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Abstract

One of the main objectives of empirical analysis of experiments and quasi-experiments is to

inform policy decisions that determine the allocation of treatments to individuals with differ-

ent observable covariates. We propose the Empirical Welfare Maximization (EWM) method,

which estimates a treatment assignment policy by maximizing the sample analog of average

social welfare over a class of candidate treatment policies. The EWM approach is attractive in

terms of both statistical performance and practical implementation in realistic settings of policy

design. Common features of these settings include: (i) feasible treatment assignment rules are

constrained exogenously for ethical, legislative, or political reasons, (ii) a policy maker wants a

simple treatment assignment rule based on one or more eligibility scores in order to reduce the

dimensionality of individual observable characteristics, and/or (iii) the proportion of individuals

who can receive the treatment is a priori limited due to a budget or a capacity constraint. We

show that when the propensity score is known, the average social welfare attained by EWM rules

converges at least at n−1/2 rate to the maximum obtainable welfare uniformly over a minimally

constrained class of data distributions, and this uniform convergence rate is minimax optimal.

In comparison with this benchmark rate, we examine how the uniform convergence rate of the

average welfare improves or deteriorates depending on the richness of the class of candidate

decision rules, the distribution of conditional treatment effects, and the lack of knowledge of the

propensity score. We provide an asymptotically valid inference procedure for the population

welfare gain obtained by exercising the EWM rule. We offer easily implementable algorithms

for computing the EWM rule and an application using experimental data from the National

JTPA Study.
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1 Introduction

Treatment effects often vary with observable individual characteristics. An important objective

of empirical analysis of experimental and quasi-experimental data is to determine the individuals

who should be treated based on their observable characteristics. Empirical researchers often use

regression estimates of individual treatment effects to infer the set of individuals who benefit or

do not benefit from the treatment and to suggest who should be targeted for treatment. This

paper advocates the Empirical Welfare Maximization (EWM) method, which offers an alternative

way to choose optimal treatment assignment based on experimental or observational data from

program evaluation studies. We study the frequentist properties of the EWM treatment choice

rule and show its optimality in terms of welfare convergence rate, which measures how quickly

the average welfare attained by practicing the estimated treatment choice rule converges to the

maximal welfare attainable with the knowledge of the true data generating process. We also argue

that the EWM approach is well-suited for policy design problems, since it easily accommodates

many practical policy concerns, including (i) feasible treatment assignment rules being constrained

exogenously for ethical, legislative, or political reasons, (ii) the policy maker facing a budget or

capacity constraint that limits the proportion of individuals who can receive one of the treatments,

or (iii) the policy maker wanting to have a simple treatment assignment rule based on one or more

indices (eligibility scores) to reduce the dimensionality of individual characteristics.

Let the data be a size n random sample of Zi = (Yi, Di, Xi), where Xi ∈ X ⊂Rdx refers to ob-

servable pre-treatment covariates of individual i, Di ∈ {0, 1} is a binary indicator of the individual’s

treatment assignment, and Yi ∈ R is her/his post-treatment observed outcome. The population

from which the sample is drawn is characterized by P , a joint distribution of (Y0,i, Y1,i, Di, Xi),

where Y0,i and Y1,i are potential outcomes that would have been observed if i’s treatment status

were Di = 0 and Di = 1, respectively. We assume unconfoundedness, meaning that in the data

treatments are assigned independently of the potential outcomes (Y0,i, Y1,i) conditionally on observ-

able characteristics Xi. Based on this data, the policy-maker has to choose a conditional treatment

rule that determines whether individuals with covariates X in a target population will be assigned

to treatment 0 or to treatment 1. We restrict our analysis to non-randomized treatment rules.

The set of treatment rules could then be indexed by their decision sets G ⊂ X of covariate values,

which determine the group of individuals {X ∈ G} to whom treatment 1 is assigned. We denote

the collection of candidate treatment rules by G = {G ⊂ X}.
The goal of our analysis is to empirically select a treatment assignment rule that gives the
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highest welfare to the target population. We assume that the joint distribution of (Y0,i, Y1,i, Xi) of

the target population is identical to that of the sampled population.1 We consider the utilitarian

welfare criterion defined by the average of the individual outcomes in the target population. When

treatment rule G is applied to the target population, the utilitarian welfare equals

W (G) ≡ EP [Y1 · 1 {X ∈ G}+ Y0 · 1 {X /∈ G}] (1.1)

where EP (·) is the expectation with respect to P . Denoting the conditional mean treatment

response by md(x) ≡ E[Yd|X = x] and the conditional average treatment effect by τ(x) ≡ m1(x)−
m0(x), we could also express the welfare criterion as

W (G) = EP (m0(X)) + EP [τ(X) · 1 {X ∈ G}] . (1.2)

Assuming unconfoundedness, equivalence of the distributions of (Y0,i, Y1,i, Xi) between the tar-

get and sampled populations, and the overlap condition for the propensity score e(X) = EP [D|X]

in the sampled population, the welfare criterion (1.1) can be written equivalently as

W (G) ≡ EP

[
Y D

e(X)
· 1 {X ∈ G}+

Y (1−D)

1− e(X)
· 1 {X /∈ G}

]
(1.3)

= EP (Y0) + EP

[(
Y D

e(X)
− Y (1−D)

1− e(X)

)
· 1 {X ∈ G}

]
.

Hence, if the probability distribution of observables (Y,D,X) was fully known to the decision-

maker, an optimal treatment rule from the utilitarian perspective can be written as

G∗ ∈ arg max
G∈G

W (G). (1.4)

Or, equivalently, as a maximizer of the welfare gain relative to EP (Y0):

G∗ ∈ arg max
G∈G

EP [τ(X) · 1 {X ∈ G}] , or (1.5)

G∗ ∈ arg max
G∈G

EP

[(
Y D

e(X)
− Y (1−D)

1− e(X)

)
· 1 {X ∈ G}

]
. (1.6)

The main idea of Empirical Welfare Maximization (EWM) is to solve a sample analog of the

population maximization problem (1.4),

ĜEWM ∈ arg max
G∈G

Wn(G), (1.7)

where Wn(G) = En

[
YiDi

e(Xi)
· 1 {Xi ∈ G}+

Yi(1−Di)

1− e(Xi)
· 1 {Xi /∈ G}

]
1In Section 4.2, we consider a setting where the target and the sampled populations have identical conditional

treatment effects, but different marginal distributions of X.
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and En (·) is the sample average. One notable feature of our framework is that the class of candidate

treatment rules G = {G ⊂ X} is not as rich as the class of all subsets of X , and it may not include

the first-best decision set,

G∗FB ≡ {x ∈ X : τ(x) ≥ 0} , (1.8)

which maximizes the population welfare (1.1) if any assignment rule were feasible to implement.

Our framework with a constrained class of feasible assignment rules allows us to incorporate several

exogenous constraints that generally restrict the complexity of feasible treatment assignment rules.

For instance, when assigning treatments to individuals in the target population, it may not be

realistic to implement a complex treatment assignment rule due to legal or ethical restrictions or

due to public accountability for the treatment eligibility criterion.

The largest welfare that could be obtained by any treatment rule in class G is

W ∗G ≡ sup
G∈G

W (G). (1.9)

In line with Manski (2004) and the subsequent literature on statistical treatment rules, we evaluate

the performance of estimated treatment rules Ĝ ∈ G in terms of their average welfare loss (regret)

relative to the maximum feasible welfare W ∗G

W ∗G − EPn
[
W (Ĝ)

]
= EPn

[
W ∗G −W (Ĝ)

]
≥ 0, (1.10)

where the expectation EPn is taken over different realizations of the random sample. This criterion

measures the average difference between the best attainable population welfare and the welfare

attained by implementing estimated policy Ĝ. Since we assess the statistical performance of Ĝ by

its welfare value W (Ĝ), we do not require arg maxG∈GW (G) to be unique or Ĝ to converge to a

specific set.

Assuming that the propensity score e(X) is known and bounded away from zero and one, as is

the case in randomized experiments, we derive a non-asymptotic distribution-free upper bound of

EPn
[
W ∗G −W (ĜEWM )

]
as a function of sample size n and a measure of complexity of G. Based

on this bound, we show that the average welfare of the EWM treatment rule converges to W ∗G

at rate O(n−1/2) uniformly over a minimally constrained class of probability distributions. We

also show that this uniform convergence rate of ĜEWM is optimal in the sense that no estimated

treatment choice rule of any kind can attain a faster uniform convergence rate compared to the

EWM rule, i.e., minimax rate optimality of ĜEWM . For further refinement of this theoretical

result, we analyze how this uniform convergence rate improves if the first-best decision rule G∗FB
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is feasible, i.e., G∗FB ∈ G, and if the class of data generating processes is constrained by the margin

assumption, which restricts the distribution of conditional treatment effects in a neighborhood of

zero. We show that ĜEWM remains minimax rate optimal with these additional restrictions.

When the data are from an observational study, the propensity score is usually unknown, so it is

not feasible to implement the EWM rule (1.7). As a feasible version of the EWM rule, we consider

hybrid EWM approaches that plug in estimators of the regression equations or the propensity

score in the sample analogs of (1.5) or (1.6). Specifically, with estimated regression functions

m̂d(x) = Ê(Yd|X = x) = Ê(Y |X = x,D = d), we define the m-hybrid rule as

Ĝm−hybrid ∈ arg max
G∈G

En [τ̂m (Xi) · 1 {Xi ∈ G}] , (1.11)

where τ̂m (Xi) ≡ m̂1 (Xi)− m̂0 (Xi). Similarly, with the estimated propensity score ê(x), we define

an e-hybrid rule as

Ĝe−hybrid ∈ arg max
G∈G

En [τ̂ ei · 1 {Xi ∈ G}] , (1.12)

where τ̂ ei ≡
[
YiDi
ê(Xi)

− Yi(1−Di)
1−ê(Xi)

]
·1 {εn ≤ ê (Xi) ≤ 1− εn} with a converging positive sequence εn → 0

as n → ∞. We investigate the performance of these hybrid approaches in terms of the uniform

convergence rate of the welfare loss and clarify how this rate is affected by the estimation uncertainty

in m̂d(·) and ê(·).
When performing the treatment choice analysis, it could also be of interest to assess the sampling

uncertainty of the estimated welfare gain from implementing the treatment rule Ĝ. For this purpose,

this paper proposes an inference procedure for W (Ĝ)−W (G0), where G0 is a benchmark treatment

assignment rule, such as no treatment (G0 = ∅) or the non-individualized implementation of the

treatment (G0 = X ).

Since the welfare criterion function involves optimization over a class of sets, estimation of the

EWM and hybrid treatment rules could present challenging computational problems when G is

rich, similarly to the maximum score estimation (Manski (1975), Manski and Thompson (1989)).

We argue, however, that exact maximization of EWM criterion is now practically feasible for many

problems in economics using widely-available optimization software and an approach proposed by

Florios and Skouras (2008), which we extend and improve upon.

To illustrate EWM in practice, we compare EWM and plug-in treatment rules computed from

the experimental data of the National Job Training Partnership Act Study analyzed by Bloom

et al. (1997).
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1.1 Related Literature

Our paper contributes to a growing literature on statistical treatment rules in econometrics, in-

cluding Manski (2004), Dehejia (2005), Hirano and Porter (2009), Stoye (2009, 2012), Chamberlain

(2011), Bhattacharya and Dupas (2012), Tetenov (2012), and Kasy (2014). Manski (2004) proposes

to assess the welfare properties of statistical treatment rules by their maximum regret and derives

finite-sample bounds on the maximum regret of Conditional Empirical Success rules. CES rules

take a finite partition of the covariate space and, separately for each set in this partition, assign the

treatment that yields the highest sample average outcome. CES rules can be viewed as a type of

EWM rules for which G consists of all unions of the sets in the partition and the empirical welfare

criterion uses the sample propensity score. Manski shows that with the partition fixed, their welfare

regret converges to zero at least at n−1/2 rate. We show that this rate holds for a broader class of

EWM rules and that it cannot be improved uniformly without additional restrictions on P .

Stoye (2009) shows that in the absence of ex-ante restrictions on how outcome distributions

vary with covariates, finite-sample minimax regret is attained by rules that take the finest partition

of the covariate space and operate independently for each covariate value. This important result

implies that with continuous covariates, minimax regret does not converge to zero with sample

size because the first-best treatment rule may be arbitrarily “wiggly” and difficult to approximate

from countable data. Our approach does not give rise to Stoye’s non-convergence result because

we restrict the complexity of G and define regret relative to the maximum attainable welfare in G
instead of the unconstrained first-best welfare.

The problem of conditional treatment choice has some similarities to the classification problem

in machine learning and statistics, since it seeks a way to optimally “classify” individuals into those

who benefit from the treatment and those who do not. This similarity allows us to draw on recent

theoretical results for classification by Devroye et al. (1996), Tsybakov (2004), Massart and Nédélec

(2006), Audibert and Tsybakov (2007), and Kerkyacharian et al. (2014), among others, and to adapt

them to the treatment choice problem. The minimax rate optimality of the EWM treatment choice

rule (proved in Theorems 2.1 and 2.2 below) is analogous to the minimax rate optimality of the

Empirical Risk Minimization classifier in the classification problem shown by Devroye and Lugosi

(1995). There are, however, substantive differences between treatment choice and classification

problems: (1) the observed outcomes are real-valued rather than binary, (2) in treatment choice

only one of the potential outcomes is observed for each individual, whereas in classification the

correct choice is known for each training sample observation, (3) the EWM criterion depends on

the propensity score, which may be unknown (as in observational studies), (4) policy settings often
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impose constraints on practicable treatment rules or on the proportion of the population that could

be treated. Accommodating these fundamental differences and establishing the convergence rate

results for the welfare loss criterion constitute the main theoretical contributions of this paper.

Several works in econometrics consider the plug-in approach to treatment choice using estimated

regression equations,

Ĝplug−in = {x : τ̂m(x) ≥ 0} , τ̂m(x) = m̂1(x)− m̂0(x), (1.13)

where m̂d(x) is a parametric or a nonparametric estimator of E(Yd|X = x). Hirano and Porter

(2009) establish local asymptotic minimax optimality of plug-in rules for parametric and semi-

parametric models of treatment response. Bhattacharya and Dupas (2012) apply nonparametric

plug-in rules with an aggregate budget constraint and derive some of their properties. Armstrong

and Shen (2014) consider statistical inference for the first-best decision rule G∗FB from the perspec-

tive of inference for conditional moment inequalities. In empirical practice of program evaluation,

researchers assess who should be treated by stratifying the population based on the predicted value

of the individual outcome in the absence of treatment and estimating the average causal effects for

each strata using the experimental data. Abadie et al. (2014) point out that the naive implemen-

tation of this idea is subject to a bias due to the endogenous stratification and provide a method

to correct the bias.

To assess the effect heterogeneity, estimation and inference for conditional treatment effects

based on parametric or nonparametric regressions are often reported, but the stylized output of

statistical inference (e.g., confidence intervals, p-values) fails to offer the policy maker a direct

guidance on what treatment rule to follow. In contrast, our EWM approach offers the policy maker

a specific treatment assignment rule designed to maximize the social welfare. By formulating the

treatment choice problem as a formal statistical decision problem, a certain treatment assignment

rule could be obtained by specifying a prior distribution for P and solving for a Bayes decision

rule (see Dehejia (2005), Chamberlain (2011), and Kasy (2014) for Bayesian approaches to the

treatment choice problem). In contrast to the Bayesian approach, the EWM approach is purely

data-driven and does not require a prior distribution over the data generating processes.

The analysis of optimal individualized treatment rules has also received considerable attention

in biostatistics. Qian and Murphy (2011) propose a plug-in approach using the treatment response

function m̂D(X) ≡ Dm̂1(X) + (1 −D)m̂0(X) estimated by penalized least squares. If the square

loss E(Y − m̂D(X))2 converges to the minimum E(Y − DE(Y1|X) + (1 − D)E(Y0|X))2, then

the welfare of the plug-in treatment rule converges to the maximum W (G∗FB). Assuming that
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treatment response functions are linear in the chosen basis, they show welfare convergence rate of

n−1/2 or better (with a margin condition). Zhao et al. (2012) propose another surrogate loss function

approach that estimates the treatment rule using a Support Vector Machine with a growing basis.

This yields welfare convergence rates that depend on the dimension of the covariates, similarly to

nonparametric plug-in rules. These approaches are computationally attractive but cannot be used

to choose from a constrained set of treatment rules or under a capacity constraint.

Elliott and Lieli (2013) and Lieli and White (2010) also proposed maximizing the sample analog

of a utilitarian decision criterion similar to EWM. They consider the problem of forecasting binary

outcomes based on observations of (Yi, Xi), where a forecast leads to a binary decision.

2 Theoretical Properties of EWM

2.1 Setup and Assumptions

Throughout our investigation of theoretical properties of EWM, we maintain the following assump-

tions.

Assumption 2.1.

(UCF) Unconfoundedness: (Y1, Y0) ⊥ D|X.

(BO) Bounded Outcomes: There exists M < ∞ such that the support of outcome variable Y is

contained in [−M/2,M/2].

(SO) Strict Overlap: There exist κ ∈ (0, 1/2) such that the propensity score satisfies e(x) ∈
[κ, 1− κ] for all x ∈ X .

(VC) VC-class: A class of decision sets G has a finite VC-dimension2 v <∞ and is countable.3

The assumption of unconfoundedness (selection on observables) holds if data are obtained from

an experimental study with a randomized treatment assignment. In observational studies, uncon-

foundedness is a non-testable and often controversial assumption. Our analysis could be applied

2The VC-diemension of G is defined by the maximal number of points in X that can be shattered by G. The

VC-dimension is commonly used to measure the complexity of a class of sets in the statistical learning literature (see

Vapnik (1998), Dudley (1999, Chapter 4), and van der Vaart and Wellner (1996) for extensive discussions). Note

that the VC-dimension is smaller by one compared to the VC-index used to measure the complexity of a class of sets

in the empirical process theory, e.g., van der Vaart and Wellner (1996).
3Coutability of G is imposed in order to avoid measurability complications in proving our theoretical results.
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to the observational studies in which unconfoundedness is credible. The second assumption (BO)

implies boundedness of the treatment effects, i.e.,

PX(|τ(X)| ≤M) = 1,

where PX is the marginal distribution of X and τ(·) is the conditional treatment effect τ(X) =

E (Y1 − Y0|X). Since the implementation of EWM does not require knowledge of M and unbounded

Y is rare in social science, this assumption is innocuous and imposed only for analytical convenience.

The third assumption (SO) is a standard assumption in the treatment effect literature. It is satisfied

in randomized controlled trials by design, but it may be violated in observational studies if almost all

the individuals are in the same group (treatment or control) for some values of X. We let P(M,κ)

denote the class of distributions of (Y0, Y1, D,X) that satisfy Assumption 2.1 (UCF), (BO), and

(SO).

The fourth assumption (VC) restricts the complexity of the class of candidate treatment rules

G in terms of its VC-dimension. If X has a finite support, then the VC-dimension v of any class G
does not exceed the number of support points. If some of X is continuously distributed, Assumption

2.1 (VC) requires G to be smaller than the Borel σ-algebra of X . The following examples illustrate

several practically relevant classes of the feasible treatment rules satisfying Assumption 2.1 (VC).

Example 2.1. (Linear Eligibility Score) Suppose that a feasible assignment rule is constrained

to those that assign the treatment according to an eligibility score. By the eligibility score, we

mean a scalar-valued function of the individual’s observed characteristics that determines whether

one receives the treatment based on whether the eligibility score exceeds a certain threshold. The

main objective of data analysis is therefore to construct an eligibility score that yields a welfare-

maximizing treatment rule. Specifically, we assume that the eligibility score is constrained to being

linear in a subvector of x ∈ Rdx, xsub ∈ Rdsub, dsub ≤ dx. The class of decision sets generated by

Linear Eligibility Scores (LES) is defined as

GLES ≡
{{

x ∈ Rdx : β0 + xTsubβsub ≥ 0
}

:
(
β0, β

T
sub

)
∈ Rdsub+1

}
. (2.1)

We accordingly obtain an EWM assignment rule by maximizing

Wn(β) ≡ En
[
YiDi

e(Xi)
· 1
{
β0 +XT

sub,iβsub ≥ 0
}

+
Yi(1−Di)

1− e(Xi)
· 1
{
β0 +XT

sub,iβsub < 0
}]

in β =
(
β0, β

T
sub

)
∈ Rdsub+1. It is well known that the class of half-spaces spanned by

(
β0, β

T
sub

)
∈

Rdsub+1 has the VC-dimension v = dsub+1, so Assumption 2.1 (VC) holds. In Section 5, we discuss
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how to compute ĜEWM when the class of decision sets is given by GLES. A plug-in rule based on

a parametric linear regression also selects a treatment rule from GLES, but their welfare does not

converge to the maximum welfare W ∗GLES if the regression equations are misspecified, whereas the

welfare of ĜEWM always does (as shown in Theorem 2.1 below).

Example 2.2. (Generalized Eligibility Score) Let fj(·), j = 1, . . . ,m, and g(·) be known functions

of x ∈ Rdx. Consider a class of assignment rules generated by Generalized Eligibility Scores (GES),

GGES ≡
{{

x ∈ Rdx :
∑m

j=1
βjfj(x) ≥ g(x)

}
, (β1, ..., βm) ∈ Rm

}
.

The class of decision sets GGES generalizes the linear eligibility score rules (2.1), as it allows for

eligibility scores that are nonlinear in x, i.e., GGES can accommodate decision sets that partition

the space of covariates by nonlinear boundaries. It can be shown that GGES has the VC-dimension

v = m+ 1 (Theorem 4.2.1 in Dudley (1999)).

