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Abstract

We consider estimation in moment condition models and show that under squared error loss

and bounds on identification strength, asymptotically admissible (i.e. undominated) estimators

must be Lipschitz functions of the sample moments. GMM estimators are in general discon-

tinuous in the sample moment function, and are thus inadmissible under weak identification.

We show, by contrast, that bagged, or bootstrap aggregated, GMM estimators as well as quasi-

Bayes posterior means have superior continuity properties, while results in the literature imply

that they are equivalent to GMM when identification is strong. In simulations calibrated to

published instrumental variables specifications, we find that these alternatives often outperform

GMM.
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1 Introduction

Generalized method of moments (GMM) estimators are ubiquitous in empirical eco-

nomics, and many popular estimation methods including linear and nonlinear instru-

mental variables, moment-matching, and many examples of maximum likelihood, can

be cast as special cases. Appropriately constructed GMM estimators are known to be

efficient in large samples, in the sense of minimizing mean squared error over a large class

of estimators, provided model parameters are strongly identified (i.e. the data are suffi-

ciently informative) and other regularity conditions hold (see Hansen 1982, Chamberlain

1987).

Unfortunately, in many contexts of economic interest the data provide only limited

information about model parameters (Mavroeidis et al. 2014, Armstrong 2016, Andrews
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et al. 2019). In such cases, asymptotic results assuming strong identification can be

unreliable, and weak-identification approximations, which model the informativeness of

the data as limited even in large samples, often provide a better description of finite-

sample behavior (Staiger and Stock 1997, D. Andrews and Cheng 2012, Andrews and

Mikusheva 2022). Standard arguments for the efficiency of GMM no longer apply under

weak identification, raising the question of whether GMM estimators should be used in

such settings and, if not, what alternatives we should prefer.

We study asymptotic optimality under weak identification using a limit experiment

derived in Andrews and Mikusheva (2022). This limit experiment implies that there

generally exists no single best estimator under weak identification, since optimizing per-

formance over different parts of the parameter space leads to different estimators. A

minimal requirement is that an estimator be admissible, meaning that there exists no

alternative estimator which performs at least as well for all parameter values and strictly

better for some. Our main result shows that GMM estimators are asymptotically inad-

missible under bounds on the strength of identification.

Our proof for inadmissibility is non-constructive, in the sense that it does not deliver a

dominating estimator, but nonetheless suggests directions for improvement. Specifically,

we show that admissible estimators in the limit experiment must be Lipschitz in the

sample moments. To prove this result, we first note that by a complete class theorem,

any admissible estimator under squared-error loss must be equal to the limit of a sequence

of Bayes posterior means for some sequence of priors. Under bounds on identification

strength, however, Bayes posterior means are Lipschitz in the sample moments, so small

changes in these moments lead only to small changes in the posterior mean. Moreover,

the Lipschitz property is preserved under limits. GMM estimators, by contrast, change

discontinuously in the sample moments when the minimizer of the sample GMM objective

function is non-unique, and so fail to satisfy this necessary condition for admissibility.3

Motivated by the necessity of Lipschitz continuity for admissibility, we next explore

3The results of Guggenberger and Smith (2005) imply that under regularity conditions all Generalized

Empirical Likelihood (GEL) estimators are first-order asymptotically equivalent to continuously updated

GMM under weak identification. Consequently, all of our results for GMM also apply to GEL estimators,

so the latter are likewise inadmissible under weak identification. Motivated by this equivalence, we do

not separately discuss GEL approaches for the remainder of the paper.
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more continuous alternatives to GMM. We discuss two such estimators: first a bagged

(or bootstrap aggregated) GMM estimator, and second a quasi-Bayes posterior mean.

While we do not claim these estimators are admissible, we show that they have better

continuity properties than GMM under weak identification, while existing results imply

that both are asymptotically equivalent to GMM under strong identification and standard

regularity conditions. Hence, in large samples there is no first-order loss from using these

estimators if identification is strong.

The first alternative estimator we discuss, bagged GMM, corresponds to the average of

the GMM estimator across bootstrap realizations. Bagging smooths the discontinuities in

the GMM estimator, and we show that bagged GMM is Lipschitz in many cases. Bagged

GMM has a Bayesian interpretation, corresponding to the posterior mean of the GMM

estimand under an uninformative prior that does not impose correct specification of the

GMM model. Standard results on bootstrap bias correction (see e.g. Horowitz, 2001,

Chen and Hall 2003) imply that bagged GMM is asymptotically equivalent to GMM in

the strongly-identified case.4

Quasi-Bayes puts a prior on the structural parameters, treats the GMM objective as

a negative log-likelihood, and combines the two to compute a quasi-posterior distribu-

tion. This approach was initially proposed by Chernozhukov and Hong (2003) for settings

where minimization is computationally intractable, and they showed that quasi-Bayes is

asymptotically equivalent to GMM under strong identification. More recently, in An-

drews and Mikusheva (2022) shows that quasi-Bayes arises as the limit of a sequence of

Bayes decision rules under weak identification. In the present paper, we show that quasi-

Bayes posterior means are Lipschitz in the GMM objective function. While quasi-Bayes

is not in general Lipschitz in the moments, we show that it is Lipschitz in the special

case where (i) the structural parameter takes only a finite number of possible values and

(ii) the J-statistic for testing over-identifying restrictions is bounded.

We compare these estimators in simulation designs (from Andrews et al., 2019) cali-

brated to linear instrumental variables specifications published in the American Economic

Review. We find that bagged GMM estimators typically have smaller mean squared er-

4As Chen and Hall (2003) show for estimating equation models, however, bagging is essentially the

opposite of standard bias-correction, and so will increase higher-order bias in the well-identified case.
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ror than their conventional counterparts, consistent with poor performance for GMM

under weak identification. We further find that the performance of quasi-Bayes depends

strongly on the prior. Specifically, quasi-Bayes estimators with a flat prior perform the

worst of all estimators considered, while quasi-Bayes estimators with a novel invariant

prior (motivated by invariance in the spirit of Jeffreys, 1946) are much more competitive.

Section 2 describes the estimation problem we consider, the limit experiment (based

on Andrews and Mikusheva 2022) in which we conduct our analysis, and defines a the-

oretical measure of identification strength. Section 3 shows that admissible estimators

under bounds on identification strength must be Lipschitz in the moments, and shows

that GMM fails to satisfy this condition. Section 4 turns to alternative estimators, dis-

cussing bagged GMM in Section 4.1 and quasi-Bayes in Section 4.2. Section 5 compares

the performance of these estimators in simulation.

2 Setting

Consider a researcher who observes a sample of independent and identically distributed

observations Xn = {Xi, i = 1, ..., n} with Xi ∈ X , and who wants to estimate some

bounded function r(θ∗) ∈ Rp of a structural parameter θ∗ ∈ Θ. The researcher might, for

instance, be interested in the full parameter vector, r(θ∗) = θ∗, or in a lower-dimensional

function such as a counterfactual or average causal effect. We assume Θ is compact and

that the true structural parameter value θ∗ satisfies a moment condition E [ϕ(X, θ∗)] = 0

for ϕ(·, ·) a known Rk-valued function of the data and parameters. The researcher selects

an estimate a ∈ A ⊂ Rp for p ≥ 1, where A is compact and contains the convex hull of

{r(θ) : θ ∈ Θ}. For a given choice of a the researcher incurs squared error loss

L (a, θ∗) = (r (θ∗)− a)′ Ξ (r (θ∗)− a) (1)

for a positive-definite matrix Ξ. The researcher’s goal is to select an estimator δn : X n →

A that yields low risk, or expected loss, E[L(δn(Xn), θ∗)], where θ∗ and the distribution

of X are both unknown.

GMM estimators are popular in this setting. GMM estimates θ∗ by minimizing some
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distance between the scaled sample moments gn(θ) =
1√
n

∑n
i=1 ϕ(Xi, θ) and zero,

θ̂n = argminθ∈Θgn(θ)
′Wn(θ)gn(θ),

for a potentially data- and parameter-dependent weighting matrixWn(θ). GMM then es-

timates r(θ) using the plug-in method, δGMM
n (Xn) = r(θ̂n). Well-known asymptotic argu-

ments (see Hansen 1982) provide conditions under which r(θ̂n) is consistent for r(θ
∗) and

asymptotically normal as n→ ∞. These results further establish that ifWn(θ
∗) is propor-

tional to the inverse of the variance of gn(θ
∗) then the GMM estimator is asymptotically

efficient, in the sense that δGMM
n minimizes the asymptotic risk limn→∞ n·E[L(δn(Xn), θ∗)]

over a large class of estimators.5

Standard asymptotic results for GMM require, among other assumptions, that θ∗ is

point identified and strongly identified. Specifically, the moment condition E [ϕ(X, θ)] = 0

should be uniquely solved at θ∗, and the sample moment function gn(θ) should be well-

separated from zero, asymptotically, outside infinitesimal neighborhoods of θ∗. These

point- and strong-identification assumptions are a poor fit for many economic applica-

tions, so in Andrews and Mikusheva (2022) derives an alternative asymptotic efficiency

theory for moment condition models with weak and partial identification. There, we

showed that under mild conditions the problem of inference on θ∗ under weak identifica-

tion reduces, asymptotically, to observing a single realization of a Gaussian process

g(·) ∼ GP(m,Σ) (2)

with an unknown mean functionm satisfyingm(θ∗) = 0, and a known covariance function

Σ. In this limit experiment, as in the finite-sample problem, the goal is to choose an

estimator δ, which now maps realizations of g(·) to estimates δ(g,Σ) ∈ A, in a way

which yields a low risk Em[L(δ(g,Σ), θ
∗)], where Em[·] denotes the expectation taken

under (2). Andrews and Mikusheva (2022) shows that the risk in the limit experiment

lower-bounds the (appropriately scaled) asymptotic risk in the original problem, and we

refer the interested reader to that paper for additional discussion.

