Share of Workforce in Industry 40 Years after the Cholera Epidemics

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	OLS	OLS	OLS	OLS	2SLS	2SLS	2SLS
	SI	nare of W	Vorkforce in	Industry I	orty Years	after the Ch	olera
Share of Cholera Deaths in Population	-15.41	19.00	18.56	18.37^{*}	45.17	32.76	33.41
	[14.79]	[11.42]	[11.18]	[10.94]	[36.08]	[27.81]	[27.99]
Deviation from Summer Rainfall in Year (t)			-0.111	-0.108		-0.118	-0.121
(Baseline Years (t-1)-(t-25))			[0.128]	[0.126]		[0.125]	[0.127]
Land Suitability * Year Fixed Effects			-0.00121	-0.00154		-0.00330	-0.00297
			[0.0183]	[0.0182]		[0.0188]	[0.0189]
Border Department * Year Fixed Effects			0.00597	0.00627		0.00330	0.00286
			[0.00802]	[0.00777]		[0.00852]	[0.00891]
Maritime Department * Year Fixed Effects			0.00909	0.00926		0.00846	0.00824
			[0.00866]	[0.00853]		[0.00874]	[0.00887]
Share of Carboniferous Area * Year Fixed Effects			0.0797^{*}	0.0816^{*}		0.0784^{*}	0.0760
			[0.0470]	[0.0469]		[0.0460]	[0.0462]
GDP per capita			0.240				0.275
			[0.825]				[0.805]
Department and Veer Fired Effects	No	Voc	Voc	Voc	Voc	Voc	Voc
Adjusted P2	0.001	res	res	res	res	res	Tes
Within B2	-0.001	0.860	0.876	0.875			
Moran I	0.007	0.005	0.007	0.015	0.007	0.007	0.007
Moran I n-value	0.007	0.264	0.263	0.263	0.259	0.263	0.262
Clusters	0.500	81	81	81	81	81	81
Observations	243	243	243	243	243	243	243
Observations	240	240	240	240	240	240	240
First stage: the instrumente	d variabl	e is Shar	e of Cholera	a Deaths in	Population		
Summer Temperature					-0.124^{***}	-0.141^{***}	-0.141^{***}
					[0.0280]	[0.0312]	[0.0315]
1st stage F-stat					19.467	20.537	20.067
Reduced Form: the dependent variable i	is Share	of Workfe	orce in Indu	istry Forty	Years after	the Cholera	
Summer Temperature					-5.585	-4.634	-4.712
					[4.597]	[4.223]	[4.234]

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the share of the workforce in industry 40 years after each outbreak. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table E.6: Cholera in 1832, 1849 & 1854: Share of Professionals in Workforce 40 Years after the Cholera Epidemics

	(1)	(0)	(0)	(4)	(5)	(c)	(7)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	OLS	OLS	OLS	OLS	2SLS	2SLS	2SLS
	Sha	re of Pro	fessionals ii	n Workforce	e Forty Year	s after the C	Jholera
Share of Cholera Deaths in Population	6.447	-4.145	-2.643	-2.582	0.598	8.971	9.217
	[5.637]	[4.012]	[3.842]	[3.860]	[13.72]	[11.73]	[11.72]
GDP per capita				0.0766			0.104
				[0.225]			[0.227]
Deviation from Summer Rainfall in Year (t)			-0.0662	-0.0670		-0.0739	-0.0752
(Baseline Years (t-1)-(t-25))			[0.0543]	[0.0540]		[0.0557]	[0.0554]
Land Suitability * Year Fixed Effects			-0.0137	-0.0136		-0.0151	-0.0150
-			[0.0199]	[0.0198]		[0.0194]	[0.0193]
Border Department * Year Fixed Effects			-0.00752	-0.00761		-0.00992	-0.0101
1			[0.00867]	[0.00869]		[0.00832]	[0.00830]
Maritime Department * Year Fixed Effects			0.00474	0.00468		0.00409	0.00401
I I I I I I I I I I I I I I I I I I I			[0.00719]	[0.00715]		[0.00715]	[0.00709]
Share of Carboniferous Area * Year Fixed Effects			-0.0423	-0.0430		-0.0450	-0.0459
Share of Carbonnerous fired Treat Fired Encers			[0.0383]	[0.0388]		[0.0372]	[0.0375]
			[0.0000]	[0.0000]		[0.0012]	[0.0310]
Department and Year Fixed Effects	No	Ves	Ves	Ves	Ves	Ves	Ves
Adjusted B2	0.000	100	100	105	100	100	100
Within B2	0.000	0.700	0.715	0.716			
Moran I	-0.002	-0.008	-0.008	-0.008	-0.007	-0.007	-0.007
Moran I n value	0.641	0.000	0.250	0.250	0.250	0.263	0.262
Clustors	0.041	0.244 81	81	0.200 81	81	81	81
Observations	949	242	242	242	242	242	242
Observations	240	240	240	240	240	240	240
First stage: the instrumente	d voriabl	o io Shor	a of Cholor	o Dootha in	Population		
First stage. the histrumente	u vanabi	e is Shai	e or Choler	a Deatins in	1 opulation		
Cummon Tomor on tune					0 194***	0 1 / 1 * * *	0 1/1***
Summer remperature					-0.124	-0.141	-0.141
					[0.0280]	[0.0512]	[0.0515]
1-t-steve E-stet					10 467	00 597	00.067
Ist stage F-stat					19.407	20.537	20.007
Reduced Form: the dependent variable is	Share of	Professio	onals in Wo	rkforce For	v Years aft	er the Chole	ra
Summer Temperature					-0.0739	-1.269	-1.300
I I I I I I I I I I I I I I I I I I I					[1.714]	[1.703]	[1.695]

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the share of professionals in the workforce 40 years after

each outbreak. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	OLS	OLS	OLS	OLS	2SLS	2SLS	2SLS
	Ι	$\log \text{GDP}$	per Capit	a (150 Yea	ars after the	Cholera Epi	demics)
Share of Cholera Deaths in Population	10.49^{***}	0.154	0.475	0.465	4.529	3.415	3.450
	[3.583]	[0.939]	[0.997]	[0.996]	[7.407]	[3.570]	[3.558]
Deviation from Summer Rainfall in Year (t)			0.013	0.013		0.013	0.012
(Baseline Years (t-1)-(t-25))			[0.014]	[0.014]		[0.013]	[0.014]
Land Suitability * Year Fixed Effects			0.005	0.005		0.005	0.005
			[0.007]	[0.007]		[0.007]	[0.007]
Border Department * Year Fixed Effects			-0.004	-0.004		-0.004	-0.004
			[0.003]	[0.003]		[0.003]	[0.003]
Maritime Department * Year Fixed Effects			0.00004	0.00005		-0.0001	-0.0001
			[0.002]	[0.002]		[0.002]	[0.002]
Share of Carboniferous Area * Year Fixed Effects			0.009	0.009		0.008	0.008
CDD			[0.0109]	[0.0109]		[0.0104]	[0.0104]
GDP per capita			0.009				0.019
			[0.0633]				[0.0631]
Department and Year Fixed Effects	No	Yes	Yes	Yes	Yes	Ves	Ves
Adjusted R2	0.011	100	100	100	100	100	100
Within B2	0.022	0.947	0.949	0.949			
Moran I	-0.008	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
Moran I p-value	0.227	0.306	0.312	0.312	0.304	0.311	0.310
Clusters		85	85	85	85	85	85
Observations	255	255	255	255	255	255	255
	First stag	ge: the ins	strumente	d variable	is Share of	Cholera Deat	ths in Population
а					0.4400000		
Summer Temperature					-0.118***	-0.141***	-0.140***
					[0.0271]	[0.0303]	[0.0308]
1st stage F-stat					19.012	21.652	20.788
		Doduced	Eamo, the	donond	t moniobl- :	Ctools of E-	imonta
		Reduced	Form: the	e depender	it variable is	s Stock of En	ngrants
Summer Temperature					-0.536	-0.481	-0.484
Sammer remperature					[0.888]	[0.522]	[0.518]
					[0.000]	[0.022]	[0.010]

Table E.7: Cholera in 1832, 1849 & 1854: GDP per capita in 1982, 1999 & 2004

Note: This table presents OLS and IV regressions relating the share of cholera deaths in 1832, 1849 and 1854 to GDP per capita in 1982, 1999 & 2004. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table E.8: The Effects of the Cholera in 1832 on the Textile Industry i	n 1839-47
---	-----------

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	OLS	2SLS	OLS	2SLS	OLS	2SLS	OLS	2SLS	OLS	2SLS	ÒLŚ	2SLS	()	· · /
	Number of V	Water-Powered	Number of	Wind-Powered	Number of	Steam-Powered	Num	ber of		Avera	ge Wage in	Textile Se	ctor of	
		Eng	gines Per Wor	ker in Textile S	ector		Textile	Workers	Male V	Vorkers	Female	Workers	Child 7	Workers
Share of Cholera Deaths	-0.120*	0.0297	-0.00361*	-0.00366	-0.0458**	-0.213	-56.91	443.8	6.061	-60.21	2.565	-38.63	4.970	-59.11
in Population 1832	[0.0618]	[0.463]	[0.00205]	[0.0213]	[0.0182]	[0.201]	[43.04]	[421.3]	[3.914]	[53.56]	[3.303]	[31.58]	[3.470]	[87.35]
Land Suitability	0.000281	0.000193	1.02e-05	1.02e-05	0.000895	0.000993	0.652	0.358	-0.136	-0.142	-0.178	-0.122	-0.210	-0.175
	[0.00167]	[0.00171]	[2.15e-05]	[2.03e-05]	[0.000743]	[0.000761]	[0.519]	[0.742]	[0.119]	[0.170]	[0.114]	[0.148]	[0.135]	[0.218]
Share of Carboniferous Area	0.00941	0.00916	3.10e-06	3.19e-06	0.00344	0.00371	4.849^{***}	4.034	-0.0917	-0.0418	-0.165	-0.203	-0.460	-0.426
	[0.00713]	[0.00706]	[6.13e-05]	[8.06e-05]	[0.00347]	[0.00352]	[1.539]	[2.573]	[0.243]	[0.336]	[0.269]	[0.289]	[0.323]	[0.461]
Border Department	-0.000910	-0.000824	-5.68e-05	-5.69e-05	-0.000471	-0.000567	0.367	0.653	-0.0697	-0.0927	-0.0918	-0.0866	-0.0416	-0.00553
	[0.00102]	[0.00107]	[4.02e-05]	[3.61e-05]	[0.000349]	[0.000429]	[0.462]	[0.798]	[0.0645]	[0.101]	[0.0601]	[0.0815]	[0.0628]	[0.128]
Maritime Department	-0.00165^{*}	-0.00138	3.98e-05	3.97e-05	1.69e-05	-0.000989*	-0.126	0.791	-0.100^{*}	-0.234	-0.120^{**}	-0.227^{**}	-0.0308	-0.194
	[0.000853]	[0.00141]	[3.90e-05]	[5.31e-05]	[0.000476]	[0.000543]	[0.402]	[1.119]	[0.0544]	[0.154]	[0.0554]	[0.114]	[0.0647]	[0.255]
Deviation from Summer Rainfall in 1832	0.000848	0.000582	5.19e-05	5.20e-05	0.000512	0.000580	0.510^{*}	-0.378	0.0333	0.134	0.00890	0.0761	0.000760	0.105
(Baseline Years (t-1)-(t-25))	[0.000577]	[0.00108]	[4.58e-05]	[4.39e-05]	[0.000372]	[0.000458]	[0.283]	[0.869]	[0.0379]	[0.107]	[0.0425]	[0.0733]	[0.0488]	[0.163]
GDP per capita 1840	0.000593	-0.000314	6.28e-05	6.32e-05	-0.000184	0.000900	1.701**	-1.325	0.334***	0.809**	0.397***	0.652^{***}	0.257***	0.687
	[0.00146]	[0.00306]	[6.17e-05]	[0.000166]	[0.000931]	[0.00132]	[0.676]	[2.454]	[0.0979]	[0.355]	[0.0804]	[0.222]	[0.0818]	[0.607]
Adjusted B2	0.012		0.011		0.007		0.034		0.240		0.997		0.194	
Observations	355	355	355	355	355	355	355	355	181	181	167	167	144	144
Observations	000	000	000	000	000	000	000	000	101	101	101	101	111	111
				First Stage	e: the instrum	nented stage is S	hare of Cho	olera Death	s in Popula	tion 1832				
C		0.00010*		0.00010*		0.00010*		0.00010*		0.000.40		0.0115*		0.00570
Summer Temperature 1832		-0.00910*		-0.00910*		-0.00910*		-0.00910*		-0.00940		-0.0115"		-0.00570
		[0.00460]		[0.00480]		[0.00480]		[0.00480]		[0.00003]		[0.00087]		[0.00050]
1st stage F-stat		3.590		3.590		3.590		3.590		2.465		2.781		0.805
					D	115. (1.	1 1							
	N. 1	V. (NT 1	W. 1 D 1	N L f	duced Form: the	dependent	variable is		A		m		
	Number of V	Nater-Powered	ater-Powered Number of Wind-Powered Number of Steam-Powered					ber of		Avera	ge Wage in	Textile Se	ctor of	
		Eng	gines Per Wor	ker in Textile S	ector		rextile	WORKERS	Male V	vorkers	remale	WORKERS	Child	WORKERS
Summer Temperature 1832		-0.000270		-0.000469		0.00194		-4 037		0.570*		0 443*		0.337
Summer remperature 1002		[0.00426]		[0.000198]		[0.00178]		[2.666]		[0.331]		[0.262]		[0.280]
		[0.00420]		[0.000130]		[0.00170]		[2.000]		[0.001]		[0.202]		[0.209]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each arrondissement in 1832 to the number of machines in the textile industry as well as the number of textile industry workers and their wages (for men, women and children) in 1839-47. Geographic controls include land suitability, share of carboniferous area and dummies for border and maritime arrondissements. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, **p < 0.05, *p < 0.1.

Table E.9: The Effects of the Cholera i	1854 on the Textile Industr	y in 1860-65
---	-----------------------------	--------------

	(1)	(9)	(2)	(4)	(5)	(6)	(7)	(0)	(0)	(10)	(11)	(19)	(12)	(14)
	(1)	(2)	(3)	(4) 901 0	(0)	(0)	(1)	(0)	(9)	(10)	(11)	(12)	(15)	(14)
	Horea Dor	Horse Power of Water Horse Power of Wind Horse Power of Steam			OL5 Nu	25L5	Average Wage in Tertile Sector of							
	noise i ov	Powered E	water Horse Power of Wind Horse Power of Steam		Tortil	Workers	Mala Washawa		Errala Washang		Child Workers			
		I owered E	ngmes i er v	vorker in re	xtile Sector		Textin	e workers	Male	WOLKEIS	remale	WOIKEIS	Ciniu	WOIKEIS
Share of Cholera Deaths in Population 1854	0.0766	-0.912	-0.000574	-0.00416	-0.322***	-1 141	1 412	-157.0*	-4 941***	-8 972	-4 710**	-22.83	-9 699**	4 471
Share of Cholera Deaths in Population 1004	[0 447]	[3 698]	[0.000553]	[0.00419]	[0 113]	[0.770]	[16 01]	[84 01]	[1 486]	[13.05]	[2.018]	[20.72]	[4 030]	[20.06]
Land Suitability	-0.0375	-0.0318	1.62e-06	2.23e-05	0.00501	0.00973	0.282	1.195*	-0.117	-0.0982	-0.235***	-0.148	-0.156	-0.213
	[0.0382]	[0.0344]	[4.09e-06]	[2.52e-05]	[0.00578]	[0.00727]	[0.469]	[0.613]	[0 101]	[0 117]	[0.0833]	[0 119]	[0 204]	[0.200]
Share of Carboniferous Area	-0.0750	-0.0775	-2.49e-05	-3.40e-05	0.0294	0.0274	1.833	1.431	-0.298	-0.304	-0.256	-0.234	-0.822**	-0.764**
	[0.0695]	[0.0700]	[2.56e-05]	[3.66e-05]	[0.0185]	[0.0186]	[1.284]	[1.378]	[0.259]	[0.250]	[0.240]	[0.250]	[0.336]	[0.377]
Border Department	-0.00690	-0.00289	-4.58e-06	9.99e-06	0.00930**	0.0126**	0.526^{*}	1.169**	0.0139	0.0323	-0.0553	0.0328	-0.0327	-0.0701
	[0.0141]	[0.0209]	[5.15e-06]	[1.49e-05]	[0.00405]	[0.00511]	[0.273]	[0.519]	[0.0668]	[0.0766]	[0.0651]	[0.106]	[0.0805]	[0.0971]
Maritime Department	-0.0111	-0.0118	-3.84e-06	-6.60e-06	0.00546	0.00483	0.363	0.242	-0.0214	-0.0194	-0.0505	-0.0413	-0.0767	-0.0566
	[0.0128]	[0.0126]	[4.96e-06]	[9.11e-06]	[0.00388]	[0.00385]	[0.292]	[0.317]	[0.0573]	[0.0551]	[0.0637]	[0.0625]	[0.0556]	[0.0651]
Deviation from Summer Rainfall in 1854	-0.00304	-0.000269	1.53e-05	2.53e-05	0.00471*	0.00700**	0.0425	0.486	0.0915**	0.0995**	0.103**	0.160*	0.0789*	0.0834*
(Baseline Years (t-1)-(t-25))	[0.0117]	[0.0166]	[1.45e-05]	[2.37e-05]	[0.00248]	[0.00321]	[0.207]	[0.353]	[0.0453]	[0.0491]	[0.0497]	[0.0872]	[0.0425]	[0.0506]
GDP per capita 1860	-0.0337*	-0.0350*	7.23e-06	2.59e-06	0.0117	0.0107	0.253	0.0480	0.433***	0.423***	0.468***	0.387***	0.366***	0.339***
	[0.0201]	[0.0200]	[8.35e-06]	[1.23e-05]	[0.00830]	[0.00864]	[0.405]	[0.604]	[0.0638]	[0.0684]	[0.0692]	[0.123]	[0.0671]	[0.0893]
Adjusted B2	0.004		-0.008		0.019		-0.005		0.319		0.364		0.383	
Observations	357	357	357	357	357	357	357	357	151	151	122	122	83	83
	First Stage: the instrumented stage is Share of Cholera Deaths in Population 1854													
Summer Temperature 1854		0.0177***		0.0177***		0.0177***		0.0177***		0.0914***		0.0200*		0 0902**
Summer remperature 1894		[0.00675]		[0.00675]		[0.00675]		[0.00675]		[0.00810]		[0.0209		[0.0203
		[0:00010]		[0.00010]		[0.00010]		[0.00010]		[0.00010]		[0.0100]		[0.00500]
1st stage F-stat		6.885		6.885		6.885		6.885		6.995		3.905		4.744
						Reduced For	m: the de	ependent va	riable is					
	Horse Pov	ver of Water-	er of Water- Horse Power of Wind- Horse Power of Steam-			Number of Av			Avera	age Wage in Textile Sector of				
		Powered E	Ingines Per V	Vorker in Te	xtile Sector		Textile	e Workers	Male V	Workers	Female V	Workers	Child V	Norkers
C . The sector 1054		0.01/0		7.97.05		0.0000		0 700**		0.100		0.477		0.0000
Summer remperature 1854		-0.0162		-1.37e-05		-0.0202		-2.182**		-0.192		-0.477		0.0909
		[6100.0]		[1.27e-05]		[0.0140]		[1.348]		[0.209]		[0.407]		[0.400]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each arrondissement in 1854 to the horse power of machines in the textile industry as well as the number of textile industry workers and their wages (for men, women and children) in 1860-65. Geographic controls for include their land suitability, their share of carboniferous area and dummies for arrondissements located in border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

Table E.10: The Effects of the Cholera in 1849 & 1854 on the Number and Wage of Agricultural Day Laborers in 1852 & 1862

