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Abstract. In this paper, we provide efficient estimators and honest confidence bands for a variety

of treatment effects including local average (LATE) and local quantile treatment effects (LQTE)

in data-rich environments. We can handle very many control variables, endogenous receipt of

treatment, heterogeneous treatment effects, and function-valued outcomes. Our framework covers

the special case of exogenous receipt of treatment, either conditional on controls or unconditionally

as in randomized control trials. In the latter case, our approach produces efficient estimators and

honest bands for (functional) average treatment effects (ATE) and quantile treatment effects (QTE).

To make informative inference possible, we assume that key reduced form predictive relationships

are approximately sparse. This assumption allows the use of regularization and selection methods to

estimate those relations, and we provide methods for post-regularization and post-selection inference

that are uniformly valid (honest) across a wide-range of models. We show that a key ingredient

enabling honest inference is the use of orthogonal or doubly robust moment conditions in estimating

certain reduced form functional parameters. We illustrate the use of the proposed methods with an

application to estimating the effect of 401(k) eligibility and participation on accumulated assets.

The results on program evaluation are obtained as a consequence of more general results on hon-

est inference in a general moment condition framework, where we work with possibly a continuum

of moments. We provide results on honest inference for (function-valued) parameters within this

general framework where modern machine learning methods are used to fit the nonparametric/high-

dimensional components of the model. These include a number of supporting new results that are

of major independent interest: namely, we (1) prove uniform validity of a multiplier bootstrap, (2)

offer a uniformly valid functional delta method, and (3) provide results for sparsity-based estimation

of regression functions for function-valued outcomes.

1. Introduction

The goal of many empirical analyses in economics is to understand the causal effect of a treatment

such as participation in a government program on economic outcomes. Such analyses are often

complicated by the fact that few economic treatments or government policies are randomly assigned.

The lack of true random assignment has led to the adoption of a variety of quasi-experimental

approaches to estimating treatment effects that are based on observational data. Such approaches

include instrumental variable (IV) methods in cases where treatment is not randomly assigned
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but there is some other external variable, such as eligibility for receipt of a government program or

service, that is either randomly assigned or the researcher is willing to take as exogenous conditional

on the right set of control variables (or simply controls). Another common approach is to assume

that the treatment variable itself may be taken as exogenous after conditioning on the right set

of controls which leads to regression or matching based methods, among others, for estimating

treatment effects.1

A practical problem empirical researchers face when trying to estimate treatment effects is de-

ciding what conditioning variables to include. When the treatment variable or instrument is not

randomly assigned, a researcher must choose what needs to be conditioned on to make the ar-

gument that the instrument or treatment is exogenous plausible. Typically, economic intuition

will suggest a set of variables that might be important to control for but will not identify exactly

which variables are important or the functional form with which variables should enter the model.

While less crucial to identifying treatment effects, the problem of selecting controls also arises in

situations where the key treatment or instrumental variables are randomly assigned. In these cases,

a researcher interested in obtaining precisely estimated policy effects will also typically consider

including additional controls to help absorb residual variation. As in the case where including

controls is motivated by a desire to make identification of the treatment effect more plausible, one

rarely knows exactly which variables will be most useful for accounting for residual variation. In

either case, the lack of clear guidance about what variables to use presents the problem of select-

ing controls from a potentially large set including raw variables available in the data as well as

interactions and other transformations of these variables.

In this paper, we consider estimation of the effect of an endogenous binary treatment, D, on an

outcome, Y , in the presence of a binary instrumental variable, Z, in settings with very many po-

tential controls, f(X). Allowing many potential controls expressly covers both the case where there

are simply many controls (where f(X) = X)) and the case where there are many technical controls

f(X) generated as transformations such as powers, b-splines, or interactions of raw controls,2 X,

along with combinations of the two cases. The notation f(X) naturally accommodates these cases,

and we call f(X) the controls regardless of the case. We allow for fully heterogeneous treatment ef-

fects and thus focus on estimation of causal quantities that are appropriate in heterogeneous effects

settings such as the local average treatment effect (LATE) or the local quantile treatment effect

(LQTE). We focus our discussion on the endogenous case where identification is obtained through

the use of an instrumental variable, but all results carry through to the exogenous case where the

treatment is taken as exogenous unconditionally or after conditioning on sufficient controls by sim-

ply replacing the instrument with the treatment variable in the estimation and inference methods

and in the formal results. In the latter case LATE reduces to the average treatment effect (ATE)

and LQTE to the quantile treatment effect (QTE).

1There is a large literature about estimation of treatment effects. See, for example, the textbook treatments

in Angrist and Pischke (2008) or Wooldridge (2010) and the references therein for discussion from an economic

perspective.
2See, e.g., Koenker (1988), Newey (1997), Wasserman (2006), Chen (2007), and Tsybakov (2009).
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The methodology for estimating treatment effects we consider allows for cases where the number

of potential controls, p := dim f(X), is much larger than the sample size, n. Of course, informative

inference about causal parameters cannot proceed allowing for p� n without further restrictions.

We impose sufficient structure through the assumption that reduced form relationships such as the

conditional expectations EP [D|X], EP [Z|X], and EP [Y |X] are approximately sparse. Intuitively,

approximate sparsity imposes that these reduced form relationships can be represented up to a

small approximation error as a linear combination, possibly inside of a known link function such

as the logistic function, of a number s � n of the variables in f(X) whose identities are a priori

unknown to the researcher. This assumption allows us to use methods for estimating models in

high-dimensional sparse settings that are known to have good prediction properties to estimate

the fundamental reduced form relationships. We may then use these estimated reduced form

quantities as inputs to estimating the causal parameters of interest. Approaching the problem of

estimating treatment effects within this framework allows us to accommodate the realistic scenario

in which a researcher is unsure about exactly which confounding variables or transformations of

these confounds are important and so must search among a broad set of controls.

Valid inference following model selection is non-trivial. Direct application of usual inference

procedures following model selection does not provide valid inference about causal parameters

even in low-dimensional settings, such as when there is only a single control, unless one assumes

sufficient structure on the model that perfect model selection is possible. Such structure can be

restrictive and seems unlikely to be satisfied in many economic applications. For example, a typical

condition that allows perfect model selection is the “beta-min” condition, which requires that all

but a small number of coefficients are exactly zero and that the non-zero coefficients are all large

enough that they can be distinguished from zero with probability very near one in finite samples.

Such a condition rules out the possibility that there may be some variables which have moderate,

but non-zero, partial effects. Ignoring such variables may result in large omitted variables bias

that has a substantive impact on estimation and inference regarding individual model parameters;

see Leeb and Pötscher (2008a; 2008b); Pötscher (2009); and Belloni, Chernozhukov, and Hansen

(2013a; 2014a).

The first main contribution of this paper is providing inferential procedures for key parameters

used in program evaluation that are theoretically valid within approximately sparse models allowing

for imperfect model selection. Our procedures build upon Belloni et al. (2010) and Belloni et al.

(2012), who were the first to demonstrate in a highly specialized context, that valid inference can

proceed following model selection allowing for model selection mistakes under two conditions. We

formulate and extend these two conditions to a rather general moment-condition framework (e.g.,

Hansen (1982) and Hansen and Singleton (1982)) as follows. First, estimation should be based

upon “orthogonal” moment conditions that are first-order insensitive to changes in the values of

nuisance parameters that will be estimated using high-dimensional methods. Specifically, if the

target parameter value α0 is identified via the moment condition

EPψ(W,α0, h0) = 0, (1.1)
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where h0 is a function-valued nuisance parameter estimated via a post-model-selection or regu-

larization method, one needs to use a moment function, ψ, such that the corresponding moment

condition is orthogonal with respect to perturbations of h around h0. More formally, the moment

condition should satisfy

∂h[EPψ(W,α0, h)]h=h0 = 0, (1.2)

where ∂h is a functional derivative operator with respect to h restricted to directions of possible

deviations of estimators of h0 from h0. Second, one needs to ensure that the model selection

mistakes occurring in the estimation of nuisance parameters are uniformly “moderately” small

with respect to the underlying model. Specifically, we will require that the nuisance parameter h0

is estimated at the rate o(n−1/4), which ensures small bias, and that the estimator takes values

in a space whose entropy does not grow too fast, which ensures no overfitting. In this paper, we

establish that building estimators based upon moment conditions with the orthogonality condition

(1.2) holding ensures that crude estimation of h0 via post-selection or other regularization methods

has an asymptotically negligible effect on the estimation of α0 in general frameworks. It then

follows that we can form a regular, root-n consistent estimator of α0, uniformly with respect to the

underlying model.

In the general endogenous treatment effects setting, we build the moment conditions satisfying

(1.2) from the efficient influence functions for certain reduced form parameters, building upon Hahn

(1998). We illustrate how orthogonal moment conditions coupled with methods developed for fore-

casting in high-dimensional approximately sparse models can be used to estimate and obtain valid

inferential statements about a wide variety of structural/treatment effects. We formally demon-

strate the uniform validity of the resulting inference within a broad class of approximately sparse

models including models where perfect model selection is theoretically impossible. An important

feature of our main theoretical results is that they cover the use of variable selection for functional

response data using `1-penalized methods. Functional response data arises, for example, when one

is interested in the LQTE at not just a single quantile but over a range of quantile indices; this in

turn necessitates looking at the functional dependent variable u 7−→ 1(Y 6 u), where u denotes

various levels that Y can cross. Considering such functional response data allows us to provide a

unified inference procedure for interesting quantities such as the (local) distributional and quantile

effects of the treatment, including simpler important parameters such as LQTE at a given quantile

as a special case.

The second main contribution of this paper, which is not only used to establish the properties of

treatment effects estimators but is also of independent interest, is providing a general set of results

for uniformly valid estimation and inference methods in modern moment-condition problems in

econometrics allowing for both smooth and non-smooth moment functions. A key element to our

establishing uniform validity of post-regularization inference is again the use of orthogonal moment

conditions. In the general framework we consider, we may have a continuum of target parameters

identified via a continuum of moment conditions that involve a continuum of nuisance functions that

will be estimated via modern high-dimensional methods such as Lasso, Post-Lasso, or their variants.

These results contain the results on treatment effects relevant for program evaluation, particularly
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the results for distributional and quantile effects, as a leading special case. These results are also

immediately useful in other contexts such as nonseparable quantile models as in Chernozhukov and

Hansen (2005), Chernozhukov and Hansen (2006), Chesher (2003), and Imbens and Newey (2009);

semiparametric and partially identified models as in Escanciano and Zhu (2013); and many others.

In our results, we first establish a functional central limit theorem for the continuum of target

parameters and show that this functional central limit theorem holds uniformly in a wide range

of data-generating processes P with approximately sparse continua of nuisance functions. Second,

we establish a functional central limit theorem for the multiplier bootstrap that resamples the first

order approximations to the standardized estimators and demonstrate its uniform-in-P validity.

These uniformity results build upon and complement those given in Romano and Shaikh (2012) for

the empirical bootstrap. Third, we establish a functional delta method for smooth functionals of

the continuum of target parameters and a functional delta method for the multiplier bootstrap of

these smooth functionals, both of which hold uniformly in P , using an appropriately strengthened

notion of Hadamard differentiability. All of these results are new and are of independent interest

outside of the treatment effects focus of this paper.

