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1 Introduction

Empirical macroeconomists increasingly seek to estimate impulse response functions with-
out relying on dubious functional form assumptions or identifying restrictions. For example,
local projections (LP) have become a popular direct regression-based alternative to Vector
Autoregression (VAR) methods (Jordà, 2005; Angrist et al., 2017). Additionally, instrumen-
tal variable (IV, also known as proxy variable) methods are now routinely used to conduct
structural analysis under plausible identifying assumptions (Stock, 2008; Stock & Watson,
2012; Mertens & Ravn, 2013; Gertler & Karadi, 2015; Stock & Watson, 2016; Caldara &
Kamps, 2017). The combination of these two ideas leads to an appealingly semiparametric
method, LP-IV, with an economically transparent framework for identification (Mertens,
2015; Ramey, 2016; Barnichon & Brownlees, 2017; Stock & Watson, 2017).

While existing robust methods consistently estimate impulse response functions, there
currently exists no general way to quantify how important a shock is in driving the fluctu-
ations of observed macro time series. In the traditional structural VAR (SVAR) literature,
this question was often central to the analysis and was routinely addressed using forecast
variance decompositions. A forecast variance decomposition measures the fraction of the
overall forecast variance for a variable that can be attributed to each of the driving shocks.
Although crucial to understanding the causes of economic fluctuations, tools for doing in-
ference on variance decompositions have hitherto been unavailable in the semiparametric
LP-IV setting. Applied researchers have thus faced an unfortunate dilemma between a need
to quantify the importance of shocks and the desire to avoid imposing a restrictive SVAR
structure (or assuming that shocks are directly observed).

In this paper, we show precisely to what extent the data are informative about the
importance of shocks in a general linear dynamic model with IVs. Our model allows for
a general semiparametric moving average structure of shock transmission, consistent with
essentially all linearized structural macroeconomic models. Assuming only validity of the
instruments, we derive sharp – and informative – bounds on various definitions of the forecast
variance decomposition. Point identification can be achieved under a further assumption
that the shock of interest is recoverable from the infinite past, present, and future of the
endogenous macro variables, a weaker condition than the often questionable invertibility
requirement of SVAR analysis. We further sharply characterize the extent to which the data
are informative about the degree of invertibility of the shock of interest. We illustrate the
identification results through the lens of the popular Smets & Wouters (2007) model. Finally,
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to perform inference, we develop easily computable, partial identification robust confidence
intervals for forecast variance decompositions and other objects of interest.

Following Stock & Watson (2017), the LP-IV model that we analyze, although linear, is
semiparametric in the sense that we allow for a completely general infinite moving average
structure for the transmission of shocks to observed variables.1 Our sole assumption on
the IVs is the usual exclusion restriction – the IVs correlate with the shock of interest, but
not the other shocks. Importantly, we allow the number of underlying exogenous shocks to
be unknown and potentially exceed the number of observed endogenous variables. Unlike
standard SVAR models, we do not restrict the shocks to be invertible, i.e., spanned by past
and current (but not future) values of the observed endogenous variables.

In this baseline LP-IV model, we show that forecast variance decompositions are only
partially identified, albeit with informative bounds. Hence, even with an infinite sample, it
would be impossible to pinpoint the exact importance of the shock of interest. The identified
set is an interval, with nontrivial lower and upper bounds computable from the joint spectral
density of the macro variables and the IV. The bounds depend on the strength of the external
IV and the informativeness of the observed macro variables about the shock of interest. We
consider two definitions of the forecast variance decomposition that differ in the information
set used for the forecast: either conditional on all past endogenous variables, or conditional
on all past shocks. The identified sets for these two concepts differ, unless invertibility is
imposed a priori.

As the LP-IV model does not assume that shocks are invertible a priori, we are able
to sharply characterize the extent to which the data are informative about the degree of
invertibility. Inference about invertibility is useful for gauging the ability of VAR mod-
els to perform valid structural analysis and for distinguishing between different classes of
structural models, such as models with anticipated versus surprise shocks. The degree of
noninvertibility of a shock is inversely related to the R2 in an (infeasible) regression of the
shock on past and current values of the endogenous variables. We show that this R2 measure
is partially identified, and we discuss which properties of the data would allow us to either
confirm or reject invertibility with certainty. Our main finding is that the data rule out
invertibility if and only if the IV Granger-causes the observed endogenous variables.

Although the baseline model is partially identified, we additionally provide assumptions
that guarantee point identification of certain variance decompositions and the degree of

1This Structural Vector Moving Average Model has been analyzed recently from a Bayesian viewpoint by
Barnichon & Matthes (2017) and Plagborg-Møller (2017), although with little emphasis on IVs.

3



invertibility. Point identification obtains if the shock of interest is recoverable, i.e., spanned
by the infinite past, present, and future of the endogenous macro variables. This assumption
also yields point identification of historical decompositions, which account for the part of the
realized data that can be attributed to the shock of interest. The recoverability condition
– although restrictive – is satisfied in certain classes of macro models, such as news and
noise shock models, and it is substantially weaker than the invertibility condition that is
automatically, if unintentionally, assumed in SVAR analysis. In particular, it is automatically
satisfied if there are as many variables as shocks – a necessary, but not sufficient condition
for the usual invertibility requirement. Alternatively, point identification obtains if the IV is
assumed to be perfect, i.e., proportional to the true shock, or if the exogenous noise parts of
the different IVs are assumed to be uncorrelated. Still, we stress that researchers do not need
to adopt any of these auxiliary assumptions to partially identify variance decompositions.

To make our identification analysis practically useful, we develop partial identification
robust confidence intervals for all objects of interest. In a first step, the researcher estimates
a reduced-form VAR jointly in the macro variables and IVs. To be clear, this step merely
uses the reduced-form VAR as a convenient tool for approximating the second moments of
the data; it does not assume an underlying structural VAR model with invertible shocks.
The second step then constructs sample analogues of our population partial identification
bounds and inserts these into the confidence procedure of Imbens & Manski (2004) and Stoye
(2009). We then construct confidence intervals both for the unknown parameters and for the
identified sets, including a Bayesian implementation of the latter. Our confidence intervals
have asymptotically valid frequentist coverage under weak conditions. We also discuss a test
of invertibility that has power against all noninvertible alternatives.

We illustrate the usefulness of our identification bounds through the lens of the well-
known structural business cycle model of Smets & Wouters (2007). We assume that the
econometrician observes aggregate output, inflation, and a short-term policy interest rate,
but she does not exploit the underlying structure of the model for inference. We separately
consider external instruments for three different shocks: a standard monetary policy shock,
a forward guidance (anticipated monetary) shock, and a technology shock. These three
shocks vary greatly in terms of their degree of invertibility and recoverability, and we show
that invertibility-based (e.g., SVAR) identification of the latter two shocks is severely biased.
Nevertheless, our partial identification bounds are informative in all cases, provided the IV
is not weak. This result is particularly striking for the technology shock, since the macro
aggregates provide little information about the short- or medium-run cycles of this shock.
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Literature. Applied macroeconomists now routinely estimate impulse response functions
by direct regressions (local projections), although this requires the strong assumption that
the economic shock is directly observed (or can be estimated consistently). Ramey (2016)
provides a survey. External IV (also known as proxy variable) methods are designed to avoid
the often implausible assumption of directly observable shocks. While macroeconometric IV
methods were originally developed for VARs (Stock, 2008; Stock & Watson, 2012; Mertens &
Ravn, 2013), they have recently been imported into the LP framework, resulting in LP-IV.

A rapidly growing literature has provided inference tools for the LP-IV model, although
variance decompositions have been neglected. The theoretical background for LP-IV esti-
mation of impulse response functions was established by Mertens (2015), Ramey (2016),
Barnichon & Brownlees (2017), Jordà et al. (2017), Ramey & Zubairy (2017), and most
comprehensively Stock & Watson (2017). As we emphasize below, the usual IV assumption
only allows for point identification of relative impulse responses, e.g., the responses of the
macro variables to a shock which raises the first variable by 1 unit. We go further and
derive the identified set of all LP-IV model parameters, including those that enter into vari-
ance decompositions. Variance decompositions are frequently reported in SVAR analysis,
where identification is straight-forward due to the implicit invertibility assumption (Kilian
& Lütkepohl, 2017, Ch. 4). Stock & Watson (2017) assume invertibility of all shocks to
identify forecast variance decompositions and historical decompositions in an LP-IV model;
we substantially strengthen this result by showing that recoverability of the shock of interest
is sufficient to yield point identification of some of these objects.

The ability of the LP-IV framework to allow for noninvertible shocks is a key attraction.
As is well known, the standard SVAR model imposes invertibility a priori. Because nonin-
vertibility is a frequent feature of structural macro models, the issue has received a lot of
attention in the SVAR literature (cf. references in Plagborg-Møller, 2017, Sec. 2.3). Stock
& Watson (2017) develop an LP-IV-based test of noninvertibility. Our contribution in this
area is to sharply characterize the identified set for the degree of invertibility of the shocks,
which in turn shows under what conditions the data can conclusively reject invertibility.
These conditions are related to a Granger causality test, as in the SVAR settings studied by
Giannone & Reichlin (2006) and Forni & Gambetti (2014).

Our confidence interval methods combine the literatures on partial identification and
VAR-based spectral estimation. We employ the general confidence interval construction for
interval-identified parameters developed by Imbens & Manski (2004) and Stoye (2009). The
idea of using a VAR to approximate the spectrum of observed variables is reminiscent of
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VAR-HAC procedures for estimating long-run variances (Den Haan & Levin, 1997). Our
explicit focus on partial identification in the LP-IV model is inspired by and complementary
to the recent literature on robust inference in sign-identified SVAR models (Moon et al.,
2013; Giacomini & Kitagawa, 2015; Gafarov et al., 2017).

Outline. Section 2 defines the LP-IV model and the parameters of interest. Section 3
contains our main results on identification of variance decompositions and the degree of
invertibility. We first derive the results in a static setting for illustration and then turn to the
general dynamic model. Section 4 interprets the results through the lens of the well-known
Smets & Wouters (2007) structural macro model. Section 5 develops partial identification
robust confidence intervals. Section 6 concludes. Appendix A contains supplementary results
and formulas, while proofs and auxiliary lemmas are relegated to Appendix B.

2 Model and parameters of interest

We begin by defining the Local Projection Instrumental Variable (LP-IV) model and its pa-
rameters of interest. The LP-IV model allows for an unrestricted linear shock transmission
mechanism and does not assume shocks to be invertible, unlike standard SVAR analysis.
We assume the availability of valid external IVs (proxy variables) – variables that correlate
with the shock of interest, but not with the other shocks. In addition to impulse response
functions, our main objects of interest are forecast variance decompositions, historical de-
compositions, and the degree of invertibility of the shock of interest.

Model. We start out by describing the LP-IV model’s semiparametric assumptions on
shock transmission and the instrument exclusion restrictions. For notational clarity (and
without loss of generality), we assume throughout that all time series below have mean zero
and are free of any deterministic dynamics.

