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Abstract

Technological change is the key driver of sustained economic growth, but new ideas can only

transform production if the supply of technology-specific inputs supports their adoption. This

paper studies how imperfect competition in markets for technology-specific capital shapes the

direction of firms’ technology adoption and workers’ specific human capital accumulation. I

argue that when production requires combining technology-specific capital and labor, providers

of specialized capital have a direct stake in the formation of complementary skills. I develop

a general equilibrium model in which dominant capital providers set rental rates and subsidize

training in the skills required to operate their systems, internalizing their effect on the mar-

ket for technology-specific labor. The framework features a policy-relevant trade-off: market

power in markets for specialized capital raises misallocation, but it can stimulate investment

in high-quality training. I quantify how the balance between these forces shapes technological

specialization and welfare, showing that stronger competition in input markets is not always

welfare-improving, particularly when workers’ preferences make skills less substitutable. I test

the theory in the digital infrastructure industry. Using large-scale job posting microdata and

developer surveys, I study the open source release of platform-specific software by a major sup-

plier of cloud computing power. I observe patterns consistent with my theory of subsidies to

skill acquisition costs: the release of specific software is associated with increased adoption of

the complementary platform, but also a lower wage premium for the related specialized skills.
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1 Introduction

Modern production processes often rely on technology-specific know-how that ties workers’ skills to

particular systems and tools. In rapidly innovating sectors such as automotive, pharmaceuticals,

and semiconductors, technicians operate proprietary diagnostic instruments, and software engineers

are required to master the programming environments of distinct computing platforms. Because

the availability of specialized skills is crucial for firms to adopt new technologies, understanding

how workers acquire specific human capital is fundamental to explaining technological change, the

key driver of sustained economic growth.1 Work in economics has emphasized how workers acquire

skills in anticipation of labor market opportunities (Becker, 1962; Goldin and Katz, 2008) and at

the same time that the diffusion of technology hinges on the availability of skilled human capital

(Nelson and Phelps, 1966; Acemoglu, 1998; Caselli and Coleman, 2006). Yet, most of this literature

classifies skills using coarse measures, such as education levels or broad occupational categories,

and overlooks the growing importance of highly specialized, technology-specific expertise developed

through training and certification programs sponsored by major capital providers.2

In this paper, I argue that when production requires combining technology-specific capital and

labor, providers of specialized capital have a direct stake in the formation of complementary skills.

I study the interplay between firms’ technology adoption decisions and workers’ human capital

accumulation choices in a setting where skills are technology-specific and compatible with capital

supplied in imperfectly competitive markets. This setting generates new insights into how economies

specialize across technologies and provides a new perspective on open source strategies observed in

the digital infrastructure industry. Despite not employing labor themselves, capital providers may

invest to reduce workers’ training costs because a larger pool of skilled users increases downstream

adoption of their technology. I argue that incentives to invest in human capital accumulation depend

on market structure in the input sector, leading to a novel economic trade-off between allocative

distortions from market power and gains from specialization in productive technologies.

To make this argument, I develop a tractable general equilibrium model where workers and firms

1The idea that technological change is the key driver of sustained economic growth traces back to Solow (1956),
was later formalized by Romer (1990) and modelled as innovation-driven by Aghion and Howitt (1990) and Grossman
and Helpman (1993). For a review, see The Committee for the Prize in Economic Sciences in Memory of Alfred Nobel
(2025).

2For example, General Motors offers its Automotive Service Educational Program (ASEP) in partnership with
dozens of community colleges across the U.S., training technicians in the use of its diagnostic and car repair tools.
Similarly, Amazon offers the AWS Certified Solutions Architect credential, and Microsoft provides the Azure Solutions
Architect Expert certification, both recognizing proficiency in designing and deploying cloud-based systems.
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make interdependent choices of technological specialization while dominant capital providers can

influence workers’ costs of skill acquisition. Methodologically, I show that this environment can be

represented as a nested fixed-point problem, which allows me to characterize the general equilibrium

impact of firm-level shocks. The framework is helpful to assess the macroeconomic consequences

of industrial concentration and I use it to inform the design of policies such as competition rules,

training subsidies and regulations that shape platform interoperability. In particular, I show how a

quantitative implementation of the model can be used to evaluate the effects of regulations in the

European Union’s January 2024 Data Act, which promotes easier switching across cloud providers.

I apply the theory to the digital infrastructure industry, which offers rich variation to study the

mechanisms at the core of the model and sits at the center of current policy debates on competition

and innovation. This setting allows me to measure adoption of technology-specific capital and ac-

quisition of technology-specific knowledge by analyzing large-scale longitudinal microdata from the

United States that are informative about firms’ adoption of computing platforms and the evolution

of demand for specialized software skills. After showing that some specialized software skills differ

across computing platforms, I study the open source release of platform-specific software by Google,

a large provider of cloud computing power. The empirical findings are consistent with my theory

of subsidies to skill acquisition costs: the release of specific software is associated with increased

adoption by employers of the complementary computing platform, but also a lowered wage pre-

mium for the associated specialized skills. This case study serves as a proof of concept for the core

assumptions and mechanisms of the theory, motivating future empirical work on other sectors. It

also yields empirical moments that inform a quantitative implementation of the model, which I use

to evaluate a series of counterfactual and policy experiments.

The quantitative exercises highlight the trade-off between the model’s misallocation and special-

ization forces for social welfare. While the balance of these two forces for aggregate productivity and

welfare is theoretically ambiguous, I discuss how it depends on the value of parameters regulating

how firms and workers reallocate across technologies following changes in fundamentals. The results

call for caution when designing competition policies aimed at distortions in markets for technology-

specific capital. Imperfect competition in these markets can bolster incentives for capital providers

to invest in skill formation, with potentially beneficial effects on technological specialization and

aggregate productivity.

I build on Dixit and Stiglitz (1977), Hopenhayn (1992) and Melitz (2003) and generalize an

equilibrium model of heterogeneous goods producers by introducing two additional features.
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First, I endow each producer with a technology adoption choice. All good varieties can be

produced with any of the available technologies, but firms face idiosyncratic, technology-specific,

productivity draws. Production under each technology requires a combination of technology-specific

labor and capital. In contrast to related models with strategic capital providers (see, e.g., Romer,

1990), a key feature of my framework is that each type of capital requires specific types of skilled

labor. Therefore, I model the labor market as segmented by types of technology-specific human

capital and study the problem of workers facing a discrete choice over which type of specialized

skills to acquire. These individual decisions jointly determine endogenous supply curves for each

segment of the labor market.

The second fundamental feature of the model is the assumption that the imperfectly competi-

tive capital providers, renting to goods producers, internalize indirect wage effects. Specifically, I

introduce a specific-labor margin in the problem of capital suppliers: dominant providers internalize

the wage and labor-demand responses in the sector employing workers trained for their technology.

The presence of this channel shapes the markup on capital and generates strategic incentives to

subsidize training in complementary technological knowledge. By investing to expand the supply

of specific labor, capital providers reduce the cost of operating the technology linked to the type of

capital they offer. This encourages downstream firms to adopt it and reallocates demand towards

the type of capital they provide.

I model capital suppliers that are granular enough to impact factor prices in markets where

they do not directly participate, and sophisticated enough to internalize this. Specifically, these

firms understand that a) sponsoring the accumulation of technology-specific knowledge will change

the equilibrium price of labor, b) employers’ adoption decisions will respond to this. Formally, the

demand constraint faced by imperfectly competitive technology suppliers will depend on the equi-

librium wage in the market for complementary labor, which is no longer taken as given. Intuitively,

technology providers internalize the indirect network effects through the market for specific labor.

However, unlike theories of predatory pricing, suppliers encourage adoption of the technology not

by pricing their capital below marginal cost, but by becoming sponsors of technological knowledge3.

The theoretical analysis delivers several insights. First, markups on technology-specific capital

depend on the strength and direction of the reallocation of labor and production across technologies

that follows an increase in the rental rate (Proposition 1). This channel implies that capital providers

3Katz and Shapiro (1986) introduce the term “sponsor” to refer to suppliers that engage in predatory pricing to
standardize the economy on the use of their technology.
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can charge higher markups when they take wage effects into account. Intuitively, when capital

providers raise prices on their technology, they directly reduce demand for it both on the intensive

margin (quantity of units supplied) and the extensive margin (measure of producers adopting the

technology). The latter effect implies weaker demand for specialized workers who use the technology,

and therefore lower wages. This cost adjustment, arising only when the specific-labor margin is

present, partially dampens quantity losses, allowing providers to sustain higher prices.

At the same time, I show that the presence of the specific-labor margin generates incentives to

engage in sponsorship of technological knowledge. I prove that the incentives to invest in human

capital are monotonically increasing in the productivity of the underlying technology (Proposition

2). This result highlights that strategic investment by capital providers ultimately encourages the

accumulation of human capital complementary to high-quality technologies.

Finally, I study the relative importance of the misallocation and specialization channels by eval-

uating how social welfare varies as competition in capital markets weakens. In general, I find that

the balance between these opposite forces depends on the parameters that regulate the productivity

distribution and the substitutability across technologies for both producers and workers. I present

a calibrated version of the model and use it to illustrate that weaker competition in markets for

technology-specific capital implies higher prices on the capital input with negative effects on con-

sumption. However, when suppliers’ markups over marginal cost are sufficiently high, these rents

stimulate capital providers to finance training subsidies. These strategies favor adoption of more

efficient technologies and ultimately result in welfare gains from reduced labor disutility.

As an empirical application of the theory and to validate key model assumptions, I perform a

case study on the industry of digital infrastructure, where I focus on providers of cloud computing

power and the associated market for specialized software skills. I analyze a specific event: the open-

sourcing on November 2015 of TensorFlow, a machine learning program developed by Google which

is complementary to the cloud computing infrastructure of the same firm, Google Cloud Platform

(GCP).4 While the rationale and the consequences of open-sourcing software are multifaceted, this

is an appropriate setting to test/apply my theory because the immediate effect of open-sourcing

software is that it makes specialized code directly available to read and customize. In the context of

software designed to run machine-learning models on a specific computing platform, open-sourcing

software optimized for use on a given platform effectively lowers the cost of acquiring the skills

4The release of TensorFlow has been studied in the strategy literature as a quasi-exogenous shock to AI production
costs and AI-related labor (see, e.g. Rock, 2019; Impink, 2024).
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required to operate that platform, by allowing developers to study and adapt ready-made code.

First, using data from the Stack Overflow Developer Survey, I document that developers proficient

in TensorFlow are more than twice as likely to report using GCP in their jobs, with the relationship

being strongest among respondents who report having substantial influence over their employers’

technology adoption decisions.5 I then turn to a second data source to obtain higher-frequency

evidence on the evolution of skill demand and technology adoption: job postings from the U.S.

labor market, available from Lightcast. Applying a text-based search algorithm, I construct (i)

a time-varying measure of demand for TensorFlow as a specialized skill and (ii) a time-varying

measure of cloud adoption by provider, based on employers’ demand for related software skills. In

the raw data, demand for workers proficient in TensorFlow rises sharply after the November 2015

open-sourcing event, across a wide range of sectors and employers. To assess whether this surge

follows increased adoption of GCP, I estimate a difference-in-differences specification and find that

inferred adoption of GCP rises substantially following the open source release, while no comparable

change occurs for the two main competitors, Amazon Web Services (AWS) and Microsoft Azure. In

a subsample of postings containing salary information, I further document that the open-sourcing

event is associated with a pronounced decline in the wage premium for jobs requiring specialized

skills to operate GCP. Taken together, these patterns are consistent with the assumptions and

predictions of my model of capital-provider-financed subsidies to specialized training.

Related Literature. This paper contributes to the growing literature in macroeconomics

that seeks to understand the macroeconomic importance of firm market power, recently reviewed

by Syverson (2019). Existing work studies the implications for aggregate outcomes (i.e. wel-

fare, business dynamism, labor and capital shares) of microeconomic market imperfections such

as monopsony power in labor markets (Berger et al., 2022), market power in product markets

De Loecker et al. (2020, 2021); Autor et al. (2020) or both (Deb et al., 2022, 2024). Particularly

relevant is the research on endogenous growth that studies the importance of market structure for

innovation and technology diffusion (Aghion and Howitt, 1990; Klette and Kortum, 2004; Akcigit

and Ates, 2023). This strand of research emphasizes product-market competition as a key driver

of technology adoption and innovation by producers of final goods. My work complements these

theories by shifting the focus to upstream to markets for technology-specific capital. I argue that

imperfect competition at this level of the production network induces strategies to expand market

5Stack Overflow is an online community of peer-to-peer coding support. Prior to the advent of generative AI
models, it was widely regarded as the leading source of support for programming questions. Each year, the platform
conducts a voluntary survey of developers to document their use and attitudes towards software and technology.
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share that ultimately distort downstream technological specialization.

Because production combines technology-specific capital and labor, although I study a static

economy, my work is very closely related to the theory in Chari and Hopenhayn (1991). In that

paper each type of technology is a different vintage and the authors study the rate at which new

technologies are adopted. Instead, in my model technologies are not necessarily vertically ranked and

I analyze how market structure impacts which technologies get adopted rather than when. In fact,

whereas prior work has focused on distortions to the scale of innovation and technology diffusion, I

study distortions to the composition of technologies adopted, in the spirit of Acemoglu (2002). In

this respect, my paper is most closely related to recent work by Lensman (2025), who shows that

market structure impacts aggregate growth through the distortion of the direction of innovation in

technologies. That work focuses on product-market distortions and innovation, while I emphasize

input-market distortions and technology adoption. In doing so, I provide a microfoundation for

human-capital accumulation through workers’ skill choices and highlight how interactions between

different input markets can shape the direction of technology adoption.6

A central point of this paper is that technology adoption is linked to the direction of the accu-

mulation (i.e. specialization) of human capital. The core mechanism of this paper is that capital

providers shape the specialization pattern precisely by influencing incentives to acquire technology-

specific skills. For this reason, my work connects to a large literature studying human capital

accumulation (see, e.g., Becker, 1962) and skill-biased technical change (see, e.g., Krusell et al.,

2000). Hsieh et al. (2019) study how distortions to the allocation of workers across occupations

hinder growth, I contribute a theory of how skill acquisition choices may be distorted by large firms

that seek market advantages. More closely related is the literature on the labor market effects

of technology, reviewed in Acemoglu and Autor (2011). Particularly, this work relates to recent

work on artificial intelligence and automation (Acemoglu and Restrepo, 2019, 2020; Autor et al.,

2003, 2024) which shows that employers’ decisions to adopt new technology impacts labor markets

because of production complementarities/substitutabilities. The closer paper is that of Contractor

and Taska (2024) who show that software adoption by employers increases wage inequality by push-

ing up wages of skilled workers complementary to software. I add to this analysis by studying what

determines firms’ adoption decisions and by introducing the strategic behavior of tech innovators

participating in non-competitive factor markets.

6Exploring whether the input-market interactions of my framework also matter for innovation and growth would
be an interesting topic of future research.
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The mechanism I propose builds on classic models of indirect network effects (Katz and Shapiro,

1986) and tying strategies (Adams and Yellen, 1976; Carlton and Waldman, 2002), where firms

expand demand for one product by linking it to a complementary good, creating interdependence

across markets. My framework extends this logic to a setting in which technology-specific capital

must be combined with technology-specific labor. Capital providers effectively tie factor markets

by shaping training costs and wages, creating a general equilibrium channel through which market

power distorts technology adoption.

Finally, both the empirical analysis and the theory support the view of open-sourcing as a

strategy to expand demand for complementary products or platforms. This links to an active

literature following the seminal work of Lerner and Tirole (2002, 2005), particularly to recent

papers analyzing the welfare implications of open source investment (Gortmaker, 2024). While

most contributions study why individual developers participate in open source projects, my focus is

on why large incumbent firms might open source proprietary software.7 Relatedly, Athey and Ellison

(2014) study openness as a strategic platform design choice, and Kumar et al. (2011) examine firms’

incentives to develop features for open source software in competitive environments. I contribute

to this literature by providing empirical evidence on how large firms influence technology adoption

and skill formation by open-sourcing. More closely, Rock (2019) similarly models the TensorFlow

release as a reduction in learning costs and shows how firms respond by reskilling incumbent workers,

generating revaluation effects. My analysis highlights how lower learning costs expand the overall

supply of specialized labor, shaping technology adoption across firms in the broad economy. To

my knowledge, this is the first general equilibrium framework to show how open-sourcing influences

labor-market outcomes and aggregate productivity through technology adoption.

