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Abstract

This article introduces a regression discontinuity design (RDD) for distribution-valued
outcomes (R3D), extending the standard RDD framework to settings where outcomes
are entire distributions rather than single values. This arises when treatment is assigned
at the group level (e.g., firms, schools) but the objects of interest are within-group dis-
tributions (e.g., employee wages, student test scores). Standard RDDs are not designed
for this two-level structure, as they assume scalar outcomes observed at the same level
as treatment assignment. To address this, I develop a novel approach based on random
distributions and show that, under a mild continuity condition on the average quantile
function, the jump at the cutoff identifies a local average quantile treatment effect. To
estimate it, I propose a distribution-valued local polynomial estimator, which fits the
full quantile curve with a single bandwidth, avoids quantile crossing, and yields a mean-
ingful “average distribution”. I derive uniform asymptotic normality, valid multiplier
bootstrap confidence bands, and a data-driven bandwidth selection method. Simula-
tions demonstrate strong performance and reveal that standard quantile RDD is biased
and inconsistent in this setting. An application to U.S. gubernatorial close elections
(1984–2010) uncovers an equality–efficiency trade-off under Democratic control, driven
by income reductions at the top of the distribution.

JEL Codes: C14, C21, C13, C12.
Keywords: causal inference, random distributions, quantile treatment effects, Fréchet
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1 Introduction

Regression discontinuity designs (RDD) are among the most widely used non-experimental

strategies for causal inference. In their canonical form, they compare observations just

above and just below a known cutoff in an assignment variable—test scores, income thresh-

olds, electoral margins—and recover the jump in the conditional mean of a scalar outcome,

interpreted as a local average treatment effect. This setup presumes that each unit has a

single running variable and a single outcome measured at the same level of aggregation.

Many policy settings violate this premise. The running variable is often defined for an

aggregate entity, while the outcome that matters is the entire distribution of micro-level

observations contained in that entity. For example: a district-wide poverty rate determines

eligibility for an education grant, yet the object of interest is the distribution of students’ test

scores within each district; a firm’s revenue determines its eligibility for a subsidy, yet the

object of interest is the distribution of employee wages within each firm. These settings are

marked by two layers of randomness: one across units (districts, establishments), and one

within, which reflects heterogeneity in the different units’ outcome distributions (students

within districts, goods sold in an establishment). The scalar RDD framework is silent about

this additional structure. Nonetheless, it is ubiquitous: Table 1 shows that 38% of all RDD

papers published in the top five economics journals, and 32% of those in the top three political

science journals feature some form of such a “group-level” RDD setting between 2014 and

2024 – either disaggregated (e.g. employee-level data) or aggregated (e.g. average employee

outcomes within a firm).1 Moreover, the design is becoming increasingly common, as shown

in Figure A-2, with every single RDD paper in the top economics journals in the last two

years involving some form of the setting. These observations motivate the development of a

novel RDD framework that can accommodate distribution-valued outcomes.

In this article, I extend the classical RD framework to a functional data setting that

accommodates distribution-valued outcomes. I refer to the resulting design as a Regression

Discontinuity Design with Distributions (R3D). Conceptually, each observational unit pro-

vides not a single outcome but an entire distribution, so the outcome distribution is itself

a random object. This naturally leads to a novel concept of distribution-valued treatment

effects, the local average quantile treatment effect (LAQTE), which captures the underlying

average quantile function around the cutoff, where the average is with respect to the distribu-

tion of distributions. Identification follows from an intuitive condition: the conditional mean

1The top five economics journals are considered to be, in no particular order: Quarterly Journal of
Economics, Econometrica, American Economic Review, Review of Economic Studies, Journal of Political
Economy. The top three political science journals are considered to be: American Political Science Review,
American Journal of Political Science, Journal of Politics.
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Table 1: R3D-Like Settings in Top Journals (2014–2024)

Economics Political Science

Any R3D (%) 37.9 32.3
Disaggregated (%) 25.8 15.1
Aggregated (%) 19.7 19.4

Total Number of RD Papers 78 104
Total Number of Papers

Note: this table shows percentage of papers in top five Economics and top three Political Science journals
with RD designs that qualified as an R3D. “Any R3D” indicates any form of R3D setting, while “Aggregated”
and “Disaggregated” indicate whether the data was aggregated to the level of the treatment assignment for
estimation, or whether the disaggregated (within-unit) data was used. Sample consists of any paper in those
journals that had “regression discontinuity” or “RDD” in any of its fields.

of the quantile functions must be continuous in the running variable, but not the quantile

functions themselves. This is the direct analogue, for distribution-valued outcomes, of the

smoothness assumption that underpins scalar RDDs. Figure 1 illustrates the contrast: in a

standard design the data are a random point cloud (rainbow colors) and their conditional

expectation (gray color) is a smooth scalar-valued function; in R3D, the data points are

random distributions (rainbow colors), and their conditional expectations (gray color) are a

smooth path of distributions.

To estimate these average quantile treatment effects in practice, I propose a distribution-

valued local–polynomial estimator, which regresses the entire quantile functions of the units to

the left and right of the cutoff on the scalar-valued running variable. The procedure is based

on local Fréchet regression in 2-Wasserstein space (Petersen and Müller, 2019), tailored to

the RD setting. It minimizes a local least-squares criterion defined on the space of probability

distributions. By virtue of its functional nature, it exploits all information in each unit’s

distribution, needs only one bandwidth and estimation step, avoids quantile crossing, and

produces a directly interpretable object—the “conditional average distribution” at the cutoff

(Agueh and Carlier, 2011; Fan and Müller, 2024).

For comparison, I also develop a pointwise alternative that extends the canonical lo-

cal–polynomial RDD to random quantiles : each unit’s empirical quantile function is eval-

uated on a grid of probabilities and the resulting values are smoothed separately for each

quantile. The distribution-valued estimator can be viewed as the L2 projection of these

pointwise fits onto the cone of valid quantile functions. Leveraging this link, I extend the

results of Chiang et al. (2019) to derive uniform, debiased confidence bands for the pointwise

estimator, and then extend these results to distribution space by exploiting the smoothness

of the projection operator. This approach of casting the distribution-valued estimator as a
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Figure 1: Example of a Distribution-Valued RDD

(a) R3D: Sample (b) R3D: Conditional Expectation
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(c) RDD: Sample + Conditional Expectation

Note: (a) shows sample of distributions drawn as normal distributions with uniform means, N(5x3+δ−5, 1)
when x ≤ 0 and N(5x3 + δ− 2, 4) when x > 0 with δ ∼ Unif(0, 5). (b) shows estimated conditional mean of
these random distributions; (c) shows canonical RD design drawn as scalars instead of distributions, from
the same data-generating process. Rainbow-colored objects indicate the sampled data in both designs, gray-
colored objects indicate conditional means.

projection of existing frameworks allows me to sidestep the lack of central limit theorems

for general metric spaces (like the space of distributions) and derive the first uniform in-

ference for local Wasserstein–Fréchet regression (Dubey and Müller, 2019). As such, my

results complement those of Petersen et al. (2021), who derived confidence bands for global

Wasserstein-Fréchet regression by leveraging optimal transport geometry and the linearity

of the global regression model. I similarly leverage that space’s optimal transport geometry,

but without requiring a linear response model, instead exploiting the connection to the point-
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wise local polynomial estimator. I also derive a novel integrated MSE-optimal bandwidth

selection procedure that works for the whole distribution at once.

Further, I demonstrate the estimator in an empirical application. The question studied is,

“what is the effect of partisan control of the state governor’s office on the within-state income

distribution?”. To answer it, I leverage a close-election R3D design, which compares states

where the Democratic/Republican candidate narrowly won their election to states where

they narrowly lost. Because each state has only a single election outcome but an entire

distribution of family incomes, this is a prototypical R3D setting. Applying the proposed

estimator to this setting, I estimate that Democratic governors prevail over a decrease in

income inequality in their states, at the expense of a reduction in income for the top 10% of

earners. These results point to a classical equality–efficiency trade-off (Okun, 1975), where

a decrease in income inequality can only be achieved at the cost of an overall loss of income.

Note that the setting considered here is distinct from that of the quantile RD (Q-RD)

setting first developed in Frandsen et al. (2012). That approach estimates quantile treatment

effects for scalar-valued outcomes, and thus does not apply to the distribution-valued setting

considered here, as it ignores randomness across aggregate units. Indeed, in what follows,

the quantile RD estimator is shown to be biased and inconsistent in the R3D setting, both

theoretically and in simulations. Section 2.4 below discusses this in more detail.

In summary, this article introduces a novel RD setting with distribution-valued outcomes.

I define and identify a novel local average quantile treatment effect concept appropriate for

this setting; develop a distribution-valued version of local polynomial regression, for which

I derive uniform inference with a multiplier bootstrap and data-driven bandwidth selection;

validate these results through simulations; and conclude with an empirical application to

gubernatorial close elections.

Literature

This article contributes to several strands of literature, the primary one being the literature

on regression discontinuity design (Thistlethwaite and Campbell, 1960; Hahn et al., 2001),

see Lee and Lemieux (2010) and Cattaneo and Titiunik (2022) for an older and more recent

overview. I contribute to this large area of research in three ways.

First, I extend the literature on quantile treatment effects in RDD to allow for distribution-

valued outcomes. Frandsen et al. (2012) first developed the framework for quantile RD and

derived uniform convergence results, though they did not derive uniform confidence bands.

These were developed later for different types of quantile RD estimators in Qu and Yoon

(2019); Qu et al. (2024); Chiang et al. (2019). Further variations of the classical quantile
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RD were studied in Jin et al. (2025); Chiang and Sasaki (2019); Qu et al. (2024); Chen

et al. (2020). I build on this literature, in particular the general framework of Chiang et al.

(2019), to derive uniform confidence bands for RD designs with distribution-valued out-

comes, which are not supported by existing quantile RD methods. This also connects to the

larger literature on distributional inference (Chernozhukov et al., 2013) and quantile regres-

sion and treatment effects (Koenker and Bassett Jr, 1978; Firpo et al., 2009; Firpo, 2007;

Chernozhukov and Hansen, 2005).

Second, I contribute to the strands of literature that have developed robust, debiased con-

fidence bands for local polynomial estimators with mean-squared error (MSE) based band-

width selection procedures (Calonico et al., 2014, 2018, 2020, 2022; Armstrong and Kolesár,

2018; Imbens and Kalyanaraman, 2012), by extending these tools to distribution-valued set-

tings. That places this paper in a rich literature built on the foundational contributions in

local polynomial regression, particularly related to bias reduction and bandwidth selection,

made by Fan and Gijbels (1992); Fan (1993); Fan and Gijbels (1995); Linton and Nielsen

(1994).

Third, this article relates to several other papers that have considered RD designs with

varying levels of aggregation. Borusyak and Kolerman-Shemer (2024) considered the op-

posite design, where the treatment assignment is at a lower instead of a higher level of

aggregation than the outcome. Cattaneo, Titiunik, Vazquez-Bare and Keele (2016); Cat-

taneo et al. (2021); Bertanha (2020) considered aggregation schemes for RD with multiple

cutoffs. Relatedly, Gunsilius and Van Dijcke (2025); Papay et al. (2011); Cheng (2023) con-

sidered RD designs with multi-dimensional or multiple assignment variables. A related line

of work develops clustered RDD methods for settings where the running variable is constant

within groups (e.g., districts or states), inducing clustering in individual-level outcomes (Lee

and Card, 2008; Lee and Lemieux, 2010; Barreca et al., 2016; Bartalotti and Brummet,

2017; Cattaneo, Titiunik and Vazquez-Bare, 2016; Kolesár and Rothe, 2018; Cattaneo and

Titiunik, 2022). These methods derive cluster-robust asymptotics, bandwidths, and infer-

ence. While the approach of clustering standard errors at the group level works for average

treatment effect estimation, this does not carry through to quantile treatment effects due to

their nonlinearity, motivating the new approach in this article.

The other main strand this paper contributes to is the literature on Fréchet (1948) re-

gression, which was originally developed by Petersen and Müller (2019) for general metric

spaces, with several further contributions for distribution regression in Wasserstein space

(Chen et al., 2023; Fan and Müller, 2022; Chen and Müller, 2023; Ghodrati and Panaretos,

2022; Zhou and Müller, 2024) and for local Fréchet regression (Chen and Müller, 2022; Iao

et al., 2024; Qiu et al., 2024). As noted above, I contribute to this literature by deriving
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uniform confidence bands for local Fréchet regression in Wasserstein space, complementing

related results for global Fréchet regression in Petersen et al. (2021) and for Wasserstein

barycenters in Carlier et al. (2021); Agueh and Carlier (2017); Kroshnin et al. (2021). My

results also hold for general polynomial orders while the literature has mostly focused on local

linear regression, with the exception of Schötz (2022). More broadly, this article contributes

to the large literature on functional data analysis (Ramsay and Silverman, 2005).

Relatedly, my results leverage the fact that Fréchet regression in 2-Wasserstein space is

an L2 projection of the local polynomial estimator onto the space of quantile functions. This

relates closely to isotonic regression (Barlow et al., 1972; Groeneboom and Jongbloed, 2010;

Lin et al., 2019) and monotone rearrangement methods (Chernozhukov et al., 2010), as well

as shape-constrained inference with convex projection operators (Chetverikov et al., 2018;

Groeneboom and Jongbloed, 2014; Fang and Seo, 2021; Dümbgen, 2024).

This article also contributes to the literature applying optimal transport tools to causal

inference – see Gunsilius (2025) for a recent overview. In particular, Gunsilius (2023) con-

sidered a similar setting to mine, where treatment is at a higher level than the outcome,

in the context of synthetic controls (see also Van Dijcke et al. (2024) for an application to

firm tenure distributions). More broadly, the paper relates to a small but rapidly growing

literature developing causal inference methods for outcomes in geodesic spaces (Kurisu et al.,

2024; Lin et al., 2023; Katta et al., 2024), including the well-known difference-in-differences

(Athey and Imbens, 2006; Torous et al., 2024; Callaway et al., 2018; Callaway and Li, 2019;

Ghanem et al., 2023; Zhou et al., 2025) and synthetic control estimators (Kurisu et al.,

2025a; Gunsilius et al., 2024).

2 Regression Discontinuity with Distribution-Valued Outcomes

In this section, I present the distribution-valued version of the canonical regression discon-

tinuity design. First, I formally introduce the setting, before providing several concrete

examples from the literature. Then, I introduce a new definition of “local average quantile

treatment effects” (LAQTE) appropriate for this setting, where the average is over random

quantile functions. Before presenting two consistent estimators for these LAQTEs, I briefly

discuss the distinction between my R3D setting and the classical quantile RD setting of

Frandsen et al. (2012). I conclude providing an overview of the statistical inference tools

developed in Section 3, including extensions to fuzzy RDD and empirical quantile functions.
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2.1 Setting

First, I define and discuss the R3D setting. Let X ∈ R denote the scalar-valued running

variable. Let Y be the space of cumulative distribution functions (cdfs) G on R with finite

variance,
∫
R x

2 dG(x) < ∞. Let (X, Y ) ∼ F be a random element with joint distribution F

on R × Y . Here, Y is the distribution-valued outcome variable, and I emphasize that it is

a random distribution function from R to [0, 1] so that we can write Y (y) for some y ∈ R.
Hence, each draw (Xi, Yi) from (X, Y ) provides a full distribution Yi at the running variable

value Xi, rather than a single real number, unlike the canonical RD design. Then, denote

by T ∈ {0, 1} the treatment status. I assume that T is a monotonic function of X such that,

T =

0 if X < c

1 if X ≥ c

for some threshold c. That is, treatment is assigned deterministically when the running

variable X crosses the threshold c, where I assume without loss of generality that c = 0.

This is the so-called “sharp” RD design, on which I focus in the main text for expositional

clarity, though I derive statistical results for the fuzzy RDD case as well (see Section ??).

Further, I will write QY (q) for the function mapping the cdf Y to quantiles,

QY (q) := inf{y ∈ R : q ≤ Y (y)}.

Note that, in most of the paper, I will assume that Yi and hence QYi
(q) are fully observed

for a given unit (e.g., firm) i. This eases notation and reflects the natural setting where data

is available on all within-group units; e.g. all employees within a firm (which I will use as

the running example). The setting where only a sample of within-group units is observed is

a straightforward extension that is covered in Section 3.3.1.

Finally, denote the marginal distributions of X and Y as FX , FY , with fX := ∂FX(x)
∂x

the

pdf of X which will be well-defined near the cutoff c under the stated assumptions. I equip Y
with the Borel σ-algebra induced by the W2 (2-Wasserstein) metric. Let FY |X=x denote the

conditional distribution of Y given X = x, which exists because (Y ,W2) is Polish (Villani

et al., 2008) and hence the disintegration theorem applies (Chang and Pollard, 1997). In

addition, let µ = E[X] and Σ = var(X) with Σ positive definite.

2.2 Motivating Examples

To make the setting more concrete, I now provide several prominent examples from the

literature that can be viewed as R3D designs. They are instances of broader classes of settings
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where treatment is assigned to units at a higher level of aggregation than the outcomes.

Example 1 (Administrative units). In an influential article, Ludwig and Miller (2007)

study the impact of Head Start, an early childhood education and development program, on

child mortality and educational attainment. Counties above a threshold poverty rate (running

variable X) received grant writing assistance from the federal government (treatment T ) to

develop Head Start proposals, causing a discontinuity in Head Start funding rates at the

cut-off point. In an R3D setting, this discontinuity could be exploited to estimate the effect

of the program on the life expectancy and test score distributions (outcomes Y ) of children

growing up in counties just above the cut-off point. At what ages did child mortality drop the

most? Did the program’s positive impact on years of schooling help all students equally, or

mostly those with fewer years of schooling? More broadly, the R3D design applies whenever

a treatment is jointly assigned to all members of an administrative unit, such as counties,

school districts, or government agencies.

Example 2 (Institutions). Clark (2009) considers a British reform allowing public high

schools to become autonomous (directly funded by the central instead of the local government)

if a majority of parents vote in favor, where parent vote share is the running variable (X).

The paper finds large increases in examination pass rates at schools that narrowly won the

vote, compared to those that narrowly lost. This can be cast as an R3D design, by considering

the effect of school autonomy (T ) on the entire distribution of student test scores within a

school (Y ). Does school autonomy lead to a broad-based increase in test scores, or do only

the lowest-scoring students benefit? More generally, the R3D design comprises any setting

where an entire institution is exposed to a treatment, but the outcome of interest affects

its members. Furthermore, since vote-based allocation systems typically aggregate decisions

of many individuals into higher-level outcomes, many instances of the ubiquitous “close-

election” RD design fall under the R3D framework.

Example 3 (Establishments). In another seminal article, Card and Krueger (2000) stud-

ied the effect of a minimum wage increase (T ) in New Jersey on wages, employment, and

prices in fast food restaurants, comparing establishments on either side of the border with

Pennsylvania. The running variable here is distance to the border (X). Since establishments

typically sell many items and employ tens to hundreds of employees, one could, with the right

data, observe entire distributions (Y ) for each establishment. Wages and tenure (length of

employment) could be measured at the employee level, and prices at the product level. Then

one could answer questions such as: did the minimum wage increase mainly spur new hires,

or did employment increase across the tenure distribution? Did the pass-through of the wage

increase to consumers affect all products equally or mostly premium ones? More generally,
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the R3D design applies to any setting where the establishments are treated as a whole, but

one wants to study changes to transactions within the establishment.

Common to all these examples is that for any value of the running variable (vote share,

poverty level, distance to the border), one observes an entire distribution of the outcome

(test scores, child mortality, store prices), and these outcome distributions vary across any

two units (schools, counties, or restaurants). This implies that one needs to model the

outcome as a random distribution instead of a random variable. Consequently, new concepts

of average treatment effects and discontinuities that are appropriate for random distributions

are required, which I introduce in the next section.

2.3 Local Average Quantile Treatment Effects

2.3.1 Definition

To begin, I define a new treatment effects concept for distribution-valued outcomes appro-

priate for the setting introduced above. Following Neyman-Fisher-Rubin notation, denote

Y 0 ∈ Y the counterfactual outcome distribution in the absence of treatment and Y 1 ∈ Y the

outcome distribution under treatment. Define the observed outcome

Y =

Y 0 if T = 0

Y 1 if T = 1
,

noting once more that Y is a cdf so one can write Y (y), y ∈ R to evaluate the function at a

given point y.

Consider, for a moment, the canonical RD setting, such that Zt ∈ R, t= 0, 1 the clas-

sical scalar-valued counterfactual outcome. Then, assuming that the treatment effects vary

between units, the classical local treatment effect is (Hahn et al., 2001)

E[Z1 − Z0 | X = 0],

the conditional expectation of the individual-level causal effect at the threshold.

In the R3D setting, Y t is a full distribution function. An intuitive generalization of the

classical average treatment effect to this setting is given in the following definition.