First, we specify the weak assumptions on shock transmission to endogenous variables.
The ny-dimensional vector yt = (y1,t, . . . , yny ,t)′ of observed macro variables is driven by an
unobserved nε-dimensional vector εt = (ε1,t, . . . , εnε,t)′ of exogenous economic shocks,

yt = Θ(L)εt, Θ(L) ≡
∞∑
`=0

Θ`L
`, (1)

where L is the lag operator. The (i, j) element Θi,j,` of the ny×nε moving average coefficient
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matrix Θ` is the impulse response of variable i to shock j at horizon `. The j-th column of Θ`

is denoted by Θ•,j,` and the i-th row by Θi,•,`. To obtain a nonsingular stochastic process, we
assume that Θ(x) has full row rank for all complex scalars x on the unit circle. This condition
requires nε ≥ ny, but – crucially – we do not assume that the number of shocks nε is known.
The model is semiparametric in that we place no a priori restrictions on the coefficients of
the infinite moving average, except to ensure a valid stochastic process. In particular, we do
not impose the usual invertibility conditions that point-identify Θ(L) in reduced-form time
series analysis. It is well known that the infinite-order Structural Vector Moving Average
model (1) is consistent with discrete-time Dynamic Stochastic General Equilibrium (DSGE)
models as well as stable SVAR models for yt. However, the principal appeal of LP-IV analysis
is that it does not require an underlying SVAR structure or a fully-specified DSGE model.

Second, we assume the availability of external IVs for the shock of interest.2 We specify
the shock of interest to be the first one, ε1,t. The nz-dimensional vector zt = (z1,t, . . . , znz ,t)′

of IVs is assumed to correlate with the first shock but not the other shocks,

zt =
∞∑
`=1

(Ψ`zt−` + Λ`yt−`) + αλε1,t + Σ1/2
v vt, (2)

where Ψ` is nz × nz, Λ` is nz × ny, λ is an nz-dimensional vector normalized to unit length
(‖λ‖ = 1) and with its first nonzero element being positive, α ≥ 0 is a scalar, and Σv is a
symmetric positive semidefinite nz × nz matrix. Throughout the paper, ‖ · ‖ refers to the
Euclidean norm. The key restriction on the IVs is that the shock of interest ε1,t is the only
contemporaneous shock to enter into the equation (2). The scale parameter α (along with
the residual variance-covariance matrix Σv) measures the overall strength of the IVs, while
the unit-length vector λ determines which IVs are stronger than others.

Finally, we assume that the structural shocks and IV disturbances are jointly i.i.d. stan-
dard Gaussian,

(ε′t, v′t)′
i.i.d.∼ N(0, Inε+nz), (3)

where In denotes the n-dimensional identity matrix. The mutual independence of the shocks
is the standard assumption in empirical macroeconomics. We adopt the Gaussianity assump-
tion for notational convenience. As usual, versions of all our results can be phrased using
the language of linear projections.3 The sole meaningful restriction is that we only consider

2If instruments are not available, the model (1) is severely underidentified (Lippi & Reichlin, 1994).
3Replace conditional expectations by linear projections and replace conditional variances by variances of

projection residuals.
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identification from the second-moment properties of the data, as is standard in the applied
macro literature (and without loss of generality for Gaussian data). Also note that we have
normalized the variances of all shocks to 1. Some authors prefer a different parametrization
of the LP-IV model where the shocks have non-unit variances but instead some impulse
responses Θi,j,` are normalized to 1 (Stock & Watson, 2016, Sec. 4.1.3). All our results can
be translated one-for-one into this alternative parametrization by simple scaling.

Throughout the paper we tacitly assume that the (ny + nz)-dimensional data vector
(y′t, z′t)′ is strictly stationary. This is achieved by assuming that the elements of Θ`, Ψ`, and
Λ` are absolutely summable across `, and the polynomial x 7→ det(Inz −

∑∞
`=1 Ψ`x

`) has all
its roots outside the unit circle.

We allow for lagged values of zt and yt on the right-hand side of (2) because this is
precisely enough to ensure that the LP-IV model is untestable (using second moments). In
other words, there always exists a model of the form (1)–(3) that can match any given auto-
covariance structure of (y′t, z′t)′, cf. Proposition 1 below. If the economic application allows
the researcher to exclude certain lagged terms a priori, this provides testable restrictions
that are straight-forward to impose in our VAR-based inference procedures in Section 5.
Except for the lag terms, our model for yt and zt is essentially identical to the LP-IV model
studied by Stock & Watson (2017).

Invertibility and recoverability. We now define invertibility, the degree of invert-
ibility, and recoverability.

The shock ε1,t is said to be invertible if it is spanned by past and current (but not
future) values of the endogenous variables yt: ε1,t = E(ε1,t | {yτ}−∞<τ≤t). Invertibility
of all structural shocks is assumed automatically by SVAR models, but the condition may
or may not hold in a given moving average model (1), depending on the impulse response
parameters Θ`. A sufficient condition for invertibility of all shocks is that nε = ny and the
polynomial x 7→ det(Θ(x)) has all its roots outside the unit circle. In many structural macro
models, at least some of the shocks cannot be recovered from only past and current observed
macro variables, i.e., the moving average representation is noninvertible. For example, this is
often the case in models with news (anticipated) shocks or noise (signal extraction) shocks.
Furthermore, if the number of structural shocks nε strictly exceeds the number of endogenous
variables ny, it is impossible for all shocks to be invertible.

A continuous measure of the degree of invertibility is the R2 value in a population regres-
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sion of the shock on past and current observed variables. More generally, define

R2
` ≡

Var(ε1,t)− Var(ε1,t | {yτ}−∞<τ≤t+`)
Var(ε1,t)

= 1− Var(ε1,t | {yτ}−∞<τ≤t+`)

as an R2 measure of invertibility of the shock of interest using data up to time t + `. If
the shock is invertible in the sense of the previous paragraph, then R2

` = 1 for all ` ≥ 0.
If R2

` < 1 for some ` ≥ 0, then the model is noninvertible and thus no SVAR model could
generate the impulse responses Θ(L), although the model may be nearly consistent with an
SVAR structure if the R2 values are close to 1 (Sims & Zha, 2006, pp. 243–245; Forni et al.,
2016; Wolf, 2017). For noninvertible models, a plot of R2

` for ` = 0, 1, 2, . . . reveals how
quickly the econometrician learns about the structural shocks over time.

A weaker condition than invertibility is that the shock of interest is recoverable from
all leads and lags of the endogenous variables – that is, if E(ε1,t | {yτ}−∞<τ<∞) = ε1,t, or
equivalently if R2

∞ = 1. This property will become important when we consider assumptions
that guarantee point identification.

Variance decompositions/ratios. In addition to the impulse responses Θ`, a primary
object of interest is the forecast variance decomposition of the moving average model. Fore-
cast variance decompositions capture the share of the forecast variance that can be attributed
to particular shocks. In other words, they provide a quantitative measure of the importance
of different shocks in generating macroeconomic fluctuations.

We consider two variance decomposition concepts. First, define the forecast variance
ratio (FVR) for the shock of interest for variable i at horizon ` as

FVRi,` ≡ 1− Var(yi,t+` | {yτ}−∞<τ≤t, {ε1,τ}t<τ<∞)
Var(yi,t+` | {yτ}−∞<τ≤t)

=
∑`−1
m=0 Θ2

i,1,m

Var(yi,t+` | {yτ}−∞<τ≤t)

The FVR measures the reduction in the forecast variance that would come from knowing
the entire path of future realizations of the first shock. The larger this measure is, the
more important is the first shock for forecasting variable i at horizon `. The FVR is always
between 0 and 1. An unappealing feature, however, is that the FVR conflates two different
sources of forecasting uncertainty. Writing out the denominator:

Var(yi,t+` | {yτ}−∞<τ≤t) = Var
( ∞∑
m=0

Θi,•,mεt+l−m

∣∣∣∣ {yτ}−∞<τ≤t
)
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=
`−1∑
m=0

Θi,•,mΘ′i,•,m + Var
( ∞∑
m=`

Θi,•,mεt+l−m

∣∣∣∣ {yτ}−∞<τ≤t
)
.

Thus, the denominator of the FVR captures both fundamental forecasting uncertainty (un-
certainty related to future shock realizations) and noninvertibility-induced forecasting un-
certainty (uncertainty related to imperfect knowledge about past shocks). In contrast, the
numerator only reflects fundamental forecasting uncertainty. This means that, when the first
shock is noninvertible, the FVR does not equal 1 even if the first shock is solely responsible
for driving the i-th variable in equation (1).

The second variance decomposition concept is the forecast variance decomposition (FVD)
for the shock of interest for variable i at horizon `,

FVDi,` ≡ 1− Var(yi,t+` | {ετ}−∞<τ≤t, {ε1,τ}t<τ<∞)
Var(yi,t+` | {ετ}−∞<τ≤t)

=
∑`−1
m=0 Θ2

i,1,m∑nε
j=1

∑`−1
m=0 Θ2

i,j,m

. (4)

The FVD measures the reduction in forecast variance that arises from learning the path
of future realizations of the shock of interest, supposing that we already had the history
of structural shocks εt available when forming our forecast. Because the econometrician
generally does not observe the structural shocks directly, the FVD is best thought of as
reflecting forecasts of economic agents who observe the underlying shocks. The FVD always
lies between 0 and 1, purely reflects fundamental forecasting uncertainty, and equals 1 if the
first shock is the only shock driving variable i in equation (1).

While the FVR and FVD concepts generally differ, they coincide in the case where all
shocks are invertible, since in that case the information set {yτ}−∞<τ≤t equals the information
set {ετ}−∞<τ≤t. This explains why the SVAR literature has not made the distinction between
the two concepts.4

Historical decomposition. The historical decomposition of variable yi,t at time t at-
tributable to the shock of interest is defined as ∑∞`=0 Θi,1,`ε1,t−`.

4Forni et al. (2016) point out the bias caused by noninvertibility when estimating the FVD using SVARs.
They also propose a frequency-domain variance decomposition concept, to which our identification results
can easily be applied, just as for the FVR. Details are available upon request.
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3 Identification

This section presents our main results on instrumental variable identification of variance
decompositions and the degree of invertibility. For exposition, we start by deriving results
for a static version of the LP-IV model. We then turn to the general dynamic model, which
applies the static results to the frequency domain representation of the data. The dynamics
involve additional nuances in characterizing the informativeness of the macro aggregates for
the shock at all frequencies. Our main results assume availability of a single external IV for
the shock of interest. In the last subsection we show that identification analysis in a model
with multiple IVs for the same shock can be reduced to the single-IV case without loss of
generality, as long as the multiple-IV model is not rejected by the data.

3.1 Static model

We use an illustrative static model to motivate why variance decompositions are partially
identified in the general case but can be point-identified under additional assumptions. Al-
though the static model does not capture all the nuances of the dynamic LP-IV model, it
provides useful intuition for the general case.

Model. The static model with a single IV assumes5

yt = Θ0εt,

zt = αε1,t + σvvt,

(ε′t, vt)′
i.i.d.∼ N(0, Inε+1),

where Θ0 is ny × nε, and α, σv ≥ 0 are scalars. To avoid singularity, we assume that Θ0 has
full row rank, so in particular nε ≥ ny.