We illustrate the use of our methods by estimating the effect of 401(k) eligibility and 401(k)

participation on measures of accumulated assets as in Chernozhukov and Hansen (2004).3 Similar

to Chernozhukov and Hansen (2004), we provide estimates of ATE and QTE of 401(k) eligibility and

of LATE and LQTE of 401(k) participation. We differ from this previous work by using the high-

dimensional methods developed in this paper to allow ourselves to consider a broader set of controls

than has previously been considered. We find that 401(k) participation has a moderate impact on

accumulated financial assets at low quantiles while appearing to have a much larger impact at

high quantiles. Interpreting the quantile index as “preference for savings” as in Chernozhukov

and Hansen (2004), this pattern suggests that 401(k) participation has little causal impact on the

accumulated financial assets of those with low desire to save but a much larger impact on those

with stronger preferences for saving. It is interesting that these results are similar to those in

Chernozhukov and Hansen (2004) despite allowing for a much richer set of controls.

Links to the literature. The orthogonality condition embodied in (1.2) has a long history in

statistics and econometrics. For example, this type of orthogonality was used by Neyman (1979) in

low-dimensional settings to deal with crudely estimated parametric nuisance parameters. See also

Newey (1990), Andrews (1994b), Newey (1994), Robins and Rotnitzky (1995), and Linton (1996)

for the use of this condition in semi-parametric problems.

To the best of our knowledge, Belloni et al. (2010) and Belloni et al. (2012) were the first to

use the orthogonality (1.2) to expressly address the question of the uniform post-selection inference

without imposing the “beta-min” conditions, either in high-dimensional settings with p � n or

in low-dimensional settings with p � n. They applied it to the specific problem of the linear

instrumental variables model with many instruments where the nuisance function h0 is the optimal

3See also Poterba, Venti, and Wise (1994; 1995; 1996; 2001), Abadie (2003), Benjamin (2003), and Ogburn et al.

(2015) among others.
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instrument estimated by Lasso or Post-Lasso methods and α0 is the coefficient of the endogenous

regressor. Belloni et al. (2013a) and Belloni et al. (2014a) also exploited this approach to develop

a double-selection method that yields valid post-selection inference on the parameters of the linear

part of a partially linear model and on average treatment effects when the treatment is binary and

exogenous conditional on controls in both the p� n and the p� n setting.4 Subsequently, Farrell

(2013) extended the results of Belloni et al. (2013a) and Belloni et al. (2014a) to estimation of ATE

when the treatment is multivalued and exogenous conditional on controls using group penalization

for selection. Note that this previous work on treatment effects covers only the exogenous case

and does not allow for functional responses which are necessary, for example, for working with

distributional or quantile treatment effects.

Our work also contributes to the line of research on obtaining
√
n-consistent and asymptotically

normal estimates for low-dimensional components within traditional semiparametric frameworks,

specifically in the important work by Bickel (1982), Robinson (1988), Newey (1990), van der Vaart

(1991), Andrews (1994b), Newey (1994), Ai and Chen (2003, 2012), and Chen et al. (2003). The

major difference is that we allow for the possibility of using modern high-dimensional methods,

a.k.a. machine learning methods, for modeling and fitting the non-parametric (or high-dimensional)

components of the model. In contrast to the former literature, we expressly allow for data-driven

choice of the approximating model for the high-dimensional component, which addresses a crucial

problem that arises in empirical work. Moreover, recent methods based on `1-penalization, upon

which we focus in this paper, allow for much more flexible modeling of the non-parametric/high-

dimensional parts of the model.5 Our general theory in Section 5 also allows, in principle, for

a wide variety of traditional and machine learning methods, including those that do not rely on

approximate sparsity, as long as the methods have good approximation ability and their entropy

does not increase too rapidly with the sample size - i.e. they do not overfit.

The paper also generates a number of new results on sparse estimation with functional response

data. These results are of independent interest in themselves, and they build upon the work of

Belloni and Chernozhukov (2011) who provided rates of convergence for variable selection when one

is interested in estimating the quantile regression process with exogenous variables. More generally,

this theoretical work complements and extends the rapidly growing set of results for `1-penalized

estimation methods; see, for example, Frank and Friedman (1993); Tibshirani (1996); Fan and Li

(2001); Zou (2006); Candès and Tao (2007); van de Geer (2008); Huang et al. (2008); Bickel et al.

(2009); Meinshausen and Yu (2009); Bach (2010); Huang et al. (2010); Belloni and Chernozhukov

(2011); Kato (2011); Belloni et al. (2012); Belloni and Chernozhukov (2013); Belloni et al. (2013b);

Belloni et al. (2013c); Caner and Zhang (2014); and the references therein.

4Note that these results as well as results of this paper on the uniform post-selection inference in moment-condition

problems are new for either p� n or p� n settings. The results also apply to arbitrary model selection devices, such

as the Dantzig selector, Square-Root-Lasso, or Adaptive Lasso, that are able to select good sparse approximating

models, and “moderate” model selection errors are explicitly allowed in the paper.
5See, for instance, Belloni et al. (2012) and Belloni et al. (2014b) for a formalization of this claim in terms of

rearranged Sobolev spaces where it is shown that traditional methods can fail to be consistent while `1-penalized

methods remain consistent and have good rates of convergence.
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Plan of the Paper. Section 2 introduces the structural parameters for policy evaluation and

relates these parameters to reduced form functions. Section 3 describes a three step procedure to

estimate and make inference on the structural parameters and functionals of these parameters, and

Section 4 provides asymptotic theory. Section 5 generalizes the setting and results to moment-

condition problems with a continuum of structural parameters and a continuum of reduced form

functions. Section 6 derives general asymptotic theory for the Lasso and post-Lasso estimators for

functional response data used in the estimation of the reduced form functions. Section 7 presents the

empirical application. We provide notation, proofs of key results, and details about implementation

of the methods in the empirical example in Appendices A–E. An on-line Supplementary Appendix

provides all remaining proofs, additional technical material, and results from a small Monte Carlo

simulation (Belloni et al., 2015).

2. The Treatment Effects Setting and Target Parameters

2.1. Observables and Reduced Form Parameters. The observed random variables consist of

((Yu)u∈U , X, Z,D). The outcome variable of interest Yu is indexed by u ∈ U . We give examples of

the index u below. The variable D ∈ D = {0, 1} is a binary indicator of the receipt of a treatment

or participation in a program. It will typically be treated as endogenous; that is, we will typically

view the treatment as assigned non-randomly with respect to the outcome. The instrumental

variable Z ∈ Z = {0, 1} is a binary indicator, such as an offer of participation, that is assumed to

be randomly assigned conditional on the observable covariates X with support X .6 For example,

we argue that 401(k) eligibility can be considered exogenous only after conditioning on income

and other individual characteristics in the empirical application. The notions of exogeneity and

endogeneity we employ are standard and thus omitted.7

The indexing of the outcome Yu by u is useful to analyze functional data. For example, Yu

could represent an outcome falling short of a threshold, namely Yu = 1(Y 6 u), in the context of

distributional analysis; Yu could be a height indexed by age u in growth charts analysis; or Yu could

be a health outcome indexed by a dosage u in dosage response studies. Our framework is tailored

for such functional response data. The special case with no index is included by simply considering

U to be a singleton set.

We make use of two key types of reduced form parameters for estimating the structural param-

eters of interest – (local) treatment effects and related quantities. These reduced form parameters

are defined as

αV (z) := EP [gV (z,X)] and γV := EP [V ], (2.1)

6Of course, by “randomly assigned” we mean independently of outcomes conditional on the covariates.
7For completeness, we provide a review of these conditions as well as restate standard conditions that are sufficient

for a causal interpretation of the target parameters in the Supplementary Appendix.
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where z = 0 or z = 1 are the fixed values of Z.8 The function gV maps ZX , the support of the

vector (Z,X), to the real line R and is defined as

gV (z, x) := EP [V |Z = z,X = x]. (2.2)

We use V to denote a target variable whose identity may change depending on the context such as

V = 1d(D)Yu or V = 1d(D) where 1d(D) := 1(D = d) is the indicator function.

All the structural parameters we consider are smooth functionals of these reduced-form parame-

ters. In our approach to estimating treatment effects, we estimate the key reduced form parameter

αV (z) using modern methods to deal with high-dimensional data coupled with orthogonal esti-

mating equations. The orthogonality property allows us to deal with the “non-regular” nature of

penalized and post-selection estimators which do not admit linearizations except under very restric-

tive conditions. The use of regularization by model selection or penalization is in turn motivated

by the desire to accommodate high-dimensional data.

2.2. Target Structural Parameters – Local Treatment Effects. The reduced form parame-

ters defined in (2.1) are key because the structural parameters of interest are functionals of these

elementary objects. The local average structural function (LASF) defined as

θYu(d) =
α1d(D)Yu(1)− α1d(D)Yu(0)

α1d(D)(1)− α1d(D)(0)
, d ∈ {0, 1} (2.3)

underlies the formation of many commonly used treatment effects. Under standard assumptions, the

LASF identifies average potential outcomes for the group of compliers, individuals whose treatment

status may be influenced by variation in the instrument, in the treated and non-treated states; see,

e.g. Abadie (2002; 2003). The local average treatment effect (LATE) of Imbens and Angrist (1994)

corresponds to the difference of the two values of the LASF:

θYu(1)− θYu(0). (2.4)

The term local designates that this parameter does not measure the effect on the entire population

but rather measures the effect on the subpopulation of compliers.

When there is no endogeneity, formally when D ≡ Z, the LASF and LATE become the average

structural function (ASF) and average treatment effect (ATE) on the entire population. Thus, our

results cover this situation as a special case where the ASF and ATE simplify to

θYu(z) = αYu(z), θYu(1)− θYu(0) = αYu(1)− αYu(0). (2.5)

We also note that the impact of the instrument Z itself may be of interest since Z often encodes

an offer of participation in a program. In this case, the parameters of interest are again simply the

reduced form parameters

αYu(z), αYu(1)− αYu(0).

8The expectation that defines αV (z) is well-defined under the standard support condition 0 < PP (Z = 1 | X) < 1

a.s. This condition is standard in treatment effects estimation; see, e.g., the supplementary appendix. We impose

this condition in Assumption 4.1.
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Thus, the LASF and LATE are primary targets of interest in this paper, and the ASF and ATE

are subsumed as special cases.

2.2.1. Local Distribution and Quantile Treatment Effects. Setting Yu = Y in (2.3) and (2.4) provides

the conventional LASF and LATE. An important generalization arises by letting Yu = 1(Y 6 u)

be the indicator of the outcome of interest falling below a threshold u ∈ R. In this case, the family

of effects

(θYu(1)− θYu(0))u∈R, (2.6)

describe the local distribution treatment effects (LDTE). Similarly, we can look at the quantile

left-inverse transform of the curve u 7−→ θYu(d),

θ←Y (τ, d) := inf{u ∈ R : θYu(d) > τ}, (2.7)

and examine the family of local quantile treatment effects (LQTE):

(θ←Y (τ, 1)− θ←Y (τ, 0))τ∈(0,1). (2.8)

The LQTE identify the differences of quantiles between the distribution of potential outcomes in

the treated and non-treated states for compliers.