Definition 1 (Local Average Quantile Treatment Effects (LAQTE)). The local average
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quantile treatment effects for the R3D design are,

(1)
τR3D(q) := E [QY 1(q)−QY 0(q) | X = 0]

=: m1(q)−m0(q), q ∈ [0, 1].

Observe that the expectation is taken with respect to the conditional distribution of

distributions, FY t|X=0,

mt(q) = E[QY t(q) | X = 0] =

∫
Y
Qy(q) dFY t|X=0(0, y), t = 0, 1,

where Proposition A-3 in Appendix proves the uniqueness and existence of these objects.

These local average quantile treatment effects are a compelling way to summarize random

distributional treatment effects. They offer an intuitive generalization of average treatment

effects in the Euclidean setting. In particular, they allow one to study what happens to the

outcome distribution of the “average” unit when it crosses the cutoff and receives treatment.

Moreover, the resulting “average quantile function” is meaningfully an “average of distri-

butions” in that it respects the intrinsic geometry of the underlying probability measures

being averaged over. In particular, the distribution defined by the LAQTEs has the intuitive

interpretation of being the unique distribution with the lowest possible cumulative “least-

squares” cost of transporting its probability mass into each of the underlying distributions

of the individual units. This is exactly analogous to the interpretation of the mean as the

“central tendency” in the standard Euclidean setting, i.e. the unique quantity that has the

lowest expected least-squares distance to all points. Note that one can also easily incorporate

weights for each unit here (e.g., firm size weights), which would turn the population target

into a weighted average quantile function and does not change the results that follow.

Next, I show that these unobserved LAQTEs can be identified from observed data (X, Y ).

2.3.2 Identification

To identify τR3D from the data, I impose two assumptions that generalize the canonical RDD

versions. First, I assume that the average quantile function is continuous in the running

variable around the threshold.

I1 (Continuity). E[QY t(q) | X = x] is continuous in x for all q ∈ [0, 1], for x ∈ (−ε, ε),
t ∈ {0, 1} and ε > 0.

Importantly, this assumption allows for the observed random distributions Y to evolve

discontinuously with x, like in the top left panel of Figure 1. This is unlike the quantile
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RD literature, which assumes the observed distributions themselves are smooth and hence

precludes any heterogeneity in the distributions across aggregate units (firms) (Frandsen

et al., 2012).

The following example may help to clarify this point. Suppose he counterfactual distribu-

tion functions Y t are drawn from a class of normal distributions with uniformly distributed

means that depend on X and shift with treatment T . The distributions in Figure 1 are an

instance of this class. The figure clearly demonstrates what it means for distributions to be

drawn randomly: the densities at a given value of the running variable fluctuate, leading

to a lack of continuity with respect to X. This directly generalizes the Euclidean setting,

where samples form a random point cloud that generally also lacks continuity. By contrast,

1b shows the conditional average distributions estimated on either side of the cutoff using

the local polynomial approach set out in Section 2.5. These average distributions are clearly

continuous in the running variable. This shows that even this simple collection of random

Gaussian distributions satisfies the weaker continuity assumption I1 but still fails the con-

tinuity in quantiles. The following proposition formally establishes this for a large class

of quantile models that subsumes classical quantile IV models (Chernozhukov and Hansen,

2005).

Proposition 1 (Smooth average vs. discontinuous observed quantile functions). Fix q ∈
(0, 1). Suppose

(2) QY (q) = µ(X, q) + ε(q) a.s.,

where µ(·, q) is continuous in x near 0, and ε(q) is independent of X with a continuous

density and E[ε(q)] finite (w.l.o.g. take E[ε(q)] = 0, else absorb it into µ). Let {(Xi, Yi)}ni=1

be i.i.d., and write εi(q) for the copy attached to unit i.

(i) Smooth average quantiles. The conditional average quantile

E [QY (q) | X = x] = µ(x, q) + E[ε(q)]

is continuous in x.

(ii) Observed discontinuities for nearby units. For any δ > 0, q ∈ [0, 1],

P
(
∃ i ̸= j : |Xi −Xj| < δ and QYi

(q) = QYj
(q)

∣∣∣ X1, . . . , Xn

)
= 0 a.s.

Proof. (i) Follows from independence and continuity of µ(·, q). (ii) For any pair (i, j),

QYi
(q)−QYj

(q) =
[
µ(Xi, q)− µ(Xj, q)

]
+
(
εi(q)− εj(q)

)
.
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Conditional on (Xi, Xj), the difference εi(q) − εj(q) has a continuous density, so it equals

the fixed value −{µ(Xi, q)−µ(Xj, q)} with probability 0. A finite union over pairs yields the

claim.

Remark 1. The model in (2), though it is already quite general – non-parametric and

with infinite-dimensional individual heterogeneity – is simplified to illustrate the smoothness

assumptions at play. The assumptions I impose later in Section 3 allow for an even more

general class of models that are nonseparable in ε, i.e. QY (q) = f(X, q, ε(q)).

Remark 2. For a more concrete parametric example, consider the normal distribution with

normal means in Figure 1. Let W = g(X) + U with U ∼ N(0, 1) independent of X, and

Y = N (W, 1). Then

QY (q) = g(X) + Φ−1(q)︸ ︷︷ ︸
µ(X,q)

+ U︸︷︷︸
ε(q)

,

so m(x, q) = g(x)+Φ−1(q) is smooth in x, while (ii) implies a.s. distinct observed q-quantiles

for any two nearby units.

The example solidifies the intuition behind Figure 1. While the average of the random

distributions evolves smoothly in X, the actually observed distributions at any two points

x, x′ close to each other will always be different with probability 1. This follows from the

distributions being random objects themselves. The model in (2) also clarifies where this

randomness in the distributions arises from: the error term ε(q) captures the across-group

heterogeneity in the quantile at level q (firm-specific differences in the distributions).

The second assumption I need for identification is a standard RDD assumption which

posits no manipulation and a non-zero mass of observations around the threshold.

I2 (Density at threshold). FX(x) is differentiable at c and 0 < limx→c fX(x) <∞.

Then, I obtain the following identification result.

Lemma 1 (Identification). Under Assumptions I1 and I2, for a given q ∈ [0, 1], the unob-

served τR3D(q) is identified from the joint distribution of the observed (X, Y ) as,

τR3D(q) = lim
x→0+

E[QY (q) | X = x]− lim
x→0−

E[QY (q) | X = x](3)

=: lim
x→0+

m(q)− lim
x→0−

m(q)

=: m+(q)−m−(q).

Note that the lemma implicitly defines m±(q) and m(q). Thus, the R3D estimand is the

jump in the conditional average quantile at x = 0.
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2.3.3 Discontinuities in Average Distributions

The weak distributional continuity assumption I1 introduced above implies that the treat-

ment has an effect when there is a discontinuity in the observed average distributionE[QY (q) |
X = c] at the threshold X = 0. Thus, I can define a discontinuity in our setting to occur

when, for some q ∈ [0, 1]

lim
x→0+

E[QY (q) | X = x] ̸= lim
x→0−

E[QY (q) | X = x].

The uniform confidence bands I derive below allow one to test for the presence of such dis-

continuities uniformly over all q while accounting for the randomness in the quantiles (across

groups). Alternatively, one can conduct inference on entire segments of the distribution at

once. An overview of inference is given in Section 2.6.

2.4 Comparison to Existing Approaches

2.4.1 Quantile RD

Before developing the estimators for the LAQTEs, I briefly discuss the difference between

the R3D setting and the quantile RD estimator of Frandsen et al. (2012). The key insight is

that quantile RDs are appropriate for estimating quantile treatment effects (QTE) for scalar-

valued outcomes, while the R3D estimator can estimate (average) QTEs for distribution-

valued outcomes, and there is no overlap in use cases. In practice, Q-RDD estimates a jump

in the observed quantile function, while R3D estimates a jump in the underlying average

quantile function. The former occurs almost surely in the R3D setting, the latter occurs

only when the treatment has an effect.

A comparison of the population quantities targeted by each estimator makes this point

clearer. Let Y ∈ Y and Z ∈ R as before. The two population objects targeted are,

R3D : lim
x→0±

E[QY (q) | X = x] Q-RDD : lim
x→0±

E[1(Z ≤ z) | X = x].

Thus, the R3D aims to estimate a conditional average quantile. The Q-RDD on the other

hand, aims to estimate a fixed distribution function. Practically, they do so with the following

local linear estimators,

R3D :
1

n

n∑
i=1

s±,i(h)QYi
(q) Q-RDD :

1

n

n∑
i=1

s±,i(h)1(Zi ≤ z).

As can be seen, the R3D approach first estimates quantiles and only then runs a local
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regression. This properly accounts for the two-level randomness intrinsic to the R3D setting.

Distribution estimation at a given X = x precedes smoothing. By contrast, the Q-RDD

estimator intrinsically estimates the distribution by smoothing, ignoring the randomness

across units. In the presence of such randomness, the observed distributions will almost

surely not vary smoothly, and the Q-RD approach will be biased and inconsistent.

Underlying these arguments are three distinct differences between the R3D and the Q-

RDD setting. First, as mentioned, the sampling model imposed by the Q-RDD setting does

not correctly represent the underlying data-generating process. In particular, it assumes

i.i.d. sampling of scalar-valued outcomes instead of distribution-valued ones, which ignores

the within-unit sampling that characterizes the R3D setting. As such, the sampling frame-

work of the Q-RD design could never result in multiple data points having the same value of

the (continuous) running variable. Second, as mentioned, the quantile continuity assumption

required for the identification of the estimator in Frandsen et al. (2012) is highly restrictive in

the R3D setting, requiring that two units that are both close to the threshold have essentially

identical distributions. In the examples in Section 2.2, this would imply that, conditional

on having the same value of the running variable, two different restaurants would have the

exact same distributions of product prices, two different schools the same distribution of

tests, and two different counties the same distribution of child mortality. Of course, there

is no reason why the cheapest product in one restaurant should have the same price as in

another, or the best student in one school the same score as in another, even if their running

variables did happen to take on the same value. The estimator I propose requires a much

weaker continuity assumption in I1. In particular, it only demands, for example, that the

test score distributions of schools near the cutoff look the same on average, while allowing the

distributions of specific schools to differ. In this way, I1 is the direct distribution-valued ana-

logue of the conditional mean continuity assumption originally imposed in Hahn et al. (2001,

A2), which only requires the expectation of the random outcome variable to be continuous

but leaves its distribution otherwise unrestricted. Indeed, while I1 is consistent with the

common approach of averaging the outcome variable at the level of the aggregate unit and

then estimating a standard RD, the continuity assumption in Frandsen et al. (2012) is not:

there would be no random variation left in the averages. Third, and similarly, the standard

assumption that treatment effects are heterogeneous across units automatically implies that

the counterfactual distributions must be random objects themselves: the outcome is a distri-

bution, and receiving treatment affects this distribution differently for different units. More

concretely: if a policy affects the workforce at Company A differently than at Company B,

then even if all untreated companies have identical distributions in the absence of treatment

(an unrealistically strong assumption), the outcome distributions of those companies under
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treatment will still differ.

2.4.2 Group-Level Average Treatment Effects

Though the focus in this article is on quantile treatment effects, a comparison to average

treatment effect (ATE) estimation helps to further illuminate the setting. The literature has

taken two approaches for estimating average treatment effects in the grouped data setting

considered in this paper: 1) aggregate to the group (firm) level and fit a local polynomial

regression on the group averages; 2) fit a local polynomial regression directly on the dis-

aggregated (employee) data, while clustering the standard errors at the group (firm) level

(Bartalotti and Brummet, 2017). The former approach estimates a weighted average treat-

ment effect, weighted by group size, because it combines the probability that an observation

falls within a certain group (whether an employee works at a given firm) with the outcome

the observation has within that group (the wage the employee receives at a given firm).

Treatment affects both dimensions at the disaggregated level (employees may see their wage

change at a given firm but may also change firms), so estimating at that level targets a

group size-weighted average. Clustering helps adjust standard errors, but does not affect the

estimand. The strategy of first aggregating to the group level and then estimating treat-

ment effects, on the other hand, will estimate the unweighted average treatment effect and

inherently accounts for clustering (Bartalotti and Brummet, 2017). In that sense, it is anal-

ogous to the idea behind R3D, except that in the R3D design one “aggregates” to the group

level by working directly with the groups’ distributions as the target objects. Moreover, the

implied average treatment effect is identical, since, under Fubini-Tonelli,

E[QY (q)] =

∫
[0,1]

∫
Y
Qy(q) dFY (y) dq =

∫
Y

∫
[0,1]

Qy(q) dq dFY (y) =

∫
Y
E[y] dFY (y)

so that first estimating R3D and then averaging estimates the same ATE as first averag-

ing and then estimating a standard local polynomial regression. Unlike in the ATE setting,

however, directly estimating a quantile RD on the disaggregated data does not yield a mean-

ingful mixture of group-level distributions (i.e., an average of group-level quantile treatment

effects), but rather the quantile of a pooled mixture, which has no coherent causal interpreta-

tion at the group level. The reason why the equivalence does not carry through there is that

quantiles are not linear, and hence the resulting “weighted quantiles” do not correspond to

the quantiles of any coherent weighted-average distribution, unlike in the linear ATE case –

except in the edge case where there is no heterogeneity in the distribution-valued outcomes,

as discussed in the previous section.
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2.5 Estimators

To estimate the local average quantile treatment effects introduced above, I now propose

two intuitive estimators that generalize local polynomial regression to the R3D setting with

distribution-valued outcomes. The first is based on the simple idea of running local polyno-

mial regressions on the quantile functions, separately at each quantile. The second estimator

builds on this by projecting the local polynomial estimator back onto the space of quantile

functions. As shown in Proposition A-3, the resulting estimator coincides with the local

Fréchet regression estimator of Petersen and Müller (2019), restricted to the space of cumu-

lative distribution functions equipped with the 2-Wasserstein distance (see Appendix A-3

for an overview). In Section 3, I derive valid uniform confidence intervals for both ap-

proaches, though the Fréchet estimator is preferable due to its computational advantages,

superior finite-sample performance, and its more meaningful interpretation as an “average”

distribution in finite samples.

2.5.1 Local Polynomial Regression on Quantiles

A simple and intuitive first approach to estimating the average distributions near the thresh-

old is to treat quantiles as the fundamental unit of observation, and estimate their conditional

expectations using the local polynomial regression approach that has become canon in RDD

(Hahn et al., 2001). The intuition behind the approach is illustrated in Figure 2: regression

lines are fitted through data points that represent randomly scattered quantiles.

Figure 2: Local Polynomial Estimator: Illustration
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The local polynomial R3D estimators m̂±,p(q) of order p for each quantile q can then be
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written in their standard form,

m̂±,p(q) = e⊤0 α̂±,p =
(
polynomial fit at x = 0±

)∣∣∣
order=p

(4)

α̂±,p = argmin
α∈Rp+1

n∑
i=1

δ±i K
(

Xi

h

) [
QYi

(q)−α⊤ rp

(
Xi

h

)]2
,

where e0 is the first standard basis vector, K(x) a kernel function, δ±i := 1
{
Xi

⩾
< c

}
, and

rp(x) := (1, x, x2, . . . , xp). The only difference with the standard local polynomial RDD esti-

mator is that I now have i.i.d. samples (Xi, QYi
(q)) instead of (Xi, Yi). Standard derivations

give the following solution for the conditional mean estimator,

(5) m̂±,p(q) =
n∑

i=1

s
(p)
±, in(h)QYi

(q)

where s
(p)
+, in(h) are the usual empirical weights for a local polynomial regression of order p

(Fan and Gijbels, 1996), which I derive explicitly in Appendix A-2.

Note that the estimator m̂±,p(q) is technically a function of x, but I suppress this for all

estimators to ease notation, since I only consider the cutoff point X = 0. Further, observe

that since the weights s
(p)
±,in(h) can be negative, m̂±,p need not be a quantile function. To

resolve this, I use the monotone rearrangement from Chernozhukov et al. (2010), though the

Fréchet estimator proposed below is preferred and circumvents the need for rearrangement

altogether.

The corresponding R3D estimator then is, for each q ∈ [0, 1],

(6) τ̂R3D
p (q) := m̂+,p(q)− m̂−,p(q).

In Section 3 below, I show that, under some assumptions, this estimator converges uni-

formly to an asymptotic normal distribution centered at the true treatment effect, for p ≥ 1.

Following Chiang et al. (2019), I build bias correction into the estimator by leveraging

Remark 7 in (Calonico et al., 2014), which establishes an equivalence between explicitly

bias-corrected estimators and estimators where the MSE-optimal bandwidth is chosen based

on a pilot estimator of lower order (see Section 2.7 below).

2.5.2 Local Fréchet Regression

Three intuitive improvements can be made to the local polynomial regression on quantiles

introduced above. First, as noted, the resulting function is not guaranteed to be a quantile

function because the weights s
(p)
±,in(h) can be negative and thus introduce non-monotonicity
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(quantile crossing). Second, the pointwise estimation approach ignores global function in-

formation, which degrades the estimator’s finite-sample performance, as confirmed in the

simulations below. Third, the pointwise estimation approach also requires repeated band-

width selection and estimation for each quantile, leading to computational overhead. To

resolve these three issues at once, I consider the following estimator,

(7) m̂±,⊕,p := ΠQ (m̂±,p) := argmin
m±∈Q(Y)

∫ b

a

(m̂±,p(q)−m±(q))
2 dq,

where Q(Y) is the space of quantile functions of the cdfs in Y , restricted to [a, b] ⊆ [0, 1]. I de-

fine ΠQ as the L2 projection onto that space of restricted quantile functions.2 In Proposition

A-3, I show that m̂±,⊕,p is unique and exists under the stated assumptions. The estimated

treatment effects are then defined as

(8) τ̂R3D
⊕,p (q) := m̂+,⊕,p(q)− m̂−,⊕,p(q).

Intuitively, the projection step ensures that the estimated functions are valid quantile

functions, while also borrowing information across quantiles and avoiding repeated band-

width selection. As a result, the Fréchet regression estimator typically outperforms the

pointwise local polynomial estimator in finite samples, while still converging to the same

population object. Indeed, the projection ΠQ is characterized by a no-regret property: the

resulting projected estimator will always lie closer to the true quantile function than the

(unprojected) local polynomial estimator; see Lemma 2 below for a formal statement.

Readers mainly interested in applied use can take away that the Fréchet estimator is

the preferred choice in practice, as it is a properly distributional estimator that regresses

directly on the distributions as a whole. For readers interested in the deeper theoretical

connection, the following paragraph provides some background on its equivalence with local

Fréchet regression in Wasserstein space.

Theoretical Motivation. The projection estimator in (7) has a rich theoretical founda-

tion connecting optimal transport, isotonic regression, and local polynomial methods. At

its core, this estimator is equivalent to the local Fréchet regression estimator of Petersen

and Müller (2019) restricted to the space of probability distributions Y equipped with the

2-Wasserstein distance dW2 . This equivalence, established in Proposition A-3, arises from a

fundamental isometry: the L2 distance between quantile functions equals the 2-Wasserstein

2Working on [a, b] instead of [0, 1] requires much weaker assumptions on the support of the distributions
and is nearly equivalent in practice, see Section 3.
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distance between their corresponding distributions.

In particular, m̂±,⊕,p solves a natural optimization problem in distribution space. It finds

the unique distribution whose quantile function minimizes the weighted sum of squared 2-

Wasserstein distances to the observed distributions {Yi}ni=1, with local polynomial weights

s
(p)
±,in(h). In this sense, the estimator computes the weighted “central tendency” of distribu-

tions in probability space—the direct analogue of how the Euclidean mean minimizes squared

distances in Rn. This Wasserstein barycenter interpretation (Agueh and Carlier, 2011; Fan

and Müller, 2024) provides a principled notion of an “average distribution” at the cutoff.

The approach can be viewed as a “double regression”: local polynomial regression on

pointwise quantiles, followed by a functional regression on the full quantile functions. This

projection, a form of isotonic regression (Robertson et al., 1988), ensures monotonicity while

preserving asymptotic properties. The key insight from Theorem 4 below is that because

the population quantity m±(q) is already a valid quantile function, the projection acts as

an identity operator asymptotically. In finite samples, however, it does enforce the shape

constraint while also enjoying a “no-regret” property (Lemma 2): the projected estimate is

always closer to the truth than the unprojected one in any Lp norm.

Lemma 2 (Improvement in Estimation Property). Suppose that Q̂ is an estimator of some

true quantile curve Q0. Then the projected curve Q̂∗ = ΠQ(Q̂) is closer to the true curve in

the sense that, for each x ∈ R,∥∥∥Q̂∗ −Q0

∥∥∥
Lp

≤
∥∥∥Q̂−Q0

∥∥∥
Lp

for all p ∈ [1,∞].

Proof. See Corollary 2.4 in Lin et al. (2019), which explicitly proves the functional version

of the classical result in Robertson et al. (1988, Theorem 1.6.1), see also Groeneboom and

Jongbloed (2014, Theorem 2.1).