In the static case, the degree of invertibility of the model is fully summarized by the
static projection R2, defined as

R2
0 = 1− Var(ε1,t | yt) = Θ′•,1,0 Var(yt)−1Θ•,1,0.

5While the static model is primarily intended for gaining intuition, the results in this subsection are
directly relevant for SVAR analysis with an external IV. In that framework, yt would be the reduced-form
VAR residuals, which are a linear function of the vector εt of contemporaneous structural shocks. Textbook
SVAR analysis further assumes that nε = ny, so the model is identified up to an orthogonal rotation matrix.
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Here the second equality follows from the usual linear projection formula.
As for variance decompositions, the static model does not distinguish between the FVR

and FVD, and we can restrict attention to one-step prediction:

FVDi,1 = 1− Var(yi,t | ε1,t)
Var(yi,t)

=
Θ2
i,1,0

Var(yi,t)
.

Partial identification. We now show that the impulse response functions, the degree of
invertibility, and variance decompositions are all identified up to a scalar multiple. This fac-
tor of proportionality is interval-identified, with nontrivial and informative lower and upper
bounds. Since the data is i.i.d., identification in this model relies solely on contemporaneous
covariance calculations.

It is immediate that impulse responses Θi,1,0 to the shock of interest are identified up to
the scale parameter α:

Cov(yt, zt) = αΘ•,1,0. (5)

In particular, relative responses are identified, cf. Stock & Watson (2017). Since the vector
Θ•,1,0 is identified up to scale α, the degree of invertibility R2

0 is identified up to the multiple
1
α2 , and the FVDs of different variables i are identified up to the same multiple 1

α2 .
What values of the scale parameter α are consistent with the distribution of the data

wt = (y′t, zt)′? First, the equation defining the IV zt implies

α2 ≤ Var(zt) ≡ α2
UB. (6)

The boundary case α = αUB corresponds to Var(ε1,t | zt) = 0, i.e., perfect instrument
strength. Second, we find6

α2
LB ≡ Var(E(zt | yt)) = α2 Var(E(ε1,t | yt)) ≤ α2 Var(ε1,t) = α2, (7)

where the inequality uses that “the total sum of squares exceeds the explained sum of
squares”. The boundary case α = αLB corresponds to Var(ε1,t | yt) = 0, i.e., the observed

6Alternatively, Var(E(zt | yt)) = Cov(yt, zt)′Var(yt)−1 Cov(yt, zt) = α2e′1{Θ′0(Θ0Θ′0)−1Θ0}e1, where e1
denotes the unit vector with 1 as the first element and zeros elsewhere. If we knew there were as many
shocks as variables (nε = ny), then Θ0 would be square and invertible, and the expression would reduce
to α2. This calculation is frequently used in SVAR-IV analysis (Mertens & Ravn, 2013; Gertler & Karadi,
2015; Stock & Watson, 2017). However, more generally allowing for the possibility nε > ny, the matrix in
curly brackets is a projection matrix, whose eigenvalues are all 0 or 1. This yields the same bound (7).
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macro aggregates yt are perfectly informative about the hidden shock (invertibility).
It is not hard to show (and it follows from our general results below) that the bounds

(6) and (7) on α2 are sharp, in the following sense: Given any positive semidefinite variance-
covariance matrix for wt = (y′t, zt)′, and given any value of α2 in the interval between the
bounds (6) and (7), we can construct a static model with the given value of α and which
matches the given Var(wt) (we just have to choose Θ0 and σv appropriately).

The width of the identified set [α2
LB, α

2
UB] for α2 depends on the degree of invertibility

and the strength of the instrument. The interval is never empty, and it collapses to a point
only in the knife-edge case of a perfectly informative instrument and invertibility of the first
shock. Generically, α – and so impulse responses, FVDs, and the degree of invertibility – are
only partially identified, but with useful bounds that limit the range of admissible values.
Intuitively, the bounds arise because a large α requires a large variance of the IV, while a
small α requires yt and zt to be nearly uncorrelated.

To interpret the identified set of 1
α2 , we can express it in terms of the underlying (un-

known) model parameters:
[

α2

α2 + σ2
v︸ ︷︷ ︸

instrument strength

× 1
α2 ,

1
R2

0︸︷︷︸
recoverability

× 1
α2

]
.

The lower bound is more informative (i.e., larger and closer to the true 1
α2 ) when the instru-

ment is stronger in the sense of a higher signal-to-noise ratio. Conversely, the upper bound
is more informative (i.e., smaller and closer to the true 1

α2 ) when the model is closer to being
invertible for the shock of interest.

Having partially identified the scale parameter, we obtain identified sets for the FVD
and degree of invertibility. By scaling the identified set for 1

α2 , we find the identified set for
FVDi,0: [

1
Var(zt)

× Cov(yi,t, zt)2

Var(yi,t)︸ ︷︷ ︸
α2

α2+σ2
v
×FVDi,0

,
1

Var(E(zt | yt))
× Cov(yi,t, zt)2

Var(yi,t)︸ ︷︷ ︸
1
R2

0
×FVDi,0

]
.

Instrument informativeness and invertibility thus map one-to-one into the width of the iden-
tified set for the FVD. The identified set for the degree of invertibility R2

0 can similarly be
obtained by scaling the identified set for 1

α2 . The identified set for R2
0 always contains 1, i.e.,

the data can never reject invertibility in the static model.
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Sufficient conditions for point identification. Although the baseline model is
partially identified, point identification obtains under a variety of auxiliary assumptions.

First, assume that the shock of interest is recoverable, which in the static model is the
same as invertibility: E(ε1,t | yt) = ε1,t, or equivalently R2

0 = 1. Then α2 is given by the
lower bound in (7); we can then identify the impulse responses Θ•,1,0 from the covariance
relationship (5), and σv from Var(zt). Hence, all objects of interest are point-identified under
the recoverability assumption. A stronger condition than recoverability is that there are as
many shocks as variables, nε = ny. This condition implies that Θ0 is square and invertible,
so all shocks are recoverable, and point identification follows.

Second, restrictions on the instrument zt can also be sufficient to ensure point identifi-
cation. Point identification obtains if the instrument is perfect; that is, if σv = 0. In that
case the shock ε1,t is effectively observed by the econometrician and all parameters can be
identified directly from regressions of yi,t on zt (local projections). Equivalently, the true α
is given by the upper bound in (6), and then all derivations follow as before. An alterna-
tive point-identifying assumption is the availability of multiple instruments with mutually
independent “first-stage disturbances” vt, as shown in Section 3.3.

3.2 General dynamic model

We now present our main identification results for the general dynamic model, applying the
logic of the static model frequency-by-frequency to the frequency domain representation of
the data. The main building block result is that, exactly as in the static model, the identified
set for the scale parameter α is an interval with informative bounds. From this result we
derive identified sets for the main objects of interest: the degree of invertibility and variance
decompositions. Relative to the static case, the dynamic case involves additional nuances in
characterizing the informativeness of the data for the hidden shock at all frequencies.

For the moment, we carry out the analysis for the case of a single IV (nz = 1), leaving
the generalization to Section 3.3. That is, zt is a scalar and λ = 1 in equation (2). We write
Σ1/2
v = σv ≥ 0, a scalar.

Preliminaries. For the identification analysis, it will prove convenient to define and work
with the IV projection residual

z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ<t) = αε1,t + σvvt. (8)
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We have thus removed any dependence on lagged observed variables, and z̃t is serially un-
correlated by construction.

Next, we need to define our notation for spectral density matrices. For any two jointly
stationary vector time series at and bt of dimensions na and nb, respectively, define the na×nb
cross-spectral density matrix function (Brockwell & Davis, 1991, Ch. 4 and 11)

sab(ω) = 1
2π

∞∑
`=−∞

e−iω` Cov(at, bt−`), ω ∈ [0, 2π].

This object is well-defined if the autocovariance function of (a′t, b′t)′ is absolutely summable.
For any vector time series at, we denote its spectrum by sa(ω) = saa(ω).

Just like identification in the static case proceeded through the variance-covariance matrix
of the data, identification in the general dynamic model will rely heavily on the joint spectrum
for wt = (y′t, z̃t)′ implied by the LP-IV model, i.e., equations (1), (3), and (8). This joint
spectrum is given by

sw(ω) =
 sy(ω) syz̃(ω)
syz̃(ω)∗ sz̃(ω)

 = 1
2π

 Θ(e−iω)Θ(e−iω)∗ αΘ(e−iω)e1

αe′1Θ(eiω)′ α2 + σ2
v

 , ω ∈ [0, 2π], (9)

where e1 is the unit vector with 1 as the first element and zeros elsewhere, an asterisk denotes
complex conjugate transpose, and the matrix polynomial Θ(·) was defined in equation (1).7

Note the similarity between the spectrum sw(ω) and the covariance structure in the static
model in Section 3.1. The main difference is that in the dynamic setting we have a matrix
at each frequency ω ∈ [0, 2π].

Impulse responses. As in the static model, the impulse responses to the first shock are
identified up to the scale parameter α:

Cov(yt, z̃t−`) = αΘ•,1,`. (10)

This is also clear from expression (9) for the cross-spectrum of yt and z̃t. Thus, relative
impulse responses Θi,1,`/Θ11,0 are identified, as shown by Stock & Watson (2017) and others.

Scale parameter. We now show that, exactly as in the static case, the identified set for
α is an interval with informative bounds. Although α itself is not a parameter of primary

7See Brockwell & Davis (1991, Ch. 11) for references on spectral densities of moving average processes.
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interest, the results in the next paragraphs are key ingredients to identification of variance
decompositions and the degree of invertibility.

Just as in the static case, the variance of the instrument provides the upper bound:

α2 ≤ Var(z̃t) ≡ α2
UB. (11)

As in the static model, the boundary case α = αUB corresponds to perfect instrument
informativeness.

To derive the lower bound, we apply the argument from the static case to the joint spec-
trum of the data at every frequency. Define first the projections of z̃t and ε1,t, respectively,
onto all lags and leads of the endogenous variables yt:8

z̃†t ≡ E(z̃t | {yτ}−∞<τ<∞), (12)

ε†1,t ≡ E(ε1,t | {yτ}−∞<τ<∞).

Then, for every ω ∈ [0, 2π],

sz̃†(ω) = α2sε†1
(ω) ≤ α2sε1(ω) = α2 × 1

2π , (13)

which is the frequency-domain analogue of the conditional variance inequality (7) in the
static case.9 Hence, we obtain the lower bound10

α2 ≥ 2π supω∈[0,π] sz̃†(ω) ≡ α2
LB. (14)

This lower bound generalizes the lower bound (7) in the static model. Intuitively, in the
static case a small value of α requires yt and z̃t to be nearly independent. In the dynamic
case, a small value of α requires z̃t to be nearly unpredictable by yt at every frequency ω,
e.g., both in the long run and at business cycle frequencies. The boundary case α = αLB

corresponds to the observed macro aggregates being perfectly informative about the hidden
shock ε1,t at some frequency ω ∈ [0, π], i.e., sε†1(ω) ≈ sε1(·) = 1

2π .

