Home Equity in Retirement*

Makoto Nakajima†
Federal Reserve Bank of Philadelphia

Irina A. Telyukova‡
University of California, San Diego

August 7, 2011

Abstract

Retired homeowners dissave more slowly than renters, which suggests that homeownership affects retirees’ saving decisions. We investigate empirically and theoretically the life-cycle patterns of housing and total assets in retirement. Using an estimated structural model of saving and housing decisions, we find, first, that homeowners dissave slowly because they prefer to stay in their house as long as possible, but cannot easily borrow against it. Second, the 1996-2006 housing boom further increased homeowners’ assets. These channels are quantitatively significant; without considering homeownership, retirees’ savings are 22-40% lower.

JEL classification: D91, J26, E21, G11
Keywords: Housing, Retirement Saving Puzzle, Mortgage, Health, Life-cycle

*We thank Orazio Attanasio for many helpful discussions on this project, and Eric French for his generous help with the HRS Exit Waves. For their comments and suggestions, we also thank Jonathan Heathcote and Gianluca Violante, and the participants of seminars at the Institute for Fiscal Studies, USC Lusk School, St. Louis Fed, UCSD, and of the 2010 Econometric Society World Congress, CEF Meetings, NBER Summer Institute EFACR group, UCSB-LAEF Credit, Default, and Bankruptcy Conference, and 2009 UW-Atlanta Fed Housing-Labor-Macro-Urban Conference. We acknowledge financial support of Networks Financial Institute at Indiana State University via its award in the 2011 Financial Services Regulatory Reform Paper Competition, as well as of the UCSD Faculty Career Development Grant. The views expressed here are those of the authors and do not necessarily represent the views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System. This paper is available free of charge at http://www.philadelphiafed.org/research-and-data/publications/working-papers/. Previous versions of the paper were circulated with the title “Home Equity Withdrawal in Retirement”. Last but not least, we thank Walter for inspiration.

†Research Department, Federal Reserve Bank of Philadelphia. Ten Independence Mall, Philadelphia, PA 19106-1574. E-mail: makoto.nakajima@phil.frb.org.

‡Department of Economics, University of California, San Diego. 9500 Gilman Drive, San Diego, CA 92093-0508. E-mail: itelyukova@ucsd.edu.
1 Introduction

An important question in the life-cycle savings literature is why the elderly dissave slowly in the data. As figure 1 shows over the period 1996-2006, median net wealth remains high very late into the lifecycle. The observation that many people die with significant savings, which is puzzling in the context of a simple life-cycle model, has been termed the “retirement saving puzzle”.

However, the picture changes dramatically if we consider the saving behavior of retirees who own homes, compared to those who do not. Consider figure 2, which documents the cohort profiles of median net worth over the same period, normalized by the first observation, for homeowners versus renters. The difference is stark. Homeowners have flat or increasing profiles of net wealth over this period, while renters display a far faster rate of asset decumulation. This suggests that housing may play a major role in determining how retirees save or dissave.

Motivated by this observation, in this paper we examine the role of housing in retirees’ saving behavior. Rather than explaining only the life-cycle profile of household net worth, as the literature has done, we seek to understand several facts about saving in retirement concurrently. In the model we construct, we consider both housing and nonhousing assets, and generate retirees’ life-cycle profiles of these variables, as well as of homeownership rates and collateralized debt. We find that considering explicitly the nature of housing as a complex asset with properties different from other assets, and understanding retirees’ motives in deciding whether to own a house or rent, makes an important difference in understanding retiree saving behavior, and changes our conclusions regarding the retirement saving puzzle, relative to previous literature. In particular, by understanding the motivation for homeownership late in the life-cycle, we shed new light on the nature and role of bequest motives, uncertainty and precautionary motives in retirement.

We begin by documenting in detail, using the Health and Retirement Study (HRS) over the period 1996-2006, various facts about retirees’ financial and housing asset holdings, and about

1 In this figure, homeowners are the households that start in our 1996-2006 HRS sample as owners, and remain so throughout the sample; renters are similarly “perpetual” renters.
their use of home equity. Because the HRS is a longitudinal survey, it allows us to study in detail life-cycle asset and debt profiles over time. We also document other relevant changes in retirees’ lives pertaining to their income, health, medical expenses, marital status and the like, which are all potential drivers of saving decisions late in life.

We then build a model of household saving decisions in retirement, in which we include both financial assets and a house, which serves as an asset but also provides utility, and in which households face several types of idiosyncratic uncertainty, with the aim of matching the life-cycle facts of interest. In the model, retirees can choose whether to own a home or rent, and homeowners can access their home equity by selling the house or by secured borrowing, with an age-varying borrowing constraint. Retirees have a warm-glow bequest motive, and face uncertainty in their health status, medical expenses, and longevity, as well as that of their spouse. They have Social Security and pension income, and access to a government-provided social insurance program which provides a consumption floor for households who suffer particularly major shocks. House price dynamics, introduced at the aggregate level, reflect recent changes in the housing market in the U.S.

The key potential driving forces of retiree saving behavior in the model are nonfinancial and financial benefits of homeownership, including the housing price boom of 1996-2006, as well as bequest motives, longevity risk and medical expense risk. The fact that housing is less liquid than financial assets is also likely to be relevant. While bequest motives, longevity and medical expense risk have been studied in previous literature and found, to various degrees, important for the retirement saving puzzle, the housing-related forces have not been considered previously in the context of a structural model; yet, they may interact in important ways with bequest motives and health risk. For example, homeownership in retirement may be motivated by financial considerations and attachment to homeownership, by bequest motives, or by precautionary motives in response to longevity or medical risk. We estimate our model, and use it to quantify the role of each of these forces, as well as to understand their interactions.

To estimate the model, we use the HRS in a two-step estimation procedure. We measure exogenous parameters, such as the shock processes, outside the model, but use the model to estimate other parameters by a minimum-distance estimator, targeting jointly the relevant life-cycle facts mentioned before. Our model successfully replicates these facts, with reasonable resulting parameter values.

To understand the quantitative contribution of the salient model features, we conduct a series of experiments using the benchmark model. First, we shut down these mechanisms one at a time, keeping the rest of the model unchanged. Then, we strip the model down to the basic life-cycle framework, and introduce the main features in sequence in different orders, to understand and quantify the interactions between them.

We find that the high homeownership rate late into the life-cycle that we observe in the data is crucial to consider for understanding retiree saving behavior. We find that the leading motivators for homeownership are bequest motives and utility benefits of owning a house (which capture also financial benefits, such as tax advantages). But homeowners are also increasingly locked into their home equity as they age; we find that the borrowing constraints on retirees tighten considerably. This means, on the one hand, that those who remain homeowners do not
decumulate their home equity, thus creating the kind of flat housing profile that we see in the data, while those who face a large medical expense shock, health deterioration, or that of their spouse, may come up against their borrowing constraint and be forced to sell the house. These effects are a big part of what creates the stark difference that we observe between homeowners and renters in the data. In addition, those who owned a house in the period 1996-2006 became beneficiaries of the housing boom, which further contributes to the flat or increasing net worth profiles of elderly homeowners. Quantitatively, we find that the housing channels – utility benefits of ownership, collateral constraints, and the housing boom – jointly account for between 22 and 40% of the median net worth profile, and their contribution is relatively stable with age. The bequest motive accounts for up to 30-80% of the median net worth profile, and its importance increases with age.

We also consider the role of medical expense risk, following De Nardi et al. (2010). That paper is most related in approach to our study, but it focuses on overall net worth, without considering housing assets explicitly. They emphasize the importance of medical expense risk for retiree saving behavior, and find that the bequest motives do not matter significantly for the puzzle once medical risk is accounted for. Our findings are thus quite different. In addition to finding bequest motives to be important, we also find the role of medical expenses to be quantitatively smaller. In our model, medical expenses play two roles. On the one hand, they create a precautionary motive for saving, which is particularly pronounced for younger retirees, although in our model it accounts for maximum 25% of their median net worth. On the other hand, large medical expense shocks later in life, which we measure in the same way as De Nardi et al. (2010), create one important reason why retirees are forced to sell their house. Thus, although the overall contribution of medical expense shocks to net worth in retirement is moderate, they still play an important dual role in retiree saving behavior. One reason why precautionary motive in our model is smaller than in De Nardi et al. (2010) is that since the model emphasizes bequest motives and utility benefits of homeownership in order to match the life-cycle facts that we listed, our estimated risk-aversion parameter is lower than in their paper. Another reason is that they focus their analysis on retired singles only, while we include couples in our analysis; it is likely that married households have different bequest motives, being more likely to have children, than single households.

In addition to the quantitative decompositions, we conduct an experiment where we allow households to make a decision on whether or not to maintain their home. We want to evaluate this as an additional, possibly hidden, channel of asset decumulation, consistent with data evidence that homes of elderly owners depreciate more quickly than those of younger owners (Davidoff (2006)). We treat this as a hidden channel because we assume that self-reported housing values of owners who remain in their houses do not take into account the depreciation rate unless they have the house appraised for sale, for example. We find this to be a significant channel of asset decumulation. 30% of our model homeowners choose not to maintain their homes in the 75-85 year old cohort; for the younger cohort, that proportion is over 50%, while it is lower for the oldest cohort. We show that this channel affects median housing asset profiles as well.

We thus have three main contributions. First, our careful documentation of the longitudinal data provides a set of facts regarding retirees’ saving behavior in more detail than previously
studied. In addition to being of empirical interest, we think it is important that these facts should be considered explicitly by a theory that seeks to explain saving behavior in retirement. Second, our model enables us to describe the tradeoff between housing and nonhousing assets in retirement, and to characterize the reasons for homeownership in retirement. To our knowledge, we are the first to do this in the context of a rich structural model. Third, we address the retirement saving puzzle from a new perspective, and find that modeling housing explicitly makes a crucial difference for the conclusions regarding the puzzle.

The remainder of the paper is organized as follows. Section 2 discusses related literature. Section 3 describes our data and stylized facts. Section 4 develops the model that we use. Section 5 first describes the estimation strategy, and then presents the resulting parameters and assesses the fit of the model. Section 6 describes the quantitative decompositions that we perform in our model, and analyzes our results relative to previous literature. Section 7 describes the experiment of endogenizing the home maintenance decision. Section 8 concludes. Some details of data analysis are in the appendix.

2 Related Literature

Our paper is related to a number of papers that study savings decisions and motives in retirement, and those that analyze savings decisions with a focus on the role of housing. On the retirement saving puzzle itself, several answers have been proposed. Hurd (1989) estimates the life-cycle model with mortality risk and bequest motives, and finds that intended bequests are small. Love et al. (2009) analyze the retirement saving puzzle using “annualized comprehensive wealth,” which is a measure of total wealth, including annuity-like assets as well as financial and nonfinancial assets. Regarding the savings decisions before retirement, Hubbard et al. (1995) argue that means-tested social insurance programs provide a virtual consumption floor and thus strong incentives for low-income individuals not to save; their paper can thus be seen as reinforcing the retirement saving puzzle. Ameriks et al. (2011) study the relative importance of bequest motives and public care aversion in explaining the related annuity puzzle using a model of retirement and survey data, and find both motives significant in the data.