These theoretical properties establish clear advantages over alternative approaches. Like

monotone rearrangement (Chernozhukov et al., 2010), the Fréchet estimator preserves asymp-

totic limits and satisfies the no-regret property in all Lp norms. However, where rear-

rangement mechanically sorts values to enforce monotonicity, the Fréchet approach finds the

closest valid quantile function in the 2-Wasserstein metric—the natural distance for prob-

ability distributions, leading to the desirable “average distribution” interpretation. This

optimization-based approach also has practical benefits: by treating quantile functions as

integrated objects rather than collections of isolated points, it exploits cross-quantile infor-

mation to improve finite-sample performance. Combined with its computational advantage

of requiring only a single bandwidth selection, the Fréchet estimator offers both theoretical
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rigor and practical efficiency, making it the preferred choice for distribution-valued RDD

estimation.

2.5.3 Fuzzy R3D Estimator

So far, I have focused on the sharp RD estimators for ease of reading. They can be easily

extended to the fuzzy RD setting where treatment is assigned probabilistically (Hahn et al.,

2001), as follows. Define the local polynomial fuzzy R3D estimator as,

(9) τ̂F3Dp (q) :=
τ̂R3D
p (q)

m̂+,T,p − m̂−,T,p

where

m̂±,T,p :=
n∑

i=1

s
(p)
±,in(h)Ti.

The corresponding Fréchet estimator is,

(10) τ̂F3D⊕,p (q) :=
τ̂R3D
⊕,p (q)

m̂+,T,p − m̂−,T,p

.

Identification. To define the corresponding population fuzzy estimator and establish its

identification, define T 0
i , T

1
i , the local potential treatment states as limx→0± Ti(x), where

Ti(x) is the potential treatment status of unit i as a function of the running variable. Further,

define the events,

• Compliers: C = {ω : T 1(ω) > T 0(ω)}.

• Indefinites: I = {ω : T 1(ω) = T 0(ω)} \ {ω : T 1(ω) = T 0(ω) ∈ {0, 1}}.

The treatment effects of interest are,

Definition 2 (Fuzzy LAQTE). The local average quantile treatment effects for the fuzzy

R3D design are,

τF3D(q) := E [QY 1(q)−QY 0(q) | X = 0, C] q ∈ [0, 1].(11)

To identify these, I need the following standard additional assumptions,

I3 (Fuzzy RD). limx→0+ P (T | X = x) > limx→0− P (T | X = x).

I4 (Treatment Continuity). E[T |X = x] is continuous in x over (−ε, ε) \ {0}, ε > 0.

I5 (Monotonicity). limx→0 P (T
1 > T 0 | X = x) = 1 and P (Indefinites) = 0.
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This gives,

Lemma 3 (Fuzzy Identification). Under Assumptions I1– I5, the unobserved τF3D is iden-

tified from the joint distribution of the observed (X, Y, T ) as,

τF3D(q) =
limx→0+ E [QY (q) | X = x]− limx→0− E [QY (q) | X = x]

limx→0+ E [T | X = x]− limx→0− E [T | X = x]
(12)

:=
m+(q)−m−(q)

m+,T −m−,T

.

This Wald estimator takes the same form as the standard fuzzy RDD estimator (Hahn

et al., 2001), except that the outcomes are random quantiles. Note that I can work with this

simpler form compared to Frandsen et al. (2012, Eq. 2-3) because I work directly with the

random quantiles and hence do not need to invert the CDFs on each side.

2.6 Overview of Inference

Algorithm 1 Multiplier Bootstrap for Uniform Confidence Bands

Require: Sample {(Xi, Yi, Ti)}ni=1, quantile grid T ∗ = {q1, . . . , qM} ⊂ [a, b], polynomial
order p, kernel K, bandwidth h, bootstrap repetitions B, significance level λ ∈ (0, 1).

1: for each qj ∈ T ∗ do
2: Compute conditional mean estimates m̂±,p(qj) (average quantiles above/below cutoff)

using local polynomials.
3: (Optional: Fréchet) Project m̂±,p onto the space of valid quantile functions using

isotonic regression to get m̂±,⊕,p.

4: Estimate residuals Ê(Yi, Xi, q) = QYi
(q) − Ẽ[QYi

(q) | Xi], where Ẽ[· | Xi] reuses the
t-th order local polynomials estimated in Step 1-2, with t ≤ p.

5: end for
6: for b = 1 to B do
7: Draw i.i.d. N(0, 1) multipliers.
8: for each qj ∈ T ∗, k ∈ {1, 2} do
9: Compute bootstrap processes as multiplier-weighted average of residuals (plus

some additional weighting terms).
10: end for
11: Form estimate of limiting process ĜR3D,b(qj) = m̂+,(⊕),p(qj)− m̂−,(⊕),p(qj).
12: end for
13: Compute critical value ĉBn (a, b;λ) as (1− λ)-quantile of maxq∈T ∗ |ĜR3D,b(q)| over b.
14: Construct uniform bands: [ĜR3D,b(q)± (

√
nh)−1ĉBn (a, b;λ)] for q ∈ T ∗

For these two R3D estimators (one local polynomial, one Fréchet), I derive the asymptotic

distribution, uniformly over q ∈ [a, b], a compact subset of [0, 1], in Section 3 below. Further, I
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propose estimated multiplier bootstrap processes ĜR3D, ĜF3D for the sharp and fuzzy design,

respectively, that are shown to converge to the uniform limiting law and hence can be used

to construct uniform confidence bands. This allows one to determine what quantiles have

a statistically significant treatment effect while accounting for multiple testing due to the

functional nature of the estimands.

A sketch of how these uniform confidence bands are computed in the sharp RD case

is provided in Algorithm 1. The fuzzy RD case proceeds analogously. Note that some of

the notation is slightly simplified compared to what follows below, for ease of reading. The

algorithm also assumes the bandwidth h is given, see Section 2.7 below for more detail on

how it is chosen optimally.

The bootstrapped distributions can also be used to construct critical values for various

distributional hypothesis tests. In particular, treatment nullity and homogeneity can be

tested in a particular part of the distribution [q, q] ⊂ (0, 1) through the following tests (Chi-

ang and Sasaki, 2019):

Test Test Statistic

Uniform Treatment Nullity max
q∈[q,q]

√
nhn

∣∣τ̂R/F3D(q)
∣∣

Treatment Homogeneity max
q∈[q,q]

√
nhn

∣∣∣τ̂R/F3D(q)− 1

q − q

∫
[q,q]

τ̂R/F3D(q′) dq′
∣∣∣

where the critical values can be constructed by taking the (1− λ)-th quantiles of{
maxq∈[q,q]

∣∣∣ĜR/F3D′
(q)
∣∣∣}B

b=1
and

{
maxq∈[q,q]

∣∣∣ĜR/F3D′
(q)− 1

q−q

∫
[q,q]

ĜR/F3D′
(q′) dq′

∣∣∣}B

b=1
with

λ the desired level of statistical significance and B the number of bootstrap repetitions.

2.7 Bandwidth Selection

In practice, the estimators require choosing a bandwidth h. The standard approach for doing

so in the local polynomial regression and RDD literatures is to pick a h that minimizes the

mean-squared error (MSE), and hence balances bias and variance. Here, I give an overview

of the proposed approach for our random distribution setting, with full details in Appendix

A-4.2.

For the local polynomial estimator in Section 2.5.1, I follow these canonical approaches.

In particular, the goal is to pick a separate bandwidth h(q) for every quantile q ∈ [a, b].

Since the estimator is simply a local polynomial regression for each quantile, we can rely

on the canonical result of Fan and Gijbels (1992), who derived a closed-form expression

for the asymptotic MSE. Minimizing that expression with respect to h gives the optimal
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bandwidths,

(13) h∗(q) =

(
1

2(s+ 1)

Var(τ̂R3D
s )(q)

Bias(τ̂R3D
s (q))2

)1/(2s+3)

n−1/(2s+3),

with the full bias and variance terms given in Appendix A-4.2.1. Here, s is the desired

order of the local polynomial regression (typically s = 1 for local linear), which is used for

bandwidth selection, while estimation is done with a p-th order polynomial where p > s. As

shown in Calonico et al. (2014), this approach is equivalent to estimating an s-th order local

polynomial with explicit bias correction.

For the Fréchet estimator in Section 2.5.2, no such closed-form expression for the asymp-

totic MSE exists, because the Taylor expansions it relies on is not well-defined in the space of

distributions. This would seem to preclude data-driven bandwidth selection for the Fréchet

estimator and, indeed, existing approaches have relied on cross-validation instead (Petersen

and Müller, 2019). However, in the statistical results below, I show that both estimators

converge to the same asymptotic limit. Leveraging this fact, one can show that, for a given

h, ∥τ̂R3D
⊕,p − τ̂R3D

p ∥l∞([a,b]) = op(1) (see Lemma A-9), that is, the difference between the two

estimators vanishes asymptotically. As a result, their mean squared errors are asymptoti-

cally equivalent. Thus, to obtain a single bandwidth h for the full distribution of treatment

effects τ̂R3D
⊕,p , one can compute the integrated mean-squared error (IMSE) as,

IMSE [τ̂⊕,s] =

∫ b

a

MSE
(
τ̂R3D
⊕,s (q)

)
dq =

∫ b

a

MSE
(
τ̂R3D
s (q)

)
dq + op(1).

Minimizing this with respect to h gives the IMSE-optimal distributional bandwidth,

h∗⊕ =

(
1

2(s+ 1)

∫ b

a
Var(τ̂R3D

⊕,s (q) dq)∫ b

a
Bias(τ̂R3D

⊕,s (q))2 dq

)1/(2s+3)

n−1/(2s+3).

The full algorithm for estimating it is given in Appendix A-4.2.3.

3 Statistical Results

In this section, I derive the asymptotic distributions of the local polynomial and Fréchet

regression estimators. I do so in full generality for p-th order local polynomials, accommo-

dating both the sharp and fuzzy RDD setting. The results for the local polynomial estimator

follow from the results in Chiang et al. (2019), extended to random distribution-valued out-

comes. The corresponding results for the local Fréchet regression follow from the functional
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delta method by showing that the projection mapping is Hadamard differentiable in the

limit. I conclude by extending these asymptotic results to the empirical quantile setting.

3.1 Assumptions

Throughout, I work on the restricted set of quantiles [a, b], a compact subset of (0, 1), and

let c < 0 < c. Also, define Yc := {Y (ω) : ω ∈ Ωx, X(ω) ∈ [c, c̄]} as the set of random cdfs

that are realized in a small neighborhood around the cutoff, with Ωx the sample space. Also,

let h1(q) be the bandwidth for the numerator in the fuzzy RD at quantile q, and h2(q) the

same for the denominator.

K1 (Kernel). The kernel K is a continuous probability density function, symmetric around

zero, and non-negative valued with compact support.

K2 (Bandwidth). The bandwidths satisfy h1(q) = c1(q)h and h2(q) = c2(q)h for c1(q) :

[a, b] → C ⊂ R a bounded Lipschitz function and c2(q) = c̄2 > 0. The baseline bandwidth

h = hn satisfies h→ 0, nh2 → ∞, nh2p+3 → 0.

L1 (Sampling). (i) {(Yi, Ti, Xi)}ni=1 are i.i.d. copies of a random element (Y, T,X) defined

on a probability space (Ωx,Fx, P x).

(ii) {Zij}ni
j=1 are i.i.d. draws from the random distribution Yi for each i = 1, . . . , n.

L2 (Average Quantile Continuity). For each x ∈ N := (−ε, ε) \ {0} for ε > 0 and q ∈
[a, b] ⊂ (0, 1), the following conditions hold:

(i) The maps (x, q) → E[QY (q)|X = x] and x → E[T |X = x] are p-times continuously

differentiable in x on N , with all partial derivatives (up to order p) Lipschitz in x on

N × [a, b].

(ii) For all (q1, q2) ∈ [a, b]2, the map x 7→ E [QY (q1)QY (q2) | X = x] lies in C1(N ), with

the partial derivatives with respect to x bounded uniformly in (q1, q2).

L3 (Random Quantile Spread). The maps Y → supq∈[a,b] |QY (q)| and
x→ supq∈[a,b] |E[QY (q) | X = x]| are in L2+ϵ(P x) on [c, c]× Yc, ϵ > 0.

L4 (Average Strict Monotonicity). For each x ∈ N := (−ϵ, ϵ) \ {0} for ϵ > 0 and q ∈
[a, b] ⊂ (0, 1), there exist constants 0 < κ ≤ K < ∞ such that κ ≤ ∂

∂q
E[QY (q) | X = x] ≤

K for a.e. q ∈ [a, b].

M1 (Multiplier). {ξi}ni=1 is an independent standard normal random sample defined on a

probability space (Ωξ,F ξ, P ξ) independent of (Ωx,Fx, P x).
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K1 is a standard kernel assumption and is satisfied by the commonly used triangular and

uniform kernels. K2 is a standard bandwidth assumption, with the important benefit that

for local polynomial order p > 1, it accommodates the bandwidth rates implied by common

bandwidth selection procedures, which are typically slower than h = n−1/5 (Calonico et al.,

2014). Moreover, the assumption accommodates quantile-specific bandwidths. L2 (i) is a

stronger version of the standard continuity assumption I1 that ensures the Taylor expansions

required for local polynomial regression of order p are well-defined. L2 (ii) further provides

some minimal control over the functional objects E[QY (q)|X = x] through the covariance

of the quantiles. Note that both (i) and (ii) are implied by the much stronger assumption

that the random distribution FY |X evolves smoothly, which would be the random-distribution

equivalent of Assumption E1 in Frandsen et al. (2012) and is imposed in Petersen and Müller

(2019). For Assumption L3, first note that, clearly, for every Y , there exists an MY such

that supq∈[a,b]QY (q) < MY . However, the assumption strengthens this pointwise fact into

a statement that these caps cannot ‘blow up’ too often in all possible realizations Y . In

practice, this means that while each Y can have unbounded support, the family Y must

not produce extremely large quantiles too often around the cutoff. As such, the assumption

controls the across-distribution variance, enabling uniform statistical arguments over the

class of random distributions. Assumption L4 ensures the limiting quantile function does

not have flat parts with some buffer, which in turn guarantees that the projection operator

ΠQ is fully Hadamard differentiability in the limit (see the proof of Theorem 4). Note that

it is only imposed on the average quantile function and hence still allows the underlying

quantile functions for each unit i to have flat parts, as long as at every quantile q there is

some positive mass of units that have a strictly increasing quantile function. It also allows for

atoms in the underlying quantile functions, as long as they almost surely occur at different

points of the support for different units (firms). In that sense, the assumption is much

weaker than what is imposed in quantile RD, where every single unit’s quantile function

is assumed to be strictly increasing and continuous (Frandsen et al., 2012, Assumption Q).

Finally, Assumption M1 is a standard assumption for multiplier bootstraps that can easily

be satisfied in practice.

For the extension with empirical quantile functions, I further impose the following,

Q1 (Empirical Quantile Functions). For each unit i ≤ n let Q̂Yi
be any estimator of the

quantile function QYi
on [a, b]. There exist deterministic rates rni

↓ 0 such that

sup
q∈[a,b]

∣∣Q̂Yi
(q)−QYi

(q)
∣∣ = Op

(
rni

)
for all i ≤ n,
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and the following holds, √
nh max

1≤i≤n
rni

−→ 0.

Q1 is a high-level condition that accommodates any empirical quantile estimator that

converges “fast enough”. In particular, it balances the speed of the empirical quantile esti-

mator Q̂Yi
against the ratio of the within-group sample size ni to the across-group sample

size n, requiring that together, they imply a within-group convergence rate that is faster

than
√
nh, the across-group rate. This is a light assumption in the sense that, as long as the

within-group rate is of a similar order as
√
nh, it accommodates most standard empirical

quantile estimators (e.g. van der Vaart (2000, Corollary 21.5)), including ones that allow for

within-group dependence.

3.2 Asymptotic Distribution

3.2.1 Local Polynomial Estimator

Under these assumptions, I can derive the asymptotic distribution of the local polynomial

estimator. For that, I need a few additional pieces of notation, borrowing from Chiang et al.

(2019). Assume without loss of generality that the kernel K is supported on [−1, 1]. Define

g1 : (Y, T, q) ⊂ (Y , {0, 1}, [a, b]) → QY (q), g2 : (Y, T, q) ⊂ (Y , {0, 1}, [a, b]) → T . Further,

define the population residual Ek(y, t, x, q) := gk(y, t, q)− E[gk(y, t, q)|Xi = x], k = 1, 2 and

let

σkl(q, q
′ | x) = E [Ek (Yi, Ti, Xi, q) · El (Yi, Ti, Xi, q

′) | Xi = x]

with k, l ∈ {1, 2}, q, q′ ∈ [a, b], and σkl(q, q
′ | 0±) = limx→0± σkl(q, q

′ | x). Moreover, let e0 de-

note the 0th standard basis vector of Rp, (1, 0, . . . , 0), and write Γ±,p :=
∫
R±
K(u)rp(u)r

′
p(u) du

where I remind the reader that rp(u) := (1, u, . . . , up). Also, let Xn ; X denote weak conver-

gence for some sequence of random variablesXn and a random variableX, whileXn
p
;
ξ
X de-

notes conditional weak convergence. The latter is defined as suph∈BL1

∣∣Eξ|x [h(Xn)− E[h(X)]]
∣∣ p→

x

0 where BL1 the set of bounded Lipschitz functions with supremum norm bounded by 1 and
p→
x
denotes convergence in probability with respect to probability measure P x (van der Vaart

and Wellner, 1996, §1.13). Then, I first get the following preliminary result for the condi-

tional means.

Theorem 1 (Convergence: Conditional Means). Under Assumptions I2, K1, K2, L1-(i),

L2, L3,
√
nh

[
m̂±,p −m±

m̂±,T,p −m±,T

]
;

[
c1(·)−1/2GH±(·, 1)
c2(·)−1/2GH±(·, 2)

]
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where GH± : Ωx → l∞ ([a, b]× {1, 2}) is a zero-mean Gaussian process with covariance

function,

H±,p ((q, k), (q
′, l)) =

σkl(q, q
′|0±)e′0 (Γ±,p)

−1Ψ±,p ((q, k), (q
′, l))

(
Γ−1
±,p

)
e0√

ck(q)cl(q′)fX(0)
,

where,

Ψ±,p ((q, k), (q
′, l)) :=

∫
R
rp(u/ck(q))r

′
p(u/cl(q

′))K(u/ck(q))K(u/cl(q
′)) du

for each q, q′ ∈ [a, b].

Then, a simple application of the functional delta method yields the following result.

Theorem 2 (Convergence: Treatment Effect). Under the assumptions of Theorem 1 it

follows that,

√
nh
(
τ̂R3D
p − τR3D

)
; c1(·)−1/2G∆(·, 1) := GR3D,

and under the additional Assumptions I3–I5

√
nh
(
τ̂F3Dp − τF3D

)
;

c1(·)−1/2(m+,T (·)−m−,T (·))G∆(·, 1)− c2(·)−1/2(m+(·)−m−(·))G∆(·, 2)
(m+,T (·)−m−,T (·))2

,

:= GF3D

where, for k ∈ {1, 2},
G∆(·, k) := GH+(·, k)−GH−(·, k),

and GH±(·, k) are as defined in Theorem 1.

In practice, it is easier to approximate the limiting processes in Theorem 2 with a mul-

tiplier bootstrap, which preserves the local structure without full resampling. To that end,

I use the pseudo-random samples {ξi}ni=1 defined in M1 to define the estimated multiplier

process,

(14) ν̂±ξ,n(q, k) =
n∑

i=1

ξi
e′0 (Γ±,p)

−1 Êk (Yi, Ti, Xi, q) rp

(
Xi

hk(q)

)
K
(

Xi

hk(q)

)
δ±i√

nhk (q)f̂X(0)
,

where f̂X(0) is any uniformly consistent estimator of fX(0), and Êk (Yi, Ti, Xi, q) is any uni-
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formly consistent first-stage estimator of the residual Ek. In practice, I will use the first-stage

estimator proposed in Chiang et al. (2019, A.6), described in detail in Appendix A-4.1. The

process ν̂±ξ,n(q, k) is an estimator for the uniform Bahadur representation of the bias-corrected

processes m̂±,p(q)−m±(q), m̂±,T,p(q)−m±,T (q) (Chiang et al., 2019), see the proof of Theorem

1 for more details. Then, I obtain the uniform validity of the multiplier bootstrap,

Theorem 3 (Bootstrap). Under the Assumptions of Theorem 1 and Assumption M1 it

follows that ν̂±ξ,n
p
;
ξ
GH± and thus,

ĜR3D(·) := c1(·)−1/2ν̂∆,n(·, 1)
p
;
ξ
GR3D

and under the additional Assumptions I4, I5,

ĜF3D (m̂+,p, m̂−,p, m̂+,T,p, m̂−,T,p) (·) :=
c1(·)−1/2 (m̂+,T,p(·)− m̂−,T,p(·)) ν̂∆,n(·, 1)− c2(·)−1/2 (m̂+,p(·)− m̂−,p(·)) ν̂∆,n(·, 2)

(m̂+,T,p(·)− m̂−,T,p(·))2

p
;
ξ
GF3D

where, for k ∈ {1, 2},
ν̂∆,n(·, k) := ν̂+ξ,n(·, k)− ν̂−ξ,n(·, k).