In addition to deriving lower bounds, we can use the limit experiment to construct

asymptotically optimal estimators. Intuitively, under mild regularity conditions the sam-

5Uniform integrability conditions are needed to ensure that limn→∞ n · E[L(δn(Xn), θ∗)] is well-

behaved. Absent such conditions, analogous results hold for trimmed losses.
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ple moments converge in distribution to (2) in large samples when identification is weak,

gn(·) ⇒ g(·) ∼ GP(m,Σ), where Σ(θ, θ̃) = Cov(ϕ(Xi, θ), ϕ(Xi, θ̃)) and Σ is consis-

tently estimated by the sample covariance Σ̂. Hence, for finite-sample estimators of

the form δn(X
n) = δ

(
gn, Σ̂

)
, we have δ

(
gn, Σ̂

)
⇒ δ(g,Σ) under mild conditions, and

the asymptotic performance of δn(X
n) coincides with the performance of δ(g,Σ). Thus,

if δ(g,Σ) is optimal in the limit experiment, the plug-in estimator δn(X
n) = δ

(
gn, Σ̂

)
is asymptotically optimal. Moreover, we can evaluate the large-sample performance of

GMM by studying the behavior of δGMM(g,Σ) = r(θ̂) in the limit experiment, where

θ̂ ∈ argminθ∈Θg(θ)
′W (θ)g(θ) for W (θ) the probability limit of Wn(θ).

Motivated by the results of Andrews and Mikusheva (2022), the following sections

focus on properties for the limit experiment (2). First, however, we introduce two special

cases and characterize the parameter space for the limit experiment.

Special Case: Linear IV For our first special case we consider the linear IV model.

Suppose Xi = (Yi, Di, Z
′
i) for Yi ∈ R an outcome of interest, Di ∈ R an endogenous

regressor, and Zi ∈ Rk a vector of instruments. The familiar linear IV estimators corre-

spond to GMM with moment condition ϕ(Xi, θ) = (Yi −Diθ)Zi and different choices of

weighting matrix, for instance Wn = ( 1
n

∑
ZiZ

′
i)

−1 for two-stage least squares.

Weak-identification asymptotics in this case correspond to weak IV asymptotics as

in Staiger and Stock (1997), and model the first stage parameter as shrinking with the

sample size to ensure that it cannot be distinguished from zero with certainty, with

E[DiZi] =
1√
n
π∗ for a fixed vector π∗. The Rk-valued Gaussian process g(·) is linear in

θ, and so is fully characterized by its intercept g(0) = ξ0 and slope ∂
∂θ
g(θ) = −ξ1, where

(ξ′0, ξ
′
1)

′ ∼ N((π∗′θ∗, π∗′)′,Ω), Ω = Var((Z ′
iYi, Z

′
iDi)

′). (3)

Intuitively, ξ0 corresponds (up to a linear tranformation) to the reduced-form coefficient

from regressing Yi on Zi, while ξ1 corresponds to the first-stage regression of Di on Zi.

For Θ = [θL, θU ] an interval, the two-stage least squares estimator for θ is

θ̂ = argminθ∈Θ(ξ0 − ξ1θ)
′W (ξ0 − ξ1θ) = min

{
θU ,max

{
ξ′1Wξ0
ξ′1Wξ1

, θL

}}
, (4)

for W = E[ZiZ
′
i]
−1, and the corresponding GMM estimator is δ(g,Σ) = r(θ̂). □
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Special Case: Finite Θ For our second special case we consider a potentially nonlinear

moment condition ϕ(Xi, θ) but restrict the structural parameter space to contain only

a finite number of points, Θ = {θ1, ..., θs}. While theoretical models in economics are

typically written using continuous parameterizations, computational implementation is

limited by machine precision, so the case with a finite parameter space Θ is arguably a

better description of empirical practice.

Weak-identification asymptotics in this setting correspond to the weak-GMM asymp-

totics of Stock and Wright (2000), and imply that the mean of the moments is of the

same order as sampling uncertainty, E[ϕ(Xi, θ)] =
1√
n
m(θ), so E[gn(θ)] = m(θ) for all n.

The limit experiment thus corresponds to observing the sk-dimensional normal vector

g = (g(θ1)
′, ..., g(θs)

′)′ ∼ N(m,Σ) for m ∈ H and Σ an (sk) × (sk) matrix. We assume

for this example that Σ has full rank, which implies that H = Rsk. The GMM estimator

θ̂ for θ solves

g(θ̂)′W (θ̂)g(θ̂) = min{g(θ1)′W (θ1)g(θ1), ..., g(θs)
′W (θs)g(θs)},

and the GMM estimator for r(θ) is δGMM(g,Σ) = r(θ̂). □

2.1 Parameter Space for the Limit Experiment

To complete our description of the limit experiment (2) we need to specify the parameter

space. As in the finite sample problem, we take the parameter space for the structural

parameter θ∗ to be Θ.6 We assume that Σ(θ, θ) has full rank for all θ, that Σ(θ, θ̃) is

continuous on Θ × Θ, and that g(·) is continuous almost surely.7 Andrews and Miku-

sheva (2022) shows that the parameter space for the functional parameter m in the limit

experiment is related to the reproducing kernel Hilbert space (RKHS) associated with

6The results of Andrews and Mikusheva (2022) allow a potentially smaller limiting parameter space

Θ0 ⊆ Θ. This distinction is unimportant for the results of the present paper, so we take Θ0 = Θ.
7Almost sure continuity is a mild regularity condition in our setting. As noted in section 2.1.2 of Van

der Vaart and Wellner (1996), almost-sure continuity with respect to a particular Σ-induced seminorm is

necessary for the sample moments to satisfy a uniform central limit theorem, gn(·) ⇒ g(·) ∼ GP(m,Σ),

while Lemma 1.3.1 in Adler and Taylor (2007) implies that continuity under this seminorm is equivalent

to continuity in θ.
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Σ, which we denote by H.8

Intuitively, H is the set of mean functions such that for any m ∈ H, we cannot tell

with certainty whether a given draw g was generated by GP(m,Σ) or GP(0,Σ). Since

m = 0 corresponds to the case of complete non-identification of θ∗, H is thus the largest

parameter space for m such that the data never rule out complete identification failure.

Imposing the identifying restriction that m(θ∗) = 0, the resulting joint parameter space

for (θ∗,m) is

Γ = {(θ∗,m) : θ∗ ∈ Θ,m ∈ H,m(θ∗) = 0} . (5)

We treat the structural parameter θ∗ as a well-defined economic quantity that may or

may not be point-identified by the moment conditions. Hence, it is meaningful to discuss

the “true” value of θ∗ even when m has more than one zero so θ∗ is set-identified.

For the purposes of the present paper, it is helpful to work with another representation

of the parameter space. Consider a mean-zero Gaussian process G ∼ GP(0,Σ) corre-

sponding to the noise in the moment process, G = g −m. Denote by C(Θ,Rk) the space

of Rk-valued continuous functions on Θ with norm ∥f∥∞ = maxj=1,...,k supθ∈Θ |fj(θ)| for

f ∈ C(Θ,Rk). Let H be the space of continuous linear functionals on C(Θ,Rk) with the

norm ∥η∥∗ = supf∈C(Θ,Rk),∥f∥∞≤1 |η(f)|. For each η ∈ H we define the Pettis integral of

η as mη(·) ≡ E[G(·)η(G)]. The RKHS can be represented as the image of H under the

Pettis integral.

Lemma 1 The image of H under the Pettis integral transformation coincides with the

RKHS: H = {mη : η ∈ H}. Furthermore, the transformation is continuous with

∥mη∥∞ ≤ σ2(G)∥η∥∗, where σ2(G) = sup∥η∥∗≤1 E[η(G)2] is finite.

Hence, we may equivalently parameterize the limit experiment by H,

Γ = {(θ∗,mη) : θ
∗ ∈ Θ, η ∈ H,mη(θ

∗) = 0} .

Bounding Identification Strength Our main result concerns parameter spaces that

bound the norm of η, which we interpret as a measure of identification strength. To

8For finite sets of vectors {ai}si=1 ⊂ Rk and {θi}si=1 ⊂ Θ, consider functions of the form∑s
i=1 Σ (·, θi) ai, with scalar product

〈∑s
i=1 Σ (·, θi) ai,

∑s∗

j=1 Σ
(
·, θ∗j

)
bj

〉
H

=
∑s

i=1

∑s∗

j=1 a
′
iΣ
(
θi, θ

∗
j

)
bj .

The RKHS H is the completion of
{∑s

i=1 Σ (·, θi) ai : ai ∈ Rk, θi ∈ Θ, s < ∞
}
under ⟨·, ·⟩H.
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understand this interpretation, consider a restricted parameter space with ∥η∥∗ bounded

by a positive constant W ,

ΓW = {(θ∗,mη) : θ
∗ ∈ Θ, η ∈ H, ∥η∥∗ ≤ W,mη(θ

∗) = 0} .

At one extreme, if W = 0, Γ0 = Θ × {0} implies that m(θ) = 0 for all θ, so θ∗ is

completely unidentified. At the other extreme Γ∞ =
⋃

W ΓW = Γ, so for unrestricted W

we recover the original parameter space Γ. Between these two extremes, Lemma 1 shows

that for any (θ∗,m) ∈ ΓW , ∥m∥∞ ≤ σ2(G)W. Since we observe only a noisy measure of

m, g(·) ∼ GP(m,Σ), bounds on ∥m∥∞ limit the ease with which we can distinguish m(θ)

from 0 for any θ value and so limit how informative the data can be about θ∗. Thus,

we can interpret ΓW as a parameter space which imposes a uniform upper bound on the

strength of identification.

Finite-Dimensional Limit Experiments In many cases of empirical interest the

limit experiment is finite-dimensional, in the sense that g(·) can be written as a function of

a finite-dimensional normal random vector or, equivalently, that the covariance function

Σ has a finite number of nonzero eigenvalues.

Definition 1 The limit experiment is finite-dimensional if the covariance function Σ has

finitely many nonzero eigenvalues.

Most of our results apply to both finite- and infinite-dimensional limit experiments, but

the interpretation of some conditions is simpler in the finite-dimensional case. Finite-

dimensional limit experiments can arise in many ways, for instance because the support

X of the data is finite, because the moments are additively or multiplicatively separable

in the data, ϕ(X, θ) = ϕ1(X) − ϕ2(X)ϕ3(θ) for ϕ1(x) ∈ Rd1 , ϕ3(x) ∈ Rd3 , and ϕ2(θ) ∈

Rd1×d3 , or because the parameter space is finite. Whatever the source of finite dimension,

our bounds on identification strength are particularly easy to interpret in this case.

Specifically, since all norms are equivalent on finite-dimensional spaces, there exists a (Σ-

dependent) constant λ such that λ−1∥mη∥∞ ≤ ∥η∥∗ ≤ λ∥mη∥∞, so bounds on ∥η∥∗ not

only imply, but are also implied by, bounds on ∥m∥∞. In infinite-dimensional settings,

by contrast, bounds on ∥η∥∗ imply upper, but not in general lower, bounds on ∥m∥∞, so
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weak identification neighborhoods defined using ∥η∥∗ imply that identification is “weaker”

than neighborhoods defined using ∥m∥∞.