Among the studies of savings of the elderly, the recent paper by De Nardi et al. (2010) is most closely related to ours in terms of approach. They estimate a life-cycle model of retirees using the AHEAD sub-sample of the HRS, focusing on singles among the oldest old. Like them, we use a life-cycle model of retirees together with the HRS, with health condition and medical expenditures being a major source of uncertainty for retirees. The key difference between our work and theirs is our focus on housing and home equity borrowing; while they aggregate all the assets in the household portfolio, and study the profile of the consolidated asset position in retirement, we explicitly model housing choice and specifically focus on the decisions of whether to own a home and whether and when to borrow against one’s home equity. To the best of our knowledge, there is no study that uses a structural model with housing to tackle the retirement saving puzzle. We find that the conclusions regarding the retirement saving puzzle are crucially affected by the explicit modeling of housing.

The empirical part of our paper is related to Venti and Wise (2004), one of whose main findings, confirmed by our own data analysis as well, is that retirees rarely downsize their houses
even in older age, unless a drastic event such as illness or death of a spouse occurs. They also provide evidence from the HRS that some older households move into larger homes; we will be able to show that this may only appear to be the case based on rising house prices, rather than reflecting purchases of larger homes, a possibility pointed out by Skinner (2004).

Other studies of implications of health and medical expenditure risks on portfolio decisions of retirees is Yogo (2009), which treats health expenses as endogenous investment in health, and Kopecky and Koreshkova (2009), who focus on nursing home expenses and study the implications on aggregate savings and the distribution of wealth. Marshall et al. (2010) revisit the measurement of end-of-life medical expenses in an empirical exercise involving HRS data, and find these expenses to be significant.

An important question regarding the interaction between savings decisions and housing is the wealth effect of house price changes on nonhousing consumption. Papers by Campbell and Cocco (2007), Li and Yao (2007) and Attanasio et al. (2010) investigate the issue. Campbell and Cocco (2007) use UK micro data to quantify the wealth effect and find that the effect is large for older homeowners and insignificant for young renters. Li and Yao (2007) use a calibrated life-cycle model and find that, although the aggregate wealth effect is limited, there is a large degree of heterogeneity: the response of nonhousing consumption is stronger for younger and older homeowners than middle-aged homeowners, and the welfare effect is the strongest for older homeowners who most likely will not buy a new house. Attanasio et al. (2010) also use UK micro data and a structural life-cycle model with housing to disentangle the influence of housing wealth effects on consumption from influence of earnings shocks as a common driving factor of both consumption and house price movements.

More generally, our paper fits with the recently growing body of work that incorporates housing explicitly into a macroeconomic framework. Fernández-Villaverde and Krueger (forthcoming) and Yang (2009) use a general equilibrium life-cycle model to study the life-cycle profile of housing and nonhousing consumption, with the focus on the difference between the two forms of consumption. Other studies of housing that use structural models include Davis and Heathcote (2005), who study housing in a business cycle model, and Díaz and Luengo-Prado (2010), who investigate the implications of explicitly considering housing in explaining the observed large wealth inequality in the U.S. Chambers et al. (2009) construct a general equilibrium model with a focus on the optimal choice between different types of mortgages, and study macroeconomic implications of having different such contracts available to households. Ortalo-Magné and Rady (2006) study the impact of income shocks and credit constraints for business cycle dynamics of the housing market.

3 Facts

We begin by describing the data facts that we consider the most relevant when thinking about homeownership and saving in retirement. In addition to the facts already presented, these are retirees’ life-cycle profiles of homeownership rates, housing and nonhousing assets, the rate of collateralized debt and the amount of debt held. These are the facts that we want to account for using our theory. Thus, we will use these as targets in our estimation. We also present some facts that inform our modeling choices, as we describe below. We then give much more detail
on the mapping between the data and the model in the Estimation section.

3.1 Data

The Health and Retirement Study (HRS) is a biennial longitudinal survey of households of age 50 and above, conducted by the University of Michigan. The survey began in 1992. Due to issues with the early data on assets (see De Nardi et al. (2010)), we begin our data observation in 1996 and use six waves that span 10 years, through 2006. We use the RAND version of the HRS data set, constructing a full merged set from the flat files provided by RAND; in addition, we merge in information from the exit waves of the survey (concerning members of the sample who die between two waves), in order to accurately measure medical expenses until the end of life.

We consider everyone present in the sample in 1996 who is of age 63 and above and who reports being retired, either fully or partially. We consider both couples and single households. We subdivide the sample into six cohorts, of ages 63-67, 68-72, 73-77, 78-82, 83-87, and 88-97 in 1996. We follow these cohorts across the waves of the survey and document their life-cycle patterns of asset holding and health, as described below. Because assets are measured in the HRS at household level, while health status and other demographic variables are at the individual level, we adjust the weighting schemes appropriately to construct information for our model households.

The HRS sample is replenished several times over the course of the survey. There are multiple ways to deal with this cohort replenishment: one could only consider those who appear in the survey starting in 1996, or include in later waves everyone who belongs to a given cohort by age, even if they enter the survey after 1996. As a benchmark, we consider only those households that appear in the 1996 wave, without replenishing the cohorts. For robustness analysis, we have considered an alternative in which we allow the cohorts to be replenished after the 1996 wave; see appendix A for details.

A related issue with the HRS sample is weighting. Each individual in the HRS is assigned a wave-specific weight each year he appears in the sample; however, an individual who lives in a nursing home is assigned a weight of zero. We do not want to lose such individuals from the sample. In order to compute weighted statistics, but not lose nursing home residents, we apply the weight attached to each individual in the initial (1996) wave of our sample. This is consistent with our choice of unreplenished cohorts. For robustness, we reconstructed all of our analysis with the replenished sample, where we use the weights specific to each wave; we also constructed unweighted measures, for the purpose of comparing with De Nardi et al. (2010). We discuss these measures in appendix A. Notice that our choices imply that we consider an unbalanced panel in our analysis, since households will drop from the sample due to mortality; however, this choice is the most consistent with our model, where we will construct an equivalent unbalanced panel, with households dying according to the same probability as in the data. We will discuss this more in the Estimation section.

To allow our data measures to map into the model, we measure financial assets as the sum of non-housing assets (excluding businesses and cars) net of all debt, including home equity debt. We track housing assets separately, including only the primary residence, since other real estate
information is not available in all waves of the survey. Finally, we define total assets as the sum of financial and housing assets, net of all debt.\(^2\)

As homeowners in our data, we take everyone who reports owning their residence. In the other category, labeled “renters”, we include not only actual renters, but also individuals living in nursing homes, with their children, and in other arrangements not involving homeownership. The results presented here are robust to this aggregation of non-owners. A few of the nursing home residents report owning a home. For such individuals in our data we set the value of their home to zero, and fold their house value into their financial assets.

3.2 Life-cycle Profiles

First, to accompany our motivating figure 2, we want to confirm that staying a perpetual homeowner throughout the sample implies different saving behavior than that of anyone who becomes a renter any time in the sample, and in particular, that the difference that we observe is not simply a function of being in different wealth quintiles. To do this, in figure 3, we plot the normalized median asset accumulation profiles of those who are homeowners perpetually in the sample versus those who switch into renting at some point in the sample. We designate them by the wave in which they switch, and present only three cohorts to make the figure legible. This figure confirms the intuition we observe by comparing perpetual owners against perpetual renters, namely that when one sells the house, one decumulates assets more quickly than if one stays in the house, and that this behavior is not simply a function of overall wealth; thus, we need to consider housing separately from other assets.

Figure 4 shows the life-cycle profile of homeownership rates among retirees (dark blue solid line). In general, homeownership rates are declining with age, from around 90% at age 65 to just below 40% by age 95. We also break down the rates by the size of the household. The breakdown shows that conditional on household size, the decline is milder than the overall average for 2-adult households, demonstrating that the overall decline in homeownership may be driven in part by a transition from a 2-person to a 1-person household. This agrees with the findings of Venti and

\(^2\)We experimented with other definitions of assets and found that the results are not affected.
Wise (2004) that “precipitating events” such as death of a spouse are important for determining homeownership. Motivated by this finding, we will allow our model households to change size over time, according to probabilities consistent with the data.

Figure 5 plots the life-cycle profiles of median total asset holding among retirees; we already presented this fact in the introduction. Figures 6 and 7 break down these profiles into housing and financial assets, as defined above. Total asset holdings are increasing with age for the youngest three cohorts, while they are flat for the older cohorts. The breakdown into housing and non-housing assets shows that the increase in total asset value for the younger cohorts is mainly driven by increasing housing assets, while financial assets are relatively flat for each cohort; this further reinforces our motivation to consider housing and nonhousing assets separately in the model. Notice that when we look at median nonhousing assets over time, we include in that profile households who sell their house and convert it into financial assets; this composition effect is likely important in keeping financial asset profiles flat rather than decreasing more quickly.

Looking at the debt side of the household portfolios, figures 8 and 9 plot the shares of retirees who are in debt by our model definition, that is, those who hold a negative financial asset position, as well as the median amount of debt held, conditional on being a debtor. Overall, the
share of debtors is decreasing with age, from around 18% at age 65 for the first cohort, to nearly zero for the oldest cohort. The conditional amount of debt is weakly increasing for the three younger cohorts and is flat or slightly decreasing for the older cohorts, and is decreasing over the life cycle.

To understand how debt should be modeled, we also consider the profiles of gross secured and unsecured debt. The proportion of households with each types of debt in figure 10 decreases with age, in a fashion similar to the negative financial asset position; slightly fewer retired households have gross unsecured debt than secured debt. In terms of debt holding conditional on having debt, figure 11 shows that the profile for secured debt is generally similar to that of negative financial asset position – increasing for the younger cohort and relatively flat for older cohorts. Instead, the amount of unsecured debt (right scale) is relatively small, at maximum $2,000 for the youngest cohort, compared to $30,000-40,000 in secured debt, decreasing over the lifecycle, and approximately flat for each cohort. Due to the small size of unsecured debt held, and to reduce
the computational burden, we will assume unsecured debt away in the model; thus, anyone in
the model without a house will not be able to borrow.

4 Model

We focus on retiree households, which allows us to abstract from the labor supply and retirement
decisions. A household in the model starts out either single or as a couple; couple households
can become single if one spouse dies, but single households do not re-marry. This assumption is
motivated by the data, where the number of remarriages in retirement is small.