A practical algorithm for computing the empirical bootstrap is provided in Appendix

A-4.3. The asymptotic validity and consistency of the tests proposed in Section 2.6 follow

immediately from Theorem 3.

3.2.2 Fréchet Estimator

Turning to the Fréchet estimator, I now show that it has the same asymptotic distribution

as the local polynomial estimator. I include a proof sketch to explain the intuition behind

this striking result.

Theorem 4 (Convergence: Conditional Fréchet Means). Under the Assumptions of Theorem

1 and Assumption L4, √
nh (m̂±,⊕,p −m±) ; GH±(·, 1),

where GH± is the same zero-mean Gaussian process as in Theorem 1.

Proof sketch. The idea behind the proof is simple. Recall that m̂±,⊕,p = ΠQ(m̂±,p), the

L2 projection onto the space of quantile functions. It is well-known that ΠQ is Hadamard
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directionally differentiable (Zarantonello, 1971). Moreover, its Hadamard derivative at the

limiting point m± is equal to the identity operator, i.e. ΠQ[m±](h) = h for any h ∈ C([a, b]).

This follows because the limit m± is a proper quantile function, which under Assumption

L4 is also strictly increasing. That guarantees that small, smooth perturbations of m±

remain valid quantile functions, and hence the projection remains “inactive” no matter what

direction we perturb m± in. As a result, we can apply the functional delta method (van der

Vaart, 2000, Theorem 20.8) to show that the Fréchet estimator has the same asymptotic

limit as the unprojected estimator. The full proof in Appendix A-5 works out the details to

make sure we work in the correct function spaces to obtain uniform convergence based on this

argument. In that sense, the proof extends the uniform convergence arguments for “discrete”

isotonic regression in Yang and Barber (2019) to the “continuous” version in Groeneboom

and Jongbloed (2010).

Note that in this theorem the c1(·) term does not appear because the Fréchet estimator

uses a single bandwidth for all quantiles. Then, the following result again follows by a simple

application of the functional delta method.

Corollary 1 (Convergence: Fréchet Treatment Effects). Under the assumptions of Theo-

rem 1 and Assumption L4 it follows that,

√
nh
(
τ̂R3D
⊕,p − τR3D

)
; GR3D,

and under the additional Assumptions I3–I5,

√
nh
(
τ̂F3D⊕,p − τF3D

)
; GF3D

Corollary 2 (Bootstrap: Fréchet). Under the assumptions of Theorem 3, the estimated boot-

strap processes ĜR3D and ĜF3D (m̂+,⊕,p, m̂−,⊕,p, m̂+,T,p, m̂−,T,p) deliver asymptotically valid

confidence intervals for the Fréchet estimators τ̂R3D
⊕,p , τ̂F3D⊕,p .

3.3 Extensions

3.3.1 Empirical Quantile Functions

So far, I have assumed that the researcher observes entire quantile functions QYi
. This is

realistic in settings where an entire population of sub-units within a given aggregate unit

is observed – for example, when a researcher has access to matched employer-employee

data that contains all employees within a firm. In practice, however, there is often another

sampling layer, where one only observes further i.i.d. samples Zij, j = 1, . . . , ni from these
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distribution functions, with Zij ∈ R distributed according to Yi.
3 This corresponds to the

case where one only observes a subsample of all employees within any given firm. Here, I

show that under standard assumptions, the empirical quantile functions converge to the true

quantile functions faster than the R3D estimators and hence do not affect the asymptotic

results. The corresponding sharp RD estimator is defined as,

(15) µ̄±,p(q) :=
1

n

n∑
i=1

s
(p)
±,in(h)Q̂Yi

(q),

where

(16) Q̂Yi
(q) := inf

{
z : Ŷi(z) ≥ q

}
with

Ŷi(z) :=
1

ni

ni∑
j=1

1 (Zij ≤ z) ,

the empirical distribution function of unit i. The other estimators are similarly modified by

plugging in Q̂Yi
, and denoted with a bar instead of a hat, e.g. τ̄R3D

p . Sampling weights can

be incorporated by constructing Q̂Yi
as weighted quantile functions.

Then, I obtain the following results,

Proposition 2 (Empirical Quantiles). Under the same respective Assumptions of Theorems

1 and 2, as well as Assumption Q1, the estimators with empirical quantile functions, m̄±,p,

m̄±,⊕,p, τ̄
R3D
p , τ̄F3Dp , τ̄R3D

⊕,p , τ̄F3D⊕,p converge to the same uniform limiting processes as their

respective population analogs.

Corollary 3 (Bootstrap: Empirical Quantiles). Under the assumptions of Theorem 3, along

with Assumption Q1, the estimated bootstrap processes ĜR3D and ĜF3D(·, ·, ·, ·) (with the

appropriate conditional mean estimators plugged in) deliver asymptotically valid confidence

bands for the treatment effect estimators with empirical quantile functions, τ̄R3D
p , τ̄F3Dp , τ̄R3D

⊕,p ,

τ̄F3D⊕,p .

3See Chen et al. (2023) for an analogous setting in the context of distribution-on-distribution regression,
as well as Zhou and Müller (2024).
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4 Empirical Applications

4.1 Simulations

To evaluate the proposed estimators’ performance, I conduct Monte Carlo simulations un-

der several data-generating processes. Throughout this and the next section, I use R3D

estimators of quadratic order but with bandwidths that are MSE-optimal for the linear esti-

mators. As argued in Remark 7 of Calonico et al. (2014), this is equivalent to using explicitly

bias-corrected linear estimators.

In the simulations, I estimate the quantile treatment effects τR3D at 10 quantiles using

three estimators: 1) a local polynomial estimator for classical quantile RDDs (Qu and Yoon,

2019);4 2) the local polynomial R3D estimator in Section 2.5.1; 3) the (Fréchet) R3D es-

timator in Section 2.5.2. The Q-RD estimator is corrected for bias using the approach in

(Qu et al., 2024). The reason for using the Q-RD estimator of Qu and Yoon (2019) is to

give Q-RD the best possible chance, since this estimator allows for bias-corrected, uniform

inference, improving on the original estimator in Frandsen et al. (2012).

I consider two data-generating processes, where Xi ∼ Uniform(−1, 1).

DGP 1: Normal with Normal Means. For each i, draw

µi ∼ N
(
5 + 5Xi + δ+∆, 1

)
,(17)

σi ∼
∣∣N(1 + Xi, 1

)∣∣,
and define Yi = N(µi, σ

2
i ).

DGP 2: Normal–Exponential Mixture with Normal–Exponential means. Set µi = Uniform(−5, 5)+

2Xi and λi = Uniform(0.5, 1.5). Then, generate

(18) Yi = N
(
µi + δ+∆, 1

)
+ 2Exp

(
λi + δ+∆λ

)
.

In both setups, I let ∆ vary across different simulations to test different treatment effect mag-

nitudes. For the first DGP, the true treatment effects have the closed-form solution N(∆, 2),

implying constant treatment effects. The heterogeneous treatment effects in the second DGP

are estimated by averaging across a large number of simulated quantile functions.

Figure 3 shows the estimators’ performance in terms of relative bias, which is the mag-

nitude of the estimated bias at a given quantile as a proportion of the treatment effect at

that quantile. I set ∆ = 2 but the results are similar for other values. The green line (dia-

monds) shows the quantile RD estimator, the orange line (triangles) the Fréchet estimator,

4Computed using the rd.qte command in R (Qu and Yoon, 2024).
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Figure 3: Simulated Bias of R3D and Q-RD Estimators
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Note: this figure compares relative bias (absolute bias as a percent of the true treatment effect size) of R3D
and Q-RD estimators. Each measure is reported for n = ni = 200, 500, 1000, and 2000 (x axis) at quantiles
10, 50, 90, and the average over all quantiles (facets). Results are averaged over 2, 500 simulations for each
sample size. The methods are: 1) a local polynomial estimator for classical quantile RDDs (Qu and Yoon,
2019) with bias correction (Qu et al., 2024); 2) the local polynomial R3D estimator in Section 2.5.1; 3) the
Fréchet R3D estimator in Section 2.5.2. Bandwidths are selected using (I)MSE-optimal procedure in Section
A-4.2. Data-generating process: outcome variable Y is a normal distribution with normally distributed
means and variances that depend on running variable X and jump across the threshold.

and the blue line (circles) the local polynomial one. In line with theoretical expectations, the

quantile RD estimator appears to be inconsistent and suffers from large finite sample bias,

with a relative bias that is at least an order of magnitude higher than the R3D estimators’,

for some quantiles. As mentioned, this is not a defect of Q-RD per se; it targets a different

estimand under different sampling (scalar outcomes), and, as a result, is misspecified in the

R3D setting. As expected, the quantile RD estimator performs well at the median in DGP
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1, because a mixture of normals approximates the average normal at the median. Similarly,

due to the heavy tails of the exponential distribution, it performs much worse at the upper

quantiles in DGP 2. Between the two R3D estimators, the Fréchet estimator has much

lower bias than the local polynomial one for small sample sizes, but both converge quickly

to near-zero, supporting the asymptotic theory.

Figure 4: Simulated Variance of R3D Estimators
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Note: this figure compares performance of the two R3D estimation methods in terms of the variance.
Each measure is reported for N = 100, 200, 500, 1000 (x axis) at quantiles 10, 50, 90, and the average over all
quantiles (facets). Results are averaged over 2, 500 simulations for each sample size. The methods are: 1) the
local polynomial R3D estimator in Section 2.5.1; 2) the Fréchet R3D estimator in Section 2.5.2. Bandwidths
are selected using (I)MSE-optimal procedure in Section A-4.2. Data-generating process: outcome variable
Y is a normal distribution with normally distributed means and variances that depend on running variable
X and jump across the threshold.

Figure 4 further supports the theoretical arguments that the Fréchet estimator is preferred

over the local polynomial one, as the latter has much larger variance in small samples, though
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again both estimators quickly converge to a similarly low variance. I do not report results

for the quantile RD as its inferential properties are irrelevant due to its inconsistency and

bias in the R3D settings.

Table 2: Acceptance Probabilities of R3D Estimators

Method: Fréchet Local Polynomial

DGP 1

Unif. CIs

n ∆=0 ∆=1.14 ∆=2.27
500 92.56 92.56 92.56
1000 93.28 93.28 93.28
2000 94.20 94.20 94.20

n ∆=0 ∆=1.14 ∆=2.27
500 92.12 92.12 92.12
1000 93.36 93.36 93.36
2000 94.40 94.40 94.40

Homogen.

n ∆=0 ∆=1.14 ∆=2.27
500 92.64 92.64 92.64
1000 93.32 93.32 93.32
2000 94.20 94.20 94.20

n ∆=0 ∆=1.14 ∆=2.27
500 92.52 92.52 92.52
1000 92.60 92.60 92.60
2000 93.64 93.64 93.64

Nullity

n ∆=0 ∆=1.14 ∆=2.27
500 – 9.36 0
1000 – 0.28 0
2000 – 0 0

n ∆µ=0 ∆=1.14 ∆=2.27
500 – 10.12 0
1000 – 0.28 0
2000 – 0 0

DGP 2

Unif. CIs

n ∆=0 ∆=1.86 ∆=3.72
500 93.20 93.20 93.20
1000 93.12 93.12 93.12
2000 94.36 94.36 94.36

n ∆=0 ∆=1.86 ∆=3.72
500 92.60 92.60 92.60
1000 93.20 93.20 93.20
2000 94 94 94

Homogen.

n ∆=0 ∆=1.86 ∆=3.72
500 2.40 2.40 2.40
1000 0 0 0
2000 0 0 0

n ∆=0 ∆=1.86 ∆=3.72
500 13.40 13.40 13.40
1000 3.40 3.40 3.40
2000 0.72 0.72 0.72

Nullity

n ∆=0 ∆=1.86 ∆=3.72
500 – 66.96 12.92
1000 – 43.68 1.56
2000 – 16.12 0.04

n ∆=0 ∆=1.86 ∆=3.72
500 – 69.24 14.76
1000 – 46.96 1.72
2000 – 18.24 0

Note: this table shows simulated acceptance probabilities for the 95% uniform confidence bands (“Unif.
CIs”, probability of coverage), uniform homogeneity test (“Homogen.”), and uniform treatment nullity test
(“Nullity”) presented in Section 2.6 for various sample sizes, where n = ni for all simulations, with ni the
sample size for the empirical quantile function. Data-generating processes are described in Equations (17)
and (18). All simulations used 2,500 repetitions and 5,000 bootstrap replications and estimated quantile
treatment effects at the 9 deciles. Values of ∆ reflects Cohen’s d of 0, 0.5, and 1.

To study the coverage properties of the confidence bands and tests proposed in 2.6, I

report their acceptance probabilities for both DGPs with varying values of ∆ in Table 2.

The values of ∆ are chosen to reflect an average Cohen’s d (treatment effect size relative

to standard error) of 0, 0.5, and 1 which correspond roughly to no, medium, and large

treatment effects. The coverage and acceptance probabilities of the uniform confidence

intervals and the homogeneity test in the first two rows are not affected by the magnitude

of the treatment effect. Moreover, both the Fréchet and the local polynomial estimator
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rapidly converge to the correct nominal coverage level, with the Fréchet estimator exhibiting

slightly better coverage. The slight undercoverage in small samples is expected insofar as

the estimators are only asymptotically unbiased, as also illustrated in Figure 3. For DGP 2,

which has heterogeneous treatment effects, the homogeneity test’s coverage rapidly coverges

to 0, illustrating the test’s consistency and sharp power in finite sample. Finally, for both

DGPs, the treatment nullity test also exhibits consistency and significant finite-sample power

for rejecting the null hypothesis of no effect.

4.2 Empirical Illustration: State Governors and the Income Distribution

To further illustrate the method, I estimate the effect of partisan governorship on the income

distribution within US states. To that end, I deploy a classical and widely used RD design in

economics and political science: the close-election design (Lee, 2008). This design compares

constituencies where a political party barely won an election to those where it barely lost in

order to estimate the effect of that party’s win on some outcome of interest. The identification

assumption is that the outcome of interest evolves smoothly with the party’s vote share in

a small window around the 50% electoral threshold that puts the party in power. Under

that assumption, any jump observed in the outcome at the threshold is induced by the

party’s electoral win, and thus identifies its causal effect locally for states with close election

outcomes. Such a close-election design naturally leads to an R3D setting (see also Motivating

Example 2), since many outcomes of interest are measured at the constituent level, leading

to an entire distribution of outcomes within each constituency.

4.2.1 Data and Method

I use data on gubernatorial election outcomes from Congressional Quarterly’s Voting and

Elections Collection, collating election data from 1984 to 2010. This produces a dataset of

356 state-year combinations where a gubernatorial election took place. The timeframe was

chosen to ensure a stable and clearly defined environment for estimating gubernatorial im-

pacts on state-level income distributions. The year 2010 marked a structural breakpoint in

state politics (see e.g. the sharp increase in state-level polarization documented in Shor et al.

(2022)) due to the significant Republican gains from the Tea Party wave and the subsequent

implementation of the Affordable Care Act (ACA). The ACA introduced confounding by in-

fluencing state policy choices through federal incentives, while increased partisan polarization

changed the nature and meaning of gubernatorial party control itself. Restricting the analy-

sis to pre-2010 thus guarantees a stable treatment definition, ensuring clearer identification

of causal effects attributable specifically to Democratic versus Republican gubernatorial con-
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trol. Indeed, while the effects remain similar when including post-2010 data, their precision

and magnitude decrease (see Figure A-6).

I combine these data with family-level income data from the UNICON extract of the

March Current Population Survey (CPS) for the final year of the state governor’s tenure, in

order to capture the cumulative effect of that tenure on the income distribution. Practically,

this means the election data is lagged 3 years, except in New Hampshire and Vermont, which

hold gubernatorial elections every 2 years.

The variables in the sample are defined as follows. The running variable Xit is the

Democratic candidate’s votes in state i in year t as a share of the combined Democratic and

Republican votes. When this threshold exceeds 50%, the Democratic candidate is elected.

As such, the treatment Tit indicates whether state i elected a Democratic governor in year t

instead of a Republican one. The outcome variable Zijt′ is real income of family j in state i

in year t′ = t + ti, where ti is a state-specific offset to match the income distribution in the

final year of a governor’s tenure to their electoral results. Real family income is constructed

as the ratio of family income in year t′ to the federal poverty threshold in that year. Family

income is defined in the standard fashion as the combined pre-tax cash income of the family,

including earnings and cash transfers, but excluding non-cash benefits or tax credits. The

federal poverty threshold is adjusted yearly and depends on family size and the number of

children. Normalizing income by the year-specific poverty threshold makes the units of the

outcome variable comparable across years, thus accounting for growth in real income levels

over time and making the i.i.d. assumption required for the R3D estimator more likely to

hold.

The CPS data are a sample of the full census data, thus placing this application in the

empirical quantile setting discussed in Section 3.3.1. In particular, instead of observing the

full population income distribution, in each state i in year t, I observe a sample of ni families

j = 1, . . . , ni. Based on that, I construct the empirical income quantile functions Q̂Yit
, where

Yit is the distribution function of family income in state i at time t such that Zijt ∼ Yit.

I use the family probability weights provided in the CPS to construct these as weighted

quantile functions. Further, I winsorize the distribution at the 95th percentile to account

for top-coding in the CPS. In practice, I estimate the quantile function on an equally spaced

grid of 95 points between [1×10−6, 0.95+1×10−6], where the 1×10−6 offset ensures I work

on a compact subset of [0, 1] as required by the theoretical results.

The data are depicted in Figure 5, which shows a version of the classical RD plot

(Calonico et al., 2015a) appropriate for the R3D setting, similar to Figure 2. In partic-

ular, it shows a scatterplot of the “data”, which are the quantile functions at various quan-

tiles q, averaged within equal-width bins Bj of the running variable, 1
|Bj |
∑

j∈Bi
Q̂Yj

(q), with
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Figure 5: R3D Plot: Average Income Quantiles vs. Democrat Vote Share
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Note: this figure shows scatterplot (blue palette) of various average quantiles of within-state income (in
multiples of the federal poverty threshold), calculated within bins of width 0.01. Average quantiles were
constructed by computing the weighted quantile functions of family income within each state and year, and
then taking the average of the estimated quantile values for a given quantile (0.05, 0.25, etc) within the
corresponding bin. These data points were then used to fit separate second-order polynomial regressions for
each quantile, shown in the solid lines.

Bj = {i : Xi ∈ [xj,min, xj,max)} the j bins. For 5 illustrative quantiles q, I then fit a second-

order polynomial regression line to these data. This simple descriptive plot already suggests

that there is a drop in income at the higher (average) quantiles that becomes stronger as it

moves up the income distribution.

Based on these data, I use the Fréchet estimator (Section 2.5.2) to estimate the local av-

erage quantile treatment effects in Definition 1, plugging in the estimated empirical quantile

functions Q̂Yit
. For these, 90% uniform confidence bands are constructed using the bootstrap

algorithm sketch in 2.6, where I use the 90% nominal level to follow the standard in the lit-

erature (Frandsen et al., 2012; Qu and Yoon, 2019; Chiang and Sasaki, 2019). To address

some of the small-sample undercoverage reported in the simulations above, I apply the rule-

of-thumb coverage correction of Calonico et al. (2018) to the IMSE-optimal bandwidth (see

Appendix A-4.2). In addition, I formally test for uniform treatment nullity and homogeneity

using the tests described in Section 2.6.

4.2.2 Related Literature

This application fits into a rich literature linking partisan control of US state governments

to inequality and other economic outcomes. Building on Hibbs’ partisan theory (Hibbs,

1977) and Kelly’s “market conditioning” (Kelly, 2009), research has generally argued that
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Democrats, allied with lower income groups, adopt policies that narrow income gaps, whereas

Republicans, favoring upper and business income constituencies, may widen them. Panel

studies show that Democratic legislatures raise taxes and spending (Reed, 2006), implying

stronger redistribution. Though recent results from difference-in-difference designs and close-

election RDDs found no evidence that party control significantly affects most state-level eco-

nomic outcomes within a governor’s tenure (Dynes and Holbein, 2020), other close-election

RDs have shown that Democratic control of state and local offices often increases minimum

wages and welfare caseloads, compressing the post-tax income distribution (Leigh, 2008),

and leads to more liberal policies (Caughey et al., 2017), including increased government

spending and taxes (de Benedictis-Kessner and Warshaw, 2016). I contribute to this liter-

ature by providing credible causal estimates of the effect of gubernatorial party control on

the income distribution, using rich individual-level data within each state instead of just

state-level aggregates.