Special Case: Linear IV (continued) Recall that in the linear IV model, g(θ) =

ξ0 − ξ1θ, for (ξ0, ξ1) a Gaussian vector in R2k. This is therefore a finite-dimensional

setting. The mean function is m(θ) = π∗(θ∗ − θ), so bounding ∥m∥∞ is equivalent to

bounding the first stage π∗. Consequently, for π∗
η the first stage implied by η and ∥π∗

η∥

its Euclidean norm, there exists a constant λ∗ such that λ∗−1∥π∗
η∥ ≤ ∥η∥∗ ≤ λ∗∥π∗

η∥, and

bounding ∥η∥∗ is equivalent to bounding the first stage coefficient π∗. □

Special Case: Finite Θ (continued) In this example the process g reduces to a

Gaussian vector in Rsk, so this is again a finite-dimensional case. Thus, there exists

a constant λ∗ for which λ∗−1∥mη∥∞ ≤ ∥η∥∗ ≤ λ∗∥mη∥∞, and bounding identification

strength in terms of ∥η∥∗ is equivalent to bounding ∥m∥∞, the maximal deviation of the

moments from zero. □

3 Admissibility

Recall that the limit experiment corresponds to observing g ∼ GP(m,Σ), where (θ∗,m) ∈

Γ. The researcher aims to choose an estimator δ that yields a low risk Em[L(δ(g,Σ), θ
∗)]

for the loss function L defined in (1), where since Σ is known in the limit experi-

ment we abbreviate δ(g,Σ) = δ(g) going forward. Unfortunately there is not a uni-

formly best estimator in this setting, as minimizing risk at different parameter values

(θ∗,m), (θ∗′,m′) ∈ Γ usually leads to distinct estimators δ and δ′. It is however without

loss of performance to limit attention to the set of admissible estimators.

Definition 2 An estimator δ is dominated on Γ̃ ⊆ Γ if there exists another estimator δ′

such that Em[L(δ
′(g), θ∗)] ≤ Em[L(δ(g), θ

∗)] for all (θ∗,m) ∈ Γ̃, with a strict inequality

for some (θ∗,m) ∈ Γ̃. The estimator δ is admissible on Γ̃ if it is not dominated on Γ̃.

An estimator is admissible if its performance, measured in terms of risk, cannot be

uniformly improved. Since no admissible estimator dominates any other, selecting from

among sets of admissible estimators requires taking a stand on how we value performance
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over different regions of the parameter space, for instance by specifying a prior and

considering Bayes estimators as in Andrews and Mikusheva (2022). In the present paper

we set a more modest goal, and aim to provide necessary conditions for admissibility

under bounds on identification strength. Our main technical contribution is to establish

a close connection between the set of admissible estimators under bounded identification

strength and the set of estimators that are Lipschitz in g.

Definition 3 An estimator δ is almost-surely Lipschitz with Lipschitz constant K if

there exists another estimator δ∗ such that δ(g) = δ∗(g) for almost every g and ∥δ∗(g)−

δ∗(g′)∥ ≤ K∥g − g′∥∞ for all g, g′ in the support of the process GP(0,Σ).

Theorem 1 Assume that an estimator δ is admissible on Γ̃, where Γ̃ ⊆ ΓW for W <

∞. Then δ is almost-surely Lipschitz with Lipschitz constant K = r̄
√
pW, where r̄ =

supθ ∥r(θ)∥.

The proof of Theorem 1 builds on Theorem 2 of Andrews and Mikusheva (2022),

which is itself a minor extension of a result from Brown (1986). That result, repro-

duced in the appendix for completeness, shows that for convex loss functions admissible

estimators must be the (almost everywhere) pointwise limit of Bayes decision rules for

finitely-supported priors. We then show that under bounded identification strength,

small changes in the moments g lead to only small changes in the posterior probability

of different θ values.9 Since Bayes decision rules under squared error loss are posterior

means, this implies that Bayes decision rules with finitely-supported priors are Lipschitz.

Finally, we note that the Lipschitz property is preserved under pointwise convergence,

from which the conclusions of the theorem follow.

It is important to emphasize that the set of admissible estimators depends on the

set of parameter values Γ̃ over which the performance is evaluated, and that the set of

admissible estimators is in general not monotone in Γ̃. That is, if we enlarge Γ̃ the set

of admissible estimators may lose some estimators but gain others. Motivated by this

9The choice of the norm ∥ · ∥∗ as our measure of identification strength is important for this step,

since it allows us to bound the change in the likelihood between moment realizations g and g′ in terms

of ∥g − g′∥∞.
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fact, Theorem 1 considers the set of estimators which are admissible for some set Γ̃ that

obeys a numerical bound W on identification strength.

While Theorem 1 translates numerical bounds on identification strength to numerical

bounds on the Lipschitz constant, selecting a value of W for a given application seems

challenging. We next provide a necessary condition for admissibility under any bound

on identification strength.

Corollary 1 If δ is not almost-surely Lipschitz, then it is inadmissible on Γ̃ for all Γ̃

with bounded identification strength (that is, Γ̃ ⊆ ΓW for some W <∞).

Corollary 1 states that under any bound on the strength of identification, no matter

how large, admissible estimators are Lipschitz in the moment process g, so small changes

in the realized sample moments (measured in the supremum norm ∥·∥∞) can induce only

small changes in the estimate. While this may seem a minimal requirement, we show in

the next section that GMM estimators do not have this property.

We show in Appendix B that bounded identification strength is crucial for the Lip-

schitz property. There, we provide an example with an unrestricted parameter space Γ

where the limit of Bayes posterior means is a step function, and thus not Lipschitz.

3.1 Inadmissibility of GMM

We next show that GMM estimators are not generally Lipschitz, and so are inadmissible

under any bound on the strength of identification. GMM estimators take the form

δGMM(g,Σ) = r(θ̂), θ̂ ∈ argmin
θ∈Θ

g(θ)′W (θ)g(θ), (6)

where W (θ) is a deterministic weight function. If there are multiple points where the

minimum is achieved, we assume that θ̂ applies some selection rule.

GMM estimators are invariant to the scale of g.10

Definition 4 An estimator δ is scale-invariant if δ(c · g,Σ) = δ(g,Σ) for all g and all

c > 0.

10To be precise, GMM estimators are scale-invariant so long as the rule for selecting from a non-unique

argmin is likewise invariant.
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This scale invariance is important for our purposes, since scale-invariant estimators are

Lipschitz if and only if they are constant.

Lemma 2 Let δ be a scale-invariant estimator. If δ is almost-surely Lipschitz, then there

exists a∗ ∈ A such that δ(g,Σ) = a∗ almost surely.

GMM estimators δGMM are scale-invariant and non-constant, so Lemma 2 implies that

δGMM is not Lipschitz. Hence, by Corollary 1, δGMM is inadmissible under bounded

identification strength. The source of this inadmissibility is intuitive, namely that small

changes in data can cause the GMM estimator to jump discontinuously.

Special Case: Linear IV (continued) In this example, δ is Lipschitz in g(·) if and

only if it is Lipschitz in (ξ0, ξ1), and the two-stage least squared estimator (4) is discon-

tinuous when the first stage estimate is zero, ξ1 = 0, and hence is not Lipschitz. This

is consistent with the intuition that instrumental variables estimation is badly behaved

when the instrument is irrelevant.

Interestingly, if we use other instrumental variables estimators (with multiple instru-

ments, k > 1) we may encounter additional points of discontinuity. For instance the

limited information maximum likelihood estimator corresponds to GMM with weighting

matrix W (θ) = (σ2
u− 2σuvθ+σ2

vθ
2)−1E[ZiZ

′
i]
−1 for σ2

u, σ
2
v , and σuv the residual variances

and covariance from regressing (Y,D) on Z. The resulting estimator θ̂ is discontinuous

at ξ1 = 0, but also at (ξ0, ξ1) where (i) the OLS and two-stage least squares estimates

coincide and (ii) the reduced-form R2 coefficient exceeds the first stage R2, which may

be interpreted as a sign of model misspecification – see Andrews (2018). □

4 Alternative Estimators

In the last section we showed that GMM estimators are inadmissible under bounds on

identification strength. Unfortunately our proof is non-constructive, and yields no char-

acterization for a dominating estimator. The reasons for GMM’s inadmissibility are

nonetheless instructive, and suggest a route to more reasonable estimators.

The source of GMM’s inadmissibility is that it depends only on the minimizer of the

GMM objective. This results in the scale-invariance discussed in the last section which,
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in turn, implies that the GMM estimate is not Lipschitz in the moments g. In this section

we present two estimators which depend on the moments in a more continuous way, the

first based on bagging or bootstrap aggregation, and the second based on quasi-Bayes.

While the admissibility of these estimators is an open question, both are continuous in

the moments, and both are Lipschitz under additional conditions.11

4.1 Bagged GMM

One way to ensure that the Lipschitz property holds is to directly smooth the GMM

estimator. For instance, we can average an estimator across bootstrap draws, yielding a

bagged, or bootstrap aggregated, estimator. Bühlmann and Yu (2002) show that bagging

can reduce both bias and variance when estimators are unstable, in the sense of being

sensitive to small changes in the data. The instablity of GMM under weak identification

suggests that its performance might also be improved by bagging.

To formally introduce the bagged GMM estimator, again consider the limit exper-

iment where we observe a single draw of the moment process g ∼ GP(m,Σ). For

an estimator δ(g) (which need not be GMM) let us draw independent Gaussian noise

ζ ∼ GP(0,Σ) and define the bagged version of δ as the average of δ(g + ζ) over noise

realizations,

δB(g) = E [δ(g + ζ)|g] .

We interpret δB(g) as a bagged estimator because the distribution of g∗ = g + ζ given

g is exactly the asymptotic distribution of the moments across bootstrap replications,

conditional on the initial data delivering moments g (see e.g. Section 3.6 and Van der

Vaart and Wellner 1996). Hence, δB(g) corresponds to the (asymptotic analog of the)

average of δ(·) across bootstrap draws.

We formalize the connection between bagging and smoothing in our setting by showing

that in finite-dimensional limit experiments all bagged estimators are Lipschitz.

11To guarantee admissibility under bounded identification strength one may also report Bayes posterior

means based on full-support priors on ΓW . In the infinite-dimensional case, however, it is not obvious

to us how to construct such priors or compute the resulting posteriors, and there further remains the

question of how to choose W .
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Proposition 1 If the limit experiment is finite-dimensional, then for any estimator δ(g)

with range contained in A the bagged estimator δB(g) is Lipschitz.