8Brockwell & Davis (1991, Remark 3, p. 439) show that sz̃†(ω) = syz̃(ω)∗sy(ω)−1syz̃(ω), and the anal-
ogous formula applies for sε†

1
(ω). They consider the bivariate case, but the multivariate generalization is

straight-forward. Note that sz̃†(ω) need not be constant in ω even though sz̃(ω) is.
9sε1(ω) ≥ sε†

1
(ω) = syε1(ω)∗sy(ω)−1syε1(ω) for all ω, since the joint spectrum is positive semidefinite.

10As always with univariate spectral densities, sz̃†(2π − ω) = sz̃†(ω) for ω ∈ [0, π].
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The main building block result of this paper is that the above bounds α2
LB, α

2
UB are sharp.

Proposition 1. Let there be given a joint spectral density for wt = (y′t, z̃t)′, continuous and
positive definite at every frequency, with z̃t being unpredictable from {wτ}−∞<τ<t. Choose
any α ∈ (αLB, αUB]. Then there exists a model of the form (1), (3), and (8) with the given α
such that the spectral density of wt implied by the model matches the given spectral density.

In words, the distribution of the data allows us to conclude that α2 lies in the identified
set [α2

LB, α
2
UB], but the data cannot rule out any values of α2 in this interval. The proposition

does not cover the knife-edge case α = αLB, which presents some economically inessential
technical difficulties.

The width of the identified set for α2 depends on the application, although the set is
never empty. To interpret the identified set, we can express it in terms of the underlying
(unknown) model parameters. In almost perfect analogy to the static case, the identified set
for 1

α2 is then
[

α2

α2 + σ2
v︸ ︷︷ ︸

instrument strength

× 1
α2 ,

1
2π supω∈[0,π] sε†1

(ω)︸ ︷︷ ︸
informativeness of data for shock

× 1
α2

]
.

The lower bound of the identified set for 1
α2 is larger (and closer to the true 1

α2 ) when
the instrument is stronger in the sense of a higher signal-to-noise ratio. The upper bound
of the identified set for 1

α2 is smaller (and closer to the true 1
α2 ) when the data are more

informative about the shock of interest at least at some frequency. Similar to the static case,
the identified set for 1

α2 does not collapse to a point unless the instrument is perfect and
there exists a frequency ω for which the data are perfectly informative about the frequency-ω
cyclical component of the shock.

To further interpret α2
LB, we derive a lower bound to this object that is explicitly tied to

the degree of recoverability/invertibility. First, we have

α2
LB = 2π sup

ω∈[0,π]
sz̃†(ω) ≥

∫ 2π

0
sz̃†(ω) dω = Var(z̃†t ). (15)

The far right-hand side above depends on the degree of non-recoverability of the shock:

Var(z̃†t ) = Var(E(z̃t | {yτ}−∞<τ<∞)) = α2(1− Var(ε1t | {yτ}−∞<τ<∞)) = α2 ×R2
∞.
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An even lower bound on α2
LB is given by

Var(E(z̃t | {yτ}−∞<τ≤t)) = α2(1− Var(ε1t | {yτ}−∞<τ≤t)) = α2 ×R2
0.

Thus, if the shock is close to being invertible – or more generally, recoverable – α2
LB will be

close to α2. As mentioned above, α2
LB will in fact be close to α2 as long as the yt process

is highly informative about the ε1,t process at some frequency. For example, the observed
macro variables yt may not perfectly reveal the short-run fluctuations of an unobserved
technology shock, so recoverability fails (R2

∞ < 1); yet a long-lag two-sided moving average
of GDP growth may well approximate the low-frequency cycles of the technology shock. See
Section 4 for a concrete example.

Degree of invertibility. The identified set for the degree of invertibility at horizon `
follows directly from the identified set for α2, since

R2
` = 1− Var(ε1,t | {yτ}−∞<τ≤t+`) = 1

α2 × Var(E(z̃t | {yτ}−∞<τ≤t+`)),

and the variance on the right-hand side above is point-identified. Now similarly define

R̃2
` ≡ 1− Var(z̃t | {yτ}−∞<τ≤t+`)

Var(z̃t)
= Var(E(z̃t | {yτ}−∞<τ≤t+`))

Var(z̃t)

as the (point-identified) R2 in a population regression of z̃t on lags and leads of yτ up to
time τ = t+ `. Then the identified set for the degree of invertibility R2

` at horizon ` equals
[

R̃2
`︸︷︷︸

α2
α2+σ2

v
×R2

`

,
Var(z̃t)

2π supω∈[0,π] sz̃†(ω) × R̃2
`︸ ︷︷ ︸

1
2π supω∈[0,π] sε†1

(ω)×R
2
`

]
. (16)

This identified set implies conditions under which the data allow us to reject invertibility or
recoverability with certainty.

Proposition 2. Assume α2
LB > 0. The identified set for R2

0 contains 1 if and only if the
instrument residual z̃t does not Granger cause the macro observables yt. The identified set
for R2

∞ contains 1 if and only if the projection z̃†t is serially uncorrelated.

According to Proposition 2, we know for sure that ε1,t is noninvertible if and only if z̃t
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Granger causes yt.11 Moreover, we know for sure that ε1,t is non-recoverable if and only if
z̃†t , defined in (12), is serially correlated at some lag.

Variance decompositions/ratios. We now turn to the identification of variance de-
compositions, the main parameters of interest. The identified sets for the FVR and FVD
defined in Section 2 are different. For the FVR, simply observe that

FVRi,` =
∑`−1
m=0 Θ2

i,1,m

Var(yi,t+` | {yτ}−∞<τ≤t)
= 1
α2 ×

∑`−1
m=0 Cov(yi,t, z̃t−m)2

Var(yi,t+` | {yτ}−∞<τ≤t)
.

Hence, as in the static case, the identified set for FVRi,` equals the identified set for 1
α2 ,

scaled by the (point-identified) second fraction on the far right-hand side above.
The identified set for the FVD requires more work. Intuitively, the (point-identified) full

forecasting variance Var(yi,t+` | {yτ}−∞<τ≤t) conflates pure forecasting uncertainty (which
enters the denominator of the FVD) and invertibility-related forecasting uncertainty (which
does not). We thus need to bound the contribution of pure forecasting uncertainty. The
following proposition summarizes our results.

Proposition 3. Let there be given a joint spectral density for wt = (y′t, z̃t)′ satisfying the
assumptions in Proposition 1. Given knowledge of α ∈ (αLB, αUB], the largest possible value
of the forecast variance decomposition FVDi,` is 1 (the trivial bound), while the smallest
possible value is given by

∑`−1
m=0 Cov(yi,t, z̃t−m)2∑`−1

m=0 Cov(yi,t, z̃t−m)2 + α2 Var(ỹ(α)
i,t+` | {ỹ

(α)
τ }−∞<τ≤t)

. (17)

Here ỹ(α)
t = (ỹ(α)

1,t , . . . , ỹ
(α)
ny ,t)′ denotes a stationary Gaussian time series with spectral density

sỹ(α)(ω) = sy(ω)− 2π
α2 syz̃(ω)syz̃(ω)∗, ω ∈ [0, 2π]. Expression (17) is monotonically decreasing

in α, so the overall lower bound on FVDi,` is attained by α = αUB; in this boundary case we
can represent ỹ(αUB)

t = yt − E(yt | {z̃τ}−∞<τ≤t).

The upper bound on the `-period-ahead FVD is always 1, for any ` ≥ 1. This is achieved
by a model in which all shocks, except the first one, only affect yt after an `-period delay.

11As the upper bound in the identified set (16) for R2
0 shows, consistency with invertibility in our model

requires R2
0 = 2π supω∈[0,π] sε†

1
(ω), which can only hold if future values of yt do not help in predicting the

current hidden shock ε1,t. This is the case in the static model, explaining why 1 always lies in the static-only
identified set for R2

0.
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The expression for the lower bound (17) has a simple interpretation. Even if α is known,
the denominator Var(yi,t+` | {ετ}−∞<τ≤t) of the FVD is not identified due to the lack of
information about shocks other than the first. Although we can upper-bound this conditional
variance by the denominator of the FVR, this upper bound is not sharp. Instead, to maximize
the denominator, as much forecasting noise as possible should be of the pure forecasting
variety, and not related to noninvertibility. For all shocks except for ε1,t, this is achievable
through a Wold decomposition construction (Hannan, 1970, Thm. 2′′, p. 158). Given α, we
know the contribution of the first shock to yt; the residual after removing this contribution
has the distribution of ỹ(α)

t , as defined in the proposition. If α is not known, the smallest
possible value of the lower bound (17) is attained at the largest possible value of α, namely
αUB, for which ε1,t contributes the least to forecasts of yt.

Sufficient conditions for point identification. Although we have shown that par-
tial identification analysis is informative in the general model, we now give a variety of
sufficient conditions that ensure point identification of α and thus the FVR and degree of in-
vertibility. We also discuss identification of historical decompositions. Proposition 3 showed
that even point identification of α is insufficient to point-identify the FVD, although a sharp
and informative lower bound can be computed.12

The first set of sufficient conditions relates to the informativeness of the macro aggregates
yt for the hidden shock ε1,t. In this category, our weakest condition for point identification
is that the data yt is perfectly informative about ε1,t at some frequency, i.e., there exists
an ω ∈ [0, π] such that sε†1(ω) = sε1(·) = 1

2π . Then α = αLB, so the FVR and degree of
invertibility are identified. This assumption is not testable. A stronger but more easily
interpretable identifying assumption is recoverability, i.e., ε†1,t ≡ E(ε1,t | {yτ}−∞<τ<∞) =
ε1,t. This assumption is testable, cf. Proposition 2. Under recoverability, we have both
α = αLB and z̃†t = αε1,t. Recoverability is a restrictive assumption, but at least it is
a meaningfully weaker requirement than invertibility for many economic applications, as
discussed in Section 4. Recoverability is implied by the usual SVAR assumption that there
are as many shocks as variables, nε = ny.13 Our analysis thus demonstrates how restrictive
the latter assumption really is.14

12Stock & Watson (2017) show that the FVD is point-identified if all shocks are assumed invertible.
13If the joint spectrum of yt and z̃t is positive definite at every frequency, then nε = ny implies that Θ(L)−1

is a well-defined two-sided lag polynomial (Brockwell & Davis, 1991, Thm. 3.1.3), so that εt = Θ(L)−1yt
and all shocks are recoverable.

14The proof of Proposition 1 shows that α is partially identified with the same sharp bounds as above
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A second set of sufficient conditions for point identification relates to instrument infor-
mativeness. If the instrument is perfectly informative, so z̃t = αε1,t, then identification
proceeds in accordance with the logic behind local projections (Jordà, 2005). Alternatively,
point identification obtains if multiple instruments with mutually independent “first-stage
disturbances” are available, cf. Section 3.3.

Under either recoverability or perfect instrument informativeness, we can point-identify
the historical decomposition corresponding to the identified shock, cf. the definition in
Section 2. This object is identified because both the impulse responses and the time series
of the shock itself are identified, as argued above.