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Numb	er of Day I	Jaborers			Average	e Wage of Day	Laborers	
Share of Cholera Deaths in Population	-15.56*** [5 449]	-12.39** [5 467]	-11.32** [5 452]	-43.19*** [14 68]	-38.86*** [14-63]	0.0072 [0.005]	0.0051 [0.006]	0.0039	0.0353**	0.0304* [0.018]
Deviation from Summer Rainfall in Year (t) (Baseline Years (t-1)-(t-25)) Lond Suitability * Year Eixed Effects	[0.2.0]	0.125** [0.0626]	0.110* [0.0653]	0.162^{*} [0.0844] 0.027	0.148* [0.0784]	[0.000]	0.00003 [7.71e-05]	0.00005 [8.32e-05]	0.0000001 [8.35e-05]	0.00001 [8.09e-05]
Land Suitability Fear Fixed Ellects		[0.0676]	[0.0643]	[0.027]	[0.021]		-0.00010 [7.17e-05]	-0.00009 [6.58e-05]	-0.00013 [8.15e-05]	-0.00012 [7.71e-05]
Border Department * Year Fixed Effects		-0.035 [0.0341]	-0.030 [0.0331]	0.0004 [0.0444]	-0.001 [0.0412]		0.00003 [3.78e-05]	0.00003 [3.70e-05]	-0.000002 [4.26e-05]	-0.000001 [4.03e-05]
Maritime Department * Year Fixed Effects		0.022	0.023	0.007	0.010		-4.63e-05*** [1.47e-05]	-4.79e-05*** [1.42e-05]	-3.25e-05*	-3.55e-05*
Share of Carboniferous Area \ast Year Fixed Effects		0.057 [0.114]	0.039	0.071 [0.116]	0.058 [0.111]		-0.0002* [0.0001]	-0.0002* [0.0001]	-0.0002* [0.0001]	-0.0002* [0.0001]
GDP per capita		L J	0.529 [0.324]		0.345 [0.324]			-0.0006 [0.0004]		-0.0004 [0.0004]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2 Moren I	0.924	0.934	0.936	0.011	0.011	0.464	0.576	0.593	0.019	0.019
Moran I n value	-0.011	-0.011	-0.011	-0.011	-0.011	-0.015	-0.012	-0.012	-0.012	-0.012
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		Fi	rst stage: 1	the instrume	ented variab	le is Shai	re of Cholera E	eaths in Popul	ation	
			0							
Summer Temperature				-0.180*** [0.0471]	-0.179*** [0.0485]				-0.180*** [0.0471]	-0.179*** [0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577
		Reduced Form: the dependent variable is								
		Numb	er of Day I	Laborers			Average	e Wage of Day	Laborers	
Summer Temperature				7.780***	6.947***				-0.00637**	-0.00543*
				[2.428]	[2.596]				[0.00315]	[0.00324]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number and wage of agricultural day laborers. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table E.11: The Effects of the Cholera in 1849 & 1854 on the Number of Mechanized Ploughsand Animal-Powered Threshing Machines per Day Laborer in 1852 & 1862

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Mechanized	Ploughs pe	r Day Labo	rer	Anim	al-Powered T	hreshing Ma	chines per Da	ay Laborer
	0 - 0044		-	222 0444	200 0444	10.00*	10.00***			
Share of Cholera Deaths in Population	67.29**	55.09 [≁]	58.35*	323.6***	369.9***	18.90*	18.32**	18.58**	2.708	3.002
	[28.36]	[29.67]	[29.65]	[117.4]	[135.1]	[9.529]	[8.501]	[8.516]	[7.922]	[7.940]
Deviation from Summer Rainfall in Year (t)		0.118	0.0718	-0.205	-0.359		-0.162***	-0.166***	-0.143***	-0.144***
(Baseline Years (t-1)-(t-25))		[0.516]	[0.543]	[0.643]	[0.696]		[0.0457]	[0.0450]	[0.0504]	[0.0501]
Land Suitability * Year Fixed Effects		-0.519	-0.53	-0.796*	-0.861*		0.0247*	0.0239	0.0408**	0.0404**
		[0.435]	[0.445]	[0.477]	[0.517]		[0.0145]	[0.0148]	[0.0187]	[0.0192]
Border Department * Year Fixed Effects		0.0973	0.111	-0.209	-0.223		-0.0342*	-0.0331	-0.0163	-0.0164
		[0.250]	[0.245]	[0.341]	[0.374]		[0.0205]	[0.0205]	[0.0235]	[0.0235]
Maritime Department * Year Fixed Effects		-0.398***	-0.394***	-0.276*	-0.248		-0.0331***	-0.0327***	-0.0402***	-0.0400***
		[0.106]	[0.105]	[0.154]	[0.170]		[0.0109]	[0.0109]	[0.0119]	[0.0119]
Share of Carboniferous Area * Year Fixed Effects		-0.876	-0.929	-0.998	-1.14		-0.0309	-0.0351	-0.0237	-0.0246
		[0.803]	[0.821]	[0.843]	[0.925]		[0.0304]	[0.0301]	[0.0333]	[0.0340]
GDP per capita			1.598		3.683			0.128		0.0234
			[2.543]		[2.667]			[0.167]		[0.189]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.615	0.672	0.674			0.354	0.488	0.49		
Moran I	-0.012	-0.011	-0.011	-0.011	-0.012	-0.011	-0.011	-0.011	-0.011	-0.011
Moran I p-value	0.209	0.238	0.236	0.218	0.216	0.243	0.24	0.24	0.254	0.253
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		Fir	st stage: th	e instrumen	ted variable	is Share	of Cholera I	Deaths in Pop	ulation	
Summer Temperature				-0.180^{***}	-0.179^{***}				-0.180^{***}	-0.179^{***}
				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577
				Doduor	d Forme the	donond	ont reviable :			
		Mechanized	Ploughe po	r Day Labo	ror	Δnim	al-Powered T	broshing Ma	hines per D	w Laborer
		meenamzeu	i iougns pe	т Бау Паро	101	Amilia	ai-i Owered 1	mesning Mac	mics per Da	iy Laborel
Summer Temperature				-58 29***	-66 12***				-0.488	-0.537
Summer rempetature				[16 49]	[18 28]				[1.531]	[1.549]
				[10.10]	[10.20]				[1:001]	[1.040]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of mechanized ploughs and animal-powered threshing machines per day laborer. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table E.12: The Effects of the Cholera in 1849 & 1854 on the Number of Steam-Powered Threshing Machines per Day Laborer in 1852 & 1862

	(1)	(2)	(3)	(4)	(5)				
	OLS	OLS	OLS	2SLS	2SLS				
	Stear	m-Powered Th	reshing Machin	nes per Day	Laborer				
Share of Cholera Deaths in Population	-0.0137	-0.0422	-0.0420	0.00499	0.0100				
	[0.0425]	[0.0436]	[0.0402]	[0.204]	[0.209]				
Deviation from Summer Rainfall in Year (t)		-0.0003	-0.0003	-0.0003	-0.0003				
(Baseline Years (t-1)-(t-25))		[0.0007]	[0.0006]	[0.0007]	[0.0006]				
Land Suitability * Year Fixed Effects		0.000540^{***}	0.000540^{***}	0.000492^{*}	0.000485^{*}				
		[0.000140]	[0.000145]	[0.000264]	[0.000282]				
Border Department * Year Fixed Effects		0.0001	0.0001	0.00003	0.00003				
		[0.000275]	[0.000269]	[0.000380]	[0.000385]				
Maritime Department * Year Fixed Effects		-0.0003	-0.0003	-0.0003	-0.0003				
		[0.000258]	[0.000256]	[0.000249]	[0.000240]				
Share of Carboniferous Area * Year Fixed Effects		-0.0003	-0.0003	-0.0003	-0.0004				
		[0.000871]	[0.000950]	[0.000880]	[0.000985]				
GDP per capita			0.0001		0.0004				
			[0.0043]		[0.0043]				
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes				
Within R2	0.202	0.232	0.232						
Moran I	-0.011	-0.011	-0.011	-0.011	-0.011				
Moran I p-value	0.243	0.240	0.240	0.254	0.253				
Mean of Dependent Variable	0.002	0.002	0.002	0.002	0.002				
Clusters	85	85	85	85	85				
Observations	170	170	170	170	170				
First stage: the instrumented vari	able is Sh	are of Cholera	Deaths in Pop	ulation					
~					dutut				
Summer Temperature				-0.180***	-0.179***				
				[0.0471]	[0.0485]				
1st stage F-stat				14.602	13.577				
Reduced Form: the dependent variable is Steam-Powered Threshing Machines per Day Laborer									
				0.000005-	0.004				
Summer Temperature				-0.000899	-0.00179				
				[0.0376]	[0.0383]				

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of steam-powered threshing machines per day laborer. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01,** p < 0.05,* p < 0.1.
Table E.13: The Effects of the Cholera in 1849 & 1854 on the Average Rent of 1^{st} , 2^{nd} and 3^{rd} Class Arable Land 1852 & 1862

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS	ÒLŚ	ÒLŚ	OLS	2SLS	2SLS
		Rent A	Arable Land	1st Class			Rent A	rable Land	l 2nd Class			Rent A	rable Land	3rd Class	
Share of Cholera Deaths in Population	0.627	1.372	1.955	-1.149	2.489	0.901	1.065	1.471	0.0634	2.669	0.418	0.589	1.002	-1.811	0.707
	[1.675]	[1.695]	[1.687]	[4.842]	[4.941]	[1.726]	[1.571]	[1.603]	[4.073]	[3.860]	[2.413]	[2.398]	[2.414]	[5.832]	[5.669]
Deviation from Summer Rainfall in Year (t)		0.0115	0.00320	0.0145	0.00246		0.0417**	0.0359*	0.0429**	0.0343*		0.0494**	0.0436*	0.0523**	0.0440*
(Baseline Years (t-1)-(t-25))		[0.0226]	[0.0244]	[0.0231]	[0.0246]		[0.0192]	[0.0197]	[0.0198]	[0.0204]		[0.0243]	[0.0248]	[0.0259]	[0.0260]
Land Suitability ' Year Fixed Effects		-0.0280	-0.0299	-0.0254	-0.0305		-0.0140	-0.0159	-0.0135	-0.0172		-0.00271	-0.00406	-0.000239	-0.00374
Border Department * Vear Fixed Effects		-0.00769	-0.00530	-0.00481	-0.00588		0.00559	[0.0140] 0.00725	[0.0143] 0.00673	[0.0134] 0.00597		-2 120-06	0.00168	$\begin{bmatrix} 0.0133 \end{bmatrix}$ 0.00274	$\begin{bmatrix} 0.0142 \end{bmatrix}$
Border Department Tear Tixed Encets		[0.0010]	[0 00944]	[0.00920]	[0.00946]		[0.00774]	[0.00824]	[0.00827]	[0.00825]		[0.00918]	[0.00957]	[0 0107]	[0.0103]
Maritime Department * Year Fixed Effects		-0.00175	-0.000984	-0.00290	-0.000734		0.00335	0.00389	0.00290	0.00445		-0.000313	0.000231	-0.00141	9.37e-05
I I I I I I I I I I I I I I I I I I I		[0.00942]	[0.00899]	[0.00970]	[0.00886]		[0.00704]	[0.00688]	[0.00716]	[0.00701]		[0.00921]	[0.00913]	[0.00986]	[0.00963]
Share of Carboniferous Area * Year Fixed Effects		-0.0445	-0.0541	-0.0433	-0.0544		-0.0212	-0.0279	-0.0207	-0.0287		0.00192	-0.00487	0.00302	-0.00467
		[0.0377]	[0.0396]	[0.0363]	[0.0384]		[0.0296]	[0.0286]	[0.0284]	[0.0272]		[0.0331]	[0.0318]	[0.0316]	[0.0300]
GDP per capita			0.286^{*}		0.290*			0.200**		0.208**			0.203*		0.201*
			[0.169]		[0.173]			[0.0905]		[0.0961]			[0.113]		[0.115]
Department & Vear Fixed Effects	Voe	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc
Within B2	0.774	0.783	0 791	165	165	0.870	0.887	0.802	165	165	0.865	0.872	0.876	165	165
Moran I	-0.011	-0.011	-0.012	-0.011	-0.012	-0.011	-0.011	-0.010	-0.011	-0.010	-0.011	-0.011	-0.011	-0.011	-0.011
Moran I p-value	0.229	0.231	0.222	0.230	0.222	0.275	0.273	0.276	0.272	0.277	0.267	0.263	0.262	0.261	0.262
Clusters	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170
				I	First stage:	the instru	umented va	riable is Sh	are of Chole	ra Deaths i	n Popula	tion			
Commence There are trans				0.100***	0.170***				0.100***	0.170***				0 100***	0.170***
Summer Temperature				-0.180****	-0.179****				-0.180****	-0.179****				-0.180****	-0.179
				[0.0471]	[0.0485]				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14 602	13577				14 602	13577				14 602	13 577
The seafer plan				11.002	10.011				11.002	10.011				11.002	10.011
						R	educed For	n: the depe	endent varia	ble is					
		Rent A	Arable Land	1st Class			Rent A	rable Land	l 2nd Class			Rent A	rable Land	3rd Class	
Summer Temperature				0.207	-0.445				-0.0114	-0.477				0.326	-0.126
				[0.885]	[0.913]				[0.753]	[0.745]				[1.043]	[1.051]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the average rent of 1^{st} , 2^{nd} and 3^{rd} class arable land. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table E.14: The Effects of the Cholera in 1849 & 1854 on the Average Rent of 1^{st} , 2^{nd} and 3^{rd} Class Meadows 1852 & 1862

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Rent	t Meadow 1	lst Class			Ren	t Meadow 2	nd Class			Rent	Meadow 3	3rd Class	
Share of Cholera Deaths in Population	-1.086	-0.187	0.391	5.435	9.795^{*}	0.511	0.813	0.999	8.037	9.935^{*}	0.348	1.953	2.076	-1.417	-0.913
	[1.600]	[1.835]	[1.764]	[4.764]	[5.166]	[2.102]	[2.475]	[2.437]	[5.447]	[5.605]	[2.337]	[2.329]	[2.243]	[9.774]	[9.396]
Deviation from Summer Rainfall in Year (t)		-0.0300	-0.0382^{*}	-0.0368	-0.0512^{**}		-0.0267	-0.0293	-0.0354	-0.0417		0.00749	0.00575	0.0116	0.00988
(Baseline Years (t-1)-(t-25))		[0.0223]	[0.0201]	[0.0232]	[0.0252]		[0.0256]	[0.0243]	[0.0278]	[0.0282]		[0.0356]	[0.0321]	[0.0414]	[0.0376]
Land Suitability * Year Fixed Effects		-0.0146	-0.0165	-0.0204	-0.0264*		-0.0127	-0.0133	-0.0202	-0.0228*		-0.0281	-0.0285	-0.0247	-0.0254
		[0.0143]	[0.0139]	[0.0135]	[0.0139]		[0.0140]	[0.0137]	[0.0140]	[0.0136]		[0.0183]	[0.0181]	[0.0177]	[0.0165]
Border Department * Year Fixed Effects		-0.0144	-0.0120	-0.0208*	-0.0221		-0.00994	-0.00918	-0.0182	-0.0187		-0.00375	-0.00325	9.35e-05	-5.42e-05
		[0.00923]	[0.00929]	[0.0114]	[0.0134]		[0.00918]	[0.00974]	[0.0122]	[0.0130]		[0.0116]	[0.0122]	[0.0157]	[0.0155]
Maritime Department * Year Fixed Effects		-0.00223	-0.00146	0.000338	0.00294		-0.00959	-0.00934	-0.00629	-0.00516		0.0114	0.0116	0.00990	0.0102
		[0.00865]	[0.00794]	[0.00914]	[0.00901]		[0.0113]	[0.0115]	[0.0115]	[0.0121]		[0.0124]	[0.0123]	[0.0139]	[0.0136]
Share of Carboniferous Area * Year Fixed Effects		0.00665	-0.00289	0.00408	-0.00924		-0.00912	-0.0122	-0.0124	-0.0182		0.0870	0.0850	0.0885	0.0870
		[0.0277]	[0.0274]	[0.0274]	[0.0291]		[0.0305]	[0.0296]	[0.0310]	[0.0315]		[0.0873]	[0.0868]	[0.0869]	[0.0873]
GDP per capita			0.284***		0.347***			0.0913		0.151			0.0601	. ,	0.0401
1 1			[0.0838]		[0.117]			[0.133]		[0.156]			[0.196]		[0.181]
					L J					L J					
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.782	0.791	0.804			0.773	0.780	0.781			0.531	0.561	0.561		
Moran I	-0.011	-0.011	-0.011	-0.011	-0.011	-0.013	-0.013	-0.013	-0.013	-0.013	-0.011	-0.012	-0.012	-0.012	-0.012
Moran I p-value	0.240	0.226	0.224	0.225	0.223	0.160	0.163	0.162	0.170	0.168	0.221	0.208	0.205	0.207	0.204
Clusters	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170
				F	'irst stage: t	he instru	imented va	riable is Sha	are of Chole	ra Deaths i	n Populat	ion			
					0						.1				
Summer Temperature				-0.180***	-0.179^{***}				-0.180***	-0.179^{***}				-0.180***	-0.179^{***}
I I I I I I I I I I I I I I I I I I I				[0.0471]	[0, 0485]				[0.0471]	[0, 0485]				[0.0471]	[0, 0485]
				[010 11 1]	[010 100]				[010 11 1]	[010 100]				[010 11 1]	[0:0100]
1st stage F-stat				14.602	13.577				14.602	13.577				14.602	13.577
		Rent	t Meadow 1	lst Class			Ren	t Meadow 2	nd Class			Rent	Meadow	Brd Class	
9				0.070	1 751*				1 440	1 776*				0.055	0.169
Summer remperature				-0.979	-1.701^{+}				-1.448 [1.042]	-1.//0 ⁺				0.200	0.103
				0.905	0.897				1.045	1.038				1.791	1.110

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the average rent of 1^{st} , 2^{nd} and 3^{rd} class meadows. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.05, * p < 0.1.

Table E.15: The Effects of the Cholera in 1849 & 1854 on the Average Rent of 1^{st} , 2^{nd} and 3^{rd} Vineyard 1852 & 1862

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(0)	(10)	(11)	(12)	(13)	(14)	(15)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	010	Rent	Vinevard	1st Class	2020	010	Rent	Vinevard	2nd Class	10110	010	Rent	Vinevard	3rd Class	10110
Share of Cholera Deaths in Population	1.090	5.325	4.293	14.94	8.964	4.375	5.368	4.513	30.88	27.54	3.006	6.194	5.154	22.68	17.29
	[4.904]	[5.534]	[5.125]	[29.61]	[29.51]	[4.119]	[4.681]	[4.171]	[23.60]	[21.71]	[4.562]	[5.233]	[4.815]	[25.59]	[24.94]
Deviation from Summer Rainfall in Year (t)		0.114	0.129	0.103	0.123		0.123^{*}	0.135^{*}	0.0920	0.103		0.121	0.136^{*}	0.102	0.120
(Baseline Years (t-1)-(t-25))		[0.0853]	[0.0904]	[0.0972]	[0.102]		[0.0705]	[0.0734]	[0.0914]	[0.0915]		[0.0749]	[0.0774]	[0.0885]	[0.0890]
Land Suitability * Year Fixed Effects		-0.186	-0.182	-0.195	-0.187		-0.0510	-0.0482	-0.0772	-0.0726		-0.153	-0.149	-0.170	-0.162
		[0.154]	[0.152]	[0.151]	[0.145]		[0.0599]	[0.0565]	[0.0758]	[0.0712]		[0.116]	[0.113]	[0.117]	[0.113]
Border Department * Year Fixed Effects		-0.0222	-0.0264	-0.0332	-0.0314		0.0104	0.00693	-0.0187	-0.0177		-0.00958	-0.0138	-0.0284	-0.0268
		[0.0395]	[0.0396]	[0.0373]	[0.0358]		[0.0179]	[0.0171]	[0.0370]	[0.0351]		[0.0330]	[0.0326]	[0.0378]	[0.0357]
Maritime Department * Year Fixed Effects		0.0148	0.0135	0.0192	0.0156		0.0243	0.0232	0.0360	0.0340		0.0123	0.0109	0.0198	0.0166
Chang of Caphoniforous Area * Vean Fired Effects		0.275	0.259	[0.0442]	0.261*		0.177	0.162*	0.190*	0.170*		[0.0373]	0.0309	0.201*	[0.0372]
Share of Carbonnerous Area · Tear Fixed Enects		-0.373	-0.558	-0.560*	-0.301		-0.177	-0.105	-0.169	-0.179		-0.295	-0.270	-0.501	-0.264
CDP per capita		[0.226]	-0.507	[0.221]	-0.476		[0.107]	-0.420	[0.112]	-0.266		[0.176]	-0.511	[0.170]	-0.430
GD1 per capita			[0.541]		[0.510]			=0.420 [0.463]		-0.200 [0.416]			[0.502]		[0 470]
			[0.011]		[0.010]			[0.100]		[0.110]			[0.002]		[0.110]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Within R2	0.208	0.285	0.290			0.276	0.304	0.310			0.300	0.366	0.373		
Moran I	-0.010	-0.010	-0.010	-0.010	-0.010	-0.012	-0.012	-0.012	-0.012	-0.012	-0.011	-0.011	-0.011	-0.011	-0.011
Moran I p-value	0.296	0.294	0.290	0.288	0.279	0.229	0.213	0.219	0.213	0.219	0.243	0.252	0.244	0.252	0.245
Clusters	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170
				F	'irst stage: t	he instru	mented va	riable is S	hare of Cho	olera Deaths	in Popul	ation			
Summer Temperature				-0.180***	-0.179***				-0.180***	-0.179***				-0.180***	-0.179^{***}
				[0.0471]	[0.0485]				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14 602	13 577				14 602	13577				14 602	13577
100 00080 1 0000				11.002	10.011				11.002	10:011				111002	10:011
						Re	duced For	m: the dep	pendent var	iable is					
		Rent	Vineyard	1st Class			Rent	Vineyard	2nd Class			Rent	Vineyard	3rd Class	
				0.001	1 600				F F 00	4.004				1.000	9.001
Summer Temperature				-2.691 [5 502]	-1.602				-5.563 [4.979]	-4.924 [2.025]				-4.086	-3.091
				[0.002]	[0.400]				[4.278]	[3.935]				[4.784]	[4.007]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the average rent of 1^{st} , 2^{nd} and 3^{rd} class vineyards. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