Outline. The rest of the paper is organized as follows. Section 2 provides two running examples

from real-world settings. Section 3 presents the model setup, assumptions about market structure

and the definition of the equilibrium. Section 4 characterizes the equilibrium and presents theoretical

results. Section 5 summarizes empirical findings when the theory is applied to open-sourcing in the

U.S. labor market and Section 6 includes counterfactual analysis and policy experiments from a

quantitative example of the theoretical framework. Section 7 concludes.

7Lerner and Tirole introduce an “alumni effect,” whereby open source code is more likely to be used in educational
settings, lowering future programming costs on those platforms. Their framework, however, does not analyze firms’
strategic incentives to release proprietary code to increase demand for complementary products.
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2 Illustrative Examples

The model that will be outlined in Section 3 applies to sectors where workers’ tech-specific knowledge

(i.e. specialized human capital tied to a particular production technology) is an essential input in

production and must be combined with tech-specific capital. I focus on environments where markets

for tech-specific capital are imperfectly competitive and I allow capital providers to influence not

only rental rates but also the composition of specialized skills of the economy. By strategically

shaping the supply of compatible specialized labor, capital providers can increase the adoption of

the technology for which they supply capital. The following examples illustrate settings in which

capital providers, facing such incentives, directly or indirectly sponsor the training of workers in the

skills required to operate their technology.

2.1 Automotive Technicians and Manufacturer-Sponsored Programs.

Vehicles are repaired in repair centers where specialized technicians use manufacturer-supplied di-

agnostic tools.8 While mechanical repair shops and collision centers are typically independently

owned, they can be certified by carmakers. Therefore, car manufacturing companies provide tech-

specific physical capital (tools and equipment) and intangible capital (certifications). In the United

States, we observe a few large players in the U.S. automotive industry that engage with commu-

nity colleges to support brand-specific knowledge of technicians, who will later move to work in

independent service centers.9

2.2 Open Source Software and Adoption of Cloud Infrastructure.

The performance of machine learning models depends on the particular computing infrastructure

they are run on. While computing resources are critical to analyze data, so is the infrastructure-

specific expertise of developers, workers who write code and run data analysis programs on the cloud

infrastructure that its employer offers. In the U.S. the sector of cloud infrastructure has very few

players (mainly Amazon, Google, Microsoft) and most firms in the economy rent their resources

to fulfill the computational needs of their businesses. Some of these companies write computer

programs for models that run with their infrastructure and facilitate the work of developers by

making these codes available for reading and writing (i.e. by publishing them with an open source).

8General Motors competes with a few other firms for the provision of diagnostic tools: Autel, Launch, Snap-on.
9As part of the ASEP program, General Motors collaborates with more than 50 community colleges in the U.S.

to offer certification programs that train technicians to repair Chevrolet, Buick, GMC, and Cadillac vehicles. Honda
sponsors a similar certification program, PACT. Toyota and Lexus invest in a pipeline of dealers and technicians to
the T-TEN training program.
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I will focus on this context in the empirical application in Section 5.

2.3 General Insights from the Examples

Automotive and digital infrastructure are examples of industries for which rapid technological

change and heavy reliance on human capital are defining characteristics. Interestingly, we ob-

serve that in both these industries capital providers actively invest in the specialized training of

their future/potential customers’ workforce. While a detailed account of the institutional dynamics

of each industry lies beyond the scope of this paper, these examples raise a broader question: can

we extract general economic insights from these recurrent patterns? Empirical observation alone

cannot fully reveal the incentives that drive capital providers to invest in training, nor the general

equilibrium consequences of such strategies. Motivated by this observation, the next Section de-

velops a general equilibrium model designed to capture the essential features common across these

cases: (i) workers who acquire tech-specific skills; (ii) firms that adopt specialized technologies and

demand corresponding forms of human and physical capital; and (iii) capital providers that compete

for adoption and strategically invest to lower barriers to acquiring technological knowledge linked

to their systems. The model will allow me to evaluate general equilibrium effects of investment in

skill supply and to undertake policy counterfactuals.

3 A Model of Strategic Investments in technology-specific Knowl-

edge

In this section, I provide a new general equilibrium theory of how firms and workers make technology-

specific decisions when choosing, respectively, how to produce and which skills to acquire. The static

model departs from standard theories of human capital accumulation and technology adoption in

two respects. First, technology-specific capital markets are imperfectly competitive, and capital

providers internalize both the direct effect of their actions on producers’ technology adoption deci-

sions and the indirect effect operating through technology-specific-labor markets. Second, providers

of technology-specific capital can undertake investments to reduce access barriers faced by workers

when acquiring technology-specific knowledge. In the following sections, I describe the main build-

ing blocks of the model and illustrate them with examples from real-world settings. I then proceed

to formally define the problem of each agent while motivating my modelling assumptions.
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3.1 Environment

I model a static economy with three types of agents: goods producers, workers and capital providers.

Their interactions are summarized in Figure 1. I summarize notation in Appendix Table 3. The

first model block is a measure Ī of firms producing differentiated varieties of consumption goods.

Each firm i ∈ I chooses which technology j ∈ J to adopt to produce its variety, conditional on

idiosyncratic productivity shocks zi = {zij}j∈J . Production inputs are technology-specific: firms

adopting technology j must hire technology-specific-labor nj taking as given the wage wj prevailing

in the corresponding segment of the labor market, and must rent technology-specific capital kj at

cost rj from a specialized capital provider.

The second block of the model is a measure N̄ of workers, indexed by q ∈ Q. Each worker/-

consumer chooses one technology-specific skillset to acquire and then provides one hour of labor

inelastically in the segment of the labor market where their specialized skills are demanded. Work-

ers are heterogeneous in their disutility ξq = {ξqj }j∈J of providing specialized labor and face a

(finite) access cost τj ∈ [0, τ̄ ] when acquiring technology-specific knowledge. These training costs

are homogeneous across workers and independent of the individual idiosyncratic characteristics.

The level of training costs for technology j has a default level of τ̄ and it is a function of oj , the level

of investment in training by the provider of the associated capital. Additionally to labor income,

workers earn profit income from owning shares in the economy’s firms and rental income from land

used by capital providers. Workers use these funds to finance consumption of a composite of the

differentiated varieties i ∈ I.

The third block consists in providers of technology-specific capital. These firms produce technology-

specific capital kj using land Lj and rent it to goods producers. I assume capital providers do not

directly participate in labor markets, but can indirectly affect the equilibrium price and quantity of

the technology-specific-labor compatible with their capital. In particular, they can invest resources

oj at cost ϕ(oj) to reduce the access barrier faced by workers when acquiring technology-specific

knowledge, τj , below its default level τ̄ . For notational simplicity, I denote τj ≡ τ(oj) whenever no

confusion arises.

3.2 Market structure.

In the baseline specification, I make the following assumptions about the competitive structure

of each market. Labor markets are assumed to be segmented by skills, but otherwise perfectly

competitive. Workers and employers take wages and training costs as given. Goods producers
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Figure 1: Economic Environment and Market Interactions.

j ∈ J

Tech Providers

Workers
q ∈ Q i ∈ I

Producers

Acquire skill j

τj(oj), ξ
q
j

Adopt j

zij

nj

wj

Invest
oj

rj kj

Market power

Notes: The figure summarizes interactions among three agent types: workers (q ∈ Q), goods producers (i ∈ I),
and technology providers (j ∈ J ). Each provider supplies technology-specific capital kj and may invest oj to
lower training cost τj . Producers adopt one technology j, demanding both capital at rate rj and labor nj at wage
wj . Workers choose skill specialization based on expected wages and training costs. Providers influence outcomes
via (i) direct market power in pricing, and (ii) the novel specific-labor margin, i.e., their ability to shift wages
wj through investment oj that reduces τj(oj). These two margins jointly determine the economy’s equilibrium
allocation of skills and production processes across technologies.

are monopolistically competitive: they internalize demand for their variety and set prices. Capital

providers are also monopolistically competitive. They internalize total demand for their type of

capital.

As discussed more extensively below, an important feature of the model is the assumption that

capital providers internalize their impact on the equilibrium price and quantity of labor specific

to their technology and how this influences the total demand for their type of capital. Therefore,

capital providers in this economy can exert their market power on goods producers in two ways:

first, by charging a markup over marginal cost on the capital they supply and second by influencing

the specialization of human capital in a direction that favors adoption of their technology.

3.3 Workers

There is a measure N̄ of workers, indexed by q ∈ Q with preferences described in eq. 1.

Uj = ln(Cq)− ξqj (1)
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Each worker derives utility from consuming a bundle of varieties Cq =

(∫
i∈I c

ε−1
ε

i di

) ε
ε−1

and pro-

vides inelastically one unit of labor at idiosyncratic disutility cost ξqj ∼ T1EV (η), where j ∈ J

denotes the type of specialized skills the worker chooses to acquire, i.e. the segment of the labor

market where the worker chooses to participate.

Participating in a market entails training in technology-specific knowledge, captured by the

idiosyncratic disutility cost ξqj and by a time cost to access technology-specific knowledge, τj ∈ [0, τ̄ ].

In particular, I assume that each worker choosing to specialize in skill j ∈ J provides one hour of

labor, but only a fraction (1 − τj) of that time can be allocated to production and be paid at the

hourly wage wj . This is because a fraction of hours τj must be devoted to accessing technology-

specific knowledge 10. These access costs are homogenous across workers and independent of their

disutility of providing specialized labor. While the default level of these access costs is τ̄ , this can

be lowered through investment by providers of technology-specific capital, as discussed later.11 The

budget constraint of worker q is is

PCq =

∫
i∈I

picqidi = wj (1− τj) + Πj (2)

where pi are prices of goods varieties and P denotes the ideal price index of Cq (which I normalize

to 1). I denote by Πj = αjΠ, where αj is the share of financial income accruing to a worker in labor

market j.12

3.4 Goods Producers

There is a continuum of measure Ī of producers13 of differentiated good varieties indexed by i ∈ I.

Each producer adopts one technology j ∈ J and then hires specialized labor and capital to operate

it. While each variety can potentially be produced with any technology, I assume each match has a

different productivity. In particular, production of variety i ∈ I with technology j ∈ J is given by

yi = zij

(
nij

)ρ (
kij

)1−ρ

ρρ (1− ρ)1−ρ (3)

10Access costs are meant to capture any time investment necessary to acquire technology-specific knowledge which
is independent of individuals talent of preferences. For instance, they could capture the time required to retrieve
appropriate training materials or to enroll in specialized training course.

11To simplify notation, I use τj for τ(oj)
12For tractability, I assume aggregate financial income in the economy (i.e. profits of goods producers, capital

providers and rental income from land), Π , is distributed lump sum to workers, proportionally to their labor income:
Πj(q) = αwj(q)(1− τj)Π with α ∈ (0, 1) and Π = ΠF +ΠK + pLL̄− T .

13Throughout, I equivalently refer to goods producers as “firms” or “employers”.
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where kij is capital input and nij is labor input. I assume zij is an i.i.d. draw from a Fréchet

distribution with parameter θ > 0 and ρ ∈ (0, 1) is the labor share in production costs. Notice that

in the limit case where θ → ∞, productivity heterogeneity collapses and technologies are perfectly

substitutable from the point of view of goods producers while as θ → 0 idiosyncratic productivity

shocks are very dispersed.

Profits of good producer i ∈ I when choosing technology j are given by

πij = piyi − wjn
i
j − rjk

i
j (4)

I denote by ΠF total profits in this sector.

3.5 Providers of Technology-Specific Capital

There is a large but finite number of capital providers.14 Each is a monopolist in the market for

its technology, therefore I index capital providers and technologies interchangeably, without loss of

generality. Providers produce and price technology-specific capital rj and invest resources oj ∈ [0, τ̄ ]

to lower barriers to technology-specific training.

A technology provider j ∈ J produces technology-specific capital kj from land Lj , an input in fixed

supply with price pL.15 To emphasize the indirect impact of capital providers on labor markets

through technology adoption, I abstract from labor use in production of technology-specific cap-

ital. Providers are heterogeneous in productivity with φj ∼ G(φ). The production function for

technology-specific capital is linear:

kj = φjLj . (5)

Capital providers set the rental rate rj and investment oj internalizing how these impact total

demand for technology-specific capital emerging from goods producers’ adoption decisions. Demand

faced by capital provider j ∈ J is:

kdj =

∫
i∈I

kijdi = kj(rj , wj ;Y,W) (6)

where Y is aggregate output and W is an aggregate wage index, both taken as given in the monop-
14I focus on distortions arising from market power of capital suppliers and abstract from other market imperfections

in capital markets. A literature in macro-finance has studied the importance of financial frictions, such as borrowing
constraints or costly external finance (Kiyotaki and Moore (1997), Bernanke et al. (1999), Buera et al. (2011), Midrigan
and Xu (2014), Ottonello and Winberry (2024)).

15Each unit of land can only be occupied by one capital provider. In the example of providers of computing power,
the land fixed input captures the costs associated to renting land required to build a data center.

13



olistic competition setup. While in standard models of imperfect competition the wage of the other

input wj is taken as given, a core feature of my framework is that capital providers internalize how

their choice of rj and oj impacts the equilibrium price and quantity of labor specific to technology j

and how this feeds back into the goods producers adoption decisions determining total demand for

specific capital. This assumption is what generates the central mechanism in this model, which I

refer to as the specific-labor margin of capital provision. Therefore, capital providers face a demand

schedule which depends on the equilibrium price of specific-labor:

kdj =

∫
i∈I

kijdi = kj(rj , w
eq
j ;Y,W) (7)

weq
j = wj(rj , τj(oj);Y,W) (8)

Firms can subsidize access to technology-specific knowledge: firms can lower the cost of access

to technology-specific training faced by workers by paying a cost. In particular, I assume that the

cost of access to technology-specific training entering the worker’s budget constraint in Equation

(2) is given by

τj = τ̄ − oj (9)

where τ̄ > 0 is a default cost, which I assume to be homogeneous across technologies and oj ∈ [0, τ̄ ]

is provider j’s investment in technology-specific knowledge, incurred at finite cost ϕj(oj) ∈ [0,∞).16

The costs incurred by capital providers are expressed in units of the consumption good; total

investment costs in the economy are denoted by Φo. The total fixed cost Φo is financed through

spending on individual varieties according to

ϕi =

(
pi

P

)−ε

Φo, (10)

so that the contribution of each variety i ∈ I reflects its CES expenditure share.17 Intuitively,

capital providers can incur costs to build a systematic body of technological knowledge relevant

for the type of specialized productive equipment they rent, making it easier for workers to gain

expertise in the use of the technology. Alternatively, they could sponsor training programs that

16In general, I assume the cost function ϕ(·) to be increasing and convex. In Section 4, I’ll focus on a simplified
case in which investment is a binary choice subject to a fixed cost.

17Appendix B.3.3 develops a microfoundation in which an intermediary implements this allocation using the same
aggregator that characterizes consumer preferences.
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teach prospective workers how to operate their systems.

Net profits of technology provider j ∈ J are given by

V (rj , kj , oj ;φj) =

(
rj −

pL

φj

)
× kj(rj , w

eq
j (rj , oj);Y,W)− ϕ(oj) (11)

I denote by ΠK total net profits in this sector.

3.6 Equilibrium

I define the general equilibrium of the static economy, where labor, capital, asset and land markets

clear. Goods producers and capital providers engage in monopolistic competition.