Example 2.3. (Intersection Rule of Multiple Eligibility Scores) Consider a situation where there

are L ≥ 2 eligibility scores. Let GGES,l, l = 1, . . . , L, be classes of decision sets such that each

of them is generated by contour sets of the l-th eligibility score. Suppose that a feasible decision

rule is constrained to those that assign the treatment if the individual has all the L eligibility scores

exceeding thresholds. In this case, the class of decision sets is constructed by the intersections,

G ≡
⋂L
l=1 GGES,l =

{⋂L
l=1Gl : Gl ∈ GGES,l, l = 1, . . . , L

}
. An intersection of a finite number of

VC-classes is a VC-class with a finite VC-dimension (Theorem 4.5.4 in Dudley (1999)); thus,

Assumption 2.1 (VC) holds for this G. We can also consider a class of treatment rules that assigns

a treatment if at least one of the L eligibility scores exceeds a threshold. In this case, instead of

intersections, the class of decision sets is formed by the unions of {GGES,l, l = 1, . . . , L}, which is

also known to have a finite VC-dimension (Theorem 4.5.4 in Dudley (1999))

2.2 Uniform Rate Optimality of EWM

To analyze statistical performance of EWM rules, we focus on a non-asymptotic upper bound

of the worst-case welfare loss supP∈P(M,κ)EPn
[
W ∗G −W (ĜEWM )

]
and examine how it depends

on sample size n and VC-dimension v. This finite sample upper bound allows us to assess the

uniform convergence rate of the welfare and to examine how richness (complexity) of the class

of candidate decision rules affects the worst-case performance of EWM. The main reason that we

focus on the uniform convergence rate rather than a pointwise convergence rate is that the pointwise
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convergence rate of the welfare loss can vary depending on a feature of the data distribution and

fails to provide a guaranteed learning rate of an optimal policy when no additional assumption,

other than Assumption 2.1, is available.

For heuristic illustration of the derivation of the uniform convergence rate, consider the following

inequality, which holds for any G̃ ∈ G:

W (G̃)−W (ĜEWM ) = W (G̃)−Wn(ĜEWM ) +Wn(ĜEWM )−W (ĜEWM )

≤ W (G̃)−Wn(G̃) + sup
G∈G

∣∣∣Wn(G̃)−W (G̃)
∣∣∣

( ∵ Wn(ĜEWM ) ≥Wn(G̃) )

≤ 2 sup
G∈G
|Wn(G)−W (G)| .

Since it applies to W (G̃) for all G̃, it also applies to W ∗G = supW (G̃):

W ∗G −W (ĜEWM ) ≤ 2 sup
G∈G
|Wn(G)−W (G)| . (2.2)

Therefore, the expected welfare loss can be bounded uniformly in P by a distribution-free upper

bound of EPn(supG∈G |Wn(G)−W (G)|). SinceWn(G)−W (G) can be seen as the centered empirical

process indexed by G ∈ G, an application of the existing moment inequality for the supremum of

centered empirical processes indexed by a VC-class yields the following distribution-free upper

bound. A proof, which closely follows the proofs of Theorems 1.16 and 1.17 in Lugosi (2002) in the

classification problem, is given in Appendix A.2.

Theorem 2.1. Under Assumption 2.1, we have

sup
P∈P(M,κ)

EPn
[
W ∗G −W (ĜEWM )

]
≤ C1

M

κ

√
v

n
,

where C1 is a universal constant defined in Lemma A.4 in Appendix A.1.

This theorem shows that the convergence rate of the worst-case welfare loss for the EWM rule

is no slower than n−1/2. The upper bound is increasing in the VC-dimension of G, implying that, as

the candidate treatment assignment rules become more complex in terms of VC-dimension, ĜEWM

tends to overfit the data in the sense that the distribution of regret W ∗G −W (ĜEWM ) is more and

more dispersed, and, with n fixed, this overfitting results in inflating the average welfare regret.4

4Note that W ∗G weakly increases if a more complex class G is chosen. Our welfare loss criterion is defined for a

specific class G and does not capture the potential gain in the maximal welfare from the choice of a more complex G.
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The next theorem concerns a universal lower bound of the worst-case average welfare loss. It

shows that no data-based treatment choice rule can have a uniform convergence rate faster than

n−1/2.

Theorem 2.2. Suppose that Assumption 2.1 holds and the VC-dimension of G is v ≥ 2. Then, for

any treatment choice rule Ĝ, as a function of (Z1, . . . , Zn), it holds

sup
P∈P(M,κ)

EPn
[
W ∗G −W (Ĝ)

]
≥ 4−1 exp

{
−2
√

2
}
M

√
v − 1

n
for all n ≥ 16 (v − 1) .

This theorem, combined with Theorem 2.1, implies that ĜEWM is minimax rate optimal over

the class of data generating process P (M,κ), since the rate of the convergence of the upper bound of

supP∈P(M,κ)EPn
[
W ∗G −W (ĜEWM )

]
agrees with the convergence rate of the universal lower bound.

Accordingly, we can conclude that no other data-driven procedure for obtaining a treatment choice

rule can outperform ĜEWM in terms of the uniform convergence rate over P (M,κ). It is worth

noting that the rate lower bound is uniform in P and does not apply pointwise. Theorem 2.3

shows that EWM rules have faster convergence rates for some distributions. It is also possible

that EPn
[
W (Ĝ)

]
> W ∗G for some pairs of Ĝ and P , but it can never hold for all distributions in

P(M,κ).5

2.3 Rate Improvement by Margin Assumption

The welfare loss upper bounds obtained in Theorem 2.1 can indeed tighten up and the uniform

convergence rate can improve, as we further constrain the class of data generating processes. In

this section, we investigate (i) what feature of data generating processes can affect the upper bound

on the welfare loss of the EWM rule, and (ii) whether or not the EWM rule remains minimax rate

optimal even under the additional constraints. For this goal, we consider imposing the following

two assumptions.

Assumption 2.2.

(FB) Correct Specification: The first-best treatment rule G∗FB defined in (1.8) belongs to the class

5For example, if Ĝ is a nonparametric plug-in rule and the first-best decision rule G∗FB for distribution P does not

belong to G, then the welfare of Ĝ will exceed W ∗G in sufficiently large samples. However, the uniform lower bound

still applies because there exist other distributions for which EPnW (Ĝ) ≤W ∗G − (n−1/2 bound) for the same sample

size.
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of candidate treatment rules G.

(MA) Margin Assumption: There exist constants 0 < η ≤M and 0 < α <∞ such that

PX(|τ(X)| ≤ t) ≤
(
t

η

)α
, ∀0 ≤ t ≤ η,

where M <∞ is the constant as defined in Assumption 2.1 (BO).

The assumption of correct specification means that the class of the feasible policy rules specified

by G contains an unconstrained first-best treatment rule G∗FB. This assumption is plausible if, for

instance, the policy maker’s specification of G is based on a credible assumption about the shape

of the contour set {x : τ(x) ≥ 0}. This assumption can be, on the other hand, restrictive if the

specification of G comes from some exogenous constraints for feasible policy rules, as in the case of

Example 2.1.

The second assumption (MA) concerns the way in which the distribution of conditional treat-

ment effect τ(X) behaves in the neighborhood of τ(X) = 0. A similar assumption has been consid-

ered in the literature on classification analysis (Mammen and Tsybakov (1999), Tsybakov (2004),

among others), and we borrow the term “margin assumption” from Tsybakov (2004). Parameters η

and α characterize the size of population with the conditional treatment effect close to the margin

τ(X) = 0. Smaller η and α imply that more individuals can concentrate in a neighborhood of

τ(X) = 0. The next examples illustrate this interpretation of η and α.

Example 2.4. Suppose that X contains a continuously distributed covariate and that the condi-

tional treatment effect τ(X) is continuously distributed. If the probability density function of τ(X)

is bounded from above by pτ <∞, then the margin assumption holds with α = 1 and η = (2pτ )−1.

Example 2.5. Suppose that X is a scalar and follows the uniform distribution on [−1/2, 1/2].

Specify the conditional treatment effects to be τ(X) = (−X)3. In this specification, τ(X) “flats

out” at τ(X) = 0, and accordingly, the density function of τ(X) is unbounded in the neighborhood

of τ(X) = 0. This specification leads to PX(|τ(X)| ≤ t) = 2t1/3, so the margin assumption holds

with α = 1/3 and η = 1/8.

Example 2.6. Suppose that the distribution of X is the same as in Example 2.5. Let h > 0 and

specify τ(X) as

τ(X) =

{
X − h for X ≤ 0,

X + h for X > 0.

13



This τ(X) is discontinuous at X = 0, and the distribution of τ(X) has zero probability around the

margin of τ(X) = 0. It holds

PX(|τ(X)| ≤ t) =

{
0 for t ≤ h

t− h for h < t ≤ 1
2 + h

.

By setting η = h, the margin condition holds for arbitrarily large α. In general, if the distribution

of τ(X) has a gap around the margin of τ(X) = 0, the margin condition holds with arbitrarily large

α.

From now on, we denote the class of P satisfying Assumptions 2.1 and 2.2 by PFB(M,κ, η, α).6

The next theorem provides the upper bound of the welfare loss of the EWM rule when a class of

data distributions is constrained to PFB (M,κ, η, α).

Theorem 2.3. Under Assumptions 2.1 and 2.2,

sup
P∈PFB(M,κ,η,α)

EPn
[
W (G∗FB)−W (ĜEWM )

]
≤ c

( v
n

) 1+α
2+α

holds for all n, where c is a positive constant that depends only on M , κ, η, and α.

Similarly to Theorem 2.1, the presented welfare loss upper bound is non-asymptotic, and it is

valid for every sample size. Our derivation of this theorem can be seen as an extension of the finite

sample risk bound for the classification error shown in Theorem 2 of Massart and Nédélec (2006).

Our rate upper bound is consistent with the uniform convergence rate of the classification risk of

the empirical risk minimizing classifier shown in Theorem 1 of Tsybakov (2004).7 This coincidence

is somewhat expected, given that the empirical welfare criterion that the EWM rule maximizes

resembles the empirical classification risk in the classification problem.

The next theorem shows that the uniform convergence rate of n−
1+α
2+α obtained in Theorem 2.3

attains the minimax rate lower bound, implying that any treatment choice rule Ĝ based on data

(including ĜEWM ) cannot attain a uniform convergence rate faster than n−
1+α
2+α . This means that

the EWM rule remains rate optimal even when the class of data generating processes is constrained

additionally by Assumption 2.2.

6Note that PFB(M,κ, η, α) depends on the set of feasible treatment rules G via Assumption 2.2 (FB).
7Tsybakov (2004) defines the complexity of the decision sets G in terms of the growth coefficient ρ of the bracketing

number of G. We control complexity of G in terms of the VC-dimension, which corresponds to Tsybakov’s growth

coefficient ρ being arbitrarily close to zero.
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Theorem 2.4. Suppose Assumptions 2.1 and 2.2 hold. Assume that the VC-dimension of G sat-

isfies v ≥ 2. Then, for any treatment choice rule Ĝ as a function of (Z1, . . . , Zn), it holds

sup
P∈PFB(M,κ,η,α)

EPn
[
W (G∗FB)−W (Ĝ)

]
≥ 2−1 exp

{
−2
√

2
}
M

2(1+α)
2+α η−

α
2+α

(
v − 1

n

) 1+α
2+α

for all n ≥ max
{

(M/η)2 , 42+α
}

(v − 1).

The following remarks summarize some analytical insights associated with Theorems 2.1 - 2.4.

Remark 2.1. The convergence rates of the worst-case EWM welfare loss obtained by Theorems

2.1 and 2.3 highlight how margin coefficient α influences the uniform performance of the EWM

rule. Higher α improves the welfare loss convergence rate of EWM, and the convergence rate

approaches n−1 in an extreme case, where the distribution of τ(X) has a gap around τ(X) = 0. As

fewer individuals are around the margin of τ(X) = 0, we can attain the maximal welfare quicker.

Conversely, as α approaches zero (more individuals around the margin), the welfare loss convergence

rate of EWM approaches n−1/2, and it corresponds to the uniform convergence rate of Theorem 2.1.

Remark 2.2. The upper bounds of welfare loss convergence rate shown in Theorems 2.1 and 2.3

are increasing in the VC-dimension of G. Since they are valid at every n, we can allow the VC-

dimension of the candidate treatment rules to grow with the sample size. For instance, if we consider

a sequence of candidate decision sets {Gn : n = 1, 2, . . . }, for which the VC-dimension grows with

the sample size at rate nλ, 0 < λ < 1, Theorems 2.1 and 2.3 imply that the welfare loss uniform

convergence rate of the EWM rule slows down to n−
1−λ
2 for the case without Assumption 2.2 and

to n−(1−λ)
(1+α)
2+α for the case with Assumption 2.2. Note that the welfare loss lower bounds shown

in Theorems 2.2 and 2.4 have the VC-dimensions of the same order as in the corresponding upper

bounds, so we can conclude that the EWM rule is also minimax rate optimal even in the situations

where the complexity of G grows with the sample size.

Remark 2.3. Note that the welfare loss lower bounds of Theorems 2.2 and 2.4 are valid for any

estimated treatment choice rule Ĝ irrespective of whether Ĝ is constrained to G or not. Therefore,

the nonparametric plug-in rule Ĝplug−in defined in (1.13) is subject to the same lower bound. In

Section 4.3, we further discuss the welfare loss uniform convergence rate of the nonparametric

plug-in rule.

Remark 2.4. Let PFB (M,κ) be the class of data generating processes that satisfy Assumption

2.1 and Assumption 2.2 (FB). A close inspection of the proofs of Theorems 2.1 and 2.2 given in
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Appendix A.2 shows that the same lower and upper bounds of Theorems 2.1 and 2.2 can be obtained

even when P (M,κ) is replaced with PFB (M,κ). In this sense, Assumption 2.2 (MA) plays the

main role in improving the welfare loss convergence rate.

2.4 Unknown Propensity Score

We have so far considered situations where the true propensity score is known. This would not be

the case if the data were obtained from an observational study in which the assignment of treatment

is not generally under the control of the experimenter. To cope with the unknown propensity score,

this section considers two hybrids of the EWM approach and the parametric/nonparametric plug-

in approach: the m-hybrid rule defined in (1.11) and the e-hybrid rule defined in (1.12). The

e-hybrid rule employs the trimming rule 1 {εn ≤ ê (Xi) ≤ 1− εn} with a deterministic sequence

{εn : n = 1, 2, . . . }, which we assume to converge to zero faster than some polynomial rate, εn ≤
O (n−a), a > 0.8

Let W τ
n (G) be the sample analogue of the welfare criterion (1.2) that one would construct if

the true regression equations were known, W τ
n (G) ≡ En(m0(Xi)) + En(τ(Xi) · 1{Xi ∈ G}), and

Ŵ τ
n (G) be the empirical welfare with the conditional treatment effect estimators τ̂m(·) plugged in,

Ŵ τ
n (G) ≡ En [m0 (Xi) + τ̂m (Xi) 1 {Xi ∈ G}] . (2.3)

Since the m-hybrid rule maximizes Ŵ τ
n (·), it holds Ŵ τ

n (Ĝm−hybrid) − Ŵ τ
n (G̃) ≥ 0 for any G̃ ∈ G.

The following inequalities therefore follow:

W (G̃)−W (Ĝm−hybrid) ≤ W τ
n (G̃)− Ŵ τ

n

(
G̃
)
−W τ

n (Ĝm−hybrid) + Ŵ τ
n

(
Ĝm−hybrid

)
(2.4)

+W (G̃)−W (Ĝm−hybrid)−W τ
n (G̃) +W τ

n (Ĝm−hybrid)

=
1

n

n∑
i=1

[τ (Xi)− τ̂m(Xi)]
[
1
{
Xi ∈ G̃

}
− 1

{
Xi ∈ Ĝm−hybrid

}]
+W (G̃)−W τ

n (G̃) +W τ
n (Ĝm−hybrid)−W (Ĝm−hybrid)

≤ 1

n

n∑
i=1

|τ̂m (Xi)− τ(Xi)|+ 2 sup
G∈G
|W τ

n (G)−W (G)| .

This implies that the average welfare loss of the m-hybrid rule can be bounded by

EPn
[
W ∗G −W (Ĝm−hybrid)

]
≤ EPn

[
1

n

n∑
i=1

|τ̂m(Xi)− τ(Xi)|

]
+2EPn

[
sup
G∈G
|W τ

n (G)−W (G)|
]
.

8The trimming sequence εn is introduced only to simplify the derivation of the rate upper bound of the welfare

loss. In practical terms, if the overlap condition is well satisfied in the given data, the trimming is not necessary for

computing the e-hybrid rule.
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(2.5)

For the e-hybrid rule, replacing W τ
n (·) and Ŵ τ

n (·) in (2.4) with the empirical welfare Wn(·) defined

in (1.7) and Ŵn(G) ≡ En
[
Yi(1−Di)
1−e(Xi) + τ̂ ei · 1{Xi ∈ G}

]
, respectively, yields a similar upper bound

EPn
[
W ∗G −W (Ĝe−hybrid)

]
≤ EPn

[
1

n

n∑
i=1

|τ̂ ei − τ i|

]
+ 2EPn

[
sup
G∈G
|Wn(G)−W (G)|

]
, (2.6)

where τ i = YiDi
e(Xi)

− Yi(1−Di)
1−e(Xi) . Since the uniform convergence rate of EPn

[
supG∈G |W τ

n (G)−W (G)|
]

is the same as that of EPn
[
supG∈G |Wn(G)−W (G)|

]
,9 these upper bounds imply that the lack of

knowledge of the propensity score may harm the welfare loss convergence rate if the average estima-

tion error of the conditional treatment effect converges slower than does EPn
[
supG∈G |Wn(G)−W (G)|

]
.

It is therefore convenient to first state the condition regarding the convergence rate of the average

estimation error of the conditional treatment effect estimators.

Condition 2.1.

(m) (m-hybrid case): Let τ̂m(x) = m̂1(x) − m̂0(x) be an estimator for the conditional treatment

effect τ(x) = m1(x)−m0(x). For a class of data generating processes Pm, there exists a sequence

ψn →∞ such that

lim sup
n→∞

sup
P∈Pm

ψnEPn

[
1

n

n∑
i=1

|τ̂m(Xi)− τ(Xi)|

]
<∞ (2.7)

holds.

(e) (e-hybrid case): Let τ̂ ei =
[
YiDi
ê(Xi)

− Yi(1−Di)
1−ê(Xi)

]
· 1 {εn ≤ ê (Xi) ≤ 1− εn} be an estimator for τ i =

YiDi
e(Xi)

− Yi(1−Di)
1−e(Xi) , where ê(·) is an estimated propensity score. For a class of data generating processes

Pe, there exists a sequence φn →∞ such that

lim sup
n→∞

sup
P∈Pe

φnEPn

[
1

n

n∑
i=1

|τ̂ ei − τ i|

]
<∞. (2.8)

In Appendix B, we show that the estimators τ̂m (·) and τ̂ ei constructed via local polynomial

regressions satisfy this condition for a certain class of data generating processes. Theorems 2.5

9This claim follows by applying the proof of Theorem 2.1 with the following class of functions:

Fτ ≡ {f(Xi;G) ≡ m0(Xi) + τ(Xi) · 1{Xi ∈ G} : G ∈ G} .

Fτ is the VC-subgraph class with the VC-dimension at most v by Lemma A.1 in Appendix A.1.
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and 2.6 below derive the uniform convergence rate bounds of the hybrid rules in two different

scenarios. In Theorem 2.5, we constrain the class of data generating processes only by Assumption

2.1 and Condition 2.1, and, importantly, we allow the class of decision rules G to exclude the first-

best rule G∗FB. Theorem 2.5 follows as a corollary of Theorem 2.1 and inequalities (2.5) and (2.6),

so we omit a proof.

Theorem 2.5. Suppose Assumption 2.1 holds.

(m) (m-hybrid case): Given a class of data generating processes Pm, if an estimator for the

conditional treatment effect τ̂m(·) satisfies Condition 2.1 (m), then,

sup
P∈Pm∩P(M,κ)

EPn
[
W ∗G −W (Ĝm−hybrid)

]
≤ O

(
ψ−1
n ∨ n−1/2

)
.

(e) (e-hybrid case): Given a class of data generating processes Pe, if an estimator for the propensity

score ê(·) satisfies Condition 2.1 (e), then,

sup
P∈Pe∩P(M,κ)

EPn
[
W ∗G −W (Ĝe−hybrid)

]
≤ O

(
φ−1
n ∨ n−1/2

)
.

A comparison of Theorem 2.5 with Theorem 2.1 shows that the uniform rate upper bounds for

the hybrid EWM rules are no faster than the welfare loss convergence rate of the EWM with known

propensity score. Note that if some nonparametric estimator is used to estimate τ(·) or e (·), ψn or

φn specified in Condition 2.1 is generally slower than n1/2. Hence, the welfare loss upper bounds

of the hybrid rules are determined by the nonparametric rate ψ−1
n or φ−1

n . A special case where

the estimation of τ (·) or e (·) does not affect the uniform convergence rate is when τ (·) or e (·) is

assumed to belong to a parametric family and it is estimated parametrically, i.e., ψn or φn is equal

to n1/2.

In the second scenario, we consider the case where G contains the first-best decision rule G∗FB

and the data generating processes are constrained further by the margin assumption (Assumption

2.2) with margin coefficient α ∈ (0, 1].