A retiree household starts out as a homeowner or a renter. In each period, the household
chooses consumption and financial saving, and makes a decision regarding housing. For a home-
owner, the housing decision is whether to move out of the house or to stay in it. Homeownership
provides utility benefits, in addition to consumption services from the house; these capture fac-
tors such as attachment to one’s house and neighborhood, the ability to modify one’s house to
individual taste, but also some financial benefits of ownership that are not explicitly in the model,
such as tax exemption of imputed rents of owner-occupied housing, mortgage interest payment
deduction, or insurance against rental rate fluctuation. In addition, homeowners are able to
borrow against their home equity; the collateral constraint can change with age, as discussed
below. For a renter, the housing choice is only the size of the rental property. We abstract from
the decision of a homeowner to move to a different, most likely smaller, house, or the decision of
a renter to buy a house. These abstractions are made to simplify the problem, but are motivated
by the observation in the data that the proportion of homeowners making downsizing moves is
small, as is the proportion of renters who purchase a home late in life. Finally, renters are not
able to borrow; as we mentioned in the Data section, the amount of unsecured debt in the data
is small and thus supports this restriction.

The aggregate price of housing in the model is increasing to capture the housing boom of
1996-2006. We assume that households anticipate the increase in a deterministic fashion, and do
not face idiosyncratic house price shocks. This assumption is necessary, given the complexity of
the problem.

In addition to the household size shock, households are subject to two other types of idiosyn-
cratic shocks: health status, which includes the probability of death and is conditioned on age,
and out-of-pocket medical expenditures, conditioned on age and health status. Health status is
persistent, and thus so are medical expenditures, though they are modeled as i.i.d. conditional
on age and health state.

In addition to income from their financial assets, households have access to pension income.
Since in the data nonfinancial income is stable over time conditional on household size, in the
model we assume income constant over time as well, as long as household size does not change.
In addition, households have access to a government-provided consumption floor, which captures
insurance programs for the elderly such as Medicaid. Finally, households have a warm-glow
bequest motive. We now turn to the formal description of the model.
4.1 Preferences

A household is born as a retiree at model age \(i = 1 \). The household potentially lives up to age \(I \), but dies stochastically; this is discussed more below, together with the health status transition process. The household maximizes its life-time utility. The utility function is time-separable with subjective discount factor \(\beta \). The period utility function has the following form:

\[
u(c, h, s, o) = s \frac{\left(\frac{1}{\mu_s} c^{\eta} (\omega_o h)^{1-\eta} \right)^{1-\sigma}}{1 - \sigma}
\]

(1)

where \(c \) is nonhousing consumption, \(h \) is consumption of housing services, \(s \in \{1, 2\} \) is the number of adults in the household, and \(o \in \{0, 1\} \) is the tenure status, with \(o = 0 \) representing renting, and \(o = 1 \) representing owning. We assume a linear technology from the size of the house to the quantity of housing services, which implies that \(h \) is the size of the house that the household lives in as well. Consumption is aggregated by a Cobb-Douglas function, with \(\eta \) determining the relative importance of consumption of nonhousing goods and housing services. The period utility function applied to the aggregated goods is a standard CRRA function with risk aversion parameter \(\sigma \). \(\mu_s \) is the effective household size or the household equivalence scale conditional on household size, which captures the externality within a household.\(^3\) In particular, if \(\mu_1 = 1 \) and \(\mu_2 \in (1, 2) \), the household-size multiplier for a one-adult household is \(\frac{1}{\mu_1} = 1 \), while the multiplier for a two-adult household is \(\frac{2}{\mu_2} > 1 \) for \(\sigma > 0 \). In other words, the assumption captures the benefits of having multiple adults instead of one adult in the household. \(\omega_o \) captures the extra utility from owning a house rather than renting. We normalize the renters’ \(\omega_0 = 1 \).

As in De Nardi et al. (2010), a household gains utility from leaving bequests.\(^4\) When a household dies with consolidated wealth of \(a \), the household’s utility function takes the form:

\[
u(a) = \gamma \frac{(a + \zeta)^{1-\sigma}}{1 - \sigma}.
\]

(2)

Here, \(\gamma \) captures the strength of the bequest motive, and \(\zeta \) affects marginal utility of bequests.

4.2 Household Structure, Health and Mortality

Households in the model are distinguished demographically in terms of their size and health. The health status of a household is represented by \(m \in \{0, 1, 2, \ldots, M\} \), where \(m = 0 \) represents death, which is an absorbing state so that \(m_j = 0 \) for \(\forall j \geq i \) if \(m_i = 0 \). A strictly positive \(m \) indicates that the household is alive and in one of several health states that can vary over time. We assume that \(m \) follows a first-order Markov process. \(\pi_{m,m'}^{i,j} \) is the transition probability from a health state \(m \) to \(m' \), for an agent of age \(i \). Because of the way we include the death

\(^3\) For a more detailed discussion on the household equivalence scale, see Fernández-Villaverde and Krueger (2007). Li and Yao (2007) make a similar assumption with respect to the effect on the household size on utility.

\(^4\) De Nardi (2004) finds that the bequest motive is important in capturing the observed wealth distribution, especially the wealth concentration, using a general equilibrium overlapping-generations model with accidental and intended bequests.
state in the health status, the transition probability $\pi_{i,m,m}'$ also includes survival probability of agents. In particular, survival probability for an agent of age i and current health status m can be represented as $\sum_{m'>0} \pi_{i,m,m}'$.

$s \in \{1, 2\}$ represents the number of adults in a household. We treat household size explicitly because, as we have shown in section 3, data are consistent with it mattering for the decision to sell one’s house; in addition, we want to map data and model households as accurately as possible. The transition from $s = 2$ to $s = 1$ can capture the death of a spouse or a divorce; in our estimation, we will abstract from divorces and remarriages, as we find these to be rare in the data. Thus, one-adult households ($s = 1$) remain single for the rest of their life. In contrast, two-adult households ($s = 2$) stochastically change to one-adult households. Household size transition probabilities are denoted by $\pi_{i,s,s}'$, where i is the age of the household. By assumption, $\pi_{i,1,1} = 1$, $\pi_{i,1,2} = 0$ for all i.

Household size thus affects household decisions in the following four ways. First, two-adult households maximize the sum of the utilities of the two. In order to avoid keeping track of types of each individual in two-adult households, we assume that the two adults have the same utility function, so the utility of a two-adult household is that of a one-adult household multiplied by two, as captured by s in the utility function above. Second, consumption is split equally in two-adult households. However, each of the household members can enjoy more than half of the consumption because of the positive externality within the household. This is captured by the effective household size μ_s in the utility function. Third, pension income depends on household size. Finally, two-adult households face a shock that may turn them into a one-adult household. This shock, together with the mortality shock embedded in $\pi_{i,m,0}$, means that in a two-person household, one spouse can die first via the stochastic shock to s, or both spouses can die at the same time via the household-wide mortality shock.

4.3 Medical Expenditures

Household health status introduced above has two effects. First, survival probability is lower for a household in worse health; second, out-of-pocket medical expenses are on average higher for a household in worse health. Both are facts from our data (details will be provided in section 5). A household is hit by out-of-pocket medical expenditure shocks $x \in \{x_0 = 0, x_1, x_2, ..., x_X\}$, which are proportional to its income. The probability that a given x is drawn is denoted by $\pi_{i,m,x}$, where i is the age of the household and m is the current health status of the household. The specification allows the distribution of medical expenditures to vary depending on age and health status. Notice that conditional on age and health, medical expense shocks are i.i.d.; however, because health status is persistent, medical expenses are persistent as well. We assume that the shock is uninsurable. We will accordingly estimate this shock using only out-of-pocket medical expenses in the data, abstracting from all expenses covered by Medicare, Medicaid or private health insurance.

4.4 Nonfinancial Income

We assume that the household’s nonfinancial income is $\psi_s b$, where $b \in \{b_1, b_2, b_3, ..., b_B\}$ and ψ_s adjusts the nonfinancial income according to the number of adults in the household. Naturally,
$\psi_1 = 1$. Notice that b is different across households, but is time-invariant for each household. This assumption captures the fact that the main sources of nonfinancial income for retirees are Social Security benefits and other pension benefits, and they are typically fixed at the time of retirement and do not change during the retirement period, which we confirm in our data.

4.5 Housing

A household is either a renter ($o = 0$) or a homeowner ($o = 1$). A homeowner with a house $h \in \{h_1, h_2, h_3, \ldots, h_H\}$ decides whether to move out of the house and become a renter, or to stay in the same house. In order to simplify the problem, selling a house and buying another is assumed away. As we mentioned above, this is justified by our data, where we do not observe many such transitions. The total value of the house is ph, where p is the current house price; we will further discuss it in section 4.7. If a homeowner sells her house, she receives its value net of any debt, from which she pays a proportional cost of moving out, which is κ. In addition, the homeowner has to pay a proportional maintenance cost δ each period that she lives in the house. In the benchmark version of the model, we assume that everyone pays this cost. In an experiment later on, we will endogenize the maintenance decision.

A renter chooses the size of the rental property h each period. Unlike owners, renters can move between properties of different sizes at no moving cost. All rental contracts are for one period. The per-period rental rate is r_h, which consists of two components:

$$r_h = r + \delta$$

where r is the riskless interest rate, discussed more below. The rental rate captures the competitive cost to an intermediating real estate firm of holding housing and renting it out.\(^5\)

4.6 Saving and Home Equity Borrowing

We use a to denote the household’s consolidated financial asset balance. Households can save ($a > 0$) at interest rate r. In addition, home equity borrowing is allowed; homeowners can borrow against the value of their house at the rate of $r + \xi$, where ξ is the mortgage premium. The borrowing limit in period t has the following form:

$$a \geq -(1 - \lambda_i)hp$$

In other words, a homeowner can borrow up to a fraction $1 - \lambda_i$ of the value of the house (hp) in each period. While the parameter λ_i can most directly be interpreted as a downpayment constraint, in this setup we are agnostic about the exact type of equity loan contracts available and the associated cost types. Therefore, we intend for it to capture in a parsimonious way all direct costs of borrowing against home equity, e.g. the costs of refinancing, the costs of opening a new home equity line of credit (HELOC), or the upfront costs of a reverse mortgage. We allow this parameter to be age-specific, to capture possible variation in such costs. In addition, while there are no overt age requirements for traditional mortgage loans that we are aware of, Caplin (2002) points out that many older homeowners cannot qualify for conventional mortgages

\(^5\)See Nakajima (2010) for a more detailed discussion about the determination of the rental rate.
because they fail income requirements of such loans. We want our specification to be able to also capture such age variation in borrowing constraints. We will estimate the parameters λ_i from the model, rather than pinning them down using exogenous information on costs of particular mortgage contracts.

As we previously mentioned, we assume that renters in the model cannot borrow. This assumption is motivated by the observation in the data that the median amount of unsecured debt among retirees is very small.

4.7 House Price

The house price p is assumed to have only an aggregate time-varying component; we do not consider any heterogeneity of housing prices, in order to keep the problem manageable. We further assume that households expect house prices to grow at a constant rate g, consistent with the upward price trend in the data during the period that we consider, 1996-2006. As an alternative, we have tried the assumption that households expect house prices to stay constant, treating all growth in house prices from the exogenous price trend as a surprise. These two alternatives yield nearly identical results in terms of household behavior; we choose the former specification as it is consistent with rational expectations.