Definition 1 (General Equilibrium). An equilibrium for the economy is an allocation

{
{nj , kj , Lj}j∈J , {ci}i∈I , C, Y

}
,

investment strategies {oj}j∈J , shares of financial income {αj}j∈J and a price vector18

{
{wj , rj}j∈J , {pi}i∈I , pL,W

}
,

such that the following conditions hold:

(i) Worker optimality. Given wages {wj}, training costs {τj}, aggregate profits, and goods

prices {pi}, each worker chooses consumption and labor-market participation to maximize

utility (Equation (1)) subject to the budget constraint (Equation (2)).

(ii) Goods producers’ optimality. Given input prices and idiosyncratic productivity draws,

each goods producer chooses a technology, prices, and input demands to maximize profits

(Equation (4)), subject to the technological constraint (Equation (3)) and the demand for its

variety for consumption (Equation (20)) and investment costs (Equation (10)).

(iii) Capital providers’ optimality. Each capital provider chooses the supply of technology-

specific capital and the training subsidy (or investment decision) to maximize net profits

(Equation (11)), taking as given (a) the demand for its capital (Equation (7)), (b) the equilib-

rium wage equation for specialized labor (Equation (8)), (c) its production constraint (Equa-

tion (5)), and (d) the investment strategies of other providers. They take as given aggregate

output and the aggregate wage index.
18The aggregate price level P is normalized to one and thus omitted.
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(iv) Market clearing. All markets clear:

yi = ci + ϕi, ∀i ∈ I, (12)

ndj = nsj , kdj = ksj , ∀j ∈ J , (13)

Y = C +Φo, (14)∑
j∈J

nj = N̄ (15)

∑
j∈J

Lj = L̄ (16)

∑
j∈J

αj = 1 (17)

In the next section, I characterize this equilibrium as a three-layered fixed point problem and

derive key theoretical results.

4 Theoretical Analysis

In this section, I characterize the decentralized equilibrium of the economy after making functional

form assumptions and study its welfare properties. In particular, I describe the solution to the

discrete choice problems of workers and firms specializing in one type of technology. Solutions to

these problems give us the technological specialization pattern of the economy, i.e. distributions

of specialized skills across workers and technologies across producers. I characterize the strategic

incentives of providers of technology-specific capital to shape these equilibrium distributions through

subsidies to the costs of specialized training. In describing the solution of the model, I make reference

to a comparison in which providers of technology-specific capital do not internalize their pecuniary

externalities on the market for labor specific to their technology, but take the price of the other

factor of production as given. Comparing the results to this benchmark offers insight into the core

mechanism proposed in this paper, which I refer to as the specific-labor margin. I discuss how the

equilibrium distribution of skills and technologies in the economy compares across the two models

and derive implications for equilibrium markups and productivity. These results will inform the

policy experiments and welfare analysis in Section 6.

For tractability and to simplify the exposition, I assume that capital providers face a binary

decision: they either invest a fixed amount of resources, denoted ō, or abstain from investing. The
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investment entails a fixed cost ϕo > 0.

The assumption of a fixed cost of investment in training is based on the running examples

described in Section 2. In the case of carmakers’ partnerships with community colleges, establishing

a program typically requires dedicated facilities and hiring of qualified instructors, costs that are

largely invariant to small changes in enrollment. Likewise, the decision to open source specialized

software generally entails allocating a team of developers to adapt, standardize, and document the

codebase so that it can be disseminated as a coherent package. These expenditures do not scale

with the number of eventual users.19

Assumption 1. (Fixed cost of sponsorship) Sponsorship is a binary decision which entails a fixed

cost.

oj ∈ {1, ō > 1} , ϕ(oj) = ϕ̄× 1[oj = ō].

Throughout, I also assume that the dispersion in producers’ productivity θ and consumers’

elasticity of substitution across varieties ε are such that θ > ε − 1, a parameter restriction needed

for aggregation of firm-level outcomes.

4.1 Technological specialization: skill acquisition and technology adoption.

In this section, I solve for the optimal technological specialization choice of workers and goods

producers. Workers specialize by acquiring technology-specific human capital and firms specialize

by choosing which technology to adopt. For each worker, a skill choice corresponds to an exclusive

choice of a technology-specific-labor market. I solve the problem in Section 3.3 and aggregate

individual worker choices to the level of the technology/skill to obtain total labor supply for skills

compatible with a given technology.

Lemma 1. The optimal choices implied by the worker’s problem are characterized by the following

expressions:

(i) Worker choice probabilities.

ςj =

(
wj(1− τj)

W

)1+η

, where W1+η =
∑
j′∈J

(
wj′(1− τj′)

)1+η
. (18)

19For instance, the TensorFlow package discussed in the next section was built by a dedicated team of Google
Brain engineers. We can think of the direct cost of open sourcing as the payroll cost of these researchers and/or the
opportunity cost of having these researchers work on alternative projects. Both costs are largely unrelated to the
number of end users of the package.
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(ii) Labor supply in efficiency units. Aggregate labor supply in each market segment j is

nj = N̄ ςj(1− τj), (19)

where N̄ is the total mass of workers.

(iii) Goods demand. Demand for each differentiated variety i ∈ I follows

ci =

(
pi

P

)−ε

C, (20)

P =

(∫
i∈I

(pi)1−ε di

) 1
1−ε

, (21)

where the price index P is normalized to one.

Proof: See Appendix B.1.

In the equations above, nj denotes total efficiency units of labor of type j. Notice the role of the

cost of access to training τj : other things equal, the type of labor complementary to a technology

with low access costs (low τ) will be in higher supply and therefore lower wages will be required to

attract workers.

Turning to the problem of goods producers described in Section 3.4, their technology adoption

decision is based on the comparison of profits (or, equivalently, costs of production) across all

available possibilities.20 Since the technology of each producer does not depend on the variety they

produced (with the exception of the productivity draw), the probability of adoption is symmetric

across producers of different varieties. It can be expressed as the ratio of a technology’s unit cost to

an aggregate cost index. After determining the assignment of producers to technologies, total input

demands in each segment of capital and labor markets can be obtained by aggregating individual

producers’ demands at the level of each technology j ∈ J . The following lemma summarizes the

solution of the firm’s problem.

Lemma 2. The optimal choices implied by the producer’s problem imply the following expressions:

(i) Technology adoption. The share of producers (or the probability that a given producer of

variety i ∈ I) adopts technology j ∈ J is

sj =

(
π̄j
Π̄

) θ
ε−1

= Φ−1
(
wρ
j r

1−ρ
j

)−θ
, (22)

20The structure of heterogeneity of producers is similar to Eaton and Kortum (2002), while in their model countries
choose where to source goods, here producers choose which technology to adopt.
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where Π̄
θ

ε−1 =
∑

j′∈J π̄
θ

ε−1

j′ and Φ =
∑

j′∈J

(
wρ
j′r

1−ρ
j′

)−θ
are profit and cost indices, respectively.

(ii) Input demands. Total factor demands from producers adopting technology j are

nj = Īρ(ε− 1)Ar
−θ(1−ρ)
j w−ρθ−1

j , (23)

kj = Ī(1− ρ)(ε− 1)A(ε− 1)w−θρ
j r

−θ(1−ρ)−1
j , (24)

where A = A
(
Π̄, Y, P

)
is a term that only depends on aggregate outcomes.

Proof: See Appendix B.2.

Imperfectly competitive providers of technology-specific capital internalize total capital demand

in Equation (24). Importantly, the demand for technology-specific capital (obtained from aggre-

gating individual demands over the distribution of producers adopting the technology) is inversely

related to the prevailing wage in the market for labor that can operate the technology. In the next

section, I characterize the equilibrium wage equations for all labor markets and then discuss how

internalizing these changes the optimal behavior of technology suppliers.

4.2 Capital providers: pricing and investment strategies.

In each labor market j ∈ J , combining total labor supply and demand (Equations 19 and 23) we

obtain a system of equations that can be solved for wages, for given values of the tech provider’s

actions.

Lemma 3. Given choices of rj , τj, wages in each skill market satisfy

wj =

(
ρ(ε− 1)

AĪW1+η

N̄
r
−θ(1−ρ)
j (1− τj(oj))

−(2+η)

) 1
η+ρθ+2

∀j (25)

where A = A
(
Π̄, Y, P

)
is a term that only depends on aggregate outcomes and Ī , N̄ denote the

measures of goods producers and workers.

Proof: combining total labor supply and demand, Equations (19) and (23).

The above provides a fixed point iteration procedure to solve for wages in each labor market,

given aggregate variables and choices of providers of technology-specific capital.

I allow imperfectly competitive providers of technology-specific capital to internalize total capital

demand, Equation (24), but also the equilibrium price of the type of specific-labor compatible with

the type of capital they offer. Then, the problem of the technology provider is constrained both by
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total capital demand, Equation (24) and by the wage, Equation (25). In particular, the provider will

internalize how its choice of sponsoring the technology it provides by subsidizing technology-specific

training impacts wages in the market for complementary labor and therefore, indirectly, employers’

demand for the technology-specific capital it provides.

The solution of the problem of capital providers is characterized by a pricing decision and a

choice of investment to reduce training costs faced by workers. Both of these are central to the

specific-labor margin that this paper introduces.

4.2.1 Pricing Strategy.

This subsection characterizes optimal pricing for a technology–specific capital provider j ∈ J that

internalizes how the equilibrium wage wj of its complementary labor co-moves with its rental rate rj .

The provider maximizes net profits, Equation (11), by choice of the rental rate, taking aggregates

as given.21 The first result is that the presence of the specific-labor margin introduced in 3.5 implies

markups that depend on the elasticity of labor supply to the rental rate.

Proposition 1 (Markup with specific-labor margin). Define the Marshallian demand elasticity

holding wj fixed and the effective elasticity incorporating wage feedback as εMC
j ≡ − ∂kj

∂rj

rj
kj
, εeffj ≡

− dkj
drj

rj
kj
. Let µj ≡ rj/(q/φj) denote the gross markup. The provider’s first-order condition implies

a Lerner rule with the effective demand elasticity:

µj =
εeffj

εeffj − 1
, εeffj = εMC

j −
(
− ∂ ln kj

∂ lnwj

)
︸ ︷︷ ︸

input substitution

(
− ∂ lnwj

∂ ln rj

)
︸ ︷︷ ︸
wage channel

.

Proof: see Appendix B.3.1.

Given total demand for capital, Equation (7) and the equilibrium wage equation Equation (25),

in this model both input substitution and the wage channel are positive. Hence, Proposition 1

establishes that this environment of monopolistic competition with a specific-labor margin generally

features higher markups compared to the standard set up in Dixit and Stiglitz (1977). Intuitively,

capital providers recognize that raising the price of their technology-specific capital reduces de-

mand not only through the intensive margin but also by discouraging technology adoption along

the extensive margin. This contraction in adoption benefits the remaining firms, as they face less

competition for specialized labor and therefore lower wages in the relevant skill segment. By inter-

21All derivatives are evaluated at the symmetric environment the provider takes as given; dependence on aggregates
is suppressed for clarity.
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nalizing this specific-labor margin, strategic capital providers can capture part of the resulting cost

reduction through higher markups.

The next corollary derives the effective elasticity of labor under the functional form assumptions

of this framework and illustrate how they vary with parameters.

Corollary 1. Whenever capital providers internalize the specific-labor margin, the model in 3 results

in the following effective elasticity of demand for technology-specific capital

εMC
j = θ(1− ρ) + 1, εeffj = εMC

j − ρ(1− ρ)θ2

η + ρθ + 2
.

therefore µj =
εeffj

εeffj −εeffj
>

εMC
j

εMC
j −1

.

In Appendix B, I show that Proposition 1 and Corollary 1 imply that markups decrease in the

parameters governing substitutability across technology for firms and workers (respectively, θ and

η) and increase in the share of labor in production (ρ).

4.2.2 Investment in technology-specific training.

In this theoretical framework, incentives to sponsor technology-specific training only arise once we

make the assumption that capital providers internalize wage effects. I refer to this as the specific-

labor margin of capital provision. If capital providers take the wage of specific-labor as given, the

disutility cost of training does not enter the problem of the technology provider. With a positive

cost associated to sponsoring training and no marginal benefit, no provider will engage subsidize

technology-specific knowledge.

When the specific-labor margin is active, what determines incentives to invest? Do more pro-

ductivity technologies, i.e. technologies whose associated capital is produced more efficiently with

a given land input, attract more investment? The next proposition establishes that perceived in-

centives to invest for a capital provider are monotonically increasing in the provider’s productivity.

With binary investment opportunities and a fixed cost of investment, this ensures the existence of

a minimum productivity cutoff above which providers decide to invest.

Proposition 2. (Investment in technology-specific knowledge and productivity cutoff)

Let the (perceived) benefit of investing ō in technology-specific knowledge be B(ō, φj) =
∂V (φj)
∂oj

|oj=ō

where V (φj) are net profits of the capital provider, Equation (11). The following statements are

true:

1. At a given level of investment ō, the perceived benefit of sponsorship is monotonically increasing
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in productivity and in the cost markup, i.e.

dB(ō, φj)

dφj
> 0 ∀ō ∈ [0, τ̄ ]

2. If the cost of sponsorship is independent of productivity and fixed at ϕo, there exists a minimum

productivity cutoff for sponsoring knowledge, i.e.

∃φ∗ s.t. Bj(ō, φj)− ϕo ≥ 0 ⇐⇒ φj ≥ φ∗

Proof: See Appendix B.3.2.

Finally, the following lemma establishes that markups incentivize investment, as the benefit of

investment is proportional to the cost markup.

Lemma 4. Let the benefit of investing ō be defined as in Proposition 2. Then:

dB(ō, φj)

dµ
> 0 ∀ō ∈ [0, τ̄ ], φj

Proof: Omitted, see Appendix B.3.2.

4.3 Aggregation.

Given optimal behavior of all agents and market clearing, we can derive an expression for aggregate

output which only depends on aggregate variables.

Below, I characterize the labor index dual to the aggregate wage index W.

Lemma 5. Let N be the labor index such that
∑

j wjnj = WN, where W is the aggregate wage

index defined in Equation (18). Then,

N = N̄
∑
j

(
nj

N̄(1− τj)

) 2+η
1+η

.

Proof: Omitted, see Appendix B.4.1.

Notice that, because of the structure of the worker problem defined in Section 3.3, the labor

index is not homogeneous of degree one.
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Lemma 6. Aggregate output is characterized as

Y = ρ−1
(
Ī
) ε

ε−1 (Φ)
1+θ
θ

(
Γ

(
1− ε− 1

θ

)) 1
ε−1

Φ̃−1N eff

where N eff =
∑

j n
s
j =

∑
j ςjN̄(1 − τj) denotes total efficiency units supplied in the economy, i.e.

total hours of labor net of the time costs of training. In this, ςj denotes the share of workers spe-

cializing in technology j, as derived in Lemma 1.

Proof: Omitted, see Appendix B.4.2.

4.4 Solution algorithm.

The equilibrium of the economy is computed using a nested fixed-point algorithm that jointly de-

termines (i) technology-specific investment and rental rates set by capital providers, (ii) equilibrium

wages in segmented labor markets, and (iii) the aggregate land price ensuring general equilibrium.

The algorithm exploits the fact that the benefit of investment of technology providers can be ranked

by productivity (φj), which induces a monotone structure in the inner nest of the problem. The

numerical solution procedure is described in detail in Appendix B.6.

For a given land price pL, each provider j ∈ J chooses a rental rate rj and an investment level

oj to maximize profits. Given {rj , oj}, wages {wj} are obtained from the fixed point of the labor-

market clearing condition using lemma 3. Finally, the land price pL is updated until aggregate land

demand equals the fixed supply L̄.

The inner loop computes the joint equilibrium of the capital-providers’ game and the labor mar-

ket. The outer loop updates the land price via a damped adjustment rule until excess land demand

is below tolerance. Convergence of the full system yields the equilibrium allocation {r∗j , o∗j , w∗
j , p

L∗}

and all aggregate quantities.

4.5 Efficient benchmark and externalities.

In the previous sections I have shown that investment strategies by individual capital providers can

shape the technological specialization of the economy. To evaluate whether the level of investment

in specialized training that prevails in the decentralized equilibrium is efficient from a social welfare

standpoint, I study the efficiency properties of the model by solving the problem of the social

planner.
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4.5.1 Social planner problem.