Theorem 2.6. Suppose Assumptions 2.1 and 2.2 hold with a margin coefficient α ∈ (0, 1]. Assume

that a stronger version of Condition 2.1 holds, where (2.7) and (2.8) are replaced by

lim sup
n→∞

sup
P∈Pm

EPn

[(
ψ̃n max

1≤i≤n
|τ̂m(Xi)− τ(Xi)|

)2
]

< ∞ and (2.9)

lim sup
n→∞

sup
P∈Pe

EPn

[(
φ̃n max

1≤i≤n
|τ̂ ei − τ i|

)2
]

< ∞, (2.10)
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for sequences ψ̃n →∞ and φ̃n →∞, respectively. Then, we have

sup
P∈Pm∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝm−hybrid)

]
≤ O

(
ψ̃
−(1+α)
n ∨ n−

1+α
2+α log ψ̃n

)
,

sup
P∈Pe∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝe−hybrid)

]
≤ O

(
φ̃
−(1+α)
n ∨ n−

1+α
2+α log φ̃n

)
.

Theorem 2.6 shows that even when τ (·) or e(·) have to be estimated, the margin coefficient α

influences the rate upper bound of the welfare loss. A higher α leads to a faster rate of the welfare

loss convergence regardless of whether τ (·) and e(·) are estimated parametrically or nonparamet-

rically. In the situation where τ (·) or e (·) is estimated parametrically (with a compact support of

X), ψ̃n or φ̃n is equal to n1/2; thus, the uniform welfare loss convergence rate is given by the second

argument in O (·), n−
1+α
2+α . On the other hand, when τ (·) or e (·) is estimated nonparametrically,

which of the two terms in O (·) converges slower depends on the dimension of X and the degree of

smoothness of the underlying nonparametric function. See Corollaries 2.1 and 2.2 below for specific

expressions of ψ̃n and φ̃n when local polynomial regressions are used to estimate τ (·) or e(·).

Note that Theorems 2.5 and 2.6 concern the upper bound of the convergence rate. We do

not have the universal rate lower bound results for these constrained classes of data generating

processes. We leave the investigation of the sharp rate bound of the hybrid-EWM welfare loss for

future research.

2.4.1 Hybrid EWM with Local Polynomial Estimators

In this subsection, we focus on local polynomial estimators for τ(x) and e(x), and spell out classes

of data generating processes Pm and Pe as well as ψn, ψ̃n, φn, and φ̃n that satisfy Condition 2.1

and the assumption of Theorem 2.6.

Consider the m-hybrid approach in which the leave-one-out local polynomial estimators are

used to estimate m1(Xi) and m0 (Xi), i.e., m̂1(Xi) and m̂0 (Xi) are constructed by fitting the

local polynomials excluding the i-th observation.10 For any multi-index s = (s1, . . . , sdx) ∈ Ndx

and any (x1, . . . , xdx) ∈ Rdx , we define |s| ≡
∑dx

i=1 si, s! ≡ s1! · · · sdx !, xs ≡ xs11 · · ·x
sdx
dx

, and

‖x‖ ≡
(
x2

1 + · · ·+ x2
dx

)
. Let K(·) : Rdx → R be a kernel function and h > 0 be a bandwidth.

At each Xi, i = 1, . . . , n, we define the leave-one-out local polynomial coefficient estimators with

10The reason to consider the leave-one-out fitted values is to simplify analytical verification of Condition 2.1. We

believe that the welfare loss convergence rates of the hybrid approaches will not be affected even when the i-th

observation is included in estimating m̂1 (Xi) and m̂0 (Xi).
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degree l ≥ 0 as

θ̂1(Xi) = arg min
θ

∑
j 6=i,Dj=1

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

θ̂0(Xi) = arg min
θ

∑
j 6=i,Dj=0

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

where U
(
Xj−Xi

h

)
is the vector with elements indexed by the multi-index s, i.e., U

(
Xj−Xi

h

)
≡((

Xj−Xi
h

)s)
|s|≤l

.11 With a slight abuse of notation, we define U (0) = (1, 0, . . . , 0)T . Let λn,1(Xi) be

the smallest eigenvalue of B1(Xi) ≡
(
nhdx

)−1∑
j 6=i,Dj=1 U

(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
and

λn,0(Xi) be the smallest eigenvalue ofB0(Xi) ≡
(
nhdx

)−1∑
j 6=i,Dj=0 U

(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
.

Accordingly, we construct leave-one-out local polynomial fits for m1(Xi) and m0 (Xi) by

m̂1(Xi) = UT (0)θ̂1(Xi) · 1 {λn,1(Xi) ≥ tn} ,

m̂0 (Xi) = UT (0)θ̂0(Xi) · 1 {λn,0(Xi) ≥ tn} ,

where tn is a positive sequence that slowly converges to zero, such as tn ∝ (log n)−1. These trimming

rules regularize the regressor matrices of the local polynomial regressions and simplify the proof of

the uniform consistency of the local polynomial estimators.

To characterize Pm in Condition 2.1, we impose the following restrictions.

Assumption 2.3.

(Smooth-m) Smoothness of the Regressions: The regression equations m1(·) and m0(·) belong to a

Hölder class of functions with degree βm ≥ 1 and constant Lm <∞.12

(PX) Support and Density Restrictions on PX : Let X ⊂ Rdx be the support of PX . Let Leb(·) be

the Lebesgue measure on Rdx . There exist constants c and r0 such that

Leb (X ∩B(x, r)) ≥ cLeb(B(x, r)) ∀0 < r ≤ r0, ∀x ∈ X , (2.11)

and PX has the density function dPX
dx (·) with respect to the Lebesgue measure of Rdx that is bounded

from above and bounded away from zero, 0 < p
X
≤ dPX

dx (x) ≤ p̄X <∞ for all x ∈ X .

11We specify the same bandwidth for these two local polynomial regressions only to suppress notational burden.
12Let Ds denote the differential operator Ds ≡ ∂

s1+···+sdx

∂x
s1
1 ···x

sdx
dx

. Let β ≥ 1 be an integer. For any x ∈ Rdx and any

(β − 1) times continuously differentiable function f : Rdx → R, we denote the Taylor expansion polynomial of degree

(β − 1) at point x by fx(x′) ≡
∑
|s|≤β−1

(x′−x)s

s!
Dsf(x). Let L > 0. The Hölder class of functions in Rdx with

degree β and constant 0 < L < ∞ is defined as the set of function f : Rdx → R that are (β − 1) times continuously

differentiable and satisfy, for any x and x′ ∈ Rdx , the inequality |fx(x′)− f(x)| ≤ L ‖x− x′‖β .
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(Ker) Bounded Kernel with Compact Support: The kernel function K(·) have support [−1, 1]dx ,∫
Rdx K(u)du = 1, and supuK (u) ≤ Kmax <∞.

Smoothness of the regression equations, Assumption 2.3 (Smooth-m), is a standard assumption

in the context of nonparametric regressions. Assumption 2.3 (PX) is borrowed from Audibert and

Tsybakov (2007), and it provides regularity conditions on the marginal distribution of X. Inequality

condition (2.11) constrains the shape of the support of X, and it essentially rules out the case where

X has “sharp” spikes, i.e., X ∩B(x, r) has an empty interior or Leb (X ∩B(x, r)) converges to zero

as r → 0 faster than the rate of r2 for some x in the boundary of X .

Lemma B.4 in Appendix B shows that when Pm consists of the data generating processes

satisfying Assumption 2.3 (Smooth-m) and (PX), Condition 2.1 (m) holds with ψn = n
1

2+dx/βm ,

and (2.9) holds with ψ̃n = n
1

2+dx/βm (log n)
− 1

2+dx/βm
−2

. The following corollary therefore follows.

Corollary 2.1. Let Pm consist of data generating processes that satisfy Assumption 2.3 (Smooth-

m) and (PX). Let m̂1(Xi) and m̂0 (Xi) be the leave-one-out local polynomial estimators with degree

l = (βm − 1), whose kernels satisfy Assumption 2.3 (Ker).

(i) Suppose Assumption 2.1 holds. Then, it holds

sup
P∈Pm∩P(M,κ)

EPn
[
W ∗G −W (Ĝm−hybrid)

]
≤ O

(
n
− 1

2+dx/βm

)
.

(ii) Suppose Assumptions 2.1 and 2.2 hold with margin coefficient α ∈ (0, 1]. Then, it holds

sup
P∈Pm∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝm−hybrid)

]
≤ O

(
n
− 1+α

2+dx/βm (log n)

(
1

2+dx/βm
+2
)

(1+α) ∨ n−
1+α
2+α log n

)
.

Next, consider the e-hybrid approach. For each i = 1, . . . , n, define a leave-one-out local poly-

nomial fit for propensity score as

ê (Xi) = UT (0)θ̂e(Xi) · 1 {λn(Xi) ≥ tn} ,

θ̂e(Xi) = arg min
θ

∑
j 6=i

[
Dj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
.

We then construct an estimate of individual treatment effect as

τ̂ i =

[
YiDi

ê(Xi)
− Yi(1−Di)

1− ê(Xi)

]
· 1 {εn ≤ ê(Xi) ≤ 1− εn} , 0 < εn ≤ O

(
n−a

)
, a > 0,
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To ensure Condition 2.1 (ii), we now assume smoothness of the propensity score function e(·).

Assumption 2.4. This assumption is the same as Assumption 2.3 except that 2.3 (Smooth-m)

is replaced by

(Smooth-e) Smoothness of the Propensity Score: The propensity score e(·) belongs to a Hölder class

of functions with degree βe ≥ 1 and constant Le <∞.

Again, Lemma B.4 in Appendix B shows that Pe formed by the data generating processes

satisfying Assumption 2.4, Condition 2.1 (e) holds with φn = n
− 1

2+dx/βe and (2.10) with φ̃n =

n
1

2+dx/βe (log n)
− 1

2+dx/βe
−2

.

Corollary 2.2. Let Pe consist of data generating processes that satisfy Assumption 2.4 (Smooth-e)

and (PX). Let ê(Xi) be the leave-one-out local polynomial estimator with degree l = (βe − 1), whose

kernel satisfy Assumption 2.3 (Ker).

(i) Suppose Assumption 2.1 holds. Then, it holds

sup
P∈Pe∩P(M,κ)

EPn
[
W ∗G −W (Ĝe−hybrid)

]
≤ O

(
n
− 1

2+dx/βe

)
.

(ii) Suppose Assumptions 2.1 and 2.2 hold with margin coefficient α ∈ (0, 1]. Then, it holds

sup
P∈Pe∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝe−hybrid)

]
≤ O

(
n
− 1+α

2+dx/βe (log n)

(
1

2+dx/βe
+2
)

(1+α) ∨ n−
1+α
2+α log n

)
.

A comparison of Corollaries 2.1 and 2.2 shows that the rate upper bound of welfare loss differs

between the m-hybrid EWM and the e-hybrid EWM approaches when the degree of Hölder smooth-

ness of the regression equations βm and that of the propensity score βe are different. For instance,

if the propensity score e (·) is smoother than the regression equations of outcome m1(·) and m0 (·)
in the sense of βe > βm and the degree of local polynomial regressions is chosen accordingly, then

the rate upper bound of the e-hybrid EWM rule converges faster than that of the m-hybrid EWM

rule.
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3 Inference for Welfare

In the proposed EWM procedure, the maximized empirical welfare Wn(ĜEWM ) can be seen as an

estimate of W (ĜEWM ), the welfare level attained by implementing the estimated treatment rule.13

In this section, we provide a procedure for constructing asymptotically valid confidence intervals

for the population welfare gain of implementing the estimated rule.

Let Ĝ ∈ G be an estimated treatment rule such as ĜEWM , Ĝm−hybrid, and Ĝe−hybrid. Define

the welfare gain of implementing an estimated treatment rule Ĝ ∈ G by

V (Ĝ) = W (Ĝ)−W (G0),

where G0 is a benchmark treatment assignment rule with which the estimated treatment rule Ĝ

is compared in terms of the social welfare. For instance, if the estimated treatment rule Ĝ is

compared with the “no treatment” case, G0 is the empty set ∅. Alternatively, if a benchmark

policy is the non-individualized uniform adoption of the treatment, G0 is set at G0 = X , and V (Ĝ)

is interpreted as the welfare gain of implementing individualized treatment assignment instead of

the non-individualized implementation of the treatment.

A construction of the confidence intervals for V (Ĝ) proceeds as follows. Let νn (G) =
√
n (Vn (G)− V (G)),

where Vn (G) ≡ Wn(G)−Wn(G0). If there is a random variable ν̄n such that νn

(
Ĝ
)
≤ ν̄n holds

Pn-almost surely, and if ν̄n converges in distribution to a non-degenerate random variable ν̄, then,

with c1−α̃, the (1− α̃)-th quantile of ν̄, it holds

Pn(νn

(
Ĝ
)
≤ c1−α̃) ≥ Pn(ν̄n ≤ c1−α̃)→ Pr (ν̄ ≤ c1−α̃) = 1− α̃, as n→∞.

Hence, if ĉ1−α̃, a consistent estimator of c1−α̃, is available, an asymptotically valid one-sided confi-

dence intervals for V (Ĝ) with coverage probability (1− α̃) can be given by

[Vn

(
Ĝ
)
− ĉ1−α̃√

n
,∞). (3.1)

In the algorithm summarized below, we specify ν̄n to be ν̄n =
√
n supG∈G (Vn (G)− V (G)) and

estimate ĉ1−α̃ by bootstrapping the supremum of the centered empirical processes.14

13It is important to note that in finite samples, Wn

(
ĜEWM

)
estimates W (ĜEWM ) with an upward bias. With

fixed n, the size of the bias becomes bigger as G becomes more complex.
14The current choice of ν̄n is likely to yield conservative confidence intervals. Keeping the same nominal coverage

probability, it is feasible to tighten up the confidence intervals with a more sophisticated choice of ν̄n, such as,

ν̄n =
√
n supG∈Ĝ (Vn (G)− V (G)) , where Ĝ is a data-dependent subclass of G that contains Ĝ with probability

approaching one.
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Algorithm 3.1. 1. Let Ĝ ∈ G be an estimated treatment assignment rule (e.g., EWM rule, the

hybrid-rules, etc.), and Vn (·) = Wn(·)−Wn(G0) be the empirical welfare gain obtained from

the original sample.

2. Resample n-observations of Zi = (Yi, Di, Xi) randomly with replacement from the original

sample and construct the bootstrap analogue of the welfare gain, V ∗n (·) = W ∗n(·) −W ∗n(G0),

where W ∗n (·) is the empirical welfare of the bootstrap sample.

3. Compute ν̄∗n =
√
n supG∈G (V ∗n (G)− Vn(G)).

4. Let α̃ ∈ (0, 1/2). Repeat step 2 and 3 many times and estimate ĉ1−α̃ by the empirical (1− α̃)-

th quantile of the bootstrap realizations of ν̄∗n.

Given Assumption 2.1, the uniform central limit theorem for empirical processes assures that ν̄n

converges in distribution to ν̄ the supremum of a mean zero Brownian bridge process. Furthermore,

by the well-known result on the asymptotic validity of the bootstrap empirical processes (see, e.g.,

Section 3.6 of van der Vaart and Wellner (1996)), the bootstrap critical value ĉ1−α̃ consistently

estimates the corresponding quantile of ν̄. We can therefore conclude that the confidence intervals

constructed in (3.1) has the desired asymptotic coverage probability.

4 Extensions

4.1 Empirical Welfare Maximization with a Capacity Constraint

Empirical welfare maximization could also be used to select treatment rules when one of the treat-

ments is scarce and the planner faces a capacity constraint on the proportion of the target population

that could be assigned to it. Capacity constraints exist in various treatment choice problems. In

medicine, stocks of new drugs and vaccines could be smaller than the number of patients who may

benefit from them. In education, limited number of slots is available in “magnet” schools. Training

programs for the unemployed are sometimes capacity-constrained. The limited capacity of a prison

system could make it infeasible to assign incarceration as a treatment for all convicted criminals.

In these cases, treatment assignment rules which propose to assign too many individuals to the

capacity-constrained treatment cannot be fully implemented.

We assume that the availability of treatment 1 is constrained.
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Assumption 4.1.

(CC) Capacity Constraint: Proportion of the target population that could receive treatment 1

cannot exceed K ∈ (0, 1).

If the population distribution of covariates PX were known, maximization of the empirical

welfare criterion could be simply restricted to sets in class G that satisfy the capacity constraint

GK ≡ {G ∈ G : PX(G) ≤ K}.

Being a subset of G, the class of sets GK has the same complexity as G (or lower), and all previous

results could be applied simply by replacing G with GK .

The population distribution of covariates is often not known precisely. In these cases, it is

impossible to guarantee with certainty that estimated treatment rule Ĝ will satisfy the capacity

constraint with probability one. To evaluate the welfare of any treatment assignment method in this

setting, we first need to make an assumption about what happens when the estimated treatment

set Ĝ violates the capacity constraint.

We assume that if the treatment rule G violates the capacity constraint, i.e., PX(G) > K,

then the scarce treatment is randomly allocated (“rationed”) to a fraction K
PX(G) of the assigned

recipients with X ∈ G independently of (X,Y0, Y1). If G does not violate the capacity constraint,

then there is no rationing and all recipients with covariates X ∈ G receive treatment 1. This

assumption holds if individuals arrive sequentially for treatment assignment in the order that is

independent of (X,Y0, Y1) and receive treatment 1 on a first-come first-serve basis if X ∈ G. It

could also correspond to settings in which treatment 1 is allocated by lottery to individuals with

X ∈ G.

This allows us to clearly define the capacity-constrained welfare of the treatment rule indexed

by any subset G ⊂ X of the covariate space as

WK(G) ≡ EP

 [m1(X) ·min
{

1, K
PX(G)

}
+m0(X) ·

(
1−min

{
1, K

PX(G)

})]
· 1 {X ∈ G}

+m0(X) · 1 {X /∈ G}

 .
Then the capacity-constrained welfare gain of the treatment rule G equals

VK(G) ≡ WK(G)−WK(∅)

= EP

[
min

{
1,

K

PX(G)

}
· τ(X) · 1 {X ∈ G}

]
= min

{
1,

K

PX(G)

}
· V (G).
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Rationing dilutes the effect of treatment rules that violate the capacity constraint and we take into

account this effect on welfare. In comparison, nonparametric plug-in treatment rules proposed by

Bhattacharya and Dupas (2012) are only required to satisfy the capacity constraint on average over

repeated data samples.

The maximum welfare gain attainable by treatment rules in G in the presence of a capacity

constraint equals V ∗K ≡ supG∈G VK(G). Even with full knowledge of the outcome distribution, it

is feasible that the optimal policy would assign the scarce treatment to a subset of the population

with PX(G) > K, requiring rationing within that subpopulation. This is unlikely to happen in

practice when the distribution of covariates does not have atoms and the collection of treatment

rules G is sufficiently rich. The following condition, for example, guarantees that the optimal

capacity-constrained policy does not require rationing.

Remark 4.1. If the collection of treatment rules G contains the upper contour sets of τ(x),

Gt ≡ {x ∈ X : τ(x) ≥ t} , t ∈ R,

and PX(Gt) is continuous in t, then the optimal policy GK = arg maxG∈G VK(G) belongs to the set

{Gt, t ∈ R} and satisfies the capacity constraint without rationing: PX(ĜK) ≤ K.

We propose a treatment rule that maximizes the empirical analog of the capacity-constrained

welfare gain VK(G) (and, hence, welfare):

ĜK ≡ arg max
G∈G

VK,n(G), (4.1)

where

VK,n(G) ≡ min

{
1,

K

PX,n(G)

}
· Vn(G)

= min

{
1,

K

PX,n(G)

}
· En

[(
YiDi

e(Xi)
− Yi(1−Di)

1− e(Xi)

)
· 1{Xi ∈ G}

]
,

and PX,n is the empirical probability distribution of (X1, . . . , Xn). The following theorem shows

that the expected welfare of ĜK converges to the maximum at least at n−1/2 rate. The result is

analogous to Theorem 2.1, with the additional term corresponding to potential welfare losses due

to misestimation of PX(G).

Theorem 4.1. Under Assumptions 2.1 and 4.1,

sup
P∈P(M,κ)

EPn

[
sup
G∈G

WK(G)−WK(ĜK)

]
≤ C1

M

κ

√
v

n
+ C1

M

K

√
v

n
,

where C1 is the universal constant in Lemma A.4.
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4.2 Target Population that Differs from the Sampled Population

Empirical Welfare Maximization method can be adapted to select treatment rules for a target

population that differs from the sampled population in the distribution of covariates X, but has

the same conditional treatment effect function τ(x).

As before, P denotes the probability distribution of (Y0,i, Y1,i, Di, Xi) in the sampled population.

We denote by P T the probability distribution of (Y0,i, Y1,i, Xi) in the target population and by ET

the expectations with respect to that probability. The welfare of implementing treatment rule G in

the target population is W T (G). We assume that the sampled population has the same conditional

treatment effect as the target population.

Assumption 4.2.

(ID) Identical Treatment Effects: ET (Y1 − Y0|X) = EP (Y1 − Y0|X).

(BDR) Bounded Density Ratio: Probability distributions P TX and PX have densities pTX and pX

with respect to a common dominating measure on X and for some ρ(x) ≤ ρ̄ <∞:

pTX(x) = ρ(x) · pX(x).

The welfare gain of treatment rule G on the target population equals

V T (G) ≡
∫
X
τ(x)1{x ∈ G} dP TX(x) =

∫
X
τ(x)1{x ∈ G}ρ(x) dPX(x).

Assumption 4.2 (ID) implies that the first-best treatment rule G∗FB = 1{x : τ(x) ≥ 0} is the

same in the sampled and the target populations. Therefore, when the first-best policy is feasible,

i.e. G∗FB ∈ G, we could directly apply the EWM treatment rule ĜEWM computed for the sampled

population to the target population. Note that from the definition of G∗FB, it follows that for any

treatment rule G and any x

τ(x)1{x ∈ G∗FB} − τ(x)1{x ∈ G} ≥ 0.