4.2.3 Results

The main results are shown in Figure 6. The graph depicts the LAQTE estimates, with the

Y-axis indicating the effect as a multiple of the federal income threshold for the quantile

of the distribution indicated by the X-axis. The light blue band depicts the 90% uniform

confidence band.

As shown, treatment effects are slightly positive at the lowest quantiles and become

increasingly negative farther up the income distribution, with the top 10 percentiles seeing

a decline in income of 1.5 times the federal poverty threshold. By contrast, the very bottom

quantiles see their income increase by half the poverty threshold. Only the effects for the

top 10 percentiles (85th–95th) are uniformly significant at the 90% level. The p-values for

the uniform treatment nullity test and the treatment heterogeneity test are 0.043 and 0.069,

respectively, suggesting the observed negative relation between income quantile and effect

size is significant.

The estimated results are very similar for alternative specifications with the local poly-

nomial estimator of Section 2.5.1, when using a uniform instead of a triangular kernel, or

when using half the IMSE-optimal bandwidth in Figures A-3, A-4, and A-5. In contrast,

when estimating the baseline specification with the income distribution of the same year as

the election as outcome variable, none of the quantile treatment effects are significant, nor

are the nullity and homogeneity tests. This suggests the results are not driven by reverse

causality, where the pre-existing income distribution drives the election outcomes. That

aligns with the small effects of local economic conditions on voting behavior estimated in the

literature on retrospective voting (Healy and Malhotra, 2013). Furthermore, I check whether
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Figure 6: Distributional Effects of Democratic Governor Control, 1984–2010
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Note: this figure shows local average quantile treatment effects estimates and uniform 90% confidence bands
for R3D of effect of Democratic governor control on within-state income distribution. X-axis indicates
quantile of the (average) income distribution while Y-axis indicates the difference in average state-level
income distributions, in the final year of the governor’s tenure, near the 50% vote share threshold. Income is
measured as real equivalized family income in multiples of the federal poverty threshold. Sample runs from
1984–2010, estimates are obtained using the second-order Fréchet estimator in Section 2.5 with first-order
IMSE-optimal bandwidth and triangular kernel as in Section A-4.2, and uniform bands are constructed using
Algorithm A-4.3 with 5,000 bootstrap repetitions. Treatment nullity p-value: 0.043, treatment homogeneity
p-value: 0.069, IMSE-optimal bandwidth: 0.22.

the results are not driven by families “voting with their feet” by moving across states. To

that end, Figure A-8 demonstrates that the results are near-identical when excluding families

that moved across state borders in the previous year, barring some expected loss of precision.

Finally, Table A-1 reports estimates of the local average treatment effect using the stan-

dard RD estimator with robust confidence bands (Calonico et al., 2014), using both the

state-level weighted average family income and the raw family-level outcome data. The

state-level treatment effect estimate is −0.64 and significant at the 90% level, while the

family-level estimate is −0.891 and marginally significant at the 5% level. As predicted

theoretically, the state-level estimates are in line with the average of the LAQTEs produced

by the R3D estimators, which is -0.646, while the family-level estimates are 40% stronger,

reflecting a state-size weighted average effect. Both standard RD estimates cloak the un-

derlying heterogeneity, in particular the redistribution that is achieved at the cost of the

estimated drop in overall income. I also report the quantile RD estimator of Qu and Yoon

(2019) in Figure A-9. In line with the simulations above, the estimated effects exhibit sub-

stantial bias. Specifically, the estimated quantile treatment effects are, on average, 20%

stronger than the R3D estimates.5 Moreover, the estimated confidence bands are extremely

5A comparison of the 4 (implied) average treatment effects is given in Figure A-10.
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narrow, giving the impression that there are negative income effects across the distribution.

By contrast, the R3D confidence bands are generally not significant except at the top 10% of

the distribution. This stark difference reflects the fact that the quantile RD estimator does

not account for across-group heterogeneity, ignoring the variation induced by the random

distributions and hence estimating artificially tight confidence bands.

Taken together, these results suggest a classical equality–efficiency trade–off under Demo-

cratic governorship, with some redistribution of income achieved at the cost of a loss of

income for upper-income earners (Okun, 1975). They also highlight the practical utility of

the R3D estimator in uncovering distributional heterogeneity in treatment effects, compared

to standard RD methods, while producing estimates that are consistent with those standard

RD estimates in the aggregate.

5 Conclusion

This paper introduces the Regression Discontinuity Design with Distributions (R3D), a novel

extension of the standard Regression Discontinuity Design (RDD) framework tailored to

settings where the outcome of interest is a distribution rather than a single scalar value. This

generalization is motivated by the common real-world setting where treatment is assigned at a

higher level of aggregation than the outcome of interest, such as firm-level policies that affect

employees, county-level policies that affect inhabitants, or school-level policies that affect

students. Standard RD methods do not apply to such settings since they do not account for

the two-level randomness involved in these settings, which introduces sampling at the level of

distributions. To address this, I define the local average quantile treatment effect (LAQTE)

as the primary estimand, which quantifies the difference in average quantile functions, instead

of observed ones, just above and below a treatment cutoff. This measure offers a natural and

intuitive extension of the traditional RDD treatment effect to distribution-valued outcomes.

To estimate the LAQTE, a distributional version of the local polynomial regression that

regresses on the entire quantile function at once. I establish the asymptotic normality of

the estimator and develop uniform, debiased confidence bands that can be estimated with a

multiplier bootstrap. Additionally, I introduce a data-driven bandwidth selection procedure

for distribution-valued outcomes that is optimal for an integrated version of the mean-squared

error. Simulations confirm the robustness of these theoretical properties, demonstrating good

finite-sample performance and correct nominal coverage of the confidence bands.

The practical utility of the R3D framework is illustrated through an empirical application

examining the effect of gubernatorial party control on within-state income distributions in the

United States, using a close-election RDD. The findings reveal a classical equality–efficiency
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trade-off under Democratic governorship, with some redistribution achieved at the cost of an

overall loss of income. This evidence underscores the method’s ability to uncover nuanced

distributional impacts beyond average treatment effects.

There are several avenues for future research. The R3D framework could be extended to

allow for covariates (Jin et al., 2025; Frölich and Huber, 2019), multiple running variables or

cutoffs (Bertanha, 2020; Gunsilius, 2023; Cheng, 2023; Cattaneo, Titiunik, Vazquez-Bare and

Keele, 2016), or multivariate outcome distributions (Chen and Müller, 2023). In Van Dijcke

(2025), I extend the idea of testing for discontinuities in non-parametric regression functions

to a general metric-space setting, allowing for outcomes beyond distributions such as net-

works or covariance matrices, while Kurisu et al. (2025b) propose a way to define treatment

effects in that setting. Further, applying these methods to empirical domains where the R3D

setting occurs frequently, such as education, labor policy, or politics, promises to yield new

insights into the distributional consequences of policy interventions.

In summary, the R3D framework offers a powerful and versatile new tool for causal infer-

ence with distribution-valued outcomes, making the estimation of distributional treatment

effects practical in a novel but commonly occurring setting. By providing both theoretical

foundations and practical estimation strategies, this article equips researchers with a new

way to address pressing questions about how policies shape distributions.
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arXiv:2407.21407 .

Imbens, G. and Kalyanaraman, K. (2012), ‘Optimal bandwidth choice for the regression

discontinuity estimator’, The Review of economic studies 79(3), 933–959.

Jin, Z., Zhang, Y., Zhang, Z. and Zhou, Y. (2025), ‘Identification and inference in a quantile

regression discontinuity design under rank similarity with covariates’, Econometric Theory

41(1), 172–217.

Katta, S., Parikh, H., Rudin, C. and Volfovsky, A. (2024), Interpretable causal inference

for analyzing wearable, sensor, and distributional data, in ‘International Conference on

Artificial Intelligence and Statistics’, PMLR, pp. 3340–3348.

Kelly, N. J. (2009), The Politics of Income Inequality in the United States, Cambridge Uni-

versity Press, Cambridge, UK.

Koenker, R. and Bassett Jr, G. (1978), ‘Regression quantiles’, Econometrica: journal of the

Econometric Society pp. 33–50.

Kolesár, M. and Rothe, C. (2018), ‘Inference in regression discontinuity designs with a

discrete running variable’, American Economic Review 108(8), 2277–2304.

Kroshnin, A., Spokoiny, V. and Suvorikova, A. (2021), ‘Statistical inference for bures–

wasserstein barycenters’, The Annals of Applied Probability 31(3), 1264–1298.

Kurisu, D., Zhou, Y., Otsu, T. and Müller, H.-G. (2024), ‘Geodesic causal inference’, arXiv

preprint arXiv:2406.19604 .

Kurisu, D., Zhou, Y., Otsu, T. and Müller, H.-G. (2025a), ‘Geodesic synthetic control meth-

ods for random objects and functional data’, arXiv preprint arXiv:2505.00331 .

Kurisu, D., Zhou, Y., Otsu, T. and Müller, H.-G. (2025b), ‘Regression discontinuity

designs for functional data and random objects in geodesic spaces’, arXiv preprint

arXiv:2506.18136 .

Lee, D. S. (2008), ‘Randomized experiments from non-random selection in us house elections’,

Journal of Econometrics 142(2), 675–697.

Lee, D. S. and Card, D. (2008), ‘Regression discontinuity inference with specification error’,

Journal of Econometrics 142(2), 655–674.

Lee, D. S. and Lemieux, T. (2010), ‘Regression discontinuity designs in economics’, Journal

of economic literature 48(2), 281–355.

Leigh, A. (2008), ‘Estimating the impact of gubernatorial partisanship on policy settings and

economic outcomes: A regression discontinuity approach’, European Journal of Political

Economy 24(1), 256–268.

Lin, L., Thomas, B. S., Piegorsch, W. W., Scott, J. and Carvalho, C. (2019), ‘A projection

approach for multiple monotone regression’, arXiv preprint arXiv:1911.07553 .

47



Lin, Z., Kong, D. and Wang, L. (2023), ‘Causal inference on distribution functions’, Journal

of the Royal Statistical Society Series B: Statistical Methodology 85(2), 378–398.

Linton, O. and Nielsen, J. P. (1994), ‘A multiplicative bias reduction method for nonpara-

metric regression’, Statistics & Probability Letters 19(3), 181–187.

Ludwig, J. and Miller, D. L. (2007), ‘Does head start improve children’s life chances?

evidence from a regression discontinuity design’, The Quarterly journal of economics

122(1), 159–208.

Okun, A. M. (1975), Equality and Efficiency: The Big Tradeoff, Brookings Institution Press,

Washington, D.C.

Panaretos, V. M. and Zemel, Y. (2020), An invitation to statistics in Wasserstein space,

Springer Nature.

Papay, J. P., Willett, J. B. and Murnane, R. J. (2011), ‘Extending the regression-

discontinuity approach to multiple assignment variables’, Journal of Econometrics

161(2), 203–207.

Petersen, A., Liu, X. and Divani, A. A. (2021), ‘Wasserstein f-tests and confidence bands for
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A-1 Mathematical Notation and Definitions

Definition A-3 (VC Type (Def. 3.6.10, Giné and Nickl (2021))). A class of measurable

functions F is of V C type with respect to a measurable envelope F of F if there exist finite

constants A, v such that for all probability measures Q on (Ωx,Fx)

N
(
F , L2(Q), ε∥F∥L2(Q)

)
≤ (A/ε)v.

A-2 Derivation of Local Polynomial Regression Weights

The aim is to estimate

m̂±,p(q) =
(
polynomial fit at x = c

)∣∣∣
order=p

via the following one-sided weighted least squares:

α̂±,p = argmin
α∈Rp+1

n∑
i=1

δ+i K
(

Xi−c
h

) [
QYi

(q)−α⊤ rp

(
Xi−c
h

)]2
,

where rp(u) := ( 1, u, u2, . . . , up )⊤.

Define,

X± =


rp
(
X1−c

h

)⊤
rp
(
X2−c

h

)⊤
...

rp
(
Xn−c

h

)⊤

 , W± = diag
{
δ±i K

(
Xi−c
h

)
: i = 1, . . . , n

}
,

Q =
(
QY1(q), QY2(q), . . . , QYn(q)

)⊤
.

The solution to the above least-squares problem is:

α̂±,p =
(
X⊤

±W±X±

)−1 (
X⊤

± W±Q
)
.

Since the regression function at X = 0 is the intercept component, let e0 = (1, 0, 0, . . . , 0)⊤

as before. Then

m̂±,p(q) = e⊤0 α̂±,p = e⊤0
(
X⊤

±W±X±
)−1 (

X⊤
±W±Q

)
.

Noting that everything in front of Q is independent of QYi
(q) and depends only on {Xi},
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Kh(·), h, etc., it follows:

m̂±,p(q) =
n∑

i=1

e⊤0
(
X⊤

±W±X±
)−1 (

X⊤
±W±

)
: , i︸ ︷︷ ︸

=: s
(p)
±, in(h)

QYi
(q).

Therefore, the one-sided local-polynomial estimator of order p can be written as a simple

weighted average:

m̂±,p(q) =
n∑

i=1

[
s
(p)
±, in(h)

]
QYi

(q), where

s
(p)
±, in(h) = δ±i e⊤0

(
X⊤

±W±X±

)−1

rp

(
Xi−c
h

)
K
(

Xi−c
h
,
)
.

A-3 Overview of Local Fréchet Regression

This supplement provides a brief overview of local Fréchet regression as proposed in Petersen

and Müller (2019).

A-3.1 Generalized Conditional Expectations

The concept of the Fréchet mean arises as a natural generalization of the Euclidean mean.

To see this, let Z ∈ R, then the conditional expectation E[Z | X = x] at x can be defined

as the unique minimizer f of the mean-squared error,

E[Z | X = x] := argmin
f∈R

E[dE (Z, f)2 | X = x],

where dE(x, y) := ∥x − y∥ the standard Euclidean metric. The conditional Fréchet mean

m⊕(x) generalizes this to any metric space (Ω, d) equipped with a distance metric d by

replacing the squared Euclidean distance with the generalized squared distance d(Y, ·), Y ∈ Ω

(Petersen and Müller, 2019),

(A-1) m⊕(x) := argmin
ω∈Ω

M⊕(ω, x), M⊕(·, x) := E
[
d2(Y, ·) | X = x

]
.

The corresponding conditional Fréchet variance V⊕(x) is defined analogously to the clas-

sical variance operator as the squared distance from the mean,

V⊕(x) := E
[
d2(Y,m⊕(x)) | X = x

]
.
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The “unconditional” Fréchet mean and variance are defined analogously.

A-3.2 The 2-Wasserstein Metric

Consider using the 2-Wasserstein distance dW2(Y1, Y2) to measure the distance between two

distribution functions Y1, Y2 ∈ Y . For one-dimensional distribution functions, this metric

can be shown to equal (Villani, 2021, Theorem 2.18),

(A-2) d2W2
(Y1, Y2) =

∫ 1

0

(QY1(q)−QY2(q))
2 dq,

where remember that QY1 and QY2 are the quantile functions corresponding to Y1 and Y2,

respectively.

The reason for the asymptotic equivalence between Fréchet regression in 2-Wasserstein

space (Y , dw2) and local polynomial regression on quantiles is that the Fréchet mean of

any random distribution Y ∈ Y equipped with dW2 is the unique cdf F⊕ with the quantile

function (Panaretos and Zemel, 2020, Theorem 3.2.11),

QF⊕(q) = EQY (q) =

∫
Y
QY (q) dP (Y ).

Informally, the “average” distribution computed by means of the Fréchet mean under the

2-Wasserstein distance is the only distribution that has a quantile function equal to the

expected quantile function at each quantile t. In that sense, it is the “correct” metric for

computing average quantile functions.

A-3.3 Local Fréchet Regression

Fréchet regression was introduced in Petersen and Müller (2019) as a generalization of linear

regression (Fan and Gijbels, 1996) when the outcome Y takes values in a general metric

space Ω beyond just the Euclidean space R.
In the definition of the conditional Fréchet mean introduced above, consider the case

Z ∈ Ω = R and write m = m⊕ for brevity. Then the (population) local linear estimate of

m(x) is l̃(x) = β∗
0 , where,

(β∗
0 , β

∗
1) = argmin

β0,β1

∫
Kh(x

′ − x)×
[∫

z dFZ|X(x
′, z)− (β0 + β1(x

′ − x))

]2
dFX(x

′),

with Kh(·) = h−1K(·/h) with K a smoothing kernel and h a bandwidth. Defining µj =
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E [Kh(X − x)(X − x)j] and σ2
0 = µ0µ2 − µ2

1, the solution β∗
0 can be written as,

l̃(x) = β∗
0 = E[s(X, x, h)Z],

with weight function,

(A-3) s(x′, x, h) =
1

σ2
0

{Kh(x
′ − x) [µ2 − µ1(x

′ − x)]}

which corresponds to the local Fréchet mean,

(A-4) l̃(x) = argmin
z∈R

E
[
s(X, x, h)(Z − z)2

]
.

Just as with the definition of the classical Fréchet mean, this can be generalized to Y ∈ Ω

on a general metric space as,

l̃⊕(x) = argmin
ω∈Ω

{
L̃n(ω) := E

[
s(X, x, h)d2(Y, ω)

]}
where the dependence on n is through the bandwidth sequence h = hn.

Then, assume that (Xi, Yi) ∼ F, i = 1, . . . , n are independent. The corresponding sample

estimator is,

(A-5) l̂⊕(x) = argmin
ω∈Ω

{
L̂n(ω, x) := n−1

n∑
i=1

sin(x, h)d
2 (Yi, ω)

}
,

with the empirical weights,

(A-6) sin(x, h) =
1

σ̂2
0

Kh (Xi − x) [µ̂2 − µ̂1 (Xi − x)] ,

where

µ̂j = n−1

n∑
i=1

Kh (Xi − x) (Xi − x)j , σ̂2
0 = µ̂0µ̂2 − µ̂2

1.

These weights are identical to those for the classical local polynomial regression (Fan and

Gijbels, 1996). The generalization lies in the use of the distance metric and the projection

onto Ω.

Local Fréchet regression “from the left and right”, as considered in the main text, simply

requires adding a δ±i term to the appropriate equations.
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A-3.4 Existence, Uniqueness, and Local Polynomial Equivalence

The following result establishes the equivalence of the projected local polynomial regression

estimator and the local Fréchet regression estimator from Petersen and Müller (2019) in the

metric space (Y , dW2).

Proposition A-3. The projected local polynomial regression estimator in (4) is equivalent

to the quantile function of the local polynomial Fréchet regression estimator of order p on

the metric space (Y , dW2),

argmin
ω∈Y

1

n

n∑
i=1

s
(p)
±,in(h)d

2
W2

(ω, Yi),

which exists and is unique. Similarly, the projected conditional average quantile function

ΠQ(m±) is equivalent to the quantile function of the conditional Fréchet mean on (Y , dW2)

in (A-1), which exists and is unique.

Proof. Denote ⟨·, ·⟩L2 , ∥ · ∥L2 and dL2(·, ·) the L2 inner product, norm, and distance on [0, 1],

respectively.

From the definition of m̂+,p, I have,

1

n

n∑
i=1

s
(p)
+,in(h)dL2(QYi

, m̂+,p)
2 + dL2(Qω, m̂+,p)

2

= ⟨ 1
n

n∑
i=1

s
(p)
+,in(h), Q

2
Yi
⟩L2 − 2⟨m̂+,p,

1

n

n∑
i=1

s
(p)
+,in(h)QYi

⟩L2 +
1

n

n∑
i=1

s
(p)
+,in(h)⟨m̂+,p, m̂+,p⟩L2

+ ⟨Qω, Qω⟩L2 − 2⟨ 1
n

n∑
i=1

s
(p)
+,in(h)QYi

, Qω⟩L2 + ⟨m̂+,p, m̂+,p⟩L2

= ⟨ 1
n

n∑
i=1

s
(p)
+,in(h), Q

2
Yi
⟩L2 − ⟨Qω, Qω⟩L2 − 2⟨ 1

n

n∑
i=1

s
(p)
+,in(h)QYi

, Qω⟩L2

=
1

n

n∑
i=1

s
(p)
+,in(h)dL2(QYi

, Qω)
2

=
1

n

n∑
i=1

s
(p)
+,in(h)dW2(Yi, ω) = (A-5)

where the second equality follows from 1
n

∑n
i=1 s

(p)
+,in(h) = 1 and the definition of m̂+,p and

the third equality follow from 1
n

∑n
i=1 s

(p)
+,in(h) = 1. As a result, the local Fréchet regression
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estimator “from the right”, l̂+,⊕(c) on (Y , dW2) equals

l̂+,⊕(c) = Q−1

(
argmin
h∈Q(Y)

dL2(h, m̂+,p)
2

)
,(A-7)

where Q−1 is the quantile function’s generalized inverse, which maps it back to its corre-

sponding CDF. An identical argument holds for the Fréchet estimator from the left, l̂−,⊕.