I consider a utilitarian social planner that maximizes ex-ante expected utility22 of all worker/con-

sumers in the economy, weighting each individual equally, an assumption motivated by the fact

that workers are ex-ante identical and only differ after the realization of the disutility shock.

Lemma 7. Let M = maxj uj − ξqj .

Per-capita social welfare in the economy is given by

S = Eξ[M ] = ln(C)− ln(N) + κ(J, η) (26)

where C denotes aggregate consumption, N = N̄
∑

j

(
nj

N̄(1−τj)

) 2+η
1+η is the labor disutility index derived

in Section 4.3 and κ(J, η) is a constant of integration.

Proof: Omitted, see Appendix B.5.1.

Next, I consider the welfare impact of investment in training specific to technology j ∈ J to

study the marginal social benefit and marginal social cost of investment.

Definition 2 (Social planner problem). The social planner maximizes the social welfare function

in Equation (26) by choice of {oj , sj , ςj}j∈J ∈ [0, ō]×∆×∆ subject to the following constraints

resource constraint Y (nj , oj) = C + ϕo
∑
j

1(oj = ō) (27)

agg. output (labor mkt cl.) Y = ρ−1
(
Ī
) ε

ε−1 (Φ)
1+θ
θ

(
Γ

(
1− ε− 1

θ

)) 1
ε−1

Φ̃−1N eff (28)

labor index N = N̄
∑
J

(
nj

N̄(1− τj)

) 2+η
1+η

= N̄
∑
J

(ςj)
2+η
1+η (29)

efficiency units N eff =
∑
j

(1− τj)jN̄ (30)

training costs τj = τ̄j − oj (31)

Proposition 3. Consider a change doj in investment in training associated to arbitrary technology

22This aggregate welfare notion is pervasive in theoretical and applied work featuring discrete choice frameworks:
see Donald et al. (2025), Redding and Rossi-Hansberg (2017).
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j ∈ J . The change in welfare, expressed in utils, is characterized by

MSBj =
N̄
[
ςj

d(1−τj)
doj

]
N eff

Y

C︸ ︷︷ ︸
efficiency‐units

(32)

SMCj =
ϕo

C
+

d ln Φ̃

doj

Y

C︸ ︷︷ ︸
business‐stealing

(33)

Proof: omitted, see Appendix B.5.1.

In contrast, as derived above, each capital provider takes Φ and Φ̃ as given and invests if the

perceived private gain in its own value Vj , which is just proportional to the change in the share of

firms adopting the technology, exceeds the cost ϕo. We can express the private marginal benefit

and cost of investment in utils as

PMBj =
1

C

d ln sj
doj

, PMCj =
ϕo

C
. (34)

Because the firm perceives only its market share in capital markets sj , it neglects the impact of oj
on aggregate efficiency units, labor disutility, and the cost index.

Comparing equations in (32) and (33) to those in (34), it is evident that the equilibrium level

of investment in specialized training generally differs from the social optimum.

4.5.2 Interpretation and limit cases.

Three forces determine the wedge between private and social incentives to invest in technology-

specific trainings.

First, an aggregate efficiency-unit externality, first term in (32) makes the social value of invest-

ment rise above private benefits. A reduction in training costs for a given technology increases the

supply of efficiency units of labor specialized in that technology, thereby raising aggregate output.

The effect is amplified when workers are very sensitive to wages and training costs and reallocate

skill accumulation toward the newly-sponsored technology. The social value of investment captures

the gains entailed by resources being reallocated precisely to the sector that transforms time into

efficiency units most efficiently.

Second, the wedge between private and social cost of investment is derived as a business‐stealing

externality, second term in (33), that tends to make private investment excessive: as sj expands,
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aggregate costs rise through Φ̃, because of the reallocation of production away from competing

technologies.23 This effect is ignored by private agents.

The total effect of the forces above is theoretically ambiguous: the first externality points to

insufficient private investment and the second one suggests excessive private investment. However,

the strength of these margins depends systematically on key elasticities of substitution determining

how easily production and labor reallocate across technologies. Understanding how these parameters

shape the magnitude and direction of the externalities clarifies when private investment will be

excessive or insufficient, indicating if the social planner needs to subsidize or tax investment in

specialized training.

Role of θ, producers’ substitutability across technologies. The parameter θ is the shape

parameter of the Frechet distribution parametrizing producers’ idiosyncratic productivity shocks

across technologies. As θ increases, the productivity distribution is less dispersed and producers

find it easier to substitute across technologies. In this case, the business stealing externality is

particularly powerful because the cost index Φ̃ is more sensitive to small reallocations of shares

sm when technologies are highly substitutable. In the limit case where θ → ∞ (technologies are

perfectly substitutable in production), Φ̃ responds one-for-one to reallocation, and the planner

strongly penalizes excessive investment. The effects are particularly pronounced for high values

of ρ, the labor share of income in the Cobb-Douglas production function. When the wage bill

is a larger share of production costs, changes in wages induce stronger reallocation of producers

across technologies. Conversely, when θ is small producer reallocation across j is less sensitive to

input prices and aggregate output depends more on the total measure of effective technologies and

trained workers rather than their composition, making business stealing negligible in comparison to

the other two externalities.

Role of η, workers’ inverse substitutability across technologies. The parameter η

governs the elasticity of substitution across technologies in workers’ training choices. In particular,

high values of η imply less dispersion in the idiosyncratic preference draws of individuals across

technologies24 and therefore higher substitutability. When this is the case, workers’ specialization

choice is more sensitive to differences in wages or training costs, reinforcing reallocation toward

23While the problem of determining the optimal number of investing firms in this model parallels the analysis
of optimal product variety in a monopolistic competition setting with free entry of Dixit and Stiglitz (1977), my
framework departs from the standard CES environment in at least one key respect: technologies are not symmetric
but are associated with different input prices. As a result, the familiar Dixit–Stiglitz result that business-stealing and
variety effects offset exactly does not generally hold here.

24The dispersion parameter of the extreme value distribution is 1
1+η

.

26



the newly-subsidized technology j and increasing the strength of the efficiency-units externality.

This also amplifies the response of the disutility term and increases the strength of the labor-

disutility externality, increasing the social return to investment. Symmetrically, when η → 0,

workers’ reallocation following a reduction in training costs is low, eliminating the labor disutility

motive for additional investment.

On balance, the business-stealing term dominates when θ and ρ are high, i.e. when technologies

are easily substitutable for producers and technology specialization is particularly sensitive to the

cost of specialized labor.

By contrast, when θ is low, η is small, and ρ is low (workers are very sensitive to wages and

training costs but producers are not), investment generates sizable spillovers in effective labor supply

and welfare, and the planner would prefer more investment than the decentralized equilibrium

delivers.

In Section 6, I provide a calibrated example of the model, and discuss policy counterfactuals.

5 Empirical Application

In this section, I present empirical results that provide qualitative motivation for the economic

mechanism described in the previous section.

Empirically investigating the objects described in my model is challenging because of data

availability considerations. It is seldom possible to observe workers’ acquisition of specialized skills

and firms’ adoption of specialized capital at a very granular level. Moreover, it is generally difficult

to attribute these to a particular technology. Even when partial information exists, it remains

difficult to track these objects over time and to quantify how the price or prevalence of a given skill

or technology responds to changes in the barriers to acquiring specialized training.

To address these challenges, I study the digital infrastructure industry, where cloud-computing

platforms function as technology-specific capital linked to distinct software skills. This sector pro-

vides an unusually clear mapping between technology, specialized skills, and a set of identifiable

firms that supply the technology-specific capital. The industry of cloud infrastructure is an exam-

ple of an innovative industry to which the framework I developed should apply. It also offers a

unique context in which it is possible to observe variation in barriers to accessing training in cloud-

specific knowledge and to link these shifts to strategies undertaken by leading capital-providers at

a particular point in time.
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5.1 A Case Study: Open Source Software and Adoption of Cloud Infrastructure

When firms want to analyze large data to inform business decisions (e.g. pricing strategies, product

development...), they need significant computing power. In the United States, most firms do not

develop computing power in-house, but rent space on one of several types of cloud infrastructure

offered by a few large providers. Once on the cloud, firms are indirectly linked to large data centers

with state-of-the art chips capable of performing complex computations. While cloud infrastructure

is broadly substitutable across providers for most applications, some hardware features may render a

given platform particularly well suited to run specific software, optimized for specific tasks research

question.

Although cloud providers develop software optimized for their own platforms to meet internal

data-analysis needs, this code is generally not made available to clients. Firms that rent computing

power through the cloud can only make effective use of this resource if they employ software engineers

with the expertise to understand the underlying hardware and to write customized code that both

addresses the firm’s specific needs and is compatible with the platform.

In November 2015 Google publicly released a package enabling multiple machine learning ap-

plications.25 The package was available under the Apache License 2.0, meaning it was open source:

anyone could download the package for free, read and modify the contained code. Because the tool

was considered to be at the heart of Google’s machine learning operations, the event was broadly

perceived as a dramatic acceleration in the open source movement.26

TensorFlow, an AI development framework enabling firms to train neural network algorithms,

is a quasi-exogenous shock to AI production, reducing the costs associated with AI development

and increasing the value of complementary AI-related labor (Rock, 2019).

Although TensorFlow could be used across cloud platforms, its release substantially lowered the

barriers to writing software that ran efficiently on Google Cloud Platform (GCP), where specialized

Tensor Processing Units (TPUs) were available. Earnings calls and financial statements from Q4

2015 do not indicate the company was also engaging in significant reductions in price on its GCP

cloud computing platform.27

25See Dean, J., & Monga, R. (2015, November 9). TensorFlow – Google’s latest machine-
learning system, open sourced for everyone. Google Research Blog. https://research.google/blog/
tensorflow-googles-latest-machine-learning-system-open-sourced-for-everyone/.

26See, for instance, Metz, C. (2015, November 9). Google just open sourced TensorFlow, its artificial intelligence
engine. Wired. https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/.

27The Q4 2015 earnings call of Google/Alphabet, CEO Sundar Pichai mentions the open source release of Tensor-
Flow in these words “[I]n November, we open source TensorFlow, our new machine learning system, to help accelerate
discovery and development in the field”.
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I investigate the effects of the release of TensorFlow on the mix of cloud-specific skills and on

firms’ adoption of cloud platforms in the United States over the period 2015-2019.

5.1.1 Data Sources

Data cleaning and sample selection are further described in Appendix C.

U.S. Job Posting Data I use data from United States job postings available from Lightcast

over the period between 2012 and 2019. Using textual information from the body of job postings,

this source makes it possible to observe very detailed information about demanded skills in an

opening (e.g. not just “high-skill”, or “computer science”, but, “Python” and even “TensorFlow”).

The data is available at high time frequency and it allows me to track the evolution of skills in US

labor demand over time and at a very fine level. For each job posting, I construct indicators that

flag required specialized software skills related to cloud platforms and use this information to study

adoption of cloud platforms by US employers. A subsample of the data includes information about

posted annual salaries. Summary statistics for this subsample are reported in Appendix Table 4.

Survey of Developers I complement job postings with publicly available data from the

Stack Overflow Developer Survey, an annual survey of coders. The survey is administered by Stack

Overflow, an online forum where developers of all levels of coding experience can share questions

and answers about programming issues. It offers unique insight into coding practices, self-assessed

skill levels and technology preferences of individuals. In particular, this source offers information

about the use of cloud tools in professional settings and about cloud-specific software skills. The

data is available from 2011 to 2024, summary statistics for the 2024 wave are reported in Appendix

Table 5.

5.1.2 Empirical results

In this section, I present empirical results documenting several findings about the evolution of

firms’ technology adoption and hiring decisions following the open sourcing event, which I interpret

through the lens of the model in section 3 as a fall in the access barriers faced by workers when

acquiring technology-specific skills.

In the context of my case study, my analyses produce four main findings:

(i) Software developers who gained platform-specific skills specialize in the use of the related

cloud platform.
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(ii) When a specialized skill becomes easier to acquire, employers’ demand for it rises quickly and

spreads across sectors, rather than being limited to increased hiring by the firm that facilitated

access to training.

(iii) When a specialized skill becomes easier to acquire, firms’ adoption of the linked technology,

at the expense of competing technologies.

(iv) When a specialized skill becomes easier to acquire, the wage premium associated to that skill

falls.

1. Specialization of software developers. I analyze software developers’ reported prefer-

ences over types of cloud providers used on the job. I separate respondents based on whether they

report expertise in the use of TensorFlow, which is specific to the Google Cloud Platform (GCP).

As shown in Figure 2, developers with TensorFlow experience are roughly twice as likely to report

both preferring and actually using GCP at work, while they are less likely to use Azure and only

marginally more likely to use AWS. The results are more pronounced when restricting the sample

to developers that report to have influence over the technology adoption decisions of their employer.

I interpret this as evidence that software developers with specialized skills specialize in the use of

the technology specific to their skills.

Figure 2: Survey Evidence on Cloud Platform Perceptions Among TensorFlow Users
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Panel A: All US Respondents
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Panel B: US Influencers

Notes: The figure reports the percentage change in the share of respondents who state that they want to use, have
used, or admire each cloud provider for work, comparing TensorFlow users with non-users. Left panel: all survey
respondents. Right panel: respondents who report having at least some influence over their employer’s technology
adoption (“influencers”). Estimates are based on the 2024 U.S. wave of the Stack Exchange Developer Survey.
Error bars denote 95% confidence intervals.

2. Labor Demand for TensorFlow. I analyze the text of job postings to track the count of

openings that specifically ask for expertise in the use of TensorFlow. I aggregate job-posting level
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data at the monthly level by obtaining counts of postings that require proficiency in TensorFlow.

As shown in Figure 3, I find a steep increase in demand for this specialized skill following the

open sourcing of the package. Demand for TF is not concentrated in the IT sector and does not

appear to be driven by the firm that developed the package, Google. I find a pronounced increase

in the number of distinct employers requiring the specialized skill, with demand spreading across

the full set of NAICS two-digit industries within a few years.

Figure 3: Evolution of Labor Demand for TensorFlow, 2015–2019
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Notes: The figure illustrates the evolution of job postings that mention TensorFlow following its open source
release in November 2015. Left panel: monthly counts of TensorFlow-related postings across all firms, excluding
Google and (in an alternative series) the IT sector. Right panel: number of distinct employers and industries
posting TensorFlow jobs over time; the line shows the share of industries represented, and the bars show total
employers. Both series indicate rapid and broad diffusion of TensorFlow adoption across firms and sectors. Source:
Author’s calculations from Lightcast job postings data (2015–2019).

3. Adoption of Cloud Platforms. I track adoption of cloud platform reflected in job

postings requiring cloud-specific skills. I aggregate job-posting level data at the monthly level by

obtaining counts of postings for each category of cloud-specific skill. I find that after the open

sourcing of TF demand for GCP (tied to TF) rises at the expense of AWS and Azure. Specifi-

cally, I observe that job postings requiring GCP start growing faster after open sourcing of TF, a

pattern not observed for competing cloud platforms. This translates in a gain in market share (as

measured by job postings) by GCP, at the expense of competitors. I track the adoption of cloud

platforms using job postings that specify cloud-specific skill requirements. As shown in Figure ??,

following the open-sourcing of TensorFlow, demand for GCP rises markedly relative to both AWS

and Azure. Specifically, the number of postings requiring GCP begins to grow at a faster rate after

the open-sourcing event, whereas no comparable acceleration is observed for competing platforms.

Job postings requiring AWS-specific and Azure-specific software skills experience a fall in the rate

of growth. This divergence implies that GCP gained market share (as measured by the share of job
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postings requiring cloud-specific skills) at the expense of competing platforms.

Figure 4: Adoption of Cloud Platforms Following the TensorFlow Release
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Notes: The figure shows the evolution of demand for cloud-specific skills in U.S. job postings between 2012 and
2019. The black dashed line marks November 2015, the month TensorFlow was open sourced. Left panel: log
counts of postings mentioning each cloud platform, seasonally adjusted and detrended by the pre-event trend.
Right panel: platform shares of total cloud-related postings, normalized by their pre-event mean. All series are
net of the pre-2015 trend and mean. Source: Author’s calculations from Lightcast job postings data. Additional
related figures appear in Appendix D.