4.8 Government Transfers

Following Hubbard et al. (1995) and De Nardi et al. (2010), we assume that the government uses means-tested social insurance, which effectively provides a consumption floor. The consumption floor is especially important in our model because a large out-of-pocket medical expenditure shock could force a household to consume a negative amount in the absence of social insurance. The consumption floor supported by the government is denoted by c per adult. Following De Nardi et al. (2010), we assume that the government subsidizes each member of a household up to the consumption floor only after the household sells all of its assets and chooses the minimum rental property available in order to support its own consumption. Note that for a homeowner, this means that a very large medical expense shock could force the household to sell the house before she becomes eligible for social insurance. This is consistent with the fact that in many states, the value of the house is not exempt when determining an individual’s eligibility for social insurance for the poor (e.g. Medicaid), although the specifics of this are complex and vary by state.

4.9 Household Problem

We will formalize the household problem recursively, and separately for homeowners and renters. Following convention, we use a prime to denote a variable in the next period. The state variables of a household are (i, s, b, m, x, p, h, a): its age, size, income, health status, medical expenses, house price, amount of housing, and its financial assets. In order to save some notation, we use $h = 0$ to represent a renter. $h > 0$ means that a household is a homeowner with a house size of h.

15
Beginning with the problem of the renter, the Bellman equation is:

\[
V(i, s, b, m, x, p, 0, a) = \max_{\tilde{h}, a' \geq 0} \left\{ u(c, \tilde{h}, s, 0) + \beta \sum_{s'} \pi^s_{s,s'} \sum_{m' > 0} \pi^m_{m,m'} \sum_{x' \neq i+1,m',x'} V(i + 1, s', b, m', x', p', 0, a') + \beta \pi^m_{m,0} v(a') \right\}
\]

(5)

subject to:

\[
\tilde{c} + a' + r \tilde{h} p + x b = (1 + r)a + \psi s b
\]

(6)

\[
c = \begin{cases}
\max\{sc, \tilde{c}\} & \text{if } a' = 0 \text{ and } \tilde{h} = h_1 \\
\tilde{c} & \text{otherwise}
\end{cases}
\]

(7)

\[
p' = (1 + g)p
\]

(8)

The renter chooses the level of assets to carry over to the next period \((a')\) and the property that he rents in the current period \((\tilde{h})\) to maximize the sum of three components. The first component is the period utility. The second component is the discounted expected future value conditional on surviving in the next period \((m' > 0)\). Notice that \(b\) does not change, and the renter remains a renter \((h' = h = 0)\). The third component of the maximand in the Bellman equation (5) is the utility from bequests. Notice that, for a renter, the only assets left as estate are the financial assets \((a')\). Equation (6) is the budget constraint of the renter. Equation (7) represents the lower bound of consumption guaranteed to the household through the social insurance program. As we discussed above, the consumption floor is available only when the renter chooses not to save anything \((a' = 0)\) and chooses the smallest rental property available \((\tilde{h} = h_1)\). Finally, house prices grow at rate \(g\).

The recursive problem of a homeowner is a choice between staying in his current house \((V_i)\), or selling the house and becoming a renter \((V_0)\). Formally:

\[
V(i, s, b, m, x, p, h, a) = \max\{V_0(i, s, b, m, x, p, h, a), V_1(i, s, b, m, x, p, h, a)\}
\]

(9)

A homeowner who decides to sell the house and become a renter solves:

\[
V_0(i, s, b, m, x, p, h, a) = \max_{a' \geq 0} \left\{ u(c, h, s, 1) + \beta \sum_{s'} \pi^s_{s,s'} \sum_{m' > 0} \pi^m_{m,m'} \sum_{x' \neq i+1,m',x'} V(i + 1, s', b, m', x', p', 0, a') + \beta \pi^m_{m,0} v(a') \right\}
\]

(10)

subject to equation (8) and:

\[
\tilde{c} + a' + x b + (\kappa + \delta)hp = hp + (1 + \tilde{r})a + \psi s b
\]

(11)

\[
c = \begin{cases}
\max\{sc, \tilde{c}\} & \text{if } a' = 0 \\
\tilde{c} & \text{otherwise}
\end{cases}
\]

(12)

\[
\tilde{r} = \begin{cases}
r & \text{if } a' \geq 0 \\
r + \chi & \text{if } a' < 0
\end{cases}
\]

(13)
There are four differences from the renter’s problem shown above. First, the current tenure status is a homeowner \((o = 1)\) with the house size of \(h\), as can be seen in the period utility function. Second, the budget constraint (11) does not include the rental cost (since the household owns in the current period), but includes income from selling the house, net of the current maintenance cost \((\delta)\) and the selling cost \((\kappa)\). Third, the interest rate is different depending on whether the homeowner is a net saver (in this case the interest rate is \(r\)), or a net borrower (the interest rate is \(r + \chi\)). Fourth, the household is eligible for the consumption floor if \(a' = 0\) because there is no decision of choosing rental property for the current period. In other words, the homeowner has to sell the house and exhaust all the savings in order to be eligible for social insurance. Also notice that the household begins the next period as a renter \((h' = 0)\).

The problem of the homeowner who decides to stay in his house is characterized by:

\[
V_1(i, s, b, m, x, p, h, a) = \max_{a' \geq -hp(1-\lambda_i)} \left\{ u(c, h, s, 1) + \beta \sum_{s'} \pi_{s,s'} \sum_{m' > 0} \pi_{m,m'} \sum_{x'} \pi_{x_{i+1},m',x'} V(i + 1, s', b, m', x', p', h, a') + \beta \pi_{m,0} v(hp' + a') \right\}
\]

subject to equations (8), (13) and:

\[
c + a' + xb + \delta hp = (1 + \tilde{r})a + \psi_s b
\]

Four features are unique about the owner who chooses to stay in his house. First, since a homeowner can borrow against the house, \(a'\) is not constrained from below by zero, but by \(-hp(1-\lambda_i)\). Second, in case the household does not survive to the next period, the estate is the consolidated asset position, which consists of the value of housing \((hp')\) and the financial asset position \((a')\). Third, the budget constraint (15) includes the maintenance cost \((\delta hp)\). Finally, since the homeowner chooses to keep the house, she does not have access to the social insurance program (the consumption floor) in this period.

5 Estimation

5.1 Estimation Strategy

Following Gourinchas and Parker (2002) and De Nardi et al. (2010), we use a two-step estimation strategy. In the first step, we estimate the parameters that we take as exogenous to the model. Parameters associated with all the shocks and prices, as well as the initial conditions, are in this category. In the second step, given these exogenous parameters, we estimate the remaining parameters using a minimum-distance estimator, taking as targets the set of life-cycle profiles that we presented above.

5.2 First Step Estimation

Since HRS is biennial, we set one period in the model to two years. Each household can live up to 99 years of age, but there is a probability of an earlier death. We look at three cohorts corresponding to ages 65, 75, and 85 in 1996 – the first wave of the survey that we use. We call
Table 1: First-Step Estimated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value1</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_2</td>
<td>Household equivalence scale for 2-adult households</td>
<td>1.340</td>
</tr>
<tr>
<td>ψ_2</td>
<td>Income multiplier for 2-adult households</td>
<td>1.500</td>
</tr>
<tr>
<td>$\delta $</td>
<td>Maintenance cost of housing</td>
<td>0.017</td>
</tr>
<tr>
<td>$\kappa $</td>
<td>House selling cost</td>
<td>0.066</td>
</tr>
<tr>
<td>r</td>
<td>Saving interest rate</td>
<td>0.040</td>
</tr>
<tr>
<td>ξ</td>
<td>Mortgage interest premium</td>
<td>0.016</td>
</tr>
<tr>
<td>g</td>
<td>House price growth rate</td>
<td>0.042</td>
</tr>
</tbody>
</table>

1 Annualized value.

Table 2: Income Levels1

<table>
<thead>
<tr>
<th>Group</th>
<th>Cohort 1 (age 65)</th>
<th>Cohort 2 (age 75)</th>
<th>Cohort 3 (age 85)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>5831</td>
<td>6199</td>
<td>5520</td>
</tr>
<tr>
<td>Group 2</td>
<td>12049</td>
<td>9977</td>
<td>8055</td>
</tr>
<tr>
<td>Group 3</td>
<td>17844</td>
<td>13593</td>
<td>10481</td>
</tr>
<tr>
<td>Group 4</td>
<td>25868</td>
<td>18173</td>
<td>13743</td>
</tr>
<tr>
<td>Group 5</td>
<td>50227</td>
<td>37869</td>
<td>26090</td>
</tr>
</tbody>
</table>

1 Annualized income in 1996 dollars.

them cohorts 1, 2, and 3, respectively. In order to increase the number of data observations that we use, we enclose age groups in five-year bins: For example, we define age 65 as capturing the five-year interval of ages 63-67. For each cohort, we have six data observations that correspond to years 1996, 1998, 2000, 2002, 2004, and 2006. In simulating and estimating the model, we use the initial type distribution of the three cohorts of households in 1996 as the input. We also feed in the growth rate of the real national house price index between 1996 and 2006 for simulation. All the values that follow in this section are in 1996 dollars. Individual parameters from the first-step estimation are summarized in table 1.

Preferences

There are a variety of estimates for the household equivalence scale. We use the value of $\mu_2 = 1.34$ for a two-adult household, following Fernández-Villaverde and Krueger (2007). This value is the mean of the existing estimates in the literature, ranging from 1.06 to 1.7.

Nonfinancial Income

Our definition of nonfinancial income includes Social Security, pension, disability, annuity, and government transfer income. Because some of our retirees are only partly retired, we also include labor income in this measure; overall, however, labor income plays a small role in our sample, constituting on average only about 6% of total income. In each cohort, we sort the households...
according to their nonfinancial income in 1996 (year of the initial wave used) and classify them into five bins, so that each bin carries approximately one-fifth of the total sample weight in 1996. For two-adult households, we make an adjustment so that the income of two-adult households is comparable to that of one-adult households. To do this, we look at households whose number of adults changed from two to one while in the sample. For each such household, we compute the ratio of income when the household was a two-adult household over the income after the same household became a one-adult household. The median of this ratio is 1.5, so we set our parameter $\psi_2 = 1.5$. That is, in the median, a two-person household that loses a spouse also loses about one-third of its income. To make income comparable across households, we divide nonfinancial income of two-adult households by ψ_2 before we classify them into income bins. The income representing each of the five income groups is computed by taking the average income of the households in each bin. Table 2 summarizes the resulting bins by cohort.