Thus, the quantile function of the local Fréchet regression estimator is the L2 projection of

the local polynomial estimator onto the space of quantile functions. Further, note that the

solution to (A-7) always exists and is unique by the convexity of the objective function and

of the space of quantile functions Q(Y).

To see that the quantile function of the conditional Fréchet mean is equivalent to the

projected conditional average quantile, rewrite the conditional Fréchet functional in (A-1)

on (Y , dW2) as,

M⊕(Ω, x) = E[d2W2
(Yi, ω) | X = x]

=

∫
X

∫ 1

0

(QYi
(q)−Qω(q))

2 dq dFY |X=x

=

∫ 1

0

∫
X

(
QYi

(q)2 − 2QYi
(q)Qω(q) +Qω(q)

2
)
dFY |X=x dq

= C ′ +

∫ 1

0

(m(q)−Qω(q))
2 dq

where C ′ =
∫ 1

0

∫
X QYi

(q)2 dFY |X=x dq −
∫ 1

0
m(q)2 dq is a constant that does not depend on

Qω, and the second equality follows from Fubini-Tonelli by the fact that all distributions in

Y have finite variance. As a result, the conditional Fréchet mean m⊕ on (Y , dW2) equals

m⊕(x) = Q−1

(
argmin
h∈Q(Y)

dL2(h,m)

)
,

the L2 projection of E[QY (·) | X = x] onto the space of quantile functions. But since

E[QY (·) | X = x] is a valid quantile function, the two functions are in fact equivalent.

This is the well-known result that the Fréchet mean in 2-Wasserstein space has a quantile

function equal to the average quantile function. Existence and uniqueness follow by standard

properties of conditional expectations.
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A-4 Implementation Details

A-4.1 First-Stage Estimators

Let t ≤ p, t ∈ N+ and denote δ±x := 1
{
x ⩾
< 0

}
. The uniformly consistent first-stage

estimators Ê1(y, t, x, q), Ê2(y, t, x, q) proposed by Chiang et al. (2019, A.6) are,

Ê1(y, t, x, q) =
(
QY (q)− Ẽ[QY (q) | X = x]

)
1 (|x/h1(q)| ≤ 1)

and

Ê2(y, t, x, q) =
(
T − Ẽ[T | X = x]

)
1 (|x/h2(q)| ≤ 1)

where

Ẽ[QY (q) | X = x] := rt(x/h1(q))
′α̂+,t δ

+
x + rt(x/h2(q))

′α̂−,tδ
−
x

and

Ẽ[T | X = x] := rt(x/h2(q))
′α̂+,T,t δ

+
x + rt(x/h2(q))

′α̂−,T,t δ
−
x

with α̂+,t defined in (4) and similarly

α̂±,T,p = argmin
α∈Rp+1

n∑
i=1

δ±i K
(

Xi

h

) [
Ti −α⊤ rp

(
Xi

h

)]2
.

For the corresponding Fréchet first-stage estimates, one simply projects Ẽ[QY (q) | X = x]

onto the space of quantile functions before evaluating it at a given q in the expression for

Ê1(y, t, x, q).
Then, by Lemma 7 in Chiang et al. (2019), the first-stage local polynomial estimators

are uniformly consistent for E1(y, t, x, q)1 (|x/h1(q)| ≤ 1) and E2(y, t, x, q)1 (|x/h2(q)| ≤ 1) on

[c, c] × Y × {0, 1}. By the coerciveness of the projection onto quantile functions (Bauschke

et al., 2017), the local Fréchet version of these first-stage estimates is also uniformly consis-

tent. The benefit of these estimators is that the same p-th order local polynomial estimators

can be reused for both the first and second stage, reducing computational load.

Furthermore, a standard consistent estimator for fX(0) is the kernel density estimator

f̂X(0) :=
1
nb

∑n
i=1K (Xi/b) with b = bn → 0 and nb→ ∞.
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A-4.2 Bandwidth Selection

While Assumption K2 prescribes asymptotic bandwidth rates, in practice, researchers need to

choose a bandwidth in finite sample. Here, I derive MSE-optimal bandwidths for the local

polynomial estimator (analogous to Chiang et al. (2019, Supplement F)), and integrated

MSE-optimal (IMSE) bandwidths for the Fréchet regression estimator. Using the IMSE for

the latter delivers a single bandwidth for the entire average quantile function, as assumed by

the Fréchet estimator. To operationalize the one-step robust bias correction from Calonico

et al. (2014), I need to compute the bandwidth that is optimal for the desired order of local

polynomial estimation s, but then use that s-th order optimal bandwidth to estimate a p-th

order local regression, with p > s.

I remind the reader of the following notation, rs(u) =
(
1, u, . . . , us

)
, Γ±

s =
∫
R±
K(u) rs(u) rs(u)

′ du,

Λs,s+1 =
∫
R u

s+1 rs(u)K(u) du, Λ±
s,s+1 =

∫
R±
us+1 rs(u)K(u) du, and Ψ±

s =
∫
R±
rs(u)r

′
s(u)K

2(u)du.

Below, I drop the R3D superscript on the treatment effect estimators τ̂R3D to ease notation.

A-4.2.1 Local Polynomial Estimator

It is well known (cf. Fan and Gijbels (1992), Calonico et al. (2014)) that for a p-th order

local polynomial at a boundary, the leading bias is on the order of hs+1. Specifically:

Bias
[
m̂±,s(q)

]
= h1(q)

s+1B±(q) :=
h(q)s+1

(s+ 1)!
e′0
(
Γ±
s

)−1
Λ±

s,s+1

∂s+1m±(q)

∂xs+1
+O

(
hs+2

)
,

where e0 = (1, 0, . . . , 0)′ ∈ Rs+1 is the row vector picking out the intercept term. Hence the

bias of the difference τ̂s(q) at each q is,

Bias
[
τ̂s(q)

]
≈ h1(q)

s+1 (B+(q)−B−(q))

Similar derivations for the variance expressions imply that

Var
[
m̂±,s(q)

]
≈ 1

nh
V±(q) :=

1

(nh)fX(0)
e′0
(
Γ±
s

)−1
[
σ1,1(q, q | 0±)

]
Ψ±

s

(
(q, 1), (q, 1)

) (
Γ±
s

)−1
e0,

where I remind the reader that σ1,1(q, q | 0+) = limx→0± Var
(
QY (q) | X = x

)
. Summing

these expressions for both sides for τ̂s(q) (the difference) yields

Var
[
τ̂s(q)

]
≈ 1

nh

[
V+(q) + V−(q)

]
.

Based on the standard bias-variance expression MSE = Bias2 + Var, these expressions

allow one to derive an MSE-optimal bandwidth h∗1(q) at each q for the local polynomial
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estimator by optimizing with respect to h1, which gives,

(A-8) h∗1(q) =

(
1

2(s+ 1)

V+(q) + V−(q)

(B+(q)−B−(q))2

)1/(2s+3)

n−1/(2s+3).

The derivation for the denominator’s bandwidth in the fuzzy RDD, h∗2, follows identically

by replacing m±(q) with m±,T and σ1,1(q, q|0±) with σ2,2(q, q|0±) = limx→0± Var(T |X = x)

in the formulas above and noting that the optimal bandwidth will be the same for all q.

A-4.2.2 Fréchet Estimator

Define

IMSE
[
τ̂s
]
=

∫ b

a

MSE
[
τ̂s(q)

]
dq =

∫ b

a

[
Bias

[
τ̂s(q)

]2
+Var

[
τ̂s(q)

]]
dq.

Putting the above expansions together, it follows that

IMSE
[
τ̂s
]
= h2(s+1)As +

1

nh
Bs + o

(
h2(s+1) +

1

nh

)
,

where

As =

∫ b

a

(
B+(q)−B−(q)

)2
dq

and

Bs =

∫ b

a

(
V+(q) + V−(q)

)
dq.

Then remember the Fréchet conditional mean estimator m̂±,⊕ is ΠQ[m̂±,s(·)], the L2-

projection of the local polynomial estimator onto quantile functions, and the corresponding

treatment effect estimator is τ̂⊕,s(q). Write the difference between the treatment effect esti-

mators as

∆⊕,s(q) = τ̂⊕,s(q)− τ̂s(q) =
[
m̂+,⊕,s − m̂+,s

]
(q)−

[
m̂−,⊕,s − m̂−,s

]
(q).

By Lemma A-9, ∥∥m̂±,⊕,s − m̂±,s

∥∥
ℓ∞([a,b])

= op
(
(nh)−1/2

)
.

Hence the difference ∆⊕,s(·) is also op
(
(nh)−1/2

)
in ℓ∞([a, b]).

Then write,

IMSE
[
τ̂⊕,s

]
− IMSE

[
τ̂s
]
=

∫ b

a

[
MSE

(
τ̂⊕,s(q)

)
−MSE

(
τ̂s(q)

)]
dq.
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Pointwise in q,

MSE
[
τ̂⊕,s(q)

]
−MSE

[
τ̂s(q)

]
= 2E

[
(τ̂s(q)− τ(q))∆⊕,s(q)

]
+ E

[
∆⊕,s(q)

2
]
.

By Cauchy–Bunyakovsky-Schwarz,

∣∣E[(τ̂s − τ)∆⊕,s]
∣∣ ≤

(
E[(τ̂s − τ)2]

)1/2(
E[∆2

⊕,s]
)1/2

.

Under Theorem 1 and Lemma A-9,

sup
q∈[a,b]

E
[
(τ̂s(q)− τ(q))2

]
= O

(
1
nh

)
, sup

q∈[a,b]
E
[
∆⊕,s(q)

2
]
= o

(
1
nh

)
,

so the integrand satisfies

sup
q∈[a,b]

∣∣∣MSE
[
τ̂⊕,s(q)

]
−MSE

[
τ̂s(q)

]∣∣∣ = o
(

1
nh

)
.

Hence

IMSE
[
τ̂⊕,s

]
= IMSE

[
τ̂s
]
+ o
(

1
nh

)
.

As a result, the leading terms of the IMSEs of the local polynomial and the Fréchet

estimator are the same, and thus,

(A-9) IMSE
[
τ̂⊕,s

]
≈ As h

2(s+1) +
1

nh
Bs.

Taking a derivative in h and setting it to 0 gives the IMSE-optimal bandwidth for the sharp

Fréchet RD setting,

h∗⊕,1 =

(
Bs

2(s+ 1)As

)1/(2s+3)

n
− 1
2s+3 .

For the fuzzy Fréchet RD setting, one simply uses this rate for the numerator and h∗2, derived

above, for the denominator.

Note that to obtain the estimates of the A and B terms, as explained below, I rely

on standard local polynomial estimates rather than the projected Fréchet estimates. The

reason is that the bias term involves the second derivative of the conditional expectation.

Derivatives of quantile functions are not quantile functions themselves, and hence projecting

them onto the space of quantile functions lacks meaning. This approach is justified by the

above derivations, since the Fréchet and local polynomial estimators coincide asymptotically.
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A-4.2.3 Practical Estimation

To estimate the “oracle” bandwidths derived above in practice, I propose the following

three-step procedure:

Step 1: Preliminary Bandwidths.

(i) Estimate the density of X at zero by a kernel-density estimator using the rule of thumb

of Silverman (2018):

f̂X(0) =
1

ncn

n∑
i=1

K

(
Xi

cn

)
where cn = 1.06 σ̂X n

−1/5,

and σ̂X is the sample standard deviation of {Xi}ni=1.

(ii) Compute the pilot bandwidths h0k,n for local polynomial fits of order p using the bias-

variance formulas derived above,

h01,n(q) =

(
1

2(p+1)

C1,0(q)
′

C1,0(q)2

) 1
2p+3

n− 1
2p+3 ,

where C1,0 and C
′
1,0 are the bias and variance expressions derived above with first-stage

estimates plugged in,

C1,0(q) = e′0

[(
Γ+
s

)−1
Λ+

s, s+1

∂s+1m+(q)

∂xs+1
−
(
Γ−
s

)−1
Λ−

s, s+1

∂s+1m−(q)

∂xs+1

]/
(s+ 1)!,

C ′
1,0(q) =

1

f̂X(0)
e′0
[
σ2
1,+(q)

(
Γ+
s

)−1
Ψ+

s

(
Γ+
s

)−1
+ σ2

1,−(q)
(
Γ−
s

)−1
Ψ−

s

(
Γ−
s

)−1]
e0.

where ∂s+1m±(q)
∂xs+1 and σ2

1,±(q) are preliminary guesses of the (s + 1)-th derivative term

and the variance, respectively. In practice, one can obtain them by fitting a global

polynomial of degree ≥ s+1 and computing the sample variance of the first term. As

suggested in Chiang et al. (2019, Supp. F), simply setting them to 1 can also deliver

satisfactory performance. The pilot bandwidth for the denominator in the fuzzy RDD,

h02,n(q) can be obtained entirely analogously by substituting a guess for
∂s+1m±,T (q)

∂xs+1 and

its corresponding variance.

Step 2: First-Stage Local Polynomial Fits.

Using the pilot bandwidths {h01,n(q), h02,n(q)} from Step 1, run local polynomial regres-
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sions of order s at each quantile q,

qα±,s(q) = argmin
α∈Rs+1

n∑
i=1

δ±i K
(

Xi

h0
k,n

)[
QYi

(q)− α⊤ rs
(

Xi

h0
k,n

)]2
,

which gives the first-stage estimates

[
qm±(q), . . . ,

∂s qm±(q))

∂xs
]
= qα′

±,s diag
[
1, 1!/h01,n, . . . , s!/

(
h01,n

)s]
and the corresponding first-stage s-th order expansion,

qE[QY (q) | X = x] =
[

qm+(q) + qm
(1)
+ (q)x+ · · ·+ ∂s qm+(q)

∂xs
xs

s!

]
δ+x +[

qm−(q) + qm
(1)
− (q)x+ · · ·+ ∂s qm−(q)

∂xs
xs

s!

]
δ−x .,

as well as the corresponding variance estimates,

qσ11
(
q, q | 0±

)
=


∑n

i=1

(
QYi

(q)− qE[QY (q) | X = c]
)2
K
(

Xi

h0
1,n

)
δ±i∑n

i=1K
(

Xi

h0
1,n

)
δ±i


1/2

,

and analogously for qE[T | X = x], qσ22 (q, q | 0±). Then the uniform consistency of qE[QY (q) |
X = x]1

{
|x| ≤ h01,n(q)

}
and qE[T | X = x]1

{
|x| ≤ h02,n

}
is implied by Lemma 7 in Chiang

et al. (2019), see the discussion in Appendix A-4.1.

Step 3: Final Bandwidth via MSE (or IMSE).

Finally, plug these first-stage expansions into the MSE- and IMSE-optimal bandwidth

formulas derived in (A-8) and (A-9).

• Local polynomial estimator, h∗1(q): MSE requires a separate ĥk,n(q) for each quantile q.

• Fréchet estimator : h∗⊕,1: IMSE across q ∈ [a, b] can be obtained by averaging the bias2

and variance from Step 2 over q ∈ [a, b] to get a single bandwidth for all q.

Finally, one can optionally apply the rule-of-thumb bandwidth algorithm from Calonico

et al. (2018, 2020) for optimal coverage error to these (I)MSE-optimal estimated bandwidths,

hROT
1 (q) = h∗1(q)n

−s/(2s+3)(s+3)

and similarly for hROT
2 (q).

61



A-4.3 Multiplier Bootstrap: Algorithm

Input:

• A sample {(Xi, Yi, Ti)}ni=1, where Yi ∈ Y (distributional outcome), Ti ∈ {0, 1}, and
running variable Xi ∈ R with cutoff normalized to 0.

• A finite grid of M quantiles qj, T ∗ := (q1, . . . , qM) ⊂ [a, b] ⊂ (0, 1).

• A chosen local polynomial order p.

• A kernel function K and bandwidth h > 0. For simplicity, assume a single bandwidth

here, but see A-4.2 for more details on bandwidth selection.

• Number of bootstrap repetitions B and significance level λ ∈ (0, 1).

Remark. In practice, Yi, QYi
are computed using samples {Zij}ni

j=1 ∼ Yi based on (16). If

the entire population is observed, these estimates coincide with the true distribution and

quantile function, otherwise the results in Section ?? apply.

Step 1: Estimate conditional means on a grid of quantiles.

For each qj ∈ T ∗:

(i) Form the local polynomial estimator as

m̂±,p(qj) =
n∑

i=1

s
(p)
±,in(h)QYi

(qj),

where QYi
(qj) is the qj-quantile of Yi, and s

(p)
±,in(h) are the usual local polynomial

weights for Xi
⩾
< 0.

(ii) (Sharp RDD) Set

τ̂R3D
p (qj) = m̂+,p(qj)− m̂−,p(qj).

(iii) (Fuzzy RDD only) Also compute m̂±,T,p =
∑n

i=1 s
(p)
±,in(h)Ti, and form

τ̂F3Dp (qj) =
m̂+,p(qj)− m̂−,p(qj)

m̂+,T,p − m̂−,T,p

.

Optional: Fréchet estimator. Project m̂±,p onto the space of monotone functions through

the isotonic regression:

m̂⊕,+,p = argmin
u1,...,uM∈RM

M∑
j=1

(m̂±,p(qj)− uj)
2
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subject to the constraint u1 ≤ . . . ≤ uM .

Then, for each qj ∈ T ∗, carry out the following steps.

Step 2: Estimate residuals for first-stage weighting.

Obtain uniformly consistent first-stage estimators of the residual functions. For instance, for

k ∈ {1, 2} and each i,

Êk
(
Yi, Ti, Xi, qj

)
=
[
gk(Yi, Ti, qj)− Ẽ

{
gk(Y, T, qj)

∣∣ Xi

}]
1
{∣∣Xi/hk(qj)

∣∣ ≤ 1
}
,

where g1(Yi, q) = QYi
(qj), g2(Yi, Ti) = Ti, and Ẽ{· · · |Xi} is a local-polynomial fit of order

t ≤ p that reuses the p-th order estimates computed in Step 1 (see A-4.1).

Step 3: Generate bootstrap draws.

Draw
{
{ξbi }ni=1

}B
b=1

i.i.d. from N(0, 1), independent of the data, for b = 1, . . . , B. For

k ∈ {1, 2}, compute

ν̂±,b
ξ,n (qj, k) =

n∑
i=1

ξbi
e⊤0
[
Γ±,p

]−1 Êk
(
Yi, Ti, Xi, q

)
rp
(
Xi/hk(qj)

)
K
(
Xi/hk(qj)

)
δ±i√

nhk(qj) f̂X(0)
,

where δ±i = 1{Xi
⩾
< 0}, rp(·) is the local-polynomial basis, and Γ±,p =

∫
R±
K(u) rp(u) rp(u)

⊤ du.

Step 4: Form the bootstrap processes.

(i) (Sharp RDD) For each b:

ĜR3D,b(qj) = c1(qj)
−1
2

[
ν̂+,b
ξ,n (qj, 1)− ν̂−,b

ξ,n (qj, 1)
]
.

(ii) (Fuzzy RDD) For each b:

ĜF3D,b(qj) =

[
m̂+,T,p − m̂−,T,p

]
ν̂∆,b
ξ,n (qj, 1)−

[
m̂+,p(qj)− m̂−,p(qj)

]
ν̂∆,b
ξ,n (qj, 2)[

m̂+,T,p − m̂−,T,p

]2 ,

where ν̂∆,b
ξ,n (qj, k) = ν̂+,b

ξ,n (qj, k)− ν̂−,b
ξ,n (qj, k).

(iii) (Optional local-Fréchet version) In the above equations, replace m̂±,p by the Fréchet

estimator m̂±,⊕,p if needed.

After carrying out step 2–4 for each qj ∈ T ∗, do:

Step 5: Compute the critical value and construct bands.

For a given significance level λ ∈ (0, 1), define

ĉBn (a, b;λ) = (1− λ)-quantile of
{
max
q∈T ∗

∣∣Ĝb(q)
∣∣ : b = 1, . . . , B

}
,
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where Ĝb(q) stands for either ĜR3D,b(q) or ĜF3D,b(q) depending on the design.

Then, an asymptotically valid uniform (1− λ)100% confidence band for τR3D(q) (sharp)

or τF3D(q) (fuzzy) on q ∈ [a, b] is given by:[
τ̂p(q) ± 1√

nh
ĉBn (a, b;λ)

]
, for q ∈ T ∗.

A-4.4 Computational Details

An R implementation of the package can be found at https://davidvandijcke.com/R3D.