Table E.16: The Effects of the Cholera in 1849 & 1854 on the Average Value of Harvested Wheat, Millet and Rye 1852 & 1862

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(0)	(10)	(11)	(12)	(13)	(14)	(15)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	010	Average V	alue of Har	vested Whe	at	010	Average	Value of Hai	vested Mille	et	010	Average	Value of Ha	arvested Ry	e _5115
Share of Cholera Deaths in Population	-1.019	-1.019	-0.769	-6.045**	-4.842**	0.767	1.349	1.709	18.56	22.54	-2.117	-2.749	-1.679	-16.19*	-10.31*
	[0.629]	[0.665]	[0.623]	[2.429]	[2.299]	[2.967]	[3.836]	[3.198]	[16.83]	[17.28]	[1.916]	[2.201]	[1.847]	[9.141]	[6.018]
Deviation from Summer Rainfall in Year (t)		-0.00328	-0.00685	0.00277	-0.00122		0.00940	0.00426	-0.0113	-0.0245		0.0547	0.0394	0.0708	0.0513
(Baseline Years (t-1)-(t-25))		[0.00923]	[0.00921]	[0.0129]	[0.0117]		[0.0381]	[0.0488]	[0.0460]	[0.0633]		[0.0484]	[0.0404]	[0.0588]	[0.0449]
Land Suitability * Year Fixed Effects		0.00450	0.00369	0.00968	0.00801		0.0123	0.0111	-0.00546	-0.0110		0.0214	0.0179	0.0353	0.0271
		[0.00620]	[0.00531]	[0.00667]	[0.00587]		[0.0193]	[0.0198]	[0.0221]	[0.0243]		[0.0206]	[0.0164]	[0.0263]	[0.0199]
Border Department * Year Fixed Effects		-0.000449	0.000576	0.00529	0.00493		-0.00245	-0.000972	-0.0221	-0.0233		0.0140	0.0183*	0.0293	0.0276^{*}
		[0.00529]	[0.00528]	[0.00719]	[0.00651]		[0.0128]	[0.0131]	[0.0301]	[0.0321]		[0.00960]	[0.0103]	[0.0190]	[0.0153]
Maritime Department * Year Fixed Effects		0.00293	0.00326	0.000638	0.00136		0.0362	0.0367	0.0441	0.0464		0.0112	0.0126	0.00510	0.00860
		[0.00356]	[0.00359]	[0.00350]	[0.00343]		[0.0280]	[0.0273]	[0.0315]	[0.0304]		[0.00878]	[0.00825]	[0.0119]	[0.00986]
Share of Carboniferous Area * Year Fixed Effects		-0.00669	-0.0108	-0.00439	-0.00806		-0.151	-0.157	-0.159	-0.171		-0.00751	-0.0251	-0.00137	-0.0193
CDD men conita		[0.0149]	[0.0133]	[0.0144]	[0.0129]		[0.185]	[0.181]	[0.182]	[0.179]		[0.0309]	0.526	[0.0333]	0.469
GDP per capita			[0.0410]		[0.0428]			0.177		0.317			0.520		0.408
			[0.0410]		[0.0428]			[0.456]		[0.400]			[0.526]		[0.295]
Department- & Year Fixed Efffects	Yes	Yes	Ves	Yes	Yes	Yes	Ves	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.942	0.944	0.948	100	100	0.228	0.286	0.288	100	100	0.447	0.464	0.502	100	100
Moran I	-0.012	-0.012	-0.012	-0.012	-0.012	-0.010	-0.010	-0.010	-0.010	-0.010	-0.009	-0.009	-0.009	-0.010	-0.009
Moran I p-value	0.222	0.215	0.217	0.222	0.220	0.302	0.304	0.301	0.300	0.295	0.310	0.306	0.303	0.296	0.296
Clusters	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170
				F	first stage: 1	the instru	umented va	riable is Sha	are of Chole	ra Deaths ii	n Popula	tion			
					not stage.		mened ve			la Deaths h	ii i opula				
Summer Temperature				-0.180***	-0.179***				-0.180***	-0.179***				-0.180***	-0.179***
1				[0.0471]	[0.0485]				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577				14.602	13.577
						_									
						Re	educed For	m: the depe	ndent varial	ole is					
		Average V	alue of Har	vested Whe	at		Average	Value of Har	vested Mull	et		Average	Value of Ha	arvested Ry	e
Summer Temperature				1 090***	0.866**				3 3/3	4 020				2.015*	1 844*
Summer remperature				[0 332]	[0 353]				-3.545 [3 117]	-4.029 [3.004]				[1, 550]	[1.044]
				[0.002]	[0.000]				[0.117]	[0.094]				[1.000]	[1.009]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the average value of harvested wheat, millet and rye. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

Table E.17: The Effects of the Cholera in 1849 & 1854 on the Average Value of Harvested Oats and Corn 1852 & 1862

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Average Value of Harvested OatsAverage Value of Harvested CornShare of Cholera Deaths in Population0.853 [1.850]0.800 [2.108]1.04 [2.067]2.030 [6.685]3.551 [7.936]9.575 [8.460]0.364 [8.295]5.242 [9.301]1.7 [49.56]-17.88 [51.04]Deviation from Summer Rainfall in Year (t) (Baseline Years (t-1)-(t-25))0.0857 [0.0513]0.0857 [0.0553]0.0575][0.176] [0.0513][0.0536][0.0533] [0.0565]0.0672 [0.0476]0.239* [0.0274]0.228** (0.228*** [0.0476]0.228** [0.0477]0.228*** [0.0477]0.228*** [0.0477]0.228*** [0.0555]0.228*** (0.228***0.228*** [0.0477]0.228*** [0.0477]0.228*** [0.0478]0.228*** [0.0477]0.228*** [0.0477]0.228*** [0.0477]0.228*** [0.0477]0.228*** [0.0477]0.228*** [0.0477]0.228*** [0.0477]0.0467 [0.0692]0.0672 [0.0477]0.0467 [0.0672]0.02924* [0.0473]0.0467 [0.0673]0.0467 [0.0673]0.02924* [0.0471]0.0467 [0.0673]0.0460 [0.0476]0.0555 [0.0633]0.0374 [0.0692]0.0467 [0.0663]0.07731 [0.0737]0.0660 [0.0673]0.0734 [0.0692]0.0673 [0.0673]0.0467 [0.0692]0.0661 [0.0673]0.06761 [0.0693]0.06761 [0.0693]0.0681 [0.0693]0.0384 [0.0693]0.0681 [0.0693]0.0384 [0.0693]0.0681 [0.0693]0.0681 [0.0693]0.0681 [0.0693]0.0681 [0.0693]0.0692 [0.0693]0.		OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Average	Value of Ha	arvested Oa	its		Average V	Value of H	arvested Co	orn
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Share of Cholera Deaths in Population	0.853	0.890	1.104	2.030	3.551	9.575	-0.364	5.242	18.17	-17.88
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[1.850]	[2.108]	[2.067]	[6.685]	[7.936]	[8.460]	[8.925]	[9.391]	[49.56]	[51.04]
$ \begin{array}{ c c c c c c c c c c c c c$	Deviation from Summer Rainfall in Year (t)		0.0857^{*}	0.0827	0.0844	0.0793		0.369^{**}	0.289^{*}	0.273	0.393^{*}
Land Suitability * Year Fixed Effects 0.0517 0.0510 0.0505 0.0454 0.241*** 0.224*** 0.232** 0.282*** Border Department * Year Fixed Effects 0.00734 0.00822 0.00604 0.00750 0.0479 [0.0179] [0.0179] [0.0179] [0.0179] [0.0179] [0.0179] [0.0179] [0.0170] [0.0170] [0.0170] [0.0467] [0.0653] [0.0797] [0.0693] Maritime Department * Year Fixed Effects 0.025** 0.026*** 0.026*** 0.026*** 0.027* 0.0401 [0.0463] [0.0777] [0.0797] [0.0693] Share of Carboniferous Area * Year Fixed Effects 0.0750 0.0760 [0.0709] [0.0706] [0.0666] [0.703] [0.0797] [0.6963] GDP per capita 0.105 0.121 -2.753** -2.870** [0.869] [0.869] [0.839] [0.432] [0.438] [1.432] Department- & Year Fixed Effects Yes	(Baseline Years (t-1)-(t-25))		[0.0513]	[0.0536]	[0.0533]	[0.0575]		[0.176]	[0.146]	[0.167]	[0.210]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Land Suitability * Year Fixed Effects		0.0517	0.0510	0.0505	0.0484		0.264^{***}	0.245^{**}	0.232^{*}	0.282^{***}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			[0.0545]	[0.0541]	[0.0491]	[0.0479]		[0.0924]	[0.112]	[0.120]	[0.0965]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Border Department * Year Fixed Effects		0.00734	0.00822	0.00604	0.00560		0.0785^{*}	0.101^{*}	0.0866	0.0972
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			[0.0176]	[0.0179]	[0.0119]	[0.0117]		[0.0467]	[0.0523]	[0.0844]	[0.0811]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Maritime Department * Year Fixed Effects		0.0254^{**}	0.0257^{**}	0.0260^{**}	0.0269^{***}		0.0327	0.0401	0.0460	0.0245
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			[0.0103]	[0.0103]	[0.0102]	[0.0104]		[0.0653]	[0.0737]	[0.0797]	[0.0692]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Share of Carboniferous Area * Year Fixed Effects		0.0795	0.0760	0.0790	0.0743		0.951	0.859	0.853	0.963
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			[0.0773]	[0.0760]	[0.0734]	[0.0706]		[0.696]	[0.703]	[0.696]	[0.689]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GDP per capita			0.105		0.121		-2.753**			-2.870**
Department- & Year Fixed Efffects Yes <	rr			[0.124]		[0 148]		[1 343]			$[1 \ 432]$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				[01121]		[01110]		[110 10]			[11102]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Department- & Year Fixed Efffects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Within R2	0.351	0.436	0.438			0.010	0.167	0.110		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Moran I	-0.014	-0.014	-0.014	-0.014	-0.014	-0.009	-0.009	-0.009	-0.009	-0.009
Clusters 85	Moran I p-value	0.120	0.128	0.125	0.129	0.128	0.345	0.339	0.349	0.338	0.348
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clusters	85	85	85	85	85	85	85	85	85	85
First stage: the instrumented variable is Share of Cholera Deaths in PopulationSummer Temperature -0.180^{***} $[0.0471]$ -0.180^{***} $[0.0485]$ Ist stage F-statIst stage F-statIst stage Form: the dependent variable is Average Value of Harvested OatsAverage Value of Harvested OatsAverage Value of Harvested CornSummer Temperature -0.366^{*} $[1.211]$ -3.272^{*} $[9.040]$ 3.196^{*} $[9.346]$	Observations	170	170	170	170	170	170	170	170	170	170
First stage: the instrumented variable is Share of Cholera Deaths in PopulationSummer Temperature -0.180^{***} $[0.0471]$ -0.180^{***} $[0.0471]$ -0.180^{***} $[0.0471]$ -0.180^{***} $[0.0471]$ -0.180^{***} $[0.0485]$ 1st stage F-stat14.60213.57714.60213.577Reduced Form: the dependent variable is Average Value of Harvested OatsAverage Value of Harvested CornSummer Temperature -0.366 $[1.211]$ -0.635 $[1.419]$ -3.272 $[9.040]$ 3.196 $[9.346]$											
Summer Temperature -0.180*** -0.179*** -0.180*** -0.179*** Ist stage F-stat 14.602 13.577 14.602 13.577 Reduced Form: the dependent variable is Average Value of Harvested Oats Average Value of Harvested Corn Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]			First	stage: the i	instrumente	ed variable is	Share of	Cholera D	eaths in P	opulation	
Summer Temperature -0.180^{***} -0.179^{***} -0.180^{***} -0.180^{***} -0.180^{***} -0.179^{***} 1st stage F-stat 14.602 13.577 14.602 13.577 Reduced Form: the dependent variable is Average Value of Harvested Oats Average Value of Harvested Corn Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]										-	
[0.0471] [0.0485] [0.0471] [0.0485] 1st stage F-stat 14.602 13.577 14.602 13.577 Reduced Form: the dependent variable is Average Value of Harvested Oats Average Value of Harvested Corn Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]	Summer Temperature				-0.180***	-0.179^{***}				-0.180***	-0.179^{***}
Ist stage F-stat 14.602 13.577 Reduced Form: the dependent variable is Average Value of Harvested Oats Average Value of Harvested Corn Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]					[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat 14.602 13.577 14.602 13.577 Reduced Form: the dependent variable is Average Value of Harvested Oats Average Value of Harvested Corn Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]					. ,						. ,
Reduced Form: the dependent variable is Average Value of Harvested Oats Average Value of Harvested Corn Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]	1st stage F-stat				14.602	13.577				14.602	13.577
Reduced Form: the dependent variable is Average Value of Harvested Oats Average Value of Harvested Corn Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]					D . 1 1	E					
Average value of Harvested Oats Average Value of Harvested Corn Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]			A	Value of T	Reduced	Form: the c	lependen	variable is	S Zalesa af TT	D L steeres	
Summer Temperature -0.366 -0.635 -3.272 3.196 [1.211] [1.419] [9.040] [9.346]			Average	value of Ha	arvested Oa	us		Average	value of Ha	arvested Co)FII
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Summor Tomporature				0.266	0.625				2 979	9 106
[1.211] [1.419] [9.040] [9.340]	Summer remperature				-0.300	-0.055				-3.272	0.190 [0.246]
					[1.211]	[1.419]				[9.040]	[9.340]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the average value of harvested oats and corn. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

Table E.18: The Effects of Cholera in 1832, 1849 & 1854 on the number of patents and the Share of Agricultural Hydraulic Patents in the Ten Years following each Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	ULS Total	Number o	25L5 f Patents	2515	OLS	Share of Ag	UL5 ricultural Hy	25L5 vdraulic Pate	25L5
		1000	i i uniber o	I I atomis	Year t-	+1 to t+3	10	neurourar n	y diadile i att	
Share of Cholera Deaths in Population	2.307	0.500	1.525	27.69^{*}	29.69^{*}	0.127	-0.0260	-0.00630	4.047**	4.106**
	[9.408]	[9.496]	[8.919]	[15.52]	[15.47]	[0.413]	[0.433]	[0.425]	[1.728]	[1.783]
Deviation from Summer Rainfall in Year (t)		-0.0785	-0.0941	-0.0842	-0.101		0.00241	0.00211	0.00155	0.00104
(Baseline Years (t-1)-(t-25))		[0.0573]	[0.0603]	[0.0596]	[0.0643]		[0.00530]	[0.00546]	[0.00504]	[0.00530]
Land Suitability * Year Fixed Effects		0.0250	0.0265	0.0214	0.0229		0.00183	0.00186	0.00129	0.00134
		[0.0187]	[0.0176]	[0.0189]	[0.0175]		[0.00168]	[0.00165]	[0.00164]	[0.00160]
Border Department * Year Fixed Effects		0.00826	0.00775	0.00338	0.00267		0.000886	0.000876	0.000156	0.000135
		[0.00747]	[0.00743]	[0.00733]	[0.00730]		[0.000926]	[0.000928]	[0.000956]	[0.000957]
Maritime Department * Year Fixed Effects		-0.00124	-0.00219	-0.00264	-0.00373		-0.000716	-0.000735	-0.000927	-0.000959
*		[0.0103]	[0.0101]	[0.0102]	[0.00979]		[0.000835]	[0.000839]	[0.000821]	[0.000820]
Share of Carboniferous Area * Year Fixed Effects		0.0858**	0.0773*	0.0792**	0.0697*		0.00344	0.00327	0.00245	0.00217
		[0.0401]	[0.0394]	[0.0391]	[0.0383]		[0.00373]	[0.00384]	[0.00364]	[0.00372]
GDP per capita		L J	0.969**		1.057**		. ,	0.0186		0.0315
I I I I I			[0.426]		[0.478]			[0.0323]		[0.0388]
			[]		[- ·-]			[]		[]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.692	0.708	0.718			0.003	0.031	0.032		
Moran I	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.236	0.223	0.230	0.227	0.234	0.219	0.220	0.220	0.226	0.226
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	255	255	255	255	255	255	255	255	255	255
		Firs	st stage: th	e instrumen	ted variable	is Share	of Cholera l	Deaths in Po	pulation	
C T I				0 1 4 1 * * *	0 1 40***				0 1 4 1 * * *	0 1 40***
Summer Temperature				-0.141***	-0.140***				-0.141***	-0.140***
				[0.0303]	[0.0308]				[0.0303]	[0.0308]
1st stage F-stat				21.652	20.788				21.652	20.788
				Reduce	d Form: the	e depend	ent variable	is		
		Total	Number o	f Patents			Share of Ag	ricultural Hy	draulic Pate	ents
					Year t-	+1 to t $+1$	10			
C T (0.000	1.1054				0 570***	0 500***
Summer Temperature				-3.900	-4.165*				-0.570***	-0.576***
				[2.364]	[2.257]				[0.209]	[0.211]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of patents and the share of agricultural hydraulic patents in the decade after each outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

F. Effects of the Cholera Pandemics on the Number of Machines in Industry and Agriculture

Table F.1: The Effects of the Cholera in 1849 & 1854 on the Number of Boilers and Steam Generators in the Year following each Pandemic

	(1)	(0)	(9)	(4)	(٢)	(c)	(7)	(0)	(0)	(10)
		(2)	(6)	(4) OCL C	(0)	(0)	(1)	(0)	(9)	(10)
	OLS	UL5	OLS Guine	25L5	2515	OLS	OL5 Normh	OL5	Zolo Verst 1	2515
	IN	uniber of St	eam Genera	tors rear t-	+1		Numb	er of bollers	t = t + 1	
Share of Chalme Douthair Boundation	01 1 C***	01 44***	00 20***	47 01**	40.14**	15 40	10.09**	10.75***	71 50**	01 10**
Share of Cholera Deaths in Fopulation	-21.10	-21.44	-20.52	-47.21	-42.14	-10.40	-19.05	-19.75	-71.02	-01.12
(DD	[1.411]	[1.405]	[7.252]	[16.02]	[16.19]	[9.322]	[1.522]	[1.440]	[30.88]	[55.06]
GDP per capita			0.550		0.404			-0.354		-0.765
		0.104	[0.511]	0.155	[0.517]		0.046***	[0.625]	0.000*	[0.805]
Deviation from Summer Rainfall in Year (t)		0.124	0.108	0.155	0.138		-0.346	-0.336***	-0.283*	-0.251
(Baseline Years (t-1)-(t-25))		[0.0805]	[0.0759]	[0.0944]	[0.0872]		[0.130]	[0.129]	[0.167]	[0.178]
Land Suitability * Year Fixed Effects		0.0378	0.0342	0.0644	0.0573		0.199^{**}	0.202**	0.253^{***}	0.267^{***}
		[0.0430]	[0.0449]	[0.0432]	[0.0419]		[0.0808]	[0.0777]	[0.0817]	[0.0770]
Border Department * Year Fixed Effects		-0.00674	-0.00217	0.0227	0.0212		-0.0368	-0.0397	0.0231	0.0259
		[0.0283]	[0.0287]	[0.0395]	[0.0386]		[0.0381]	[0.0388]	[0.0687]	[0.0742]
Maritime Department * Year Fixed Effects		-0.00350	-0.00202	-0.0153	-0.0122		-0.00424	-0.00520	-0.0282	-0.0339
		[0.0268]	[0.0258]	[0.0279]	[0.0256]		[0.0472]	[0.0472]	[0.0468]	[0.0474]
Share of Carboniferous Area * Year Fixed Effects		0.00522	-0.0132	0.0170	0.00152		-0.0447	-0.0328	-0.0207	0.00860
		[0.0992]	[0.108]	[0.0967]	[0.103]		[0.159]	[0.159]	[0.150]	[0.148]
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.475	0.491	0.498			0.398	0.526	0.528		
Moran I	-0.010	-0.010	-0.010	-0.010	-0.010	-0.011	-0.012	-0.012	-0.012	-0.012
Moran I p-value	0.278	0.282	0.282	0.281	0.281	0.248	0.226	0.228	0.225	0.231
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		First a	stage: the ir	strumented	variable is	Share of	Cholera De	aths in Pop	ulation	
Summer Temperature				-0.180***	-0 179***				-0.180***	-0 179***
Summer Temperature				[0.0471]	[0.0485]				[0.0471]	[0.0485]
				[0.0411]	[0.0400]				[0.0411]	[0.0400]
1st stamp F-stat				14 602	13 577				14 602	13 577
15t Stage 1 -Stat				14.002	10.011				14.002	10.011
				Roduced I	Form: the d	opondort	variable is			
	N	umbor of St	oom Conors	tore Voor +	⊥1	ependent	Numb	or of Boilors	Voor $t \perp 1$	
	IN	uniber of St	cam Genera	nois rear t-	Τ Τ		INUIIID	er of Doffers	ieai t+1	
Summor Tomporaturo				8 50/**	7 59/**				19 88**	14 50**
Summer remperature				[2 E09]	[9.460]				[6 001]	[F 0.00]
				0.008	0.408				0.021	0.928

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of boilers and steam generators in the mining sector in the year after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01, **p < 0.05, *p < 0.1.