2.3. Target Structural Parameters – Local Treatment Effects on the Treated. We may

also be interested in local treatment effects on the treated. The key object in defining these effects

is the local average structural function on the treated (LASF-T) which is defined by its two values:

ϑYu(d) =
γ1d(D)Yu − α1d(D)Yu(0)

γ1d(D) − α1d(D)(0)
, d ∈ {0, 1}. (2.9)

The LASF-T identifies average potential outcomes for the group of treated compliers in the treated

and non-treated states under standard assumptions. The local average treatment effect on the

treated (LATE-T) introduced in Hong and Nekipelov (2010) and Frölich and Melly (2013) is the

difference of two values of the LASF-T:

ϑYu(1)− ϑYu(0). (2.10)

The LATE-T may be of interest because it measures the average treatment effect for treated com-

pliers, namely the subgroup of compliers that actually receive the treatment.

When the treatment is assigned randomly given controls so we can take D = Z, the LASF-T and

LATE-T become the average structural function on the treated (ASF-T) and average treatment

effect on the treated (ATE-T). In this special case, the ASF-T and ATE-T simplify to

ϑYu(1) =
γ11(D)Yu

γ11(D)
, ϑYu(0) =

γ10(D)Yu − αYu(0)

γ10(D) − 1
, ϑYu(1)− ϑYu(0); (2.11)

and we can use our results to provide estimation and inference methods for these quantities.
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2.3.1. Local Distribution and Quantile Treatment Effects on the Treated. Local distribution treat-

ment effects on the treated (LDTE-T) and local quantile treatment effects on the treated (LQTE-T)

can also be defined. As in Section 2.2.1, we let Yu = 1(Y 6 u) be the indicator of the outcome of

interest falling below a threshold u. The family of treatment effects

(ϑYu(1)− ϑYu(0))u∈R (2.12)

then describes the LDTE-T. We can also use the quantile left-inverse transform of the curve u 7−→
ϑYu(d), namely ϑ←Y (τ, d) := inf{u ∈ R : ϑYu(d) > τ}, and define the LQTE-T:

(ϑ←Y (τ, 1)− ϑ←Y (τ, 0))τ∈(0,1). (2.13)

Under conditional exogeneity LQTE and LQTE-T reduce to the quantile treatment effects (QTE)

and quantile treatment effects on the treated (QTE-T) (Koenker, 2005, Chap. 2).

3. Estimation of Reduced-Form and Structural Parameters in a Data-Rich

Environment

The key objects used to define the structural parameters in Section 2 are the expectations

αV (z) = EP [gV (z,X)] and γV = EP [V ], (3.1)

where gV (z,X) = EP [V |Z = z,X] and V denotes a variable whose identity will change with the

context. Specifically, we shall vary V over the set Vu:

V ∈ Vu := {Vuj}5j=1 := {Yu,10(D)Yu,10(D),11(D)Yu,11(D)}. (3.2)

It is clear that gV (z,X) will play an important role in estimating αV (z). A related function that

will also play an important role in forming a robust estimation strategy is the propensity score

mZ : ZX 7−→ R defined by

mZ(z, x) := PP [Z = z|X = x]. (3.3)

We will denote other potential values for the functions gV and mZ by the parameters g and m, re-

spectively. We can then estimate αV (z) by estimating gV and mZ using high-dimensional modeling

and estimation methods.9

In the rest of this section, we describe the estimation of the reduced-form and structural param-

eters. The estimation method consists of 3 steps:

1) Estimate the predictive relationships mZ and gV using high-dimensional nonparametric meth-

ods with model selection.

2) Estimate the reduced form parameters αV and γV using orthogonal estimating equations to

immunize the reduced form estimators to imperfect model selection in the first step.

3) Estimate the structural parameters and effects via the plug-in rule.

9Note that there is an alternative approach based on decomposing gV as gV (z, x) =
∑1
d=0 eV (d, z, x)lD(d, z, x)

where the regression functions eV and lD map the support of (D,Z,X), DZX , to the real line and are defined by

eV (d, z, x) := EP [V |D = d, Z = z,X = x] and lD(d, z, x) := PP [D = d|Z = z,X = x]. We provide some discussion of

this approach in the supplementary appendix.
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3.1. First Step: Modeling and Estimating gV and mZ . In this section, we discuss estimation

of the conditional expectation functions gV and mZ . Since these functions are unknown and

potentially complicated, we use a generalized linear combination of a large number of control terms

f(X) = (fj(X))pj=1, (3.4)

to approximate gV and mZ . Specifically, we use

gV (z, x) =: ΛV [f(z, x)′βV ] + rV (z, x), (3.5)

f(z, x) := ((1− z)f(x)′, zf(x)′)′, βV := (βV (0)′, βV (1)′)′, (3.6)

mZ(1, x) =: ΛZ [f(x)′βZ ] + rZ(x), mZ(0, x) = 1− ΛZ [f(x)′βZ ]− rZ(x). (3.7)

In these equations, rV (z, x) and rZ(x) are approximation errors, and the functions ΛV (f(z, x)′βV )

and ΛZ(f(x)′βZ) are generalized linear approximations to the target functions gV (z, x) andmZ(1, x).

The functions ΛV and ΛZ are taken to be known link functions Λ. The most common exam-

ple is the linear link Λ(u) = u. When the response variable is binary, we may also use the

logistic link Λ(u) = Λ0(u) = eu/(1 + eu) and its complement 1 − Λ0(u) or the probit link

Λ(u) = Φ(u) = (2π)−1/2
∫ u
−∞ e

−z2/2dz and its complement 1 − Φ(u). For clarity, we use links

from the finite set L = {Id,Φ, 1− Φ,Λ0, 1− Λ0} where Id is the identity (linear) link.

As discussed in the Introduction, the dictionary of controls, denoted by f(X), can be “rich”

in the sense that its dimension p = pn may be large relative to the sample size. Specifically, our

results require only that log p = o(n1/3) along with other technical conditions. We also note that

the functions f forming the dictionary can depend on n, but we suppress this dependence.

Having very many controls f(X) creates a challenge for estimation and inference. A useful

condition that makes it possible to perform constructive estimation and inference in such cases is

termed approximate sparsity or simply sparsity. Sparsity imposes that there exist approximations

of the form given in (3.5)-(3.7) that require only a small number of non-zero coefficients to render

the approximation errors small relative to estimation error. More formally, sparsity relies on two

conditions. First, there must exist βV and βZ such that, for all V ∈ V := {Vu : u ∈ U},

‖βV ‖0 + ‖βZ‖0 6 s, (3.8)

where ‖x‖0 is the number of non-zero components of vector x and all other norms we use are

defined in Appendix A. That is, there are at most s = sn � n components of f(Z,X) and f(X)

with nonzero coefficient in the approximations to gV and mZ . Second, the sparsity condition

requires that the size of the resulting approximation errors is small compared to the conjectured

size of the estimation error; namely, for all V ∈ V,

{EP [r2
V (Z,X)]}1/2 + {EP [r2

Z(X)]}1/2 .
√
s/n. (3.9)

Note that the size of the approximating model s = sn can grow with n just as in standard series

estimation, subject to the rate condition

s2 log2(p ∨ n) log2 n/n→ 0.
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These conditions ensure that the functions gV and mZ are estimable at o(n−1/4) rate and are used

to derive asymptotic normality results for the structural and reduced-form parameter estimators.

They could be relaxed through the use of sample splitting methods as in Belloni et al. (2012).

The high-dimensional-sparse-model framework outlined above extends the standard framework

in the program evaluation literature which assumes both that the identities of the relevant controls

are known and that the number of such controls s is small relative to the sample size.10 Instead,

we assume that there are many, p, potential controls of which at most s controls suffice to achieve

a desirable approximation to the unknown functions gV and mZ ; and we allow the identity and

number of these controls to be unknown. Relying on this assumed sparsity, we use selection methods

to choose approximately the right set of controls.

Current estimation methods that exploit approximate sparsity employ different types of regu-

larization aimed at producing estimators that theoretically perform well in high-dimensional set-

tings while remaining computationally tractable. Many widely used methods are based on `1-

penalization. The Lasso method is one such commonly used approach that adds a penalty for the

weighted sum of the absolute values of the model parameters to the usual objective function of an

M-estimator. A related approach is the Post-Lasso method which performs re-estimation of the

model after selection of variables by Lasso. These methods are discussed at length in recent papers

and review articles; see, for example, Belloni et al. (2013a).

In the following, we outline the general features of the Lasso and Post-Lasso methods focusing

on estimation of gV . Given the data (Ỹi, X̃i)
n
i=1 = (Vi, f(Zi, Xi))

n
i=1, the Lasso estimator β̂V solves

β̂V ∈ arg min
β∈Rdim(X̃)

(
En[M(Ỹ , X̃ ′β)] +

λ

n
‖Ψ̂β‖1

)
, (3.10)

where Ψ̂ = diag(l̂1, . . . , l̂dim(X̃)
) is a diagonal matrix of data-dependent penalty loadings, M(y, t) =

(y−t)2/2 in the case of linear regression, and M(y, t) = −{1(y = 1) log Λ(t)+1(y = 0) log(1−Λ(t))}
in the case of binary regression. The penalty level, λ, and loadings, l̂j , j = 1, ...,dim(X̃), are

selected to guarantee good theoretical properties of the method. We provide further discussion

of these methods for estimation of a continuum of functions in Section 6, and we specify detailed

implementation algorithms used in the empirical example in Appendix F. A key consideration in this

paper is that the penalty level needs to be set to account for the fact that we will be simultaneously

estimating potentially a continuum of Lasso regressions since our V varies over the list Vu with u

varying over the index set U .

The Post-Lasso method uses β̂V solely as a model selection device. Specifically, it makes use of

the labels of the regressors with non-zero estimated coefficients, ÎV := supp(β̂V ). The Post-Lasso

estimator is then a solution to

β̃V ∈ arg min
β∈Rdim(X̃)

(
En[M(Ỹ , X̃ ′β)] : βj = 0, j 6∈ ÎV

)
. (3.11)

10For example, one would select a set of basis functions, {fj(X)}∞j=1, such as power series or splines and then use

only the first s� n terms in the basis under the assumption that sC/n→ 0 for some number C whose value depends

on the specific context in a standard nonparametric approach using series.
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A main contribution of this paper is establishing that the estimator ĝV (Z,X) = Λ(f(Z,X)′β̄V ) of

the regression function gV (Z,X), where β̄V = β̂V or β̄V = β̃V , achieves the near oracle rate of con-

vergence
√

(s log p)/n and maintains desirable theoretic properties while allowing for a continuum

of response variables.

Estimation of mZ proceeds similarly. The Lasso estimator β̂Z and Post-Lasso estimator β̃Z

are defined analogously to β̂V and β̃V using the data (Ỹi, X̃i)
n
i=1= (Zi, f(Xi))

n
i=1. The estimator

m̂Z(1, X) = ΛZ(f(X)′β̄Z) of mZ(X), with β̄Z = β̂Z or β̄Z = β̃Z , also achieves the near oracle rate

of convergence
√

(s log p)/n and has other good theoretic properties. The estimator of m̂Z(0, X)

is then formed as 1− m̂Z(1, X).

3.2. Second Step: Robust Estimation of the Reduced-Form Parameters αV (z) and γV .

Estimation of the key quantities αV (z) will make heavy use of orthogonal moment functions as

defined in (1.2). These moment functions are closely tied to efficient influence functions, where effi-

ciency is in the sense of locally minimax semi-parametric efficiency. The use of these functions will

deliver robustness with respect to the non-regularity of the post-selection and penalized estimators

needed to manage high-dimensional data. The use of these functions also automatically delivers

semi-parametric efficiency for estimating and performing inference on the reduced-form parameters

and their smooth transformations – the structural parameters.