The main polynomial weights estimation was implemented with a Fortran backend, leading

to highly performant code, as illustrated in Figure A-1. For example, the model with 5

million total observations evaluated at 20 quantiles and 100 bootstrap repetitions solves in

less than a second. The computational complexity scales linearly with the number of obser-

vations, the number of draws for the empirical distributions, and the number of bootstrap

replications. The Fréchet estimator solves faster for increasing bootstrap repetitions than

the local polynomial one, likely because the code can use optimized vector operations with

one single bandwidth in the Fréchet case. The package also includes the option to parallelize

the bootstrap for further speed improvements with large datasets.
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Figure A-1: Speed Benchmarks for R3D Package

Number of Observations (n) Sample Size per Distribution Bootstrap Replications

100 1,000 10,000 100 1,000 10,000 100 300 1,000 3,000
0.00

0.25

0.50

0.75

Parameter Value (log scale)

T
im

e 
(s

ec
on

ds
)

Fréchet Local Polynomial

Note: plots indicate seconds taken to estimate the model on an Apple M1 Pro computer with 16GB RAM, for
various data and bootstrap sizes. The base model used for all computations, unless indicated otherwise, had
n = 500 with 500 samples per distribution, 100 bootstrap repetitions, and the quantile function evaluated
at 20 quantiles.
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A-5 Proofs

A-5.1 Identification Results

Proof of Lemma 1.

Proof. It holds that,

lim
x→0+

E[QY (q) | X = x] = lim
x→0+

E[QY 1(q) | X = x] = E[QY 1(q) | X = 0]

and similarly for x → 0−. The first equality follows from the definition of Y in terms of

potential outcomes and the second from I1 and I2. The result then follows from taking

differences and using the linearity of the expectation operator.

Proof of Lemma 3.

Proof. It holds that,

lim
x→0+

E[T | X = 0]− lim
x→0−

E[T | X = 0]

= E
[
T 1 | X = 0

]
− E

[
T 0 | X = 0

]
= E

[
T 1 − T 0 | X = 0

]
= Pr

(
T 1 > T 0 | X = 0

)
= Pr (C | X = 0)

where the first equality follows from the definition of T 1 and T 0, the continuity assumption

I4 and the zero-measure indefinites assumption in I5. The third equality follows from the

law of total expectation and Assumption I5. Again, by Assumptions I1 and I5,

lim
x→0+

E [QY (q) | X = x] = E
[
QY 1(q)1{C}+QY (ω)(q)1{notC} | X = 0

]
.

and similarly for x→ 0−. As a result,

lim
x→0+

E [QY (q) | X = x]− lim
x→0−

E [QY (q) | X = x]

= E [QY 1(q)−QY 0(q) | C, X = 0]× Pr (C | X = 0) .

Combining these two derivations with Assumption I3 gives the result.
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A-5.2 Asymptotic Results

Lemma A-4 (Quantile functionals are VC type). Let Θ = [a, b] ⊂ (0, 1) (or Θ = [0, 1] if all

Y ∈ Y have compact support). For each q ∈ Θ and Y ∈ Y, define fq(Y ) = QY (q) = inf{y :

Y (y) ≥ q}. Then the class F = {Y 7→ QY (q) : q ∈ Θ } is VC–type.

Proof. Let Θ = [a, b] be a compact subset of (0, 1) (or Θ = [0, 1] in the case where all cdfs

in Y have compact support). For each q ∈ Θ and Y ∈ Y , define

fq(Y ) = QY (q) = inf{ y : Y (y) ≥ q}.

Then the family F = {Y 7→ QY (q) : q ∈ Θ } is a VC-subgraph class ((in the sense of van der

Vaart and Wellner (1996, §2.6.2))) with index V (F) ≤ 2. Indeed, the (non-strict) subgraph

of fq satisfies

Gfq =
{
(Y, z) : z ≤ QY (q)

}
=
{
(Y, z) : q > Y (z−)

}
,

where Y (z−) = limt↑z Y (t). Thus membership in Gfq depends only on the scalar c := Y (z−)

via the threshold rule c < q. A single point (Y, z) can be shattered: include it by set-

ting q > Y (z−), exclude it by setting q ≤ Y (z−). However, 2 points cannot be shat-

tered. To see this, let (Y1, z1) and (Y2, z2) have Y1(z
−
1 ) ≤ Y2(z

−
2 ). The subsets ∅, {(Y2, z2)},

and {(Y1, z1), (Y2, z2)} can be realized by choosing q < Y1(z
−
1 ), q ∈

(
Y1(z

−
1 ), Y2(z

−
2 )
]
, and

q > Y2(z
−
2 ), respectively. However, the subset {(Y1, z1)} cannot be realized, due to the mono-

tonicity of cumulative distribution functions and the resulting nested threshold structure.

Hence, the largest shattered set has size 1, which implies V (F) ≤ 2.

Furthermore, let F (Y ) = supq∈Θ |QY (q)|. Then F is a measurable envelope for F ; and

by Assumption L3 we have F ∈ Lr(P ) for the required r (when Θ ⊂ (0, 1), F (Y ) =

max{|QY (a)|, |QY (b)|}). By Theorem 2.6.7 of van der Vaart and Wellner (1996), there is a

universal K > 0 such that for all 0 < ε < 1 and all probability measures Q on (Y ,G),

N
(
ε∥F∥Lr(Q), F , Lr(Q)

)
≤ K V (F) (16e)V (F)

(
1
ε

)r [V (F)−1]

,

and plugging in V (F) ≤ 2 gives a polynomial bound in (1/ε)r.

Lemma A-5 (Conditional Expected Quantile Functions are VC type). The class F = {x 7→
gq(x) : q ∈ [0, 1] } with gq(x) = E[QY (q) | X = x] is VC-type.

Proof. Let Y be a random distribution (with finite second moment), and for each q ∈ [0, 1]

define the real-valued function

gq(x) = E
[
QY (q) | X = x

]
.
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Denote this family by

F =
{
x→ gq(x) : q ∈ [0, 1]

}
.

I claim F is a VC-subgraph class of finite index. Indeed, by the results in Proposition A-3,

each gq(·) can be identified with a one-dimensional quantile function: specifically, there is a

conditional Fréchet mean m⊕(x) ∈ Y , as defined in (A-1), such that

gq(x) = Qm⊕(x)(q),

where Qm⊕(x) is the quantile function of m⊕(x). In other words, for each q, the subgraph of

gq can be written as

Ggq =
{
(x, z) : z ≤ Qm⊕(x)(q)

}
=
{
(x, z) : q > m⊕(x)(z

−)
}
,

wherem⊕(x)(z
−) := limt↑zm⊕(x)(t). Since each x ∈ R defines a distinct, unique cdfm⊕(x) ∈

Y by Proposition A-3, the conclusion follows by an identical argument as in Lemma A-4.

Remark In the proofs that follow, I apply the results from Chiang et al. (2019) to my R3D

setting. For ease of comparison, note that their µ1(x, θ1) = E[QY (θ1) | X = x], µ2(x, θ2) = 1

in the sharp R3D setting, and µ2(x, θ2) = E[T | X = x] in the fuzzy R3D setting. Further,

the specific instances of their class of Wald estimands (Chiang et al., 2019, Eq. 4.1) I consider

are the sharp R3D (6) and the F3D estimator (9) so that in both cases, their functions Υ, ψ, ϕ

are all equal to the identity operator. The rest of their notation is closely followed for ease

of comparison.

Proof of Theorem 1

Proof. The result follows by an application of Theorem 1 in Chiang et al. (2019), which

holds for any random object Y as long as their assumptions are satisfied (despite the fact

that the authors call the random element (Y, T,X) a “random vector”). To that end, I need

to verify Assumptions 1 and 2 in that paper. I restate them in my notation for clarity.

Assumption 1, Chiang et al., 2019. Let c < 0 < c. (i) (a) This part is equivalent to

Assumption L1-(i). (b) This part is equivalent to Assumption I2. (ii) (a) The collections

of real-valued functions {x → E[QY (q) | X = x] : q ∈ [a, b]}, {Y → QY (q) : q ∈ [a, b]} are

of VC type with common integrable envelope FE such that
∫
Y×[c,c]

|FE(y, x)|2+ϵ dPx(y, x) <∞
for some ϵ > 0. (b) This part is equivalent to Assumption L2 (i). (c) For any (q, k), (q′, l) ∈
[a, b] × {1, 2}, it holds that σkl(q, q

′|·) ∈ C1([c, c] \ {0}) with bounded derivatives in x and

σkl(q, q
′ | 0±) < ∞. (d) For each Y ∈ Y, QY (q) is left- or right-continuous in q. (iii) This
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part is equivalent to Assumption K2. (iv) (a) K : [−1, 1] → R+ is bounded and continuous,

(b) {K(·/h) : h > 0} is of VC type, (c) Γ±,p is positive definite.

• (ii) (a) The fact that the function classes are of VC type is proved in Lemmas A-4 and

A-5. A common integrable envelope can be constructed as follows. Define F1(y, x) =

supq∈[a,b] |QY (q)| and F2(y, x) = supq∈[a,b] |E[QY (q) | X = x]| and define Fε(y, x) :=

F1(y, x) + F2(y, x). Then clearly supq∈[a,b] |QY (q)| ≤ FE(y, x) and supq∈[a,b] |E[QY (q) |
X = x]| ≤ FE(y, x). Moreover, by Assumption L3,∫

[c,c]×Y
(FE(x, y))

2+ε dP x(y, x)

≤ 21+ε

∫
[c,c̄]×Y

(
F1(y, x)

2+ε + F2(y, x)
2+ε
)
dP x(y, x) <∞.

• (ii) (c) The covariance

σ12(q, q
′ | X = x) = E[(QY (q)− E[QY (q) | X = x])(T − E[T | X = x]) | X = x]

= P (T = 1 | X = x)E[QY (q) | X = x]− P (T = 1 | X = x)E[QY (q) | X = x]

+ E[T | X = x]E[QY (q) | X = x]− E[T | X = x]E[QY (q) | X = x] = 0

where the second equality follows from the law of total expectation. The variance term

σ22(q, q
′ | X = x) = var(T |X = x) is in C1([c, c] \ {0}) by Assumption L2 (i). Finally,

the cross-variance term σ11(q, q
′ | X = x)

= E[(QY (q)− E[QY (q) | X = x])(QY (q
′)− E[QY (q

′) | X = x]) | X = x].

Expand the brackets and note that E[QY (q)QY (q
′) | X = x] satisfies the assumption

by Assumption L2 (ii) and the three other terms do so by Assumption L2 (i).

• (ii) (d) follows by the left-continuity of quantile functions.

• (iv) (a) Follows from Assumption K1 where I can always normalize K to have bounded

support on [−1, 1] without loss of generality.

• (iv) (b) To show that the function class {K(·, /h) : h > 0} is of VC type, consider the

class of level sets {{x : K(x/h) > t} : h > 0, t ∈ R}. For any h > 0 and t ∈ R, the set

{x : K(x/h) > t} is an interval in R. The class of intervals in R has a VC dimension

of 2, which is finite. Hence, the function class {K(·, /h) : h > 0} is of VC type.

• (iv) (c) Follows by the non-negativeness of K in Assumption K1.
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Under this set of assumptions, Chiang et al. (2019) showed in their Lemma 1 that there

exists a uniform Bahadur representation,

√
nh1 (q)

(
m̂±,p (q)−m±(q)− h1(q)

p+1 (q)
e′0 (Γ±,p)

−1 Λ±
p,p+1

(p+ 1)!
lim
x→0±

∂m(q)p+1

∂xp+1

)

=
n∑

i=1

e′0
(
Γ±
p

)−1 E1 (Yi, ti, Xi, q) rp

(
Xi

h1(q)

)
K
(

Xi

h1(q)

)
δ±i√

nh1 (q)fX(0)
+ oxp(1) :=

n∑
i=1

fni(q, k) + oxp(1)

uniformly for all q ∈ [a, b]. An analogous expression obtains for m̂+,T,p(q) − m+,T (q).

Note that this Bahadur representation is for the debiased estimator where the bias is of

order O(hp+1). Then, by the proof of Theorem 1 in Chiang et al. (2019), ν+n (q, k) =∑n
i=1 [fni(q, k)− Efni(q, k)] converges weakly to a tight zero-mean Gaussian process GH+

with covariance function H+ defined in the main theorem, where,

fni(q, k) =
e′0 (Γ+,p)

−1 rp

(
Xi

hk(q)

)
√
nhk (q)fX(0)

Ek (Yi, Ti, Xi, q)K

(
Xi

hk (q)

)
δ+i

and similarly for ν−n (q, k). Then Slutksy’s theorem and Assumption 1, Chiang et al., 2019

(iv) give the result.

Proof of Theorem 2

Proof. The result for the sharp RD estimator in (6) simply follows from Theorem 1 and the

continuous mapping theorem, and similarly for the denominator of the fuzzy RDD estimator.

Then, the ratio map

(f+, g+) → [f+ − f−] / [g+ − g−]

is Hadamard differentiable tangentially to ℓ∞[a, b] on the subset where g+ − g− ̸= 0, which

holds by I5 (Chiang et al., 2019, Lemma 3). Then the functional delta method yields the

result (van der Vaart and Wellner, 1996, Lemma 3.9.3).

Proof of Theorem 3

Proof. The result follows from Theorem 1 and Theorem 2 in Chiang et al. (2019). The latter

applies because their Assumptions 1–4 are satisfied in my setting. Their Assumption 1 was

shown to hold in the proof of Theorem 1. Moreover, their Assumption 2 is satisfied since their

operators ψ, ϕ,Υ are trivially Hadamard differentiable in my setting, and by Assumptions I5

and K2. Further, their Assumption 3 is equivalent to Assumption M1. Finally, their Lemma

7 implies that the first-stage estimators Êk(y, t, x, q) they propose are uniformly consistent for
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the population quantities Ek(y, t, x, q) on the kernel support |Xi/hk(q)| ≤ 1. Furthermore, I

have assumed that f̂X(0) is a consistent estimator of fX(0). As a result their Assumption

4 is also satisfied. Thus, their Theorem 2 follows. The final result obtains by combining it

with Theorem 1 by plugging in m̂±,p(·), m̂T,±,p(·) for m±(·),mT,±(·).

Lemma A-6 (Properties of the projection). Let Q ⊂ L2([a, b]) be the closed convex cone

of (equivalence classes of) a.e. nondecreasing functions. For f ∈ L2([a, b]), let ΠQ(f) de-

note the (unique) L2-metric projection onto Q. For definiteness, for every u ∈ Q, fix the

right–continuous representative on [a, b) and set u(b) := limq↑b u(q).
6 This turns ΠQ into a

map ΠQ : ℓ∞([a, b]) → ℓ∞([a, b]).

Then for all f, g ∈ ℓ∞([a, b]), we have,

(i) (Order preserving) If f ≤ g pointwise on [a, b], then ΠQ(f) ≤ ΠQ(g) pointwise on

[a, b].

(ii) (Translation equivariant) For every constant c ∈ R, ΠQ(f + c) = ΠQ(f) + c.

(iii) ( 1–Lipschitz in ∥ · ∥∞)

∥ΠQ(f)− ΠQ(g)∥∞ ≤ ∥f − g∥∞.

Proof. Write ⟨·, ·⟩ for the L2 inner product and ∥ · ∥2 for the L2 norm. Recall the following

property of projections in Hilbert spaces. For u = ΠQ(f),

(A-10) ⟨f − u, h− u⟩ ≤ 0 ∀h ∈ Q.

Moreover, note that if u, v are nondecreasing, then u ∧ v and u ∨ v are nondecreasing; since

|u ∨ v| ≤ |u|+ |v| and |u ∧ v| ≤ |u|+ |v|, both belong to L2. Hence u ∧ v, u ∨ v ∈ Q.

(i) Order preservation. Assume f ≤ g pointwise. Let u = ΠQ(f) and v = ΠQ(g), and set

A := {q ∈ [a, b] : u(q) > v(q)}. Apply (A-10) with (f, u) and h = u ∧ v, and with (g, v) and

h = u ∨ v: ∫
[a,b]

(f − u) (u ∧ v − u) dq ≤ 0,

∫
[a,b]

(g − v) (u ∨ v − v) dq ≤ 0.

On A we have u ∧ v = v and u ∨ v = u, whereas away from A the differences u ∧ v − u and

6Every a.e. nondecreasing function admits a version which is nondecreasing and right–continuous on
[a, b) with a finite left limit at b. I always work with this canonical version.
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u ∨ v − v vanish. Therefore∫
A

(f − u) (v − u) dq ≤ 0,

∫
A

(g − v) (u− v) dq ≤ 0.

Summing both inequalities gives

0 ≥
∫
A

[
(f − u)(v − u) + (g − v)(u− v)

]
dq

=

∫
A

(u− v)
[
(g − v)− (f − u)

]
dq

=

∫
A

(u− v)
[
(g − f) + (u− v)

]
dq.

Since f ≤ g and u > v on A, the integrand satisfies

(u− v)
[
(g − f) + (u− v)

]
≥ (u− v)2 ≥ 0.

Hence

0 ≥
∫
A

(u− v)
[
(g − f) + (u− v)

]
dq ≥

∫
A

(u− v)2 dq,

which forces
∫
A
(u− v)2 dq = 0, i.e. u ≤ v a.e. on [a, b].

Then, to upgrade a.e. to pointwise by the choice of representatives, note that if there

were x0 ∈ [a, b) with u(x0) > v(x0), then by right–continuity there exist ε, δ > 0 such that

u(x) ≥ v(x) + ε for all x ∈ (x0, x0 + δ), contradicting u ≤ v a.e. If u(b) > v(b), choose a null

set N outside of which u ≤ v holds; since N contains no interval, one can pick an increasing

sequence qn ↑ b with qn /∈ N . Then u(qn) ≤ v(qn) for all n, and taking limits along n → ∞
yields u(b) ≤ v(b), a contradiction. Thus ΠQ(f) = u ≤ v = ΠQ(g) pointwise, proving (i).

(ii) Translation equivariance. Let c ∈ R and u = ΠQ(f). Since h ∈ Q ⇒ h+ c ∈ Q, we have

∥(f + c)− (u+ c)∥2 = ∥f − u∥2 ≤ ∥f − h∥2 = ∥(f + c)− (h+ c)∥2 ∀h ∈ Q.

BecauseQ is closed and convex, the minimizer is unique, so ΠQ(f+c) = u+c in L2. Passing to

our fixed right–continuous representatives yields the pointwise identity ΠQ(f+c) = ΠQ(f)+c.

(iii) ∥ · ∥∞-contraction. Let δ := ∥f − g∥∞. Then f ≤ g+ δ and g ≤ f + δ pointwise. By (i)

and (ii),

ΠQ(f) ≤ ΠQ(g + δ) = ΠQ(g) + δ, ΠQ(g) ≤ ΠQ(f + δ) = ΠQ(f) + δ.

Hence |ΠQ(f) − ΠQ(g)| ≤ δ pointwise, and taking suprema gives ∥ΠQ(f) − ΠQ(g)∥∞ ≤
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∥f − g∥∞. In particular, taking g ≡ 0 shows ∥ΠQ(f)∥∞ ≤ ∥f∥∞, so indeed ΠQ : ℓ∞([a, b]) →
ℓ∞([a, b]).

Lemma A-7 (Hadamard differentiability of the isotonic projection in ℓ∞). Let Q ⊂ L2([a, b])

be the closed convex cone of a.e. nondecreasing functions and let ΠQ be the L2 metric pro-

jection onto Q. Fix the right–continuous representative so that ΠQ : ℓ∞([a, b]) → ℓ∞([a, b]).

Suppose m ∈ Q is absolutely continuous with m′(q) ≥ κ > 0 for a.e. q ∈ [a, b]. Then ΠQ is

Hadamard differentiable at m tangentially to C([a, b]) with the derivative in the direction h

equal to

DΠQ(m)[h] = h ∀h ∈ C([a, b]).

Proof. By Zarantonello (1971), in the Hilbert space L2 one has that the directional Hadamard

derivative isDΠQ(m)[h] = ΠTQ(m)(h), where TQ(m) is the Bouligand tangent cone (this holds

generally for metric projections onto convex sets in Hilbert spaces). If h ∈ C∞([a, b]), then

∥h′∥∞ < ∞ and, for all 0 < t ≤ κ/(2∥h′∥∞), (m + th)′ = m′ + th′ ≥ κ− t∥h′∥∞ ≥ κ/2 > 0

a.e.; hence m+ th ∈ Q. Thus h ∈ TQ(m). Since C∞([a, b]) is dense in L2([a, b]) and TQ(m)

is a closed cone, TQ(m) = L2([a, b]), and therefore DΠQ(m)[h] = h for all h ∈ L2. Since

this is clearly linear and continuous, the directional Hadamard differentiability strengthens

to full Hadamard differentiability (see e.g. the definitions in Fang and Santos (2019)).

To pass to ℓ∞ tangentially to C([a, b]), let tn ↓ 0 and hn → h uniformly with h ∈ C([a, b]).