Table F.2: The Effects of the Cholera in 1849 & 1854 on the Number and Horse Power of Steam-Powered Machines in the Year following each Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Num	ber of Stean	n-Powered M	lachines Yea	ar t+1	Horse P	ower of Ste	eam-Powere	d Machines	Year t+1
	0414***	05 05***	04.00***	20.20**	00.01**	01 01**	07 40**	00 75**	FC C0**	5450*
Share of Cholera Deaths in Population	-24.14"	-25.35	-24.26 ^{-0.071}	-39.20*** [1.C. 477]	-33.21***	-31.21***	-27.49***	-20.75***	-50.09""" [00.10]	-54.50" [00.45]
CDD non conito	[7.076]	[0.428]	[0.285]	[10.47]	[15.52]	[13.40]	[12.40]	[12.17]	[28.12]	[28.45]
GDF per capita			0.550		0.477			0.000		0.175
Deviation from Cummon Dainfall in Voon (t)		0.115	[0.467]	0.129	[0.453]		0.0654	[0.933]	0.101	[0.903]
(Pageline Vers $(t, 1)$ $(t, 25)$)		0.115	0.0995	0.152	0.112		0.0004	0.0049	0.101	0.0955
(Daseline Tears (t-1)-(t-25))		0.0007	0.00010	[0.0924]	[0.0644]		0.0151	0.0120	0.0459	[0.154]
Land Suitability ' Tear Fixed Effects		[0.0920	[0.0205]	[0.0220]	[0.0222]		0.0101	0.0127	0.0452	0.0421 [0.0721]
Porder Department * Vear Fixed Effects		0.0277	0.00611	0.00529	0.00247		0.0761*	0.0721	0.0428	0.0424
Border Department Tear Fixed Effects		[0.0272]	-0.00011	[0.0254]	[0.0252]		-0.0701	-0.0731	[0.0574]	[0.0580]
Maritima Dapartment * Vear Fixed Effects		0.0117	0.0103	0.0180	0.0145		0.0174	0.0164	0.0307	0.0204
Maritime Department Tear Fixed Enects		[0.0248]	[0.0241]	[0.0244]	[0.0231]		-0.0174 [0.0487]	-0.0104 [0.0474]	[0.0502]	[0.0460]
Share of Carboniferous Area * Vear Fired Effects		0.0240	0.0699	0.0244	0.0231		0.175	0.162	0.180	0.182
Share of Carbonnerous Area – rear Fixed Effects		[0.0770]	0.0088	0.0931	0.0748		[0.200]	[0.103	[0.107]	0.162
		[0.0779]	[0.0640]	[0.0792]	[0.0646]		[0.200]	[0.214]	[0.197]	[0.211]
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.557	0.591	0.599			0.322	0.347	0.348		
Moran I	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011
Moran I p-value	0.256	0.262	0.259	0.262	0.259	0.257	0.260	0.260	0.263	0.263
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		First :	stage: the in	strumented	variable is S	Share of Ch	iolera Deat	ths in Popu	lation	
				0 100***	0 170***				0 100***	0 150***
Summer Temperature				-0.180	-0.179				-0.180	-0.1/9
				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577
				Reduced F	orm: the de	pendent va	riable is			
	Num	ber of Stean	n-Powered M	lachines Yea	ar t+1	Horse P	ower of Ste	eam-Powere	d Machines	Year t+1
Cummon Tomo onatuna				7 061**	E 0.20*				10.91*	0.749*
Summer remperature				[2 206]	0.938° [2.190]				10.21	9.743 ^r [f 107]
				[3.206]	[3.120]				[5.201]	[5.197]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number and horse power of steam-powered machines in the mining sector in the year after each cholera outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table F.3: The Effects of the Cholera in 1849 & 1854 on the Number of Mechanized Ploughs,Animal-Powered Threshing Machines and Steam-Powered Threshing Machines in 1852 & 1862

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Me	chanized l	Ploughs		1	Animal-Pov	vered Thre	shing Mach	ines		Steam-Pow	ered Thresh	ning Machin	es
Share of Cholera Deaths in Population	-13.060	-47.351	-27.077	-399.870	-297.577	-1.084	-1,252	-1,271*	-2.832	-3,102	6,424	6,555	6,608	-86,210**	-94.372**
	[74,800]	[72, 742]	[70, 494]	[299, 471]	[293, 179]	[686.6]	[767.2]	[657.9]	[2,300]	[1,947]	[14,609]	[13, 443]	[12, 819]	[39,697]	[40, 839]
Deviation from Summer Rainfall in Year (t)		915.9	627.1	1,341	1,001		-6.189	-5.921	-4.285	-3.390		-378.7***	-379.4***	-266.9	-239.8
(Baseline Years (t-1)-(t-25))		[1,070]	[1,044]	[1,291]	[1, 147]		[7.719]	[7.468]	[8.642]	[8.476]		[122.7]	[131.3]	[199.8]	[224.8]
Land Suitability * Year Fixed Effects		$1,686^{**}$	$1,620^{**}$	$2,050^{**}$	$1,907^{**}$		4.836^{***}	4.897^{**}	6.464^{**}	6.840^{**}		146.3	146.1	241.9^{**}	253.2^{**}
		[842.4]	[788.4]	[820.6]	[745.3]		[1.831]	[2.121]	[2.710]	[3.100]		[89.90]	[88.93]	[113.4]	[116.6]
Border Department * Year Fixed Effects		-289.5	-206.7	112.7	82.71		3.114	3.037	4.917	4.996		-78.92	-78.71	26.92	29.31
		[372.5]	[387.7]	[578.9]	[526.2]		[3.833]	[3.452]	[4.587]	[4.795]		[65.37]	[61.82]	[106.4]	[113.6]
Maritime Department * Year Fixed Effects		-562.4	-535.6	-723.2*	-662.2		1.368	1.343	0.647	0.487		-23.03	-22.96	-65.34	-70.20
		[417.1]	[431.9]	[430.1]	[447.7]		[4.827]	[4.671]	[5.013]	[4.549]		[60.03]	[58.56]	[66.37]	[64.39]
Share of Carboniferous Area * Year Fixed Effects		1,370	1,036	1,531	1,219		12.22	12.53	12.95	13.77		247.2	246.3	289.6	314.5
		[1,666]	[1,537]	[1,657]	[1,540]		[16.88]	[19.36]	[16.42]	[19.25]		[218.3]	[231.3]	[236.5]	[260.9]
GDP per capita			9,957*		8,146			-9.216		-21.47			25.84		-649.9
			[5, 331]		[6, 159]			[89.91]		[88.30]			[1, 121]		[1, 305]
Department- & Year FE	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves
Deviation from Summer Bainfall	No	Yes	Yes	Yes	Yes	No	No	No	Yes	Yes	No	No	No	Yes	Yes
Geographic Controls	No	Yes	Yes	Yes	Yes	No	No	No	Yes	Yes	No	No	No	Yes	Yes
GDP per capita	No	No	No	No	Yes	No	No	No	No	Yes	No	No	No	No	Yes
Within B2	0.418	0.486	0.503			0.025	0.036	0.036			0.108	0.166	0.166		
Moran I	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.012	-0.012	-0.012	-0.012	-0.012
Moran I p-value	0.264	0.262	0.257	0.262	0.259	0.207	0.208	0.208	0.208	0.209	0.218	0.221	0.221	0.227	0.229
Clusters	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170
					First stage:	the inst	rumented v	variable is	Share of Ch	olera Death	ns in Popu	lation			
Summer Temperature				-0.180***	-0 179***				-0 180***	-0 179***				-0.180***	-0.179***
Summer remperature				[0.0471]	[0.0485]				[0.0471]	[0.0485]				[0.0471]	[0.0485]
				[···]	[]				1 1	[]				L · · · 1	[]
1st stage F-stat				14.602	13.577				14.602	13.577				14.602	13.577
						т	Podwood Fo	rmy the d	opondont vo	riable is					
		Me	chanized 1	Ploughs		1	Animal-Pov	vered Thre	shing Mach	ines		Steam-Pow	ered Thresh	ing Machin	es
<u> </u>															10.0=0***
Summer Temperature				72,026	53,197				510.2	554.5				15,529**	16,870***
				[40,695]	[48,954]				[457.5]	[395.8]				[0, 469]	[5,951]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of mechanized ploughs and animal-powered threshing machines. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01,** p < 0.05,* p < 0.1.

G. Main Regression Results, Accounting for Spatial Autocorrelation

Table G.1: The Effects of the Cholera in 1849 & 1854 on the Number and Wage of Agricultural Day Laborers in 1852 & 1862, Accounting for Spatial Autocorrelation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Numb	er of Day La	borers			Average V	Wage of Day I	aborers	
Share of Cholera Deaths in Population	-15.74***	-12.41**	-11.35**	-43.19***	-38.86***	0.00627	0.00447	0.00354	0.0353**	0.0304^{*}
	[5.502]	[5.369]	[5.369]	[14.68]	[14.63]	[0.00483]	[0.00566]	[0.00585]	[0.0179]	[0.0182]
Deviation from Summer Rainfall in Year (t)		0.125**	0.108*	0.162*	0.148*		3.54e-05	4.93e-05	-4.15e-06	1.24e-05
		[0.0610]	[0.0634]	[0.0844]	[0.0784]		[7.35e-05]	[7.85e-05]	[8.35e-05]	[8.09e-05]
Land Suitability * Year Fixed Effects		-0.00466	-0.00885	0.0274	0.0214		-9.83e-05	-9.49e-05	-0.000129	-0.000122
		[0.0671]	[0.0636]	[0.0688]	[0.0645]		[6.85e-05]	[6.36e-05]	[8.15e-05]	[7.71e-05]
Border Department * Year Fixed Effects		-0.0337	-0.0271	0.000353	-0.000918		3.91e-05	3.41e-05	-2.22e-06	-7.63e-07
		[0.0330]	[0.0320]	[0.0444]	[0.0412]		[3.65e-05]	[3.58e-05]	[4.26e-05]	[4.03e-05]
Maritime Department * Year Fixed Effects		0.0237	0.0295	0.00743	0.0100		-3.10e-05**	-3.42e-05**	-3.25e-05*	-3.55e-05*
Change of Carl aniformer Anna * Marg Eined Efforte		0.0259	[0.0252]	[0.0239]	0.0240		[1.45e-05]	[1.44e-05]	[1.95e-05]	[1.97e-05]
Share of Cardonnerous Area · Year Fixed Effects		0.0509	0.0584	0.0711	0.0579		-0.000220	-0.000204	-0.000241	-0.000225
CDP per conito		[0.111]	0.541*	[0.110]	0.345		[0.000119]	0.000108	[0.000131]	0.000122]
GDI per capita			[0.315]		[0.324]			-0.000455 [0.000357]		[0.000390
			[0.313]		[0.324]			[0.000337]		[0.000309]
0	-0.423	-0 124	-0.374			9 759***	2 534***	2 220***		
P	[0.806]	[0 998]	[0 999]			[0.220]	[0.351]	[0.527]		
σ^2	0.0470***	0.0408***	0.0394***			4.50e-08***	3.63e-08***	3.53e-08***		
	[0.00967]	[0.00884]	[0.00874]			[1.69e-08]	[8.92e-09]	[8.26e-09]		
	[]	[]	[]			[]	[]	[]		
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.924	0.934	0.936			0.468	0.577	0.597		
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
			First stage:	the instrum	ented varial	ole is Share of	Cholera Deatl	hs in Populati	ən	
Summer Temperature					0.170***				0.180***	0.170***
Summer remperature					-0.175				-0.180	-0.175
let stame F-stat				14 602	13 577				14 602	13 577
15t Stage 1 -Stat				14.002	10.011				14.002	10.011
				Redu	iced Form:	the dependent	variable is			
		Numb	er of Day La	borers			Average V	Wage of Day I	aborers	
					0.01-40-4				0.0000	0.00546
Summer Temperature					6.947***				-0.00637**	-0.00543^{*}

Note: This table reports panel data regressions that account for spatial autocorrelation where we use a weighting matrix based on the great-circle distance between the department's administrative centers. Columns 1-3 and 6-7 are estimated using the *xsmle* Stata command (Belotti et al., 2013) while Columns 4-5 and 8-10 are estimated using the *xtivreg2* Stata command (Schaffer, 2005). Robust standard errors clustered at the department level. ***p < 0.01,** p < 0.05,* p < 0.1.

[2.596]

[0.00315]

[0.00324]

Table G.2: The Effects of the Cholera 1849 & 1854 on the Number of Mechanized Ploughs and Animal-Powered Threshing Machines per Day Laborer in 1852 & 1862, Accounting for Spatial Autocorrelation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS Plough	OLS is per Day 1	2SLS Laborer	2SLS	OLS Animal-	OLS Powered Th	OLS reshing Macl	2SLS nines per Da	2SLS v Laborer
Share of Cholera Deaths in Population	58.75**	52.49*	55.64*	323.6***	369.9***	17.42**	17.37**	17.68**	2.708	3.002
Deviation from Summer Rainfall in Year (t)	[20.07]	[28.82] 0.0837 [0.506]	[28.01] 0.0327 [0.533]	-0.205 [0.643]	[155.1] -0.359 [0.696]	[8.700]	-0.134*** [0.0426]	-0.138*** [0.0419]	-0.143*** [0.0504]	-0.144*** [0.0501]
Land Suitability * Year Fixed Effects		-0.516 [0.427]	-0.527 [0.435]	-0.796* [0.477]	-0.861* [0.517]		0.0204	[0.0113] [0.0193] [0.0142]	0.0408** [0.0187]	$[0.0404^{**}]$ [0.0192]
Border Department * Year Fixed Effects		0.110 [0.242]	0.125 [0.236]	-0.209 [0.341]	-0.223 [0.374]		-0.0304 [0.0192]	-0.0290 [0.0191]	-0.0163 [0.0235]	-0.0164 [0.0235]
Maritime Department * Year Fixed Effects		-0.359*** [0.100]	-0.352*** [0.0979]	-0.276* [0.154]	-0.248 [0.170]		-0.0223** [0.0101]	-0.0218** [0.00997]	-0.0402*** [0.0119]	-0.0400*** [0.0119]
Share of Carboniferous Area * Year Fixed Effects		-0.887 [0.791]	-0.944 [0.806]	-0.998 [0.843]	-1.140 [0.925]		-0.0290 [0.0292]	-0.0342 [0.0284]	-0.0237 [0.0333]	-0.0246 [0.0340]
GDP per capita			1.656 [2.471]		3.683 [2.667]			0.156 [0.151]		0.0234 [0.189]
ρ	2.289***	0.862	0.935			3.416***	3.073***	3.101***		
σ^2	[0.436] 2.367*** [0.672]	[0.332] 2.090^{***} [0.517]	[0.502] 2.076*** [0.508]			$\begin{array}{c} [0.120] \\ 0.0192^{***} \\ [0.00582] \end{array}$	[0.310] 0.0164^{***} [0.00445]	[0.234] 0.0162^{***} [0.00445]		
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Deviation from Summer Rainfall	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Geographic Controls	No	res	Yes	Yes	Yes	No	res	Yes Ves	res	Yes
Within B2	0.614	0.669	0.670	110	103	0.347	0 495	0.500	110	105
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		Fir	st stage: th	e instrumer	ited variable	is Share of	Cholera Dea	ths in Popu	lation	
Summer Temperature				-0.180*** [0.0471]	-0.179*** [0.0485]				-0.180*** [0.0471]	-0.179*** [0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577
				Reduce	ed Form: th	e dependent	variable is			
		Plough	ns per Day	Laborer		Animal-	Powered Th	reshing Macl	nines per Day	y Laborer
Summer Temperature				-58.29***	-66.12***				-0.488	-0.537
				[16.49]	[18.28]				[1.531]	[1.549]

Note: This table reports panel data regressions that account for spatial autocorrelation where we use a weighting matrix based on the great-circle

distance between the department's administrative centers. Columns 1-3 and 6-7 are estimated using the *xsmle* Stata command (Belotti et al., 2013)

while Columns 4-5 and 8-10 are estimated using the *xtivreg2* Stata command (Schaffer, 2005). Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table G.3: The Effects of the Cholera in 1849 & 1854 on the Number and Horse Power of Steam-Powered Machines per Worker in the Year following each Pandemic, Accounting for Spatial Autocorrelation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Average 1	Number of	Steam Gene	erators per	Worker Year t+1	Averag	e Number	of Boilers p	er Worker Y	/ear t+1
Change of Chalana Deaths in Denulation	10 40**	04.09**	00.10**	00.01**	74 00**	0.900	15 64*	10.04*	00.47**	00.27**
Share of Cholera Deaths in Population	-18.42 · · · [8.260]	-24.23	-22.10**	-80.21	-74.20	-9.890	-15.04	-10.04	-90.47	-99.37
Deviation from Summon Dainfall in Voon (t)	[8.509]	[9.810]	[9.091]	[34.00]	[30.80]	[9.001]	[9.510]	[9.506] 0.986**	[36.90]	[41.00]
(Pageline Veers (t 1) (t 25))		0.0274	-0.00594 [0.197]	0.0652	0.0454		-0.292	-0.280	-0.274	-0.244 [0.214]
Land Suitability * Voor Fixed Effects		0.0162	0.0221	0.0564	0.0207		0.0521	0.0544	0.150***	0.162***
Land Suitability Teal Fixed Effects		-0.0103	-0.0231	0.0504	[0.0478]		0.0551	0.0544	[0.0563]	[0.0565]
Border Department * Vear Fixed Effects		0.0712**	0.0801**	0.120*	0.126*		0.0430	0.0423	0.105	0.108
border Department Tear Tixed Encets		[0.0356]	[0.0372]	[0.0708]	[0.0648]		[0.0419]	[0.0428]	[0.0882]	[0.0940]
Maritime Department * Year Fixed Effects		-0.0492	-0.0469	-0.0905	-0.0834		-0.0300	-0.0305	-0.0902	-0.0955*
		[0.0478]	[0.0453]	[0.0581]	[0.0518]		[0.0517]	[0.0512]	[0.0585]	[0.0580]
Share of Carboniferous Area * Year Fixed Effects		-0.185	-0.224*	-0.174	-0.211		-0.0995	-0.0928	-0.104	-0.0768
		[0.130]	[0.134]	[0.141]	[0.137]		[0.128]	[0.127]	[0.124]	[0.126]
GDP per capita		[]	1.124	L- 1	0.956		[]	-0.198	L- 1	-0.709
1 1			[0.720]		[0.693]			[0.667]		[0.933]
			. ,							
ρ	2.904^{***}	2.858^{***}	2.720^{***}			3.331^{***}	3.152^{***}	3.154^{***}		
	[0.350]	[0.408]	[0.470]			[0.161]	[0.254]	[0.250]		
σ^2	0.197^{***}	0.187^{***}	0.181^{***}			0.216^{***}	0.190^{***}	0.190^{***}		
	[0.0553]	[0.0506]	[0.0461]			[0.0441]	[0.0448]	[0.0450]		
Department & Veer Fired Effects	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc
Within B2	0.132	0.188	0.225	165	105	0 103	0.343	0.342	165	165
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
	110	110	110	110	110	110	110	110	110	110
		Fi	rst stage: t	he instrume	ented variable is S	hare of Cho	olera Death	s in Popula	tion	
				0.100***	0.170***				0.100***	0.170***
Summer Temperature				-0.180***	-0.179***				-0.180***	-0.179***
				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577
					1.5	•				
				Redu	ced Form: the dep	pendent var	able is			