The efficient influence function and orthogonal moment function for αV (z), z ∈ Z = {0, 1}, are

given respectively by

ψαV,z(W ) := ψαV,z,gV ,mZ (W,αV (z)) and (3.12)

ψαV,z,g,m(W,α) :=
1(Z = z)(V − g(z,X))

m(z,X)
+ g(z,X)− α. (3.13)

This efficient influence function was derived by Hahn (1998); it has recently been used by Cattaneo

(2010) in the series context (with p � n) and Rothe and Firpo (2013) in the kernel context. The

efficient influence function and the moment function for γV are trivially given by

ψγV (W ) := ψγV (W,γV ), and ψγV (W,γ) := V − γ. (3.14)

We then define estimators of the reduced-form parameters αV (z) and γV (z) as solutions α =

α̂V (z) and γ = γ̂V to the equations

En[ψαV,z,ĝV ,m̂Z (W,α)] = 0, En[ψγV (W,γ)] = 0, (3.15)

where ĝV and m̂Z are constructed as in Section 3.1. We apply this procedure to each variable name

V ∈ Vu and obtain the estimator11

ρ̂u :=
(
{α̂V (0), α̂V (1), γ̂V }

)
V ∈Vu of ρu :=

(
{αV (0), αV (1), γV }

)
V ∈Vu . (3.16)

The estimator and the parameter are vectors in Rdρ with dimension dρ = 3× dimVu = 15.

11By default notation, (aj)j∈J returns a column vector produced by stacking components together in some con-

sistent order.
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In the next section, we formally establish a principal result which shows that
√
n(ρ̂u − ρu) N(0,VarP (ψρu)), ψρu := ({ψαV,0, ψαV,1, ψ

γ
V })V ∈Vu , uniformly in P ∈ Pn, (3.17)

where Pn is a rich set of data generating processes P . The notation “Zn,P  ZP uniformly in

P ∈ Pn” is defined formally in Appendix A and can be read as “Zn,P is approximately distributed

as ZP uniformly in P ∈ Pn.” This usage corresponds to the usual notion of asymptotic distribution

extended to handle uniformity in P . Here Pn is a “rich” set of data generating processes P which

includes cases where perfect model selection is impossible theoretically.

We then stack all the reduced form estimators and parameters over u ∈ U as

ρ̂ = (ρ̂u)u∈U and ρ = (ρu)u∈U ,

giving rise to the empirical reduced-form process ρ̂ and the reduced-form function-valued parameter

ρ. We establish that
√
n(ρ̂− ρ) is asymptotically Gaussian: In `∞(U)dρ ,
√
n(ρ̂− ρ) ZP := (GPψ

ρ
u)u∈U , uniformly in P ∈ Pn, (3.18)

where GP denotes the P -Brownian bridge (van der Vaart and Wellner, 1996, p. 81–82). This result

contains (3.17) as a special case and again allows Pn to be a “rich” set of data generating processes

P that includes cases where perfect model selection is impossible theoretically. Importantly, this

result verifies that the functional central limit theorem applies to the reduced-form estimators in

the presence of possible model selection mistakes.

Since some of our objects of interest are complicated, inference can be facilitated by a multiplier

bootstrap method Giné and Zinn (1984). We define ρ̂∗ = (ρ̂∗u)u∈U , a bootstrap draw of ρ̂, via

ρ̂∗u = ρ̂u + n−1
n∑
i=1

ξiψ̂
ρ
u(Wi). (3.19)

Here (ξi)
n
i=1 are i.i.d. copies of ξ which are independently distributed from the data (Wi)

n
i=1 and

whose distribution Pξ does not depend on P . We also impose that

E[ξ] = 0, E[ξ2] = 1, E[exp(|ξ|)] <∞. (3.20)

Examples of ξ include (a) ξ = E −1, where E is a standard exponential random variable, (b) ξ = N ,

where N is a standard normal random variable, and (c) ξ = N1/
√

2 + (N 2
2 − 1)/2, where N1 and

N2 are mutually independent standard normal random variables.12 The choices of (a), (b), and (c)

correspond respectively to the Bayesian bootstrap (e.g., Hahn (1997) and Chamberlain and Imbens

(2003)), the Gaussian multiplier method (e.g, Giné and Zinn (1984) and van der Vaart and Wellner

(1996, Chap. 3.6)), and the wild bootstrap method Mammen (1993).13 ψ̂ρu in (3.19) is an estimator

of the influence function ψρu defined via the plug-in rule:

ψ̂ρu = (ψ̂ρV )V ∈Vu , ψ̂ρV (W ) := {ψαV,0,ĝV ,m̂Z (W, α̂V (0)), ψαV,1,ĝV ,m̂Z (W, α̂V (1)), ψγV (W, γ̂V )}. (3.21)

12We do not consider the nonparametric bootstrap, which corresponds to using multinomial multipliers ξ, to

reduce the length of the paper; but we note that the conditions and analysis could be extended to cover this case.
13 The motivation for method (c) is that it is able to match 3 moments since E[ξ2] = E[ξ3] = 1. Methods (a) and

(b) do not satisfy this property since E[ξ2] = 1 but E[ξ3] 6= 1 for these approaches.
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Note that this bootstrap is computationally efficient since it does not involve recomputing the

influence functions ψ̂ρu.14 Each new draw of (ξi)
n
i=1 generates a new draw of ρ̂∗ holding the data

and the estimates of the influence functions fixed. This method simply amounts to resampling

the first-order approximations to the estimators. Here we build upon prior uses of this or similar

methods in low-dimensional settings such as Hansen (1996) and Kline and Santos (2012).

We establish that the bootstrap law of
√
n(ρ̂∗− ρ̂) is uniformly asymptotically consistent: In the

metric space `∞(U)dρ , conditionally on the data,

√
n(ρ̂∗ − ρ̂) B ZP , uniformly in P ∈ Pn,

where  B denotes weak convergence of the bootstrap law in probability, as defined in Appendix

B.

3.3. Third Step: Robust Estimation of the Structural Parameters. All structural param-

eters we consider take the form of smooth transformations of the reduced-form parameters:

∆ := (∆q)q∈Q, where ∆q := φ(ρ)(q), q ∈ Q. (3.22)

The structural parameters may themselves carry an index q ∈ Q that can be different from u; for

example, the LQTE is indexed by a quantile index q ∈ (0, 1). This formulation includes as special

cases all the structural functions of Section 2. We estimate these quantities by the plug-in rule.

We establish the asymptotic behavior of these estimators and the validity of the bootstrap as a

corollary from the results outlined in Section 3.2 and the functional delta method (extended to

handle uniformity in P ).

For the application of the functional delta method, we require that the functional ρ 7−→ φ(ρ)

be Hadamard differentiable uniformly in ρ ∈ Dρ, where Dρ is a set that contains the true values

ρ = ρP for all P ∈ Pn, tangentially to a subset that contains the realizations of ZP for all P ∈ Pn
with derivative map h 7−→ φ′ρ(h) = (φ′ρ(h)(q))q∈Q.15 We define the estimators of the structural

parameters and their bootstrap versions via the plug-in rule as

∆̂ := (∆̂q)q∈Q, ∆̂q := φ (ρ̂) (q), and ∆̂∗ := (∆̂∗q)q∈Q, ∆̂∗q := φ (ρ̂∗) (q). (3.23)

We establish that these estimators are asymptotically Gaussian

√
n(∆̂−∆) φ′ρ(ZP ), uniformly in P ∈ Pn, (3.24)

and that the bootstrap consistently estimates their large sample distribution:

√
n(∆̂∗ − ∆̂) B φ′ρ(ZP ), uniformly in P ∈ Pn. (3.25)

These results can be used to construct simultaneous confidence bands and test functional hypotheses

on ∆ using the methods described for example in Chernozhukov and Fernández-Val (2005) and

Chernozhukov et al. (2013).

14Chernozhukov and Hansen (2006) and Hong and Scaillet (2006) proposed a related computationally efficient

bootstrap scheme that resamples the influence functions.
15We give the definition of uniform Hadamard differentiability in Definition B.1 of Appendix B.
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4. Theory: Estimation and Inference on Local Treatment Effects Functionals

Consider fixed sequences of numbers δn ↘ 0, εn ↘ 0, ∆n ↘ 0, at a speed at most polynomial in

n (for example, δn > 1/nc for some c > 0), `n := log n, and positive constants c, C, and c′ < 1/2.

These sequences and constants will not vary with P . The probability P can vary in the set Pn
of probability measures, termed “data-generating processes”, where Pn is typically a set that is

weakly increasing in n, i.e. Pn ⊆ Pn+1. Note that definitions of norms and other notation are

collected in Appendix A.

Assumption 4.1 (Basic Assumptions). (i) Consider a random element W with values in a mea-

sure space (W,AW) and law determined by a probability measure P ∈ Pn. The observed data

((Wui)u∈U )ni=1 consist of n i.i.d. copies of a random element (Wu)u∈U = ((Yu)u∈U , D, Z,X), where

U is a Polish space equipped with its Borel sigma-field and (Yu, D, Z,X) ∈ R3+dX . Each Wu is

generated via a measurable transform t(W,u) of W and u, namely the map t : W × U 7−→ R3+dX

is measurable, and the map can possibly depend on P . Let

Vu := {Vuj}j∈J := {Yu,10(D)Yu,10(D),11(D)Yu,11(D)}, V := (Vu)u∈U ,

where J = {1, ..., 5}. (ii) For P := ∪∞n=n0
Pn, the map u 7−→ Yu obeys the uniform continuity

property:

lim
ε↘0

sup
P∈P

sup
dU (u,ū)6ε

‖Yu − Yū‖P,2 = 0, sup
P∈P

EP sup
u∈U
|Yu|2+c <∞,

where the second supremum in the first expression is taken over u, ū ∈ U , and U is a totally

bounded metric space equipped with a semi-metric dU . The uniform covering entropy of the set

FP = {Yu : u ∈ U}, viewed as a collection of maps (W,AW) 7−→ R, obeys

sup
Q

logN(ε‖FP ‖Q,2,FP , ‖ · ‖Q,2) 6 C log(e/ε) ∨ 0

for all P ∈ P, where FP (W ) = supu∈U |Yu|, with the supremum taken over all finitely discrete

probability measures Q on (W,AW). (iii) For each P ∈ P, the conditional probability of Z = 1

given X is bounded away from zero or one, namely c′ 6 mZ(1, X) 6 1− c′ P -a.s., the instrument

Z has a non-trivial impact on D, namely c′ 6 |PP [D = 1|Z = 1, X]− PP [D = 1|Z = 0, X]| P -a.s,

and the regression function gV is bounded, ‖gV ‖P,∞ <∞ for all V ∈ V.

Assumption 4.1 is stated to deal with the measurability issues associated with functional response

data. This assumption also implies that the set of functions (ψρu)u∈U , where

ψρu := ({ψαV,0, ψαV,1, ψ
γ
V })V ∈Vu ,

is P -Donsker uniformly in P. That is, it implies

Zn,P  ZP in `∞(U)dρ , uniformly in P ∈ P, (4.1)

Zn,P := (Gnψ
ρ
u)u∈U and ZP := (GPψ

ρ
u)u∈U , (4.2)
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with GP denoting the P -Brownian bridge (van der Vaart and Wellner, 1996, p. 81–82) and with

ZP having bounded, uniformly continuous paths uniformly in P ∈ P:

sup
P∈P

EP sup
u∈U
‖ZP (u)‖ <∞, lim

ε↘0
sup
P∈P

EP sup
dU (u,ũ)6ε

‖ZP (u)− ZP (ũ)‖ = 0. (4.3)

We work with the sequence of constants defined prior to Assumption 4.1.