Household Size

Figure 12 presents the proportion of two-adult households conditional on age. Each line corresponds to one of the three cohorts that we use for the estimation and three additional cohorts (cohorts of age 70, age 80, and age 90 in 1996). The proportion is approximately linearly decreasing with age. As with other shocks estimated above, we assume that the household size transition probabilities are time-invariant and estimate the transition probabilities by a pooled sample of all six waves of the HRS. Moreover, we make two assumptions, for tractability. First, in order to abstract from the division or aggregation of assets associated with separations and marriages, we only consider transitions from two-adult to one-adult households. The HRS data support this assumption: the probability of single-to-couple transitions is only around 3% for households in their 60s and 70s, and it is less than 1% for older households. Second, we assume that all the transitions from two- to one-adult households are caused by death of the spouse, i.e. are involuntary. That is, we assume away divorce, which appears to be rare in our data, though it is somewhat difficult to identify directly.
Table 3: Health Status Transition

<table>
<thead>
<tr>
<th>Health status transition (age 65)</th>
<th>Health status transition (age 75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead</td>
<td>Excellent</td>
</tr>
<tr>
<td>Excellent</td>
<td>1.3</td>
</tr>
<tr>
<td>Good</td>
<td>2.2</td>
</tr>
<tr>
<td>Poor</td>
<td>9.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health status transition (age 85)</th>
<th>Health status transition (age 95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead</td>
<td>Excellent</td>
</tr>
<tr>
<td>Excellent</td>
<td>10.5</td>
</tr>
<tr>
<td>Good</td>
<td>14.7</td>
</tr>
<tr>
<td>Poor</td>
<td>28.8</td>
</tr>
</tbody>
</table>

Figure 13: Mean and Standard Deviation of Medical Expenses by Health Status.

Health Status and Mortality Shock Process

We group the five self-reported health status categories in the HRS (excellent, very good, good, fair, poor) into three groups, combining the top two and the bottom two. Since age-specific transition rates between different health groups appear stable over the waves of the HRS, we pool all household-age observations across waves for estimation purposes. We compute the probability that a respondent of health status $m \in \{1, 2, 3\}$ is of health status m' two years later, conditional on the age of the respondent. In this procedure, we also compute the probability of death ($m' = 0$). Table 3 presents health transition probabilities for ages 65, 75, 85, and 95. First, as expected, the probability of dying is generally higher for older respondents, and those in worse health. Second, health status is persistent. Third, however, this persistence becomes weaker with age, reflecting an increasing probability of death.
Table 4: Probability of Zero Medical Expenditures1

<table>
<thead>
<tr>
<th>Age</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>0.08</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>75</td>
<td>0.11</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>85</td>
<td>0.12</td>
<td>0.11</td>
<td>0.14</td>
</tr>
<tr>
<td>95</td>
<td>0.17</td>
<td>0.16</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 5: House Size Distribution1

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 (age 65)</th>
<th>Cohort 2 (age 75)</th>
<th>Cohort 3 (age 85)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin 1</td>
<td>21792</td>
<td>18267</td>
<td>16955</td>
</tr>
<tr>
<td>Bin 2</td>
<td>44935</td>
<td>37938</td>
<td>35743</td>
</tr>
<tr>
<td>Bin 3</td>
<td>63613</td>
<td>50803</td>
<td>47027</td>
</tr>
<tr>
<td>Bin 4</td>
<td>77839</td>
<td>64390</td>
<td>51910</td>
</tr>
<tr>
<td>Bin 5</td>
<td>88087</td>
<td>77583</td>
<td>62395</td>
</tr>
<tr>
<td>Bin 6</td>
<td>101358</td>
<td>88868</td>
<td>75851</td>
</tr>
<tr>
<td>Bin 7</td>
<td>125114</td>
<td>103150</td>
<td>88729</td>
</tr>
<tr>
<td>Bin 8</td>
<td>152107</td>
<td>137364</td>
<td>108380</td>
</tr>
<tr>
<td>Bin 9</td>
<td>195244</td>
<td>183191</td>
<td>148655</td>
</tr>
<tr>
<td>Bin 10</td>
<td>360683</td>
<td>345206</td>
<td>266577</td>
</tr>
</tbody>
</table>

1 Value in 1996 dollars.

Medical Expenditures

In order to measure medical expenses as accurately as possible, and following De Nardi et al. (2010), we incorporate into our data set the HRS exit waves, which collect medical expenditure information up to the end of life on respondents who die between two waves of the survey. We estimate out-of-pocket medical expenditure shocks conditional on age and current health status, using pooled data of different waves. First, we compute the probability that out-of-pocket medical expenditures are zero, conditional on age and current health status. For those with positive medical expenses, we fit these expenses using the log-normal distribution. Figure 13 and table 4 present estimation results for selected age groups. Expected medical expenditures increase with age, driven both by a rising mean and rising variability over time; the rise is particularly dramatic for those in poor health. The probability of zero out-of-pocket medical expenses is slightly increasing for older ages and poor health, likely reflecting the increased probability of death.

In constructing the medical expenditure shock for the model, we discretize the log-normal distribution using four grid points: the mean, mean plus-minus one log standard deviation, and mean plus three times the log standard deviation. The last grid point is chosen to capture the right tail of the distribution, which is emphasized by French and Jones (2004).
Housing

We approximate the distribution of house sizes in each cohort using ten grid points. We create this grid by classifying the households in each cohort into bins, each with about 10% of the sample, and using the mean house value within each bin as the grid points. Table 5 summarizes the house value bins constructed by this procedure. In the model, we also restrict the choice of property values for renters to the same set of house bins for each cohort.

We set maintenance cost δ at 3.4% per two years (annually 1.7%). This is the value calibrated by Nakajima (2010) using data on depreciation of residential capital in National Income and Product Accounts. The selling cost of a house (κ) is set at 6.6% of the value of the house. This is the estimate obtained by Greenspan and Kennedy (2007). Grueber and Martin (2003) report the median selling cost of 7.0% of the value of the house.

Saving and Home Equity Borrowing

The saving interest rate is set at 8% (annually 4%). The mortgage debt premium ξ is set at 3.2% (annually 1.6%), which is the average interest spread between 30-year conventional mortgage loans and Treasury bonds of the same maturity between 1977 and 2009.

Housing Prices

For house price movements in the model, we use data on the average real national house price. The real house price is constructed by normalizing the house price index (HPI) compiled by the Federal Housing Finance Agency (FHFA) by the consumer price index. For our estimation, we obtain the growth rate g by taking the average growth rate of the real house price index for the period 1996-2006. While we are able to observe house price growth heterogeneity across households, we do not introduce this heterogeneity into the model, to contain the computational burden. As we show below, using the national house price index is largely sufficient to capture the behavior of the median household in each cohort.

Initial Distribution

We construct the model’s initial distribution along the eight-variable state space from the 1996 HRS sample, simulate the model starting from this distribution, and use the outcome of the simulation to estimate the structural parameters in the second estimation step below. Table 6 shows the aspects of the initial distribution that we did not already describe. The properties of the distribution are intuitive. First, the proportion of two-adult households is lower for older cohorts. Second, health status is on average worse for older cohorts. Third, homeownership rate is decreasing with age. Finally, the proportion of households with net negative financial assets is lower for older cohorts.

5.3 Second Step Estimation

In the second-step estimation, we choose parameters to fit the life-cycle profiles discussed in section 3, using a minimum-distance estimator. The targets are homeownership rate profiles, lifecycle profiles of median total, financial and housing assets, proportion of households in debt,
Table 6: Initial Distribution – Selected Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 (age 65)</th>
<th>Cohort 2 (age 75)</th>
<th>Cohort 3 (age 85)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>one-adult</td>
<td>0.28</td>
<td>0.56</td>
<td>0.76</td>
</tr>
<tr>
<td>two-adult</td>
<td>0.72</td>
<td>0.44</td>
<td>0.24</td>
</tr>
<tr>
<td>Health status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (excellent)</td>
<td>0.50</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>2 (good)</td>
<td>0.27</td>
<td>0.32</td>
<td>0.28</td>
</tr>
<tr>
<td>3 (poor)</td>
<td>0.23</td>
<td>0.29</td>
<td>0.39</td>
</tr>
<tr>
<td>Tenure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeowner</td>
<td>0.89</td>
<td>0.78</td>
<td>0.60</td>
</tr>
<tr>
<td>Renter</td>
<td>0.11</td>
<td>0.22</td>
<td>0.40</td>
</tr>
<tr>
<td>Net financial asset position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saver</td>
<td>0.82</td>
<td>0.92</td>
<td>0.96</td>
</tr>
<tr>
<td>Borrower</td>
<td>0.18</td>
<td>0.08</td>
<td>0.04</td>
</tr>
</tbody>
</table>

and median debt of debtors. We also target the separate median net worth profiles for home-owners and renters, as shown in figure 2. Figure 14 gives the asset profiles of the three cohorts, comparing the model and data. The first panel compares the median total asset profiles of each cohort in the model and data; the model matches these profiles perfectly. The second panel compares owners and renters in the model to those groups in the data, in terms of normalized median total asset profiles. For the first two cohorts, the model matches the normalized net worth profiles of owners and renters fairly well. For the oldest cohort, the model underpredicts somewhat the extent of asset accumulation of owners, and of decumulation of renters, but still generates a significant difference in the behavior of the two groups, so that the renters decumulate their assets much faster than homeowners. The remaining panels of the figure show homeownership rates, median housing assets of homeowners and median financial assets in the model relative to data. The model perfectly replicates homeownership rates, and comes very close on the asset profiles.

Figure 15 compares the proportion of households in debt (panel (a)) and median debt among indebted households (panel (b)) between the model and the data. In general, it is difficult to match both the extensive and intensive margins of debt, given our parsimonious way of capturing the costs of borrowing. Our model comes closest to matching the proportion of households in debt in the youngest cohort, and overpredicts that proportion for the two older cohorts. We capture fairly well the amount of debt for the youngest and oldest cohort, but underpredict the amount of debt in the middle. Given that we match the debt profiles by estimating age-specific collateral constraints, which result in very tight borrowing constraints for the oldest households, it is difficult to also match the fact that in the data, the few households that do continue to borrow late in life appear to borrow quite a bit. With more flexible specification of debt costs, we would be able to capture this intensive margin better, but at the cost of additional computational burden. In any event, this discrepancy concerns a small subset of the data’s (and
model’s) population.

Capturing the general shape of the debt profiles, in addition to asset profiles and ownership rates, is important for our central question – the role of housing in retiree saving decisions –
because the extent of access to home equity that owners have has implications for how illiquid housing is in retirement, and thus for how easily a homeowner can decumulate the housing asset if he wants to. If housing is liquid, then it can have an insurance aspect, as homeowners can tap equity whenever they are hit by a large expense shock late in life. Instead, if homeowners become unable to draw down their equity as they age, expense shocks may force homeowners against their borrowing constraint more frequently, forcing them to sell the house. This will impact the overall net worth of homeowners, as well as the rate of homeownership in the model; in addition, differences in liquidity of housing and nonhousing assets have implications for the dissaving behavior or homeowners versus renters.

The resulting parameters from the second-step estimation are in table 7. Several are worth pointing out. We estimate the consumption floor to be about $5,000 per person per year in 1996 dollars. This is nearly double the level of $2,700 in 1998 dollars estimated by De Nardi et al.