	Average Number of Steam Generators per Work	ker Year t+1	Average Number of Boilers per Worker	Year t+1
Summer Temperature	15.53**	13.26**	16.30** [7.470]	17.76**
	10.1211		1.413	1.411

Note: This table reports panel data regressions that account for spatial autocorrelation where we use a weighting matrix based on the great-circle

distance between the department's administrative centers. Columns 1-3 and 6-7 are estimated using the xsmle Stata command (Belotti et al., 2013)

while Columns 4-5 and 8-10 are estimated using the *xtivreg2* Stata command (Schaffer, 2005). Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table G.4: The Effects of the Cholera in 1849 & 1854 on the Number of Boilers and Steam Generators per Worker in the Year following each Pandemic, Accounting for Spatial Autocorrelation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	A	verage Nun	ber of Worl	kers Year t-	+1	010	Average Wa	age per Wo	rker Year t⊣	-1
	-				-			-0° F		-
Share of Cholera Deaths in Population	-21.60***	-27.74***	-25.87***	-75.52**	-64.49**	-30.53**	-35.04**	-32.86**	-104.7**	-91.55**
	[8.026]	[9 114]	[8.368]	[31 71]	[28 28]	[13 53]	[14 82]	[14 22]	[46 60]	[43 80]
Deviation from Summer Bainfall in Year (t)	[0:0=0]	0.0165	-0.0124	0.0532	0.0166	[=0:00]	0.0306	-0.00782	0.112	0.0685
(Baseline Years (t_1) - (t_25))		[0 131]	[0.130]	[0 147]	[0 134]		[0.183]	[0.176]	[0, 214]	[0 194]
Land Suitability * Year Fixed Effects		0.0149	0.00887	0.0726	0.0572		-0.00851	-0.0157	0.0687	0.0504
Early Suitability Tear Fixed Encees		[0.0467]	[0 0494]	[0.0485]	[0.0449]		[0.0645]	[0.0660]	[0.0736]	[0.0664]
Border Department * Year Fixed Effects		0.0650*	0.0727*	0.106*	0.103*		0.0387	0.0484	0.109	0.105
Border Departmente - Fear Fixed Enceto		[0.0351]	[0.0378]	[0.0635]	[0.0588]		[0.0536]	[0.0556]	[0.0911]	[0.0870]
Maritime Department * Vear Fixed Effects		-0.0511	-0.0490	-0.0863	-0.0797		-0.0624	-0.0605	_0.101	-0.0032
Martinic Department - Tear Fixed Encets		[0.0462]	[0.0441]	[0.0540]	[0.0487]		-0.0024 [0.0702]	[0.0678]	[0.0828]	[0.0748]
Share of Carboniferous Area * Vear Fixed Effects		-0.152	-0.185	-0.143	-0.177		-0.0796	-0.126	-0.0565	-0.0967
Share of Carbonnerous Area - Tear Tixed Eneces		[0.114]	[0.118]	[0 125]	[0.121]		-0.0150 [0.212]	[0.222]	[0.222]	[0.220]
CDP nor capita		[0.114]	0.074	[0.120]	0.878		[0.212]	1 320	[0.222]	1 040
GD1 per capita			[0.601]		0.670			[1,115]		[1 196]
			[0.091]		[0.052]			[1.115]		[1.120]
	9.076***	0 000***	0 795***			1 710	1 504	1.959		
P	[0 322]	2.858	[0.465]			[1.086]	[1 149]	[1 222]		
σ^2	0.169***	0.159***	0.154***			0.470***	[1.142] 0.464***	[1.233]		
0	[0.0480]	[0.0428]	[0.0202]			[0.120]	[0 127]	[0 122]		
	[0.0460]	[0.0430]	[0.0392]			[0.139]	[0.137]	[0.132]		
Department fr Veer Fired Effects	Voc	Voq	Voq	Voq	Voc	Voc	Voq	Voc	Voc	Voq
Within D2	0.172	0.222	0.262	Tes	Tes	0.194	0.126	0.156	res	Tes
Chusters	0.172	0.232	0.203	OF	OF	0.124	0.130	0.150	OF	OF
Observations	170	170	170	170	170	170	170	170	170	170
Observations	170	170	170	170	170	170	170	170	170	170
		First	stage: the in	nstrumented	ł variable is	Share of C	holera Dea	ths in Popu	lation	
Summer Temperature				-0.180^{***}	-0.179^{***}				-0.180^{***}	-0.179^{***}
				[0.0471]	[0.0485]				[0.0471]	[0.0485]
1st stage F-stat				14.602	13.577				14.602	13.577
			1 0 11 -	Reduced	Form: the d	ependent v	ariable is		1 17	-
	A	verage Nun	nber of Wor	kers Year t-	-1	1	Average Wa	age per Wo	rker Year t+	-1
Current on Toron and turns				19 60**	11 59**				10 00**	16 97**
Summer remperature				15.00 ⁻¹	[5 257]				10.00	10.37
				[0.911]	[0.507]				[0.000]	[0.112]

Note: This table reports panel data regressions that account for spatial autocorrelation where we use a weighting matrix based on the great-circle distance between the department's administrative centers. Columns 1-3 and 6-7 are estimated using the *xsmle* Stata command (Belotti et al., 2013) while Columns 4-5 and 8-10 are estimated using the *xtivreg2* Stata command (Schaffer, 2005). Robust standard errors clustered at the department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

Table G.5: The Effects of the Cholera in 1849 & 1854 on the Values of Extracted Coal & Peat Two and Three Years after each Pandemic, Accounting for Spatial Autocorrelation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Ave	rage Value of	Extracted Co	pal $(t+2)$ - $(t-2)$	+3)	Aver	age Value of	f Extracted 1	Peat $(t+2)$ -((t+3)
Share of Cholere Deaths in Depulation	0.719	0.000	9.610	0.720	2 615	S 096*	10 50**	10.10*	25.05**	94 71*
Share of Cholera Deaths in Fopulation	-2.710	-2.362	-2.010	2.732	5.015 [6.420]	-6.050	-10.59	-10.10	-20.90 ···	-24.71 [13.70]
Deviation from Summer Bainfall in Vear (t)	[2.221]	-0.0464	-0.0431	-0.0504	-0.0533	[4.000]	-0.0786	-0.0841	-0.0674	-0.0715
(Baseline Vears $(t_1)_{-}(t_25)$)		[0.0330]	[0.0321]	[0.0329]	[0.0345]		[0.0538]	[0.0544]	[0.0630]	[0.0672]
Land Suitability * Year Fixed Effects		-0.0164	-0.0156	-0.0211	-0.0223		0.0258	0.0241	0.0443*	0.0426
Land Subashing Tear Fixed Effects		[0.0152]	[0.0146]	[0.0151]	[0.0161]		[0.0192]	[0.0180]	[0 0242]	[0.0260]
Border Department * Year Fixed Effects		-0.0197	-0.0207	-0.0257	-0.0260		0.00231	0.00428	0.0161	0.0157
Border Beparement Fran Fined Encous		[0.0131]	[0.0131]	[0.0158]	[0.0163]		[0.0201]	[0.0198]	[0.0282]	[0.0278]
Maritime Department * Year Fixed Effects		-0.0202*	-0.0206*	-0.0146	-0.0140		-0.0112	-0.0102	-0.0227	-0.0220
Hartenie Dopartinene Tear Fliter Interes		[0.0116]	[0.0115]	[0.0118]	[0.0118]		[0.0185]	[0.0187]	[0.0176]	[0.0181]
Share of Carboniferous Area * Year Fixed Effects		-0.0405	-0.0365	-0.0455	-0.0482		-0.146***	-0.152***	-0.145***	-0 149***
Share of Carbonnerous filea - fear fixed Enects		[0.0319]	[0.0304]	[0.0345]	[0.0361]		[0.0508]	[0.0482]	[0.0522]	[0.0509]
GDP per capita		[0:0010]	-0.112	-0.0703	[0:0001]		[0:0000]	0.207	[0:0022]	0.0992
obi po capita			[0.128]	[0 137]				[0.290]		[0.351]
			[0:120]	[01101]				[0:200]		[0.001]
ρ	-1.787	-3.543**	-3.668**			2.333^{***}	1.141	1.241		
r	[1.316]	[1.570]	[1.577]			[0.783]	[1.415]	[1.293]		
σ^2	0.00894***	0.00816***	0.00809***			0.0366***	0.0319***	0.0317***		
	[0.00341]	[0.00273]	[0.00274]			[0.00822]	[0.00770]	[0.00799]		
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.090	0.159	0.166			0.359	0.471	0.474		
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	170	170	170	170	170	170	170	170	170	170
		Firet	store: the ir	strumontod	variable is	Shara of Ch	olora Dootha	in Populati	on	
		1 1130	stage. the h	isti unicitteu	variable is	Share of Ch	Jicia Deaths	in i opulati	011	
Summer Temperature				-0 179***	-0.180***				-0.180***	-0 179***
Summer remperature				[0.0485]	[0.0471]				[0.0471]	[0.0485]
				[0.0100]	[0.0111]				[0.0111]	[0.0100]
1st stage F-stat				13.577	14.602				14.602	13.577
0										
				Reduced I	Form: the de	ependent var	iable is			
	Ave	rage Value of	Extracted Co	al (t+2)-(t-2)	+3)	Aver	age Value of	f Extracted	Peat $(t+2)$ -((t+3)
Summer Temperature				-0.488	-0.651				4.675**	4.417
rr				[1.213]	[1.157]				[2.330]	[2.660]
Note: This table reports panel data regression	is that accou	unt for spati	ial autocorr	elation wh	ere we use	a weightin	g matrix b	ased on the	e great-ciro	cle

distance between the department's administrative centers. Columns 1-3 and 6-7 are estimated using the xsmle Stata command (Belotti et al., 2013)

while Columns 4-5 and 8-10 are estimated using the *xtivreg2* Stata command (Schaffer, 2005). Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table G.6: The Effects of Cholera in 1832, 1849 & 1854 on the number of patents and the Share of Agricultural Hydraulic Patents in the Ten Years following each Pandemic, Accounting for Spatial Autocorrelation

	(1) OLS	(2) OLS	(3) OLS	(4) 2SLS	(5) 2SLS	(6) OLS	(7) OLS	(8) OLS	(9) 2SLS	(10) 2SLS
	010	Total 1	Number of	Patents	2010	515	hare of Agric	ultural Hydra	aulic Patents	2010
					Year	t+1 to $t+10$				
Share of Cholera Deaths in Population	2.347 [9.363]	0.413 [9.408]	1.615 [8.905]	27.69* [15.52]	29.69* [15.47]	0.186 [0.417]	0.0129 [0.427]	0.0337 [0.418]	4.047** [1.728]	4.106** [1.783]
Deviation from Summer Rainfall in Year (t) (Baseline Years (t-1)-(t-25)) Land Suitability * Year Fixed Effects		-0.0792 [0.0557] 0.0251	-0.0936 [0.0586] 0.0264	-0.0842 [0.0596] 0.0214	-0.101 [0.0643] 0.0229		0.00241 [0.00522] 0.00179	0.00210 [0.00537] 0.00182	0.00155 [0.00504] 0.00129	0.00104 [0.00530] 0.00134
Border Department * Year Fixed Effects		[0.0184] 0.00901	[0.0172] 0.00705	[0.0189] 0.00338	[0.0175] 0.00267		[0.00162] 0.000916	[0.00159] 0.000907	[0.00164] 0.000156	[0.00160] 0.000135
Maritime Department * Year Fixed Effects		[0.00820] -0.000429 [0.0102]	[0.00826] -0.00294 [0.0101]	[0.00733] -0.00264 [0.0102]	[0.00730] -0.00373 [0.00979]		[0.000920] -0.000680 [0.000839]	[0.000920] -0.000698 [0.000840]	[0.000956] -0.000927 [0.000821]	[0.000957] -0.000959 [0.000820]
Share of Carboniferous Area * Year Fixed Effects		0.0850** [0.0402]	0.0779** [0.0393]	0.0792** [0.0391]	0.0697*		0.00342 [0.00364]	0.00326 [0.00373]	0.00245 [0.00364]	0.00217 [0.00372]
GDP per capita			$[0.978^{**}]$		[0.478]			[0.0189]		[0.0315]
ρ	0.235 [1.196]	0.263 [1.125]	-0.242 [1.179]			-1.105 [1.612]	-0.803 [1.456]	-0.820 [1.464]		
σ^2	$[0.155^{***}]$	$[0.147^{***}$ [0.0288]	$[0.142^{***}]$			$[0.00134^{***}]$	$[0.00130^{***}]$	$[0.00130^{***}]$		
Department- & Year Fixed Effects Within R2	Yes 0.692	Yes 0.708	Yes 0.718	Yes	Yes	Yes 0.002	Yes 0.032	Yes 0.033	Yes	Yes
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	200	200	200	200	200	200	200	200	200	200
		F	irst stage: t	he instrume	ented variab	le is Share of	Cholera Dea	ths in Popula	tion	
Summer Temperature				-0.141*** [0.0303]	-0.140*** [0.0308]				-0.141*** [0.0303]	-0.140*** [0.0308]
1st stage F-stat				21.652	20.788				21.652	20.788
		Total 1	Number of	Redu Patents	ced Form: t	he dependent S	variable is share of Agric	ultural Hydra	aulic Patents	
					Year	t+1 to t+10				
Summer Temperature				-3.900 [2.364]	-4.165* [2.257]				-0.570*** [0.209]	-0.576*** [0.211]

Note: This table reports panel data regressions that account for spatial autocorrelation where we use a weighting matrix based on the great-circle distance between the department's administrative centers. Columns 1-3 and 6-7 are estimated using the *xsmle* Stata command (Belotti et al., 2013) while Columns 4-5 and 8-10 are estimated using the *xtivreg2* Stata command (Schaffer, 2005). Robust standard errors clustered at the department level. ***p < 0.01,** p < 0.05,* p < 0.1.

H. Main Regression Results, Accounting for Heterogeneous Treatment Effects

Tables H.1 and H.2 show that our main regression results are also robust to accounting for heterogeneous treatment effects using the two-way fixed effects estimators of de Chaisemartin and D'Haultfoeuille (2020). Here, we define the treatment variable as a dummy variable equal to 1 if the log of the share of cholera deaths in a department population is equal to or greater than the median of the share of cholera deaths in the population variable.

Table H.1: The effects of the cholera in 1849 & 1854 technology adoption in industry in the Year following each Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)
	Number of	Horse Power of	Number of	Number of	Average	Number
	Steam-Powered Machines	Steam-Powered Machines	Steam Generators	Boilers	Wage	of
		per Worker Year			Wo	rkers
	0.000	0.641	0.000	0.170	0.770	0 101
Average Treatment Effect	-0.332	-0.041	-0.393	-0.173	-0.778	0.131
	$[0.177]^*$	$[0.317]^{**}$	$[0.199]^*$	[0.221]	[0.496]	[0.203]
LB CI	-0.680	-1.262	-0.784	-0.607	-1.750	-0.266
UB CI	0.016	-0.019	-0.002	0.260	0.195	0.529
Switchers	31	31	31	31	31	31
Observations	85	85	85	85	85	85

Note: This table presents reports the average effect of treatment on the treated (ATT) for machines, workers and wages in the mining sector in the year following each pandemic accounting for heterogeneous treatment effects using the two-way fixed effects estimators of de Chaisemartin and D'Haultfoeuille (2020). The treatment variable is a dummy variable equal to 1 if the log of the share of cholera deaths in a department population is equal to or greater than the median of the share of cholera deaths in the population variable. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table H.2:	The effe	cts of 1	the cho	lera ir	1849	&	1854	technology	adoption	in	agriculture	in	1852
& 1862													

	(1)	(2)	(3)	(4)	(5)
	Number of	Average Wage of	Mechanized Ploughs	Animal-Powered Threshing Machines	Steam-Powered Threshing Machines
	Day	/ Laborers		per Day Laborer	
Average Treatment Effect	-0 405	0.0002	0.001	0.090	0.750
riverage freatment Enect	$[0.096]^{***}$	[0.0001]**	[0.001]	[0.049]*	[0.715]
LB CI	-0.593	8.11E-06	-0.002	-0.007	-0.652
UB CI	-0.217	0.0004	0.004	0.186	2.153
Switchers	31	31	31	31	31
Observations	85	85	85	85	85

Note: This table presents reports the sample average effect of treatment on the treated (ATT) for machines, workers and wages in the agricultural sector in 1852 and 1862 accounting for heterogeneous treatment effects using the two-way fixed effects estimators of de Chaisemartin and D'Haultfoeuille (2020). The treatment variable is a dummy variable equal to 1 if the log of the share of cholera deaths in a department population is equal to or greater than the median of the share of cholera deaths in the population variable. ***p < 0.01, ** p < 0.05, * p < 0.1.