In conjunction with Assumption 4.2 (BDR), this yields an upper bound on the welfare loss of

applying any treatment rule in the target population expressed in terms of the welfare loss of
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applying the same rule in the sampled population.

W T (G∗FB)−W T (G) = V T (G∗FB)− V T (G)

=

∫
X

[τ(x)1{x ∈ G∗FB} − τ(x)1{x ∈ G}] ρ(x)dPX(x)

≤ ρ̄

∫
X

[τ(x)1{x ∈ G∗FB} − τ(x)1{x ∈ G}] dPX(x)

= ρ̄ [W (G∗FB)−W (G)] .

All of the welfare convergence rate results derived for EWM and hybrid treatment rules in previous

sections also hold when these treatment rules are applied to the target population, as long as

Assumptions 2.2 (FB) and 4.2 hold.

When the first-best policy is not feasible (G∗FB /∈ G), the second-best policies for the sampled

and the target populations, G∗ ∈ arg maxG∈GW (G) and GT∗ ∈ arg maxG∈GW
T (G), are generally

different. The welfare of treatment rules proposed in the previous sections does not generally

converge to the second-best in the target population supG∈GW
T (G).

The second-best in the target population could be obtained by reweighting the argument of the

EWM problem by the density ratio ρ(Xi). This method works even when the first-best treatment

rule is not feasible and could be combined with a treatment capacity constraint. The reweighted

EWM problem is

ĜTEWM ∈ arg max
G∈G

En

[(
YiDi

e(Xi)
− Yi(1−Di)

1− e(Xi)

)
· ρ(Xi) · 1 {Xi ∈ G}

]
. (4.2)

Applying the law of iterated expectations with respect to X, we obtain

EP

[(
Y D

e(X)
− Y (1−D)

1− e(X)

)
· ρ(X) · 1{X ∈ G}

]
=

∫
X
τ(x)1{x ∈ G}ρ(x) dPX(x) = V T (G).

(4.3)

Theorem 4.2 shows that the welfare loss of the reweighted EWM treatment rule in the target

population converges to zero at least at n−1/2 rate.

Theorem 4.2. If the distribution P in the sampled population satisfies Assumption 2.1 and the

distribution P T in the target population satisfies Assumption 4.2, then

sup
P∈P(M,κ)

EPn

[
sup
G∈G

W T (G)−W T (ĜTEWM )

]
≤ C1

Mρ̄

κ

√
v

n
,

where C1 is the universal constant in Lemma A.4.
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4.3 Comparison with the Nonparametric Plug-in Rule

The plug-in treatment choice rule (1.13) with parametrically or nonparametrically estimated m1(x)

and m0(x) is intuitive and simple to implement. In situations where flexible treatment assignment

rules are allowed and the dimension of conditioning covariates is small, the nonparametric plug-in

rule would be a competing alternative to the EWM approach. In this section, we review the welfare

loss convergence rate results of the nonparametric plug-in rule and discuss potential advantages and

disadvantages of these two approaches.

We denote the class of data generating processes that satisfy Assumptions 2.1 (UCF), (BO),

(SO), Assumption 2.2 (MA), and Assumption 2.3 by Psmooth (M,κ, α, η, βm). Given the smoothness

assumption of the regression equations, we consider estimating m1 and m0 by local polynomial

estimators of degree (β − 1). The convergence rate results of the nonparametric plug-in classifiers

shown in Theorem 3.3 of Audibert and Tsybakov (2007) can be straightforwardly extended to the

treatment choice context, resulting in

sup
P∈Psmooth(M,κ,α,η,βm)

EPn
[
W (G∗FB)−W (Ĝplug−in)

]
≤ O

(
n
− 1+α

2+dx/βm

)
. (4.4)

Furthermore, if αβ ≤ dx, Theorem 3.5 of Audibert and Tsybakov (2007) applied to the current

treatment choice setup shows that the nonparametric plug-in rule attains the rate lower bound i.e.,

for any treatment rule Ĝ,

sup
P∈Psmooth(M,κ,α,η,βm)

EPn
[
W (G∗FB)−W (Ĝ)

]
≥ O

(
n
− 1+α

2+dx/βm

)
holds.

In practically relevant situations where αβ ≤ dx,15 a naive comparison of the welfare loss con-

vergence rate of the plug-in rule presented here with that of EWM (Theorems 2.3 and 2.4) would

suggest that in terms of the welfare loss converge rate, the EWM rule would outperform the nonpara-

metric plug-in rule. It is, however, important to notice that the classes of data generating processes

over which the uniform rates are ensured differ between the two cases. Psmooth (M,κ, α, η, β) is con-

strained by smooth regression equations and continuously distributed X, whereas PFB (M,κ, α, η)

15In an analogy to the Proposition 3.4 of Audibert and Tsybakov (2007), when the class of data generating processes

is assumed to have αβ > dx, no data generating process in this class can have the conditional treatment effect τ(x) = 0

in an interior of the support of PX . In the practice of causal inference, we a priori would not restrict the plausible

data generating processes only to these extreme cases; therefore, the class of data generating processes with αβ > dx

would be less relevant in practice.
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considered in Theorems 2.3 and 2.4 allows for discontinuous regression equations and no restric-

tion on the marginal distribution of X’s. Assumption 2.2 (FB) on PFB (M,κ, α, η) requires that

{x : τ(x) ≥ 0} belongs to the pre-specified VC-class G, whereas Psmooth (M,κ, α, η, β) is free from

such assumption. This non-nested relationship between PFB (M,κ, α, η) and Psmooth (M,κ, α, η, β)

makes the naive rate comparison between (4.4) and Theorem 2.3 less meaningful because a data

generating process in Psmooth (M,κ, α, η, β) that yields the slowest convergence rate for the non-

parametric plug-in rule is in fact excluded from PFB (M,κ, α, η). Accordingly, unless we can assess

which one of Psmooth (M,κ, α, η, β) and PFB (M,κ, α, η) is more likely to contain the true data

generating process, these rate results offer us limited guidance on the procedure that should be

used in a given application.

In practical terms, we consider these two distinct approaches as complementary, and our choice

between them should be based on available assumptions and the dimension of covariates in a given

application. A practical advantage of the EWM rule is that the welfare loss convergence rate does

not directly depend on the dimension of X, so when an available credible assumption on the level

set {x : τ(x) ≥ 0} implies a certain class of decision sets with a finite VC-dimension, the EWM

approach offers a practical solution to get around the curse of dimensionality of X. A potential

drawback of using the EWM rule is the risk of misspecification of G, i.e., if Assumption 2.2 (FB) is

not valid, the EWM rule only attains the second-best welfare, whereas the nonparametric plug-in

rule is guaranteed to yield the first-best welfare in the limit. Another aspect of comparison is that

the performance of the EWM rule is stable regardless of whether the underlying data generating

processes, including the marginal distribution of X and the regression equations m1(X) and m0(X),

are smooth. Furthermore, in terms of implementation, the EWM approach does not require the user

to specify smoothing parameters once the class of candidate decision sets G is given. In contrast,

the nonparametric plug-in rule requires smoothing parameters. The statistical performance of

the nonparametric plug-in rule can be sensitive to the choice of smoothing parameters, and the

theoretical results of the convergence rate given in (4.4) assume the user’s ability to choose the

smoothing parameter properly.
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5 Computing EWM Treatment Rules

The Empirical Welfare Maximization estimator Ĝ, as well as hybrid estimators Ĝm−hybrid, and

Ĝe−hybrid, share the same structure

Ĝ ∈ arg max
G∈G

∑
1≤i≤n

gi · 1 {Xi ∈ G} , (5.1)

where each gi is a function of the data, i.e., for the EWM rule ĜEWM , gi = 1
n

(
YiDi
e(Xi)

− Yi(1−Di)
1−e(Xi)

)
,

for the e-hybrid rule Ĝe−hybrid, gi = τ̂ ei/n, and for the m-hybrid rule Ĝm−hybrid, gi = τ̂m(Xi)/n.

The objective function in (5.1) is non-convex and discontinuous in G, thus finding Ĝ could be

computationally challenging. In this section, we propose a set of convenient tools that permit

solving this optimization problem and performing inference using widely available software16 for

practically important classes of sets G defined by linear eligibility scores.

5.1 Single Linear Index Rules

We start with the problem of computing optimal treatment rules that assign treatments based

on a linear index (linear eligibility score; LES, see Examples 2.1 and 2.2). To reduce notational

complexity, we include a constant in the covariate vector X throughout the exposition of this

section. An LES rule can be expressed as 1{XTβ ≥ 0}. This type of treatment rule is commonly

used in practice because it offers a simple way to reduce the dimension of observable characteristics.

Furthermore, it is easy to enforce monotonicity of treatment assignment in specific covariates by

imposing sign restrictions on the components of β.

Let GLES be a collection of half-spaces of the covariate space X , which are the upper contour

sets of linear functions:

GLES =
{
Gβ : β ∈ B ⊂Rdx+1

}
,

Gβ =
{
x : xTβ ≥ 0

}
.

Then the optimization problem (5.1) becomes:

max
β∈B

∑
1≤i≤n

gi · 1
{
XT
i β ≥ 0

}
. (5.2)

This problem is similar to the maximum weighted score problem analyzed in Florios and Skouras

(2008). They observe that the maximum score objective function could be rewritten as a Mixed

16For the empirical illustration we used IBM ILOG CPLEX Optimization Studio, which is available free for academic

use through the IBM Academic Initiative.
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Integer Linear Programming problem with additional binary parameters (z1, ..., zn) that replace

the indicator functions 1
{
XT
i β ≥ 0

}
. The equality zi = 1

{
XT
i β ≥ 0

}
is imposed by a combination

of linear inequality constraints and the restriction that zi’s are binary. The advantage of a MILP

representation is that it is a standard optimization problem that could be solved by multiple

commercial and open-source solvers. The branch-and-cut algorithms implemented in these solvers

are faster than brute force combinatorial optimization.

We propose replacing (5.2) by its equivalent problem:

max
β∈B,

z1,...,zn∈R

∑
1≤i≤n

gi · zi (5.3)

s.t.
XT
i β

Ci
< zi ≤ 1 +

XT
i β

Ci
for i = 1, . . . , n, (5.4)

zi ∈ {0, 1},

where constants Ci should satisfy Ci > supβ∈B |XT
i β|. Then the inequality constraints (5.4) and

the restriction that zi’s are binary imply that zi = 1 if and only if XT
i β ≥ 0. It follows that the

maximum value of (5.4) for each value of β is the same as the value of (5.2).

The problem (5.3) is a linear optimization problem with linear inequality constraints and integer

constraints on zi’s if the set B is defined by linear inequalities that could be passed to any MILP

solver. Florios and Skouras (2008) impose only one side of the inequality constraint (5.4) for each

i. For gi > 0, it is sufficient to impose only the upper bound on zi and for gi < 0 only the lower

bound. The other side of the bound is always satisfied by the solution due to the direction of the

objective function.

Our formulation has significant advantages. Despite a larger number of inequalities, it reduces

the computation time in our applications by a factor of 10-40. Furthermore, it is not sufficient to

impose only one side of the inequalities on zi’s for optimization with a capacity constraint considered

further below.

Inference on the welfare gain V (ĜEWM ) of the empirical welfare maximizing policy requires

computing ν̄∗n = supG∈G
√
n (V ∗n (G)− Vn(G)) in each bootstrap sample. Denoting the bootstrap

weights by {w∗i },
∑n

i=1w
∗
i = n, ν̄∗n could be expressed as

ν̄∗n =
√
n sup
G∈G

∑
1≤i≤n

(w∗i − 1)gi · 1
{
XT
i β ≥ 0

}
(5.5)

The optimization problem for ν̄∗n is analogous to the optimization problem for ĜEWM . Furthermore,

solving it does not require the knowledge of ĜEWM , hence all bootstrap computations could be

performed in parallel with the main EWM problem.
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5.2 Multiple Linear Index Rules

We extend this method to compute treatment rules based on multiple linear scores. These rules

construct J scores that are linear in covariates (or in their functions) and assign an individual to

treatment if each score exceeds a specific threshold. An example of a multiple index treatment rule

with three indices is when an individual is assigned to a job training program if (25 ≤ age ≤ 35)

AND (wage at the previous job < $15). The results are easily extended to treatment rules that apply

if any of the indices exceeds its threshold, for example, (age ≥ 40) OR (length of unemployment ≥
2 years).

Let the treatment assignment set G be defined as an intersection of upper contour sets of J

linear functions:

G =
{
Gβ1,...,βJ , β

1, ..., βJ ∈ B
}
,

Gβ1,...,βJ =
{
x : xTβ1 ≥ 0, ..., xTβJ ≥ 0

}
.

Then the optimization problem (5.1) becomes

max
β1,...,βJ∈B

∑
1≤i≤n

gi · 1{XT
i β

1 ≥ 0, . . . , XT
i β

J ≥ 0}. (5.6)

We propose its equivalent formulation as a MILP problem with auxiliary binary variables{
(z1
i , . . . , z

J
i , z
∗
i ), i = 1, . . . , n

}
:

max
β1,...,βJ∈B,
z1i ,...,z

J
i ,z
∗
i ∈R

∑
1≤i≤n

gi · z∗i (5.7)

s.t.
XT
i β

j

Ci
< zji ≤ 1 +

XT
i β

j

Ci
for 1 ≤ i ≤ n, 1 ≤ j ≤ J, (5.8)

1− J +
∑

1≤j≤J
zji ≤ z

∗
i ≤ J−1

∑
1≤j≤J

zji for 1 ≤ i ≤ n, (5.9)

z1
i , . . . , z

J
i , z
∗
i ∈ {0, 1} for 1 ≤ i ≤ n.

Similarly to the single index problem, the inequalities (5.8) and the constraint that zji ’s are binary

imply together that zji = 1{XT
i β

j ≥ 0}. Linear inequalities (5.9) and the binary constraints imply

together that

z∗i = z1
i · ... · zJi = 1{XT

i β
1 ≥ 0} · ... · 1{XT

i β
J ≥ 0}.

The problem for a collection of sets defined by the union of linear inequalities

Gβ1,...,βJ =
{
X : XTβ1 ≥ 0 or . . . or XTβJ ≥ 0

}
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could also be written as a MILP problem with the inequality constraint (5.9) replaced by

J−1
∑

1≤j≤J
zji ≤ z

∗
i ≤

∑
1≤j≤J

zji for i = 1, . . . , n. (5.10)

5.3 Optimization with a Capacity Constraint

When there is a capacity constraint K on the proportion of population that could be assigned to

treatment 1, Empirical Welfare Maximization problem (4.1) on a set G of half-spaces becomes

max
β∈B

min

{
1,

Kn∑n
i=1 1{XT

i β ≥ 0}

} ∑
1≤i≤n

gi · 1
{
XT
i β ≥ 0

} . (5.11)

This problem cannot be rewritten as a linear optimization problem in the same way as (5.3) because

the factor min
{

1, Kn∑n
i=1 1{XT

i β≥0}

}
varies with β. This factor could take fewer than n different values

and the maximum of (5.11) could be obtained by solving a sequence of optimization problems each

of which holds this factor constant.

For k = bKnc , . . . , n

max
β∈B,

z1,...,zn∈R

min

{
1,
Kn

k

} ∑
1≤i≤n

gi · zi

s.t.
XT
i β

Ci
< zi ≤ 1 +

XT
i β

Ci
for 1 ≤ i ≤ n,

zi ∈ {0, 1},∑
1≤i≤n

zi ≤ k.

The capacity constrained problem with multiple indexes could be solved similarly.

6 Empirical Application

We illustrate the Empirical Welfare Maximization method by applying it to experimental data from

the National Job Training Partnership Act (JTPA) Study. A detailed description of the study and

an assessment of average program effects for five large subgroups of the target population is found

in Bloom et al. (1997). The study randomized whether applicants would be eligible to receive a

mix of training, job-search assistance, and other services provided by the JTPA for a period of

18 months. It collected background information on the applicants prior to random assignment, as

well as administrative and survey data on applicants’ earnings in the 30-month period following
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the assignment. We use the same sample of 11,204 adults (22 years and older) used in the original

evaluation of the program and in the subsequent studies (Bloom et al., 1997, Heckman et al., 1997,

Abadie et al., 2002). The probability of being assigned to the treatment was one third in this

sample.

We use two simple welfare outcome measures for our illustration. The first is the total individual

earnings in the 30-month period following the program assignment. The second outcome measure

is the 30-month earnings minus $1,000 cost for assigning individuals to the treatment, which is

close to the average cost (per assignee) of the additional services provided by the JTPA program,

as estimated by Bloom et al. (1997). The first outcome measure reflects social preferences that put

no weight on the costs of the program incurred by the government. The second measure weighs

participants’ gains and the government’s losses equally.

For all treatment rules, we report the estimated intention-to-treat effect of assigning all indi-

viduals with covariates X ∈ G to the treatment. The take-up of different program services varied

across individuals. We view the policy maker’s problem as a choice of eligibility criteria for the

program and not a choice of the take-up rate (which is decided by individuals); hence, we are not

interested in the treatment effect on compliers. Since we have to compare welfare effects of policies

that assign different proportions of the population to the treatment, we report estimates of the

average effect per population member E[(Y1 − Y0) · 1{X ∈ G}], which is proportional to the total

welfare effect of the treatment rule G.

Pre-treatment variables based on which we consider conditioning the treatment assignment

are the individual’s years of education and earnings in the year prior to the assignment. Both

variables may plausibly affect how much effect the individual gets from the program services. We

do not use race, gender, or age. Though treatment effects may vary with these characteristics,

policy makers usually cannot use them to determine treatment assignment, since this may be easily

perceived as discrimination. Education and earnings are generally verifiable characteristics. This

is an important feature for implementing the proposed treatment assignment because the empirical

welfare estimates are inaccurate for the target population if the individuals could manipulate their

characteristics to obtain the desired treatment.

Table 1 reports the estimated welfare gains of alternative treatment rules. All of them are

estimated by inverse probability weighting. The average effect of the program on 30-month earnings

for the whole study population is $1,269. If treatment cost of $1,000 per assignee is taken into

account, the net average effect of assigning everyone to treatment is estimated to be $269.

We consider two candidate classes of treatment rules for EWM. The first is the class of quadrant
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treatment rules:

GQ ≡
{
{x : s1(education− t1) > 0 & s2(prior earnings− t2) > 0} ,

s1, s2 ∈ {−1, 0, 1}, t1, t2 ∈ R

}
. (6.1)

This class of treatment eligibility rules is easily implementable and is often used in practice. To be

assigned to treatment according to such rules, an individual’s education and pre-program earnings

have to be above (or below) some specific thresholds.

Figure 1 demonstrates the quadrant treatment rules selected by the EWM criterion. The entire

shaded area covers individuals who would be assigned to treatment if it were costless. The dark

shaded area shows the EWM treatment rule that takes into account $1,000 treatment cost. The

size of black dots indicates the number of individuals with different covariate values. Both rules set

a minimum threshold of ten years of education and a maximum threshold on pre-program earnings

($12,200 and $6,500). The estimated proportions of population assigned to treatment under these

rules are 83% and 73%.

Second, we consider the class of linear treatment rules:

GLES ≡ {{x : β0 + β1 · education + β2 · prior earnings > 0} , β0, β1, β2 ∈ R} . (6.2)

Figure 2 displays the treatment rules from this class chosen according to the EWM criterion. They

are nearly identical for no treatment cost and for a cost of $1,000, assigning 82% of the population

to treatment. At higher treatment costs, EWM selects a much smaller subset of the population.

Linear treatment rules that maximize empirical welfare are markedly different from the plug-in

rule derived from linear regressions, which are shown in Figure 3. Without treatment costs, linear

regression predicts positive treatment effects for the entire range of feasible covariate values. With

a cost of $1,000, the regression predicts positive net treatment effect for about 82% of individuals.

Noticeably, the direction of the treatment assignment differs between regression plug-in and linear

EWM rules. The regression puts a positive coefficient on prior earnings, whereas the equation

characterizing linear EWM rule puts a negative coefficient on them. If the linear regression is

correctly specified, the regression plug-in and EWM rules have identical large sample limits. If the

regression is misspecified, however, only linear EWM treatment rules converge with sample size to

the welfare-maximizing limit. The welfare yielded by regression plug-in rules converges to a lower

limit with sample size.

Figure 4 shows plug-in treatment rules based on Kernel regressions of treatment and control

outcomes on the covariates. The bandwidths were chosen by Silverman’s rule of thumb. The class

of nonparametric plug-in rules is richer than the quadrant or the linear class of treatment rules, and
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it may obtain higher welfare in large samples. It is clear from the figure, however, that this class of

patchy decision rules may be difficult to implement in public policy, where clear and transparent

treatment rules are required.

7 Conclusion

The EWM approach proposed in this paper directly maximizes a sample analog of the welfare

criterion of a utilitarian policy maker. This welfare-function-based statistical procedure for treat-

ment choice differs fundamentally from parametric and nonparametric plug-in approaches, which

do not integrate statistical inference and the decision problem at hand. We investigated the sta-

tistical performances of the EWM rule in terms of the uniform convergence rate of the welfare

loss and demonstrated that the EWM rule attains minimax optimal rates over various classes of

feasible data distributions. The EWM approach offers a useful framework for the individualized

policy assignment problems, as the EWM approach can easily accommodate the constraints that

policy makers commonly face in reality. We also presented methods to compute the EWM rule for

many practically important classes of treatment assignment rules and demonstrated them using

experimental data from the JTPA program.