Figure 15: Estimation Results - Borrowing Profiles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Discount factor 1</td>
<td>0.91</td>
</tr>
<tr>
<td>η</td>
<td>Consumption aggregator</td>
<td>0.85</td>
</tr>
<tr>
<td>σ</td>
<td>Coefficient of RRA</td>
<td>2.68</td>
</tr>
<tr>
<td>ω_1</td>
<td>Extra-utility from ownership</td>
<td>3.02</td>
</tr>
<tr>
<td>γ</td>
<td>Strength of bequest motive</td>
<td>3.77</td>
</tr>
<tr>
<td>ζ</td>
<td>Curvature of utility from bequests</td>
<td>9675</td>
</tr>
<tr>
<td>ξ</td>
<td>Consumption floor per adult 1</td>
<td>10214</td>
</tr>
<tr>
<td>λ_{65}</td>
<td>Collateral constraint for age-65</td>
<td>0.18</td>
</tr>
<tr>
<td>λ_{75}</td>
<td>Collateral constraint for age-75</td>
<td>0.91</td>
</tr>
<tr>
<td>λ_{85}</td>
<td>Collateral constraint for age-85</td>
<td>0.95</td>
</tr>
<tr>
<td>λ_{99}</td>
<td>Collateral constraint for age-99</td>
<td>0.98</td>
</tr>
</tbody>
</table>

1 Biennial value.
(2010) in their model. However, our estimate is exactly in line with Hubbard et al. (1994), who measure the non-Social-Security consumption floor for the elderly to be $6,893 per household per year in 1984 dollars. This parameter affects the decumulation behavior of low-wealth households who are hit by large medical expense shocks, and thus plays a particularly notable role in shaping renters’ net worth profiles late in the life-cycle.

The collateral constraints that we estimate imply that while homeowners of age 65 can still borrow up to 82% of their home equity, that constraint tightens considerably by the time they are 75, to just 9% of home equity, and to just 5% for homeowners who are 85 years old. These numbers should not be interpreted literally as downpayment constraints; rather, these constraints capture the overall cost of equity borrowing, which reflect, for example, the fact we mentioned before that many retirees fail the income requirement for equity loans (Caplin (2002)), so that above age 65, equity borrowing quickly becomes much costlier if not prohibitive. These parameters are responsible primarily for capturing the debt profiles, both the extensive and intensive margin, that we observe in the data: as fewer and fewer households borrow as they age, it stands to reason that the model implies a quickly tightening borrowing constraint.

Our estimated parameter of extra utility from homeownership is 3.02, which means that it is three times more appealing to own a home than it is to rent. To understand this value, we once again remind the reader that this parameter captures all possible nonfinancial benefits of homeownership, as well as those financial benefits that are not explicitly in the model. That is, here we capture not only the attachment to the house, one’s neighborhood, the ability to modify the house, but also tax benefits of homeownership, the insurance that ownership provides against rental rate risk, and other such benefits. The estimate that we have is consistent also with the findings in Venti and Wise (2004), who find strong support in the data for an AARP survey statement that retirees like to stay in their current residence as long as possible.

The relative risk aversion parameter that we estimate is \(\sigma = 2.68 \), in the lower part of the range used in the macro literature. That is, we do not require a high degree of risk aversion to match the slow rate of asset decumulation that we observe in the data. The estimated strength of the bequest motive is 3.77. The intuition for these results will be clearer below in the context of our experiments.

6 Experiments: Decomposing the Retirement Saving Puzzle

In this section, we use the estimated model to evaluate the quantitative contribution of key model features to retiree saving behavior, by shutting down these mechanisms one at a time, keeping all other model features constant, and comparing the results to the benchmark model outcome. At the end of this section we measure the relative quantitative importance of all the model features, by stripping the model down to the basic life-cycle case with only longevity risk, then re-introducing the features back in different orders. The mechanisms that we focus on are: extra utility of homeownership, bequest motives, collateral constraints, medical expenses, and the housing boom of 1996-2006. We will show how these mechanisms impact the homeownership rate, and what effect they have on net worth and asset decumulation. To save space, we focus on the most salient result graphs for each experiment here; the full set of life-cycle results for
each experiment is available in the online appendix.6

6.1 Role of Extra Utility of Homeownership

In the first experiment, we evaluate the role that direct financial and nonfinancial benefits of homeownership, independently of precautionary or bequest motives, play in retiree saving decisions. To do this, we set $\omega_1 = \omega_0 = 1$, so that owned and rented homes are the same in terms of utility. The results of this experiment are in figure 16.

Panel (c) shows that, not surprisingly, the utility benefit of homeownership encourages retirees to own homes, and from panel (d) it is also clear that it suppresses home equity borrowing. The impacts are roughly similar across cohorts, although home equity borrowing is particularly affected for the youngest households. Through extra homeownership, the utility benefit impacts net worth noticeably, especially for younger cohorts, as panel (a) demonstrates; this shows how the utility benefit contributes to the retirement saving puzzle, ceteris paribus. Notice in addition that utility of ownership does not impact renters, and is partly responsible for the difference in

6The online appendix can be found at http://dss.ucsd.edu/itelyuko/research.html.
6.2 Role of Bequest Motive

In order to evaluate the role of the bequest motive in the benchmark, in this experiment we shut it down by setting \(\gamma = 0 \). As we show in figure 17 panel (c), the bequest motive also increases the homeownership rate. This stands to reason given the previous experiment: because there is an extra benefit of homeownership, households who want to accumulate assets in retirement due to a bequest motive would prefer to do so in housing, all other things equal. This intuition also suggests that the interaction of the two mechanisms may be important; we investigate this below.

The bequest motive also discourages equity borrowing, even more significantly than the utility benefit of homeownership does, as panel (d) shows, and is an important contributor to overall median net worth in panel (a). Thus, the bequest motive is clearly key for the retirement saving puzzle. Notice that the the impact of the bequest motive becomes stronger with age.

Panel (b) demonstrates additional salient features of the bequest motive. First, it impacts
Figure 18: Decomposition Experiment – Uniform Collateral Constraints

not only homeowners but also renters; without the bequest motive, both groups decumulate assets much more quickly than in the benchmark case, and renters in particular decumulate their financial wealth to zero rapidly, thereafter relying on the consumption floor in case of large expense shocks. Second, even without the bequest motive, homeowners retain significant positive wealth late into the lifecycle. Thus, third, the difference between homeowners and renters remains significant even without the bequest motive in the model.

It should be pointed out that although the bequest motives and the utility benefits of homeownership have some similar qualitative effects in the model, the parameters γ and ω are identified by the fact that bequest motives affect renters, while the utility benefit of ownership does not. The separate net worth profiles of owners and renters are the primary estimation targets that allow this identification.

6.3 Role of Collateral Constraints

For this experiment, we make every homeowner’s collateral constraint uniform rather than allowing them to differ by age. Here we want to evaluate how much the stringency of the collateral
constraint affects each cohort. We also want to compare these constrained homeowners to renters, to see how much of the difference in asset decumulation between owners and renters is due to the fact that owners are locked into a more illiquid asset. For this purpose, we set everyone’s collateral constraint to zero, allowing all homeowners to borrow up to 100% of their equity.\footnote{In a second experiment, we made everyone’s collateral constraint uniform at 18%, to match the most unconstrained cohort in the benchmark model; the results are very similar in that case, see online appendix.}

The results of this experiment are in figure 18. First of all, the illiquidity of housing is sufficient to create most of the decline in the homeownership rate, all else equal (panel (c)). This suggests that homeowners in our model sell their homes largely when they are forced against their borrowing constraint. Not surprisingly, the borrowing constraints depress borrowing in panel (d);\footnote{For ease of comparison, we keep the scale of the graphs constant, at the cost of having this graph partially off the scale.} if homeowners were able to access their equity freely, they would hold on to their house, motivated by the utility benefit, and borrow against their equity instead, thus decumulating their housing asset much more quickly, in the median. This in turn is reflected in the median net worth: part of the reason the net worth profiles stay as flat (or increase) as they do in the benchmark is because homeowners are unable to borrow (panel (a)). Thus, collateral constraints also contribute to the retirement saving puzzle in a visible way, especially for younger cohorts.

Finally, the difference between homeowners and renters is created, it appears, in large part by the collateral constraint, as panel (b) demonstrates. That is, illiquidity of housing plays an important role in accounting for why homeowners do not decumulate their assets more quickly, and more in line with renters.

6.4 Role of Medical Expenses

Following De Nardi et al. (2010), in this section we perform two experiments. First, we shut down medical expense risk, setting everyone’s expenses to the mean for the appropriate age and health status group, as in figure 13. Then, we set everyone’s medical expenses to $x = 0$.

The two experiments together show that homeownership is not driven by precautionary motive in the face of medical expense risk (panel (c), figure 19), but that large medical expenses toward the end of life can force some households to sell their homes (panel (c), figure 20). The noticeable impact of medical expense risk comes from encouraging households to borrow less against their home equity (and against financial assets): thus, the precautionary motive comes through in reduced asset decumulation if medical expenses and expense risk are present. The impact of medical expense risk is larger on homeowners than on renters, as panel (b) of figure 19 shows. The overall resulting impact for the median net worth profile is mostly noticeable for the youngest cohort, and is very small for the middle and oldest cohorts (panel (a)). This is still true if medical expenses are shut off altogether.

The experiment of shutting down medical expenses has an additional implication: asset decumulation for the renters in the older cohorts is driven in the median largely by large medical expenses, as they smooth consumption until they decumulate assets completely and thereafter rely on the consumption floor for additional expense shocks. This can be seen in panel (b) of figure 20). If medical expenses are absent from the model, then, all other things equal, the middle...
Figure 19: Decomposition Experiment – No Medical Expense Risk
Figure 20: Decomposition Experiment – No Medical Expenses
and oldest cohorts’ renters would decumulate assets at a rate very similar to homeowners; the difference remains large for the youngest cohort.

Thus, medical expenses in the model have a dual role. They create, via the uncertainty, a precautionary motive for saving in retirement. It is not quantitatively large, in that it does not make a significant difference for median net worth profiles of older cohorts, but for younger retirees of ages 65-75, does make a difference in their saving behavior, and thus, for that age group, does contribute to a portion of the retirement saving puzzle. What is perhaps more dramatic is that later in life, these expenses cause assets to be decumulated: homeowners may be forced against their borrowing constraints and thus forced to sell their house; renters decumulate their financial assets at a faster rate than they would otherwise.

For these results, the estimated value of the risk aversion parameter σ clearly matters. We will discuss this issue further in section 6.8 where we compare our results to previous literature.

6.5 Role of the Housing Boom

In this final experiment, we evaluate how much the housing price boom contributed to the median net worth profiles in the data. To do this, we shut down the exogenous increasing trend to the aggregate housing price, assuming instead constant prices.