I. Mechanism: human capital (with the full set of control variables)

Table I.1: The Effects of the Cholera in 1832, 1849 & 1854 on the Signatures of Wedding Licenses by Spouses Born One to 20 Years after Each Cholera Pandemic

	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	OLS	OLS	2SLS	2SLS	2SLS
	Signatu	re of Wedding	License For I	ndividuals Bo	orn 1 to 20 Yea	rs after Each Epidemic
Share of Cholera Deaths in Population	6.739***	5.969^{***}	5.538^{***}	27.87***	25.65^{***}	28.09***
	[1.324]	[1.377]	[1.683]	[4.936]	[5.942]	[6.721]
Male	-0.00913	-0.00906	-0.00906	-0.00930	-0.00903	-0.00914
	[0.00694]	[0.00693]	[0.00693]	[0.00698]	[0.00696]	[0.00697]
Deviation from Summer Rainfall in Year (t)		-0.00309	-0.00310		-0.00289	-0.00281
(Baseline Years (t-1)-(t-25))		[0.00445]	[0.00445]		[0.00455]	[0.00458]
Land Suitability * Year Fixed Effects		-0.00607***	-0.00606***		-0.00594^{***}	-0.00607***
		[0.00165]	[0.00165]		[0.00165]	[0.00166]
Border Department * Year Fixed Effects		-0.00170^{**}	-0.00177^{**}		-0.00256***	-0.00163**
		[0.000782]	[0.000794]		[0.000833]	[0.000811]
Maritime Department * Year Fixed Effects		0.00139^{**}	0.00140^{**}		-0.000771	-0.000590
		[0.000664]	[0.000665]		[0.000935]	[0.000892]
Share of Carboniferous Area * Year Fixed Effects		0.00455	0.00449		0.00218	0.00319
		[0.00311]	[0.00312]		[0.00318]	[0.00312]
GDP per capita			0.0409			-0.478***
			[0.0791]			[0.170]
	17	37	v	v	V	V
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes 0.170	Yes	Yes
R ²	0.190	0.194	0.194	0.179	0.185	0.185
Moran I	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001
Chasters	0.240	0.240	0.240	0.240	0.240	0.246
Clusters	3080	3085	3085	3085	3085	3080
Observations	11,953	11,953	11,953	11,953	11,953	11,953
	First	t stage: the ins	strumented va	riable is Sha	re of Cholera D	eaths in Population
Summer Temperature				-0.0826***	-0.0709***	-0.0629***
				[0.00572]	[0.00547]	[0.00461]
1-t -t				000 C	169.1	105.0
Ist stage F-stat				208.0	108.1	185.9
			Reduced For	m: the depen	dent variable is	3
	Signature	of Wedding L	icense For Ind	lividuals Bori	1 Years t+1 - t	, +20 after Each Epidemic
		0				
Summer Temperature				-2.301^{***}	-1.819^{***}	-1.767***
				[0.400]	[0.414]	[0.416]

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the ability of brides and grooms born one to 20 years after each outbreak to sign their wedding license. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the year-department level. ***p < 0.01,** p < 0.05,* p < 0.1.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Th	o Voor of ooch	Enidomio			Share of 20 V	Literate Co	nscripts Born			25 Vo.	and often Faci	. Enidomio	
		11	e rear of each	Еріденніс			20 Y	ears after La	ch Epidemic			55 IG	ars after Eaci	1 Epidemic	
Share of Cholera Deaths in Population	0.944	1.637	1.868	8.115***	8.610***	0.430	0.892	1.020	6.836**	7.127**	-0.193	0.0336	0.0421	-0.173	-0.158
	[1.405]	[1.381]	[1.292]	[3.100]	[3.131]	[1.262]	[1.255]	[1.214]	[3.019]	[3.130]	[0.573]	[0.554]	[0.554]	[1.469]	[1.492]
Deviation from Summer Rainfall in Year (t)	r - 1	0.0219*	0.0190	0.0205	0.0173	(- J	-0.000353	-0.00195	-0.00162	-0.00352	[]	0.00717	0.00706	0.00721	0.00711
(Baseline Years (t-1)-(t-25))		[0.0124]	[0.0127]	[0.0128]	[0.0136]		[0.0149]	[0.0150]	[0.0152]	[0.0155]		[0.00527]	[0.00527]	[0.00523]	[0.00523]
Land Suitability * Year Fixed Effects		-0.00256	-0.00221	-0.00338	-0.00302		-0.00224	-0.00205	-0.00300	-0.00279		-0.00257*	-0.00256*	-0.00254*	-0.00253*
		[0.00373]	[0.00343]	[0.00375]	[0.00338]		[0.00247]	[0.00241]	[0.00255]	[0.00245]		[0.00145]	[0.00145]	[0.00143]	[0.00143]
Border Department * Year Fixed Effects		-0.00481**	-0.00498***	-0.00612***	-0.00636***		-0.00322*	-0.00331**	-0.00442***	-0.00456***		-0.00162**	-0.00163**	-0.00158**	-0.00159**
		[0.00183]	[0.00175]	[0.00174]	[0.00166]		[0.00162]	[0.00161]	[0.00156]	[0.00157]		[0.000779]	[0.000781]	[0.000733]	[0.000738]
Maritime Department * Year Fixed Effects		0.000977	0.000792	0.000668	0.000452		0.00155	0.00145	0.00127	0.00114		0.00205^{**}	0.00204^{**}	0.00205^{**}	0.00205^{**}
		[0.00185]	[0.00185]	[0.00184]	[0.00186]		[0.00154]	[0.00158]	[0.00159]	[0.00164]		[0.000893]	[0.000905]	[0.000864]	[0.000874]
Share of Carboniferous Area * Year Fixed Effects		0.0164^{*}	0.0147^{*}	0.0148^{*}	0.0129^{*}		0.0148^{**}	0.0138^{*}	0.0133^{*}	0.0122^{*}		0.00432	0.00425	0.00437	0.00431
		[0.00856]	[0.00799]	[0.00829]	[0.00774]		[0.00716]	[0.00705]	[0.00702]	[0.00697]		[0.00425]	[0.00429]	[0.00415]	[0.00418]
GDP per Capita			0.212***		0.234**			0.117*		0.137*			0.00778		0.00712
			[0.0796]		[0.0944]			[0.0612]		[0.0744]			[0.0266]		[0.0273]
Department- & Year Fixed Effects	Ves	Ves	Yes	Ves	Ves	Yes	Ves	Ves	Yes	Yes	Ves	Yes	Ves	Ves	Ves
Within R2	0.625	0.685	0.699	100	100	0.587	0.646	0.653	100	100	0.512	0.596	0.596	100	100
Moran I	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.010	-0.009	-0.009	-0.009	-0.009
Moran I p-value	0.238	0.247	0.229	0.238	0.221	0.198	0.240	0.230	0.228	0.217	0.121	0.182	0.181	0.183	0.182
Clusters	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82
Observations	246	246	246	246	246	246	246	246	246	246	246	246	246	246	246
					First stage	• the inst	trumented v	ariable is Sh	are of Cholera	Deaths in Po	nulation				
					i not stage	. the mot	and an		are or endera	Deaths in 1 o	pulation				
Summer Temperature				-0.145***	-0.144***				-0.145***	-0.144***				-0.145***	-0.144***
I I I I I I I I I I I I I I I I I I I				[0.0318]	[0.0323]				[0.0318]	[0.0323]				[0.0318]	[0.0323]
				[]	[]				[]	[]				[]	[]
1st stage F-stat				20.666	19.799				20.666	19.799				20.666	19.799
							Reduced For	rm: the depe	ndent variable	is					
							Share of	Literate Co	nscripts Born						
		Th	e Year of each	Epidemic			20 Y	ears after Ea	ch Epidemic			35 Ye	ars after Each	n Epidemic	
Summer Temperature				-1 173**	-1 239***				-0.988**	-1 025**				0.0250	0.0228
Summer remperature				[0.497]	[0.461]				[0.453]	[0.449]				[0.217]	[0.220]

Table I.2: The Effects of the Cholera in 1832, 1849 & 1854 on the Share of Literate Conscripts Born during the Pandemic, as well as 20 and 35 years afterwards

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the share of literate army conscripts born during the pandemic, as well as 20 and 35 years later. The

Bas-Rhin, Haut-Rhin and Moselle departments are not part of France after 1870 and are therefore dropped from the estimation. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table I.3: The Effects of the Cholera in 1832, 1849 & 1854 on the Number of Participants in Courses for Male and Female Adults and Apprentices in 1837, 1850 & 1863

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
				Numbe	r of Particip	oants in O	Courses fo	r		
	Male	e Adults ar	nd Apprenti	ices 1837-18	50-1863	Fer	nale Adul	ts and App	rentices 185	50-1863
	06.40	10.00	01 40	100.0**	190.0**	00.00	94.15	20.00	9.790	10.09
Share of Cholera Deaths in Population	20.49	19.20	21.42	120.0*** [57.91]	[50.70]	29.80 [97.69]	54.15 [90.96]	32.28 [ao ao]	-3.720	-19.03
CDDit-	[23.30]	[24.43]	[24.40]	[57.51]	[59.70]	[27.02]	[29.80]	[28.32]	[88.75]	[89.00]
GDP per capita			2.098		2.440			-0.920		-1.207
		0 199	[1.186]	0.100	[1.323]		0.0401	[1.078]	0.0057	[1.075]
Deviation from Summer Rainfall in Year (t)		0.132	0.0981	0.109	0.0697		0.0401	0.0007	0.0857	0.138
(Baseline Years $(t-1)-(t-25)$)		[0.198]	[0.199]	[0.232]	[0.234]		[0.424]	[0.416]	[0.440]	[0.438]
Land Suitability " Year Fixed Effects		0.0600	0.0632	0.0459	0.0493		0.159	0.105	0.198	0.220
		[0.0634]	[0.0606]	[0.0619]	[0.0584]		[0.121]	[0.119]	[0.140]	[0.138]
Border Department * Year Fixed Effects		0.0410	0.0399	0.0219	0.0202		0.00852	0.000866	0.0517	0.0564
		[0.0303]	[0.0304]	[0.0331]	[0.0329]		[0.151]	[0.157]	[0.180]	[0.182]
Maritime Department * Year Fixed Effects		-0.00483	-0.00690	-0.0103	-0.0129		0.183	0.180	0.165	0.156
		[0.0304]	[0.0296]	[0.0297]	[0.0287]		[0.135]	[0.135]	[0.140]	[0.140]
Share of Carboniferous Area * Year Fixed Effects		0.249^{*}	0.231	0.223	0.201		0.284	0.315	0.301	0.350
		[0.145]	[0.142]	[0.142]	[0.137]		[0.376]	[0.390]	[0.364]	[0.381]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.404	0.430	0.438			0.023	0.057	0.059		
Moran I	-0.007	-0.007	-0.007	-0.007	-0.007	-0.012	-0.012	-0.012	-0.012	-0.012
Moran I p-value	0.268	0.268	0.269	0.261	0.261	0.212	0.217	0.217	0.216	0.216
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	255	255	255	255	255	170	170	170	170	170
		First	stage: the i	nstrumente	d variable is	s Share o	f Cholera	Deaths in I	Population	
Ст.т				0 1 / 1 * * *	0 1 40***				0 100***	0.170***
Summer Temperature				-0.141	-0.140				-0.180	-0.179
				[0.0303]	[0.0308]				[0.0471]	[0.0485]
1st stage F-stat				21.652	20.788				14.602	13.577
				Deduced	Formetho	dopondor	t roviable	ia		
				Numbe	ronn: the (apenden	⁷ ourses fo	15		
	Male	Adults ar	d Apprenti	Numbe ices 1837-18	50-1863	Fer	nale Adul	ts and Ann	rentices 185	50-1863
	wian	, riquito al	a apprend	1007-10	.00.1000	1.61	naie nuui	o and npp	100	1000
Summer Temperature				-17.75**	-18.32**				0.670	3.509
*				[7.848]	[7.826]				[16.31]	[15.97]
					ι J					. ,

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the number of participants in courses for male and female adults and apprentices. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1. **Table I.4:** The Effects of the Cholera in 1832, 1849 & 1854 on Spending on Courses for Male Adults and Apprentices and the Number of Courses for Male and Female Adults and Apprentices in 1837, 1850 & 1863

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		Spend	ing on Co	urses for			Nu	mber of Co	ourses for			Nur	aber of Co	ourses for	
		Male Ad	ults and A	Apprentices			Male A	dults and	Apprentice	5		Female 4	Adults and	l Apprentic	es
		18	837-1850-1	.863				1837-1850	-1863				1850-18	63	
Share of Chalana Daatha in Danulation	E7 E9***	59 71**	E A CEXX	149 C	150.0	0.765	F 909	5.072	49,49	44.10	0.070	12.04	12 10	7.059	0.057
Share of Cholera Deaths in Fopulation	[20.06]	[99.16]	[91.60]	[09 29]	[08 21]	[15.05]	-0.090	-0.070 [15:00]	42.42	[41.06]	9.979	10.94	[11.97]	[20.05]	[20.16]
Deviation from Summer Painfall in Vean (t)	[20.96]	0.617	0.602	[96.36]	0.578	[13.05]	0.171	0.150	0.161	[41.00]	[11.01]	0.156	0.144	[29.05]	0.197
(Baseline Vers (t 1) (t 25))		[0.400]	0.003	0.397	[0.424]		0.171	0.159	[0.172]	[0.172]		[0.179]	-0.144 [0.166]	-0.147	-0.127
Land Suitability * Veen Fixed Effects		0.0200	0.0295	0.0594	0.0508		0.0520	0.100	0.0475	0.0488		0.0125	0.0212	0.0256	0.0241
Land Suitability Tear Fixed Effects		-0.0399 [0.0626]	[0.0622]	[0.0524	-0.0508		0.0559	[0.0307]	0.0475	0.0488		0.0105	0.0212	0.0200	0.0341
Pondon Doportmont * Voor Fired Effects		0.0210	0.022	0.0140	0.0141		0.0241	0.0227	0.0255	0.0248		0.0333	0.0257	0.0222]	0.0227
Border Department Frear Fixed Enects		0.0319	0.0314	[0.0464]	0.0141		[0.0341	[0.0337	0.0255	[0.0248		-0.0323	-0.0557	[0.0604]	[0.0227
Manitima Dapartment * Vear Fired Effects		0.0127	0.0129	0.00876	0.00752		0.00555	0.00478	0.00205	0.00210		0.0697	0.0616	0.0506	0.0550
Maritime Department Tear Fixed Effects		[0.0413]	0.0128	[0.00870	[0.0413]		[0.00355	[0.00478	[0.00300	[0.0215]		0.0027	[0.0574]	0.0590	0.0506]
Shone of Conkoniforous Area * Voor Eined Effecte		0.00579	0.0125	0.0288	0.0204		0.0068	0.0217]	0.0210]	0.0767		0.180	0.104	0.182	0.0000
Share of Carbonnerous Area - Tear Fixed Effects		-0.00578	-0.0135	-0.0288	-0.0394		0.0908	0.0834]	0.0651	[0.0818]		[0.149]	0.194	[0.137]	0.202
CDP non conito		[0.105]	0.204	[0.107]	1 186		[0.0645]	0.780	[0.0654]	0.025		[0.142]	0.404	[0.137]	0.485
GDF per capita			[1.609]		[1.707]			0.760		0.955			-0.404 [0.659]		-0.465
			[1.092]		[1.797]			[0.659]		[0.654]			[0.052]		[0.066]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within R2	0.607	0.615	0.616			0.416	0.438	0.441			0.009	0.054	0.058		
Moran I -0.008	-0.008	-0.008	-0.008	-0.008	-0.007	-0.007	-0.007	-0.007	-0.007	-0.012	-0.012	-0.012	-0.012	-0.0122	-0.012
Moran I p-value	0.239	0.236	0.235	0.237	0.237	0.259	0.257	0.257	0.253	0.255	0.207	0.210	0.209	0.210	0.209
Clusters	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
Observations	255	255	255	255	255	255	255	255	255	255	170	170	170	170	170
				Fir	st stage: the	e instrun	nented var	iable is Sh	are of Chole	era Deaths i	n Popula	tion			
G E I				0.141***	0.140***				0.141***	0.140***				0 100***	0.170***
Summer Temperature				-0.141	-0.140****				-0.141	-0.140****				-0.180****	-0.179****
				[0.0303]	[0.0308]				[0.0303]	[0.0308]				[0.0471]	[0.0485]
1st stage F-stat				21.652	20.788				21.652	20.788				14.602	13.577
		C	:			Red	uced Form	1: the depe	ndent varia	ble 1s		N	-h -n -f C		
		Mala Ad	ing on Co	urses for			Mala A	inder of CC	A			E-mala	A dealter area	A	
		Male Ad	837-1850-1	Apprentices .863			Male A	1837-1850	-1863	5		remaie	1850-18	63	es
				20.04	01.10				F 070	C 100				1.070	0 171
Summer remperature				-20.94 [14.60]	-21.10 [14.60]				-0.970	-0.198				-1.270	-0.171 [5.553]
				[14.03]	[14.00]				[0.000]	[0.301]				[0.404]	[0.000]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to spending on courses for male adults and apprentices and the number of courses for male and female adults and apprentices. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01,** p < 0.05,* p < 0.1.

Table I.5: The Effects of the Cholera in 1832, 1849 & 1854 on the Primary School Attendance rate of Boys and Girls out of the Population Age 5-15 in 1837, 1851 & 1856

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	2SLS	2SLS
		Primary Sci	hool Attendan	ce Rate in Yea	ar t
Share of Cholera Deaths in Population	0.125	1.143	1.327	6.803	7.166
	[1.964]	[1.820]	[1.774]	[5.237]	[5.051]
Deviation from Summer Rainfall in Year (t)		0.012	0.009	0.010	0.007
(Baseline Years (t-1)-(t-25))		[0.0157]	[0.0156]	[0.0154]	[0.0154]
Land Suitability * Year Fixed Effects		-0.00994*	-0.00968*	-0.0107**	-0.0104**
		[0.00530]	[0.00532]	[0.00491]	[0.00495]
Border Department * Year Fixed Effects		-0.00601^{***}	-0.00610^{***}	-0.00703^{***}	-0.00716^{***}
		[0.00208]	[0.00208]	[0.00231]	[0.00225]
Maritime Department * Year Fixed Effects		0.003	0.003	0.003	0.003
		[0.00206]	[0.00204]	[0.00207]	[0.00205]
Share of Carboniferous Area * Year Fixed Effects		0.016	0.014	0.015	0.013
		[0.0113]	[0.0114]	[0.0108]	[0.0109]
GDP per capita			0.173^{**}		0.192**
			[0.0820]		[0.0974]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes
Within R2	0.654	0.730	0.735		
Moran I	-0.008	-0.007	-0.007	-0.007	-0.007
Moran I p-value	0.231	0.277	0.272	0.272	0.267
Clusters	85	85	85	85	85
Observations	255	255	255	255	255
First stage: the instrumented var	iable is S	Share of Chole	ra Deaths in P	opulation	
Summer Temperature				-0.141^{***}	-0.140***
				[0.0303]	[0.0308]
1st stage F-stat				21.652	20.788
Reduced Form: the dependent varia	ble is Pr	imary School	Attendance Ra	ate in Year t	
Summer Temperature				-0.958	-1.005
				[0.845]	[0.811]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to the primary school attendance rate. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the department level. ***p < 0.01,** p < 0.05,* p < 0.1.

Table I.6: Cholera in 1854 and Total Public Spending on Primary Schooling by Communes, Departments and the Central State

	(1)	(0)	(9)	(4)	(5)	(0)	(7)	(0)	(0)	(10)	(11)	(10)	(19)	(1.4)	(15)	(10)
		(2) OLS	(3)	(4) OLS	(0) 2515	(0) 251 S	(7) 251 S	(8)	(9)	(10) OLS	015	(12) OLS	(13) 2SLS	(14) 2SI S	(15) 2SI S	(10)
	015	OLD	OLD	OLD	2515	2010	2010	Total Educa	tion Spending	015	OLD	OLD	2010	2010	2010	2515
	Communes	Departments	State	Total	Communes	Departments	State	Total	Communes	Departments	State	Total	Communes	Departments	State	Total
				Years(t+	-1)-(t+5)							Years(t+	1)-(t+10)			
					/ (/ /								1 2 - 1			
Share of Cholera Deaths in Population	-5.409	-118.4*	-62.56	-37.42	-90.47*	-103.4	517.8	389.2	-5.314	-72.49**	44.09	31.17	-84.55*	-77.16	101.7	80.52
	[5.868]	[63.06]	[72.59]	[53.52]	[53.07]	[180.5]	[439.3]	[321.6]	[5.439]	[29.30]	[51.92]	[38.33]	[50.41]	[200.6]	[439.3]	[322.1]
Deviation from Summer Rainfall in Year (t)	0.0338	0.0248	-1.140	-0.961	0.398^{*}	-0.0394	-3.625^{*}	-2.788*	0.0434	-0.0630	-2.007*	-1.604^{**}	0.383^{*}	-0.0430	-2.253	-1.815
(Baseline Years (t-1)-(t-25))	[0.104]	[0.351]	[1.036]	[0.754]	[0.215]	[0.616]	[1.959]	[1.432]	[0.0974]	[0.368]	[1.104]	[0.806]	[0.204]	[0.670]	[1.758]	[1.288]
Land Suitability * Year Fixed Effects	0.000390^{***}	0.00225^{**}	0.000402	0.000143	0.000569^{**}	0.00222^{***}	-0.000817	-0.000753	0.000357^{***}	0.00231**	0.00110	0.000649	0.000523^{**}	0.00232^{***}	0.000978	0.000546
	[0.000145]	[0.000889]	[0.000981]	[0.000711]	[0.000231]	[0.000834]	[0.00187]	[0.00137]	[0.000134]	[0.000971]	[0.00119]	[0.000868]	[0.000217]	[0.000884]	[0.00183]	[0.00134]
Border Department * Year Fixed Effects	7.55e-05	-0.000348	0.00107	0.000875	0.000319^*	-0.000391	-0.000589	-0.000344	6.76e-05	-0.000266	0.000826	0.000716	0.000294^*	-0.000253	0.000662	0.000575
	[7.17e-05]	[0.000287]	[0.000760]	[0.000563]	[0.000164]	[0.000591]	[0.00156]	[0.00115]	[6.75e-05]	[0.000271]	[0.000724]	[0.000544]	[0.000156]	[0.000621]	[0.00139]	[0.00102]
Maritime Department * Year Fixed Effects	9.35e-06	0.000245	-0.00169**	-0.00124**	4.32e-05	0.000239	-0.00192**	-0.00141**	-1.96e-06	0.000255	-0.00175**	-0.00129**	2.95e-05	0.000257	-0.00178**	-0.00131**
	[5.85e-05]	[0.000216]	[0.000717]	[0.000524]	[7.22e-05]	[0.000189]	[0.000819]	[0.000602]	[5.46e-05]	[0.000226]	[0.000763]	[0.000560]	[6.73e-05]	[0.000198]	[0.000752]	[0.000552]
Share of Carboniferous Area * Year Fixed Effects	1.56e-06	0.000821	-0.00128	-0.00103	-0.000131	0.000845	-0.000375	-0.000366	-1.33e-05	0.00103	-0.00176	-0.00141	-0.000136	0.00103	-0.00167	-0.00134
	[0.000273]	[0.00132]	[0.00203]	[0.00147]	[0.000326]	[0.00142]	[0.00226]	[0.00166]	[0.000254]	[0.00147]	[0.00226]	[0.00164]	[0.000293]	[0.00159]	[0.00209]	[0.00153]
GDP per capita	0.630**	-1.069	-9.862***	-7.169***	0.384	-1.026	-8.183***	-5.935***	0.671***	-1.499	-9.750***	-7.189***	0.442*	-1.512	-9.583***	-7.047***
	[0.260]	[1.894]	[1.655]	[1.188]	[0.312]	[1.846]	[2.167]	[1.579]	[0.172]	[1.908]	[1.670]	[1.220]	[0.250]	[1.821]	[1.705]	[1.231]
Constant	19.66***	11.51	-32.77	-20.94	14.66***	12.39***	1.295	4.094**	20.13***	12.85	-0.371	2.501	15.48***	12.58***	3.012	5.397***
	[2.945]	[12.31]	[24.68]	[18.11]	[0.306]	[1.338]	[2.249]	[1.658]	[2.903]	[13.52]	[28.70]	[21.12]	[0.266]	[1.326]	[2.044]	[1.514]
Adjusted B2	0.368	0.280	0.325	0.335					0.417	0.247	0.327	0.349				
Moran I	0.036	0.032	-0.020	-0.016	0.057	0.029	0.006	0.006	0.417	0.012	-0.011	-0.008	0.055	0.013	-0.010	-0.007
Moran I p-value	0.000	0.002	0.020	0.387	1.000	0.025	0.877	0.884	1 000	0.955	0.519	0.604	1.000	0.959	0.536	0.613
Observations	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
			~~			~~										
						First stage: th	e instrumen	ted variable i	is Share of Cho	lera Deaths in l	Population					
					0.0010*	0.0010*	0.0010*	0.0010*					0.0010*	0.0010*	0.0010*	0.0010*
Summer Temperature					0.0210	0.0210	0.0210	0.0210					[0.0210*	0.0210	0.0210	0.0210
					[0.0100]	[0.0100]	[0.0100]	[0.0100]					[0.0100]	[0.0100]	[0.0100]	[0.0100]
1st stage F-stat					3.952	3.952	3.952	3.952					3.952	3.952	3.952	3.952
						Reduced	Form: the	dependent va	riable is Total	Education Sper	ding					
	Communes	Departments	State	Total	Communes	Departments	State	Total	Communes	Departments	State	Total	Communes	Departments	State	Total
		•		Years(t+	-1)-(t+5)	•				•		Years(t+	1)-(t+10)	•		
Summor Tomporatura					1 808*	2 160	10.87	8 166					1 774*	1.610	9 194	1.680
Summer remperature					-1.090	-2.109	[8 120]	[5 038]					-1.774	-1.019	2.134	[7 145]
					[0.900]	[4.200]	[0.120]	[0.900]					[0.911]	[4.000]	[9.101]	[1.140]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to total spending on primary schooling by communes, departments and the central state. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table I.7: Cholera in 1854 and Public Spending per Inhabitant on Primary Schooling by Communes, Departments and the Central State