Several extensions and open questions remain to be answered. First, this paper assumed that

the class of candidate policies G is given exogenously to the policy maker. We did not consider

how to select the class G when the policy maker is free to do so. Second, we ruled out the case in

which the data are subject to selection on unobservables. With self-selection into the treatment,

the welfare criterion could be only set-identified, and it is not clear how to extend the EWM idea

to this case. Third, we restricted our analysis to the utilitarian social welfare criterion, but in

some contexts, policy makers have a non-utilitarian social welfare criterion. We leave these issues

for future research.
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Table 1: Estimated welfare gain of alternative treatment assignment rules that condition on edu-

cation and pre-program earnings.

Treatment rule: Share of population Empirical welfare gain Lower 90% CI

assigned to treatment per population member (bootstrap)

Outcome variable: 30-month post-program earnings. No treatment cost.

Average treatment effect: 1 $1,269 $719

EWM quadrant treatment rule 0.827 $1,614 $787

EWM linear treatment rule 0.820 $1,657 $765

Linear regression plug-in rule 1 $1,269

Nonparametric plug-in rule 0.816 $1,924

With $1000 expected cost per treatment assignment

Average treatment effect: 1 $269 -$281

EWM quadrant treatment rule 0.732 $797 -$20

EWM linear treatment rule 0.819 $837 -$46

Linear regression plug-in rule 0.824 $760

Nonparametric plug-in rule 0.675 $1,164
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Figure 1: Empirical Welfare-Maximizing treatment rules from the quadrant class conditioning on

years of education and pre-program earnings
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Figure 2: Empirical Welfare-Maximizing treatment rules from the linear class conditioning on years

of education and pre-program earnings
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Figure 3: Parametric plug-in treatment rules based on the linear regressions of treatment outcomes

on years of education and pre-program earnings
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Figure 4: Nonparametric plug-in treatment rules based on the kernel regressions of treatment

outcomes on years of education and pre-program earnings
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A Appendix: Lemmas and Proofs

A.1 Notations and Basic Lemmas

Let Zi = (Yi, Di, Xi) ∈ Z. The subgraph of a real-valued function f : Z 7→ R is the set

SG(f) ≡ {(z, t) ∈ Z × R : 0 ≤ t ≤ f(z) or f(z) ≤ t ≤ 0}.

The following lemma establishes a link between the VC-dimension of a class of subsets in the

covariate space X and the VC-dimension of a class of subgraphs of functions on Z =R×{0, 1}×X
(their subgraphs will be in Z × R).

Lemma A.1. Let G be a VC-class of subsets of X with VC-dimension v <∞. Let g and h be two

given functions from Z to R. Then the set of functions from Z to R

F = {fG(z) = g(z) · 1 {x ∈ G}+ h(z)1 {x /∈ G} : G ∈ G}

is a VC-subgraph class of functions with VC-dimension less than or equal to v.

Proof. Let zi = (yi, di, xi). By the assumption, no set of (v + 1) points in X could be shattered

by G. Take an arbitrary set of (v + 1) points in Z × R, A = {(z1, t1), ..., (zv+1, tv+1)}. Denote the

collection of subgraphs of F by SG(F) ≡ {SG(fG), G ∈ G}. We want to show that SG(F) doesn’t

shatter A.

If for some i ∈ {1, . . . , (v + 1)}, (zi, ti) ∈ SG(g) ∩ SG(h) then SG(F) cannot pick out all of

the subsets of A because the i-th point is included in any S ∈ SG(F). Similarly, if for some

i ∈ {1, . . . , (v + 1)}, (zi, ti) ∈ SG(g)c∩SG(h)c, then point i cannot be included in any S ∈ SG(F).

The remaining case is that, for each i, either (zi, ti) ∈ SG(g)∩SG(h)c or (zi, ti) ∈ SG(g)c∩SG(h)

holds. Indicate the former case by δi = 0 and the latter case by δi = 1. The points with δi = 0

could be picked by SG(fG) if and only if xi /∈ G. The points with δi = 1 could be picked if and

only if xi ∈ G. Given that G is a VC-class with VC-dimension v, there exists a subset X0 of

{x1, . . . , xv+1} such that X0 6= ({x1, . . . , xv+1} ∩ G) for any G ∈ G. Then there could be no set

S ∈ SG(F) that picks out the set (possibly empty)

{(zi, ti) : (xi ∈ X0 and δi = 1) or (xi /∈ X0 and δi = 0)}, (A.1)

because this set of points could only be picked out by SG(fG) if ({x1, . . . , xv+1}∩G) = X0. Hence,

F is a VC subgraph class of functions with VC-dimension less than or equal to v.
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In addition to the notations introduced in the main text, the following notations are used

throughout the appendix. The empirical probability distribution based on an iid size n sample of

Zi = (Yi, Di, Xi) is denoted by Pn. L2(P ) metric for f is denoted by ‖f‖L2(P ) =
[∫
Z f

2dP
]1/2

, and

the sup-metric of f is denoted by ‖f‖∞. Positive constants that only depend on the class of data

generating processes, not on the sample size nor the VC-dimension, are denoted by c1, c2, c3, . . . .

The universal constants are denoted by the capital letter C1, C2, . . . .

In what follows, we present lemmas that will be used in the proofs of Theorems 2.1 and 2.3.

Lemmas A.2 and A.3 are classical inequalities whose proofs can be found, for instance, in Lugosi

(2002).

Lemma A.2. Hoeffding’s Lemma: let X be a random variable with EX = 0, a ≤ X ≤ b. Then,

for s > 0,

E
(
esX
)
≤ es2(b−a)2/8.

Lemma A.3. Let λ > 0, n ≥ 2, and let Y1, . . . , Yn be real-valued random variables such that for

all s > 0 and 1 ≤ i ≤ n, E(esYi) ≤ es2λ2/2 holds. Then,

(i) E

(
max
i≤n

Yi

)
≤ λ

√
2 lnn,

(ii) E(max
i≤n
|Yi|) ≤ λ

√
2 ln (2n).

The next two lemmas give maximal inequalities that bound the mean of a supremum of centered

empirical processes indexed by a VC-subgraph class of functions. The first maximal inequality

(Lemma A.4) is standard in the empirical process literature, and it yields our Theorem 2.1 as a

corollary. Though its proof can be found elsewhere (e.g., Dudley (1999), van der Vaart and Wellner

(1996)), we present it here for the sake of completeness and for later reference in the proof of Lemma

A.5. The second maximal inequality (Lemma A.5) concerns the class of functions whose diameter

is constrained by the L2(P )-norm. Lemma A.5 will be used in the proofs of Theorem 2.3. A lemma

similar to our Lemma A.5 appears in Massart and Nédélec (2006, Lemma A.3).

Lemma A.4. Let F be a class of uniformly bounded functions, i.e., there exists F̄ <∞ such that

‖f‖∞ ≤ F̄ for all f ∈ F . Assume that F is a VC-subgraph class with VC-dimension v <∞. Then,

there is a universal constant C1 such that

EPn

[
sup
f∈F
|En (f)− EP (f)|

]
≤ C1F̄

√
v

n

holds for all n ≥ 1.
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Proof. Introduce (Z ′1, . . . , Z
′
n), an independent copy of (Z1, . . . , Zn) ∼ Pn. We denote the proba-

bility law of (Z ′1, . . . , Z
′
n) by Pn

′
, its expectation by EPn′ (·), and the sample average with respect

to (Z ′1, . . . , Z
′
n) by E′n (·). Define iid Rademacher variables σ1, . . . , σn such that Pr(σ1 = −1) =

Pr(σ1 = 1) = 1/2 and they are independent of Z1, Z
′
1, . . . , Zn, Z

′
n. Then,

EPn

[
sup
f∈F
|En (f)− EP (f)|

]
= EPn

[
sup
f∈F

∣∣∣E
Pn
′
[
En (f)− E′n(f)|Z1, . . . , Zn

]∣∣∣]

≤ EPn

[
sup
f∈F

E
Pn
′
[∣∣En (f)− E′n(f)

∣∣ |Z1, . . . , Zn
]]

( ∵ Jensen’s inequality)

≤ E
Pn,Pn

′

[
sup
f∈F

∣∣En (f)− E′n(f)
∣∣]

=
1

n
E
Pn,Pn

′

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Zi)− f(Z ′i)

)∣∣∣∣∣
}

=
1

n
E
Pn,Pn

′
,σ

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

σi
(
f(Zi)− f(Z ′i)

)∣∣∣∣∣
}

( ∵ f(Zi)− f(Z ′i) ∼ σi
(
f(Zi)− f(Z ′i)

)
for all i )

≤ 1

n
E
Pn,Pn

′
,σ

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(Z ′i)

∣∣∣∣∣
}

=
2

n
EPn,σ

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣
]

=
2

n
EPn

{
Eσ

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣ |Z1, . . . , Zn

]}
. (A.2)

Fix Z1, . . . , Zn, and define f ≡ (f(Z1), . . . , f(Zn)) = (f1, . . . , fn), which is a vector of length n

corresponding to the value of f ∈ F evaluated at each of (Z1, . . . , Zn). Let F = {f : f ∈ F} ⊂ Rn,

which is a bounded set in Rn with radius F̄ = M/κ, since F is the set of uniformly bounded

functions with |f (·)| ≤M/κ. Introduce the Euclidean norm to F,

ρ(f , f ′) =

(
1

n

n∑
i=1

(
fi − f ′i

)2)1/2

.

Let f (0) = (0, . . . , 0), and f∗ = (f∗1 , . . . , f
∗
n) be a random element in F maximizing |

∑n
i=1 σifi|.

Let B0 =
{
f (0)
}

and construct
{
Bk : k = 1, . . . , K̄

}
a sequence of covers of F, such that Bk ⊂ F

is a minimal cover with radius 2−kF̄ and BK̄ = F. Note that such K̄ < ∞ exists at given n
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and (Z1, . . . , Zn). Define also
{
f (k) ∈ Bk : k = 1, . . . , K̄

}
be a random sequence such that f (k) ∈

arg minf∈Bk ρ (f , f∗). Since Bk is a cover with radius 2−kF̄ , ρ
(
f (k), f∗

)
≤ 2−kF̄ holds. In addition,

we have

ρ
(
f (k−1), f (k)

)
≤ ρ

(
f (k), f∗

)
+ ρ

(
f (k−1), f∗

)
≤ 3 · 2−kF̄ .

By a telescope sum,

n∑
i=1

σif
∗
i =

n∑
i=1

σif
(0)
i +

K̄∑
k=1

n∑
i=1

σi

(
f

(k)
i − f (k−1)

i

)

=

K̄∑
k=1

n∑
i=1

σi

(
f

(k)
i − f (k−1)

i

)
.

We hence obtain

Eσ

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣ ≤
K̄∑
k=1

Eσ

∣∣∣∣∣
n∑
i=1

σi

(
f

(k)
i − f (k−1)

i

)∣∣∣∣∣
≤

K̄∑
k=1

Eσ max
f∈Bk,g∈Bk−1:ρ(f ,g)≤3·2−kF̄

∣∣∣∣∣
n∑
i=1

σi (fi − gi)

∣∣∣∣∣ . (A.3)

We apply Lemma A.2 to obtain

Eσ

(
es
∑n
i=1 σi(fi−gi)

)
=

n∏
i=1

Eσi

[
esσi(fi−gi)

]
≤

n∏
i=1

es
2(fi−gi)2/2

= exp
(
s2nρ2(f ,g)/2

)
≤ exp

(
s2n

(
3 · 2−kF̄

)2
/2

)
.

An application of Lemma A.3 (ii) with λ = 3
√
n · 2−kF̄ and n = |Bk| |Bk−1| ≤ |Bk|2 then yields

Eσ max
f∈Bk,g∈Bk−1:ρ(f ,g)≤3·2−kF̄

∣∣∣∣∣
n∑
i=1

σi (fi − gi)

∣∣∣∣∣ ≤ 3
√
n · 2−kF̄

√
2 ln 2 |Bk|2

= 3
√
n · 2−kF̄

√
2 ln 2N(2−kF̄ ,F,ρ)2

= 6
√
n · 2−kF̄

√
ln 21/2N(2−kF̄ ,F,ρ),
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where N(r,F,ρ) is the covering number of F with radius r in terms of norm ρ. Accordingly,

Eσ

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣ ≤
K∑
k=1

6
√
n · 2−kF̄

√
ln 21/2N(2−kF̄ ,F,ρ)

≤ 12
√
n
∞∑
k=1

2−(k+1)F̄
√

ln 21/2N(2−kF̄ ,F,ρ)

≤ 12
√
n

∫ 1

0
εF̄
√

ln 21/2N(εF̄ ,F,ρ)dε, (A.4)

where the last line follows from the fact that N(εF̄ ,F,ρ) is decreasing in ε.

To bound (A.4) from above, we apply a uniform entropy bound for the covering number. In

Theorem 2.6.7 of van der Vaart and Wellner (1996), by setting r = 2 and Q at the empirical

probability measure of (Z1, . . . , Zn), we have,

N(εF̄ ,F, ρ) ≤ K(v + 1) (16e)(v+1)

(
1

ε

)2v

, (A.5)

where K > 0 is a universal constant. Plugging this into (A.4) leads to

Eσ

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣ ≤ 12F̄
√
n

∫ 1

0
ε
√

ln(21/2K) + ln(v + 1) + (v + 1) ln(16e)− 2v ln εdε

≤ 12F̄
√
nv

∫ 1

0
ε
√

ln(21/2K) + ln 2 + 2 ln(16e)− 2 ln εdε

= C ′F̄
√
nv, (A.6)

where C ′ = 12
∫ 1

0 ε
√

ln(21/2K) + ln 2 + 2 ln(16e)− 2 ln εdε < ∞. Combining (A.6) with (A.2) and

setting C1 = 2C ′ leads to the conclusion.

Lemma A.5. Let F be a class of uniformly bounded functions with ‖f‖∞ ≤ F̄ < ∞ for all

f ∈ F . Assume that F is a VC-subgraph class with VC-dimension v < ∞. Assume further that

supf∈F ‖f‖L2(P ) ≤ δ. Then, there exists a positive universal constant C2 such that

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ C2δF̄

√
v

n

holds for all n ≥ C1F̄
2v/δ2, where C1 is the universal constant defined in Lemma A.4.

Proof. By the same symmetrization argument and the same use of Rademacher variables as in the

proof of Lemma A.4, we have

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ 2

n
EPn

{
Eσ

[
sup
f∈F

n∑
i=1

σif(Zi)|Z1, . . . , Zn

]}
. (A.7)
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Fix the values of Z1, . . . , Zn, and define f , f (0), F, and norm ρ(f , f ′) as in the proof of Lemma A.4.

Let f∗ be a maximizer of
∑n

i=1 σif(Zi) in F and let δn = supf∈F ρ(f (0), f) ≤ F̄ . Let B0 =
{
f (0)
}

and construct
{
Bk : k = 1, . . . , K̄

}
a sequence of covers of F, such that Bk ⊂ F is a minimal cover

with radius 2−kδn and BK̄ = F. We define
{
f (k) ∈ Bk : k = 1, . . . , K̄

}
to be a random sequence

such that f (k) ∈ arg minf∈Bk ρ (f , f∗). By applying the chaining argument in the proof of Lemma

A.4, Lemma A.3 (i), and the uniform bound of the covering number (A.5), we obtain

Eσ

n∑
i=1

σif
∗
i ≤ 12

√
n

∫ 1

0
εδn
√

logN(εδn,F,ρ)dε,

≤ C ′δn
√
nv.

for the universal constant C ′ defined in the proof of Lemma A.4. Hence, from (A.7), we have

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ C1

√
v

n
EPn (δn)

= C1

√
v

n
EPn

[sup
f∈F

En
(
f2
)]1/2


≤ C1

√
v

n

[
EPn

(
sup
f∈F

En
(
f2
))]1/2

. (A.8)

Note that En
(
f2
)

is bounded by

En
(
f2
)

= En
(
f2 − EP

(
f2
))

+ EP (f2)

= En

[(
f − ‖f‖L2(P )

)(
f + ‖f‖L2(P )

)]
+ ‖f‖2L2(P )

≤ 2F̄En

[
f − ‖f‖L2(P )

]
+ ‖f‖2L2(P )

∵ ‖f‖L2(P ) ≥ EP (f) by the Cauchy-Schwartz inequality

≤ 2F̄En [f − EP (f)] + ‖f‖2L2(P ) .

Combining this inequality with (A.8) yields

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ C1

√
v

n

√√√√2F̄EPn

[
sup
f∈F

(En (f)− EP (f))

]
+ δ2.

Solving this inequality for EPn
[
supf∈F (En (f)− EP (f))

]
leads to

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ F̄C1

√
v

n

√ v

n
+

√
v

n
+

δ2

F̄ 2C1

 .
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For v
n ≤

δ2

F̄ 2C1
, that is, n ≥ C1F̄ 2v

δ2
, the upper bound can be further bounded by (1+

√
2)
√
C1F̄ δ

√
v
n ,

so the conclusion of the lemma follows with C2 = (1 +
√

2)
√
C1.

The next lemma is a version of Bousquet’s concentration inequality (Bousquet, 2002).

Lemma A.6. Let F be a countable family of measurable functions, such that supf∈F EP (f2) ≤ δ2

and supf∈F ‖f‖∞ ≤ F̄ for some constants δ2 and F̄ . Let S = supf∈F (En (f)− EP (f)). Then, for

every positive t,

Pn

S − EPn (S) ≥

√
2
[
δ2 + 4F̄EPn (S)

]
t

n
+

2F̄ t

3n

 ≤ exp (−t) .

A.2 Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Define

f(Zi;G) =

[
YiDi

e(Xi)
· 1 {Xi ∈ G}+

Yi(1−Di)

1− e(Xi)
· 1 {Xi /∈ G}

]
,

and the class of functions on Z

F = {f(·;G) : G ∈ G} .

With these notations, we can express inequality (2.2) as

W ∗G −W (ĜEWM ) ≤ 2 sup
f∈F
|En(f)− EP (f)| . (A.9)

Note that Assumption 2.1 (BO) and (SO) imply that F has uniform envelope F̄ = M/κ. Also, by

Assumption 2.1 (VC) and Lemma A.1, F is a VC-subgraph class of functions with VC-dimension

at most v. We apply Lemma A.4 to (A.9) to obtain

EPn
[
W ∗G −W (ĜEWM )

]
≤ C1

M

κ

√
v

n
.

Since this upper bound does not depend on P ∈ P(M,κ), the upper bound is uniform over P(M,κ).
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Proof of Theorem 2.2. In obtaining the rate lower bound, we normalize the support of outcomes

to Y1i, Y0i ∈
[
−1

2 ,
1
2

]
. That is, we focus on bounding supP∈P(1,κ)EPn

[
W ∗G −W (Gn)

]
. The lower

bound of the original welfare loss supP∈P(M,κ)EPn
[
W ∗G −W (Gn)

]
is obtained by multiplying by

M the lower bound of supP∈P(1,κ)EPn
[
W ∗G −W (Gn)

]
.

We consider a suitable subclass P∗ ⊂ P (1, κ), for which the worst case welfare loss can be

bounded from below by a distribution-free term that converges at rate n−1/2. The construction of

P∗ proceeds as follows. First, let x1, . . . , xv ∈ X be v points that are shattered by G. We constrain

the marginal distribution of X to being supported only on (x1, . . . , xv). We put mass p at xi, i < v,

and mass 1−(v−1)p at xv. Thus-constructed marginal distribution of X is common in P∗. Let the

distribution of treatment indicator D be independent of (Y1, Y0, X), and D follows the Bernoulli

distribution with Pr(D = 1) = 1/2. Let b = (b1, . . . , bv−1) ∈ {0, 1}v−1 be a bit vector used to

index a member of P∗, i.e., P∗ consists of finite number of DGPs. For each j = 1, . . . , (v − 1), and

depending on b, construct the following conditional distribution of Y1 given X = xj ; if bj = 1,

Y1 =

{
1
2 with prob. 1

2 + γ,

−1
2 with prob. 1

2 − γ,
(A.10)

and, if bj = 0,

Y1 =

{
1
2 with prob. 1

2 − γ,
−1

2 with prob. 1
2 + γ,

(A.11)

where γ ∈
[
0, 1

2

]
is chosen properly in a later step of the proof. For j = v, the conditional

distribution of Y1 given X = xv is degenerate at Y1 = 0. As for Y0’s conditional distribution, we

consider the degenerate distribution at Y0 = 0 at every X = xj , j = 1, . . . , v. That is, when bj = 1,

τ(xj) = γ, and when bj = 0, τ(xj) = −γ. Each b ∈ {0, 1}v−1 induces a unique joint distribution of

(Y1, Y0, D,X) ∼ Pb and, clearly, Pb ∈ P(1, κ). We accordingly define P∗ =
{
Pb : b ∈ {0, 1}v−1

}
.