Proposition 1 implies, in particular, that for δGMM(g) the GMM estimator as defined

in (6), the bagged GMM estimator δBGMM(g) = E[δGMM(g + ζ)|g] satisfies the global

Lipschitz property required by Corollary 1. On an intuitive level this estimator “averages

out” the discontinuities of the GMM estimator, resulting in a Lipschitz (and in fact

differentiable) estimator.12 A practical limitation of the bagged GMM estimator is that

it requires repeatedly minimizing the GMM objective function to compute δGMM(g +

ζ). In settings where minimization is difficult this can make computing the bagged

estimator costly. If, on the other hand, a researcher is already using the bootstrap then

the incremental cost of computing the bagged estimator is essentially zero.

To illustrate how bagging smooths the GMM estimator, we return to our examples.

Special Case: Finite Θ (continued) In this special case the bagged GMM estimator

for r(θ) can be written as a weighted average across the possible values of r(θ). In

particular, for θ̂(g + ζ) the GMM estimate based on moments g + ζ, we can write the

bagged GMM estimator as δBGMM(g) =
∑

θ∈Θ r(θ)Pr
{
θ̂(g + ζ) = θ|g

}
. Note, however,

that the probability Pr
{
θ̂(g + ζ) = θ|g

}
is simply the probability (conditional on g) that

the collection of correlated random variables {(g(θ) + ζ(θ))′W (θ)(g(θ) + ζ(θ)) : θ ∈ Θ}

achives its minimum at a particular θ. One can show that these probabilities are Lipschitz

in g, from which it is immediate that δBGMM(g) is Lipschitz as well. □

Special Case: Linear IV (continued) Recall that the limit experiment for linear IV

reduces to observing the jointly normal random vector ξ = (ξ′0, ξ
′
1)

′ ∼ N((π∗′θ∗, π∗′)′,Ω),

corresponding to the intercept and (negative) slope of g. We can correspondingly define

ν = (ν0
′, ν1

′) ∼ N(0,Ω) as the intercept and (negative) slope of ζ ∼ GP(0,Σ). The

two-stage least squares estimate of θ for moment realization g + ζ is thus

θ̂(ξ + ν) = min

{
θU ,max

{
(ξ1 + ν1)

′W (ξ0 + ν0)

(ξ1 + ν1)′W (ξ1 + ν1)
, θL

}}
,

12The same is true for the whole family of estimators δBGMM
τ (g) = E [δ(g + τ · ζ)|g] for τ > 0.

However, values τ ̸= 1 complicate the bootstrap interpretation, as well as the Bayesian interpretation

discussed below, so we focus on the case with τ = 1.
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while the two-stage least squares estimate of r(θ) is r
(
θ̂(ξ + ν)

)
. The bagged two-stage

least squares estimator is then

δBTSLS(g) = E
[
r
(
θ̂(ξ + ν)

)
|g
]
=

∫
r
(
θ̂(ξ + ν)

)
f(ν)dν =

∫
r
(
θ̂(ν)

)
f(ν − ξ)dν,

for f(·) the N(0,Ω) density. Note, however, that f(·) is Lipschitz, so since r
(
θ̂(·)
)
is

bounded, δBTSLS(g) is likewise Lipschitz. □

The bagged GMM estimator also has a Bayesian interpretation. In the finite-dimensional

case the mean function m is simply a finite-dimensional vector. For a flat (improper)

prior on m, the posterior distribution on m after observing g corresponds to a GP(g,Σ)

distribution, which is precisely the distribution of g+ ζ conditional on g. Note, however,

that the flat prior on m allows the possibility that m(θ) ̸= 0 for all θ and so does not

impose correct specification of the GMM model. This raises the question of how to define

the object of interest when GMM is misspecified. One approach is to focus on the GMM

estimand or pseudo-true value θ∗(m) = argminθ∈Θm(θ)′W (θ)m(θ), which minimizes the

population analog of the GMM objective. The bagged GMM estimator then corresponds

to the posterior mean of r(θ∗(m)) under the flat prior.

4.2 Quasi-Bayes

We could also take a more overtly Bayesian approach. For a prior π on Θ, the quasi-Bayes

posterior mean of r(θ) in the limit experiment is

δQB
π (g) =

∫
r (θ)

exp
(
−1

2
Q(θ|g)

)∫
exp

(
−1

2
Q(θ|g)

)
dπ(θ)

dπ (θ) , (7)

where Q(θ|g) = g (θ)′ Σ (θ, θ)−1 g (θ) is the continuously updated GMM objective func-

tion. This estimator corresponds to the posterior mean after updating π(θ) based on “log-

likelihood” −1
2
Q(θ|g), and was initially suggested by Chernozhukov and Hong (2003).

Since Q(θ|g) is not in general the likelihood of the researcher’s model the interpretation

of δQB
π (g) from a strict Bayesian perspective may not be obvious, but Andrews and Miku-

sheva (2022) show that this estimator arises as the limit of a sequence of Bayes posterior

means for proper priors. Unlike the priors underlying bagged GMM, the priors that give

rise to quasi-Bayes impose correct specification of the GMM model. See Chernozhukov
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and Hong (2003) and Andrews and Mikusheva (2022) for further discussion, as well as

asymptotic results under both strong and weak identification.

A key feature of the quasi-Bayes approach for our purposes is that it takes a weighted

average of r(θ) over the parameter space Θ, weighting by
exp(− 1

2
Q(θ|g))∫

exp(− 1
2
Q(θ|g))dπ(θ)

dπ (θ). It

follows from this structure that quasi-Bayes is Lipschitz in the GMM objective function.

Lemma 3 Quasi-Bayes is Lipschitz in the GMM objective function Q:

∥∥δQB (g)− δQB (g′)
∥∥ ≤ K ∥Q (·|g)−Q (·|g′)∥∞ ,

where K = 1
2
r̄
√
p.

Unfortunately, Q(·|g) is continuous but not Lipschitz in the moments g. Consequently,

the Lipschitz continuity required by Corollary 1 does not follow from Lemma 3. Indeed,

while quasi-Bayes is continuous in g, it is not in general Lipschitz.13

Special Case: Finite Θ (continued) Suppose that the parameter space consists of

just two points, Θ = {0, 1}, that we have a one-dimensional moment condition (k = 1),

and that Σ = I2. Consider the quasi-Bayes estimator using a prior π that puts weight 1
2

on each parameter value. The quasi-Bayes estimator of θ is

δQB
π (g) =

exp
(
−1

2
g (1)2

)
exp

(
−1

2
g (0)2

)
+ exp

(
−1

2
g (1)2

) =
1

1 + exp
(
1
2
g (1)2 − 1

2
g (0)2

) .
While this estimator is differentiable in (g(0), g(1)), it is not Lipschitz. Indeed,

∂δQB
π (g)

∂g(0)

∣∣∣∣
g(0)=g(1)

=
g(0)

4
,

which exceeds any finite constant for large values of both g(0) and g(1). Intuitively, when

both g(0) and g(1) are large, δQB
π (g) behaves like δ(g) = argminθ∈{0,1}g(θ)

2. □

An interesting feature of this example is that the non-Lipschitz behavior of the quasi-

Bayes estimator appears for realizations of g which suggest misspecification of the model.

Specifically, the GMM model with parameter space Θ = {0, 1} requires that either

13Since Andrews and Mikusheva (2022) shows that quasi-Bayes emerges as the limit of a sequence

of Bayes posterior means, it may be surprising that it does not satisfy the necessary condition for

admissibility under bounded identification strength. The priors underlying quasi-Bayes, however, imply

that ∥m∥∞ →p ∞ and so correspond to the case of unbounded identification strength.
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m(0) = 0 or m(1) = 0. Hence, under the model the distribution of minθ∈{0,1}g(θ)
2 is

bounded by a χ2
1, and data realizations with both g(0) and g(1) large are highly unlikely.

This suggests that if we limit attention to data realizations which appear consistent with

the model the quasi-Bayes estimator may be Lipschitz. The following result shows that

this is the case provided Θ is finite and π has full support.

Proposition 2 Assume that the parameter space is finite, |Θ| <∞. For C > 0 define

GC =

{
g : inf

θ∈Θ
Q (θ|g) ≤ C

}
.

If π has support Θ, then the quasi-Bayes estimator δQB
π (g) is Lipschitz in g on GC.

The minimized GMM objective Q (θ|g) is often termed a J-statistic, and researchers

commonly reject correct specification of the model when this statistic exceeds a threshold.

Under the assumption of correct specification we have limC→∞ infγ∈Γ Pγ {g ∈ GC} = 1,

so moment realizations g ̸∈ GC have low probability under all data generating processes

consistent with the GMM model. Hence, for finite Θ, quasi-Bayes is Lipschitz over data

realizations such that the GMM model is not rejected.

4.2.1 Default Priors

To apply the quasi-Bayes approach (unlike for bagged GMM) we must explicitly specify

a prior π(θ). From a subjective Bayesian perspective the prior π on the GMM parameter

θ should reflect the researcher’s beliefs about the structural parameters in a given appli-

cation. In practice, however, subjective priors can be difficult to specify or controversial,

and it may be helpful to have default options.

One common default is to use a flat prior, with π proportional to Lebesgue mea-

sure, where our assumption that Θ is compact ensures that this prior has finite mass.

As has previously been observed in other contexts, however, “flatness” of a prior is

parameterization-specific, and the use of flat priors can lead two researchers, estimat-

ing the same model on the same data but with different parameterizations, to different

posteriors. This motivates us to seek parameterization-invariant default priors. Since

the covariance function Σ, and its domain Θ × Θ, are known in the limit experiment

18



they can be used to inform such a prior. Correspondingly, we define a default prior as a

Σ-dependent probability measure on Θ, π(·; Σ).

To formally define reparameterization-invariance, let Ψ be a compact set and let

ϑ : Θ → Ψ be a diffeomorphism between Θ and Ψ, corresponding to a reparameterization

ψ = ϑ(θ) of the model. This implies reparameterized moments h (·) = g (ϑ−1 (·)) defined

on Ψ, where by construction h (·) ∼ GP (mh,Σh) for

mh (ψ) = m
(
ϑ−1 (ψ)

)
, Σh (ψ1, ψ2) = Σ

(
ϑ−1 (ψ1) , ϑ

−1 (ψ2)
)
.