The obvious impact of this experiment, shown in figure 21, is the flattening of median net worth profiles in panel (a), which happens through two channels. First, obviously there is a significant flattening of median housing asset profiles (see online appendix). In addition, panel (d) shows a significant decline in the debt rate when there is no housing boom; it is also true that the median amount of debt, especially in the younger cohort, declines somewhat. This is intuitive: a housing boom increases the amount of home equity against which households can borrow, and some households take advantage of that; however, many households simply enjoy the capital gain without tapping into equity, due to other channels already discussed. The overall impact is an increase in the median net worth for all cohorts, although it is least pronounced for the oldest cohort. Note also that the housing boom, like collateral constraints, plays an important role in creating the differences in the dissaving behavior of homeowners versus renters (panel (b)). In sum, homeowners in the model become beneficiaries of the housing boom, and it obviously contributes to the retirement saving puzzle.

6.6 Summary: Individual Decomposition Results

Before proceeding, we summarize the key conclusions regarding saving behavior in retirement from the experiments above. In the data, many households are homeowners well into their old age, and this fact turns out to be crucial for the retirement saving puzzle. Given our estimated parameters, we find that the leading motivators for homeownership in retirement are bequest motives and utility benefits of homeownership (which capture also financial benefits of ownership). But another key characteristic of homeownership in retirement is that households find themselves locked into their equity, as borrowing becomes increasingly more costly as they age. This means, on the one hand, that those who remain homeowners do not decumulate their home equity, motivated partly by precautionary motive resulting from medical expense risk, especially when they are younger. On the other hand, those who are faced with large medical expense shocks, health
deterioration, or that of their spouse, or otherwise come up against their borrowing constraint, are forced to sell their house. The illiquidity of housing is a big part of what creates, in the model, the kind of stark difference in median net worth profiles that we see between homeowners and renters. In addition, those who owned a home in the period 1996-2006 became beneficiaries of the housing boom, which made their net worth profiles increase even faster than they would otherwise, further contributing to the impression that overall, retirees do not decumulate assets.

As we suggested, the decompositions above imply that there may be interactions between the model channels that we are concerned with, which may move optimal choices simultaneously. For example, bequest motives and utility benefits of homeownership may interact and reinforce each other in creating motives for homeownership; so may borrowing constraints and medical expense risk, in causing homeowners to sell their homes late in life. In order to tie the experiments together and understand the quantitative contribution of each channel, we next shut down all of the channels in the estimated model that we singled out above, thus stripping the model down to a basic OLG framework with longevity risk, and then re-introduce those channels in succession. We do this in several different orders, to highlight the interaction between the different mechanisms.

Figure 21: Decomposition Experiment – No Housing Boom
and to understand the robustness of the results.

6.7 Quantitative Assessment of the Retirement Saving Puzzle

For these sequential experiments, we focus on the most standard statement of the retirement saving puzzle – the median net worth of each age group. Taking the median net worth of each age group at the end of the sample period in our benchmark model as 100%, we quantify how much saving relative to the benchmark is generated for each cohort by each model variant. We present results for selected age groups cumulatively in table 8, and incrementally in table 9. Obviously, the number of possible orderings of the mechanisms is very large; below, we present a small subset of the experiments to demonstrate the salient interactions in the model.

When we shut down the bequest motive, utility benefit of homeownership, collateral constraints, housing price boom, and medical expenses, we obtain the basic OLG model where the only source of uncertainty is the length of life and household saving is due to the precautionary motive against this uncertainty. In this basic model, according to table 8, the median age-75 household would save 40% of that age group’s benchmark amount; at age 85, the savings would be at 42% of the benchmark; and by age 95, the median net worth is at 31% of the benchmark. Households of age 99 in the model have zero wealth, because they die with certainty after that period.

In tables 8 and 9, each numbered panel presents a different order in which we re-introduce the model features. We vary the order of bequest motives with medical expense risk, and with the three housing-related channels (utility benefits of homeownership, collateral constraints, and the housing boom) relative to the bequest motive and medical expense risk. In addition, we investigate changes in the ordering of the housing-related channels themselves, first introducing the housing boom before the collateral constraint, and then after.

In the first two experiments, we vary the order of bequest motive and the three housing channels. The first experiment shows that adding the bequest motive to the model with only longevity risk (table 9, experiment 1, line 1) implies that it accounts for 25% of the median net worth of age-75 households, for 29% of the net worth of age-85 households, and 59% for households of age 95. Notice that if the bequest motive is introduced after the housing channels (experiment 2), its marginal contribution declines somewhat for younger retirees (to, respectively, 7% and 19%), but increases for the oldest households, to 77%. The robust fact is that the role of bequest motives in retiree saving increases dramatically with age, and that its role overall is significant. The change in the numbers indicates that the three channels of homeownership (utility benefit, collateral constraints and the housing price boom) interact with bequest motives, as we would expect given the experiments above.

The role of the three housing channels is significant. The utility benefit of homeownership contributes 4% of the median net worth for 75-year-olds if introduced after the bequest motive, but 6.6% if introduced beforehand. This interaction suggests that bequest motives and utility benefits of homeownership reinforce each other in encouraging homeownership in the model. This is also true for 85-year-olds. Surprisingly, for the very oldest households, the median net worth is impacted negatively by the utility benefit, and also more strongly if the utility benefit is introduced before the bequest motive, whereas the bequest motive reduces the impact almost
Table 8: Contribution of Each Channel to Median Net Worth: Sequential Decompositions, Cumulative

<table>
<thead>
<tr>
<th>Model</th>
<th>Age 75 (cohort 1)</th>
<th>Age 85 (cohort 2)</th>
<th>Age 95 (cohort 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple life-cycle</td>
<td>40</td>
<td>42</td>
<td>31</td>
</tr>
<tr>
<td>1 Simple life-cycle + bequest motive</td>
<td>65</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Add utility benefit of ownership</td>
<td>69</td>
<td>72</td>
<td>90</td>
</tr>
<tr>
<td>Add housing boom</td>
<td>78</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td>Add collateral constraints</td>
<td>87</td>
<td>96</td>
<td>108</td>
</tr>
<tr>
<td>Full model (add medical expense risk)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2 Simple life-cycle + utility benefit of ownership</td>
<td>47</td>
<td>45</td>
<td>24</td>
</tr>
<tr>
<td>Add housing boom</td>
<td>60</td>
<td>57</td>
<td>39</td>
</tr>
<tr>
<td>Add collateral constraints</td>
<td>80</td>
<td>76</td>
<td>39</td>
</tr>
<tr>
<td>Add bequest motive</td>
<td>87</td>
<td>96</td>
<td>108</td>
</tr>
<tr>
<td>Full model (add medical expense risk)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3 Simple life-cycle + medical expenditure risk</td>
<td>60</td>
<td>45</td>
<td>8</td>
</tr>
<tr>
<td>Add bequest motive</td>
<td>74</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>Add utility benefit of ownership</td>
<td>77</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>Add housing boom</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>Full model (add collateral constraints)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4 Simple life-cycle + bequest motive</td>
<td>65</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Add medical expenditure risk</td>
<td>74</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>Add utility benefit of ownership</td>
<td>77</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>Add housing boom</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>Full model (add collateral constraints)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5 Simple life-cycle + bequest motive</td>
<td>65</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Add medical expenditure risk</td>
<td>74</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>Add utility benefit of ownership</td>
<td>77</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>Add collateral constraints</td>
<td>81</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>Full model (add housing boom)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 9: Contribution of Each Channel to Median Net Worth: Sequential Decompositions, Incremental

<table>
<thead>
<tr>
<th>Model</th>
<th>Age 75 (cohort 1)</th>
<th>Age 85 (cohort 2)</th>
<th>Age 95 (cohort 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bequest motive</td>
<td>25.0</td>
<td>28.8</td>
<td>58.8</td>
</tr>
<tr>
<td>Utility benefit of ownership</td>
<td>3.8</td>
<td>1.3</td>
<td>-0.3</td>
</tr>
<tr>
<td>Housing boom</td>
<td>9.3</td>
<td>11.8</td>
<td>10.1</td>
</tr>
<tr>
<td>Collateral constraints</td>
<td>9.3</td>
<td>12.3</td>
<td>7.8</td>
</tr>
<tr>
<td>Medical expense risk</td>
<td>12.6</td>
<td>4.2</td>
<td>-7.8</td>
</tr>
<tr>
<td>2 Utility benefit of ownership</td>
<td>6.6</td>
<td>3.3</td>
<td>-7.8</td>
</tr>
<tr>
<td>Housing boom</td>
<td>13.2</td>
<td>11.9</td>
<td>15.7</td>
</tr>
<tr>
<td>Collateral constraints</td>
<td>20.3</td>
<td>19.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Bequest motive</td>
<td>7.1</td>
<td>19.3</td>
<td>68.6</td>
</tr>
<tr>
<td>Medical expense risk</td>
<td>12.6</td>
<td>4.2</td>
<td>-7.8</td>
</tr>
<tr>
<td>3 Medical expenditure risk</td>
<td>19.7</td>
<td>3.4</td>
<td>-23.5</td>
</tr>
<tr>
<td>Bequest motive</td>
<td>14.7</td>
<td>30.5</td>
<td>68.6</td>
</tr>
<tr>
<td>Utility benefit of ownership</td>
<td>2.6</td>
<td>0.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Housing boom</td>
<td>10.9</td>
<td>13.5</td>
<td>13.9</td>
</tr>
<tr>
<td>Collateral constraints</td>
<td>12.1</td>
<td>10.6</td>
<td>9.7</td>
</tr>
<tr>
<td>4 Bequest motive</td>
<td>25.0</td>
<td>28.8</td>
<td>58.8</td>
</tr>
<tr>
<td>Medical expenditure risk</td>
<td>9.4</td>
<td>5.1</td>
<td>-13.7</td>
</tr>
<tr>
<td>Utility benefit of ownership</td>
<td>2.6</td>
<td>0.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Housing boom</td>
<td>10.9</td>
<td>13.5</td>
<td>13.9</td>
</tr>
<tr>
<td>Collateral constraints</td>
<td>12.1</td>
<td>10.6</td>
<td>9.7</td>
</tr>
<tr>
<td>5 Bequest motive</td>
<td>25.0</td>
<td>28.8</td>
<td>58.8</td>
</tr>
<tr>
<td>Medical expenditure risk</td>
<td>9.4</td>
<td>5.1</td>
<td>-13.7</td>
</tr>
<tr>
<td>Utility benefit of ownership</td>
<td>2.6</td>
<td>0.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Collateral constraints</td>
<td>3.7</td>
<td>4.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Housing boom</td>
<td>19.3</td>
<td>20.1</td>
<td>16.2</td>
</tr>
</tbody>
</table>
to zero. Indeed, looking at the other experiments suggests that if any of the other drivers of saving behavior are already present in the model, the impact on the very oldest households of the utility benefit of ownership is reduced nearly to zero.