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(1)	(0)	(9)	(4)	(٢)	(0)	(7)	(0)	(0)	(10)	(11)	(10)	(19)	(1.4)	(15)	(10)
Org Org Org Org State Table State Table State Table Commune Departments State Table State Table State Table State Table State Table Table State State State State Sta		(1)	(2)	(3)	(4)	(0) 001 0	(0)	(1)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(10)
common popartment State Total Communic Popartment State Total Communic <t< td=""><td></td><td>OLS</td><td>OLS</td><td>OLS</td><td>OLS</td><td>251.5</td><td>2515</td><td>2515</td><td>UL5</td><td>UL5 ling per Inhobi</td><td>UL5</td><td>OLS</td><td>OLS</td><td>2515</td><td>2515</td><td>2515</td><td>2515</td></t<>		OLS	OLS	OLS	OLS	251.5	2515	2515	UL5	UL5 ling per Inhobi	UL5	OLS	OLS	2515	2515	2515	2515
Column Column <thcolun< th=""> Column<!--</td--><td></td><td>Communes</td><td>Departments</td><td>State</td><td>Total</td><td>Communes</td><td>Departments</td><td>State</td><td>Total</td><td>Communes</td><td>Departments</td><td>State</td><td>Total</td><td>Communes</td><td>Departments</td><td>State</td><td>Total</td></thcolun<>		Communes	Departments	State	Total	Communes	Departments	State	Total	Communes	Departments	State	Total	Communes	Departments	State	Total
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Communes	Departments	State	Voars(t+	$(t\pm 5)$	Departments	State	10041	Communes	Departments	State	Voars(t+1	$(t \pm 10)$	Departments	State	Total
Share of Cholena Dealls in Population 4.48 4.38 4.38 4.383 6.20** 1.022 5.161 8.12** 3.962 8.363 9.37** 9.000171 9.00021** 9.000171 9.00021** 9.000171 9.00021** 9.000171					Tears(0)	1) (0+0)							rears(0+)	((110)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Share of Cholera Deaths in Population	4.481	-3.525**	7.075	7.075	-0.478	-45.37*	-0.787	-0.783	4.803	-6.240**	10.22	10.22	5.161	-62.11*	-3.962	-3.957
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[5.224]	[1.623]	[4,905]	[4,904]	[16.06]	[26,00]	[31.56]	[31.56]	[5,734]	[2.579]	[6.824]	[6.824]	[17.49]	[34.55]	[43.20]	[43.19]
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	Deviation from Summer Rainfall in Year (t)	0.0851*	-0.0229	-0.195**	-0.195**	0.106^{*}	0.156	-0.161	-0.161	0.100**	-0.0378	-0.279**	-0.279**	0.0988	0.201	-0.218	-0.218
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Baseline Years (t-1)-(t-25))	[0.0469]	[0.0319]	[0.0794]	[0.0794]	[0.0605]	[0.105]	[0.107]	[0.107]	[0.0469]	[0.0432]	[0.107]	[0.107]	[0.0661]	[0.142]	[0.152]	[0.152]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Land Suitability * Year Fixed Effects	0.000109	0.000154***	-0.000236***	-0.000236***	0.000120	0.000242**	-0.000219**	-0.000219**	0.000111	0.000233***	-0.000311***	-0.000311***	0.000111	0.000350**	-0.000281**	-0.000281**
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[7.38e-05]	[4.50e-05]	[5.80e-05]	[5.80e-05]	[9.18e-05]	[0.000102]	[8.86e-05]	[8.86e-05]	[7.65e-05]	[6.59e-05]	[7.90e-05]	[7.90e-05]	[9.72e-05]	[0.000137]	[0.000124]	[0.000124]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Border Department * Year Fixed Effects	5.89e-05**	-5.24e-05**	9.73e-05	9.73e-05	7.31e-05	6.72e-05	0.000120	0.000120	6.41e-05**	-6.37e-05*	0.000128	0.000128	6.31e-05	9.60e-05	0.000169	0.000169
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[2.69e-05]	[2.12e-05]	[6.15e-05]	[6.15e-05]	[5.05e-05]	[7.79e-05]	[8.93e-05]	[8.93e-05]	[2.78e-05]	[3.26e-05]	[8.52e-05]	[8.52e-05]	[5.52e-05]	[0.000103]	[0.000122]	[0.000122]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maritime Department * Year Fixed Effects	-7.75e-05**	-1.20e-06	-0.000108^{**}	-0.000108**	-7.56e-05***	1.54e-05	-0.000104^{**}	-0.000104**	-9.84e-05***	-9.78e-06	-0.000150**	-0.000150**	-9.86e-05***	1.24e-05	-0.000144^{**}	-0.000144**
Share of Carboniferous Area * Year Fixed Effects -0.000156 -0.000236* -0.000235* -0.000235* -0.000236* -0.000236* -0.000236* -0.000236* -0.0000236* -0.0000236* -0.0000236* -0.0000236* -0.0000236* -0.0000236* -0.0000236* -0.000036* -0.000036* -0.0005* -0.0056* -0.0168 -0.000236 -0.0168 -0.0168 -0.0168 -0.0168 -0.0168 -0.0168 -0.0168 -0.		[2.96e-05]	[2.37e-05]	[5.03e-05]	[5.03e-05]	[2.83e-05]	[3.83e-05]	[4.48e-05]	[4.48e-05]	[3.14e-05]	[3.24e-05]	[7.02e-05]	[7.02e-05]	[2.95e-05]	[5.02e-05]	[6.33e-05]	[6.33e-05]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Share of Carboniferous Area * Year Fixed Effects	-0.000195	-0.000116	-0.000286*	-0.000286*	-0.000203*	-0.000181	-0.000298*	-0.000298*	-0.000253**	-0.000150	-0.000376*	-0.000376*	-0.000252**	-0.000237	-0.000398*	-0.000398*
GDP pr capita 0.144 0.0788 -0.368*** 0.129 0.0422 -0.0452** -0.0452** -0.150 0.116 -0.558*** 0.150 0.058*** 0.058*** 0.058*** 0.058*** 0.058*** 0.058*** 0.058*** 0.058*** 0.0168 0.0168 0.0168 0.0168 0.0168 0.0168 0.0168 0.0168 0.0168 0.0188 0.0231 0.0172 0.0172 0.0231 0.0172 0.0172 0.0231 0.0172 0.0172 0.028 0.028 0.020 2.151* 4.215** 0.861 0.860 2.172*** 0.93*** 0.028 0.028 0.020 0.210 0.242 0.020 0.231 0.016 0.072 0.040 0.433 0.028 0.028 0.020 0.021 0.041 0.401 0.401 0.401 0.003 0.231 0.037 0.037 0.037 0.037 0.037 0.038 0.995 0.995 0.996 0.993 0.990 0.994 0.900 0.994 0.900 0.994 0.990 0.999 0.999 0.999 0.999 0.999 0.996 0.99		[0.000120]	[7.34e-05]	[0.000163]	[0.000163]	[0.000111]	[0.000127]	[0.000167]	[0.000167]	[0.000122]	[0.000113]	[0.000220]	[0.000220]	[0.000110]	[0.000180]	[0.000225]	[0.000225]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GDP per capita	0.144	0.0788	-0.386***	-0.386***	0.129	-0.0422	-0.408***	-0.408***	0.150	0.116	-0.558^{***}	-0.558^{***}	0.151	-0.0452	-0.599***	-0.599^{***}
Constant 1.812* 3.052** 0.475 1.521*** 0.596*** 0.0139 0.0139 2.151* 4.215*** 0.661 0.662 1.72*** 0.0255 0.0251 0.0282 0.0281 Adjusted R2 0.137 0.229 0.308 0.038 0.038 0.069 0.028 0.028 0.029 0.011 0.010 0.0401 0.010 0.0292 0.037 0.038 0.095 0.995 0.986 0.983 0.990 0.994 0.909 0.991 0.916 0.0106 <td></td> <td>[0.243]</td> <td>[0.0895]</td> <td>[0.120]</td> <td>[0.120]</td> <td>[0.231]</td> <td>[0.132]</td> <td>[0.121]</td> <td>[0.121]</td> <td>[0.240]</td> <td>[0.139]</td> <td>[0.168]</td> <td>[0.168]</td> <td>[0.232]</td> <td>[0.184]</td> <td>[0.172]</td> <td>[0.172]</td>		[0.243]	[0.0895]	[0.120]	[0.120]	[0.231]	[0.132]	[0.121]	[0.121]	[0.240]	[0.139]	[0.168]	[0.168]	[0.232]	[0.184]	[0.172]	[0.172]
Image: [1.048] [1.225] [2.081] [0.168] [0.134] [0.144] [1.151] [1.616] [2.806] [0.168] [0.183] [0.200] [0.200] [0.200] Adjusted R2 0.317 0.269 0.338 0.038 0.038 0.069 0.028 0.020 0.021 0.024 0.024 0.024 0.024 0.020 0.063 0.037 0.037 Moran I p-value 0.976 0.988 0.974 0.974 0.998 1.000 0.995 0.995 0.986 0.923 0.002 0.0021 0.024 0.003 0.033 0.037 0.999 0.991 0.910 0.0210* 0.0210* 0.0210* 0.0210* 0.021	Constant	1.812*	3.052**	0.475	0.475	1.521***	0.596***	0.0139	0.0139	2.151*	4.215**	0.861	0.860	2.172***	0.935***	0.0281	0.0282
Adjusted R2 Moran I Deservations 0.317 0.017 0.023 0.299 0.028 0.398 0.018 0.398 0.018 0.398 0.018 0.030 0.018 0.069 0.995 0.995 0.95 0.368 0.95 0.272 0.021 0.011 0.024 0.024 0.024 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021		[1.048]	[1.225]	[2.081]	[2.081]	[0.168]	[0.134]	[0.144]	[0.144]	[1.151]	[1.616]	[2.806]	[2.806]	[0.168]	[0.183]	[0.200]	[0.200]
Adjust 1/2 0.311 0.203 0.331 0.203 0.335 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.321 0.031 0.031 0.037 0.031 0.0210* 0.0210*	Adjusted P2	0.217	0.260	0.208	0.208					0.268	0.979	0.401	0.401				
Moran I p-value 0.017 0.028 0.0974 0.090 0.0974 0.099 0.0974 0.099 0.091 0.0210* 0.0210* 0.0210* 0.0210* 0.0210* 0.0210* 0.0210* 0.0210* 0.0210* 0.0210* 0.0210* 0.0210* 0.0	Moran I	0.017	0.203	0.038	0.018	0.030	0.069	0.028	0.028	0.000	0.272	0.024	0.024	0.020	0.063	0.037	0.037
Monumer product 0.000 0.0010% </td <td>Moran I p-value</td> <td>0.976</td> <td>0.020</td> <td>0.010</td> <td>0.974</td> <td>0.000</td> <td>1.000</td> <td>0.025</td> <td>0.020</td> <td>0.986</td> <td>0.983</td> <td>0.024</td> <td>0.024</td> <td>0.984</td> <td>1.000</td> <td>0.001</td> <td>0.999</td>	Moran I p-value	0.976	0.020	0.010	0.974	0.000	1.000	0.025	0.020	0.986	0.983	0.024	0.024	0.984	1.000	0.001	0.999
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Observations	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
First stage: the instrumented variable is Share of Cholera Deaths in Population Summer Temperature 0.0210*																	
Summer Temperature 0.0210^* 0.0							First stage:	the instrume	nted variable	is Share of Che	olera Deaths in	Population					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Summer Temperature					0.0210*	0.0910*	0.0210*	0.0210*					0.0210*	0.0910*	0.0210*	0.0910*
$\frac{1}{10000} \begin{bmatrix} 0.01001 \\ 0.01001 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0.01001 \\ 0.01001 \end{bmatrix} \begin{bmatrix} 0.01001 \\ 0.01001 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0.01001 \\ 0.01001 \end{bmatrix} \begin{bmatrix} 0.$	Summer remperature					[0.0106]	[0.0210	[0.0106]	[0.0210					[0.0106]	[0.0210	[0.0106]	[0.0106]
Ist stage F-stat 3.952 3.9						[0.0100]	[0.0100]	[0.0100]	[0.0100]					[0.0100]	[0.0100]	[0.0100]	[0.0100]
Reduced Form: the dependent variable is Education Spending per Inhabitant Communes Departments State Total Communes Departments <t< td=""><td>1st stage F-stat</td><td></td><td></td><td></td><td></td><td>3.952</td><td>3.952</td><td>3.952</td><td>3.952</td><td></td><td></td><td></td><td></td><td>3.952</td><td>3.952</td><td>3.952</td><td>3.952</td></t<>	1st stage F-stat					3.952	3.952	3.952	3.952					3.952	3.952	3.952	3.952
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							Reduced I	Form: the dep	endent variab	le is Education	Spending per I	nhabitant					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Communes	Departments	State	Total	Communes	Departments	State	Total	Communes	Departments	State	Total	Communes	Departments	State	Total
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-		Years(t+	1)-(t+5)	-				-		Years(t+1	l)-(t+10)	-		
[0.353] [0.422] [0.693] [0.693] [0.693] [0.693]	Summer Temperature					-0.0100	-0.952**	-0.0165	-0.0164					0.108	-1.303**	-0.0831	-0.0830
						[0.353]	[0.422]	[0.693]	[0.693]					[0.391]	[0.561]	[0.938]	[0.938]

Note: This table presents OLS and IV regressions relating the share of cholera deaths in each department to spending on primary schooling per inhabitant by communes, departments and the

central state. Constant not reported. Robust standard errors clustered at the department level. $^{***}p < 0.01, ^{**}p < 0.05, ^*p < 0.1.$

J. Alternative explanations

In this section, we discuss alternative explanations to our main results. It is indeed possible that during the 19^{th} c., factors such as migration, urbanization, fertility, age at marriage, religiosity or local financial intermediation could have had an impact on technology adoption. As such, our tests are meant to ensure that these factors were neither correlated with the diffusion of the cholera nor with summer temperatures in 1832, 1849 and 1854.

Alternative explanation: Migration and urbanization

Table J.1: Cholera in 1832, 1849 & 1854: Emigrants and Immigrants in 1841, 1851 & 1861

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
		St	ock of Imm	igrants			St	ock of Emi	grants	
Share of Cholera Deaths in Population	13.59	11.93	11.02	-26.20	-28.14	10.42	9.986	9.660	8.748	8.127
I I I I I I I I I I I I I I I I I I I	[8.534]	[8.959]	[8.932]	[20.47]	[20.99]	[6.741]	[7.009]	[6.934]	[16.07]	[15.84]
Deviation from Summer Rainfall in Year (t)	. ,	-0.0908	-0.0808	-0.0782	-0.0664	. ,	0.00223	0.00585	0.00264	0.00642
(Baseline Years (t-1)-(t-25))		[0.0959]	[0.0899]	[0.0892]	[0.0854]		[0.0518]	[0.0517]	[0.0502]	[0.0501]
Land Suitability * Year Fixed Effects		0.0280**	0.0266**	0.0328***	0.0313***		-0.0186**	-0.0191**	-0.0185**	-0.0190**
		[0.0108]	[0.0104]	[0.0109]	[0.0104]		[0.00812]	[0.00791]	[0.00794]	[0.00767]
Border Department * Year Fixed Effects		0.0122	0.0129	0.0200*	0.0211*		0.0115	0.0118*	0.0118	0.0121
*		[0.0123]	[0.0122]	[0.0116]	[0.0114]		[0.00702]	[0.00701]	[0.00762]	[0.00757]
Maritime Department * Year Fixed Effects		-0.0172**	-0.0164**	-0.0153*	-0.0144*		-0.00933	-0.00907	-0.00927	-0.00899
*		[0.00785]	[0.00765]	[0.00794]	[0.00776]		[0.00831]	[0.00843]	[0.00798]	[0.00807]
Share of Carboniferous Area * Year Fixed Effects		-0.0210	-0.0140	-0.0119	-0.00360		0.0193	0.0218	0.0196	0.0222
		[0.0278]	[0.0270]	[0.0272]	[0.0267]		[0.0217]	[0.0214]	[0.0217]	[0.0212]
GDP per capita		. ,	-0.863**	. ,	-0.985**		. ,	-0.312	t j	-0.316
* *			[0.361]		[0.455]			[0.265]		[0.258]
			. ,		. ,			. ,		. ,
Within R2	0.023	0.097	0.117			0.057	0.149	0.155		
Moran I	-0.008	-0.008	-0.008	-0.008	-0.008	-0.009	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.212	0.225	0.227	0.215	0.213	0.193	0.200	0.195	0.196	0.200
Clusters	81	81	81	81	81	81	81	81	81	81
Observations	243	243	243	243	243	243	243	243	243	243
R-squared	0.023	0.097	0.117	-0.021	-0.007	0.057	0.149	0.155	0.149	0.154
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Deviation from Summer Rainfall	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Geographic Controls	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
GDP per capita	No	No	Yes	No	Yes	No	No	Yes	No	Yes
		Firs	t stage: the	instrumente	ed variable is	Share of	Cholera D	eaths in Pop	oulation	
Commence There are trans				0.145***	0 144***				0.145***	0 144***
Summer Temperature				-0.145	-0.144				-0.145	-0.144
				[0.0320]	[0.0326]				[0.0320]	[0.0326]
1st stage F-stat				20.378	19.524				20.378	19.524
				Reduced	Form: the o	lependen	t variable is			
		St	ock of Immi	igrants		^ 	St	ock of Emi	grants	
~										
Summer Temperature				3.790	4.052				-1.265	-1.170
				[3.053]	[3.027]				[2.357]	[2.330]

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the stock of emigrants and immigrants in each department. Constant not reported. Robust standard errors clustered at the department level. Data on migrants are missing for the Bas-Rhin, Haut-Rhin, Meurthe and Moselle departments. ***p < 0.01, **p < 0.05, *p < 0.1.