Fix ε > 0 and choose ℓ ∈ C1([a, b]) with ∥ℓ − h∥∞ < ε and Lip(ℓ) = L < ∞. For n large,

L ≤ Kn := κ/(2tn), hence (m+ tnℓ)
′ ≥ κ/2 a.e., so m+ tnℓ ∈ Q and ΠQ(m+ tnℓ) = m+ tnℓ.

Using that together with the fact that ΠQ is 1–Lipschitz in ∥ ·∥∞ from Lemma A-6, we have,∥∥∥ΠQ(m+ tnhn)− ΠQ(m)

tn
− h
∥∥∥
∞

≤
∥∥∥∥ΠQ (m+ tnhn)− ΠQ (m+ tnℓ)

tn

∥∥∥∥
∞
+

∥∥∥∥ΠQ (m+ tnℓ)− ΠQ(m)

tn
− h

∥∥∥∥
∞

≤ ∥hn − ℓ∥∞ + ∥ℓ− h∥∞ ≤ ∥hn − h∥∞ + 2ε,

where the first inequality follows from the triangle inequality in l∞. Letting n→ ∞ and then

ε ↓ 0 shows that ΠQ is Hadamard differentiable at m tangentially to C([a, b]) with derivative

DΠQ,m(h) = h.

Lemma A-8 (Continuity of the Semimetric ρ). Under Assumptions L2, L3, and L4, the

semimetric ρ± induced by the covariance kernel H±,p of the Gaussian process GH± in Theo-

rem 3.1 is continuous on [a, b]× [a, b]. Consequently, ρ±(q, q
′) → 0 as |q − q′| → 0.
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Proof. The semimetric is given by

ρ±(q, q
′)2 = E

[
(GH±(q, 1)−GH±(q

′, 1))2
]
= H±,p(q, q) +H±,p(q

′, q′)− 2H±,p(q, q
′).

To show that ρ± is continuous, it suffices to show that H±,p((q, 1), (q
′, 1)) is continuous in

(q, q′). All pieces except σ11(q, q
′ | 0±) are continuous under the stated assumptions: c1(·) is

bounded and Lipschitz by Assumption K2; Γ±,p is constant in (q, q′); Ψ±,p

(
(q, 1), (q′, 1)

)
=∫

rp
(
u/c1(q)

)
r⊤p
(
u/c1(q

′)
)
K
(
u/c1(q)

)
K
(
u/c1(q

′)
)
du is continuous in (q, q′) by dominated con-

vergence (polynomials and K are continuous and K has compact support). Hence, I focus

on proving σ11(q, q
′ | 0±) is continuous in (q, q′).

Step 1: No “synchronous” jumps of random quantiles at fixed levels. Let ∆+
Y (q) :=

QY (q
+) − QY (q) ≥ 0 denote the right–jump of the (left–continuous) quantile function at

q. Define the conditional mean m±(q) := limx→0± E[QY (q) | X = x]. By Assumption

L4 the map q 7→ m±(q) is absolutely continuous on [a, b] (it has a derivative m′
±(q) a.e.,

bounded between κ > 0 and K < ∞). In particular m± is continuous, hence it has no

jumps: limh↓0{m±(q + h) − m±(q)} = 0 for all q ∈ [a, b]. For every h > 0, m±(q + h) −
m±(q) = limx→0± E

[
QY (q + h) − QY (q) | X = x

]
. As h ↓ 0, for each fixed Y the inner

difference increases to ∆+
Y (q) (monotone convergence), and by Assumption L3 the class

{QY (q) : q ∈ [a, b]} has an L2+ϵ envelope, so monotone (or dominated) convergence yields

limh↓0{m±(q + h) − m±(q)} = limx→0± E
[
∆+

Y (q) | X = x
]
. The left–hand side is 0 for all

q. Because ∆+
Y (q) ≥ 0, I conclude limx→0± E

[
∆+

Y (q) | X = x
]
= 0 ⇒ P

(
∆+

Y (q) = 0 | X =

0±
)
= 1 for each fixed q ∈ [a, b]. Hence, under the conditional law at X = 0±, the random

quantile QY (·) is almost surely right–continuous at every fixed level q.

Step 2: Joint continuity of (q, q′) 7→ E[QY (q)QY (q
′) | X = x]. Fix x ∈ N := (−ε, ε)\{0}.

Let (qn, q
′
n) → (q, q′) in [a, b]2. By Step 1 together with the left-continuity of quantile

functions, for each fixed q we have P
(
QY (·) continuous at q | X = x

)
= 1 and similarly for q′.

Hence for P (· | X = x)-a.e. Y , QY (qn) → QY (q), QY (q
′
n) → QY (q

′). By Assumption L3 the

envelope F (Y ) := supq∈[a,b] |QY (q)| is in L2+ϵ(P ), so F (Y )2 is integrable conditionally onX =

x. Dominated convergence then yields E[QY (qn)QY (q
′
n) | X = x] −→ E[QY (q)QY (q

′) |
X = x]. Thus (q, q′) 7→ E[QY (q)QY (q

′) | X = x] is jointly continuous on [a, b]2, for each

fixed x ∈ N .

Step 3: Passing to the one–sided limits x → 0± uniformly in (q, q′). By Assump-

tion L2(ii), for every (q, q′) the map x 7−→ E[QY (q)QY (q
′) | X = x] is C1 on N with

bounded derivative uniformly over (q, q′) ∈ [a, b]2. In particular, it is uniformly Lipschitz

in x near 0: sup(q,q′)∈[a,b]2 |E[QY (q)QY (q
′) | X = x]− E[QY (q)QY (q

′) | X = x′]| ≤ L |x −
x′| for all x, x′ sufficiently close to 0. Consequently, the one–sided limits S±(q, q

′) :=
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limx→0± E[QY (q)QY (q
′) | X = x] exist and the convergence is uniform in (q, q′) ∈ [a, b]2.

Since uniform limits of continuous functions are continuous, S±(·, ·) is jointly continuous

on [a, b]2. Finally, σ11(q, q
′ | 0±) = S±(q, q

′) − m±(q)m±(q
′), and m±(·) is continuous by

Assumption L4. Hence σ11(·, · | 0±) is jointly continuous on [a, b]2.

Since every factor in H±,p

(
(q, 1), (q′, 1)

)
is continuous in (q, q′), the covariance kernel H±,p

is continuous on the compact domain [a, b]2. Therefore ρ± is continuous on [a, b]2.

Proof of Theorem 4.

Proof. By Theorem 1,

√
nh
(
m̂±,p −m±

)
; G̃± in ℓ∞([a, b]),

where G̃± := GH±(·, 1) is a mean-zero tight Gaussian process on [a, b] with covariance kernel

H±,p.

The empirical process (and its Gaussian limit) is indexed by a VC-type class and is tight

in ℓ∞([a, b]) with sample paths uniformly continuous relative to the canonical semimetric

ρ±(q, q
′)2 = E

[
(GH±(q, 1)−GH±(q

′, 1))2
]
= H±,p(q, q) +H±,p(q

′, q′)− 2H±,p(q, q
′),

as in the proof of Lemma 4 of Chiang et al. (2019). Lemma A-8 shows ρ±(q, q
′) → 0

when |q − q′| → 0, hence ρ± is uniformly continuous on the compact [a, b]. By Addendum

1.5.8 in van der Vaart and Wellner (1996), GH± admits a version in C([a, b]) a.s., and the

same holds for GR3D = GH+ − GH−. Now, all Fréchet objectives and W2 distances are

L2-integrals of quantile functions, so changing representatives on null sets (e.g. from left- to

right–continuous) does not alter the objective nor its argmin. I can therefore compute the

L2-projection in L2([a, b]) and then fix the right–continuous representative merely to view

the result as an element of ℓ∞([a, b]); this choice is immaterial for the objective and for limits

stated in ℓ∞.

Then, by Lemma A-7 and Assumption L4 (m′
±(q) ≥ κ > 0 a.e.), ΠQ is 1–Lipschitz in

sup–norm and Hadamard directionally differentiable at m± tangentially to C([a, b]) with

derivative

DΠQ[m±](h) = h ∀h ∈ C([a, b]).

The Lipschitz property immediately yields uniform consistency,

∥m̂⊕,±,p −m±∥∞ = ∥ΠQ(m̂±,p)− ΠQ(m±)∥∞ ≤ ∥m̂±,p −m±∥∞ = op(1).
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Moreover, since
√
nh(m̂±,p −m±) ⇒ GH± ∈ C([a, b]) a.s. by the above the functional delta

method in ℓ∞ (van der Vaart, 2000, Thm. 20.8) gives

√
nh
(
m̂⊕,±,p −m±

)
→ DΠQ[m±](GH±(·, 1)) = GH±(·, 1) in ℓ∞([a, b]).

This proves the stated convergence for the conditional Fréchet means. The treatment–effect

statements follow by linearity for the sharp case and by the standard delta method for ratios

for the fuzzy case (as in Theorem 2).

Proof of Corollary 1.

Proof. The result follows by an identical argument as the proof of Theorem 2.

Proof of Proposition 2.

Proof. Remember the definition of the local polynomial estimator with empirical quantile

functions,

m̄±,p(q) =
1

n

n∑
i=1

s
(p)
±,in(h)Q̂Yi

(q).

I have that,

√
nh (m̄±,p(q)−m±(q))

=
√
nh (m̄±,p(q)− m̂±,p(q)) +

√
nh (m̂±,p(q)−m±(q))

=
√
nh

(
1

n

n∑
i=1

s
(p)
±,in(h)

(
Q̂Yi

(q)−QYi
(q)
))

+
√
nh ((m̂±,p(q)−m±(q)))

= op(1) +
√
nh (m̂±,p(q)−m±(q)) ,

uniformly over q ∈ [a, b]. The last equality follows from Assumption Q1.

Then, define the Fréchet estimator with empirical distribution functions as,

argmin
ω∈Y

1

n

n∑
i=1

s
(p)
±,in(h)d

2
W2

(
ω, Ŷi

)
.

An identical argument to the one in Proposition A-3 shows that the quantile function of this

estimator is,

m̄±,⊕,p = argmin
h∈Q(Y)

dL2 (h, m̄±,p)
2 ,

that is, the projection of the local polynomial estimator with empirical quantile functions.

Then, since I have established that the latter converges uniformly to the same limiting
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process as the standard local polynomial estimator, the same exact argument as in the

proof of Theorem 4 implies that m̄±,⊕,p(·)−m±,p(·) has the same limiting law as m̄±,p(·)−
m±(·). Finally, the results for the treatment effects with empirical quantile functions, τ̄R3D

p (·),
τ̄F3Dp (·), τ̄R3D

⊕,p (·), τ̄F3D⊕,p (·), then follow from identical arguments as in the proof of Theorem

2.

The following lemma establishes the intuitive result that the difference between the

Fréchet and local polynomial estimators converges faster than each of them converges to

the population moment. In Section A-4.2, I use it to derive the IMSE-optimal bandwidth

for the Fréchet estimator based on the standard MSE-optimal bandwidth for the local poly-

nomial one,

Lemma A-9. Under the Assumptions of Theorem 1 and Assumption L4,

∥∥m̂±,⊕,p − m̂±,p

∥∥
∞ = op

(
(nh)−1/2

)
.

Proof. I write ℓ∞ := ℓ∞([a, b]) for brevity, and let ∥ · ∥∞ denote the sup norm in q ∈ [a, b] ⊂
(0, 1).

Let ϵn := m̂±,p−m±. By Theorem 1 (and the continuity of the canonical semimetric; see

the proof of Theorem 4),

√
nh ϵn ; GH±(·, 1) in ℓ∞([a, b]),

where the limit admits a version with a.s. continuous sample paths. Hence ∥ϵn∥∞ =

Op

(
(nh)−1/2

)
and ϵn is asymptotically tight in C([a, b]).

As argued in the proof of Theorem 4, m±(·) is a point in the convex set Q of quantile

functions. Under Assumption L4, it is also strictly increasing. Therefore, the L2-metric

projection ΠQ : ℓ∞ → ℓ∞ is Hadamard differentiable at m± tangentially to C([a, b]) with

derivative equal to the identity operator (Lemma A-7). Concretely, there is a remainder

map r(·) such that, uniformly on compact subsets of C([a, b]),

ΠQ
(
m± + ϵ

)
= m± + ϵ+ r(ϵ), ∥r(ϵ)∥∞ = o

(
∥ϵ∥∞

)
as ∥ϵ∥∞ → 0.

Furthermore, ΠQ(m±) = m±. Setting ϵ = ϵn in the above expansion, and noting that

∥ϵn∥∞ = Op

(
(nh)−1/2

)
→ 0, we obtain

m̂±,⊕,p = ΠQ
(
m± + ϵn

)
= m± + ϵn + r(ϵn).
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Hence

m̂±,⊕,p − m̂±,p = r(ϵn), so
∥∥m̂±,⊕,p − m̂±,p

∥∥
∞ = ∥r(ϵn)∥∞ = o

(
∥ϵn∥∞

)
= op

(
(nh)−1/2

)
.

A-6 Additional Results

A-6.1 Tables

Table A-1: Canonical RD Estimates

Level: State Family
Treatment Effect -0.64 -0.891

(0.436) (0.52)

Robust 95% CI [-1.597, 0.111] [-2.037, 0]
p-value 0.088 0.05
Bandwidth 0.084 0.072
Effective Observations 204 230340

Note: this table presents canonical RD estimates using both state-level average family income (weighted
by the family-level probability weights) and family-level income as outcome variable, computed using the
rdrobust command in R (Calonico et al., 2015b). MSE-optimal bandwidth was selected using the method in
Calonico et al. (2020) and robust confidence intervals were calculated as in Calonico et al. (2014), clustered
at the state level for the state-level data and the state-year level for the family-level data.

A-6.2 Figures
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Figure A-2: Percent of Top RDD Publications with R3D Setting, 2014–2024
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Note: this figure shows percentage of top five Economics and top three Political Science journals with RD
designs that fall into an R3D setting in the last 10 years, by 2-year periods. “Any R3D” indicates any
form of R3D setting, including settings where the outcome of interest concerns sub-aggregate units but was
aggregated to the same level as the treatment variable. Sample consists of any paper in those journals that
had “regression discontinuity” or “RDD” in any of its fields.
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Figure A-3: Distributional Effects of Democratic Governor Control, 1984–2010: Local Poly-
nomial
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Note: this figure shows local average quantile treatment effects estimates and uniform 90% confidence bands
for R3D of effect of Democratic governor control on within-state income distribution. X-axis indicates
quantile of the (average) income distribution while Y-axis indicates the difference in average state-level
income distributions, in the final year of the governor’s tenure, near the 50% vote share threshold. Income
is measured as real equivalized family income in multiples of the federal poverty threshold. Sample runs
from 1984–2010, estimates are obtained using the second-order local polynomial estimator in Section 2.5.1
with first-order IMSE-optimal bandwidth and triangular kernel as in Section A-4.2, and uniform bands
are constructed using Algorithm A-4.3 with 5,000 bootstrap repetitions. Treatment nullity p-value: 0.043,
treatment homogeneity p-value: 0.061. Average MSE-optimal bandwidths: 0.267.

Figure A-4: Distributional Effects of Democratic Governor Control, 1984–2010: Uniform
Kernel
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Note: this figure shows local average quantile treatment effects estimates and uniform 90% confidence bands
for R3D of effect of Democratic governor control on within-state income distribution. X-axis indicates
quantile of the (average) income distribution while Y-axis indicates the difference in average state-level
income distributions, in the final year of the governor’s tenure, near the 50% vote share threshold. Income is
measured as real equivalized family income in multiples of the federal poverty threshold. Sample runs from
1984–2010, estimates are obtained using the second-order Fréchet estimator in Section 2.5 with first-order
IMSE-optimal bandwidth and uniform kernel as in Section A-4.2, and uniform bands are constructed using
Algorithm A-4.3 with 5,000 bootstrap repetitions. Treatment nullity p-value: 0.070, treatment homogeneity
p-value: 0.117, IMSE-optimal bandwidth: 0.223.
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Figure A-5: Distributional Effects of Democratic Governor Control, 1984–2010: 1/2 Band-
width
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Note: local average quantile treatment effects estimates and uniform 90% confidence bands for R3D of effect
of Democratic governor control on within-state income distribution. X-axis indicates quantile of the (average)
income distribution while Y-axis indicates the difference in average state-level income distributions, in the
final year of the governor’s tenure, near the 50% vote share threshold. Income is measured as real equivalized
family income in multiples of the federal poverty threshold. Sample runs from 1984–2010, estimates are
obtained using the second-order local polynomial estimator in Section 2.5.1 with 1/2×the first-order IMSE-
optimal bandwidth (0.16) and triangular kernel as in Section A-4.2, and uniform bands are constructed using
Algorithm A-4.3 with 5,000 bootstrap repetitions. Treatment nullity p-value: 0.055, treatment homogeneity
p-value: 0.050, IMSE-optimal bandwidth: 0.11.

Figure A-6: Distributional Effects of Democratic Governor Control, 1984–2018
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Note: this figure shows local average quantile treatment effects estimates and uniform 90% confidence bands
for R3D of effect of Democratic governor control on within-state income distribution. X-axis indicates
quantile of the (average) income distribution while Y-axis indicates the difference in average state-level
income distributions, in the final year of the governor’s tenure, near the 50% vote share threshold. Income is
measured as real equivalized family income in multiples of the federal poverty threshold. Sample runs from
1984–2018, estimates are obtained using the second-order Fréchet estimator in Section 2.5 with first-order
IMSE-optimal bandwidth and triangular kernel as in Section A-4.2, and uniform bands are constructed using
Algorithm A-4.3 with 5,000 bootstrap repetitions. Treatment nullity p-value: 0.068, treatment homogeneity
p-value: 0.093, IMSE-optimal bandwidth: 0.255.
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Figure A-7: Distributional Effects of Democratic Governor Control, Robustness: Election-
Year Incomes
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Note: this figure shows local average quantile treatment effects estimates and uniform 90% confidence bands
for R3D of effect of Democratic governor control on within-state income distribution. X-axis indicates quan-
tile of the (average) income distribution while Y-axis indicates the difference in average state-level income
distributions, in the election year, near the 50% vote share threshold. Income is measured as real equivalized
family income in multiples of the federal poverty threshold. Sample runs from 1984–2010, estimates are
obtained using the second-order local polynomial estimator in Section 2.5.1 with first-order IMSE-optimal
bandwidth and triangular kernel as in Section A-4.2, and uniform bands are constructed using Algorithm
A-4.3 with 5,000 bootstrap repetitions. Treatment nullity p-value: 0.142, treatment homogeneity p-value:
0.164, IMSE-optimal bandwidth: 0.241.
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Figure A-8: Distributional Effects of Democratic Governor Control, Robustness: No Cross-
State Migration
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Note: this figure shows local average quantile treatment effects estimates and uniform 90% confidence bands
for R3D of effect of Democratic governor control on within-state income distribution. X-axis indicates
quantile of the (average) income distribution while Y-axis indicates the difference in average state-level
income distributions, in the final year of the governor’s tenure, near the 50% vote share threshold. Only
families that did not migrate across state borders in the previous year are included. Income is measured as
real equivalized family income in multiples of the federal poverty threshold. Sample runs from 1984–2010,
estimates are obtained using the second-order local polynomial estimator in Section 2.5.1 with first-order
IMSE-optimal bandwidth and triangular kernel as in Section A-4.2, and uniform bands are constructed using
Algorithm A-4.3 with 5,000 bootstrap repetitions. Treatment nullity p-value: 0.067, treatment homogeneity
p-value: 0.120, IMSE-optimal bandwidth: 0.229.
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Figure A-9: Distributional Effects of Democratic Governor Control: Quantile RD Estimates
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Note: this plot shows quantile RD estimates of effect of Democratic governor control on within-state in-
come distribution. X-axis indicates quantile of the (average) income distribution while Y-axis indicates the
difference in state-level income distributions, in the final year of the governor’s tenure, near the 50% vote
share threshold. Income is measured as real equivalized family income in multiples of the federal poverty
threshold. Sample runs from 1984–2010, estimates are obtained using the quantile RD estimator of Qu and
Yoon (2019) with bias correction (Qu et al., 2024), with the same bandwidth as Figure 6 and triangular
kernel A-4.2.
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Figure A-10: Effects of Democratic Governor Control: ATE Comparison
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Note: this plot shows the average treatment effects of Democratic governorship on within-state family income
estimated either directly or indirectly by 4 estimation approaches, from left to right: 1) quantile RD on the
raw data and taking the mean of the quantile treatment effect estimates; 2) R3D on the raw data and taking
the mean of the quantile treatment effect estimates; 3) standard RD (local polynomial regression) on the
raw data; 4) standard RD on the group-level averages.
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A-7 Software Appendix

All results in this paper were produced in R using RStudio. A complete reference list of

packages used is provided below.
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