4. Salary effects. I consider the subsample of 366,547 job postings containing information

on annual salaries. Summary statistics on this subsample are included in Appendix Table 9. To

investigate whether the open sourcing of TensorFlow is associated with any shifts in the evolution

of posted salaries, I estimate a diff-in-diff in trends specification. My empirical approach compares

salaries for postings that list software skills specific to the Google Cloud Platform to those that do

not, around the open sourcing event of November 2015.
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Let yit denote the posted annual salary of vacancy i at time t. For each cloud provider, I define in-

dicators pi ∈ (0, 1) for whether vacancy i requires skills specific to platform p ∈ {GCP,AWS,Azure}.

Let PostTF = 1{t ≥ Nov 2015} be an indicator for the post-event period, and let Datet be a nor-

malized time indicator such that DateJan 2012 = 0. I estimate the following regression model.

yit = βDatet+α
GCPGCPi+δ

GCPGCPi×PostTFt+π
GCPDatet×GCPi×PostTFt+Xi+Qit+εit

Included controls are

Xi =
∑

p∈{AWS,Azure}

αppi + µn(i) + νo(i)

Qit =
∑

p∈{AWS,Azure}

pi × PostTFt +
∑

p∈{AWS,Azure}

Datet × pi × PostTFt

where µn(i), νo(i) are, respectively, NAICS-2 industry and O*NET 2019 occupation fixed effects.

I report in Table 1 regression results for OLS and alternative fixed effects specifications with

heteroskedasticity-robust standard errors clustered at the fixed-effect level.

Looking at the evolution of the wage premium associated to postings demanding expertise in

GCP, I observe that this falls after the open sourcing event. In particular, in the main specification

with industry and occupation fixed effects, the static premium associated to expertise in GCP falls

by 84%, from $24, 005 to $3, 869, with no statistically significant impact on premia associated to

proficiency in the use of competing cloud platforms.

Overall, reductions in provider-induced barriers to acquiring specialized software skills are associ-

ated with lower posted wage premia for those skills and higher adoption of the associated technology.

These patterns are consistent with the mechanism proposed in my framework.

6 Quantitative Analysis

To gain further insight into the proposed specific-labor mechanism, I calibrate the model using

moments derived from the empirical findings in Section 5 and simulate counterfactual scenarios.

6.1 Calibration

I report the baseline calibration of key parameters in Table 2 and include more details on the

calibration strategy in Appendix C.4.28

28The goal of this calibration exercise is to provide a first quantitative implementation of the model. Data lim-
itations prevent a tight estimation of some of the parameters and future drafts will aim to make progress on this
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Table 1: Effect of Cloud-Specific Skills on Posted Annual Salaries. Each column reports
estimates from OLS regressions of posted annual salary on cloud-provider skill indicators and inter-
actions with the TensorFlow open source release. Standard errors clustered at the fixed-effect level
are reported in parentheses.

Dependent variable: Posted Annual Salary

OLS NAICS2 FE O*NET 2019 FE Both FE

GCP 27,311∗∗∗ (5,875) 22,174∗∗ (8,061) 28,104∗∗∗ (8,773) 24,005∗∗ (10,589)
AWS 24,478∗∗∗ (3,332) 22,880∗∗∗ (4,909) 20,196∗∗∗ (4,495) 19,703∗∗∗ (6,562)
Azure 7,098 (5,369) 1,267 (8,659) -3,175 (3,353) -6,547 (6,917)
Date 127 (85) -30 (714) 766 (475) 484 (676)
Post-TensorFlow 3,909∗∗∗ (469) 6,881∗ (3,396) 4,586∗∗ (2,192) 6,729∗∗ (3,073)
GCP × Date -5,973∗∗ (2,528) -3,366 (2,301) -6,124∗∗∗ (1,990) -4,014 (2,508)
AWS × Date 3,185∗∗ (1,261) 2,391 (1,770) 2,061 (1,873) 1,595 (2,480)
Azure × Date 4,717∗∗ (1,851) 5,661 (5,668) 6,844∗∗∗ (2,181) 7,381 (5,795)
GCP × Post-TF -40,081∗∗∗ (10,832) -28,825∗∗ (11,948) -29,332∗∗ (12,674) -20,136∗∗ (8,515)
AWS × Post-TF 4,826 (4,734) -744 (11,484) -451 (7,403) -4,754 (12,083)
Azure × Post-TF 646 (6,777) 5,684 (10,834) 6,096 (7,162) 9,880 (8,263)
Date × Post-TF -774∗∗∗ (109) -1,196∗∗ (564) -1,158∗ (652) -1,337∗∗ (576)
GCP × Date × Post-TF 9,054∗∗∗ (2,867) 5,746∗∗ (2,296) 7,309∗∗∗ (2,570) 4,652∗∗∗ (1,400)
AWS × Date × Post-TF -3,120∗∗ (1,359) -1,686 (2,850) -1,917 (2,005) -895 (3,244)
Azure × Date × Post-TF -4,513∗∗ (1,949) -5,421 (6,002) -6,379∗∗ (2,679) -6,997 (6,045)

Observations 366,547 366,547 366,547 366,547
R2 0.015 0.075 0.129 0.173

Notes: Dependent variable is posted annual salary. OLS estimates with robust standard errors clustered at the fixed-
effect level. Post-TF = post TensorFlow release (Nov 2015). Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
An alternative specification without time trends or interaction terms is reported in Appendix Table D.2.
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I calibrate externally the elasticity of substitution between varieties of the consumption good,

ε, using estimates from Simonovska and Waugh (2014); this value implies a constant markup over

the marginal cost of production of each variety of 32%. The parameter of the production function

of goods producers, ρ, is set to target an aggregate labor share of 67%, a standard value in the

literature. The analysis of Section 4 highlights the importance of θ and η, parameters that govern the

substitutability across technology for, respectively, firms and workers. Higher values of θ correspond

to lower dispersion across technology-specific productivity shocks drawn by producers, and therefore

higher substituability of technologies in production of varieties of the final good. Conversely, higher

values of η correspond to higher dispersion of workers’ idiosyncratic disutility shocks, and therefore

lower substituability across technologies on the worker side. Since these parameters are important

for the analysis, I calibrate them internally to match empirical moments derived from the analyses in

Section 5. In particular, I jointly calibrate parameters ϕo, τ̄ , θ, η to match four empirical moments:

1. A unique investor in specialized training;

2. A reduction in the wage premium of the associated technology of 84% based on the regression

results in Table 1;

3. An increase in employers’ adoption of the sponsored technology of 51%, based on calculations

in Appendix Table 8;

4. A coefficient of variation of wages of 0.17, based on calculations in Appendix Table 7.

I set ō = τ̄ to capture investments that fully remove access barriers to specialized training, in

line with the application on open-sourcing. Finally, I parametrize the productivity distribution of

providers of technology specific capital (which determines the vertical ranking of technologies) as a

Pareto distribution with shape parameter β = 1.06. This is in line with empirical evidence on the

tail exponent of productivity distributions in advanced economies (Axtell (2001), Luttmer (2007),

Chen (2022)).29

In the next section, I evaluate how the equilibrium of the model varies as we change struc-

tural parameters and investigate the welfare effects of government intervention to address markup

distortions and investment incentives.

front.
29Estimating a Zipf regression model on my sample of computing-power providers yields a shape parameter of

β = 0.53, consistent with substantial concentration among capital providers. Since the available data are insufficient
to estimate this parameter precisely, the baseline calibration follows the convention in the literature.
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Table 2: Baseline Parameter Values

Parameter Value Interpretation Target / Source

ε 4.12 Elasticity of substitution across varieties Simonovska and Waugh (2014)
η 6.16 Workers’ inverse substitutability of tech-

nologies
Internally calibrated

θ 13.89 Shape of productivity (Fréchet) Internally calibrated
ρ 0.8 Labor share in production (Cobb–

Douglas)
Matches aggregate labor share ≈ 0.67

ϕo 0.07 Provider’s fixed cost of investment in
technology-specific training

Internally calibrated

τ̄ 0.3 Worker’s default cost of training Internally calibrated
β 1.06 Pareto shape (capital provider productiv-

ity)
Axtell (2001)

Notes: The baseline calibration of the model combines values externally calibrated in the macro-trade literature with
parameters estimated to match empirical moments.
I normalize the measure of workers and firms to N̄ = Ī = 100 and the number of technologies to J = 15, but conduct
robustness checks for different normalizations.

6.2 Training investment and technological specialization

To illustrate the specific-labor mechanism, I perform a comparative statics exercise using the base-

line calibration of the model and varying ϕo, the fixed cost of investment in specialized training

faced by capital providers. The goal of this quantitative exercise is to study how the technological

specialization of the economy varies as the private marginal cost of investment falls according to

the model of Section 3.

Figure 5 illustrates the technological specialization of workers and firms and the equilibrium

wage prevailing in each segment of the labor market. As the cost of investment falls, more capital

providers choose to subsidize access to specialized training associated to their technology. In line

with Proposition 2, the marginal provider that chooses to invest as fixed costs fall is the one with

highest productivity. In doing so, they encourage supply of specific-labor, as the net hourly wage

increases. In equilibrium, the share of workers choosing to specialize in subsidized technologies

increases and the wage prevailing in the related segment of the labor market falls. This ultimately

encourages producers to adopt the subsidized technology, which can be visualized as an increase in

the share of producers choosing the most productive technology. At very low values of the fixed

costs, all capital providers invest to remove barriers to training in their technology. This outcome is

characterized by the same distribution of workers and producers across technology as in an economy

with no investment, but the level of all wages is lower reflecting the fact that employers need to

compensate a lower disutility of labor.
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Figure 5: Effects of Investment Costs on Technological Specialization and Wages.

(a) No investment, ϕo = 3 (b) High fixed cost, ϕo = 0.05

(c) Medium fixed cost, ϕo = 0.002 (d) Low fixed cost, ϕo = 0.0001

Notes: Each panel plots equilibrium wages (right axis, in green) and the probability that workers and producers
specialize in a given technology (left axis, respectively in brown and yellow). The 15 available technologies are
ordered by the productivity of their capital providers, φj . As the fixed cost of investment falls, more capital
providers invest and subsidize access to training, lowering the wages of technology-specific-labor and raising the
adoption of the corresponding technology. The calibration of remaining parameters is reported in Table 2.

6.3 Policy Experiment: Taxes/Subsidies to Investment

To quantify how efficient is the investment level emerging from the decentralized equilibrium, I

evaluate the welfare effects of a policy aimed at correcting private investment incentives. In partic-

ular, I allow the fiscal authority to impose lump sum taxes/subsidies on final consumers in order to

subsidize/tax the fixed cost of investment faced by capital providers at rate δ ∈ [−1, 1].

The cost to capital provider j ∈ J of investing enough resources to completely eliminate access

costs to specialized training (i.e. of investing oj = τ̄), in units of the consumption good, is

PMCsub(oj = τ̄) = δ × ϕo
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and the total amount of tax revenue to be generated30 is given by

T =
∑
j∈J

δϕo1[oj = ō].

Figure 6 plots the results. As expected, subsidizing fixed costs of investment increases the

number of capital providers that select into sponsorship of specialized training. As we can see in

the top-left panel of the figure, subsidies are welfare improving. This suggests that the level of

investment naturally emerging in the decentralized equilibrium is inefficient.

Figure 6: Effects of Subsidy to Fixed Costs of Investment.

Notes: The figure reports equilibrium outcomes from model simulations varying the investment subsidy rate δ. Sub-
sidies are financed by lump-sum taxation. Panels display, clockwise from top left, (i) social welfare, (ii) number of
investing firms, (iii) income components, and (iv) aggregate consumption. Higher subsidies reduce entry costs, en-
couraging firm investment and raising welfare and consumption.

30As described in Section 3, for tractability, I assume that lump sum taxes are split across consumers proportionally
to their total labor income. These taxes do not distort the optimal allocation of workers across technologies because
workers do not value leisure and inelastically supply one hour of labor each.
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6.4 Markups on Capital and Investment in Specialized Training

Finally, I study how the economy’s specialization pattern responds to changes in markups. In

the model, Proposition 1 implies that I can vary markups by changing θ, the substitutability of

technologies in production. Higher values of θ raise the effective elasticity of capital demand and

reduce markups on technology-specific capital.

I consider an increase in θ that mimics regulation promoting interoperability across platforms.

For example, the EU Data Act, which entered into force in January 2024, explicitly aims to facilitate

switching and data transfer across cloud providers.31 In the simulation, I increase the substitutabil-

ity of technologies for firms such that the implied price–cost margin falls by 65 percent. Figure 7

reports the resulting welfare effects and their decomposition.

In the baseline calibration, this reduction in markups lowers welfare by 11percent. Consump-

tion rises slightly because goods producers benefit from cheaper technology-specific inputs, but

effective labor disutility increases sharply as a consequence of capital providers earning charging

lower markups. Lower margins reduce the incentive for capital providers to invest in specialized

training, which raises training costs for workers in the segments of the labor market which are

no longer sponsored by a capital provider. At the baseline calibration, given the low elasticity of

substitution across skills (a low η), workers have strong idiosyncratic preferences over skill types.

As sponsorship falls, workers must reallocate away from the skills they most value, which increases

effective labor disutility and dominates the consumption gains, leading to lower overall welfare.

The exercise showcases the main tension in the model between the misallocation and special-

ization effects of imperfect competition. On the one hand, market imperfections arising from the

market power of capital providers negatively dampen consumption in the economy and are as-

sociated with low social welfare. However, rents incentivize capital providers to perform socially

valuable investments in human capital. By encouraging the reallocation of labor and production

towards high productivity technologies, increases in markups may ultimately result in welfare gains.

These results suggest that policy-makers formulating regulations aimed at correcting markup

distortions in markets associated with the financing of human capital accumulation should be cau-

tious about the potential indirect consequences on welfare through changes to the composition of

skills and technology in the economy.

31https://digital-strategy.ec.europa.eu/en/policies/data-act
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Figure 7: Effects of an Increase in Technology Substitutability

Notes: The figure reports equilibrium outcomes from simulations that vary the substitutability of technolo-
gies in production, θ. All outcomes are expressed as percent deviations from the baseline. The coun-
terfactual compares a low θ = 6.95 (high markups) to a high θ = 16.68 (a 65 percent reduction
in the price–cost margin). Bars show, from left to right: (i) the markup on technology-specific capi-
tal, (ii) aggregate consumption, (iii) effective labor disutility, (iv) the number of capital providers invest-
ing in training, and (v) welfare. Higher substitutability raises consumption but discourages specialized train-
ing, increasing labor disutility. At the calibrated values, labor-disutility effects dominate and welfare falls.

7 Conclusion

Modern production processes rely on technological knowledge which is highly specific to the type of

capital used in production, provided by only a few large firms. As recent research in macroeconomics

highlights the importance of market power for innovation and aggregate productivity, I discuss how

the unique influence of technology providers on skill formation implies that market power in input

markets shapes the equilibrium specialization of firms and workers across technologies.

I develop a theoretical framework that embeds imperfect competition in technology-specific cap-

ital markets into an environment of endogenous skill accumulation and technology adoption, and I

show it can be solved as a nested fixed-point problem. Because dominant providers of technology-

specific capital internalize their own impact on the equilibrium price and quantity of compatible

labor, they have incentives to invest in skill formation. While the inclusion of this margin implies

that all capital providers charge high markups, it also predicts that providers of higher-quality cap-

ital have the strongest incentives to steer human capital accumulation toward their technologies.

As a result, the economy features a novel specialization–misallocation trade-off: weaker competi-

tion among capital providers raises markups but also strengthens incentives to subsidize training,

deepening specialization in productive technologies. The results call for caution when designing
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policies addressing competition in technology markets, as they have macroeconomic implications on

the specialization of human capital and the direction of technology adoption.