Assumption 4.2 (Approximate Sparsity). Under each P ∈ Pn and for each n > n0, uniformly

for all V ∈ V: (i) The approximations (3.5)-(3.7) hold with the link functions ΛV and ΛZ be-

longing to the set L, the sparsity condition ‖βV ‖0 + ‖βZ‖0 6 s holding, the approximation errors

satisfying ‖rV ‖P,2 + ‖rZ‖P,2 6 δnn
−1/4 and ‖rV ‖P,∞ + ‖rZ‖P,∞ 6 εn, and the sparsity index s

and the number of terms p in the vector f(X) obeying s2 log2(p ∨ n) log2 n 6 δnn. (ii) There are

estimators β̄V and β̄Z such that, with probability no less than 1−∆n, the estimation errors satisfy

‖f(Z,X)′(β̄V − βV )‖Pn,2 + ‖f(X)′(β̄Z − βZ)‖Pn,2 6 δnn
−1/4, Kn‖β̄V − βV ‖1 + Kn‖β̄Z − βZ‖1 6

εn; the estimators are sparse such that ‖β̄V ‖0 + ‖β̄Z‖0 6 Cs; and the empirical and popula-

tion norms induced by the Gram matrix formed by (f(Xi))
n
i=1 are equivalent on sparse subsets,

sup‖δ‖06`ns |‖f(X)′δ‖Pn,2/‖f(X)′δ‖P,2 − 1| 6 εn. (iii) The following boundedness conditions hold:

‖‖f(X)‖∞||P,∞ 6 Kn and ‖V ‖P,∞ 6 C.

Comment 4.1. Assumption 4.2 imposes simple intermediate-level conditions which encode both

the approximate sparsity of the models as well as some reasonable behavior of the sparse estimators

of mZ and gV . These conditions significantly extend and generalize the conditions employed in the

literature on adaptive estimation using series methods. The boundedness conditions are made to

simplify arguments, and they could be removed at the cost of more complicated proofs and more

stringent side conditions. Sufficient conditions for the equivalence between empirical and population

norms and primitive examples of functions admitting sparse approximations are given in Belloni

et al. (2014a). We provide primitive conditions for Lasso estimators to satisfy the bounds above

while addressing the problem of estimating continua of approximately sparse nuisance functions in

Section 6. We expect that other sparsity-based estimators, such as the Dantzig selector or adaptive

Lasso, could be used in the present context as well. �

Under the stated assumptions, the empirical reduced form process Ẑn,P =
√
n(ρ̂− ρ) defined by

(3.16) obeys the following relations. We recall definitions of convergence uniformly in P ∈ Pn in

Appendix A.

Theorem 4.1 (Uniform Gaussianity of the Reduced-Form Parameter Process). Under

Assumptions 4.1 and 4.2, the reduced-form empirical process admits a linearization; namely,

Ẑn,P :=
√
n(ρ̂− ρ) = Zn,P + oP (1) in `∞(U)dρ, uniformly in P ∈ Pn. (4.4)

The process Ẑn,P is asymptotically Gaussian, namely

Ẑn,P  ZP in `∞(U)dρ, uniformly in P ∈ Pn, (4.5)

where ZP is defined in (4.2) and its paths obey the property (4.3).
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Another main result of this section shows that the bootstrap law of the process

Ẑ∗n,P :=
√
n(ρ̂∗ − ρ̂) :=

1√
n

n∑
i=1

ξiψ̂
ρ
u(Wi),

where ψ̂ρu is defined in (3.21), provides a valid approximation to the large sample law of
√
n(ρ̂− ρ).

Theorem 4.2 (Validity of Multiplier Bootstrap for Inference on Reduced-Form Pa-

rameters). Under Assumptions 4.1 and 4.2, the bootstrap law consistently approximates the large

sample law ZP of Zn,P uniformly in P ∈ Pn, namely,

Ẑ∗n,P  B ZP in `∞(U)dρ, uniformly in P ∈ Pn. (4.6)

Next we consider inference on the structural functionals ∆ defined in (3.22). We derive the large

sample distribution of the estimator ∆̂ in (3.23), and show that the multiplier bootstrap law of ∆̂∗

in (3.23) provides a consistent approximation to that distribution. We rely on the functional delta

method in our derivations, which we modify to handle uniformity with respect to the underlying

dgp P . Our argument relies on the following assumption on the structural functionals.

Assumption 4.3 (Uniform Hadamard Differentiability of Structural Functionals). Suppose that

for each P ∈ P, ρ = ρP ∈ Dρ, a compact metric space. Suppose % 7−→ φ(%), a functional of interest

mapping Dφ ⊂ D = `∞(U)dρ to `∞(Q), where Dρ ⊂ Dφ, is Hadamard differentiable in % tangentially

to D0 = UC(U)dρ uniformly in % ∈ Dρ, with the linear derivative map φ′% : D0 7−→ D such that the

mapping (%, h) 7−→ φ′%(h) from Dρ × D0 to `∞(Q) is continuous.

The definition of uniform Hadamard differentiability is given in Definition B.1 of Appendix B.

Assumption 4.3 holds for all examples of structural parameters listed in Section 2.

The following corollary gives the large sample law of
√
n(∆̂ − ∆), the properly normalized

structural estimator. It also shows that the bootstrap law of
√
n(∆̂∗− ∆̂), computed conditionally

on the data, approaches the large sample law
√
n(∆̂ −∆). It follows from the previous theorems

as well as from a more general result contained in Theorem 5.3.

Corollary 4.1 (Limit Theory and Validity of Multiplier Bootstrap for Smooth Struc-

tural Functionals). Under Assumptions 4.1, 4.2, and 4.3,
√
n(∆̂−∆) TP := φ′ρP (ZP ), in `∞(Q), uniformly in P ∈ Pn, (4.7)

where TP is a zero mean tight Gaussian process, for each P ∈ P. Moreover,
√
n(∆̂∗ − ∆̂) B TP , in `∞(Q), uniformly in P ∈ Pn. (4.8)

5. Theory: A General Problem of Inference on Function-Valued Parameters with

Nuisance Functions Estimated by Machine Learning Methods

In this section, we consider a general setting where possibly a continuum of target parameters

is of interest and we use modern machine learning methods, with Lasso-type or Post-Lasso-type
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methods being the chief example, to estimate a continuum of high-dimensional nuisance functions.

This setting covers a rich variety of modern moment-condition problems in econometrics including

the treatment effects problem. We establish a functional central limit theorem for the estimators

of the continuum of target parameters that holds uniformly in P ∈ P, where P includes a wide

range of data-generating processes with well-approximable continuums of nuisance functions. We

also derive a functional central limit theorem for the multiplier bootstrap that resamples the first

order approximations to the standardized estimators of the continuum of target parameters and

establish its uniform validity. Moreover, we establish the uniform validity of the functional delta

method and the functional delta method for the multiplier bootstrap for smooth functionals of the

continuum of target parameters using an appropriate strengthening of Hadamard differentiability.

We are interested in function-valued target parameters indexed by u ∈ U ⊂ Rdu . We denote the

true value of the target parameter by

θ0 = (θu)u∈U , where θu ∈ Θu ⊂ Θ ⊂ Rdθ , for each u ∈ U .

We assume that for each u ∈ U , the true value θu is identified as the solution to the following

moment condition:

EP [ψu(Wu, θu, hu(Zu))] = 0, (5.1)

where Wu is a random vector that takes values in a Borel set Wu ⊂ Rdw and contains as a

subcomponent the vector Zu taking values in a Borel set Zu, the moment function

ψu :Wu ×Θu × Tu 7−→ Rdθ , (w, θ, t) 7−→ ψu(w, θ, t) = (ψuj(w, θ, t))
dθ
j=1 (5.2)

is a Borel measurable map, and the function

hu : Zu 7−→ Rdt , z 7−→ hu(z) = (hum(z))dtm=1 ∈ Tu(z), (5.3)

is another Borel measurable map that denotes the possibly infinite-dimensional nuisance parameter.

The sets Tu(z) are assumed to be convex for each u ∈ U and z ∈ Zu. Finite-dimensional nuisance

parameters that do not depend on Zu are treated as part of hu as well.

We assume that the continuum of nuisance functions (hu)u∈U is well-approximable and can be

well estimated by the modern generation of statistical and machine learning methods. In particular,

our regularity conditions allow for approximately sparse nuisance functions, which can be modeled

and estimated using modern regularization and post-selection methods such as Lasso and Post-

Lasso. We let ĥu = (ĥum)dtm=1 denote the estimator of hu, which we assume obeys the conditions

in Assumption 5.3. The estimator θ̂u of θu is constructed as any approximate εn-solution in Θu to

a sample analog of the moment condition (5.1), i.e.,

‖En[ψu(Wu, θ̂u, ĥu(Zu))]‖ 6 inf
θ∈Θu

‖En[ψ(Wu, θ, ĥu(Zu))]‖+ εn, where εn = o(n−1/2). (5.4)

Comment 5.1 (Handling Over-identified Cases). We do not analyze over-identified cases ex-

plicitly, but it is helpful to note that they can be handled within the current framework. Let

ψou(Wu, θ, h
o
u(Zu)) be the original over-identifying moment function. Let Au denote the point-

wise optimal matrix of linear combinations of the moments, so that the final moment function

ψu(Wu, θ, h(Zu)) = Auψ
o
u(Wu, θ, h

o
u(Zu)) has the same dimension as θu. Here hu(Zu) = (vec(Au)′,
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ho′u(Zu))′; that is, we simply treat Au as part of the nuisance function hu being estimated. We do

not analyze the preliminary estimation of Au in the present paper in order to maintain the focus

on exactly identified cases as in Section 4. Note that Au depends on Zu only trivially — it is a

constant function of Zu. �

The key condition needed for regular estimation of θu is an orthogonality or immunization con-

dition. The simplest to explain, yet strongest, form of this condition can be expressed as follows:

∂tEP [ψu(Wu, θu, t)|Zu]
∣∣∣
t=hu(Zu)

= 0, a.s., (5.5)

subject to additional technical conditions such as continuity (5.6) and dominance (5.7) stated be-

low, where we use the symbol ∂t to abbreviate ∂
∂t′ . This condition holds in the previous setting of

inference on relevant treatment effects after interchanging the order of the derivative and expecta-

tion. The formulation here also covers certain non-smooth cases such as structural and instrumental

quantile regression problems.

In the formal development, we use a more general form of the orthogonality condition.