The potential effects of labor scarcity on migration have opposite signs. On the one hand, labor scarcity entails higher wages and may attract immigrants. On the other hand, the adoption of new technology may lower wages and hence trigger emigration. It may also be the case that individuals would leave areas hit by the cholera to escape death and would not come back.

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	2SLS	2SLS
		Shar	e of Urba	n Population	n
Share of Cholera Deaths in Population	-0.378	-0.0384	-0.0995	-5.366	-5.287
	[1.120]	[1.190]	[3.968]	[3.375]	[3.323]
Department and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes
Geographic Controls * Year Fixed Effects	No	Yes	Yes	Yes	Yes
GDP per capita	No	No	Yes	No	Yes
Within R2	0.345	0.375	0.370		
Moran I	-0.007	-0.007	-0.007	-0.007	-0.007
Moran I p-value	0.272	0.272	0.266	0.261	0.258
Clusters	85	85	85	85	85
Observations	255	255	255	255	255
First stage: the instrumented variab	le is Sha	re of Chol	lera Death	ns in Popula	tion
Summer Temperature				-0.141***	-0.140***
				[0.0303]	[0.0308]
				. ,	
1st stage F-stat				21.652	20.788
Reduced Form: the dependent	variable	is Share o	of Urban I	Population	
Summer Temperature				0.756^{*}	0.742^{*}
				[0.415]	[0.410]

Table J.2: Cholera in 1832, 1849 & 1854: Urban Population in 1841, 1851 & 1861

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the share of the urban population in each department. Constant not reported. Robust standard errors clustered at the department level. Data on migrants are missing for the Bas-Rhin, Haut-Rhin, Meurthe and Moselle departments. ***p < 0.01, ** p < 0.05, * p < 0.1.

We rely on the data reconstructed by Daudin et al. (2019) on the share of the urban population and on the movements of the French population every decade during the 19^{th} century. They enable us to assess the effect of the 1832, 1849 and 1854 pandemics in each department on the stock of emigrants, i.e., the share of individuals who left their birth department, and on the stock of immigrants, i.e., the share of individuals who were living in a department other than their birth department, in 1841, 1851 and 1861.¹⁹

¹⁹These are measures of long-term migration, which is a characteristic of the 19^{th} c., as opposed to short-term migration which had been documented in agriculture in France since the middle ages (Châtelain, 1977). However there is no reason to think that short-term migration would have an impact on technology adoption in the wake of the cholera outbreaks as short-term migration occurred every year during harvest. It is unlikely to be correlated with high summer temperatures in specific departments only in 1832, 1849 and 1854. Finally it is unclear why short-term migration would lead to more technology adoption in agriculture and less in industry.

In Table J.1, the share of cholera deaths in the population has a negative and mostly insignificant effect on the stock of immigrants. It has a positive impact on the share of emigrants in Table J.1, although this effect is never significant. Furthermore, in Table J.2, the share of cholera deaths in the population has a negative but insignificant impact on the share of the urban population in each department. As such, while it bears repeating that our results do not in any way suggest that migration and urbanization did not play a role in technology adoption and innovation, they nonetheless show that migration and urbanization were not correlated with the spread of cholera and therefore cannot drive our main results.

Alternative explanation: Religiosity

To account for research (e.g., Bentzen, 2019) that has highlighted the link between natural disasters (such as pandemics) and religiosity, we explore whether the cholera outbreaks could be correlated with changes in religiosity and potentially with a deeper cultural shift that could delay or accelerate technology adoption and innovation. For this purpose, we use data from the *Statistique Annuelle de la France* on the shares of seminarians and of religious community members in the population. The choice of these two measures of Catholic religiosity is motivated by the importance of the Church in the educational system in 19^{th} c. France and by the fact that the French population remained overwhelmingly Catholic, in spite of its political independence from the clergy (Franck and Johnson, 2016; Squicciarini, 2020).²⁰

Table J.3 assesses the effect of the cholera pandemics on religiosity through two proxies: the shares of seminarians and of religious community members in the population. The results show the pandemics had a positive and significant but quantitatively small effect on the share of seminarians in the population, and no significant impact on the share of members of religious communities. Overall, these results suggest that religiosity was not really affected by the cholera pandemics and cannot therefore explain their impact on technology adoption.

 $^{^{20}\}mathrm{The}$ 1861 census indicates that about 2% of the French population was Protestant and about 0.2% was Jewish.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	OLS	OLS	OLS	2SLS	2SLS	OLS	OLS	OLS	2SLS	2SLS
	Sha	re of Semina	arians in Popula	tion 1841-185	51-1856	Share of l	Religous Comm	unity Members	in Population	1841-1851-1856
							-			
Share of Cholera Deaths in Population	0.00438	0.00371	0.00257	0.0321^{**}	0.0302^{**}	-0.00950	-0.0104	-0.0104	0.0158	0.0161
	[0.00626]	[0.00579]	[0.00603]	[0.0138]	[0.0136]	[0.00898]	[0.00875]	[0.00875]	[0.0279]	[0.0284]
Deviation from Summer Rainfall in Year (t)		-8.01e-05	-7.00e-05	-9.36e-05*	-8.48e-05		-0.000364***	-0.000364***	-0.000377***	-0.000379***
(Baseline Years $(t-1)-(t-25)$)		[5.56e-05]	[5.17e-05]	[5.36e-05]	[5.27e-05]		[0.000136]	[0.000135]	[0.000109]	[0.000110]
Land Suitability * Year Fixed Effects		$1.44e-05^*$	$1.36e-05^*$	1.15e-05	1.09e-05		$5.35e-05^{***}$	$5.35e-05^{***}$	5.08e-05***	$5.09e-05^{***}$
		[7.69e-06]	[6.92e-06]	[8.78e-06]	[8.58e-06]		[1.77e-05]	[1.77e-05]	[1.78e-05]	[1.79e-05]
Border Department * Year Fixed Effects		3.92e-06	4.53e-06	1.93e-08	6.54e-07		1.01e-05	1.01e-05	6.50e-06	6.38e-06
		[5.73e-06]	[5.52e-06]	[6.14e-06]	[6.03e-06]		[1.04e-05]	[1.05e-05]	[1.24e-05]	[1.25e-05]
Maritime Department * Year Fixed Effects		3.82e-06	4.28e-06	2.27e-06	2.69e-06		-7.65e-06	-7.64e-06	-9.08e-06	-9.16e-06
		[5.16e-06]	[5.17e-06]	[5.30e-06]	[5.19e-06]		[1.25e-05]	[1.25e-05]	[1.07e-05]	[1.08e-05]
Share of Carboniferous Area * Year Fixed Effects		6.38e-07	6.54e-06	-4.68e-06	3.76e-07		9.38e-05	9.39e-05	8.89e-05**	8.80e-05**
		[2.03e-05]	[1.94e-05]	[2.15e-05]	[2.12e-05]		[5.78e-05]	[5.88e-05]	[4.36e-05]	[4.42e-05]
GDP per capita			-0.000742***		-0.000613**			-7.98e-06		0.000115
			[0.000278]		[0.000295]			[0.000601]		[0.000614]
Department and Year-Fixed Effects	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves	Ves
Within R2	0.602	0.624	0.642	105	105	0 415	0 481	0.481	165	105
Moran I	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008
Moran I p-value	0.203	0.210	0.210	0.208	0.209	0.235	0.238	0.238	0.236	0.237
Clusters	85	85	85	85	85	85	85	85	85	85
Observations	252	252	252	252	252	252	252	252	252	252
			First sta	ge: the instru	mented variab	le is Share	of Cholera Dea	ths in Populatio	on	
Summer Temperature				-0.136^{***}	-0.135^{***}				-0.136^{***}	-0.135^{***}
				[0.0297]	[0.0301]				[0.0297]	[0.0301]
1st stage E stat				21 163	20 101				21 163	20 101
15t 5tage 1 -5tat				21.100	20.151				21.105	20.151
	<i></i>			Re	duced Form: t	he depende	ent variable is			
	Sha	re of Semina	arians in Popula	tion 1841-185	51-1856	Share of F	teligious Comm	unity Members	in Population	1841-1851-1856
Summer Temperature				-0.00438***	-0.00408**				-0.00215	-0.00218
Summer remperature				[0 00160]	[0 00168]				[0.00213	[0.00216]
				[0.00100]	[0.00100]				[0.00000]	[0.00000]

Table J.3: Cholera in 1832, 1849 & 1854: Seminarians and Religious Community Members in 1841, 1851 & 1856

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the share of seminarians and religious community members in the population. Data are missing for the Meurthe-et-Moselle department in 1854 and for the Seine department in 1849 and 1854. Constant not reported. Robust standard errors clustered at the year-department level. ***p < 0.01,** p < 0.05,* p < 0.1.

Alternative explanation: Fertility and age at marriage

To assess this potential alternative explanation for our results, we rely on on the data from the *Statistique Annuelle de la France* to compute the crude birth rate, which is the ratio of the number of births to the population of each department. While this is obviously a crude measure of fertility, it is less likely to be biased than other indices. Furthermore, we rely on the *Enquête des 3000 familles* dataset to analyze the age at marriage for individuals born one to 20 years after each epidemic.

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	2SLS	2SLS
		Crude Bir	th Rate - Yea	r t+1 to t+10	
Share of Cholera Deaths in Population	-2.259***	-1.834**	-1.903**	-0.798	-0.916
-	[0.760]	[0.847]	[0.803]	[3.499]	[3.508]
Deviation from Summer Rainfall in Year (t)	. ,	-0.00638	-0.00533	-0.00659	-0.00559
(Baseline Years (t-1)-(t-25))		[0.00968]	[0.00955]	[0.00914]	[0.00888]
Land Suitability * Year Fixed Effects		-0.00273*	-0.00283*	-0.00287	-0.00296*
		[0.00159]	[0.00154]	[0.00175]	[0.00170]
Border Department * Year Fixed Effects		-0.00341**	-0.00337**	-0.00359***	-0.00355***
		[0.00141]	[0.00142]	[0.00120]	[0.00121]
Maritime Department * Year Fixed Effects		0.00318^{***}	0.00325^{***}	0.00313^{***}	0.00319^{***}
		[0.000974]	[0.000955]	[0.000929]	[0.000908]
Share of Carboniferous Area * Year Fixed Effects		-0.00708*	-0.00650	-0.00733	-0.00677
		[0.00405]	[0.00409]	[0.00450]	[0.00460]
GDP per capita			-0.0652*		-0.0621
			[0.0352]		[0.0415]
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes
Deviation from Summer Rainfall	No	Yes	Yes	Yes	Yes
Geographic Controls	No	Yes	Yes	Yes	Yes
GDP per capita	No	No	Yes	No	Yes
Within R2	0.381	0.428	0.430		
Moran I	-0.006	-0.006	-0.006	-0.006	-0.006
Moran I p-value	0.338	0.353	0.354	0.353	0.354
Clusters	85	85	85	85	85
Observations	255	255	255	255	255
First stage: the instrumented va	riable is Sha	are of Cholers	Deaths in P	opulation	
				1	
Summer Temperature				-0.141***	-0.140***
				[0.0303]	[0.0308]
1st stage F-stat				21.652	20.788
Reduced Form: the dependent v	ariable is Ci	rude Birth Ra	ate - Year t+1	to t+10	
Summer Temperature				0.112	0.128
Summer remperature				[0.505]	[0.120
				10.0001	0.004

Table J.4: The Effects of the Cholera in 1832, 1849 & 1854 on the Crude Birth Rate in the Decade after each Pandemic

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the crude birth rate in the decade following each oubtreak. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Given that the fertility decline in France had begun in the late 18^{th} c. (Galor, 2011; de la Croix and Perrin, 2018; Daudin et al., 2019), it is not clear whether the drop in

population would have an impact on fertility rates and on the age at marriage and through these channels, on technology adoption.

Table J.4 finds a negative impact of the 1832, 1849 and 1854 pandemics on the crude birth rate over the ten years after each pandemic, although it is only significant in the OLS regressions. Moreover, Table J.5 reports a negative but insignificant effect on the age at marriage for individuals born one to 20 years after each epidemic. Overall, it does not seem that the correlation between fertility, nuptiality patterns and cholera epidemics would be strong enough to explain technology adoption.

Table J.5:	Cholera in 1832,	1849 & 1854:	Age at Ma	rriage of Spou	uses Born (One to 20	Years
after Each	h Cholera Pander	nic	-				

	(1)	(9)	(2)	(4)	(5)	(6)
		(2) OLS	(3)	(4) 2SI S	2515	2515
	Are at N	Jarriago Fo	r Individual	s Born 1 to '	2010 20 Vears after	Each Enidemic
	nge at i	damage 10	marviaua	3 DOIN 1 10	20 Icars arter	Lach Epideinie
Share of Cholera Deaths in Population	-28.83	-30.06	-28 11	-81.61	-84 78	-91.25
bilate of choicia boatilo in ropalation	[19 19]	[19.91]	[23 22]	[59.81]	[71.60]	[80.95]
Male	-0.0436	-0.0452	-0.0452	-0.0432	-0.0453	-0.0450
	[0.0839]	[0.0840]	[0.0840]	[0.0834]	[0.0835]	[0.0835]
Deviation from Summer Rainfall in Year (t)	[0.0000]	-0.0180	-0.0180	[0:000 1]	-0.0186	-0.0188
(Baseline Years (t-1)-(t-25))		[0.0552]	[0.0552]		[0.0546]	[0.0548]
Land Suitability * Year Fixed Effects		0.0175	0.0175		0.0172	0.0175
,		[0.0194]	[0.0194]		[0.0193]	[0.0193]
Border Department * Year Fixed Effects		0.0110	0.0113		0.0133	0.0109
<u>I</u>		[0.00966]	[0.00978]		[0.0102]	[0.00975]
Maritime Department * Year Fixed Effects		-0.00134	-0.00138		0.00467	0.00419
		[0.00799]	[0.00799]		[0.0107]	[0.0103]
Share of Carboniferous Area * Year Fixed Effects		-0.00163	-0.00136		0.00495	0.00228
		[0.0353]	[0.0353]		[0.0358]	[0.0352]
GDP per capita		. ,	-0.184		. ,	1.269
* *			[1.137]			[2.109]
			. ,			. ,
Department- & Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Deviation from Summer Rainfall	No	Yes	Yes	No	Yes	Yes
Geographic Controls	No	Yes	Yes	No	Yes	Yes
GDP per capita	No	No	No	No	No	Yes
Moran I	0.000	0.000	0.000	0.000	0.000	0.000
Moran I p-value	0.242	0.242	0.242	0.242	0.242	0.242
R-squared	0.047	0.047	0.047	0.046	0.047	0.047
Observations	11,953	11,953	11,953	11,953	11,953	11,953
First stage: the instrumente	d variable	e is Share of	Cholera De	eaths in Pop	ulation	
Summer Temperature				-0.0826***	-0.0709***	-0.0629***
				[0.00572]	[0.00547]	[0.00461]
1st stage F-stat				208.63	168.10	185.95
				1 (00 V	6 E I	
Reduced Form: the dependent variable is Age	at Marri	age For Ind	ividuals Boi	rn 1 to 20 Ye	ears after Eac	n Epidemic
C				6 799	6 011	5 790
Summer remperature				0.738	0.011	0.709 [F 190]
				[4.981]	[0.114]	[0.130]

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the age at marriage of brides and grooms born one to 20 years after each outbreak. Geographic controls for departments, which are interacted with year-fixed effects, include their land suitability, their share of carboniferous area and dummies for border and maritime departments. Constant not reported. Robust standard errors clustered at the year-department level. ***p < 0.01, ** p < 0.05, * p < 0.1.

Alternative explanation: Local financial intermediation

Because of the relationship between local access to finance and economic growth (e.g., Gennaioli et al., 2014), we analyze whether labor scarcity fostered technological adoption through the presence of local banks. We take advantage of the successive yearly issues of the *Rapport* sur les Caisses d'Epargne after 1835. This official publication of the French state provides data on the deposits in each savings bank of each department that we normalize by the department's population.

Table J.6: Cholera in 1849 & 1854: average amount of deposits per capita in the five years following each pandemic

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	2SLS	2SLS
	Depos	its per Cap	oita - Avera	age Years t-	+1 to t+5
Share of Cholera Deaths in Population	-2.159	-1.333	-0.620	4.753	10.04
	[3.526]	[3.554]	[3.358]	[9.755]	[10.47]
Deviation from Summer Rainfall in Year (t)		0.0323	0.0221	0.0250	0.00741
(Baseline Years (t-1)-(t-25))		[0.0417]	[0.0404]	[0.0478]	[0.0499]
Land Suitability * Year Fixed Effects		0.00357	0.00125	-0.00270	-0.0101
		[0.0178]	[0.0201]	[0.0255]	[0.0265]
Border Department * Year Fixed Effects		-0.00988	-0.00696	-0.0168	-0.0184
		[0.0125]	[0.0132]	[0.0211]	[0.0217]
Maritime Department * Year Fixed Effects		0.00851	0.00945	0.0113	0.0144
		[0.0130]	[0.0133]	[0.0148]	[0.0153]
Share of Carboniferous Area * Year Fixed Effects		0.00391	-0.00784	0.00112	-0.0150
		[0.0484]	[0.0473]	[0.0578]	[0.0599]
GDP per capita			0.350^{*}		0.421*
			[0.194]		[0.232]
Department- and Year Fixed Effects	Yes	Yes	Yes	Yes	Yes
Within R2	0.547	0.558	0.574		
Moran I	-0.010	-0.009	-0.009	-0.009	-0.010
Moran I p-value	0.316	0.323	0.321	0.317	0.309
Clusters	85	85	85	85	85
Observations	170	170	170	170	170
First stage: the instrumented variable	is Share o	of Cholera	Deaths in	Population	
Summer Temperature				-0.180***	-0.179^{***}
				[0.0471]	[0.0485]
1.4. de la Dista				14.000	10 577
ist stage r-stat				14.002	13.377
Reduced Form: the dependent variable is D	eposits pe	er Capita -	Average Y	ears t+1 to	t+5
Summer Temperature				-0.856	-1.796
				[1.225]	[1.351]

Note: This table presents OLS and IV regressions relating the share of cholera deaths to the average amount of deposits per capita in the five years following each outbreak. Constant not reported. Robust standard errors clustered at the department level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table J.6 reports the impact of the cholera pandemics on the amount of deposits per capita in the savings banks of each department averaged over the five year period which followed each pandemic. The effect is insignificant in all the specifications. These results thus suggest that local financial development was not correlated with the cholera outbreaks and cannot therefore drive our results pertaining to technology adoption and innovation.

H. Historical sources

Béaur, Gérard, and Béatrice Marin. 2011. La Statistique Générale de la France – Présentation. L'Atelier du Centre de recherches historiques. http://acrh.revues.org/index2891.html

France, Bureau de la statistique générale, (1873), Enquête Industrielle, Imprimerie Berger-Levrault, Nancy.

France. Direction générale des douanes et des contributions indirectes. Tableau décennal du commerce de la France (1827-1836) (1837-1846) (1847-1856), Imprimerie Nationale, Paris.

France, Ministère de l'agriculture (1862), Documents statistiques et administratifs concernant l'épidémie de choléra de 1854, comparée aux précédentes épidémies cholériques qui ont sévi en France, Imprimerie Impériale, Paris, France.

France, Ministère de l'agriculture du commerce et des travaux publics (1847) Statistique de la France - Industrie. Imprimerie Royale, Paris.

France. Ministère de la guerre (1791-1936) - Compte rendu sur le recrutement de l'armée, Imprimerie Nationale, Paris.

France. Ministère de la Justice (1827-1934) - Compte général de l'administration de la justice criminelle en France, Imprimerie Nationale, Paris.

France, Ministère de l'agriculture du commerce et des travaux publics (1852), Enquête Agricole, Imprimerie Impériale, Paris.

France, Ministère de l'agriculture du commerce et des travaux publics (1857) Enquête Industrielle, Imprimerie Impériale, Paris.

France, Ministère de l'agriculture du commerce et des travaux publics (1862), Enquête Agricole, Imprimerie Impériale, Paris.

France, Ministère de l'agriculture du commerce et des travaux publics (1864) Statistique de la France - Prix et salaires à diverses époques. Imprimerie Impériale, Paris.