I provide empirical evidence that the open sourcing of platform-specific software is linked to

changes in the composition of demand for skills and technology adoption by US firms. With open

source ecosystems playing a central role in artificial intelligence, my framework offers insights for

policies that shape platform interoperability and openness.

Future research should seek further empirical evidence from other industries where specialized

human capital is an essential input in production and imperfectly competitive capital providers com-

pete for demand among producers choosing which technology to adopt. Extending the framework

to a dynamic setting would also be valuable. While this paper demonstrates that capital-provider-

sponsored training subsidies shape the technological specialization of the workforce and characterizes

the associated incentives, it remains an open question whether these mechanisms influence the rate

of aggregate economic growth. Distortions in the allocation of specialized human capital and to

technology adoption may affect incentives to innovate, magnifying the relevance of the specific-labor

margin emphasized in this study.
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A Summary of Notation

Table 3: Definitions of Main Variables and Parameters

Symbol / Notation Definition / Description

Ī , N̄ , L̄ Total measures of producers, workers, and land
i ∈ I Index of differentiated goods producers; total measure Ī
j ∈ J Technology or technology-specific capital provider
q ∈ Q Worker index; total measure N̄
nj Labor input of type j (efficiency units)
kj Technology-specific capital rented to producers
rj Rental rate for specialized capital, chosen by provider j
wj Equilibrium wage for labor of type j in segmented market
τj(oj), τj Access cost to training for technology j, decreasing in provider

investment oj
oj Provider’s investment in training subsidy
ϕ(oj), ϕ

o Convex/fixed cost of investment in training subsidy
pi Price of variety i
pL Price of land i
P Price index, normalized to one
ρ Labor share in production (Cobb–Douglas exponent)
η Inverse dispersion of worker preference draws across technologies
θ Fréchet shape, dispersion of firm draws across technologies
ε Elasticity of substitution across varieties (product demand)
Y,C Aggregate output and consumption
Φ, Φ̃ Cost indices in production; composite across technologies
sj , ςj Shares of producers and workers specializing in technology j
ΠF ,ΠK Total profits of producers and capital providers
N Labor index
N eff Total efficiency units
W Aggregate wage index (dual of labor index)
W̃ Aggregate wage index (dual of labor measure)
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B Omitted Proofs

B.1 Solution of Worker Problem

B.1.1 Choice Probabilities

Setup: Uj = Vj + ξj , Vj = ln

(
wj

(1 + τj)P

(
1 +

Π

W

))
, ξj

i.i.d.∼ T1EV(0, s).

F (ε) = exp(−e−ε/s), f(ε) = 1
se

−ε/s exp(−e−ε/s).

Choice prob.: Pr(j) = Pr(Uj ≥ Uk, ∀k) =
∫ ∞

−∞
f(ε)

∏
k ̸=j

F
(
ε+ Vj − Vk

)
dε.

Substitute F, f and set t = e−ε/s (⇒ dε = −s dt/t) : Pr(j) =

∫ ∞

0
exp
(
− tAj

)
dt, Aj ≡ e−Vj/s

∑
k

eVk/s.

Evaluate
∫ ∞

0
e−tAjdt = 1

Aj
⇒ Pr(j) =

eVj/s∑
k e

Vk/s
.

Apply Vj : eVj/s =
[

wj

(1+τj)P

(
1 + Π

W

)]1/s
⇝ Pr(j) =

(
wj

1+τj

)1/s
∑

k

(
wk

1+τk

)1/s (common factors cancel).

Map parameters & compact form: s = 1
1+η ⇒ 1

s = 1 + η, W−(1+η) ≡
∑
k

(
wk

1+τk

)1+η
.

ςj =

(
wj

(1 + τj)W

)1+η

.

B.1.2 Aggregate Budget Constraint

The aggregate budget constraint is given by:

∫
q
PCqdq =

∫
q
(wj(q) +Πj(q))dq

P
∑
j

ςjCj =
∑
j

ςjwj(1 + αΠ)

where ςj is the fraction of individuals choosing skillset j.
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Let aggregate consumption be C =
∑

j ςjCj . Then,

PC =
∑
j

ςjwj +Πα
∑
j

ςjwj

Imposing that weights add up to one,

1 =

∫
wj(q)αdq

= α
∑
j

ςjwj

= αW

where we define the wage bill W :=
∫
wj(q)dq. Thus, α = 1

W and Πj(q) =
wj(q)

W Π. The aggregate

budget constraint then becomes PC =W +Π.

B.1.3 Proof of Lemma 1

The worker’s problem is to maximize utility subject to their budget constraint:

max
j,ci

ln(Cq)− ln(τj) + ξqj

s.t. PCq =

∫
i
picqidi = wj(q)

(
1 +

Π

W

)
Cq =

(∫
i
c
ε−1
ε

i di

) ε
ε−1

Plugging the budget constraint into the objective function, the problem for each worker simplifies

to:

max
j

ln

(
wj

P

(
1 +

Π

W

))
− ln(τj) + ξqj = uj + ξqj

For each individual q, the taste shock ξqj is an i.i.d. draw from a T1EV distribution with shape

parameter 1 + η:

ξqj ∼ TIEV (η) = exp
[
− exp

(
−(1 + η)ξqj

)]
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The probability of choosing skillset j is then:

Prob(q chooses j) =
exp

(
uj/(1 + η)−1

)∑
j′ exp

(
uj′/(1 + η)−1

)
=

exp
((
lnwj + ln

(
1
P

(
1 + Π

W

))
− ln(τj)

)
(1 + η)

)∑
j′ exp

((
lnwj′ + ln

(
1
P

(
1 + Π

W

))
− ln(τj′)

)
(1 + η)

)
=

(
wj

τj

)1+η

∑
j′

(
wj′
τj′

)1+η =

(
wj

τjW

)1+η

=: ςj

This probability is independent of q and sums to one. Let W1+η =
∑

j′

(
wj′
τj′

)1+η
be an aggregate

wage index, including subsidies to technology-specific training, τ .

Since each worker provides one unit of labor inelastically, total labor supply for skill j is:

nj = ςj =

(
wj

τjW

)1+η

The labor supply system is thus:

• nj =
(

wj

τjW

)1+η
=⇒ wj = Wτjn

1
1+η

j

• W1+η =
∑

j′

(
wj′
τj′

)1+η

B.1.4 Allocation of Consumption

The first-order conditions for consumption allocation are:

ci : UC
dCq

dcqi
− λpi = 0

ci′ : UC
dCq

dcqi′
− λpi

′
= 0
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This implies:

pi
′

pi
=

dC
dci′

dC
dci

=

ε
ε−1

(∫
i c

ε−1
ε

i di

) 1
ε−1

ε−1
ε c

− 1
ε

i′

ε
ε−1

(∫
i c

ε−1
ε

i di

) 1
ε−1

ε−1
ε c

− 1
ε

i

pi
′
=

(
cqi
cqi′

) 1
ε

pi

cqi
cqi′

=

(
pi

pi′

)−ε

All individuals have the same allocation of consumption across varieties (it does not depend on

skills).

Plugging this into the budget constraint:

∫
i′

(
ci
ci′

) 1
ε

pici′di
′ = wj(q)

(
1 +

Π

W

)
pic

1
ε
i

∫
i′
c
ε−1
ε

i′ di′ = wj(q)

(
1 +

Π

W

)
pic

q 1
ε

i Cq ε−1
ε = wj(q)

(
1 +

Π

W

)
cqi
Cq

=

(
pi

P

)−ε(
wj(q)

(
1 +

Π

W

))ε

(PCq)−ε

cqi =

(
pi

P

)−ε

Cq
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Aggregating across consumers, total demand for variety i is:

ci =

∫
q
cqidq =

∫
q

(
pi

P

)−ε

Cqdq

=

∫
q

(
pi

P

)−ε wj(q)

(
1 + Π

W

)
P

dq

=
∑
j

Prob(q chooses j)
(
pi

P

)−ε wj

(
1 + Π

W

)
P

=
∑
j

w1+η
j τ

−(1+η)
j

W1+η

(
pi

P

)−ε wj

(
1 + Π

W

)
P

=
1

P

(
pi

P

)−ε(
1 +

Π

W

)
W−1−η

∑
j

w2+η
j τ

−(1+η)
j

=
1

P

(
pi

P

)−ε

(W +Π)

=

(
pi

P

)−ε

C

This yields:

pi = PC
1
ε
(
ci
)− 1

ε (35)

We defined W1+η =
∑

j′

(
wj′
τj′

)1+η
, and from the aggregate budget constraint, PC = (W +Π).

Notice W =
∫
q wj(q)dq =

∑
j ςjwj = W−(1+η)

∑
j (wj)

2+η τ
−(1+η)
j .

Using total demand for the variety, we can guess and verify that P , the ideal price index, is:

P =

(∫
i

(
pi
)1−ε

di

) 1
1−ε

This holds because:

PC =

∫
i
picidi =

∫
i
pip−εP εCdi = P εC

∫
i
p1−εdi

P 1−ε =

∫
p1−εdi

We normalize this to 1.

The demand system is:

• ci =
(
pi

P

)−ε
C =⇒ pi = PC

1
ε

(
ci
)− 1

ε

• P =
(∫

i

(
pi
)1−ε

di
) 1

1−ε
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• C =
∫
q C

qdq

• Cq =

(∫
i c

ε−1
ε

i di

) ε
ε−1

B.2 Solution of Goods Producer Problem

B.2.1 Characterization of Realized Profits

Each monopolistically competitive goods producer i ∈ I takes as given the demand function derived

in Section B.1. The first-order conditions of the profit maximization problem imply:

πij = P εY
1

ε

(
ε− 1

ε

)ε−1
(

zij

wρ
j r

1−ρ
j

)ε−1

Then, given zij = z̄jζ
i
j ,

πij =
(
ζij
)ε−1

π̄j

where

π̄j = P εY
1

ε

(
ε− 1

ε

)ε−1
(

z̄j

wρ
j r

1−ρ
j

)ε−1

B.2.2 Proof of Firms’ Technology Choice Probabilities

Given Pr (ζ < x) = e−x−θ , the density of the idiosyncratic productivity shock is Pr (ζ = x) =

θx−θ−1e−x−θ .

First, we obtain the density for the change of variable:

Pr
((
ζij
)ε−1

π̄j < x
)
= Pr

(
ζij <

(
x

π̄j

) 1
ε−1

)

= e
−

(
x
π̄j

) 1
ε−1

−θ

= e
−
(

x
π̄j

) −θ
ε−1

Then, the density of
(
ζij

)ε−1
π̄j is:

Pr
((
ζij
)ε−1

π̄j = x
)
=

dPr

((
ζij

)ε−1
π̄j < x

)
dx

=
θ

ε− 1
x

−θ
ε−1

−1 (π̄j)
θ

ε−1 e
−
(

x
π̄j

) −θ
ε−1
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The probability that firm i chooses skill j is:

Pr(i chooses j) =
∫ +∞

0
Pr
((
ζij
)ε−1

π̄j = x
) ∏

j′ ̸=j

Pr
((
ζij′
)ε−1

π̄j′ < x
)
dx

=

∫ +∞

0

θ

ε− 1
x

−θ
ε−1

−1 (π̄j)
θ

ε−1 e
−
(

x
π̄j

) −θ
ε−1 ∏

j′ ̸=j

e
−
(

x
π̄j′

) −θ
ε−1

dx

=

∫ +∞

0

θ

ε− 1
x

−θ
ε−1

−1 (π̄j)
θ

ε−1 e
−x

−θ
ε−1

∑
j′ π̄

θ
ε−1
j′ dx

= (π̄j)
θ

ε−1

∑
j′

π̄
θ

ε−1

j′

−1 [
e
−x

−θ
ε−1

∑
j′ π̄

θ
ε−1
j′

]+∞

0

=
π̄

θ
ε−1

j∑
j′ π̄

θ
ε−1

j′

= sj

Notice that:

sj =
π̄

θ
ε−1

j∑
j′ π̄

θ
ε−1

j′

=

(
P εY 1

ε

(
ε−1
ε

)ε−1
(

z̄j

wρ
j r

1−ρ
j

)ε−1
) θ

ε−1

∑
j′

(
P εY 1

ε

(
ε−1
ε

)ε−1
(

z̄j′

wρ

j′r
1−ρ

j′

)ε−1
) θ

ε−1

=

(
wρ

j r
1−ρ
j

z̄j

)−θ

∑
j′

(
wρ

j′r
1−ρ

j′
z̄j′

)−θ

This does not directly depend on P, Y .

B.2.3 Proof of Total Input Demands

Producers with different levels of idiosyncratic productivity demand a different amount of labor

and capital, but have the same choice probability. The total demand for each input is obtained by

aggregating across individual producers of differentiated varieties.

nj =

∫
nijdi
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nij =


0 if choose j′ ̸= j

≥ 0 if choose j

Similarly,

kj =

∫
kijdi

kij =


0 if choose j′ ̸= j

≥ 0 if choose j

Labor Demand. From the first-order condition:

ρ
ε− 1

ε
PY

1
ε

zij
(
nij

)ρ (
kij

)1−ρ

ρρ (1− ρ)1−ρ


ε−1
ε

= wjn
i
j

wjn
i
j = ρ

ε− 1

ε
py

πij = py − ε− 1

ε
py =

1

ε
py

=⇒ wjn
i
j = ρ(ε− 1)πij = ρ(ε− 1)(ζij)

ε−1π̄j

=⇒ rjk
i
j = (1− ρ)(ε− 1)(ζij)

ε−1π̄j

Now, let’s derive the aggregate labor demand:

wjnj = wj

∫
nij(ζ

i
j) Pr(ζ

i
j = ζ)

∏
j′ ̸=j

Pr
(
π̄j′(ζ

i
j′)

ε−1 ≤ π̄jζ
ε−1
)
dζ

= ρ(ε− 1)π̄j

∫
ζε−1 Pr

(
ζij = ζ

) ∏
j′ ̸=j

Pr
(
π̄j′(ζ

i
j′)

ε−1 ≤ π̄jζ
ε−1
)
dζ

= ρ(ε− 1)π̄j

∫
ζε−1θζ−θ−1e−ζ−θ

∏
j′ ̸=j

e
−

(
π̄j
π̄j′

) 1
ε−1

ζ

−θ

dζ

= ρ(ε− 1)π̄j

∫
θζε−2−θe

−
∑

j′

(
π̄j
π̄j′

)− θ
ε−1

ζ−θ

dζ

Derivations. Let X =
∑

j′

(
π̄j

π̄j′

)− θ
ε−1

ζ−θ. Then dX = −θ
∑

j′

(
π̄j

π̄j′

)− θ
ε−1

ζ−θ−1dζ. Also,
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ζ−θ = X/
∑

j′

(
π̄j

π̄j′

)− θ
ε−1 . So, ζ =

 X∑
j′

(
π̄j
π̄j′

)− θ
ε−1


− 1

θ

. And dζ = dX

−θ
∑

j′

(
π̄j
π̄j′

)− θ
ε−1

ζ−θ−1

.