Definition 5.1 (Orthogonality for Moment Condition Models, General Form). For each

u ∈ U , suppose that (5.1)–(5.3) hold. Consider Hu, a set of measurable functions z 7−→ h(z) ∈
Tu(z) from Zu to Rdt such that ‖h(Zu) − hu(Zu)‖P,2 < ∞ for all h ∈ Hu. Suppose also that the

set Tu(z) is a convex subset of Rdt for each z ∈ Zu. We say that ψu obeys a general form of

orthogonality with respect to Hu uniformly in u ∈ U if the following conditions hold: For each

u ∈ U , the derivative

t 7−→ ∂tEP [ψu(Wu, θu, t)|Zu] is continuous on t ∈ Tu(Zu) P -a.s.; (5.6)

is dominated, ∥∥∥∥∥ sup
t∈Tu(Zu)

∥∥∥∂tEP [ψu(Wu, θu, t)|Zu]
∥∥∥∥∥∥∥∥

P,2

<∞; (5.7)

and obeys the orthogonality condition:

EP

[
∂tEP

[
ψu(Wu, θu, hu(Zu))|Zu

]
(h(Zu)− hu(Zu))

]
= 0 for all h ∈ Hu. (5.8)

The Supplementary Appendix provides a slightly more general definition. The orthogonality con-

dition (5.8) reduces to (5.5) when Hu can span all measurable functions h : Zu 7−→ Tu such that

‖h‖P,2 <∞ but is more general otherwise.

Comment 5.2 (Orthogonalization typically expands the number of nuisance parame-

ters). It is important to use a moment function ψu that satisfies the orthogonality property given

in (5.8). Generally, if we have a moment function ψ̃u which identifies θu but does not have this

property, we can construct a moment function ψu that identifies θu and has the required orthog-

onality property by projecting the original function ψ̃u onto the orthocomplement of the tangent

space for the original set of nuisance functions hou; see, for example, van der Vaart and Wellner

(1996), van der Vaart (1998, Chap. 25), Kosorok (2008), Belloni et al. (2013b), and Belloni et al.

(2014a).
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Note that the projection typically depends on P , which gives rise to additional nuisance param-

eters hnu, which are then incorporated together with the original nuisance parameters into the new

parameter hu = (h0
u, h

n
u). Note that this is a feature of all of the examples we consider. For ex-

ample, the orthogonal moment functions in the exogenous case of the treatment effects framework

depend on both the regression function and the propensity score function. This point is clarified

further by considering the classical linear model as demonstrated in the next remark. �

Comment 5.3 (A High-Dimensional Linear Regression Example). To illustrate the orthog-

onality condition, let us consider the linear model:

Y = Dθ0 +X ′β0 + ε, EP [εX] = 0, D = X ′π0 + ν, EP [νX] = 0, (5.9)

where D is the treatment and X are the controls of high dimension p� n. Call the first equation

the regression equation, and the second equation the propensity score equation. The orthogonal

moment condition that identifies the projection coefficient θ0 is the Frisch-Waugh-Lovell partialling

out interpretation of θ0:

EP (U − νθ0)ν = 0, (5.10)

where U is the population residual left after projecting out the controls X from the outcome, i.e.

Y = X ′δ0 +U, EPUX = 0; and ν is the population residual left after projecting out controls from

the treatment, as defined in the propensity score equation. The high-dimensional nuisance function

is h(Z) = (X ′δ,X ′π)′, for Z = X, with true value denoted by h0(Z) = (X ′δ0, X
′π0)′. Now the

moment function

ψ(W, θ, h) = {(Y −X ′δ)− (D −X ′π)θ}(D −X ′π), (5.11)

has the required orthogonality property (5.8), since by the law of iterated expectations and some

simple algebra:

EP

[
∂tEP

[
ψ0(W, θ0, h0(Z))|Z

]
(h(Z)− h0(Z))

]
(5.12)

=
(

EP [(D −X ′π0)X ′a],EP [{(Y −X ′δ0) + 2(D −X ′π0)θ0}X ′b]
)

= 0,

for a = δ − δ0 and b = π − π0. In fact ψ(W, θ0, h0) is the semi-parametrically efficient score for θ0.

The resulting estimator of θ0 is root-n consistent and asymptotically normal, uniformly within a

class of approximately sparse models as follows from the general results of this section, and is also

semi-parametrically efficient. See also Belloni et al. (2014a) which deals with the partially linear

model in detail and thus covers this linear example as a special case.

Note that the orthogonal moment function contains two nuisance functions – the regression func-

tion and the propensity score – X ′δ0 and X ′π0. We could also identify θ0 through non-orthogonal

moment conditions, containing single nuisance functions:

EP [{Y −Dθ0 −X ′β0}D] = 0 or EP [{Y −Dθ0}(D −X ′π0)] = 0.

The first moment condition corresponds to the regression method, while the second to the so-called

covariate balancing method. Importantly, the use of these non-orthogonal moment conditions

generally does not produce an estimator for θ0 that is
√
n-consistent and asymptotically normal

uniformly in the class of approximately sparse models. This failure occurs because we are forced to
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use highly non-regular estimators to estimate the nuisance functions X ′δ0 and X ′π0 in the p � n

setting. In fact, this failure would also occur with a low number of controls, including having only

p = 1, whenever selection procedures that exclude irrelevant variables with very high probability

are used to estimate the regression parameter δ0 or the propensity score parameter π0. For more

discussion and documentation of this failure, see Leeb and Pötscher (2008a; 2008b); Pötscher (2009);

and Belloni, Chernozhukov, and Hansen (2013a; 2014a). By contrast, constructing orthogonal

moment conditions – involving the projection of both the outcome and the treatment onto the

controls and thereby combining the regression and covariate balancing methods – makes it possible

to achieve
√
n consistency and asymptotic normality uniformly within a class of approximately

sparse models. �

In what follows, we shall denote by δ, c0, c, and C some positive constants. For a positive integer

d, [d] denotes the set {1, . . . , d}. We shall impose the following regularity conditions.

Assumption 5.1 (Moment condition problem). Consider a random element W , taking values in

a measure space (W,AW), with law determined by a probability measure P ∈ Pn. The observed

data ((Wui)u∈U )ni=1 consist of n i.i.d. copies of a random element (Wu)u∈U which is generated

as a suitably measurable transformation with respect to W and u. Uniformly for all n > n0 and

P ∈ Pn, the following conditions hold: (i) The true parameter value θu obeys (5.1) and is interior

relative to Θu ⊂ Θ ⊂ Rdθ , namely there is a ball of radius δ centered at θu contained in Θu for

all u ∈ U , and Θ is compact. (ii) For ν := (νk)
dθ+dt
k=1 = (θ, t), each j ∈ [dθ] and u ∈ U , the map

Θu × Tu(Zu) 3 ν 7−→ EP [ψuj(Wu, ν)|Zu] is twice continuously differentiable a.s. with derivatives

obeying the integrability conditions specified in Assumption 5.2. (iii) For all u ∈ U , the moment

function ψu obeys the orthogonality condition given in Definition 5.1 for the set Hu = Hun specified

in Assumption 5.3. (iv) The following identifiability condition holds: ‖EP [ψu(Wu, θ, hu(Zu))]‖ >
2−1(‖Ju(θ − θu)‖ ∧ c0) for all θ ∈ Θu, where the singular values of Ju := ∂θE[ψu(Wu, θu, hu(Zu))]

lie between c and C for all u ∈ U .

The conditions of Assumption 5.1 are mild and standard in moment condition problems. Assump-

tion 5.1(iv) encodes sufficient global and local identifiability to obtain a rate result. The suitably

measurable condition, defined in Appendix A, is a mild condition satisfied in most practical cases.

Assumption 5.2 (Entropy and smoothness). The set (U , dU ) is a semi-metric space such that

logN(ε,U , dU ) 6 C log(e/ε) ∨ 0. Let α ∈ [1, 2], and let α1 and α2 be some positive constants.

Uniformly for all n > n0 and P ∈ Pn, the following conditions hold: (i) The set of functions

F0 = {ψuj(Wu, θu, hu(Zu)) : j ∈ [dθ], u ∈ U}, viewed as functions of W is suitably measurable; has

an envelope function F0(W ) = supj∈[dθ],u∈U ,ν∈Θu×Tu(Zu) |ψuj(Wu, ν)| that is measurable with respect

to W and obeys ‖F0‖P,q 6 C, where q > 4 is a fixed constant; and has a uniform covering entropy

obeying supQ logN(ε‖F0‖Q,2,F0, ‖ · ‖Q,2) 6 C log(e/ε) ∨ 0. (ii) For all j ∈ [dθ] and k, r ∈ [dθ + dt],

and ψuj(W ) := ψuj(Wu, θu, hu(Zu)),

(a) supu∈U ,(ν,ν̄)∈(Θu×Tu(Zu))2 EP [(ψuj(Wu, ν)− ψuj(Wu, ν̄))2|Zu]/‖ν − ν̄‖α 6 C, P -a.s.,

(b) supdU (u,ū)6δ EP [(ψuj(W )− ψūj(W ))2] 6 Cδα1 , supdU (u,ū)6δ ‖Ju − Jū‖ 6 Cδα2 ,
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(c) EP supu∈U ,ν∈Θu×Tu(Zu) |∂νrEP [ψuj(Wu, ν) | Zu] |2 6 C,

(d) supu∈U ,ν∈Θu×Tu(Zu) |∂νk∂νrEP [ψuj(Wu, ν)|Zu]| 6 C, P -a.s.

Assumption 5.2 imposes smoothness and integrability conditions on various quantities derived

from ψu. It also imposes conditions on the complexity of the relevant function classes.

In what follows, let ∆n ↘ 0, δn ↘ 0, and τn ↘ 0 be sequences of constants approaching zero

from above at a speed at most polynomial in n (for example, δn > 1/nc for some c > 0).

Assumption 5.3 (Estimation of nuisance functions). The following conditions hold for each n > n0

and all P ∈ Pn. The estimated functions ĥu = (ĥum)dtm=1 ∈ Hun with probability at least 1 −∆n,

where Hun is the set of measurable maps Zu 3 z 7−→ h = (hm)dtm=1(z) ∈ Tu(z) such that

‖hm − hum‖P,2 6 τn, τ2
n

√
n 6 δn,

and whose complexity does not grow too quickly in the sense that F1 = {ψuj(Wu, θ, h(Zu)) : j ∈
[dθ], u ∈ U , θ ∈ Θu, h ∈ Hun} is suitably measurable and its uniform covering entropy obeys

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2) 6 sn(log(an/ε)) ∨ 0,

where F1(W ) is an envelope for F1 which is measurable with respect to W and satisfies F1(W ) 6

F0(W ) for F0 defined in Assumption 5.2. The complexity characteristics an > max(n, e) and sn > 1

obey the growth conditions:

n−1/2
(√

sn log(an) + n−1/2snn
1
q log(an)

)
6 τn and τα/2n

√
sn log(an) + snn

1
q
− 1

2 log(an) log n 6 δn,

where q and α are defined in Assumption 5.2.

Assumption 5.3 imposes conditions on the estimation rate of the nuisance functions hum and on

the complexity of the functions sets that contain the estimators ĥum. This allows for a wide variety

of modern modeling assumptions and regularization methods for function fitting, both the tradi-

tional methods and the new statistical and machine learning methods. Within the approximately

sparse framework, the index sn corresponds to the maximum of the dimension of the approximat-

ing models and of the size of the selected models; and an = p ∨ n. Under other frameworks, these

parameters could be different; yet if they are well-behaved, then our results still apply. Thus, these

results potentially cover other frameworks, where structured assumptions other than approximate

sparsity are used to make the estimation and modeling problem manageable. It is important to

point out that the class F1 generally won’t be Donsker because its entropy is allowed to increase

with n. Allowing for non-Donsker classes is crucial for accommodating modern high-dimensional

estimation methods for the nuisance functions as we have seen in the previous section. This feature

makes the conditions imposed here very different from the conditions imposed in various classi-

cal references on dealing with nonparametrically estimated nuisance functions; see, for example,

van der Vaart and Wellner (1996), van der Vaart (1998), Kosorok (2008), and other references listed

in the introduction.