3.3 Extension: multiple instruments

We now argue that identification analysis in the model with multiple IVs for the shock of
interest (nz ≥ 2) can be reduced to the single-IV setting without loss of generality. If the
distribution of the data is consistent with the model, the available IVs can be transformed
to a single IV that captures all identifying power for the parameters of interest.

The multiple-IV model is testable, unlike the single-IV model. As in the single-IV case,
define the projection residual

z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ<t) = αλε1,t + Σ1/2
v vt. (18)

Appendix A.1 shows that the testable implication of the multiple-IV model is that the cross-
spectrum syz̃(ω) has a rank-1 factor structure. The validity of the multiple-IV model can be
rejected if and only if this factor structure fails.

When the multiple-IV model is consistent with the distribution of the data, identification
analysis can be reduced to the single-IV case in Section 3.2. Specifically, Appendix A.1 shows
that (i) λ is point-identified, and (ii) the identified sets for α, variance decompositions, and
the degree of invertibility are the same as the identified sets that exploit only the scalar
instrument

z̆t = 1
λ′Var(z̃t)−1λ

λ′Var(z̃t)−1z̃t. (19)

Because z̆t is a linear combination of all nz instruments, the identified sets are narrower than

even if we know that the number of shocks nε can be at most ny + 1. Thus, no identifying power is gained
from the knowledge that the number of shocks is “small”, unless that means nε = ny.
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if we had used any one instrument zk,t in isolation.15

Additional restrictions on the IVs can ensure point identification. In particular, if nz ≥ 2
and the researcher is willing to restrict Σv to be diagonal, then α is point-identified from any
off-diagonal element of Var(z̃t) = Σv + α2λλ′, since λ is point-identified.

4 Illustration using a structural macro model

We use the workhorse business cycle model of Smets & Wouters (2007) to illustrate the
informativeness of our partial identification bounds for the degree of invertibility and vari-
ance decompositions. We show how the width of the identified sets depends on the strength
of the instrument and the informativeness of the macro variables for the unknown shock.
The model’s monetary policy shock is nearly invertible, so standard SVAR methods would
deliver reasonable identification of this shock. In contrast, invertibility is a very poor ap-
proximation when identifying the effects of forward guidance (anticipated monetary) shocks
or of technology shocks. Nevertheless, our sharp bounds on variance decompositions and the
degree of invertibility are informative for all three shocks. For clarity, we focus entirely on
population bounds in this section, assuming the spectral density of the data is known. The
econometrician uses our LP-IV techniques and does not exploit the underlying structure of
the model.

Model. We employ the Smets & Wouters (2007) model. Throughout, we parametrize the
model according to the posterior mode estimates of Smets & Wouters (2007).16 Following the
empirical literature on monetary policy shock transmission, we assume the econometrician
observes aggregate output, inflation, and the short-term policy interest rate. These macro
aggregates are all stationary in the model, so they should be viewed as deviations from trend.
The model features seven unobserved shocks, so not all shocks can be invertible.

The econometrician observes a single external instrument zt for the shock of interest ε1,t:

zt = αε1,t + σvvt.

We normalize α = 1 throughout and compute identified sets for two different degrees of

15Intuitively, Var(ε1,t | z̃t) = 1 − α2λ′Var(z̃t)−1λ = 1 − α2 Var(z̆t)−1, so the the single instrument z̆t
delivers the same upper bound on α as the vector of instruments z̃t.

16Our implementation of the Smets-Wouters model is based on Dynare replication code kindly provided
by Johannes Pfeifer. The code is available at https://sites.google.com/site/pfeiferecon/dynare.
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Monetary shock: Spectral density of best 2-sided linear predictor
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Figure 1: Scaled spectral density 2πs
ε†1

(·) of the best two-sided linear predictor of the monetary
shock. A frequency ω corresponds to a cycle of length 2π

ω quarters.

informativeness of the external instrument, 1
1+σ2

v
∈ {0.25, 0.5}.17

We consider three different shocks of interest: a monetary shock, a forward guidance
shock, and a technology shock. The monetary shock is nearly invertible, but the others are
not. The forward guidance shock is instead nearly recoverable, whereas only the long-run
cycles of the technology shock can be accurately recovered from the data. Nevertheless, we
show that partial identification analysis is informative about the effects of all three shocks.

Monetary shock. We first consider identification of monetary policy shocks. These are
defined as shocks to the serially correlated disturbance in the model’s Taylor rule.

The monetary shock is nearly invertible in our parametrization. Specifically, the collection
of all past and current values of the observable macro variables explain a fraction R2

0 =
0.8705 of the variance of the shock, as already shown by Wolf (2017). The infinite past,
present, and future of the observables yield only slightly sharper identification, with R2

∞ =
0.8767. Figure 1 shows the spectral density sε†1(·) of the two-sided best linear predictor of the
monetary shock based on all macro variables. The data are essentially equally informative
about medium and high frequencies of the monetary shock, whereas the long-run cycles of
the shock cannot be accurately recovered from the data. At the peak of the spectral density,

17These correspond to an F statistic of 1
3T and T , respectively, in an infeasible regression of zt on ε1,t

with sample size T . T should be viewed as measured in quarters.
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Monetary shock: Identified set of FVRs
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Figure 2: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
are for 1

1+σ2
v

= 0.25 (lower dashed line) and 1
1+σ2

v
= 0.5.

the observables explain a fraction 0.8958 of the variance of that particular cyclical component
of the monetary shock; hence, αLB =

√
0.8958 = 0.9465, which is close to the truth of 1.

Because the shock is nearly invertible, the upper bounds of the identified sets for the
forecast variance ratio and the degree of invertibility are close to the truth, while the lower
bounds depend on the informativeness of the IV. The identified set for R2

` is given by
[

1
1 + σ2

v

×R2
` ,

1
0.94652 ×R

2
`

]
.

Since R2
0, R

2
∞ < 0.94652, the data reject both invertibility and recoverability. Moreover,

the econometrician can rule out that the shock is highly noninvertible, provided the IV is
not weak. Figure 2 displays the identified set of the FVR at different forecast horizons.18

The upper and lower bounds are proportional to the true FVRs. The lower bound scales
one-for-one with instrument informativeness, while the upper bound scales one-for-one with
the maximal informativeness of the data for the shock across frequencies. The upper bounds
are thus close to the true FVRs in this application with a near-invertible shock, whereas the
relative informativeness of the lower bounds depends entirely on the strength of the IV.

For FVDs, the lower bound of the identified set also depends on the informativeness
of the IV, while the upper bound always equals the trivial value 1. Figure 3 depicts the

18Throughout this paper, the identified sets for FVRs are constructed horizon by horizon. However, the
joint uncertainty about FVRs at different horizons is caused by uncertainty about the single parameter α.
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Monetary shock: Identified set of FVDs
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Figure 3: Horizon-by-horizon identified sets for FVDs up to 10 quarters. The two lower bounds
are for 1

1+σ2
v

= 0.25 (lower dashed line) and 1
1+σ2

v
= 0.5. Upper bound not shown.

identified sets for FVDs, ommitting the trivial upper bound. The lower bound is now not
simply proportional to the true FVD, due to the intricacies of bounding the denominator
of the FVD. In this application, the lower bound is nevertheless approximately equal to the
true FVD scaled by instrument informativeness 1

1+σ2
v
.

Due to the near-invertibility of the monetary shocks, incorrectly imposing invertibility
(or recoverability) would cause the researcher to overstate the forecast variance ratios and
historical decompositions by a modest 14 per cent each. As shown above, the data are in fact
sufficiently informative so as to reject both the invertibility and recoverability assumptions. If
a researcher instead (also incorrectly) imposes the weaker and untestable assumption that the
data is perfectly informative about the shock at some frequency, then all the aforementioned
objects of interest would be overstated by around 11 per cent ( 1

α2
LB
≈ 1.11).

Forward guidance shock. We now augment the model to include forward guidance
shocks, a type of news shock. A forward guidance shock is identical to a monetary shock,
except it is anticipated two quarters in advance by economic agents.19

As is common with news shocks, the forward guidance shock is highly noninvertible but
approximately recoverable. The wedge between information contained in the infinite past and
information contained in the entire time series of observables is sizable: Contemporaneous

19Formally, we implement forward guidance by changing the baseline Smets & Wouters (2007) model so
that the monetary shock has time subscript t− 2 instead of t.
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Forward guidance shock: Identified set of FVRs
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Figure 4: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
are for 1

1+σ2
v

= 0.25 (lower dashed line) and 1
1+σ2

v
= 0.5.

informativeness is limited, with R2
0 = 0.0792, but looking two quarters ahead basically

returns us to the level of informativeness for the standard monetary shock, with R2
2 =

0.8731 and R2
∞ = 0.8813. Intuitively, the decisions of forward-looking agents today reveal

a nonzero but limited amount of information about the shock that is about to materialize
two quarters from now. As the shock then hits, aggregates respond strongly, whereupon the
econometrician learns as much about the shock as she did in the benchmark model with a
non-anticipated shock. Thus, with news shocks, the incremental bite of two-sided analysis
can be substantial.20

Despite the high degree of invertibility, the identified sets for the FVRs of the forward
guidance shock are as informative as those for the monetary shock, as shown in Figure 4.21

This demonstrates that our partial identification analysis is not only robust to noninvert-
ibility – its quantitative usefulness does not depend on the degree of invertibility per se.
In stark contrast, identification that incorrectly imposes invertibility (e.g., SVARs) would
overstate variance decompositions by a factor of 1/0.0792 ≈ 13 (!).22 Recoverability-based

20In news shock models with as many shocks as observables – e.g., the fiscal foresight models of Leeper
et al. (2013) – the strict recoverability assumption is satisfied. Invertibility-based identification is biased
unless yt contains variables that respond immediately when news arrive.

21Note that the FVR of the interest rate is much lower than for the standard monetary shock (Figure 2).
The interest rate now drops when news arrive, and overall it moves less because the endogenous rule-based
response of the monetary authority counteracts the effects of the news prior to the policy impulse.

22To be exact, standard SVAR-IV methods would overstate impact impulse responses by a factor of
1/
√

0.0792 ≈ 3.6 and so impact variance decompositions by a factor of 13. Subsequent impulse responses
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Technology shock: Spectral density of best 2-sided linear predictor
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Figure 5: Scaled spectral density 2πs
ε†1

(·) of the best two-sided linear predictor of the technology
shock. A frequency ω corresponds to a cycle of length 2π

ω quarters.

identification would err by a more modest factor of 1/0.8813 ≈ 1.13.

Technology shock. Finally, we consider identification of technology shocks, defined as
an innovation to the autoregressive process of total factor productivity.