Substituting these into the integral:

wjnj = ρ(ε− 1)π̄j

∫ +∞

0
θζε−2−θe−Xdζ

= ρ(ε− 1)π̄j

∫ +∞

0
θ

 X∑
j′

(
π̄j

π̄j′

)− θ
ε−1


− ε−2−θ

θ

e−X

×

−θ

∑
j′

(
π̄j
π̄j′

)− θ
ε−1

− 1
θ

X
θ+1
θ


−1

dX

= ρ(ε− 1)π̄j

∫ +∞

0
X

−(ε−2−θ)
θ

− θ+1
θ

∑
j′

(
π̄j
π̄j′

)− θ
ε−1

 ε−2−θ
θ

+ 1
θ

e−XdX

= ρ(ε− 1)π̄j

∫ +∞

0
X

−ε+1
θ

∑
j′

(
π̄j′
) θ

ε−1

 ε−1
θ

e−XdX

= ρ(ε− 1)π̄j

∑
j′

(
π̄j′
) θ

ε−1

 ε−1
θ ∫ +∞

0
X

−ε+1
θ e−XdX

Therefore,

wjnj = ρ(ε− 1)sj

∑
j′

(
π̄j′
) θ

ε−1

 ε−1
θ

Γ

(
1− ε− 1

θ

)

= ρ(ε− 1)sjΠ̄Γ

(
1− ε− 1

θ

)
= ρ(ε− 1)π̄

θ
ε−1

j Π̄1− θ
ε−1Γ

(
1− ε− 1

θ

)

where sj =
π̄

θ
ε−1
j∑

j′ π̄
θ

ε−1
j′

. Note that the Gamma function is not defined at zero, so we assume 1− ε−1
θ ̸= 0.
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Let A1 = Π̄1− θ
ε−1Γ

(
1− ε−1

θ

)
. Given π̄j = P εY 1

ε

(
ε−1
ε

)ε−1
(

z̄j

wρ
j r

1−ρ
j

)ε−1

, we can write:

wjnj = ρ(ε− 1)A1π̄
θ

ε−1

j

= ρ(ε− 1)A1

P εY
1

ε

(
ε− 1

ε

)ε−1
(

z̄j

wρ
j r

1−ρ
j

)ε−1
 θ

ε−1

Let A2 = A1

(
P εY 1

ε

(
ε−1
ε

)ε−1
) θ

ε−1
= Π̄1− θ

ε−1Γ
(
1− ε−1

θ

) (
P εY 1

ε

(
ε−1
ε

)ε−1
) θ

ε−1 .

wjnj = ρ(ε− 1)A2

(
z̄j

wρ
j r

1−ρ
j

)θ

Therefore, aggregate demand for labor with skills of type j is:

nj = ρ(ε− 1)A2

(
z̄j

r1−ρ
j

)θ

w−ρθ−1
j

Capital Demand. Similarly,

rjkj = (1− ρ)(ε− 1)Π̄1− θ
ε−1Γ

(
1− ε− 1

θ

)
π̄

θ
ε−1

j

= (1− ρ)(ε− 1)A2

(
z̄j

wρ
j r

1−ρ
j

)θ

Therefore, aggregate demand for capital of type j is:

kj = (1− ρ)(ε− 1)A2

(
z̄j
wρ
j

)θ

r
−θ(1−ρ)−1
j

Finally, we can express the quantity A2 only as a function of parameters and factor prices by using

the labor market clearing condition.

B.3 Solution of Tech Provider Problem

B.3.1 Proof of Proposition 1

Proof. Using the chain rule, the elasticity of demand when wages are internalized is:

dkj
drj

rj
kj

=
∂kj
∂rj

rj
kj

+
∂kj
∂wj

wj

kj
· dwj

drj

rj
wj
.
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To ease notation, we define the following partial (e) and total (ε) elasticities:

ekr = −∂kj
∂rj

rj
kj

ekw = − ∂kj
∂wj

wj

kj
εwr = −dwj

drj
· rj
wj

Then

εkr = ekr − ekw · εwr.

Notice that under the model assumptions, the partial elasticity of capital demand is constant and

does not depend on whether wages are fixed, i.e. εLMkr = eLMkr = eMC
kr . Then,

εkr < εkr ⇐⇒ ekr · εwr > 0

Under the model assumptions ekr > 0 and by the envelope theorem, as dτj
drj

= 0, εwr = ewr > 0,

therefore the result follows.

Corollary 2. The effective elasticity of demand faced by capital providers that internalize the

specific-labor margin:

(i) increases as θ, the Frechet substitutability, increases;

∂εeff

∂θ
= (1− ρ)

(1 + η)2

(η + ρθ + 2)2
> 0

(ii) falls in share of labor in production, ρ

∂εeff

∂ρ
= −θ (2 + η)(η + θ + 2)

(η + ρθ + 2)2
< 0

(iii) increases in the worker heterogeneity parameter η

∂εeff

∂η
=

ρ(1− ρ)θ2

(η + ρθ + 2)2
> 0

Therefore capital providers’ markup decreases in θ and η and increase in ρ.

B.3.2 Proof of Proposition 2

Proof. (Investment in technology-specific knowledge and productivity cutoff)
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1. Let the gross profits of capital provider j ∈ J be

Vj(φj) =
(
1− µ−1

) (1− ρ)

ρ
Φ̃−1

(
wρ
j r

1−ρ
j

z̄j

)−θ

=
(
1− µ−1

) (1− ρ)

ρ

Φ

Φ̃
sj

when the specific-labor margin is internalized and computed at the optimal choice of rj . The

perceived elasticity of profits to investment in technology-specific knowledge is decomposed as

∂ lnVj
∂ ln oj

= −θ(1− ρ)
∂ ln rj
∂oj

− ρθ
∂ lnwj

∂ ln oj
− ρθ

∂ lnwj

∂ ln rj

∂ ln rj
∂ ln oj

= −ρθ∂ lnwj

∂ ln oj

where the last equality follows since the rental rate on technology-specific capital is a constant

markup on marginal cost and marginal cost does not vary with subsidy. Using the equilibrium

wage equation,
∂ lnwj

∂ ln oj
= − 1 + η

η + ρθ + 2

and therefore at a fixed level of investment in technology-specific knowledge ō we conclude

∂ lnVj
∂ ln oj

=
ρθ(1 + η)

η + ρθ + 2

It follows that

Bj(ō, φj) =
∂Vj
∂oj

=
∂ lnVj
∂ ln oj

Vj(φj)

ō

dBj(ō, φj)

dφj
∝ dVj(φj)

dφj
> 0

i.e. the perceived benefit of investing in training is strictly monotone in productivity.

2. We have shown that the benefit of investing an amount ō is monotonically increasing. For a

fixed cost f of investing amount ō, the function of φj

Bj(ō, φj)− f

exhibits single crossing and will cross zero at most once from below as φj increases.
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B.3.3 Microfoundation of fixed costs allocation.

An intermediary pools fixed cost expenditures in the economy and allocates them across varieties

of the consumption good i ∈ I, with prices {pi}i∈I . Specifically, the fixed-cost aggregator must

deliver at least Φo units of the composite, where Φo denotes the total fixed cost expenditure in the

economy. Similarly to the consumption good, this composite is produced from individual varieties

according to a CES aggregator with parameter ε > 1.

Φ =

(∫
i∈I

(ϕi)
ε−1
ε di

) ε
ε−1

.

The cost minimization problem

min
{ϕi}i∈I

∫
i∈I

piϕi di s.t.
(∫

i∈I
(ϕi)

ε−1
ε di

) ε
ε−1

≥ Φo

yields the demand for each individual variety in Equation (10).

B.4 Aggregation

B.4.1 Derivation of Lemma 5.

From the solution to the worker utility maximization problem, the total supply of effective labor

units in the segment j ∈ J of the labor market is

nj = ςj(1− τj) N̄ =
w1+η
j (1− τj)

2+η

W 1+η
N̄ .

Solving for wj gives

wj =
(nj
N̄

) 1
1+η W

(1− τj)
2+η
1+η

.

Substitute into the aggregate wage bill:

WN =
∑
j

wjnj =
∑
j

nj

(nj
N̄

) 1
1+η W

(1− τj)
2+η
1+η

.

Rearranging proves the claim.

N = N̄
∑
j

(
nj

N̄(1− τj)

) 2+η
1+η

.
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B.4.2 Derivation of Lemma 6.

Let ndj denote labor demand in sector/technology j. Labor market clearing requires

N eff =
∑
j

ndj . (36)

From the firm problem, labor demand in j takes the form

ndj = Īρ(ε− 1)A

(
z̄j

r1−ρ
j

)θ

w−ρθ−1
j , (37)

so that substituting (37) into (36) gives

N eff = Īρ(ε− 1)A
∑
j

(
z̄j

r1−ρ
j

)θ

w−ρθ−1
j . (38)

Define the wage-rental weighted productivity term

Φ̃ ≡
∑
j

(
z̄j

r1−ρ
j

)θ

w−ρθ−1
j . (39)

Then (38) can be written compactly as

N eff = Īρ(ε− 1)A Φ̃. (40)

Next, using the expression for A,

A = (ε− 1)−1
(
Ī
)−1− ε

ε−1 (Φ)−
1+θ
θ

[
Γ

(
1− ε− 1

θ

)]− 1
ε−1

Y, (41)

substituting (41) into (40) yields

N eff = Īρ(ε− 1)

[
(ε− 1)−1

(
Ī
)−1− ε

ε−1 (Φ)−
1+θ
θ

[
Γ

(
1− ε− 1

θ

)]− 1
ε−1

Y

]
Φ̃

= ρ
(
Ī
)− ε

ε−1 (Φ)−
1+θ
θ

[
Γ

(
1− ε− 1

θ

)]− 1
ε−1

Y Φ̃. (42)
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Rearranging (42) gives output as a function of effective labor:

Y =
N eff

ρ

(
Ī
) ε

ε−1 (Φ)
1+θ
θ

[
Γ

(
1− ε− 1

θ

)] 1
ε−1

Φ̃−1. (43)

B.5 Welfare Analysis

B.5.1 Proof of Lemma 7

For a worker choosing technology j, the budget constraint PCq = wj(1− τj) + Πj implies

Cq =
wj(1− τj) + Πj

P
.

Then, indirect utility from choosing j is

uj + ξj = lnCq + ξj = ln
(
wj(1− τj) + Πj

)
− lnP + ξj .

The technology-specific labor disutility draws ξj are distributed Type I Extreme Value with

scale parameter 1
1+η , i.e.

F (ξ) = exp
(
−e−(1+η)ξ

)
.

Define the maximum of individual utility M := maxj{uj + ξj}. Then

Pr(M ≤ m) =
∏
j

Pr
(
ξj ≤ m− uj

)
=
∏
j

exp
(
−e−(1+η)(m−uj)

)
= exp

(
−
∑
j

e−(1+η)(m−uj)
)
= exp

(
−e−(1+η)m

∑
j

e(1+η)uj

)
.

Define

µ :=
1

1 + η
ln
(∑

j

e(1+η)uj

)
.

Then

Pr(M ≤ m) = exp
(
−e−(1+η)(m−µ)

)
,

so M is distributed Gumbel with location µ and scale 1/(1+ η). Ex-ante maximum utility for each

worker is

E[M ] =
1

1 + η
ln
(∑

j

(
wj(1− τj) + Πj

)1+η
)
− lnP +

Jγe

1 + η
.

where Jγe

1+η is an aggregation constant and γe is the Euler-Mascheroni constant. Define aggregate
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non-labor income Υ := [Πk+Πf+p
LL̄−T ] and recall that each worker’s share of aggregate non-labor

income satisfies

Πj = αwj(1− τj)Υ,

where α clears the asset market. Therefore

E[M ] = lnW + ln
(
1 + αΥ

)
− lnP +

Jγe

1 + η
.

Since workers are ex-ante identical and have measure N̄ , utilitarian ex-ante social welfare is

SW ex-ante =

∫
q
E[M ] dq = N̄ E[M ].

Thus

SW ex-ante = N̄
[
lnW + ln

(
1 + αΥ

)
− lnP

]
+ N̄

Jγe

1 + η
.

Clearing of the asset market implies

1 =

∫
wj(q)(1− τj)αdq = α

∑
j

ςjwj(1− τj)N̄ = α
∑
j

wjnj = αWN

therefore

α =
1

WN
.

and aggregate goods-market clearing implies

PC =
∑
j

wjnj +Υ = WN+Υ = WN
(
1 + αΥ

)
.

Rearranging gives

1 + αΥ =
PC

WN
.

Substitute this into the expression for SW ex-ante and divide by the measure of workers N̄ to obtain

per-capita ex-ante social welfare

S = lnW + ln
( PC
WN

)
− lnP +

Jγe

1 + η

=
[
lnC − lnN

]
+ κ(J, η)
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where κ(J, η) := N̄ γe

1+η denotes the aggregation constant.

B.5.2 Proof of Proposition 3

To characterize the externalities created by technology–specific investment, consider a social planner

that internalizes all general equilibrium linkages between innovation, wages, and effective labor

supply. The planner chooses {oj , sj , ςj , C} to maximize aggregate welfare,

max
oj∈{0,ō},sj ,ςj ,C

ln(C)− lnN, (44)

subject to the resource constraint

Y (nj , oj) = C + ϕo
∑
j

1(oj = ō), (45)

and aggregate production and labor-supply conditions,

Y = ρ−1
(
Ī
) ε

ε−1 (Φ)
1+θ
θ

[
Γ

(
1− ε− 1

θ

)] 1
ε−1

Φ̃−1
∑
j

N̄ςj(1− τj), (46)

N = N̄
∑
j

(
nj

N̄(1− τj)

)2+η
1+η

= N̄
∑
j

(ςj)
2+η
1+η , τj = τ̄j − oj ,

∑
j

ςj =
∑
j

sj = 1. (47)

The planner invests in technology j whenever the marginal social benefit (MSB) exceeds the

marginal social cost (MSC),

MSBj(φj) ≥MSCj . (48)

In welfare units, this condition is equivalent to

d lnY

doj

Y

C
− d lnN

doj
≥ ϕo

C
, (49)

that is, the output gain net of disutility costs must exceed the resource cost of investment.

B.5.3 Decomposition of Social Marginal Benefit

Differentiating aggregate output (46) with respect to oj yields

d lnY

doj
=

1 + θ

θ

d lnΦ

doj
− d ln Φ̃

doj
+
d ln
∑

m N̄ςm(1− τm)

doj
. (50)
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When the price index is normalized (P = 1), Φ is constant, and thus the first term vanishes. The

second term,

−d ln Φ̃
doj︸ ︷︷ ︸

(business‐stealing externality)

,

captures how a change in oj alters the cost index Φ̃ = Φ
∑

m smw
−1
m by reallocating expenditure

shares across technologies with different wages. As sj rises, Φ̃ increases, raising aggregate costs for

all other technologies—an externality the planner internalizes but individual firms ignore.

The third term,
N̄
[
(1− τj)

dςj
doj

+ ςj
d(1−τj)

doj

]
N eff︸ ︷︷ ︸

(aggregate efficiency‐unit externality)

,

captures the increase in effective labor supply that results both from the direct relaxation of train-

ing constraints (1 − τj) and from the induced reallocation of workers ςj toward more productive

technologies.

Changes in disutility are obtained from (47):

d lnN

doj
=

N̄

N

2 + η

1 + η
ς

1
1+η

j

dςj
dτj

dτj
doj︸ ︷︷ ︸

(labor‐disutility externality)

. (51)

A reduction in τj reallocates workers and lowers average training disutility; this effect raises welfare

but does not enter the private objective.

Combining these elements, the social marginal benefit of investment in technology j is

MSBj(φj) =

[
N̄
[
(1− τj)

dςj
doj

+ ςj
d(1−τj)

doj

]
N eff

Y

C︸ ︷︷ ︸
efficiency‐unit gain

− 1

N
N̄

2 + η

1 + η
ς

1
1+η

j

dςj
dτj

dτj
doj︸ ︷︷ ︸

disutility reduction

]
− d ln Φ̃

doj

Y

C︸ ︷︷ ︸
business‐stealing loss

, (52)

while the planner’s perceived social marginal cost is

SMCj =
ϕo

C
. (53)

Investment occurs whenever (52) exceeds (53).
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B.6 Numerical solution

This appendix describes the numerical implementation of the equilibrium algorithm. All parameters

satisfy the aggregation restriction θ > ε− 1.

B.6.1 Step 0. Initialization

Given the vector of all parameters p, draw the productivity distribution {φj}Jj=1, sort technologies

in ascending order, and initialize guesses:

pL
(0)
, w

(0)
j , τ

(0)
j = τ̄ , o

(0)
j = 0.

The sorting by φj allows subsequent steps to proceed via monotone iteration.

B.6.2 Step 1 Labor-Market Fixed Point

For given {rj , τj(oj)}, equilibrium wages solve

wj = g
(
rj , τj ,W;p

)
, (54)

W =
(∑

j

(1− τj)
1+ηw1+η

j

)1/(1+η)
. (55)

The fixed point is computed by iterative damping, w(t+1) = 1
2w

(t) + 1
2 w̃(w

(t)), until maxj |w(t+1) −

w(t)| < εW .