The following theorem is one of the main results of the paper:
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Theorem 5.1 (Uniform Functional Central Limit Theorem for a Continuum of Target

Parameters). Under Assumptions 5.1, 5.2, and 5.3, for an estimator (θ̂u)u∈U that obeys equation

(5.4),
√
n(θ̂u − θu)u∈U = (Gnψ̄u)u∈U + oP (1) in `∞(U)dθ , uniformly in P ∈ Pn, where ψ̄u(W ) :=

−J−1
u ψu(Wu, θu, hu(Zu)), and

(Gnψ̄u)u∈U  (GP ψ̄u)u∈U in `∞(U)dθ , uniformly in P ∈ Pn,

where the paths of u 7−→ GP ψ̄u are a.s. uniformly continuous on (U , dU ) and

sup
P∈Pn

EP sup
u∈U
‖GP ψ̄u‖ <∞ and lim

δ→0
sup
P∈Pn

EP sup
dU (u,ū)6δ

‖GP ψ̄u −GP ψ̄ū‖ = 0.

Comment 5.4. It is important to mention here that this result on a continuum of parameters

solving a continuum of moment conditions is completely new. The prior approaches dealing with

continua of moment conditions with infinite-dimensional nuisance parameters, for example, the

ones given in Chernozhukov and Hansen (2006) and Escanciano and Zhu (2013), impose Donsker

conditions on the class of functions, following Andrews (1994a), that contain the values of the

estimators of these nuisance functions. This approach is precluded in our setting because the

resulting class of functions in our case has entropy that grows with the sample size and therefore

is not Donsker. Hence, we develop a new approach to establishing the results which exploits the

interplay between the rate of growth of entropy, the biases, and the size of the estimation error. In

addition, the new approach allows for obtaining results that are uniform in P . �

We can estimate the law of ZP with the bootstrap law of

Ẑ∗n,P :=
√
n(θ̂∗u − θ̂u)u∈U :=

(
1√
n

n∑
i=1

ξiψ̂u(Wi)

)
u∈U

, (5.13)

where (ξi)
n
i=1 are i.i.d. multipliers as defined in equation (3.20), ψ̂u(Wi) is the estimated score

ψ̂u(Wi) := −Ĵ−1
u ψu(Wui, θ̂u, ĥu(Zui)),

and Ĵu is a suitable estimator of Ju.16 The bootstrap law is computed by drawing (ξi)
n
i=1 conditional

on the data.

The following theorem shows that the multiplier bootstrap provides a valid approximation to

the large sample law of
√
n(θ̂u − θu)u∈U .

Theorem 5.2 (Uniform Validity of Multiplier Bootstrap). Suppose Assumptions 5.1, 5.2,

and 5.3 hold, the estimator (θ̂u)u∈U obeys equation (5.4), and that, for the constant α defined in

Assumption 5.2 and some positive constant α3, uniformly in P ∈ Pn with probability 1− δn,

(u 7−→ Ĵu) ∈ Jn = {u 7−→ J̄u : ‖J̄u − J̄ū‖ 6 C‖u− ū‖α3 , ‖J̄u − Ju‖ 6 τα/2n , for all (u, ū) ∈ U2}.

Then, Ẑ∗n,P  B ZP in `∞(U)dθ , uniformly in P ∈ Pn.

16We do not discuss the estimation of Ju since it is often a problem-specific matter. In Section 3, Ju was equal to

minus the identity matrix, so we did not need to estimate it.
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We next derive the large sample distribution and validity of the multiplier bootstrap for the

estimator ∆̂ := φ(θ̂) := φ((θ̂u)u∈U ) of the functional ∆ := φ(θ0) = φ((θu)u∈U ) using the functional

delta method. The functional θ0 7−→ φ(θ0) is defined as a uniformly Hadamard differentiable

transform of θ0 = (θu)u∈U . The following result gives the large sample law of
√
n(∆̂ − ∆), the

properly normalized estimator. It also shows that the bootstrap law of
√
n(∆̂∗ − ∆̂), computed

conditionally on the data, is consistent for the large sample law of
√
n(∆̂−∆). Here ∆̂∗ := φ(θ̂∗) =

φ((θ̂∗)u∈U ) is the bootstrap version of ∆̂, and θ̂∗u = θ̂u + n−1
∑n

i=1 ξiψ̂u(Wi) is the multiplier

bootstrap version of θ̂u defined via equation (5.13).

Theorem 5.3 (Uniform Limit Theory and Validity of Multiplier Bootstrap for Smooth

Functionals of θ). Suppose that for each P ∈ P := ∪n>n0Pn, θ0 = θ0
P is an element of a compact

set Dθ. Suppose θ 7−→ φ(θ), a functional of interest mapping Dφ ⊂ D = `∞(U)dθ to `∞(Q), where

Dθ ⊂ Dφ, is Hadamard differentiable in θ tangentially to D0 = UC(U)dθ uniformly in θ ∈ Dθ, with

the linear derivative map φ′θ : D0 7−→ D such that the mapping (θ, h) 7−→ φ′θ(h) from Dθ × D0 to

`∞(Q) is continuous. Then,

√
n(∆̂−∆) TP := φ′θ0P

(ZP ) in `∞(Q), uniformly in P ∈ Pn, (5.14)

where TP is a zero mean tight Gaussian process, for each P ∈ P. Moreover,

√
n(∆̂∗ − ∆̂) B TP in `∞(Q), uniformly in P ∈ Pn. (5.15)

To derive Theorem 5.3, we strengthen the usual notion of Hadamard differentiability to a uniform

notion introduced in Definition B.1. Theorems B.3 and B.4 show that this uniform Hadamard

differentiability is sufficient to guarantee the validity of the functional delta uniformly in P . These

new uniform functional delta method theorems may be of independent interest.

6. Theory: Lasso and Post-Lasso for Functional Response Data

In this section, we provide results for Lasso and Post-Lasso estimators with function-valued

outcomes and linear or logistic links. As these results are of interest beyond the context of estimation

of nuisance functions for moment condition problems or treatment effects estimation, we present

this section in a way that leaves it autonomous with respect to the rest of the paper.

6.1. The generic setting with function-valued outcomes. Consider a data generating process

with a functional response variable (Yu)u∈U and observable covariates X satisfying for each u ∈ U ,

EP [Yu | X] = Λ(f(X)′θu) + ru(X), (6.1)

where f : X → Rp is a set of p measurable transformations of the initial controls X, θu is a p-

dimensional vector, ru is an approximation error, and Λ is a fixed known link function. The notation

in this section differs from the rest of the paper with Yu and X denoting a generic response and a

generic vector of covariates to facilitate the application of these results to other contexts. We only

consider the linear link function, Λ(t) = t, and the logistic link function, Λ(t) = exp(t)/{1+exp(t)},
in detail.
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Considering the logistic link is useful when the functional response is binary, though the linear

link can be used in that case as well under some conditions. For example, it is useful for estimating a

high-dimensional generalization of the distributional regression models considered in Chernozhukov

et al. (2013) where the response variable is the continuum (Yu = 1(Y 6 u))u∈U . Even though

we focus on these two cases we note that the principles discussed here apply to many other M -

estimators with convex (or approximately convex) criterion functions. In the remainder of the

section, we discuss and establish results for `1-penalized and post-model selection estimators of

(θu)u∈U that hold uniformly over u ∈ U .

Throughout the section, we assume that u ∈ U ⊂ [0, 1]du and that we have n i.i.d. observations

from dgps where (6.1) holds, {(Yui)u∈U , Xi)}ni=1, available for estimating (θu)u∈U . For each u ∈ U ,

penalty level λ, and diagonal matrix of penalty loadings Ψ̂u, we define the Lasso estimator as

θ̂u ∈ arg min
θ∈Rp

En[M(Yu, f(X)′θ)] +
λ

n
‖Ψ̂uθ‖1 (6.2)

where M(y, t) = 1
2(y − Λ(t))2 in the case of linear regression, and M(y, t) = −{1(y = 1) log Λ(t) +

1(y = 0) log(1 − Λ(t))} in the case of the logistic link function for binary response data. For each

u ∈ U , the Post-Lasso estimator based on a set of covariates T̃u is then defined as

θ̃u ∈ arg min
θ∈Rp

En[M(Yu, f(X)′θ)] : supp(θ) ⊆ T̃u (6.3)

where the set T̃u contains supp(θ̂u) and possibly additional variables deemed as important.17 We

will set T̃u = supp(θ̂u) unless otherwise noted.

The chief departure between the analysis when U is a singleton and the functional response case

is that the penalty level needs to be set to control selection errors uniformly over u ∈ U . To do so,

we will set λ so that with high probability

λ

n
> c sup

u∈U

∥∥∥Ψ̂−1
u En

[
∂θM(Yu, f(X)′θu)

]∥∥∥
∞
, (6.4)

where c > 1 is a fixed constant. When U is a singleton the strategy above is similar to Bickel et al.

(2009), Belloni and Chernozhukov (2013), and Belloni et al. (2011), who use an analog of (6.4) to

derive the properties of Lasso and Post-Lasso. When U is not a singleton, this strategy was first

employed in the context of `1-penalized quantile regression processes by Belloni and Chernozhukov

(2011).

To implement (6.4), we propose setting the penalty level as

λ = c
√
nΦ−1(1− γ/{2pndu}), (6.5)

17The total number of additional variables ŝa should also obey the same growth conditions that s obeys. For

example, if the additional variables are chosen so that ŝa . ‖θ̂u‖0 the growth condition is satisfied with probability

going to one for the designs covered by Assumptions 6.1 and 6.2. See also Belloni et al. (2014a) for a discussion on

choosing additional variables.
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where du is the dimension of U , 1 − γ with γ = o(1) is a confidence level associated with the

probability of event (6.4), and c > 1 is a slack constant.18 When implementing the estimators,

we set c = 1.1. and γ = .1/ log(n), which is theoretically motivated and practically tested in

an extensive set of simulation experiments in Belloni et al. (2014a). In addition to the penalty

parameter λ, we also need to construct a penalty loading matrix Ψ̂u = diag({l̂uj , j = 1, . . . , p}).
This loading matrix can be formed according to the following iterative algorithm.

Algorithm 6.1 (Estimation of Penalty Loadings). Choose γ ∈ [1/n,min{1/ log n, pndu−1}] and

c > 1 to form λ as defined in (6.5), and choose a constant K > 1 as an upper bound on the

number of iterations. (0) Set k = 0, and initialize l̂uj,0 for each j = 1, . . . , p. For the linear link

function, set l̂uj,0 = {En[f2
j (X)(Yu − Ȳu)2]}1/2 with Ȳu = En[Yu]. For the logistic link function,

set l̂uj,0 = 1
2{En[f2

j (X)]}1/2. (1) Compute the Lasso and Post-Lasso estimators, θ̂u and θ̃u, based

on Ψ̂u = diag({l̂uj,k, j = 1, . . . , p}). (2) Set l̂uj,k+1 := {En[f2
j (X)(Yu − Λ(f(X)′θ̃u))2]}1/2. (3) If

k > K, stop; otherwise set k ← k + 1 and go to step (1).