The housing boom contributes between 9 and 13% to the median net worth of 75-year-old households, depending on whether it is introduced before or after the bequest motive, and between 10 and 16% for the oldest households. Thus, the influence of the housing boom is fairly stable across age groups. The collateral constraints, introduced after the bequest motive, add 9% to the youngest group’s net worth, and 8% to the oldest group’s, whereas in the economy without the bequest motive, the impact is larger for younger households, at 20%, but is reduced for older households to zero, where the bequest motive dominates the saving decisions.

Overall, the contribution of the three housing channels ranges between 22% and 40% of the benchmark amount of the youngest group, depending on whether the economy has a bequest motive already, and between 8 and 18% for the oldest households. The way that housing interacts with bequest motives is also important.

Experiments 3 and 4 test the contribution of medical expense risk, when interacted with bequest motives; in experiment 3, we introduce medical expenses first, and in experiment 4, after the bequest motive. On its own, introduced to the model only with longevity risk, medical expense risk accounts for 20% of savings of 75-year-old households, but for just 9% if the households have a bequest motive. For the very oldest households, the role of medical expense shocks is to reduce savings; the impact is again larger (-24% versus -14%) if the agents do not have bequest motives and hence are willing to dissave more quickly. Notice also that the role of bequest motives remains large and robust even when introduced into the economy with medical expense risk. From experiments 1 or 2, we see that when medical expenses are introduced into the model with both housing and bequest motives, their role lies in the middle of this range. Thus medical expense shocks play a moderate, but noticeable and dual role, creating a precautionary motive earlier in retirement, but inducing spending late in life.

Finally, experiment 5 reverses the order in which the collateral constraints and the housing boom are introduced into the model; in addition, here like in experiments 3 and 4, we introduce housing into the economy that already has bequest motives and medical expense risk. This experiment shows that overall, the role of housing is still important for the retirement saving puzzle, but that the marginal contribution of the collateral constraints falls a bit, to 4-7% of the median net worth depending on age, and instead that the role of the housing boom is increased; the marginal contribution of house price dynamics here 16-20% of median benchmark saving of retirees of all ages.

In sum these experiments show that bequest motives play a large and robust role in inducing retirees to save, that homeownership is a significant channel that induces retirement saving in a variety of ways, and contributes a significant portion of the retirement saving puzzle, and that medical expenses play a moderate but important role, both in encouraging saving earlier in retirement, and in inducing households to decumulate assets very late in life.
6.8 Comparison of Results to Previous Literature

Our findings contrast significantly with those of De Nardi et al. (2010), whose exercise is similar in spirit to ours, but does not include housing assets, and focuses only on household net worth. Here we provide the intuition for why the results differ. It is useful to note that the model in table 8, experiment 3, line 1, is the same as the baseline model of De Nardi et al. (2010) without bequest motives. Line 2 of experiment 1 is their model with bequest motives. Obviously, in the experiment we retain our estimated parameters, which are different from theirs.

In contrast to their findings, we find that bequests matter a great deal for retirement saving, while medical expenses are important, but their quantitative role is modest. The key difference in our analysis is that we are explicit about homeownership both in our model, and in the data facts that we seek to explain. Unlike De Nardi et al. (2010), we explain total asset profiles jointly with median lifecycle profiles of housing and nonhousing assets, homeownership rates, and debt, on both intensive and extensive margins. Ownership rates remain high late into life, while equity borrowing rates decline quickly for later cohorts. To match these facts together, jointly with median net worth profiles, the model emphasizes the role of bequest motives, utility benefits of homeownership and tight collateral constraints over the role of precautionary saving. That is, to match both high ownership rates and low debt rates, the theory implies that homeowners are not keeping their houses for precautionary reasons.

Mechanically, this means that our estimated relative-risk-aversion parameter is noticeably smaller than in De Nardi et al. (2010); our value is 2.7, versus their 3.8. In order to compare our model to theirs, we ran an experiment where we raised the risk aversion parameter to 3.8, while keeping all the other parameters fixed; under this calibration, we computed the model with and without medical expense risk. There, we found that the extent of precautionary saving against medical expense risk, which can be measured as the vertical distance between the two net worth profiles in figure 22, increased significantly, and medical expense risk then resulted in noticeable additional savings in the median for the first two cohorts. (Compare these results to panel (a) of figure 19.) Of course, our model then still does not imply that medical expense risk explains the bulk of retirement saving, since we maintain our estimated parameters with a strong bequest
motive.

In addition to lack of explicit modeling of housing in the model in De Nardi et al. (2010), there is one more channel that we believe can account for the de-emphasized role of bequest motives in their model. In their study, they model only the behavior of elderly singles. We include in our data sample, and in the model, elderly couples as well. Two things about single households are relevant: they tend to have far fewer assets, and they have on average fewer children, since the never-married households are included in such a sample. Having fewer descendants, and lower wealth, may mean that such households have weaker bequest motives in the data, which would translate directly into the model implications. Because we include married households in our work, around 90% of our sample households have at least one child. While this is an imperfect proxy, it is suggestive of the presence of stronger bequest motives. Indeed if we look at married versus single households in our model, they look very different in terms of their saving behavior, lending support to this idea.

7 Experiment: The Role of Home Maintenance

In this section, we conduct one more experiment to evaluate the role of home maintenance as a possible “hidden” channel of asset decumulation. We are motivated by the study of Davidoff (2006), who finds that elderly homeowners spend on average 0.8% less per year on home maintenance than younger owners of a similar house, and that similar houses sell at substantially lower prices if the owner was over 75 years old.

In order to conduct this experiment, we add a choice margin to our model. Whereas in the benchmark, we assume that all households pay the maintenance cost (1.7% of equity per year) and as a result, the house does not depreciate, now we give the households a choice: they can continue to pay the cost, or they can choose not to pay it, but the house will depreciate as a result at the rate of 4.25% per year. The calibration for this experiment came from the findings in Davidoff (2006), who calculates that the elderly (over age 75) spend about 0.8% per year less on home maintenance than younger homeowners, and that houses of older homeowners appreciate at a rate of 2 percentage points per year lower than houses of younger owners. These two numbers together, in addition to the maintenance cost parameter, give us the parameters specified here.

An additional important point is that in order to conduct this experiment, we make the assumption that self-reported home values that we use in order to estimate our house price process do not take into account depreciation of the house. That is, we assume that homeowners who stay in their homes do not have their house appraised and are not aware of the rate at which their home depreciates. This assumption is supported by Venti and Wise (2004) who find that self-reported home values are exaggerated. Still it may be an extreme assumption, and thus the results of this experiment should be treated with this caveat in mind. On the other hand, the empirical findings of Davidoff (2006) appear to be that the maintenance margin is an important one, and we can use our model to get a sense of how much it might contribute to the retirement saving puzzle in a hidden way.

Figure 23 gives the results of the experiment. First, a large proportion of homeowners in our model choose not to maintain their homes, when given that option. In the youngest cohort, at
age 65 40% of homeowners choose not to maintain their home, and this number rises to about 55% by age 75. By age 95 in the oldest cohort, 20% of homeowners choose not to maintain their homes. Given this decision, we compute the median value of housing assets among homeowners. The youngest cohort’s median is most affected since the median household in that group chooses not to maintain their house; as a result, the median housing value declines much more rapidly than in the benchmark case. For that cohort, if we take the depreciation of housing into account, the median net worth profile would also decline more rapidly than in the benchmark. In the other two cohorts, the median housing assets move far less dramatically, but still decline for the second half of the middle cohort, and there is a slight decline for the oldest cohort as well. In sum, the choice not to maintain the house may be another contributor to the retirement saving puzzle through the housing channel, and a significant portion of the population exercises this choice in our model, consistent with the data found by Davidoff (2006).

8 Conclusion

In this paper, we study homeownership in retirement, to understand how bequest motives, health expense uncertainty, utility of homeownership, illiquidity of housing, and the recent housing boom interact to generate the retirement saving puzzle. We do so by estimating a model of retiree saving that is explicit about differentiating between housing and nonhousing assets, targeting jointly in estimation not only median net worth lifecycle profiles of retirees, but also profiles of homeownership rates, housing and financial assets separately, renters’ and homeowners’ saving separately, as well as debt rates and amounts. In our estimated model, housing plays a key role in accounting for the retirement saving puzzle, through a combination of bequest motives, utility benefits of homeownership, and collateral constraints. We also find that the housing boom of 1996-2006 is important for the puzzle, as homeowners gained significant wealth by staying in their homes. In addition, medical expense uncertainty motivates younger retirees to save for precautionary reasons, and it induces the oldest households to decumulate through large expense shocks, often by inducing them to sell their houses. Medical expense risk is quantitatively moderate, while bequest motives and the housing channels are important and robust contributors.
to the puzzle. Thus, it is crucial to consider housing explicitly when thinking about saving in retirement.
References

_ and _ , “Consumption and Saving over the Life-Cycle: How Important are Consumer Durables?,” Macroeconomic Dynamics, forthcoming.

APPENDIX

A Data Analysis Robustness: Weighting and Panel Balancing

In this section, we demonstrate how our choices regarding the weight scheme that we use, as well as the way we treat panel balancing, impact the data facts. To remind the reader, in our data analysis, we chose to use 1996 weights for the households in the sample, which means that the households in our analysis have to be present in the first wave, and that thereafter, we are looking at an unbalanced panel. The choice of first-wave weights was motivated by the fact that we do not want to lose nursing-home residents from our sample, while the unbalanced panel is the most natural mapping of the model to the data, since in the model, we will also generate an unbalanced panel, with realistic mortality rates conditioned on all the state variables of the model.

First, we compute the cohort profiles of median housing and financial assets using alternative weighting schemes. Figure 24 and figure 25 compare profiles of median housing and financial assets, with (i) the baseline assumptions (using 1996 weights on the sample, with no subsequent cohort replenishment, labeled wave-3 weights in the graphs), (ii) the same sample, with no sample weighting, and (iii) cohort replenishment and using wave-specific weights, which implies losing nursing home residents. We check the case without sample weighting to compare our results with De Nardi et al. (2010), who do not use sample weighting in their data analysis; our results align with theirs well, given that they use only singles in their analysis, while we also use couples. The pictures that we found under the baseline assumptions, that is, upward-sloping housing asset profiles for all cohorts, which reflect the house price boom during the sample period, and approximately flat financial asset profiles, are roughly maintained under alternative assumptions. Using weights – either 1996 or cohort-specific – elevates the levels of assets, especially for younger cohorts. We prefer to use the weighted sample, but in such a way that it still allows us to account for nursing home residents with positive weights.

We also demonstrate the impact of choosing to work with the entire sample (those who were present in 1996), which creates an unbalanced panel, versus working with only those who start
in 1996 and survive into the eighth wave of the survey (a balanced panel). Figures 26 and 27 plot median housing and financial asset profiles in the balanced and unbalanced panels. We find that especially for financial assets, using the balanced panel makes the asset profiles steeper, so that asset decumulation over the life cycle looks more pronounced. This confirms what De Nardi et al. (2010) called the mortality bias: including non-survivors in the sample alters the sample composition toward those in poorer health, who also tend to have less wealth, so that the median profiles look flatter as a result.