We call a rule for constructing a prior invariant to re-parameterization if the pushforward

of π (·; Σ) under ϑ (·) is equal to π (·; Σh) for all re-parametrizations ϑ (·), so the default

delivers the same prior (and thus posterior) distribution regardless of the parameteriza-

tion. The flat prior is invariant when ϑ is linear, but not generally otherwise.

The structure of the GMM model is also preserved under linear transformations of

the moments. Specifically, let B : Θ → B be a differentiable function from Θ to the set

B of full-rank k × k matrices. We can define a new moment process h (θ) = B (θ) g (θ) ,

where by construction h (·) ∼ GP (mh,Σh) for

mh (θ) = B (θ)m (θ) , Σh (θ1, θ2) = B (θ1) Σ (θ1 θ2)B (θ2)
′ .

The moments h and g are one-to-one transformations of each other, and imply the same

value for the continuously updated GMM objective. Hence, it is again natural to require

that a default prior be invariant to such transformations, with π (·; Σh) = π (·; Σ).

In parametric models the desire for a parameterization-invariant default prior has

led to the use of the Jeffreys (1946) prior, which is usually defined to be proportional to

|i(θ)|1/2, for |i(θ)| the determinant of the Fisher information. Our suggested default prior

is based on an analogous idea. Specifically, recall that the Fisher information is equal to

the variance of the score, that is, the gradient of the log likelihood. We might analogously

try to form a default prior based on the variance of the gradient of the GMM objective,

Var( ∂
∂θ
Q(θ|g)). Unfortunately, however, Var( ∂

∂θ
Q(θ|g)) depends on the mean function m,

and so is unknown in general. To construct a feasible default prior, we instead consider

the variance of the continuously updated GMM objective in the fully-unidentified case,
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i(θ; Σ) = Var( ∂
∂θ
Q(θ|G)) for G ∼ GP(0,Σ). The entries of i(θ; Σ) take the form

ijl(θ; Σ) = tr

(
Σ−1(θ, θ)

{
∂2Σ(θ, θ̃)

∂θj∂θ̃l
− ∂Σ(θ, θ̃)

∂θj
· Σ−1(θ, θ)

∂Σ(θ̃, θ)

∂θl

}∣∣∣∣∣
θ̃=θ

)
(8)

and so can be computed from Σ. Since the continuously updated GMM objective is un-

changed by linear transformations of the moments, ijl(θ; Σ) is also unchanged. Moreover,

the same calculations which prove the invariance of Jeffreys prior for parametric models

show that the default prior proportional to the square root of the determinant of i(θ; Σ),

π(·; Σ) ∝ |i(·; Σ)|1/2 (9)

is likewise invariant to reparameterization. Hence, the default prior (9) is invariant to

both reparameterization and linear transformations of the moments, as desired.14

While we motivated our default prior (9) by analogy to Jeffreys prior, it also has

a more direct interpretation. Since G = g − m corresponds to the noise component

of the GMM moments, the score ∂
∂θ
Q(θ|G) measures the speed with which the noise

in the moments changes at θ. One can show, however, that E[ ∂
∂θ
Q(·|G)] ≡ 0, so

Var( ∂
∂θ
Q(θ|G)) = E[ ∂

∂θ
Q(θ|G) ∂

∂θ
Q(θ|G)′] measures the average (squared) magnitude of

the score. Hence, the default prior (9) assigns more mass to regions of the parameter

space where the noise component of the moments tends to change quickly in θ, and less

to regions where the noise tends to change slowly.

Special Case: Linear IV (continued) To explore the implications of our default

prior in this example, let us partition the 2k × 2k variance matrix into four k × k sub-

matrices Ωjl for j, l ∈ {0, 1}, where Ωjl = Cov(ξj, ξl). Under this notation i (θ; Σ) is equal

to the trace of

(Ω00 − (Ω10 + Ω01) θ + Ω11θ
2)

−1×(
Ω11 − (Ω01 − Ω11θ) (Ω00 − (Ω10 + Ω01) θ + Ω11θ

2)
−1

(Ω10 − Ω11θ)
)
,

which can also be written as the relative variance:

Var (g (θ))−1Var (ξ1|g (θ)) .
14While we focus on the default prior (9), other invariant priors exist. For instance, for scalar θ the

prior proportional to |Σ (θ, θ)|−
1
2

∣∣∣ ∂2

∂θ∂θ̃
Σ
(
θ, θ̃
)
− ∂

∂θΣ
(
θ, θ̃
)
Σ (θ, θ)

−1 ∂
∂θ̃
Σ
(
θ, θ̃
)∣∣∣ 12

θ̃=θ
is also invariant.
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Thus, the default prior (9) favors parameter values where (i) the GMM moments predict

the first stage poorly (so Var (ξ1|g (θ)) is large) and (ii) the GMM moments themselves

are not too noisy (so Var (g (θ)) is small). Since Var (ξ1|g (θ)) → 0 and Var (g (θ)) → ∞

as |θ| → ∞, we see that the default prior density (9) converges to zero for θ large.

We obtain further simplifications when the reduced-form and first-stage errors are

homoskedastic. In this case the matrices Ωjl are proportional to each other,

Ω =

 σ2
u σuv

σuv σ2
v

⊗ Ω̃,

for Ω̃ a k × k matrix, and σ2
u, σ

2
v , σuv again the variances and covariance of the reduced-

form and first-stage errors. In this case some algebra shows that our default prior is equal

to a Cauchy distribution centered at σuv

σ2
v
. One can show, however, that σuv

σ2
v
corresponds to

the probability limit of the OLS estimator under weak-instrument asymptotics. Hence in

the homoskedastic case our default prior corresponds to a Cauchy distribution centered

at OLS. □

5 Linear IV Simulations

While our theoretical results show that GMM estimators are dominated under bounds on

identification strength, they do not imply that GMM is dominated by either bagged GMM

or quasi-Bayes. Relative performance of these estimators in applications is thus an open

question. We explore this comparison in the context of linear IV, using simulation designs

based on Andrews et al. (2019). Andrews et al. (2019) calibrate simulations based on all

instrumental variables specifications published in the American Economic Review from

2014 to 2018 for which sufficient information is available to estimate the variance matrix

Ω in (3), yielding 124 specifications. We follow their simulation designs, and draw data

from the normal model (3) with π∗ equal to the first stage estimate in the Andrews et al.

(2019) data and θ∗ equal to the two-stage least squares estimate. We consider six different

estimators. The first two are GMM, specifically two-stage least squares, which as noted

above corresponds to GMM with weighting matrixW (θ) = E [ZiZ
′
i]
−1, and continuously

updated GMM, which corresponds to GMM with weighting matrix W (θ) = Σ (θ)−1. We

next report bagged versions of each GMM estimator. Finally, we report two quasi-Bayes
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estimators, the first using a flat prior π (θ) ∝ 1 and the second using the invariant default

prior (9).

Consistent with out theoretical results we focus on bounded parameter spaces. Specif-

ically, we take the parameter space in specification s equal to Θs =
[
±20

∣∣∣σuv,s

σ2
v,s

∣∣∣] for σuv,s
the covariance of the reduced-form and first stage errors in specification s, and σ2

v,s the

variance of the first-stage error.15 As noted above σuv

σ2
v

corresponds to the probability

limit of the least squares estimate under weak instrument asymptotics, so this parameter

space restricts the size IV coefficient to be no more than 20 times the size of the least

squares coefficient. Nine of the just-identified specifications in the Andrews et al. (2019)

data do not report estimates for (σuv, σ
2
v), because replication data were not publicly

available but Ω could be estimated based on published results. In these cases we set

σuv equal to covariance of the reduced-form and first-stage estimates, and σ2
v equal to

the variance of the first-stage estimate. The restricted parameter space Θs contains the

true IV coefficient in all but three of the 124 Andrews et al. (2019) specifications, so we

limit attention to these 121 specifications for our analysis. We approximate the bagged

estimators by averages over 400 bootstrap draws, and report results based on 10,000

simulation draws.

The restriction to a bounded parameter space is substantively important for the

results we report below. Absent a restriction on the parameter space, the two-stage least

squares estimator for the IV coefficient only has finite moments up to the degree of over-

identification. Correspondingly, for an unrestricted parameter space the bagged two-stage

least squares estimate is only defined for k ≥ 2. The situation is, if anything, worse for

the other estimators we consider: for instance, in linear IV models with homoskedastic

errors the continuously updating GMM estimator reduces to the limited information

maximum likelihood estimator, which lacks even a first moment. Our restriction to a

bounded parameter space ensures that all estimators and moments are well-defined and

15We select this parameter space for several reasons. It is feasible in the limit experiment and, given

the much greater precision of least squares relative to IV in many applications, can often be well-

approximated in finite samples. Further, cases where the IV coefficient differs from the OLS coefficient

by more than a factor of 20 seems likely to be unusual in applications. Consistent with this, as we note

below this choice ensures that Θs covers the two stage least squares estimate in all but three of the

Andrews et al. (2019) specifications.
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finite, but for those cases where the restriction is important for e.g. existence of a given

moment, the results necessarily depend on the choice of bounds, at least to some extent.

Motivated by this sensitivity, we report three sets of auxiliary results, one in the main

text and two in the appendix. In the main text we report results for inference on the

correlation between the structural and first-stage errors, which can be shown to equal

r(θ) = σuv−θσ2
v

σv

√
σ2
u−2θσuv+θ2σ2

v

. This correlation measures the degree of endogeneity, and so may

be of interest in its own right. Moreover, as recently highlighted by Angrist and Kolesár

(2022) conventional confidence intervals are reliable in just-identified IV settings, even

with weak instruments, so long as this correlation coefficient is not too large. Hence, we

might also want to know r(θ) for that reason. Importantly for our current purposes, r(θ)

is bounded by construction, so issues with non-existence or unboundedness of moments

cannot arise.

In the appendix we report results where we vary the definition of the parameter

space, considering Θs =
[
±40

∣∣∣σuv,s

σ2
v,s

∣∣∣] and Θs =
[
±60

∣∣∣σuv,s

σ2
v,s

∣∣∣] . Widening the bounds

increases the errors of the IV coefficient estimates from all approaches, but the ordering of

estimators by average performance is unchanged. As expected, the change in the bounds

has almost no effect on the correlation coefficient estimates. Finally we report results, for

two-stage least squares and bagged two-stage least squares only, which drop the bounds

on the parameter space entirely. To ensure that the mean squared error is well-defined

these results restrict attention to specifications with at least three instruments, k ≥ 3.

The performance gaps between these estimators are small in our k ≥ 3 specifications

with bounded parameter spaces, and remain small when we drop the bounds.