Unlike the monetary and forward guidance shocks, the technology shock is far from
recoverable; nevertheless, our bounds remain informative. In the model, the technology
shock is much more important in accounting for low-frequency cycles of the data than it
is for high-frequency cycles. The technology shock is far from being recoverable, let alone
invertible, with R2

0 = 0.2007 and R2
∞ = 0.2209. However, the data are very informative about

the lowest-frequency cycles of the technology shock, as shown in Figure 5. As a result, α2
LB =

0.9092 is close to the true value of 1, and the upper bounds of our identified sets for FVRs and
the degree of invertibility (not shown) yield tight identification. In contrast, identification
that incorrectly imposes either invertibility or recoverability of the shock overstates the FVR
by a factor of about 5.

would not be proportional to true responses, due to the imposed VAR dynamics (Stock & Watson, 2017).
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5 Inference

To make the identification analysis practically useful, we develop partial identification robust
confidence intervals and tests. In a first step, the researcher estimates a reduced-form VAR
model, which is then used in a second step to derive sample analogues of our population
bounds. Using the general partial identification confidence procedures of Imbens & Manski
(2004) and Stoye (2009), we construct confidence intervals for both the parameters and for the
identified sets; a Bayesian implementation is available for the latter. Our confidence intervals
have asymptotically valid frequentist coverage. We also discuss a test for invertibility.

We assume the availability of a single instrument zt for notational simplicity. The gen-
eralization to multiple instruments is straight-forward, as discussed in Section 3.3.

Reduced-form VAR. In this section we assume that the second-moment properties of
the data are captured by a reduced-form VAR in (y′t, zt)′ with known, finite lag length p.

Assumption 1. There exist (ny+1)×(ny+1) matrices A`, ` = 1, 2, . . . , p, and a symmetric
positive definite (ny + 1)× (ny + 1) matrix Σ such that the spectral density of Wt = (y′t, zt)′

is given by

sW (ω) =
(
Iny+1 −

p∑
`=1

A`e
−iω`

)−1

Σ
(
Iny+1 −

p∑
`=1

A`e
−iω`

)−1∗

, ω ∈ [0, 2π],

and such that all roots of the polynomial x 7→ det(Iny+1 −
∑p
`=1A`x

`) are outside the unit
circle. Moreover, there exist estimators Â1, . . . , Â`, Σ̂ (measurable functions of the data
W1, . . . ,WT ) such that ϑ̂ ≡ (vec(Â1)′, . . . , vec(Âp)′, vech(Σ̂)′)′ is a (pointwise) asymptotically
normal estimator of ϑ ≡ (vec(A1)′, . . . , vec(Ap)′, vech(Σ)′)′:

√
T (ϑ̂− ϑ) d→ N(0,Ω) as T →∞,

where Ω is positive definite. Finally, there exists an estimator Ω̂ which is (pointwise) con-
sistent for Ω.

We assume a reduced-form VAR structure for four reasons. First, VARs are known to
be able to approximate any spectral density function arbitrarily well as the VAR lag length
tends to infinity. Second, familiar estimators ϑ̂ and Ω̂ of the parameters of the spectrum
and the asymptotic variance are available; for example, the usual least-squares VAR toolkit
will do, provided the data is stationary (Lütkepohl, 2005, Ch. 3). Third, the VAR structure
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facilitates the development of a test of invertibility and of Bayesian inference procedures.
Fourth, VAR-based inference amounts to redoing our population calculations from Section 3
on a spectrum of a particular functional form (namely a VAR spectrum with the particular
estimated parameters ϑ̂). All inequalities satisfied in the population must then also hold in
any finite sample, thus guaranteeing nonempty identified sets, for example (up to numerical
error, but not statistical error). This property is harder to achieve with a nonparametric
kernel smoothing estimator of the spectrum, say.

The assumed finite-lag reduced-form VAR structure is restrictive but a reasonable start-
ing point. In practice, we suggest estimating the lag length p by information criteria or
likelihood ratio tests (Lütkepohl, 2005, Ch. 4). In ongoing work, we are developing asymp-
totic results that allow p→∞, thus making our inference procedures truly nonparametric.
We emphasize, though, that assuming a finite-lag reduced-form VAR is less restrictive than
doing SVAR-IV inference: We do not assume that the reduced-form VAR residuals span the
true structural shocks. For example, we continue to allow the number of structural shocks
to possibly exceed the number of variables in the VAR.

Invertibility test. It is straight-forward to test for invertibility of the shock of interest
using the estimated reduced-form VAR. We showed in Proposition 2 that the data is consis-
tent with invertibility of ε1,t if and only if z̃t does not Granger cause yt. Granger non-casuality
of z̃t for yt is equivalent with Granger non-causality of zt for yt. Under Assumption 1, it
is well known that a test of the Granger non-causality null hypothesis amounts to a test of
the exclusion restrictions that lags of zt do not enter the reduced-form VAR equations for yt
(Lütkepohl, 2005, Ch. 2.3 and 3.6). This test has power against all Granger causal alterna-
tives, so it has power against all falsifiable noninvertible alternatives by Proposition 2.23

Confidence intervals. We now construct partial identification robust confidence inter-
vals for identified sets and for the true parameters. Here we rely heavily on the inference
methods pioneered by Imbens & Manski (2004) and refined by Stoye (2009).

We start out by defining notation. Under Assumption 1, all identified sets derived in
Section 3.2 are of the form [h(ϑ), h(ϑ)], where h(·) and h(·) are continuous functions mapping
the VAR parameter space into the real line, and such that h(·) ≤ h(·). A (pointwise)

23Stock & Watson (2017) develop an LP-IV invertibility test which directs power against alternatives with
impulse response functions that differ substantially from the invertible null. They do not discuss whether
their test has power against all falsifiable noninvertible alternatives. Giannone & Reichlin (2006) and Forni
& Gambetti (2014) propose Granger causality tests of invertibility in an SVAR context.
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consistent estimator of the identified set [h(ϑ), h(ϑ)] is then given by the plug-in interval

[h(ϑ̂) , h(ϑ̂)].

Let ∆̂ ≡ h(ϑ̂) − h(ϑ̂) denote the width of the estimate of the identified set. Assume h(·)
and h(·) are continuously differentiable at the true VAR parameters ϑ with 1 × dim(ϑ)
dimensional Jacobian functions ḣ(·) and ḣ(·). Define the standard errors of h(ϑ̂) and h(ϑ̂),

σ̂ ≡
√
T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′ , σ̂ ≡

√
T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′,

and their correlation,

ρ̂ ≡ T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′

σ̂ × σ̂
.

Finally, let Φ(·) denote the standard normal cumulative distribution function.
We now construct a confidence interval for the entire identified set. The interval

[
h(ϑ̂)− Φ−1(1− β/2)σ̂ , h(ϑ̂) + Φ−1(1− β/2)σ̂

]
(20)

is a (pointwise) asymptotically valid level-(1 − β) confidence interval for the identified set
[h(ϑ), h(ϑ)]. That is, the above interval contains the entire identified set in at least 100(1−
β)% of repeated experiments, asymptotically. This follows from the delta method and the
arguments of Imbens & Manski (2004).

Next, we construct a confidence interval for the true parameter of interest. By definition
of the identified set, the true parameter is contained in [h(ϑ), h(ϑ)], but we know nothing
else about the true parameter. Although the interval (20) trivially has asymptotic coverage
of at least 1− β for the true parameter, Imbens & Manski (2004) showed that it is possible
to develop a narrower interval with the same property. As in Stoye (2009, p. 1305), define
the two scalars ĉ, ĉ as the minimizers of the objective function

σ̂ × ĉ+ σ̂ × ĉ,

subject to the two constraints

Pr
−ĉ ≤ U1, ρ̂U1 ≤ ĉ+ ∆̂

σ̂
+
√

1− ρ̂2 × U2

 ≥ 1− β,

30



Pr
−ĉ− ∆̂

σ̂
−
√

1− ρ̂2 × U2 ≤ ρ̂U1, U1 ≤ ĉ

 ≥ 1− β.

Here the probabilities are taken solely over the distribution of (U1, U2)′, which is bivariate
standard normal. The above minimization problem is easy to solve numerically, cf. Stoye
(2009, Appendix B). Given these definitions, the interval

[
h(ϑ̂)− ĉ× σ̂ , h(ϑ̂) + ĉ× σ̂

]
is a (pointwise) asymptotically valid level-(1−β) confidence interval for the true parameter.
Again, this result follows from the delta method and the results in Stoye (2009), who builds
on Imbens & Manski (2004).

To implement the above confidence interval procedures, the researcher needs to compute
the VAR estimator ϑ̂, the asymptotic variance matrix estimate Ω̂, the bound estimates h(ϑ̂)
and h(ϑ̂), and the derivatives of the bounds ḣ(ϑ̂) and ḣ(ϑ̂). Appendix A.2 provides formulas
for the bounds and derivatives in terms of the VAR parameters. Simple bootstrap and
Bayesian implementations are also available, see below.

We now discuss how to resolve the complication that the upper bound of the identified
sets for 1

α2 , R2
0, and the FVR may not be continuously differentiable in the VAR parameters.

The issue arises because α2
LB is given by the maximum of a certain function, and when this

function has multiple maxima at the true VAR parameters (e.g., when the spectral density
of z̃†t is flat, as in the recoverable case), continuous differentiability of α2

LB in the VAR
parameters ϑ may fail (Gafarov et al., 2017). In this case, delta method inference will be
unreliable. As a remedy, we suggest replacing the maximum α2

LB = 2π supω∈[0,π] sz̃†(ω) in all
our bounds with the smaller average value Var(z̃†t ) =

∫ 2π
0 sz̃†(ω) dω, cf. the inequality (15).

The latter object is continuously differentiable in the VAR parameters, so inference using
the above methods is unproblematic. Use of the non-sharp bound does lead to a power loss,
but the loss is small if the shock ε1,t is close to being recoverable, or if the informational
content of the data for the shock does not vary substantially across frequencies, as explained
in Sections 3.2 and 4.24 Note that continuous differentiability of the bounds for the FVD
obtains without modifications.

24More generally, we can lower-bound α2
LB by

∫ 2π
0 r(ω)sz̃†(ω) dω, where r(·) is a nonnegative function

such that
∫ 2π

0 r(ω) dω = 2π. If the researcher has prior information about the frequencies ω at which yt is
particularly informative about ε1,t, then r(ω) can be chosen to weight these frequencies more heavily. This
yields a more informative bound than Var(z̃†t ), while preserving continuous differentiability.
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Our confidence intervals are pointwise valid in both senses of the word. First, we focus
on constructing a confidence interval for each parameter of interest separately, as opposed
to capturing the joint uncertainty of several parameters at once. It is an interesting topic for
future research to develop simultaneous confidence bands for, say, the FVD across forecast
horizons. Second, our asymptotics are pointwise in the true parameters; we do not derive
the coverage under the worst-case data generating process.25 In particular, we ignore finite-
sample issues caused by weak instruments, i.e., αLB ≈ 0.

Bootstrap implementation. The calculation of derivatives in the confidence interval
formulas above is obviated by the bootstrap. Suppose we have a method for bootstrapping
the estimator ϑ̂ (Kilian & Lütkepohl, 2017, Ch. 12). Then we can compute σ̂ as the
bootstrap standard deviation of h(ϑ̂), σ̂ as the bootstrap standard deviation of h(ϑ̂), and ρ̂
as the bootstrap correlation of h(ϑ̂) and h(ϑ̂). By plugging into the same confidence interval
formulas as above, we achieve the same (pointwise) asymptotic coverage probability as the
delta method confidence intervals, provided that Assumption 1 and an appropriate bootstrap
consistency condition hold.