With knowledge of Pb ∈ P∗, the optimal treatment assignment rule is

G∗b = {xj : j < v, bj = 1} ,

which is feasible G∗b ∈ G by the construction of the support points of X. The maximized social

welfare is

W (G∗b) = pγ

v−1∑
j=1

bj

 .
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Let Ĝ be an arbitrary treatment choice rule as a function of (Z1, . . . , Zn), and b̂ ∈{0, 1}(v−1) be a

binary vector whose j-th element is b̂j = 1
{
xj ∈ Ĝ

}
. Consider π (b) a prior distribution for b such

that b1, . . . , bv−1 are iid and b1 ∼ Ber(1/2). The welfare loss satisfies the following inequalities,

sup
P∈P(1,κ)

EPn
[
W ∗G −W (Ĝ)

]
≥ sup

Pb∈P∗
EPnb

[
W (G∗b)−W (Ĝ)

]
≥

∫
b
EPnb

[
W (G∗b)−W (Ĝ)

]
dπ (b)

= γ

∫
b
EPnb

[
PX

(
G∗b4Ĝ

)]
dπ (b)

= γ

∫
b

∫
Z1,...,Zn

PX

({
b(X) 6= b̂(X)

})
dPn (Z1, . . . , Zn|b) dπ (b)

≥ inf
Gn

γ

∫
b

∫
Z1,...,Zn

PX

({
b(X) 6= b̂(X)

})
dPn (Z1, . . . , Zn|b) dπ (b)

where each b(X) and b̂ (X) is an element of b and b̂ such that b(xj) = bj and b̂(xj) = b̂j . We define

b(xv) = b̂ (xv) = 0. Note that the last expression can be seen as the minimized Bayes risk with

the loss function corresponding to the classification error for predicting binary unknown random

variable b(X). Hence, the minimizer of the Bayes risk is attained by the Bayes classifier,

Ĝ∗ =

{
xj : π (bj = 1|Z1, . . . , Zn) ≥ 1

2
, j < v

}
,

where π (bj |Z1, . . . , Zn) is the posterior of bj . The minimized Bayes risk is given by

γ

∫
Z1,...,Zn

EX [min {π (b(X) = 1|Z1, . . . , Zn) , 1− π (b(X) = 1|Z1, . . . , Zn)}] dP̃n

= γ

∫
Z1,...,Zn

v−1∑
j=1

p [min {π (bj = 1|Z1, . . . , Zn) , 1− π(bj = 1|Z1, . . . , Zn)}] dP̃n, (A.12)

where P̃n is the marginal likelihood of {(Y1,i, Y0,i, Di, Xi) : i = 1, . . . , n} corresponding to prior

π (b). For each j = 1, . . . , (v − 1) , let

Kj = # {i : Xi = xj} ,

k+
j = #

{
i : Xi = xj , YiDi =

1

2

}
,

k−j = #

{
i : Xi = xj , YiDi = −1

2

}
.
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The posterior for bj = 1 can be written as

π (bj = 1|Z1, . . . , Zn) =


1
2 if # {i : Xi = xj , Di = 1} = 0,

( 1
2

+γ)
k+
j ( 1

2
−γ)

k−
j

( 1
2

+γ)
k+
j ( 1

2
−γ)

k−
j +( 1

2
+γ)

k−
j ( 1

2
−γ)

k+
j

otherwise.

Hence,

min {π (bj = 1|Z1, . . . , Zn) , 1− π(bj = 1|Z1, . . . , Zn)}

=

min

{(
1
2 + γ

)k+j (1
2 − γ

)k−j , (1
2 + γ

)k−j (1
2 − γ

)k+j }
(

1
2 + γ

)k+j (1
2 − γ

)k−j +
(

1
2 + γ

)k−j (1
2 − γ

)k+j
=

min

{
1,
( 1

2
+γ

1
2
−γ

)k+j −k−j }

1 +
( 1

2
+γ

1
2
−γ

)k+j −k−j
=

1

1 + a|k
+
j −k

−
j |

, where a =
1 + 2γ

1− 2γ
> 1. (A.13)

Since k+
j − k

−
j =

∑
i:Xi=xj

2YiDi, plugging (A.13) into (A.12) yields

γ

v−1∑
j=1

pEP̃n

 1

1 + a

∣∣∣∑i:Xi=xj
2YiDi

∣∣∣


≥ γ

2

v−1∑
j=1

pEP̃n

[
1

a

∣∣∣∑i:Xi=xj
2YiDi

∣∣∣
]

≥ γ

2
p
v−1∑
i=1

a
−EP̃n

∣∣∣∑i:Xi=xj
2YiDi

∣∣∣
,

where EP̃n (·) is the expectation with respect to the marginal likelihood of {(Y1,i, Y0,i, Di, Xi) ,

i = 1, . . . , n}. The second line follows by a > 1, and the third line follows by Jensen’s inequality.

Given our prior specification for b, the marginal distribution of Y1,i is Pr(Y1,i = 1/2) = Pr(Y1,i =

−1/2) = 1/2, so

EP̃n

∣∣∣∣∣∣
∑

i:Xi=xj

2YiDi

∣∣∣∣∣∣ = EP̃n

∣∣∣∣∣∣
∑

i=1:Xi=xj ,Di=1

2Y1,i

∣∣∣∣∣∣
=

n∑
k=0

(
n

k

)(p
2

)k (
1− p

2

)n−k
E

∣∣∣∣B(k,
1

2
)− k

2

∣∣∣∣
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holds, where B(k, 1
2) is a random variable following the binomial distribution with parameters k

and 1
2 . By noting

E

∣∣∣∣B(k,
1

2
)− k

2

∣∣∣∣ ≤
√
E

(
B(k,

1

2
)− k

2

)2

( ∵ Cauchy-Schwartz inequality)

=

√
k

4
,

we obtain

EP̃n

∣∣∣∣∣∣
∑

i:Xi=xj

2YiDi

∣∣∣∣∣∣ ≤
n∑
k=0

(
n

k

)(p
2

)k (
1− p

2

)n−k√k

4

= E

√
B
(
n, p2

)
4

≤
√
np

8
. ( ∵ Jensen’s inequality).

Hence, the Bayes risk is bounded from below by

γ

2
p(v − 1)a−

√
np
8

≥ γ

2
p(v − 1)e−(a−1)

√
np
8 ( ∵ 1 + x ≤ ex ∀x)

=
pγ

2
(v − 1)e

− 4γ
1−2γ

√
np
8 . (A.14)

This lower bound of the Bayes risk has the slowest convergence rate when γ is set to be proportional

to n−1/2. Specifically, let γ =
√

v−1
n . Since (v − 1)−1 ≥ p ≥ v−1, we have

pγ

2
(v − 1)e

− 4γ
1−2γ

√
np
8 ≥ 1

2

√
v − 1

n

(
1− 1

v

)
exp

{
−
√

2

1− 2γ

}

≥ 1

4

√
v − 1

n
exp

{
−2
√

2
}

, if 1− 2γ ≥ 1

2
.

The condition 1− 2γ ≥ 1
2 is equivalent to n ≥ 16(v − 1). This completes the proof.

A.3 Proofs of Theorems 2.3 and 2.4

In proving Theorem 2.3, it is convenient to work with the normalized welfare difference,

d(G,G′) =
κ

M

[
W (G)−W (G′)

]
,
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and its sample analogue

dn(G,G′) =
κ

M

[
Wn(G)−Wn(G′)

]
. (A.15)

By Assumption 2.1 (BO) and (SO), both d(G,G′) and dn(G,G′) are bounded in [−1, 1], and the

normalized welfare difference relates to the original welfare loss of decision set G as

d(G∗FB, G) =
κ

M
[W (G∗FB)−W (G)] ∈ [0, 1] . (A.16)

Hence, the welfare loss upper bound of ĜEWM can be obtained by multiplying M/κ by the upper

bound of d(G∗FB, ĜEWM ).

Note that d(G∗FB, G) can be bounded from above by PX(G∗FB4G), since

d(G∗FB, G) =
κ

M

∫
G∗FB4G

|τ(X)| dPX

≤ κPX(G∗FB4G)

≤ PX(G∗FB4G). (A.17)

On the other hand, with Assumption 2.2 (MA) imposed, PX(G∗FB4G) can be bounded from above

by a function of d(G∗FB, G), as the next lemma shows. We borrow this lemma from Tsybakov

(2004).

Lemma A.7. Suppose Assumption 2.2 (MA) holds with margin coefficient α ∈ (0,∞). Then

PX(G∗FB4G) ≤ c1(M,κ, η, α)d(G∗FB, G)
α

1+α

holds for all G ∈ G, where c1(M,κ, η, α) =
(
M
κηα

) α
1+α

(1 + α).

Proof. Let A = {x : |τ(x)| > t } and consider the following inequalities,

W (G∗FB)−W (G) =

∫
G∗FB4G

|τ(x)| dPX

≥
∫

(G∗FB4G)
|τ(X)| 1 {x ∈ A} dPX

≥ tPX ((G∗FB4G) ∩A)

≥ t [PX (G∗FB4G)− PX(Ac)]

≥ t

[
PX (G∗FB4G)−

(
t

η

)α]
,
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where the final line uses the margin condition. The right-hand side is maximized at t = η(1 +

α)−
1
α [PX (G∗FB4G)]

1
α ≤ η, so it holds

W (G∗FB)−W (G) ≥ ηα
(

1

1 + α

) 1+α
α

[PX (G∗FB4G)]
1+α
α .

This, in turn, implies

PX (G∗FB4G) ≤
(
M

κηα

) α
1+α

(1 + α)d(G∗FB, G)
α

1+α .

Proof of Theorem 2.3. Let a =
√
ktεn with k ≥ 1, t ≥ 1, and εn > 0, where t ≥ 1 is arbitrary, k is

a constant that we choose later, and εn is a sequence indexed by sample size n whose proper choice

will be discussed in a later step. The normalized welfare loss can be bounded by

d(G∗FB, ĜEWM ) ≤ d(G∗FB, ĜEWM )− dn
(
G∗FB, ĜEWM

)
,

as dn

(
G∗FB, ĜEWM

)
≤ 0 by Assumption 2.2 (FB). Define a class of functions induced by G ∈ G.

H ≡ {h(Zi;G) : G ∈ G} ,

h(Zi;G) ≡ κ

M

(
YiDi

e(Xi)
− Yi(1−Di)

1− e(Xi)

)
[1 {Xi ∈ G} − 1 {Xi ∈ G∗FB}] .

By Assumption 2.1 (VC) and Lemma A.1, H is a VC-subgraph-class with VC-dimension at most

v < ∞ with envelope H̄ = 1. Using h(Zi;G), we can write d(G∗FB, G) = −EP (h(Zi;G)). Since

d(G∗FB, G) ≥ 0 for all G ∈ G, it holds −EP (h) ≥ 0 for all h ∈ H.

Since we have

d(G∗FB, ĜEWM )− dn
(
G∗FB, ĜEWM

)
= En

(
h(Zi; ĜEWM )

)
− EP

(
h(Zi; ĜEWM )

)
and dn

(
G∗FB, ĜEWM

)
≤ 0, the normalized welfare loss can be bounded by

d(G∗FB, ĜEWM ) ≤ En

(
h(Zi; ĜEWM )

)
− EP

(
h(Zi; ĜEWM )

)
≤ Va

[
d(G∗FB, ĜEWM ) + a2

]
,

where

Va = sup
h∈H

{
En (h)− EP (h)

−EP (h) + a2

}
= sup

h∈H

{
En

(
h

−EP (h) + a2

)
− EP

(
h

−EP (h) + a2

)}
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On event Va <
1
2 , d(G∗FB, ĜEWM ) ≤ a2 holds, so this implies

Pn
(
d(G∗FB, ĜEWM ) ≥ a2

)
≤ Pn

(
Va ≥

1

2

)
. (A.18)

In what follows, our aim is to construct an exponential inequality for Pn
(
Va ≥ 1

2

)
involving only

t, and we make use of such exponential tail bound to bound EPn
(
d(G∗FB, ĜEWM )

)
.

To apply the Bousquet’s inequality (Lemma A.6) to Va, note first that,

EP

((
h

−EP (h) + a2

)2
)
≤

PX(G∗FB4G)

(EP (h) + a2)2

≤ c1
[−EP (h)]

α
1+α

(−EP (h) + a2)2

∵ by Lemma A.7 and d(G∗FB, G) = −EP (h(Zi;G)) )

≤ c1 sup
ε≥0

ε
2α
1+α

(ε2 + a2)2

≤ c1
1

a2
sup
ε≥0

ε
2α
1+α

ε2 + a2

≤ c1
1

a2
sup
ε≥0

(
ε

α
1+α

ε ∨ a

)2

≤ c1
1

a4
a

2α
1+α ,

where c1 is a constant that depends only on (M,κ, η, α) as defined in Lemma A.7. We, on the other

hand, have

sup
h∈H

∣∣∣∣sup
Z

h

−EP (h) + a2

∣∣∣∣ ≤ 1

a2
.

Hence, Lemma A.6 gives, with probability larger than 1− exp(−t),

Va ≤ EPn (Va) +

√√√√[c1a
2α
1+α
−2 + 4EPn(Va)

]
t

na2
+

2t

3na2
. (A.19)

Next, we derive an upper bound of EPn(Va) by applying the maximal inequality of Lemma A.5.

Let r > 1 be arbitrary and consider partitioningH byH0,H1, . . . , whereH0 =
{
h ∈ H : −EP (h) ≤ a2

}
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and Hj =
{
h ∈ H : r2(j−1)a2 < −EP (h) ≤ r2ja2

}
, j = 1, 2, . . . . Then,

Va ≤ sup
h∈H0

{
En (h)− EP (h)

−EP (h) + a2

}
+
∑
j≥1

sup
h∈Hj

{
En (h)− EP (h)

−EP (h) + a2

}

≤ 1

a2

 sup
h∈H0

(En (h)− EP (h)) +
∑
j≥1

(1 + r2(j−1))−1 sup
h∈Hj

(En (h)− EP (h))


≤ 1

a2

[
sup−EP (h)≤a2 (En (h)− EP (h))

+
∑

j≥1(1 + r2(j−1))−1 sup−EP (h)≤r2ja2 (En (h)− EP (h))

]
. (A.20)

Since it holds ‖h‖2L2(P ) ≤ PX(G∗FB4G) ≤ c1(M,κ, η, α) [−EP (h)]
α

1+α , where the latter inequality

follows from Lemma A.7, −EP (h) ≤ r2ja2 implies ‖h‖L2(P ) ≤ c
1/2
1 r

α
1+α j

a
α

1+α . Hence, (A.20) can

be further bounded by

Va ≤
1

a2

 sup
‖h‖L2(P )≤c

1/2
1 a

α
1+α

(En (h)− EP (h))

+
∑

j≥1(1 + r2(j−1))−1 sup
‖h‖L2(P )≤c

1/2
1 r

α
1+α ja

α
1+α

(En (h)− EP (h))

 .

We apply Lemma A.5 to each supremum term, and obtain

EPn(Va) ≤ C2
c
1
2
1

a2

√
v

n
a

α
1+α

∑
j≥0

r
α

1+α
j

1 + r2(j−1)

≤ C2c
1
2
1

√
v

n
a

α
1+α
−2

(
r2

1 + r−
2+α
1+α

)

≤ c2

√
v

n
a

α
1+α
−2

for

n ≥ C1v

c1a
2α
1+α

⇐⇒ a ≥
(
C1

c1

) 1+α
2α ( v

n

) 1+α
2α

(A.21)

where C1 and C2 are universal constants defined in Lemmas A.4 and A.5, and c2 = C2c
1
2
1

(
r2

1+r
− 2+α

1+α

)
∨

1 is a constant greater than or equal to one and depends only on (M,κ, η, α), as r > 1 is fixed. We

plug in this upper bound into (A.19) to obtain

Va ≤ c2

√
v

n
a

α
1+α
−2 +

√√√√[c1a
2α
1+α
−2 + 4c2

√
v
na

α
1+α
−2
]
t

na2
+

2t

3na2
. (A.22)
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Choose εn as the root of c2

√
v
na

α
1+α
−2 = 1, i.e.,

εn =

(
c2

√
v

n

) 1+α
2+α

. (A.23)

Note that the right hand side of (A.22) is decreasing in a, and a ≥ εn by the construction. Hence,

if εn satisfies inequality (A.21), i.e.,

n ≥ c−α2

(
C1

c1

)1+α
2

v,

which can be reduced to an innocuous restriction n ≥ 1 by inflating, if necessary, c1 large enough,

we can substitute εn for a to bound the right hand side of (A.22). In particular, by noting

c2

√
v

n
a

α
1+α
−2 ≤ εn

a
=

1√
kt
≤ 1√

k
and

a
2α
1+α
−2 = a2( α

1+α
−2)a2 ≤

[
ε

α
1+α
−2

n

]2

ε2n = c−2
2 v−1nε2n,

the right-hand side of (A.22) can be bounded by

Va ≤
1√
k

+

√
c1c
−2
2 v−1nε2n + 4

nkε2n
+

2

3nkε2n

=
1√
k

+

√
c1c
−2
2 v−1

k
+

4

nkε2n
+

2

3nkε2n

≤ 1√
k

+

√
c1c
−2
2 v−1

k
+

4

k
+

2

3k
for nε2n ≥ 1. (A.24)

Note that condition nε2n ≥ 1 used to derive the last line is valid for all n, since it is equivalent to

n ≥ c−2(1+α)
2 v−(1+α), which holds for all n ≥ 1 since c2 ≥ 1 and v ≥ 1. By choosing k large enough

so that the right-hand side of (A.24) is less than 1
2 , we can conclude

Pr(Va <
1

2
) ≥ 1− exp(−t). (A.25)

Hence, (A.18) yields

Pn
(
d(G∗FB, ĜEWM ) ≥ ktε2n

)
≤ exp (−t)
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for all t ≥ 1. From this exponential bound, we obtain

EPn
(
d(G∗FB, ĜEWM )

)
=

∫ ∞
0

Pn
(
d(G∗FB, ĜEWM ) > t′

)
dt′

≤
∫ kε2n

0
Pn
(
d(G∗FB, ĜEWM ) ≥ t′

)
dt′ +

∫ ∞
kε2n

Pn
(
d(G∗FB, ĜEWM ) ≥ t′

)
dt′

≤ kε2n + kε2ne
−1

= (1 + e−1)kc
2(1+α)
2+α

2

( v
n

) 1+α
2+α

.

So, setting c = M
κ (1 + e−1)kc

2(1+α)
2+α

2 leads to the conclusion.

Proof of Theorem 2.4. As in the proof of Theorem 2.2, we work with the normalized outcome

support, Y1i, Y0i ∈
[
−1

2 ,
1
2

]
. With the normalized outcome, constant η of the margin assumption

satisfies η ≤ 1.

Let α ∈ (0,∞) and η ∈ (0, 1] be given. Similarly to the proof of Theorem 2.2, we consider

constructing a suitable subclass P∗ ⊂ P (1, κ, η, α). Let x1, . . . , xv ∈ X be v points that are

shattered by G, and let γ be a positive number satisfying γ ≤ min
{
η, 1

2

}
, whose proper choice will

be given later. We fix the marginal distribution of X at the one supported only on (x1, . . . , xv) and

having the probability mass function,

PX(Xi = xj) =
1

v − 1

(
γ

η

)α
, for j = 1, . . . , (v − 1), and

PX(Xi = xv) = 1− 1

v − 1

(
γ

η

)α
.

Thus-constructed marginal distribution of X is common in P∗. As in the proof of Theorem 2.2,

we specify D to be independent of (Y1, Y0, X) and follow the Bernoulli distribution with Pr(D =

1) = 1/2. Let b = (b1, . . . , bv−1) ∈ {0, 1}v−1 be a binary vector that uniquely indexes a member

of P∗, and, accordingly, write P∗ =
{
Pb : b ∈ {0, 1}v−1

}
. For each j = 1, . . . , (v − 1), we specify

the conditional distribution of Y1 given X = xj to be (A.10) if bj = 1 and (A.11) if bj = 0.

For j = v, the conditional distribution of Y1 given X = xv is degenerate at Y1 = 1
2 . As for the

conditional distribution of Y0 given X = xj , we consider the degenerate distribution at Y0 = 0 for

j = 1, . . . , (v − 1), and the degenerate distribution at Y0 = −1
2 for X = xv. In this specification of
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P∗, it holds

PX(|τ(x)| ≤ t) =


0 for t ∈ [0, γ),(
γ
η

)α
for t ∈ [γ, η),

1 for t ∈ [η, 1].

,

for every Pb ∈ P∗. Furthermore, by the construction of the support points, for every Pb ∈ P∗, the

first-best decision rule is contained in G. Hence, it holds P∗ ⊂ PFB (1, κ, η, α).

Let π (b) be a prior distribution for b such that b1, . . . , bv−1 are iid and b1 ∼ Ber(1/2). By

following the same line of reasonings as used in obtaining (A.12), for arbitrary estimated treatment

choice rule Ĝ, we obtain

sup
P∈P(1,κ,η,α)

EPn
[
W (G∗)−W (Ĝ)

]
≥ γ

v − 1

(
γ

η

)α ∫
Z1,...,Zn

v−1∑
j=1

[min {π (bj = 1|Z1, . . . , Zn) , 1− π(bj = 1|Z1, . . . , Zn)}] dP̃n.

Furthermore, by repeating the same bounding arguments as in the proof of Theorem 2.2, this Bayes

risk can be bounded from below by (A.14) with p = 1
v−1

(
γ
η

)α
,

sup
P∈P(1,κ,η,α)

EPn
[
W (G∗)−W (Ĝ)

]
≥ γ

2

(
γ

η

)α
exp

{
− 4γ

1− 2γ

√
n

8(v − 1)

(
γ

η

)α}
.

The slowest convergence rate of this lower bound can be obtained by tuning γ to be converging at

the rate of n−
1

2+α . In particular, by choosing γ = η
α

2+α
(
v−1
n

) 1
2+α assuming γ ≤ 1

4 , the exponential

term can be bounded from below by exp
{
−2
√

2
}

, so we obtain the following lower bound,

1

2
η

α
2+α (v − 1)

α
2+αn−

1+α
2+α exp

{
−2
√

2
}

. (A.26)

Recall that γ is constrained to γ ≤ min
{
η, 1

4

}
. This implies that the obtained bound is valid for

n ≥
(
max

{
η−1, 4

})2+α
ηα(v − 1),

whose stricter but simpler form is given by

n ≥ max
{
η−2, 42+α

}
(v − 1). (A.27)

The lower bound presented in this theorem follows by denormalizing the outcomes, i.e., multiply

M to (A.26) and substitute η/M for η appearing in (A.26) and (A.27).
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A.4 Proof of Theorem 2.6

The next lemma gives a linearized solution of a certain polynomial inequality. We owe this lemma to

Shin Kanaya (2014, personal communication). The technique of applying the mean value expansion

to an implicit function defined as the root of a polynomial equation has been used in the context

of bandwidth choice in Kanaya and Kristensen (2014).