Results for IV Coefficient Table 1 reports our findings for the IV coefficient. For each

specification s we consider the root mean squared error for each estimator, normalized by

the two-stage least squares standard error σ∗
s in the Andrews et al. (2019) data to account

for differences in units,
√

Es

[
(δ (g)− θ∗s)

2]/σ∗
s , where Es [·] denotes the expectation in

specification s. We report the average of this ratio for each estimator across four different

categories based on the effective first stage F statistic of Montiel-Olea and Pflueger (2013).

The effective F statistic, which we denote by F , is a measure of instrument strength and in

the just-identified case is equal to the squared t-statistic for testing π∗ = 0, ξ21/Var (ξ1).
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See Montiel-Olea and Pflueger (2013) for details and motivation for this statistic. To

complement these results, Figure 1 plots the root mean squared error for each alternative

estimator, relative to its GMM counterpart, against the average effective F statistic Es[F ],

limiting attention to specifications where Es[F ] ≤ 50 for visibility. To show differences

based on the number of instruments we plot just-identified (k = 1) specifications in blue,

and over-identified (k ≥ 2) specifications in black. For a more detailed picture of how

performance varies with the number of instruments, Table 3 in the appendix reports

average results when we bin specifications by the number of instruments.

A number of patterns emerge in Table 1 and Figure 1. First, two-stage least squares

outperforms continuously updating GMM everywhere except the strongest identification

category. The bagged GMM estimators each outperform their standard GMM analogs in

most cases. Specifically, these estimators show substantial improvements in the category

where identification is weakest (Es [F ] ≤ 10), a smaller improvement in the next-weakest

category (10 < Es [F ] ≤ 20), and either a minimal improvement or a small deterioration

in the second-strongest category (20 < Es [F ] ≤ 50). Quasi-Bayes with a flat prior under-

performs all the other estimators, while quasi-Bayes with the invariant prior outperforms

both GMM estimators except in the second-strongest category (20 < Es [F ] ≤ 50). The

performance gap between the two quasi-Bayes approaches demonstrates the influence of

the prior, and highlights that the greater smoothness of quasi-Bayes as a function of the

moments does not guarantee improved performance for all priors. Finally, all estimators

show very similar performance in the strongest category (50 < Es [F ]), though two-stage

least squares and bagged two-stage least squares are known to be inefficient under strong

identification. Nonetheless, the estimator with the best average performance overall is

bagged two-stage least squares, followed by bagged continuously updating GMM.

Results for Correlation Coefficient Table 2 reports our findings for the correlation

coefficient r(θ) = σuv−θσ2
v

σv

√
σ2
u−2θσuv+θ2σ2

v

. We again report the root mean squared error nor-

malized by the delta-method standard error σ∗
r,s for r(θ) in the Andrews et al. (2019)

data,
√

Es

[
(δ (g)− r(θ∗s))

2]/σ∗
r,s, and bin specifications based on the average effective

first stage F statistic. Figure 2 plots the root mean squared error for each alternative es-

timator, relative to its GMM counterpart, against the average effective F statistic Es[F ].
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Es [F ] ≤ 10 10 < Es [F ] ≤ 20 20 < Es [F ] ≤ 50 50 < Es [F ]

Two-Stage

Least Squares
1.37 1.20 1.02 1.00

Continuously

Updating GMM
1.55 1.24 1.03 0.99

Bagged Two-Stage

Least Squares
1.03 1.09 1.01 0.99

Bagged Continuously

Updating GMM
1.04 1.12 1.05 0.99

Quasi-Bayes,

Flat Prior
1.51 1.61 1.10 1.00

Quasi-Bayes,

Invariant Prior
1.18 1.10 1.03 0.99

Number of Specifications 56 28 19 18

Table 1: Performance of IV coefficient estimators in Andrews et al. (2019) specifications. Entries

correspond the root mean squared error normalized by the standard error in the Andrews et al. (2019)

data,
√
Es[(δ(g)− θ∗s)

2]/σ∗
s , averaged across specifications. Columns correspond to ranges of values for

the average effective first-stage F statistic of Montiel-Olea and Pflueger (2013).
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Figure 1: RMSE comparisons for IV coefficient estimators in Andrews et al. (2019) specifications. Each

point corresponds to one of the Andrews et al. (2019) specifications. The vertical axis measures the

ratio of root mean squared error for the alternative estimator compared to the GMM estiamtor for the

IV coefficient,
√
Es[(δ(g)− θ∗s)

2]/Es[(δGMM (g)− θ∗s)
2]. So, for instance, a value of 0.8 means the RMSE

for the alternative estimator is 20% lower. The horizontal axis shows the average effective first-stage F

statistic of Montiel-Olea and Pflueger (2013), Es[F ]. We limit attention to specifications with Es[F ] ≤ 50

for visibility. Blue dots correspond to just-identified (k = 1) specifications, while black dots correspond

to over-identified (k ≥ 2) specifications.
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Es [F ] ≤ 10 10 < Es [F ] ≤ 20 20 < Es [F ] ≤ 50 50 < Es [F ]

Two-Stage

Least Squares
1.09 1.10 1.01 0.99

Continuously

Updating GMM
1.21 1.13 1.02 0.99

Bagged Two-Stage

Least Squares
1.03 1.07 1.00 0.99

Bagged Continuously

Updating GMM
0.99 1.09 1.02 0.99

Quasi-Bayes,

Flat Prior
1.19 1.45 1.07 0.99

Quasi-Bayes,

Invariant Prior
1.10 1.11 1.01 0.99

Number of Specifications 56 28 19 18

Table 2: Performance of correlation coefficient estimators in Andrews et al. (2019) specifications. Entries

correspond the root mean squared error normalized by the standard error in the Andrews et al. (2019)

data,
√
Es[(δ(g)− r(θ∗s))

2]/σ∗
r,s, averaged across specifications. Columns correspond to ranges of values

for the average effective first-stage F statistic of Montiel-Olea and Pflueger (2013).

Finally, Table 4 in the appendix reports average results when we bin specifications by

the number of instruments.

The results for estimating the correlation coefficient are broadly consistent with those

for the IV coefficient. In particular, two-stage least squares largely outperforms contin-

uously updating GMM, and each bagged estimator substantially outperforms its GMM

counterpart in the weakest category, with smaller gain in the stronger categories. Quasi-

Bayes with a flat prior again underperforms the other estimators considered. One dif-

ference with the IV coefficient results is that quasi-Bayes with our invariant prior now

slightly under-performs relative to two-stage least squares. All estimators again behave

very similarly in the strongest specifications (50 < Es [F ]). The best-performing esti-

mator on average is bagged continuously updating GMM, followed by bagged two-stage

least squares.
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Figure 2: RMSE comparisons for correlation coefficient estimators in Andrews et al. (2019) specifications.

Each point corresponds to one of the Andrews et al. (2019) specifications. The vertical axis measures

the ratio of root mean squared error for the alternative estimator compared to the GMM estiamtor

for the correlation coefficient,
√
Es[(δ(g)− r(θ∗s))

2]/Es[(δGMM (g)− r(θ∗s))
2]. So, for instance, a value

of 0.8 means the RMSE for the alternative estimator is 20% lower. The horizontal axis shows the

average effective first-stage F statistic of Montiel-Olea and Pflueger (2013), Es[F ]. We limit attention to

specifications with Es[F ] ≤ 50 for visibility. Blue dots correspond to just-identified (k = 1) specifications,

while black dots correspond to over-identified (k ≥ 2) specifications.
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A Proofs

Proof of Lemma 1 If k = 1, the result is immediate from Theorem 2.1 of van der

Vaart and van Zanten (2008). We are left to prove it for k > 1. Define an augmented

parameter space Θ∗ = Θ × V, where V = {v ∈ Rk : ∥v∥1 = 1} and consider a Gaussian

process g∗(·) defined on Θ∗ as g∗(θ, v) = v′g(θ). Note that the process g∗, its mean

m∗(θ, v) and its covariance function Σ∗(θ, v, θ̃, ṽ) are one-to-one transformations of g, m,
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and Σ. For H∗ the RKHS associated with Σ∗, H∗ is isometric to H. Indeed, for m∗ ∈ H∗:

m∗(θ, v) =
∑

αiΣ
∗(θi, vi, θ, v) =

(∑
αiv

′
iΣ(θi, θ)

)
v = m(θ)′v, (10)

where m ∈ H and ∥m∥H = ∥m∗∥H∗ .

We have assumed that g(·) ∼ GP(m,Σ) has almost-surely continuous sample paths,

which implies that G∗ ∼ GP(0,Σ∗) can likewise be realized as a process with almost

surely continuous sample paths. Let C∗ be the space of R-valued continuous functions

on Θ∗ with the property that any f ∗ ∈ C∗ can be represented as f ∗(θ, v) = f(θ)′v

for f ∈ C(Θ,Rk) and v ∈ V . Due to the structure of Σ∗, realizations of the process G∗

almost surely belong to C∗ and the process can be represented as G∗(θ, v) = v′G(θ), where

G ∼ GP(0,Σ). Take any linear functional defined on the space of continuous functions

with index set Θ∗ and denote by η∗ its restriction to C∗. Since the relation between

f ∗ ∈ C∗ and f ∈ C(Θ,Rk) is one-to-one, we can define a linear functional on C(Θ,Rk) as

η(f) = η∗(f ∗). This creates a one-to-one correspondence between linear functionals on

C∗ and linear functionals on C(Θ,Rk). Note that the definition of the Pettis integral for

process G∗ depends on η∗ only and all functionals that are the same once restricted to

C∗ lead to the same Pettis integral:

m∗
η∗(θ, v) = E[G∗(θ, v)η∗(G∗)] = E[v′G(θ)η∗(G∗)] = v′E[G(θ)η(G)] = v′mη(θ). (11)

Due to Theorem 2.1 of van der Vaart and van Zanten (2008), H∗ coincides with the image

of the space of linear functionals defined on C∗ under the Pettis integral transformation,

while equation (2.4) in that paper together with the definition of σ(G∗) establish that

∥mη∗∥∞ ≤ σ2(G∗)∥η∗∥∗. Comparing equation (11) to (10), we see that the first statement

of Lemma 1 holds. We further notice that all norms of starred objects coincide with the

norms of the corresponding objects without stars. For example,

∥m∥∞ = sup
j,θ∈Θ

|mj(θ)| = sup
v∈V,θ∈Θ

|v′m(θ)| = sup
(θ,v)∈Θ∗

|m∗(θ, v)| = ∥m∗∥∞.