Bayesian implementation. Finally, we discuss a Bayesian credible interval for the iden-
tified set. Bayesian inference on the identified set can be motivated by a desire for structural
inference to be robust to the choice of prior on structural parameters, conditional on a fixed
prior on reduced-form parameters (Giacomini & Kitagawa, 2015). Suppose we form a prior
for the reduced-form VAR parameters ϑ, and we have a method for drawing from the pos-
terior distribution of ϑ (e.g., Kilian & Lütkepohl, 2017, Ch. 5). Then we can compute the
interval [E(h(ϑ) | data), E(h(ϑ) | data)], a Bayesian estimate of the identified set. More-
over, we can compute the shortest interval which covers at least 100(1−β)% of the posterior
draws of the intervals [h(ϑ), h(ϑ)]. This smallest interval is then a probability-(1−β) credible
interval for the identified set (Giacomini & Kitagawa, 2015).

25The Imbens & Manski (2004) and Stoye (2009) procedures are designed to control coverage uniformly
over the width of the identified set. We do not discuss uniform asymptotics here because if we wanted to
assume that the convergence assumptions in Assumption 1 hold uniformly, it would be necessary to assume
that the magnitude of the largest eigenvalue of the VAR polynomial is bounded away from 1, in which case
the width of the identified set (for all our objects of interest) would also be bounded away from zero. Hence,
in this case, the uniform asymptotic validity of the confidence procedures is a trivial matter.
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6 Conclusion

We expand the toolkit of the LP-IV approach to causal inference in macroeconometrics.
LP-IV has recently become a popular method for estimating impulse response functions
by exploiting interpretable exclusion restrictions, without imposing invertibility or func-
tional forms assumptions on shock transmission. However, existing methods did not allow
researchers to quantify the importance of individual shocks. We fill this gap by providing
identification results and inference techniques for forecast variance decompositions, historical
decompositions, and the degree of invertibility. Our partial identification robust confidence
interval procedure is computationally straight-forward and relies on familiar methods for
delta method, bootstrap, or Bayesian inference in reduced-form VARs. The informativeness
of our partial identification bounds does not depend on the degree of invertibility of the
shocks per se, but rather on the strength of the instrument and the informativeness of the
macro variables for some short-, medium-, or long-run cycles of the shock of interest. In
contrast, the validity of SVAR analysis relies on an assumption of near-invertibility of the
shock of interest (Forni et al., 2016). Finally, we show that if researchers are willing to
assume that the shock of interest is recoverable – a substantively weaker assumption than
invertibility – most objects of interest are point-identified.
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A Appendix

This appendix elaborates on the theoretical identification analysis and inference procedures.
First, we show that the multiple-IV model can be reduced to the single-IV model. Second,
we provide formulas to implement the confidence intervals.

A.1 Multiple instruments

Here we show that the multiple-IV model is testable, but if it is consistent with the data,
then identification analysis can be reduced to the single-IV case.

Define the IV residual vector z̃t as in equation (18). The multiple-IV model (1)–(3)
implies the following cross-spectrum between yt and z̃t:

syz̃(ω) = α

2πΘ(e−iω)e1λ
′, ω ∈ [0, 2π]. (21)

Thus, the cross-spectrum has rank-1 factor structure: It equals a nonconstant column vector
times a constant row vector. This testable property turns out to be exactly what characterizes
the multiple-IV model.

Proposition 4. Let a spectrum sw(ω) for wt = (y′t, z̃′t)′ be given, satisfying the assumptions
of Proposition 1. There exists a model of the form (1), (3), and (18) which generates the
spectrum sw(ω) if and only if there exist ny-dimensional real vectors ζ`, ` ≥ 0, and an
nz-dimensional constant real vector η of unit length such that

syz̃(ω) = ζ(e−iω)η′, ω ∈ [0, 2π], (22)

where ζ(L) = ∑∞
`=0 ζ`L

`.

Assuming henceforth that the factor structure obtains, we now show that identification
in the multiple-IV model reduces to the single-IV case. It is convenient first to reparametrize
the model slightly, by setting Σv = Σz̃ − α2λλ′ and treating Σz̃ as a basic model parameter
instead of Σv. We then impose the requirement that Σz̃ − α2λλ′ be positive semidefinite.
Clearly, Σz̃ = Var(z̃t) is point-identified. Next, note from (21) that λ is point-identified and
equal to the η vector in equation (22). This is because any rank-1 factorization of a matrix
is identified up to sign and scale, and we have normalized η to have length 1. Let Ξ be any
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(nz − 1)× nz matrix such that ΞΣ−1/2
z̃ λ = 0. Define the nz × nz matrix

Q ≡

 1
λ′Σ−1

z̃ λ
λ′Σ−1

z̃

ΞΣ−1/2
z̃

 .
Since Q is point-identified (given a choice of Ξ), it is without loss of generality to perform
identification analysis based on the linearly transformed IV residuals

Qz̃t =


α

0
...
0

 ε1,t + ṽt, ṽt ∼ N

0,
 1

λ′Σ−1
z̃ λ
− α2 0

0 ΞΞ′

 .

Notice, however, that α only enters into the equation for the first element of Qz̃t, and the
(nz − 1) last elements of Qz̃t are independent of the first element (and independent of yt
at all leads and lags). Hence, it is without loss of generality to limit attention to the first
element of Qz̃t when performing identification analysis for the impulse responses Θi,j,` and
the scale parameter α. The first element of Qz̃t equals z̆t as defined in equation (19) in the
main text.26

A.2 Formulas for implementing the confidence intervals

Here we provide formulas needed to construct the partial identification robust confidence
intervals in Section 5. Specifically, assuming the spectrum of (y′t, zt)′ has VAR structure as
in Assumption 1, we state formulas for the interval bounds in terms of the reduced-form
VAR coefficients ϑ, and we discuss how to compute the derivatives of these expressions.

We introduce the notation

A(L) = Iny+1 −
p∑
`=1

A`L
`, Σ =

 Σy Σyz

Σzy Σz

 ,
where the upper left block in the partition is ny×ny. Let J denote the top ny rows of Iny+1,
and let eny+1 denote the (ny + 1)-dimensional unit vector with 1 as the last element. Define

26The above display implies that we must have α2 ≤ (λ′Var(z̃t)−1λ)−1, which is precisely what the upper
bound for α2 yields when applied to z̆t.
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also the matrix functions

sy(ω;A,Σ) = 1
2πJA(e−iω)−1ΣA(e−iω)−1∗J ′, ω ∈ [0, 2π],

syz̃(ω;A,Σ) = 1
2πJA(e−iω)−1Σeny+1, ω ∈ [0, 2π].

Bounds for α. To compute the bounds for α, observe that

α2
UB = Var(z̃t) = Σz,

α2
LB = 2π max

ω∈[0,π]
syz̃(ω;A,Σ)∗sy(ω;A,Σ)−1syz̃(ω;A,Σ),

Var(z̃†t ) = 2
∫ π

0
syz̃(ω;A,Σ)∗sy(ω;A,Σ)−1syz̃(ω;A,Σ) dω,

all of which can be easily computed, at least numerically. The derivative of α2
UB with respect

to the VAR parameters is obvious, the derivative of α2
LB can be obtained by the envelope

theorem if the maximum is uniquely attained, and the derivative of Var(z̃†t ) can be obtained
by differentiating under the integral sign.

Bounds for R2
0. The only missing ingredient to computing the identified set for the degree

of invertibility is Var(z̃t | {yτ}−∞<τ≤t). We can approximate this quantity arbitrarily well as
M →∞ by

Var(z̃t | {yτ}t−M≤τ≤t) = Var(z̃t)− (Σzy, 01×nyM)VM(A,Σ)−1(Σzy, 01×nyM)′,

where VM(A,Σ) is the usual variance-covariance matrix of (y′t, y′t−1, . . . , y
′
t−M)′ implied by

the VAR, see for example Lütkepohl (2005, Ch. 2.1.1). Derivatives can be computed by the
chain rule, finite differences, or automatic differentiation. It is advisable to check robustness
with respect to the choice of M .

Bounds for FVR. To compute the identified set for FVRi,`, we need

Cov(yi,t, z̃t−m) =
∫ 2π

0
eiωmsyz̃(ω;A,Σ) dω, m = 0, 1, . . . , `− 1,

which can be computed by numerical integration; the derivative is obtained by differenti-
ating under the integral sign. We also need Var(yi,t+` | {yτ}−∞<τ≤t). This object is well
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approximated for large M by27

Var(yi,t+` | {yτ}t−M≤τ≤t) = Var(yi,t)−(Cov(yi,t+`, yt), . . . ,Cov(yi,t+`, yt−M))VM(A,Σ)−1

× (Cov(yi,t+`, yt), . . . ,Cov(yi,t+`, yt−M))′,

where VM(A,Σ) was defined above. All objects on the right-hand side can be computed using
standard VAR formulas (Lütkepohl, 2005, Ch. 2.1.1), and derivatives can be computed by
the chain rule, finite differences, or automatic differentiation.

Bounds for FVD. To compute the overall lower bound for the FVD, we need Var(ỹ(αUB)
i,t+` |

{ỹ(αUB)
τ }−∞<τ≤t). As before, we approximate this by Var(ỹ(αUB)

i,t+` | {ỹ(αUB)
τ }t−M≤τ≤t) for large

M . The same formula used above for Var(yi,t+` | {yτ}t−M≤τ≤t) applies, where covariances
are obtained from

Cov(ỹ(αUB)
t+` , ỹ

(αUB)
t ) = Cov(yt+`, yt)−

1
α2
UB

∞∑
m=0

Cov(yt, z̃t−m−`) Cov(yt, z̃t−m)′.

The sum can be truncated when the contribution of additional terms is very small.

27A more numerically stable strategy is to compute Var(yi,t+` | {yτ}t−M≤τ≤t) using the Kalman filter.
Since the conditional variance does not depend on the realized values of the conditioning variables, the
“data” fed into the Kalman filter can be all zeros.
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B Proofs and auxiliary lemmas

B.1 Auxiliary lemmas

Lemma 1. Let B be an n × n Hermitian positive definite complex-valued matrix and b

an n-dimensional complex-valued column vector. Let x be a nonnegative real scalar. Then
B − x−1bb∗ is positive (semi)definite if and only if x >(≥) b∗B−1b.

Proof. We focus on the semidefiniteness statement. Decompose B = B1/2B1/2∗ and define
b̃ = B−1/2b. The statement of the lemma is equivalent with the statement that In − x−1b̃b̃∗

is positive semidefinite if and only if x ≥ b∗b. Let ν be an arbitrary n-dimensional complex
vector satisfying ν∗ν = 1. Then

ν∗
(
In − x−1b̃b̃∗

)
ν = 1− b̃∗b̃

x
cos2

(
θ(ν, b̃)

)
,

where θ(ν, b̃) is the angle between ν and b̃. Evidently, x−1b̃∗b̃ ≤ 1 is precisely the condition
needed to ensure that the above display is nonnegative for every choice of ν.