Lemma A.8. Let A ≥ 0, B ≥ 0, and X ≥ 0. For any α ≥ 0, X ≤ AX
α

1+α +B implies

X ≤ A1+α + (1 + α)B.

Proof. When A = B = 0, the conclusion trivially holds. When B > 0, X = AX
α

1+α + B has a

unique root, and we denote it by X∗ = g(A,B). When A > 0 and B = 0, we mean by g(A, 0) the

nonzero root of X = AX
α

1+α . Let f(X,A,B) = X − AX
α

1+α − B. By the form of the inequality,

the original inequality can be equivalently written as X ≤ X∗ = g(A,B), so we aim to verify that

X∗ is bounded from above by A1+α + (1 + α)B. Consider the mean value expansion of g(A,B) in

B at B = 0,

X∗ = g(A, 0) +
∂g

∂B

(
A, B̃

)
×B for some 0 ≤ B̃ ≤ B.

Note g(A, 0) = A1+α. In addition, by the implicit function theorem, we have, with X̃ = g(A, B̃),

∂g

∂B

(
A, B̃

)
= −

∂f
∂B (X̃, A, B̃)
∂f
∂X (X̃, A, B̃)

=
1

1− α
1+αAX̃

− 1
1+α

=
X̃

X̃
1+α + α

1+α

(
X̃ −AX̃

α
1+α

)
=

X̃
X̃

1+α + α
1+αB̃

≤ 1 + α.

Hence, X∗ ≤ A1+α + (1 + α)B holds.

The next lemma provides an exponential tail probability bound of the supremum of the centered

empirical processes. This lemma follows from Theorem 2.14.9 in van der Vaart and Wellner (1996)

combined with their Theorem 2.6.4.
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Lemma A.9. Assume G is a VC-class of subsets in X with VC-dimension v <∞. Let PX,n (·) be

the empirical probability distribution on X constructed upon (X1, . . . , Xn) generated iid from PX (·).
Then,

Pn
(

sup
G∈G
|PX,n(G)− PX(G)| > t

)
≤
(
C4t√

2v

)2v

nv exp
(
−nt2

)
holds for every t > 0, where C4 is a universal constant.

Proof of Theorem 2.6. We first consider the m-hybrid case. Set G̃ = G∗FB in (2.4) and rewrite (2.4)

in terms of the normalized welfare loss for Ĝm−hybrid,

d(G∗FB, Ĝm−hybrid) ≤
κ

M

[
W τ
n (G∗FB)− Ŵ τ

n (G∗FB)−W τ
n (Ĝm−hybrid) + Ŵ τ

n

(
Ĝm−hybrid

)]
+d(G∗FB, Ĝm−hybrid)− dτn

(
G∗FB, Ĝm−hybrid

)
≤ 1

n

n∑
i=1

κ

M
[τ (Xi)− τ̂m(Xi)]

[
1 {Xi ∈ G∗FB} − 1

{
Xi ∈ Ĝm−hybrid

}]
+d(G∗FB, Ĝm−hybrid)− dτn

(
G∗FB, Ĝm−hybrid

)
≤ ρn + d(G∗FB, Ĝm−hybrid)− dτn

(
G∗FB, Ĝm−hybrid

)
(A.28)

where d(G∗FB, Ĝm−hybrid) is as defined in equation (A.16) in Appendix A.3, dτn

(
G∗FB, Ĝm−hybrid

)
=

W τ
n (G∗FB)−W τ

n (Ĝm−hybrid),

ρn ≡
κ

M
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|PX,n

(
G∗FB4Ĝm−hybrid

)
,

and PX,n is the empirical distribution on X constructed upon (X1, . . . , Xn). Similarly to the proof

of Theorem 3.2, define a class of functions generated by G ∈ G

Hτ ≡ {h(Zi;G) : G ∈ G} ,

h(Zi;G) ≡ κ

M
τ(Xi) · [1 {Xi ∈ G} − 1 {Xi ∈ G∗FB}] ,

which is a VC-subgraph class with the VC-dimension at most v with envelope H̄ = 1 by Lemma

A.1. Let a =
√
ktεn be as defined in the proof of Theorem 2.3 and V τ

a ≡ suph∈Hτ
{
En(h)−EP (h)
−EP (h)+a2

}
.

By noting

d(G∗FB, Ĝm−hybrid)− dτn
(
G∗FB, Ĝm−hybrid

)
≤ V τ

a (d(G∗FB, Ĝm−hybrid) + a2),
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inequality (A.28) implies

d(G∗FB, Ĝm−hybrid) ≤ ρn + V τ
a (d(G∗FB, Ĝm−hybrid) + a2). (A.29)

Denote event
{
V τ
a < 1

2

}
by Ωt, which is equivalent to event

{
d(G∗FB, Ĝm−hybrid) ≤ 2ρn + kε2nt

}
.

Along the same line of argument that leads to (A.25) in the proof of Theorem 2.3, we obtain, for

t ≥ 1,

Pn (Ωt) = Pn
(
d(G∗FB, Ĝm−hybrid) ≤ 2ρn + kε2nt

)
≥ 1− exp (−t) , (A.30)

where εn is given in (A.23). We bound ρn from above by

ρn ≤
κ

M

[
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|PX

(
G∗FB4Ĝm−hybrid

)
+ V0,n max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

]
,

where

V0,n = sup
G∈G:

|PX,n(G∗FB4G)− PX (G∗FB4G)| ,

Let λ > 0, that will be chosen properly later. Define events

Λ1 =
{
V0,n ≤ n−λ

}
,

Λ2 =
{
PX

(
G∗FB4Ĝm−hybrid

)
≥ n−λ

}
.

Then, on Λ1∩Λ2, it holds V0,n ≤ PX
(
G∗FB4Ĝm−hybrid

)
. Therefore, on Λ1∩Λ2∩Ωt, d(G∗FB, Ĝm−hybrid)

can be bounded by

d(G∗FB, Ĝm−hybrid) ≤ 4
κ

M
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|PX

(
G∗FB4Ĝm−hybrid

)
+ kε2nt

≤ 4c1
κ

M
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)| d(G∗FB, Ĝm−hybrid)

α
1+α + kε2nt,

where the second line follows from Lemma A.7 with the same definition of c1 given there. By

Lemma A.8 and substituting (A.23) to εn, we obtain, on event Λ1 ∩ Λ2 ∩ Ωt,

d(G∗FB, Ĝm−hybrid) ≤ c6

[
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

]1+α

+ c7

( v
n

) 1+α
2+α

t, (A.31)

where constants c6 and c7 depend only on (M,κ, η, α).
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Using the upper bound derived in (A.31), we obtain, for t ≥ 1,

EPn
(
d(G∗FB, Ĝm−hybrid)

)
= EPn

(
d(G∗FB, Ĝm−hybrid)1 {Λ1 ∩ Λ2 ∩ Ωt}

)
+ EPn

(
d(G∗FB, Ĝm−hybrid)1 {Λc1 ∪ Λc2 ∪ Ωc

t}
)

≤ c6EPn

([
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

]1+α
)

+ c7

( v
n

) 1+α
2+α

t+ Pn (Λc1)

+EPn
(
d(G∗FB, Ĝm−hybrid)1{Λc2}

)
+ Pn (Ωc

t)

≤ c6ψ
−(1+α)
n EPn

([
ψn max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

]1+α
)

︸ ︷︷ ︸
A1,n

+ c7

( v
n

) 1+α
2+α

t︸ ︷︷ ︸
A2,n

+

(
C4

2v

)2v

n−2v(λ− 1
2) exp

(
−n−2(λ− 1

2)
)

︸ ︷︷ ︸
A3,n

+ n−λ︸︷︷︸
A4,n

+ exp(−t)︸ ︷︷ ︸
A5,n

where ψn is a sequence as specified in Condition 2.7. In these inequalities, the third line uses (A.31)

and d(G∗FB, Ĝm−hybrid) ≤ 1. In the fourth line, A3,n follows from Lemma A.9, A4,n follows from

d(G∗FB, Ĝm−hybrid) ≤ PX

(
G∗FB4Ĝm−hybrid

)
and PX

(
G∗FB4Ĝm−hybrid

)
< n−λ on Λc2, and A5,n

follows from (A.30).

We now discuss convergence rates of Aj,n, j = 1, . . . , 5, individually with suitable choices of t

and λ. Condition (2.9) assumed in this theorem implies

sup
P∈Pm

EPn

((
ψn max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

)1+α
)

≤ sup
P∈Pm

EPn

([
(ψn max1≤i≤n |τ̂m (Xi)− τ(Xi)|)2

] 1+α
2

)
≤

([
sup
P∈Pm

EPn (ψn max1≤i≤n |τ̂m (Xi)− τ(Xi)|)2

] 1+α
2

)
= O(1),

where the third line follows from Jensen’s inequality. Hence, A1,n satisfies sup
P∈Pm

A1,n = O
(
ψ
−(1+α)
n

)
.

By setting t = (1 + α) logψn, we can make the convergence rate of A5,n equal to that of A1,n. At

the same time, by choosing λ > 1+α
2+α ≥

1
2 , we can make A3,n and A4,n converge faster than A2,n.

Hence, the uniform convergence rate of EPn
(
d(G∗FB, Ĝm−hybrid)

)
over P ∈ Pm ∩ PFB (M,κ, η, α)
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is bounded by the convergence rates of the A1,n and A2,n,(
sup
P∈Pm

A1,n ∨ sup
P∈PFB(M,κ,η,α)

A2,n

)
=
(
ψ−(1+α)
n ∨ n−

1+α
2+α logψn

)
.

This completes the proof for the m-hybrid case.

A proof for the e-hybrid case follows almost identically to the proof of the m-hybrid case. The

differences are that ρn in inequality (A.28) is given by

ρn =
κ

M
max

1≤i≤n
|τ̂ ei − τ i|PX,n

(
G∗FB4Ĝe−hybrid

)
.

and that inequality (A.32) is replaced by

d(G∗FB, Ĝe−hybrid) ≤ ρn + Va(d(G∗FB, Ĝe−hybrid) + a2), (A.32)

where Va is as defined in the proof of Theorem 2.3. The rest of the proof goes similarly to the proof

of the first claim except that the rate φn given in Condition 2.1 replaces ψn in the first claim.

A.5 Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. Since WK(G)−WK(G′) = VK(G)− VK(G′) for all G,G′,

sup
P∈P(M,κ)

EPn

[
sup
G∈G

WK(G)−WK(ĜK)

]
= sup

P∈P(M,κ)
EPn

[
sup
G∈G

VK(G)− VK(ĜK)

]
, (A.33)

and we focus on bounding the latter expression.

Since ĜK maximizes VK,n(G), VK,n(G̃) ≤ VK,n(ĜK) for any G̃ ∈ G and

VK(G̃) ≤ VK,n(G̃) + sup
G∈G
|VK,n(G)− VK(G)|

≤ VK,n(ĜK) + sup
G∈G
|VK,n(G)− VK(G)|

≤ VK(ĜK) + 2 sup
G∈G
|VK,n(G)− VK(G)| .

Applying the inequality for all G̃ ∈ G, we obtain

sup
G∈G

VK(G)− VK(ĜK) ≤ 2 sup
G∈G
|VK,n(G)− VK(G)| ,

which is also true in expectation over Pn.

65



The welfare gain estimation error for any treatment rule G could be bounded from above by:

|VK,n(G)− VK(G)| =
∣∣∣∣ K

max{K,PX,n(G)}
· Vn(G)− K

max{K,PX(G)}
· V (G)

∣∣∣∣
≤ K

max{K,PX,n(G)}
· |Vn(G)− V (G)|+ V (G) ·

∣∣∣∣ K

max{K,PX,n(G)}
− K

max{K,PX(G)}

∣∣∣∣
≤ |Vn(G)− V (G)|+ M

K
· |PX,n(G)− PX(G)| ,

The second line comes from subtracting and adding K
max{K,PX,n(G)}V (G) and then applying the

triangle inequality. The third line uses inequalities K
max{K,PX,n(G)} ≤ 1 and V (G) ≤ M (from

Assumption 2.1 (BO)), and the observation that for any a, b ∈ R and c > 0,∣∣∣∣ c

max{c, a}
− c

max{c, b}

∣∣∣∣ =

∣∣∣∣c(max{c, b} −max{c, a})
max{c, a} ·max{c, b}

∣∣∣∣ ≤ |max{c, b} −max{c, a}|
c

≤ |b− a|
c

.

Then

sup
P∈P(M,κ)

EPn

[
sup
G∈G

VK(G)− VK(ĜK)

]
≤ 2 sup

P∈P(M,κ)
EPn

[
sup
G∈G
|VK,n(G)− VK(G)|

]
≤ 2 sup

P∈P(M,κ)
EPn

[
sup
G∈G
|Vn(G)− V (G)|

]
+ 2

M

K
sup

P∈P(M,κ)
EPn

[
sup
G∈G
|PX,n(G)− PX(G)|

]
Note that since the class G has VC-dimension v <∞, the classes of functions

fG(Y,D,X) ≡
(
Y D

e(X)
− Y (1−D)

1− e(X)

)
· 1{X ∈ G},

hG(Y,D,X) ≡ 1{X ∈ G} − 1/2,

are VC-subgraph classes with VC-dimension no greater than v by Lemma A.1. These classes of

functions are uniformly bounded by M/(2κ) and 1/2. Since Vn(G) = En(fG), V (G) = E(fG),

Pn(Xi ∈ G) = En(hG)+1/2 and P (X ∈ G) = E(hG)+1/2, we could apply Lemma A.4 and obtain

sup
P∈P(M,κ)

EPn

[
sup
G∈G

VK(G)− VK(ĜK)

]
≤ C1

M

κ

√
v

n
+ C1

M

K

√
v

n
.

The theorem’s result follows from (A.33).

Proof of Theorem 4.2. Define the class of functions F = {f(·;G) : G ∈ G} on Z:

f(Zi;G) ≡
[(

YiDi

e(Xi)
− Yi(1−Di)

1− e(Xi)

)
· ρ(Xi) · 1 {Xi ∈ G}

]
,
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Then V T (G) = EP (f(·, G)) by (4.3) and ĜTEWM = arg maxGinG En(f(·, G)).

By Assumptions 2.1 (BO), (SO) and 4.2 (BDR), these functions are uniformly bounded by

F̄ = Mρ̄
2κ . By Assumption 2.1 (VC) and Lemma A.1, F is a VC-subgraph class of functions with

VC-dimension at most v. Applying the argument in inequality (2.2) we obtain

sup
G∈G

W T (G)−W T
(
ĜTEWM

)
= sup

G∈G
V T (G)− V T

(
ĜTEWM

)
≤ 2 sup

f∈F
|En(f)− EP (f)| .

Now we take the expectation with respect to the sampling distribution Pn and apply Lemma A.4:

EPn

[
sup
G∈G

W T (G)−W T (ĜTEWM )

]
≤ 2EPn

[
sup
f∈F
|En(f)− EP (f)|

]
≤ C1

Mρ̄

κ

√
v

n
.

B Validating Condition 2.1 for Local Polynomial Estimators

This Appendix verifies that Condition 2.1 (m) and (e) hold for local polynomial estimators if the

class of data generating processes Pm or Pe is constrained by Assumptions 2.3 and 2.4, respectively.

B.1 Notations and Basic Lemmas

In addition to the notations introduced in Section 2.4 in the main text, the following notations are

used. Let µ : Rdx → R be a generic notation for a regression equation onto a vector of covariates

X ∈ Rdx . In case of m-hybrid EWM, µ (·) corresponds to either of m1(·) or m0 (·). In case of

e-hybrid EWM, µ (·) corresponds to propensity score e(·). We use n to denote the size of the

entire sample indexed by i = 1, . . . , n, and denote by Ji ⊂ {1, . . . , n} a subsample with which

µ (Xi) is estimated nonparametrically. Since we consider throughout the leave-one-out regression

fits of µ (Xi), Ji does not include i-th observation. In case of m-hybrid EWM, Ji is either the

leave-one-out treated sample {j ∈ {1, . . . , n} : Dj = 1, j 6= i} or the leave-one-out control sample

{j ∈ {1, . . . , n} : Dj = 0, j 6= i} depending on µ (·) corresponds to m1 (·) or m0 (·). Note that, in

the m-hybrid case, Ji is random as it depends on a realization of (D1, . . . , Dn). When the e-hybrid

EWM is considered, Ji is non-stochastic and it is given by Ji = {1, . . . , n} \ {i}. The size of Ji is

denoted by nJi , which is equal to n1−1 or n0−1 in the m-hybrid case, and is equal to n−1 in case

of e-hybrid case. With abuse of notations, we use Yi, i = 1, . . . , n, to denote observations of the

regressors and use ξi to denote a regression residual, i.e., Yi = µ (Xi) + ξi, E (ξi|Xi) = 0, holds for

all i = 1, . . . , n. For e-hybrid rule, Yi should be read as the treatment status indicator Di ∈ {1, 0}.
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We assume that µ (·) belongs to a Hölder class of functions with degree β ≥ 1 and constant

0 < L <∞. Define the leave-one-out local polynomial regression with degree l = (β − 1) by

µ̂−i (Xi) = UT (0)θ̂(Xi) · 1 {λ(Xi) ≥ tn} , (B.1)

θ̂−i(Xi) = arg min
θ

∑
j∈Ji

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

where U
(
Xj−Xi

h

)
is a regressor vector, U

(
Xj−Xi

h

)
≡
((

Xj−Xi
h

)s)
|s|≤l

, λ(Xi) is a smallest eigen-

value of B−i(Xi) ≡
(
nhdx

)−1∑
j∈Ji U

(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
, and tn is a sequence of

trimming constant converging to zero, whose choice will be discussed later. The standard least

squares calculus shows

θ̂−i (Xi) = B−i (Xi)
−1

 1

nhdx

∑
j∈Ji

U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

) ,

so that µ̂ (Xi) can be written as

µ̂−i (Xi) =

∑
j∈Ji

Yjωj (Xi)

 · 1 {λ(Xi) ≥ tn} , (B.2)

where ωj (Xi) =
1

nhdx
UT (0) [B−i(Xi)]

−1 U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)
.

We first present lemmas that will be used for proving Lemma B.4 below.

Lemma B.1. Suppose Assumptions 2.3 (PX) and (Ker).

(i) Conditional on (X1, . . . , Xn) such that λ(Xi) > 0,

max
j 6=i
|ωj(Xi)| ≤ c5

1

nhdxλ(Xi)
,∑

j∈Ji

|ωj(Xi)| ≤
c5

nhdxλ(Xi)

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
,

where c5 is a constant that depends only on β, dx and Kmax.

(ii) For any multi-index s such that |s| ≤ (β − 1),
∑

j∈Ji

(
Xj−Xi

h

)s
ωj(Xi) = 0.

(iii) Let λ (x) be a smallest eigenvalue of B(x) ≡
(
nhdx

)−1∑n
j=1 U

(
Xj−x
h

)
UT
(
Xj−x
h

)
K
(
Xj−x
h

)
there exist positive constants c6 and c7 that depend only on c, r0, p

X
, and K(·) such that

Pn ({λ (x) ≤ c6}) ≤ 2 [dimU ]2 exp
(
−c7nh

dx
)

holds for all x, PX-almost surely, at every n ≥ 1.
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Proof. (i) Since ‖U(0)‖ = 1, it holds

|ωj(Xi)| ≤
1

nhdx

∥∥∥∥[B−i(Xi)]
−1 U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)∥∥∥∥
≤ Kmax

nhdxλ(Xi)

∥∥∥∥U (Xj −Xi

h

)
1
{

(Xj −Xi) ∈ [−h, h]dx
}∥∥∥∥

≤ Kmax dim (U)1/2

nhdxλ(Xi)

≡ c5

nhdxλ(Xi)
,

for every 1 ≤ j ≤ n. Similarly,∑
j∈Ji

|ωj(Xi)| ≤
Kmax

nhdxλ(Xi)

∑
j∈Ji

∥∥∥∥U (Xj −Xi

h

)∥∥∥∥ 1
{

(Xj −Xi) ∈ [−h, h]dx
}

=
c5

nhdxλ(Xi)

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
.

(ii) This claim follows from the first order condition for θ in the least square minimization

problem in (B.1).

(iii) This lemma is from Equation (6.3, pp. 626) in the proof of Theorem 3.2 in Audibert

and Tsybakov (2007), where a suitable choice of constant c6 is given in Equation (6.2, pp.625) in

Audibert and Tsybakov (2007).

The next lemma provides an exponential tail bound for the local polynomial estimators. The

first statement is borrowed from Theorem 3.2 in Audibert and Tsybakov (2007), and the second

statement is its immediate extension.

Lemma B.2. (i) Suppose Assumption 2.3 (PX) and (Ker) hold, and µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L < ∞. Assume Ji is non-stochastic with

nJi = n − 1 (e-hybrid case). Then, there exist positive constants c8, c9, and c10 that depend only

on β, dx, L, c, r0, p
X

, and p̄X , such that, for any 0 < h < r0/c, any c8h
β < δ, and any n ≥ 2,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
≤ c9 exp

(
−c10nh

dxδ2
)
,

holds for almost all x with respect to PX , where Pn−1 (·) is the distribution of
{

(Yi, Xi)
n−1
i=1

}
.

(ii) Suppose Assumptions 2.1 (SO), 2.3 (PX), and (Ker) hold, and µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L < ∞. Assume Ji is stochastic (m-hybrid

case) with Ji = {j 6= i : Dj = d}, d ∈ {1, 0}. There exist positive constants c11, c12, and c13 that
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depend only on κ, β, dx, L, c, r0, p
X

, and p̄X , such that for any 0 < h < r0/c, any c11h
β < δ, and

any nJn ≥ 1,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ|nJn
)
≤ c12 exp

(
−c13nJnh

dxδ2
)

holds for almost all x with respect to PX , where Pn−1 (·|nJn) is the conditional distribution of{
(Yi, Xi)

n−1
i=1

}
given

∑n−1
j=1 1 {Dj = d}.