B.6.3 Step 2. Capital Providers’ Optimization

Given pL each provider chooses (rj , oj). The markup is constant under the assumptions, therefore

the land price is sufficient to determine rental rates for all types of capital.

(a) Binary investment. Given the optimal value of the rental rate, this step determines the

cutoff φ∗ such that

B̃j(φj) := Vj(oj = ō)− Vj(oj = 0)− ϕo

crosses zero exactly once. Because B̃j has been shown to be strictly decreasing in φj , the algorithm

proceeds monotonically from the most to the least productive firm, adding investors until Bj < 0.

At each iteration, the benefit is evaluated at the most favorable combination of investment of

competitors: I evaluate the benefit of investment of the most productive provider first, under
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the assumption that no other provider invests. If this evaluation results in investment for the

most productive provider, I proceed to the next provider along the productivity rank and evaluate

the perceived benefit of investment under the assumption that only the most productive firm has

invested.

Given the minimum productivity cutoff, we determine investment strategies {oj} and all general

equilibrium aggregates W, A,Φ, Φ̃ are recomputed using the updated τj(oj) and rj .

B.6.4 Step 3 Land-Market Equilibrium

Aggregate land demand by capital providers is

Ld(q) =
∑
j

kj(rj , wj)

ψj
.

The excess-demand function EL(pL) = Ld(pL)− L̄ determines the update

pL
(t+1)

= pL
(t)

(
1 + λ

EL(pL
(t)
)

L̄

)
.

Iterations continue until |EL(pL)| < εL where εL is the solver’s tolerance.
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C Data Cleaning and Sample Construction

C.1 US Job Posting Data

Following Acemoglu, Autor, Hazell, and Restrepo, I focus on establishments in “AI-using sectors”

and exclude those in sectors likely to be producing AI technologies. Specifically, I drop establish-

ments in the Information sector (NAICS 2-digit code 51), which includes software and data-related

industries, and in the Professional and Business Services sector (NAICS 2-digit code 54), which

includes management consulting and other services likely to be involved in deploying AI technolo-

gies for clients. Notably, I exclude Google and its parent company Alphabet, whose open sourcing

strategy I analyze in the main case study.

To further refine the sample, I exclude staffing firms by removing observations with NAICS

4-digit codes 561311 (Employment Placement Agencies) or 561320 (Temporary Help Services) and

retain only jobs that are not classified as internships. To ensure data quality, I drop observations

with missing or generic information on industry, firm and occupation.

To reduce the dimensionality of the data, I analyze trends in job posting volume, the number

of distinct employers, and industry composition over time for the group of job postings explicitly

demanding TensorFlow as a specialized skill. I then restrict the analysis to a broad occupational

category that is likely to be highly exposed to AI technologies: Computer and Mathematical Oc-

cupations (SOC 15). This category is chosen based on its high frequency in the universe of job

postings that explicitly demand TensorFlow expertise from 2015 to 2024.

C.2 Salary Subsample

Summary statistics for the subsample of job postings with information about annual salaries are

reported in table 4.

C.3 Developer Surveys

Summary statistics for the adopted sample of US responders in 2024 are reported in Table 5.

C.4 Calibration Strategy

The targeted moments are reported in Table 6 and the distributions of wages, share of adopting

good producers and share of specialized workers across technologies are in Figure 8.
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Table 4: Summary Statistics: Job Postings with Salary Information

Statistic Value

Total observations with salary information 366,547
Share of sample 5.49%
Pre–TensorFlow period 155,073
Post–TensorFlow period 211,474
Mean posted salary $76,301
Median posted salary $70,210
Standard deviation $37,484
Mean salary, GCP postings $102,439
Mean salary, AWS postings $109,270
Mean salary, Azure postings $100,208
Number of GCP postings 863
Number of AWS postings 6,476
Number of Azure postings 4,586

Notes: This table reports summary statistics for job postings containing salary
information in the sample period. The sample includes postings mentioning
Google Cloud Platform (GCP), Amazon Web Services (AWS), and Microsoft
Azure. The pre- and post-TensorFlow periods refer to observations before and
after TensorFlow’s open source release in November 2015.

Table 5: Summary Statistics: U.S. Developer Survey Respondents (2024)

Variable All U.S. Respondents U.S. Influencers

Sample size 7,157 3,867
TensorFlow users 821 410
TensorFlow usage rate (%) 11.47 10.60
GCP – Have (%) 20.94 23.33
GCP – Want (%) 15.20 16.01
GCP – Admire (%) 10.42 11.48
AWS – Have (%) 46.26 52.81
AWS – Want (%) 32.86 36.38
AWS – Admire (%) 27.74 31.76
Azure – Have (%) 28.64 33.10
Azure – Want (%) 20.67 22.94
Azure – Admire (%) 16.81 19.39
Some influence (%) 42.58 64.86
Great influence (%) 23.07 35.14

Notes: Data come from the 2024 Stack Overflow Developer Survey. The sample is restricted
to U.S. respondents with non-missing technology data. “Influencers” are defined as respondents
reporting some or great influence over technology purchase decisions. TF = TensorFlow. Per-
centages report platform adoption, interest (“Want”), and perceived reputation (“Admire”).
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Figure 8: Baseline Distributions.

Table 6: GMM Estimation of Calibration Targets

Moment GMM Target Model Counterpart

Number of investing firms 1.000 1 m1 =
∑

j∈J 1{oj > 0}

Wage dispersion in sponsored equilibrium
(coeff. of variation)

0.0768 0.170 m2 =
std(winv)

mean(winv)

Reduction in sponsored-skill wage premium
(relative to no sponsorship)

0.8479 0.840 m3 =

(
winv

J − E[winv]
)
− (wno

J − E[wno])

wno
J − E[wno]

Increase in adoption of sponsored technol-
ogy

0.4842 0.510 m4 =
sinv
J − sno

J

sno
J

Notes: “inv” and “no” denote equilibria with and without sponsored training. All moments computed at the
model-implied equilibrium.
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Table 7: Wage Dispersion Measures Across Cloud Skills (2012–2019)

Measure Symbol Value
Coefficient of Variation CV 0.1655
Standard Deviation of Log Wages σlnw 0.2095
Average Log Wage Variance Var(lnw) 0.0439
Sample Information
Time Period 2012–2019
Cloud Providers AWS, Azure, GCP
Sample All job postings

Notes: This table reports wage dispersion measures computed from job posting
data across three major cloud computing platforms (AWS, Azure, and GCP)
for the period 2012–2019. The coefficient of variation (CV ) measures relative
wage dispersion (standard deviation divided by the mean). The variance and
standard deviation of log wages capture scale-invariant wage dispersion, with
σlnw approximating percentage variation around the geometric mean.

Table 8: GCP Market Share Change After TensorFlow Open-Sourcing

Measure Detrended (SA)

Pre-TensorFlow average share 0.4909
Post-TensorFlow average share 0.7420
Absolute change (p.p.) 0.2511
Relative change (%) 51.15

Sample Information
Event date November 2015
Time period 2012–2019
Pre-event months 46
Post-event months 50

Notes: This table reports changes in Google Cloud
Platform (GCP) market share before and after the
open-sourcing of TensorFlow in November 2015.
”Detrended (SA)” refers to seasonally adjusted and
detrended market shares, while the ”Adjusted Ver-
sion” uses deviations from pre-event means. Market
shares are computed from job postings mentioning
cloud-computing skills.
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D Additional Figures and Tables

In section 5 I restrict the sample to occupation SOC 15. While job postings for this occupation

increase during the sample period, the pace of increase does not seem to respond significantly to

the open sourcing event I study.

Pre−2015: slope = 6158.28 

R² = 0.565

Post−2015: slope = 7154.25 

R² = 0.396
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Red line: Pre−2015 trend, Blue line: Post−2015 trend

Monthly Job Postings in SOC 15 (2010−2019)

Notes: The figure plots monthly job postings for occupations classified under SOC 15 (Computer and Mathemat-
ical Occupations). The red line represents the pre-2015 trend, and the blue line represents the post-2015 trend.
The slopes and R2 statistics are reported for each subperiod. Although postings in this category increase steadily
throughout the sample period, the rate of growth does not display a significant change following the open-sourcing
event analyzed in Section 5. Shaded bands denote 95% confidence intervals around the fitted trends. Source:
Author’s calculations from Lightcast job postings data (2010–2019).
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Figure 10: Seasonally Adjusted Job Postings by Cloud Provider, 2012–2019
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Black dashed line marks November 2015 (TensorFlow open−source release)
Seasonally Adjusted Job Postings

Notes: Seasonally adjusted monthly counts of job postings mentioning the three major cloud platforms—Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)—between 2012 and 2019. The black
dashed line marks November 2015, corresponding to the open-sourcing of TensorFlow. Data: US job postings.

Figure 11: Seasonally Adjusted Job Postings by Cloud Provider, 2012–2019 (Log Scale)
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Red dashed lines: Pre−Nov 2015 trends, Blue dashed lines: Post−Nov 2015 trends
Monthly GCP, AWS, and Azure Job Postings (2012−2019) − Log Scale

Notes: Log transformation of easonally adjusted monthly counts of job postings mentioning the three major cloud
platforms—Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)—between 2012
and 2019. The black dashed line marks November 2015, corresponding to the open-sourcing of TensorFlow. The
red lines represent the pre-2015 trends, and the blue lines represent the post-2015 trends. Data: US job postings.
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D.1 Model Simulations

Figure 12: Economic Outcomes and Markup Distortions under Different Skill Specificity.

Panel (a): High Skill Specificity (Low η)

Panel (b): Low Skill Specificity (High η)

Notes: Each panel summarizes equilibrium outcomes from model simulations varying the markup parameter µ ∈
[1.1, 1.6] under alternative assumptions about worker substitutability across technologies (η). The top-left quadrant
shows the number of firms that invest; the top-right reports aggregate welfare; the bottom-left and bottom-right dis-
play equilibrium consumption and labor disutility (log scale), respectively. Labels on data points indicate values of
θ, the firm-level substitutability across technologies. In Panel (a), higher markups reduce consumption and increase
disutility but can raise welfare when they stimulate greater investment by capital providers. In Panel (b), higher
markups again depress consumption and raise disutility, but this effect dominates when skills are broadly transferable.
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Table 9: Summary Statistics for Job Postings with Reported Salaries

Statistic Value
Total observations with salary information 366,547
Share of total sample 5.49%
Pre–TensorFlow period 155,073
Post–TensorFlow period 211,474
Mean salary $76,301
Median salary $70,210
Standard deviation of salary $37,484
Mean salary (GCP postings) $102,439
Mean salary (AWS postings) $109,270
Mean salary (Azure postings) $100,208
Number of postings (GCP) 863
Number of postings (AWS) 6,476
Number of postings (Azure) 4,586

Notes: This table reports summary statistics for job postings
with available salary information in the sample used for the
empirical analysis. The data are divided into pre- and post-
TensorFlow (TF) periods and cover postings mentioning major
cloud platforms (Google Cloud Platform, AWS, and Microsoft
Azure).
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D.2 Salary Effects

Dependent Variable: Posted Annual Salary

Model: (1)

Variables

has_gcp 16,136.0∗∗

(6,391.8)

has_awsT 24,173.0∗∗∗

(3,031.1)

has_azure 14,147.7

(9,980.4)

Post-TensorFlow 513.7

(1,921.2)

has_gcp × Post-TensorFlow -8,052.2

(5,850.3)

has_aws× Post-TensorFlow -4,819.6∗

(2,612.4)

has_azure× Post-TensorFlow -8,529.0

(9,855.0)

Fixed-effects

naics2 Yes

onet_2019_name Yes

Fit statistics

Observations 366,547

R2 0.17285

Within R2 0.00811

Clustered (NAICS2 & O*NET 2019) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 10: Salary Effects of Cloud Provider Skills

Salary (Levels) Log(Salary)
(1) (2) (3)

Main Effects
has_gcp 24,005∗∗ 0.331∗∗∗ 0.238∗∗∗

(10,589) (0.103) (0.064)
has_aws 19,703∗∗∗ 0.297∗∗∗ 0.288∗∗∗

(6,562) (0.079) (0.033)
has_azure -6,547 0.007 0.142∗

(6,917) (0.057) (0.071)
Date 483.9 0.012

(675.7) (0.009)
Post-TF 6,729∗∗ 0.104∗∗∗ 0.009

(3,073) (0.035) (0.025)
Two-Way Interactions
has_gcp × Date -4,014 -0.047

(2,508) (0.030)
has_aws × Date 1,595 -0.006

(2,480) (0.026)
has_azure × Date 7,381 0.047

(5,795) (0.037)
has_gcp × Post-TF -20,136∗∗ -0.190∗∗∗ -0.154∗∗∗

(8,515) (0.028) (0.047)
has_aws × Post-TF -4,754 -0.118 -0.062∗∗∗

(12,083) (0.122) (0.020)
has_azure × Post-TF 9,879 0.005 -0.058

(8,263) (0.031) (0.067)
Date × Post-TF -1,337∗∗ -0.023∗∗∗

(576.0) (0.006)
Triple Interactions
has_gcp × Date × Post-TF 4,652∗∗∗ 0.038∗∗

(1,400) (0.017)
has_aws × Date × Post-TF -894.5 0.014

(3,244) (0.033)
has_azure × Date × Post-TF -6,997 -0.036

(6,045) (0.036)
Fixed Effects
Industry (NAICS2) Yes Yes Yes
Occupation (ONET) Yes Yes Yes
Fit Statistics
Observations 366,547 366,547 366,547
R2 0.1734 0.2084 0.2075
Adj. R2 0.1733 0.2083 0.2074

Notes: Standard errors clustered by NAICS2 and ONET codes. Post-TF = period after TensorFlow release (Nov.
2015). Date normalized to years from sample start. Column (3) excludes time-trend interactions. ∗∗∗p < 0.01,
∗∗p < 0.05, ∗p < 0.1.
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Table 11: Salary Effects of Cloud Provider Skills (Occupation FE)

Salary (Levels) Log(Salary)
(1) (2) (3)

Main Effects
has_gcp 28,104∗∗∗ 0.358∗∗∗ 0.225∗∗∗

(8,773) (0.089) (0.060)
has_aws 20,196∗∗∗ 0.284∗∗∗ 0.292∗∗∗

(4,495) (0.058) (0.024)
has_azure -3,175 0.043 0.160∗∗∗

(3,353) (0.039) (0.052)
Date 765.9 0.017∗∗

(474.6) (0.007)
Post-TF 4,586∗∗ 0.089∗∗∗ 0.008

(2,192) (0.027) (0.006)
Two-Way Interactions
has_gcp × Date -6,124∗∗∗ -0.067∗∗

(1,990) (0.027)
has_aws × Date 2,061 -0.0005

(1,873) (0.023)
has_azure × Date 6,844∗∗∗ 0.039∗∗

(2,181) (0.017)
has_gcp × Post-TF -29,332∗∗ -0.312∗∗ -0.163∗∗∗

(12,674) (0.123) (0.054)
has_aws × Post-TF -451 -0.051 -0.060∗∗∗

(7,403) (0.071) (0.019)
has_azure × Post-TF 6,096 -0.044 -0.074

(7,162) (0.066) (0.049)
Date × Post-TF -1,158∗ -0.025∗∗∗

(651.7) (0.009)
Triple Interactions
has_gcp × Date × Post-TF 7,309∗∗∗ 0.070∗∗

(2,570) (0.033)
has_aws × Date × Post-TF -1,917 0.0005

(2,005) (0.023)
has_azure × Date × Post-TF -6,379∗∗ -0.026

(2,679) (0.022)
Fixed Effects
Occupation (ONET) Yes Yes Yes
Fit Statistics
Observations 366,547 366,547 366,547
R2 0.1289 0.1615 0.1605
Adj. R2 0.1288 0.1613 0.1604

Notes: Standard errors clustered by ONET occupation codes. Post-TF = period after the November 2015 release of
TensorFlow. Date normalized to years from sample start. Column (3) excludes time-trend interactions. ∗∗∗p < 0.01,
∗∗p < 0.05, ∗p < 0.1.
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