Note further that η and η∗ have the same total variation norm.

∥η∗∥∗ = sup
f∗∈C∗,∥f∗∥∞≤1

η∗(f ∗) = sup
f∈C(Θ,Rk),∥f∥∞≤1

η(f) = ∥η∥∗.

Finally,

σ2(G∗) = sup
∥η∗∥∗≤1

E[η∗(G∗)2] = sup
∥η∥∗≤1

E[η(G)2] = σ2(G).
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This completes the proof. □

Theorem 2 (Brown 1986, Andrews and Mikusheva 2022): For any parameter space Γ̃ ⊆

Γ, any loss L(a, θ) which is convex in a for all θ, and any decision rule δ that is admissible

on Γ̃, there exists a sequence of finitely supported priors πr on Γ̃ and corresponding Bayes

decision rules δπr ,∫
Em[L(δπr(g), θ

∗)]dπr(θ
∗,m) = min

δ̃

∫
Em[L(δ̃(g), θ

∗)]dπr(θ
∗,m),

such that δπr(g) → δ(g) as r → ∞ for almost every g.

Proof of Theorem 1 First consider Γ̃ ⊆ ΓW . We show that for any finitely-supported

prior π on Γ̃, Eπ [r (θ) |g] is Lipschitz in g:

∥Eπ [r (θ) |g = w]− Eπ [r (θ) |g = w′]∥ ≤ KW ∥w − w′∥∞ .

Let {(θ1,m1) , ..., (θJ ,mJ)} be the support of π. For each mj we know from Lemma

1 that there exists ηm,j ∈ H with ∥η∥∗ ≤ W and mj(·) = E[G(·)ηm,j(G)]. Further note

that by e.g. Lemma 3.1 of van der Vaart and van Zanten (2008), for each m ∈ H the

likelihood ratio for the measure Qm corresponding to a GP(m,Σ) distribution, relative

to m′ = 0, takes the form

dQm

dQ0

(g) = exp

(
ηm(g)−

1

2
∥m∥2H

)
.

Define w̃ = w′ − w, and let wt = w + t · w̃. Note that

Eπ [r (θ) |g = wt] =

∑
j r (θj) exp

{
ηm,j(wt)− 1

2
∥mj∥2H

}
π (θj,mj)∑

j exp
{
ηm,j(wt)− 1

2
∥mj∥2H

}
π (θj,mj)

. (12)

Linearity implies that ηm,j(wt) = ηm,j(w) + tηm,j(w̃), and thus

∂

∂t
exp

{
ηm,j(wt)−

1

2
∥mj∥2H

}
= ηm,j(w̃) exp

{
ηm,j(wt)−

1

2
∥mj∥2H

}
.

By differentiating (12) we get

∂

∂t
Eπ [r (θ) |g = wt] = Covπ (r (θ) , ηm(w̃)|g = wt) ,

where the only posterior uncertainty about ηm(w̃) comes from the unknown parameter

m, while w̃ is fixed. Cauchy-Schwarz implies that

∥Covπ (r (θ) , ηm(w̃)|g = wt)∥ ≤ r̄
√
p
√
Var(ηm(w̃)|g = wt).
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For (θj,mj) ∈ ΓW we have ∥ηm,j∥∗ ≤ W , thus

|ηm,j(w̃)| ≤ W∥w̃∥∞ = W∥w − w′∥∞,

which implies that
√

Var(ηm(w̃)|g = wt) ≤ W∥w − w′∥∞. Hence,

∥Eπ [r (θ) |g = w]− Eπ [r (θ) |g = w′]∥ =∥∥∥∥∫ 1

0

∂

∂t
Eπ [r (θ) |g = wt] dt

∥∥∥∥ ≤ r̄
√
pW ∥w − w′∥∞ .

We next show that if a sequence of Bayes posterior means δπs converges almost-

everywhere pointwise to δ, then δ must be almost-everywhere Lipschitz. Indeed, for

almost every pair w and w′ we have

(δπs (w) , δπs (w
′)) → (δ∗ (w) , δ∗ (w′)) .

Hence, δπs (w)− δπs (w
′) → δ∗ (w)− δ∗ (w′) . Since

∥δπs (w)− δπs (w
′)∥ ≤ r̄

√
pW ∥w − w′∥∞

for all s, ∥δ∗ (w)− δ∗ (w′)∥ ≤ r̄
√
pW ∥w − w′∥∞ as well.

Further, note that for any w in the support of g and any ε > 0, there exists a w̃

with ∥w − w̃∥∞ < ε and δπs (w̃) → δ (w̃) . As we proved, lim sups→∞ ∥δπs (w)− δ (w̃)∥ ≤

r̄
√
pWε. Since we can repeat this argument for all ε, we see that δπs (w) has a limit. Define

δ∗ (·) as the pointwise limit of δπs (·), and note that the same argument as used above

shows that δ∗ is everywhere Lipschitz with Lipschitz constant r̄
√
pW. By construction,

δ∗ (w) = δ (w) for almost every w. □

Proof of Corollary 1 Immediate from Theorem 1. □

Proof of Lemma 2 Suppose that δ is both almost-surely Lipschitz and scale-invariant.

Consider two independent draws g and g′, and note that by scale-invariance we have

δ(g,Σ)− δ(g′,Σ) = δ(c · g,Σ)− δ(c · g′,Σ)

for all c > 0. However, the Lipschitz property implies there exists a constant K such

that for almost every (g, g′) and any fixed c,

∥δ(c · g,Σ)− δ(c · g′,Σ)∥ ≤ cK · ∥g − g′∥∞
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with probability one. Hence, E[∥δ(g,Σ) − δ(g′,Σ)∥] ≤ cK · E[∥g − g′∥∞]. Since E[∥g −

g′∥∞] =
√
2E[∥G∥∞] is finite when G ∼ GP(0,Σ), it follows that E[∥δ(g,Σ)−δ(g′,Σ)∥] =

0, and we may take a∗ = E[δ(g,Σ)] to complete the proof □

Proof of Proposition 1 If the covariance function Σ has a finite number of nonzero

eigenvalues, it follows that for G ∼ GP(0,Σ) the process G (·) is a transformation of a

finite-dimensional normal random vector, so we can write G (θ) = A (θ)Y for Y ∈ Rq a

standard normal random vector and A (·) a matrix-valued function that depends on Σ.

Correspondingly, the RKHS H can be written as {A (·)x : x ∈ Rq} .

Combining these observations, we can write g (·) = A (·) y for y ∼ N (x, I) , and any

estimator δ (g) can be equivalently expressed as γ (y) = δ (A (·) y) . For υ a standard

normal random vector and ζ as defined in the main text, we likewise have the equality

δB(g) ≡ E [δ (g + ζ) |g] = E [γ (y + υ) |y] ≡ γB (y)

for the bagged estimators. Since Σ
(
θ, θ̃
)
= A (θ)A

(
θ̃
)′

while Σ is continuous and Θ

is compact, the largest singular value of A (θ), σmax (A (θ)), is uniformly bounded. For

σ̄ = supθ∈Θ σmax (A (θ)),

sup
θ∈Θ

∥g (θ)− g̃ (θ)∥ ≤ sup
θ∈Θ

σmax (A (θ)) ∥y − ỹ∥ ≤ σ̄ ∥y − ỹ∥ .

Hence, it suffices to show that γB (y) is Lipschitz in y.

Note that for φ the standard (multivariate) normal density,

γB (y) =

∫
γ (y + υ)φ (υ) dυ =

∫
γ (υ)φ (υ − y) dυ.

Hence, if we let yt = y + t · ỹ, we have

∂

∂t
γB (yt)

∣∣
t=0

=

∫
γ (υ)

∂

∂t
φ (υ − yt)|t=0 dυ

=

∫
γ (υ) (υ − y)′ ỹφ (υ − y) dυ = Covυ∼N(y,I) (γ (υ) , υ

′ỹ) ,

where Covυ∼N(y,I) (γ (υ) , υ
′) denotes the covariance of γ (υ) and υ when υ ∼ N (y, I).

Note, however, that since the range of γ (υ) is contained in A, Cauchy-Schwarz implies

that for ā = supa∈A ∥a∥,∥∥∥∥ ∂∂t γB (yt)
∣∣
t=0

∥∥∥∥ =
∥∥Covυ∼N(y,I) (γ (υ) , υ

′ỹ)
∥∥ ≤ ā

√
p ∥ỹ∥ ,

which completes the proof. □
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Proof of Lemma 3 Let Q(θ) = Q(θ|g) and Q′(θ) = Q(θ|g′), and consider

Qt(θ) = Q(θ) + t(Q′(θ)−Q(θ)) = Q(θ) + t ·∆(θ)

for ∆(θ) = Q′(θ)−Q(θ). Let us write EQB
π [·|Q] for the expectation under the quasi-Bayes

posterior distribution, which draws θ from the distribution with density
exp(− 1

2
Q(θ))∫

exp(− 1
2
Q(θ))dπ(θ)

relative to π, and define CovQB
π (·, ·|Q) analogously. Note that δQB

π (g) = EQB
π [r(θ)|Q(·|g)],

and that

∂

∂t
EQB

π [r(θ)|Qt] =
∂

∂t

[∫
r (θ) exp

(
−1

2
Qt(θ)

)
dπ (θ)∫

exp
(
−1

2
Qt(θ)

)
dπ (θ)

]
= −1

2

(
EQB

π [r(θ)∆(θ)|Qt]− EQB
π [r(θ)|Qt]EQB

π [∆(θ)|Qt]
)

= −1

2
CovQB

π (r (θ) ,∆(θ) |Qt)

By the Cauchy-Schwarz inequality, however,

∥CovQB
π (r (θ) ,∆(θ) |Qt) ∥ ≤ r̄

√
p sup

θ
|∆(θ)|,

which completes the proof. □

Proof of Proposition 2 Similar to the proof of Lemma 3, let EQB
π [·|g] be the expec-

tation under the quasi-Bayes posterior distribution, which draws θ from the distribution

with density
exp(− 1

2
Q(θ|g))∫

exp(− 1
2
Q(θ|g))dπ(θ) relative to π, and define CovQB

π (·, ·|g), VarQB
π (·|g) analo-

gously. For gt = g + t · g̃, note that by Cauchy-Schwarz∥∥∥∥ ∂∂tδQB
π (gt)

∥∥∥∥ =

∥∥∥∥ ∂∂tEQB
π [r (θ) |gt]

∥∥∥∥ =
1

2

∥∥CovQB
π

(
r (θ) , g̃ (θ)′ Σ (θ)−1 gt (θ) |gt

)∥∥ ≤

1

2
r̄
√
p

√
EQB

π

[(
g̃ (θ)′Σ (θ)−1 gt (θ)

)2 |gt].
By another application of Cauchy-Schwarz,(

g̃ (θ)′ Σ (θ)−1 gt (θ)
)2 ≤ g̃ (θ)′ Σ (θ)−1 g̃ (θ) ·Q(θ|gt),

so

EQB
π

[(
g̃ (θ)′ Σ (θ)−1 gt (θ)

)2 |gt] ≤ ∥g̃∥2Σ,∞ EQB
π [Q(θ|gt)|gt]

for

∥g̃∥Σ,∞ = sup
θ∈Θ

√
g̃ (θ)′Σ (θ)−1 g̃ (θ) = sup

θ∈Θ

√
Q(θ|g̃).
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Altogether, we obtain that∥∥∥∥ ∂∂t EQB
π [r (θ) |gt]

∣∣
t=0

∥∥∥∥ ≤ 1

2
r̄
√
p ∥g̃∥Σ,∞

√
EQB

π [Q(θ|g)|g].