Proof. (i) See Theorem 3.2 in Audibert and Tsybakov (2007).

(ii) Under Assumption 2.1 (SO), the conditional distribution of covariates X given D = d,

d ∈ {1, 0}, has the support X same as the unconditional distribution PX , and has bounded density

on X , since

κ

1− κ
dPX
dx

<
dPX|D=d

dx
<

1− κ
κ

dPX
dx

holds for all x ∈ X . Therefore, when PX satisfies Assumption 2.3 (PX), the conditional distributions

PX|D=d, d ∈ {1, 0} also satisfy the support and density conditions analogous to Assumption 2.3

(PX). This implies that, even when we condition on nJn =
∑n−1

j=1 1 {Dj = d} ≥ 1, the exponential

inequality of (i) in the current lemma is applicable with different constant terms.

The next lemma concerns an upper bound of the variance of the supremum of centered empirical

processes indexed by a class of sets.

Lemma B.3. Let B be a countable class of sets in X , and let {PX,n (B) : B ∈ B} be the empirical

distribution based on iid observations, (X1, . . . , Xn), Xi ∼ PX .

V ar

(
sup
B∈B
{PX,n (B)− PX (B)}

)
≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

4n
.

Proof. In Theorem 11.10 of Boucheron et al. (2013), setting Xi,s at the centered indicator function

1 {Xi ∈ B} − PX (B), and dividing the inequality of Theorem 11.10 of Boucheron et al. (2013) by

n2 lead to

V ar

(
sup
B∈B
{PX,n (B)− PX (B)}

)
≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

n
sup
B∈B
{PX (B) [1− PX (B)]}

≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

4n
.
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B.2 Main Lemmas and Proofs of Corollaries 2.1 and 2.2

The next lemma yields Corollaries 2.1 and 2.2.

Lemma B.4. Let Pµ be a class of joint distributions of (Y,X) such that µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L <∞, and Assumption 2.3 (PX) holds. Let

µ̂−i(·) be the leave-one-out local polynomial fit for µ (Xi) defined in (B.1), whose kernel function

satisfies Assumption 2.3 (Ker).

(i) Then,

sup
P∈Pµ

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] ≤ O(hβ) +O

(
1√
nhdx

)
(B.3)

holds. Hence, an optimal choice of bandwidth that leads to the fastest convergence rate of the

uniform upper bound is h ∝ n−
1

2β+dx and the resulting uniform convergence rate is

sup
P∈Pµ

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] ≤ O (n− 1

2+dx/β

)
.

(ii) Let tn = (log n)−1. Then,

sup
P∈Pµ

EPn

[(
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣)2
]
≤ O

(
h2β

t2n

)
+O

(
log n

nhdxt2n

)
(B.4)

holds. Hence, an optimal choice of bandwidth that leads to the fastest convergence rate of the

uniform upper bound is h ∝
(

logn
n

) 1
2β+dx and the resulting uniform convergence rate is

sup
P∈Pµ

EPn

[(
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣)2
]
≤ O

(
(tn)−2

(
log n

n

) 2
2+dx/β

)
.

Proof. (i) First, consider the non-stochastic Ji case with nJi = (n − 1) (e-hybrid case). Since

observations are iid (hence exchangeable) and the probability law of µ̂−i (·) does not depend on Xi,

it holds

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] = EPn

∣∣µ̂−i(Xi)− µ (Xi)
∣∣ (B.5)

= EPX
[
EPn−1

[∣∣µ̂−n(Xn)− µ (Xn)
∣∣ |Xn

]]
=

∫
X
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] dPX(x)

=

∫
X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
dδ

]
dPX(x),
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where EPn−1 [·] is the expectation with respect to the first (n− 1)-observations of (Yi, Xi). By

Lemma B.2 (i), there exist positive constants c8, c9, and c10 that depend only on β, dx, L, c, r0,

p
X

, and p̄X such that, for any 0 < h < r0/c, any c8h
β < δ, and any n ≥ 2,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
≤ c9 exp

(
−c10nh

dxδ2
)

(B.6)

holds for almost all x with respect to PX . Hence,∫
X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
dδ

]
dPX(x) ≤ c8h

β + c9

∫ ∞
0

exp
(
−c10nh

dxδ2
)
dδ

= c8h
β +

c14√
nhdx

(B.7)

= O(hβ) +O

(
1√
nhdx

)
where c14 = c9(2c10)−1/2

∫∞
0

(
δ′
)−1/2

exp
(
−c10δ

′) dδ′ < ∞. Since the upper bound (B.7) does not

depend upon P ∈ Pµ, this upper bound is uniform over P ∈ Pµ, so the conclusion holds.

Next, consider the stochastic Ji case with nJi =
∑

j 6=i 1 {Dj = d}, where d ∈ {1, 0}. we can

interpret nJi as a binomial random variable with parameters (n− 1) and π, where π = P (Di = 1)

when µ (·) corresponds to m1 (·) and π = P (Di = 0) when µ (·) corresponds to m0 (·). In either

case, κ < π < 1 − κ by Assumption 2.1 (SO). Let n ≥ 1 + 2
π and Ωπ,n ≡

{∣∣∣ nJnn−1 − π
∣∣∣ ≤ 1

2π
}

={
(n−1)π

2 ≤ nJn ≤
3(n−1)π

2

}
. Consider

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ · 1 {Ωπ,n}

]
=

∑
nJn∈Ωπ,n

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]Pn−1 (nJn)

≤ max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]}Pn−1 (Ωπ,n)

≤ max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]} .

Since nJn ≥
(n−1)π

2 ≥ 1 on Ωπ,n, Lemma B.2 (ii) implies

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn] ≤ ∫

X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ|nJn
)
dδ

]
dPX(x)

≤ c11h
β +

c15√
nJnh

dx
,

where c11 and c15 are positive constants that depend only on κ, β, dx, L, c, r0, p
X

, and p̄X . Since

nJn ≥
(n−1)π

2 ≥ nπ
4 on Ωπ,n for n ≥ 2, it holds

max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]} ≤ c11h

β +
2c15√
πnhdx

.
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Accordingly, combined with the Hoeffding’s inequality Pn−1
(
Ωc
π,n

)
≤ 2 exp

(
−π2

4 n
)
, we obtain

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] ≤ EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ · 1 {Ωπ,n}

]
+MPn−1

(
Ωc
π,n

)
≤ c11h

β +
2c15√
πnhdx

+ 2M exp

(
−π

2

4
n

)
.

The third term in the right hand side converges faster than the second term, so we have shown

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] =

∫
X
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] dPX(x)

≤ O(hβ) +O

(
1√
nhdx

)
holds for the stochastic Ji case as well.

(ii) Let Ωλ,n be an event defined by {λ (Xi) ≥ tn, ∀i = 1, . . . , n}. On Ωλ,n, (B.2) implies

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2 ≤

∣∣∣∣∣∣
∑
j∈Ji

Yjωj (Xi)− µ (Xi)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi) +
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

, (B.8)

where the second line follows from Yj = µ (Xj) + ξj and
∑

j 6=i ωj (Xi) = 0 as implied by Lemma

B.1 (ii). Since µ (·) is assumed to belong to the Hölder class, Lemma B.1 (ii) and Assumption 2.3

(Ker) imply∣∣∣∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 =

∣∣∣∑
j∈Ji
‖Xj −Xi‖β ωj (Xi)

∣∣∣2
=
∣∣∣∑

j∈Ji
‖Xj −Xi‖β ωj (Xi) · 1

{
(Xj −Xi) ∈ [−h, h]dx

}∣∣∣2
≤ d2β

x h
2β
∣∣∣∑

j∈Ji
|ωj (Xi)|

∣∣∣2
≤ d2β

x h
2β

(
c5

λ(Xi)

)2( 1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
})2

≤ c16
h2β

t2n

(
1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
})2

,
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where c16 = d2β
x c2

5. Under Assumption 2.3 (PX) and conditional on Ωλ,n,

max
1≤i≤n

∣∣∣∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 ≤ c16

h2β

t2n

[
1

hdx
sup
B∈Bh

PX,n(B)

]2

≤ c16
h2β

t2n

[
1

hdx

(
sup
B∈Bh

(PX,n(B)− PX (B)) + sup
B∈Bh

PX (B)

)]2

≤ c16
h2β

t2n

[
1

hdx
sup
B∈Bh

(PX,n(B)− PX (B)) + 2dx · p̄X

]2

≤ c16
h2β

t2n

 2

h2dx

[
sup
B∈Bh

(PX,n(B)− PX (B))

]2

+ 22dx+1 · p̄2
X

 ,

where Bh is the class of hypercubes in Rdx , Bh ≡
{∏dx

k=1
[xk − h, xk + h] : (x1, . . . , xdx) ∈ X

}
.

Accordingly,

EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
≤ c17

h2β

t2n
+ 2c16

h2β

t2n

1

h2dx
EPn

{[
supB∈Bh (PX,n(B)− PX (B))

]2}
≤ c17

h2β

t2n
+ 4c16

h2β

t2n

1

h2dx

{
V ar

(
supB∈Bh (PX,n(B)− PX (B))

)
+
[
EPn

(
supB∈Bh (PX,n(B)− PX (B))

)]2
}
,

where c17 = 22dx+1c16p̄
2
X . In order to bound the variance and the squared mean terms in the

curly brackets, we apply Lemma B.3 and Lemma A.5 with F̄ = 1 and δ = p̄X (2h)dx/2. For all n

satisfying nhdx ≥ C1vBh
2dx p̄2X

, it holds

V ar

(
sup
B∈Bh

(PX,n(B)− PX (B))

)
≤ 2

n
EPn

(
sup
B∈Bh

(PX,n(B)− PX (B))

)
+

1

4n

≤ 2
dx
2

+1C2p̄X

√
vBhh

dx

n3/2
+

1

4n
,[

EPn

(
sup
B∈Bh

(PX,n(B)− PX (B))

)]2

≤ 2dxC2
2 p̄

2
X

vBhh
dx

n
,

where vBh <∞ is the VC-dimension of Bh that depends only on dx. As a result, there exist positive

constants c18, and c19 that depend only on β, dx, and p̄X , such that

EPn

max
1≤i≤n

∣∣∣∣∣∣
∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ c17
h2β

t2n
+c18

h2β

t2n (nhdx)
+c19

h2β

t2n (nhdx)
3/2
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holds for all n satisfying nhdx ≥ C1vBh
2dx p̄2X

. Since nhdx →∞ by the assumption, focusing on the leading

terms yields

lim sup
n→∞

sup
P∈Pµ

EPn

2 max
1≤i≤n

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ O(h2β

t2n

)
. (B.9)

In order to bound the second term in the right hand side of (B.8), note first that∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

≤ 1

nhdλ2(Xi)

∥∥∥∥∥∥ 1√
nhdx

∑
j∈Ji

ξjU

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)∥∥∥∥∥∥
2

≤ K2
max

nhdt2n
max

1≤k≤dim(U)
η2
ik

holds conditional on Ωλ,n, where ηik, 1 ≤ k ≤ dim (U), is the k-th entry of vector

1√
nhdx

∑
j∈Ji

ξjU

(
Xj −Xi

h

)
1
{

(Xj −Xi) ∈ [−h, h]dx
}

.

Therefore,

EPn

max
1≤i≤n

∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ K2
max

nhdt2n
EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik

]
. (B.10)

Conditional on (X1, . . . , Xn) , ηik has mean zero and every summand in ηik lies in the interval,[
− M√

nhdx
1
{

(Xj −Xi) ∈ [−h, h]dx
}
, M√

nhdx
1
{

(Xj −Xi) ∈ [−h, h]dx
}]

. The Hoeffding’s inequality

then implies that, for every 1 ≤ i ≤ n and 1 ≤ k ≤ dim (U), it holds

Pn (|ηik| ≥ t|X1, . . . , Xn)

≤ 2 exp

− t2

2M2

nhdx

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}


≤ 2 exp

− t2

2M2

nhdx
max1≤i≤n

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}
 , ∀t > 0.
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Therefore,

EPn

exp

 η2
ik

2M2

nhdx
max1≤i≤n

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}
 |X1, . . . , Xn



= 1 +

∫ ∞
1

Pn

exp

 η2
ik

2M2

nhdx
max

1≤i≤n

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
 ≥ t′|X1, . . . , Xn

 dt′

= 1 +

∫ ∞
1

Pn

|ηik| ≥
√√√√2M2

nhdx
max

1≤i≤n

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}

log t′|X1, . . . , Xn

 dt′

≤ 1 + 2

∫ ∞
1

exp
(
−2 log t′

)
dt′

= 1 + 2

∫ ∞
1

(
t′
)−2

dt′

= 3

for all 1 ≤ i ≤ n and 1 ≤ k ≤ dim (U). We can therefore apply Lemma 1.6 of Tsybakov (2009) to

bound EPn
[
maxi,k η

2
ik|X1, . . . , Xn

]
,

EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik|X1, . . . , Xn

]

≤ 2M2 max
1≤i≤n

 1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
} log (3 dim (U)n)

≤ 2M2

[
1

hdx
sup
B∈Bh

(PX,n(B)− PX (B)) + 2dx p̄X

]
log (3 dim (U)n) .

By applying Lemma A.5 with F̄ = 1 and δ = p̄X (2h)dx/2, the unconditional expectation of

maxi,k η
2
ik can be bounded as

EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik

]
≤ 2M2

[
C22dx/2p̄X

√
vBh
nhdx

+ 2dx p̄X

]
log (3 dim (U)n) (B.11)

for all n such that nhdx ≥ C1vBh
2dx p̄2X

. Plugging (B.11) back into (B.10) and focusing on the leading

term give

lim sup
n→∞

sup
P∈Pµ

EPn

[
max

0≤i≤n

∣∣∣∑
j 6=i

ξjωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
≤ O

(
log n

nhdxt2n

)
. (B.12)
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Combining (B.8), (B.9), and (B.12), we obtain

EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2]

≤ EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2 · 1 {Ωλ,n}

]
+M2Pn

(
Ωc
λ,n

)
≤ 2EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
+2EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

ξjωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
+M2Pn

(
Ωc
λ,n

)
,

= O

(
h2β

t2n

)
+O

(
log n

nhdxt2n

)
+M2Pn

(
Ωc
λ,n

)
,

so the desired conclusion is proven if Pn
(

Ωc
λ,n

)
is shown to converge faster than the O

(
logn
nhdx t2n

)
term.

To find the convergence rate of Pn
(

Ωc
λ,n

)
, consider first the case of non-stochastic Ji. By

applying Lemma B.1 (iii) with the sample size set at (n− 1), we have

Pn ({λ (Xi) ≤ c6, for some 1 ≤ i ≤ n}) = nPn ({λ (Xn) ≤ c6})

= n

∫
Pn (λ(Xn) ≤ c6|Xn) dPX

= n

∫
Pn−1 (λ(x) ≤ c6) dPX(x) (B.13)

≤ 2n [dimU ]2 exp
(
−c7

2
nhdx

)
.

For the case of stochastic Ji, by viewing nJi as a binomial random variable with parameters (n− 1)

and π with κ < π < 1 − κ, and recalling that, when PX satisfies Assumption 2.3 (PX), the

conditional distributions PX|D=d, d ∈ {1, 0} also satisfy the support and density conditions stated

in Assumption 2.3 (PX), we can apply the exponential inequality shown in Lemma B.1 (iii) to

bound Pn−1 (λ(x) ≤ c6|nJn). Hence, with Ωπ,n ≡
{∣∣∣ nJnn−1 − π

∣∣∣ ≤ 1
2π
}

=
{

(n−1)π
2 ≤ nJn ≤

3(n−1)π
2

}
used above, we have

Pn−1 (λ(x) ≤ c6) ≤ Pn−1 ({λ(x) ≤ c6} ∩ Ωπ,n) + Pn−1
(
Ωc
π,n

)
≤ max

nJn∈Ωπ,n
Pn−1 (λ(x) ≤ c6|nJn) + Pn−1

(
Ωc
π,n

)
.

≤ 2 [dimU ]2 exp
(
−c7π

4
nhdx

)
+ 2 exp

(
−π

2

4
n

)
,

Plugging this upper bound into (B.13) and focusing on the leading term leads to

Pn ({λ (Xi) ≤ c6, for some 1 ≤ i ≤ n}) ≤ O
(
n exp

(
−c7

π

4
nhdx

))
.
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Hence, in either of the non-stochastic or the stochastic Ji case, since tn ≤ c6 holds for all large n

and the obtained upper bounds are uniform over P ∈ Pµ, we conclude

lim sup
n→∞

sup
P∈Pµ

EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2] ≤ O(h2β

t2n

)
+O

(
log n

nhdxt2n

)
+O

(
n exp(−nhdx)

)
.

Since tn = (log n)−1 by assumption, O(n exp
(
−nhdx

)
) converges faster thanO

(
logn
nhdx t2n

)
, the leading

terms are given by the first two terms, O
(
h2β

t2n

)
+O

(
logn
nhdx t2n

)
.

Proof of Corollary 2.1. By noting the following inequalities,

EPn

[
1

n

∑n

i=1
|τ̂m(Xi)− τ (Xi)|

]
≤ EPn

[
1

n

∑n

i=1
|m̂1(Xi)−m1 (Xi)|

]
+EPn

[
1

n

∑n

i=1
|m̂0(Xi)−m0 (Xi)|

]
EPn

[
max

1≤i≤n
(τ̂m(Xi)− τ (Xi))

2

]
≤ 2EPn

[
max

1≤i≤n
(m̂1(Xi)−m1 (Xi))

2

]
+2EPn

[
max

1≤i≤n
(m̂0(Xi)−m0 (Xi))

2

]
,

we obtain the current corollary by applying Lemma B.4. The resulting uniform convergence rate is

given by ψn = n
1

2+dx/βm . When the assumption (2.9) in Theorem 2.6 is concerned, the corresponding

rate is given by ψ̃n =

[(
logn
n

) 1
2+dx/βm (log n)2

]−1

.

Proof of Corollary 2.2. (i) Assume that n is large enough so that εn ≤ κ/2 holds. Given ê (Xi) ∈
[εn, 1− εn], τ̂ ei − τ i can be expressed as

τ̂ ei − τ i =
YiDi

e(Xi)

[
e(Xi)− ê(Xi)

ê(Xi)

]
+
Yi (1−Di)

1− e(Xi)

[
e(Xi)− ê(Xi)

1− ê (Xi)

]
,

so

|τ̂ ei − τ i| ≤
M

κ
· 1

ê (Xi) (1− ê (Xi))
· |ê(Xi)− e(Xi)|

holds. On the other hand, when ê (Xi) /∈ [εn, 1− εn], τ̂ ei = 0 and |τ i| ≤ M
κ imply |τ̂ ei − τ i| ≤ M

κ .

Hence, the following bounds are valid,

|τ̂ ei − τ i| ≤

 M
κ ·

2
κ(2−κ) · |ê(Xi)− e(Xi)| if ê (Xi) ∈

[
κ
2 , 1−

κ
2

]
,

M
κ ·

1
εn(1−εn) if ê (Xi) /∈

[
κ
2 , 1−

κ
2

]
.

(B.14)
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Hence,

EPn

[
1

n

∑n

i=1
|τ̂ ei − τ i|

]
= EPn [|τ̂ en − τn|]

≤ M

κ
· 2

κ (2− κ)
· EPn [|ê(Xn)− e(Xn)|]

+
M

κ
· 1

εn (1− εn)
· Pn

(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
.

By Lemma B.4 (i), supP∈Pe EPn [|ê(Xn)− e(Xn)|] ≤ O(n
− 1

2+dx/βe ), so the conclusion follows if

Pn
(
ê (Xn) /∈

[
κ
2 , 1−

κ
2

])
is shown to converge faster than O(n

− 1
2+dx/βe ). To see this claim is true,

note that

Pn
(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
=

∫
X
Pn−1

(
ê (x) /∈

[κ
2
, 1− κ

2

])
dPX (x)

≤
∫
X
Pn−1

(
|ê (x)− e(x)| ≥ κ

2

)
dPX (x)

≤ c9 exp

(
−c10κ

2

4
nhdx

)
holds for all n satisfying c8h

β < κ/2, where the c8, c9, and c10 are the constants defined in Lemma

B.2 (i). Since εn is assumed to converge at a polynomial rate, 1
εn(1−εn)P

n
(
ê (Xn) /∈

[
κ
2 , 1−

κ
2

])
converges faster than O(n

− 1
2+dx/βe ).

(ii) By (B.14), we have

EPn

[
max

1≤i≤n
|τ̂ ei − τ i|

2

]
≤

(
2M

κ2 (2− κ)

)2

EPn

[
max

1≤i≤n
|ê(Xi)− e(Xi)|2

]
(B.15)

+

(
M

κεn (1− εn)

)2

Pn
(
ê (Xi) /∈

[κ
2
, 1− κ

2

]
for some 1 ≤ i ≤ n

)
.

By Lemma B.4 (ii), the first term in (B.15) converges at rate O
(
n
− 2

2+dx/β (log n)
2

2+dx/β
+2
)

. To find

the convergence rate of the second term in (B.15), consider

Pn
(
ê (Xi) /∈

[κ
2
, 1− κ

2

]
for some 1 ≤ i ≤ n

)
≤ nPn

(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
≤ c9n exp

(
−c10κ

2

4
nhdx

)
,

where the last line follows from Lemma B.2 (i). Since εn converges at polynomial rate, we conclude

the second term in (B.15) converges faster than the first term.
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