Lemma 2. Let xt and x̃t be two stationary n-dimensional Gaussian time series whose spec-
tral densities sx(ω) and sx̃(ω) are such that sx̃(ω) − sx(ω) is positive semidefinite for all
ω ∈ [0, 2π]. Then Var(µ′xt+` | {xτ}−∞<τ≤t) ≤ Var(µ′x̃t+` | {x̃τ}−∞<τ≤t) for all ` = 1, 2, . . .
and all constant vectors µ ∈ Rn.

Proof. We may define an n-dimensional stationary Gaussian process νt with spectral density
sν(ω) = sx̃(ω) − sx(ω), ω ∈ [0, 2π], and such that the νt process is independent of the xt
process. Then the process x̌t = xt + νt has the same distribution as the x̃t process. Hence,

Var(µ′x̃t+` | {x̃τ}−∞<τ≤t) = Var(µ′x̌t+` | {x̌τ}−∞<τ≤t)

≥ Var(µ′x̌t+` | {xτ , νt}−∞<τ≤t)

= Var(µ′xt+` | {xτ , νt}−∞<τ≤t) + Var(µ′νt+` | {xτ , νt}−∞<τ≤t)

≥ Var(µ′xt+` | {xτ , νt}−∞<τ≤t)

= Var(µ′xt+` | {xτ}−∞<τ≤t).

The second equality above uses that the independence of the xt and νt processes implies that
xt+` and νt+` are independent also conditional on {xτ , νt}−∞<τ≤t.
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B.2 Proof of Proposition 1

Let α and the spectrum sw(ω) be given. Define the ny-dimensional vectors

Θ•,1,` = α−1 Cov(yt, z̃t−`), ` ≥ 0,

and the corresponding vector lag polynomial

Θ•,1(L) =
∞∑
`=0

Θ•,1,`L`.

Since α2 ≤ α2
UB, we may define σv =

√
Var(z̃t)− α2. Since α2 > α2

LB, Lemma 1 implies that

sy(ω)− 2π
α2 syz̃(ω)syz̃(ω)∗ = sy(ω)− 1

2πΘ•,1(e−iω)Θ•,1(e−iω)∗

is positive definite for every ω ∈ [0, 2π]. Hence, the Wold decomposition theorem (Hannan,
1970, Thm. 2′′, p. 158) implies that there exists an ny × ny matrix lag polynomial Θ̃(L) =∑∞
`=0 Θ̃`L

` such that28

sy(ω)− 1
2πΘ•,1(e−iω)Θ•,1(e−iω)∗ = 1

2π Θ̃(e−iω)Θ̃(e−iω)∗, ω ∈ [0, 2π].

Thus, the following model for wt = (y′t, z̃t)′ generates the desired spectrum sw(ω):

yt = Θ•,1(L)ε1,t + Θ̃(L)ε̃t,

z̃t = αε1,t + σvvt,

(ε1,t, ε̃
′
t, vt)′

i.i.d.∼ N(0, Iny+2).

Note that the construction requires only nε = ny + 1 shocks, ε1,t ∈ R and ε̃t ∈ Rny .

B.3 Proof of Proposition 2

Identified set for R2
0. If the identified set contains 1, then there must exist an α ∈

[αLB, αUB] and i.i.d., independent standard Gaussian processes ε1,t and vt such that (i)
z̃t = α × ε1,t + vt, (ii) vt is uncorrelated with yt at all leads and lags, and (iii) ε1,t lies in

28We can rule out a deterministic term in the Wold decomposition because a continuous and positive
definite spectral density satisfies the full-rank condition of Hannan (1970, p. 162).

39



the closed linear span of {yτ}−∞<τ≤t. This immediately implies the “only if” part of the
corollary.

For the “if” part, assume z̃t does not Granger cause yt. By the equivalence of Sims and
Granger causality, z̃†t = E(z̃t | {yτ}−∞<τ<∞) = E(z̃t | {yτ}−∞<τ≤t). Note that the latter
best linear predictor is white noise since, for any ` ≥ 1,

Cov
(
E(z̃t | {yτ}−∞<τ≤t), yt−`

)
= Cov(z̃t, yt−`)− Cov

(
z̃t − E(z̃t | {yτ}−∞<τ≤t), yt−`

)
= 0− 0,

using the fact that z̃t is a projection residual. In conclusion, the best linear predictor z̃†t of
z̃t given {yτ}−∞<τ<∞ depends only on {yτ}−∞<τ≤t and it has a constant spectrum. From
the expression for α2

LB, we get that α2
LB = Var(E(z̃t | {yτ}−∞<τ≤t)), which further yields

α2
LB = Var(z̃t)R̃2

0. Hence, expression (16) implies that the upper bound of the identified set
for R2

0 equals 1.

Identified set for R2
∞. The upper bound of the identified set for R2

∞ equals 1 if and only
if 2π supω∈[0,π] sz̃†(ω) = R̃2

∞Var(z̃t), and the right-hand side equals Var(z̃†t ) =
∫ 2π

0 sz̃†(ω) dω.
But we have supω∈[0,π] sz̃†(ω) = 1

2π
∫ 2π

0 sz̃†(ω) dω if and only if sz̃†(ω) is constant in ω almost
everywhere, i.e., z̃†t is white noise.

B.4 Proof of Proposition 3

The proof proceeds in two steps. First, for a given known α, we show that FVDi,` is
sharply bounded above by 1 and below by (17). Second, we show that the lower bound is
monotonically decreasing in α, so that the overall lower bound is attained by αUB.

1. Given α ∈ (αLB, αUB], the numerator of FVDi,` is point-identified (see below), so we need
only concern ourselves with the denominator. We can write the denominator as

Var(yi,t+` | {ετ}−∞<τ≤t) =
`−1∑
m=0

Θ2
i,1,m +

nε∑
j=2

`−1∑
m=0

Θ2
i,j,m

= 1
α2

`−1∑
m=0

Cov(yi,t, z̃t−m)2 +
nε∑
j=2

`−1∑
m=0

Θ2
i,j,m. (23)

Given α, the first term in (23) is point-identified (note that it equals the numerator
of the FVD), while the second is not. To upper-bound FVDi,`, we seek to make that

40



second term as small as possible. In fact, we can always set it to 0. To see this, let
{Θ•,j,m}2≤j≤nε,0≤m<∞ denote some sequence of impulse responses for the structural shocks
j 6= 1 that is consistent with the second-moment properties of the data. Since α ∈
(αLB, αUB], such a sequence exists by Proposition 1. Now, for a given forecast horizon `,
instead consider the new sequence {Θ̆•,j,m}2≤j≤nε,0≤m<∞, defined via

Θ̆•,j,m =

0ny×1 if m ≤ `− 1,

Θ•,j,m−` if m > `− 1.

Then the stochastic process induced by {Θ̆•,j,m}2≤j≤nε,0≤m<∞ has the exact same second-
moment properties as the (by assumption admissible) stochastic process induced by
{Θ•,j,m}2≤j≤nε,0≤m<∞. However, by construction, we now have FVDi,` = 1, as claimed.

For the lower bound, we want to make the second term in (23) as large as possible. Given
a known α ∈ (αLB, αUB], define

ỹ
(α)
t = (ỹ(α)

1,t , . . . , ỹ
(α)
ny ,t)′ ≡ yt −

1
α

∞∑
`=0

Cov(yt, z̃t−`)ε1,t−` =
nε∑
j=2

∞∑
`=0

Θ•,j,`εj,t−`,

whose spectral density is given by the expression stated in the proposition. We have

Var(ỹ(α)
i,t+` | {ỹ(α)

τ }−∞<τ≤t) ≥ Var(ỹ(α)
i,t+` | {εj,τ}2≤j≤nε,−∞<τ≤t) =

nε∑
j=2

`−1∑
m=0

Θ2
i,j,m,

so the second term in (23) has an point-identified upper bound. Thus, given α, FVDi,` is
bounded below by the expression (17).

We now argue that the lower bound (17) is attained by an admissible model with the
given α. To that end, consider the Wold decomposition of ỹ(α)

t = ∑∞
`=0 Θ̃`ε̃t−`, where the

Θ̃` matrices are ny × ny, and ε̃t is ny-dimensional i.i.d. standard normal and spanned
by {ỹ(α)

τ }−∞<τ≤t.29 Then Var(ỹ(α)
i,t+` | {ỹ(α)

τ }−∞<τ≤t) = ∑nε
j=2

∑`−1
m=0 Θ̃2

i,j,m, so the following
model attains the lower bound (17) and is consistent with the given spectrum sw(·):

yt = 1
α

∞∑
`=0

Cov(yt, z̃t−`)ε1,t +
∞∑
`=0

Θ̃`ε̃t−`,

z̃t = αε1,t +
√

Var(z̃t)− α2 × vt, (24)

29Since α > αLB , the Wold decomposition has no deterministic term, cf. the proof of Proposition 1.
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(ε1,t, ε̃
′
t, vt)′

i.i.d.∼ N(0, Iny+2).

2. Lemma 2 implies that Var(ỹ(α)
i,t+` | {ỹ(α)

τ }−∞<τ≤t) is increasing in α. Hence, the expression
(17) is decreasing in α, as claimed. At α = αUB, the representation (24) has z̃t = αUBε1,t,
so we can represent ỹ(αUB)

t = yt − E(yt | {ε1,τ}−∞<τ≤t) = yt − E(yt | {z̃τ}−∞<τ≤t).

B.5 Proof of Proposition 4

The “only if” part was proved already in the text of Appendix A.1. For the “if” part, assume
that the cross-spectrum has the given factor structure. Since z̃t is serially uncorrelated, we
can write sz̃(·) = sz̃. Because sw(ω) is positive definite, the Schur complement

sz̃ − syz̃(ω)∗sy(ω)−1syz̃(ω) = sz̃ − ηζ(ω)∗sy(ω)−1ζ(ω)η′

is also positive definite. Pre-multiplying the above expression by η′s−1
z̃ , post-multiplying by

s−1
z̃ η, and rearranging the positive definiteness condition, we obtain the implication that

2πζ(ω)∗sy(ω)−1ζ(ω) < 2π
η′s−1

z̃ η
, ω ∈ [0, 2π].

Now choose any α ≥ 0 such that α2 lies strictly between the left- and right-hand sides in the
above inequality. The matrix

Σv ≡ 2πsz̃ − α2ηη′

is then positive definite by Lemma 1. Moreover, the same lemma implies that

sy(ω)− 2π
α2 ζ(ω)ζ(ω)∗

is positive definite for all ω ∈ [0, 2π]. If we set Θ•,1(L) = (2π/α)ζ(L), the same arguments
as in the proof of Proposition 1 show that there exists an ny × ny matrix polynomial Θ̃(L)
such that the following model achieves the desired spectrum sw(ω):

yt = Θ•,1(L)ε1,t + Θ̃(L)ε̃t,

z̃t = αηε1,t + Σ1/2
v vt,

(ε1,t, ε̃
′
t, v
′
t)′

i.i.d.∼ N(0, Iny+nz+1).

Note that η assumes the role of λ.
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