Note, next, that

EQB
π [Q(θ|g)|g] =

∫
Q(θ|g) exp

(
−1

2
Q(θ|g)

)
dπ (θ)∫

exp
(
−1

2
Q(θ|g)

)
dπ (θ)

.

Since the function h (x) = x exp
(
−1

2
x
)
is maximized at x = 2, if∫

exp

(
−1

2
Q(θ|g)

)
dπ (θ) ≥ ε,

then

Eπ [Q(θ|g)|g] ≤ 2 exp (−1) ε−1.

Note, however, that for |Θ| finite and π = minθ∈Θ π(θ),∫
exp

(
−1

2
Q(θ|g)

)
dπ (θ) =

∑
θ∈Θ

exp

(
−1

2
Q(θ|g)

)
π (θ) ≥ exp

(
−1

2
min
θ∈Θ

Q(θ|g)
)
π.

Hence, for g ∈ GC as defined in the proposition,∥∥∥∥ ∂∂t EQB
π [r (θ) |gt]

∣∣
t=0

∥∥∥∥ ≤ r̄
√
p ∥g̃∥Σ,∞ exp

(
1

2
C − 1

)
π−1,

which completes the proof. □

B Example: Non-Lipschitz Limit-of-Bayes

This appendix provides an example to demonstrate that without bounds on identification

strength, the pointwise limit of Bayes posterior means can be non-Lipschitz.

Let us continue the finite Θ special case discussed in main text, and further suppose

that the parameter space consists of just two points, Θ = {θ1, θ2}, that we have a one-

dimensional moment condition (k = 1), and that Σ = I2. The function m is thus

described by two numbers – the values at θ1 and θ2. Consider prior πC , supported on

just two values of (θ,m), which assigns probability 1
2
to each of θ1 and θ2 and, conditional

on θ = θj, implies that (m(θj),m(θ−j)) = (0, C) with probability one, where θ−j denotes
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the element of Θ other than θj. Suppose we are interested in estimating r(θ) = θ and

note that the Bayes estimator corresponds to the posterior mean

δπC
(g,Σ) = EπC

[θ|g] =
∑2

j=1 θj exp(−
1
2
g(θj)

2 − 1
2
(g(θ−j)− C)2)∑2

j′=1 exp(−
1
2
g(θj′)2 − 1

2
(g(θ−j′)− C)2)

.

For a given g with g(θ1) ̸= g(θ2) EπC
[θ|g] → argminθ∈{θ1,θ2}g(θ) as C → ∞. The limiting

estimator δ(g) = argminθ∈{θ1,θ2}g(θ) is not Lipschitz for any Lipschitz constant.

C Additional Simulation Results

This section reports additional simulation results to complement those reported in the

main text. Tables 3 and 4 report average normalized mean squared error, for the IV and

correlation coefficients respectively, when we bin specifications based on the number of

instruments rather than the effective F statistic. We see that the gains for the alternative

estimators are largest in the just-identified case, while the performance of the GMM and

alternative estimators tends to be closer in the over-identified specifications.

Tables 5 and 6 report normalized root mean squared error (based on 1,000 simulation

draws) averaged across all specifications when we set the parameter space Θs in speci-

fication s equal to
[
±c · σuv

σ2
v

]
for c ∈ {20, 40, 60}. As these results show, the qualitative

messages from our simulations are unchanged across these alternative parameter spaces.

Specifically, Table 5 reports results for the IV coefficient, and we see that while the root

mean squared error for all estimators grows as we widen the bounds on the parame-

ter space, in every case bagged two-stage least squares performs the best, followed by

bagged continuously updating GMM, then quasi-Bayes with an invariant prior, then the

two GMM estimators, and finally quasi-Bayes with a flat prior. Table 6 reports results

for the correlation coefficient and shows, as expected, that the bounds of the parameter

space make almost no difference in this case.

Tables 7 and 8 drop boundedness of the parameter space altogether and report the

mean squared error of two-stage least squares and bagged two-stage least squares esti-

mators for the IV coefficient when we limit attention to specifications with k ≥ 3. Table

7 bins the specifications based on the effective F-statistic, while Table 8 bins them based

on the number of instruments. We see that in these specifications bagging makes very
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little difference: while the bagged estimator performs slightly better in some cases, and

slightly worse in others, the overall performance difference between the two estimators is

minimal. This is consistent with the results in Table 3, which show that the performance

gains for bagged two stage least squares are coming from the specifications with k = 1

and k = 2.
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k = 1 k = 2 k = 3 k ≥ 4

Two-Stage

Least Squares
1.84 1.06 1.01 0.98

Continuously

Updating GMM
1.84 1.12 1.04 1.21

Bagged Two-Stage

Least Squares
1.12 1.04 0.99 1.01

Bagged Continuously

Updating GMM
1.12 1.08 1.03 1.00

Quasi-Bayes,

Flat Prior
1.94 1.20 1.13 1.27

Quasi-Bayes,

Invariant Prior
1.06 1.07 1.04 1.22

Number of Specifications 31 20 30 40

Table 3: Performance of IV coefficient estimators in Andrews et al. (2019) specifications. Entries

correspond the root mean squared error normalized by the standard error in the Andrews et al. (2019)

data,
√
Es[(δ(g)− θ∗s)

2]/σ∗
s , averaged across specifications. Columns correspond to varying degrees of

over-identification.
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k = 1 k = 2 k = 3 k ≥ 4

Two-Stage

Least Squares
1.20 1.06 1.00 1.01

Continuously

Updating GMM
1.20 1.10 1.01 1.18

Bagged Two-Stage

Least Squares
1.00 1.07 0.98 1.06

Bagged Continuously

Updating GMM
1.00 1.10 1.00 1.01

Quasi-Bayes,

Flat Prior
1.38 1.19 1.04 1.19

Quasi-Bayes,

Invariant Prior
0.99 1.11 1.00 1.17

Number of Specifications 31 20 30 40

Table 4: Performance of correlation coefficient estimators in Andrews et al. (2019) specifications. Entries

correspond the root mean squared error normalized by the standard error in the Andrews et al. (2019)

data,
√
Es[(δ(g)− r(θ∗s))

2]/σ∗
r,s, averaged across specifications. Columns correspond to varying degrees

of over-identification.
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Θs =
[
±20σuv,s

σ2
v,s

]
Θs =

[
±40σuv,s

σ2
v,s

]
Θs =

[
±60σuv,s

σ2
v,s

]
Two-Stage

Least Squares
1.22 1.34 1.42

Continuously

Updating GMM
1.30 1.42 1.51

Bagged Two-Stage

Least Squares
1.04 1.06 1.07

Bagged Continuously

Updating GMM
1.05 1.07 1.09

Quasi-Bayes,

Flat Prior
1.39 1.58 1.70

Quasi-Bayes,

Invariant Prior
1.11 1.14 1.15

Number of Specifications 121 122 122

Table 5: Performance of IV coefficient estimators in Andrews et al. (2019) specifications based on 1000

simulation draws. Entries correspond the root mean squared error normalized by the standard error in

the Andrews et al. (2019) data,
√
Es[(δ(g)− θ∗s)

2]/σ∗
s , averaged across all specifications. Columns vary

the size pf the parameter space.
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Θs =
[
±20σuv,s

σ2
v,s

]
Θs =

[
±40σuv,s

σ2
v,s

]
Θs =

[
±60σuv,s

σ2
v,s

]
Two-Stage

Least Squares
1.07 1.07 1.07

Continuously

Updating GMM
1.12 1.12 1.12

Bagged Two-Stage

Least Squares
1.03 1.03 1.03

Bagged Continuously

Updating GMM
1.02 1.03 1.03

Quasi-Bayes,

Flat Prior
1.20 1.21 1.20

Quasi-Bayes,

Invariant Prior
1.07 1.08 1.08

Number of Specifications 121 122 122

Table 6: Performance of correlation coefficient estimators in Andrews et al. (2019) specifications based

on 1000 simulation draws. Entries correspond the root mean squared error normalized by the standard

error in the Andrews et al. (2019) data,
√
Es[(δ(g)− r(θ∗s))

2]/σ∗
r,s, averaged across all specifications.

Columns vary the size pf the parameter space.

Es [F ] ≤ 10 10 < Es [F ] ≤ 20 20 < Es [F ] ≤ 50 50 < Es [F ]

Two-Stage

Least Squares
0.98 1.01 1.01 1.00

Bagged Two-Stage

Least Squares
1.00 0.98 0.99 0.99

Number of Specifications 42 4 15 9

Table 7: Estimator performance in Andrews et al. (2019) specifications with k ≥ 3 and an unbounded

parameter space. Entries correspond the root mean squared error normalized by the standard error in the

Andrews et al. (2019) data,
√

Es[(δ(g)− θ∗s)
2]/σ∗

s , averaged across specifications. Columns correspond

to ranges of values for the average effective first-stage F statistic of Montiel-Olea and Pflueger (2013).

42



k = 3 k ≥ 4

Two-Stage

Least Squares
1.01 0.98

Bagged Two-Stage

Least Squares
0.99 1.01

Number of Specifications 30 40

Table 8: Estimator performance in Andrews et al. (2019) specifications. Entries correspond the

root mean squared error normalized by the standard error in the Andrews et al. (2019) data,√
Es[(δ(g)− θ∗s)

2]/σ∗
s , averaged across specifications. Columns correspond to varying degrees of over-

identification.
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