6.2. Properties of a Continuum of Lasso and Post-Lasso: Linear Link. We provide suf-

ficient conditions for establishing good performance of the estimators discussed above when the

linear link function is used. In the statement of the following assumption, δn ↘ 0 and ∆n ↘ 0

are fixed sequences approaching zero from above at a speed at most polynomial in n (for example,

δn > 1/nc for some c > 0), `n := log n, and c, C, κ′, κ′′ and ν ∈ (0, 1] are positive finite constants.

Assumption 6.1. Consider a random element W taking values in a measure space (W,AW),

with law determined by a probability measure P ∈ Pn. The observed data ((Yui)u∈U , Xi)
n
i=1 consist

of n i.i.d. copies of random element ((Yu)u∈U , X), which is generated as a suitably measurable

transformation of W and u. The model (6.1) holds with linear link t 7−→ Λ(t) = t for all u ∈ U ⊂
[0, 1]du, where du is fixed and U is equipped with the semi-metric dU . Uniformly for all n > n0

and P ∈ Pn, the following conditions hold. (i) The model (6.1) is approximately sparse with

sparsity index obeying supu∈U ‖θu‖0 6 s and the growth restriction log(p ∨ n) 6 δnn
1/3. (ii) The

set U has uniform covering entropy obeying logN(ε,U , dU ) 6 du log(1/ε) ∨ 0, and the collection

(ζu = Yu−EP [Yu | X], ru)u∈U are suitably measurable transformations of W and u. (iii) Uniformly

over u ∈ U , the moments of the model are boundedly heteroscedastic, namely c 6 EP [ζ2
u | X] 6 C

a.s., and maxj6pEP [|fj(X)ζu|3 + |fj(X)Yu|3] 6 C. (iv) For a fixed ν > 0 and a sequence Kn,

the dictionary functions, approximation errors, and empirical errors obey the following regularity

conditions: (a) c 6 EP [f2
j (X)] 6 C, j = 1, . . . , p; maxj6p |fj(X)| 6 Kn a.s.; K2

ns log(p ∨ n) 6

δnn. (b) With probability 1 − ∆n, supu∈U En[r2
u(X)] 6 Cs log(p ∨ n)/n; supu∈U maxj6p |(En −

EP )[f2
j (X)ζ2

u]| ∨ |(En − EP )[f2
j (X)Y 2

u ]| 6 δn; log1/2(p ∨ n) supdU (u,u′)61/n maxj6p{En[fj(X)2(ζu −
ζu′)

2]}1/2 6 δn, and supdU (u,u′)61/n‖En[f(X)(ζu − ζu′)]‖∞ 6 δnn−1/2. (c) With probability 1−∆n,

the empirical minimum and maximum sparse eigenvalues are bounded from zero and above, namely

κ′ 6 inf‖δ‖06s`n ‖f(X)′δ‖Pn,2 6 sup‖δ‖06s`n ‖f(X)′δ‖Pn,2 6 κ′′.

18When the set U is a singleton, one can use the penalty level in (6.5) with du = 0. This choice corresponds to

that used in Belloni et al. (2014a).
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Assumption 6.1 is only a set of sufficient conditions. The finite sample results in the Supple-

mentary Appendix allow for more general conditions (for example, du can grow with the sample

size). We verify that the more technical conditions in Assumption 6.1(iv)(b) hold in a variety of

cases, see Lemma J.2 in Appendix J in the Supplementary Appendix. Under Assumption 6.1, we

establish results on the performance of the estimators (6.2) and (6.3) for the linear link function

case that hold uniformly over u ∈ U and P ∈ Pn.

Theorem 6.1 (Rates and Sparsity for Functional Responses under Linear Link). Under Assump-

tion 6.1 and setting the penalty and loadings as in Algorithm 6.1, for all n large enough, uniformly

for all P ∈ Pn with PP probability 1−o(1), for some constant C̄, the Lasso estimator θ̂u is uniformly

sparse, supu∈U ‖θ̂u‖0 6 C̄s, and the following performance bounds hold:

sup
u∈U
‖f(X)′(θ̂u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̂u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

For all n large enough, uniformly for all P ∈ Pn, with PP probability 1 − o(1), the Post-Lasso

estimator corresponding to θ̂u obeys

sup
u∈U
‖f(X)′(θ̃u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
, and sup

u∈U
‖θ̃u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

We note that the performance bounds are exactly of the type used in Assumption 4.2 (see

also Assumption H.1 in the Supplementary Appendix). Indeed, under the condition s2 log2(p ∨
n) log2 n 6 δnn, the rate of convergence established in Theorem 6.1 yields

√
s log(p ∨ n)/n 6

o(n−1/4).

6.3. Properties of Lasso and Post-Lasso Estimators: Logistic Link. We provide sufficient

conditions to state results on the performance of the estimators discussed above for the logistic link

function. Consider the fixed sequences δn ↘ 0 and ∆n ↘ 0 approaching zero from above at a speed

at most polynomial in n, `n := log n, and the positive finite constants c, C, κ′, κ′′, and c 6 1/2.

Assumption 6.2. Consider a random element W taking values in a measure space (W,AW),

with law determined by a probability measure P ∈ Pn. The observed data ((Yui)u∈U , Xi)
n
i=1 con-

sist of n i.i.d. copies of random element ((Yu)u∈U , X), which is generated as a suitably mea-

surable transformation of W and u. The model (6.1) holds with Yui ∈ {0, 1} with the logistic

link t 7−→ Λ(t) = exp(t)/{1 + exp(t)} for each u ∈ U ⊂ [0, 1]du, where du is fixed and U is

equipped with the semi-metric dU . Uniformly for all n > n0 and P ∈ Pn, the following conditions

hold. (i) The model (6.1) is approximately sparse with sparsity index obeying supu∈U ‖θu‖0 6 s

and the growth restriction log(p ∨ n) 6 δnn
1/3. (ii) The set U has uniform covering entropy

obeying logN(ε,U , dU ) 6 du log(1/ε) ∨ 0, and the collection (ζu = Yu − EP [Yu | X], ru)u∈U is

a suitably measurable transformation of W and u. (iii) Uniformly over u ∈ U the moments

of the model satisfy maxj6pEP [|fj(X)|3] 6 C, and c 6 EP [Yu | X] 6 1 − c a.s. (iv) For

a sequence Kn, the dictionary functions, approximation errors, and empirical errors obey the

following boundedness and empirical regularity conditions: (a) supu∈U |ru(X)| 6 δn a.s.; c 6

EP [f2
j (X)] 6 C, j = 1, . . . , p; maxj6p |fj(X)| 6 Kn a.s.; and K2

ns
2 log2(p ∨ n) 6 δnn. (b) With
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probability 1 − ∆n, supu∈U En[r2
u(X)] 6 Cs log(p ∨ n)/n; supu∈U maxj6p |(En − EP )[f2

j (X)ζ2
u]| 6

δn; supu,u′∈U ,dU (u,u′)61/n maxj6p{En[fj(X)2(ζu−ζu′)2]}1/2 6 δn, and supu,u′∈U ,dU (u,u′)61/n‖En[f(X)(ζu−
ζu′)]‖∞ 6 δnn−1/2. (c) With probability 1−∆n, the empirical minimum and maximum sparse eigen-

values are bounded from zero and above: κ′ 6 inf‖δ‖06s`n ‖f(X)′δ‖Pn,2 6 sup‖δ‖06s`n ‖f(X)′δ‖Pn,2 6
κ′′.

The following result characterizes the performance of the estimators (6.2) and (6.3) for the logistic

link function case under Assumption 6.2.

Theorem 6.2 (Rates and Sparsity for Functional Response under Logistic Link). Under Assump-

tion 6.2 and setting the penalty and loadings as in Algorithm 6.1, for all n large enough, uniformly

for all P ∈ Pn with PP probability 1−o(1), the following performance bounds hold for some constant

C̄:

sup
u∈U
‖f(X)′(θ̂u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̂u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

and the estimator is uniformly sparse: supu∈U ‖θ̂u‖0 6 C̄s. For all n large enough, uniformly for

all P ∈ Pn, with PP probability 1− o(1), the Post-Lasso estimator corresponding to θ̂u obeys

sup
u∈U
‖f(X)′(θ̃u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
, and sup

u∈U
‖θ̃u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

Comment 6.1. The performance bounds derived in Theorem 6.2 satisfy the conditions of Assump-

tion 4.2 (see also Assumption H.1 in the Supplementary Material). Moreover, since in the logistic

case the link function is 1-Lipschitz and the approximation errors are assumed to be small, the

results above establish the same rates of convergence for estimators of the conditional probabilities;

for example,

sup
u∈U
‖EP [Yu | X]− Λ(f(X)′θ̂u)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
.

7. Application: the Effect of 401(k) Participation on Asset Holdings

As a practical illustration of the methods developed in this paper, we consider the estimation

of the effect of 401(k) eligibility and participation on accumulated assets as in Abadie (2003) and

Chernozhukov and Hansen (2004). Our goal here is to illustrate the estimation results and inference

statements and to make the following points that underscore our theoretical findings: 1) In a low-

dimensional setting, where the number of controls is low and therefore there is no need for selection,

our robust post-selection inference methods perform well. That is, the results of our methods agree

with the results of standard methods that do not employ any selection. 2) In a high-dimensional

setting, where there are (moderately) many controls, our post-selection inference methods perform

well, producing well-behaved estimates and confidence intervals compared to the erratic estimates

and confidence intervals produced by standard methods that do not employ selection as a means

of regularization. 3) Finally, in a very high-dimensional setting, where the number of controls is

comparable to the sample size, the standard methods break down completely, while our methods
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still produce well-behaved estimates and confidence intervals. These findings are in line with our

theoretical results about uniform validity of our inference methods.

The key problem in determining the effect of participation in 401(k) plans on accumulated assets

is saver heterogeneity coupled with the fact that the decision to enroll in a 401(k) is non-random.

It is generally recognized that some people have a higher preference for saving than others. It

also seems likely that those individuals with high unobserved preference for saving would be most

likely to choose to participate in tax-advantaged retirement savings plans and would tend to have

otherwise high amounts of accumulated assets. The presence of unobserved savings preferences with

these properties then implies that conventional estimates that do not account for saver heterogeneity

and endogeneity of participation will be biased upward, tending to overstate the savings effects of

401(k) participation.

To overcome the endogeneity of 401(k) participation, Abadie (2003) and Chernozhukov and

Hansen (2004) adopt the strategy detailed in Poterba, Venti, and Wise (1994; 1995; 1996; 2001)

and Benjamin (2003), who used data from the 1991 Survey of Income and Program Participation

and argue that eligibility for enrolling in a 401(k) plan in this data can be taken as exogenous after

conditioning on a few observables of which the most important for their argument is income. The

basic idea of their argument is that, at least around the time 401(k)’s initially became available,

people were unlikely to be basing their employment decisions on whether an employer offered a

401(k) but would instead focus on income. Thus, eligibility for a 401(k) could be taken as exoge-

nous conditional on income, and the causal effect of 401(k) eligibility could be directly estimated by

appropriate comparison across eligible and ineligible individuals.19 Abadie (2003), Chernozhukov

and Hansen (2004), and Ogburn et al. (2015) use this argument for the exogeneity of eligibility

conditional on controls to argue that 401(k) eligibility provides a valid instrument for 401(k) par-

ticipation and employ IV methods to estimate the effect of 401(k) participation on accumulated

assets.

As a complement to the work cited above, we estimate various treatment effects of 401(k) par-

ticipation on financial wealth using high-dimensional methods. A key component of the argument

underlying the exogeneity of 401(k) eligibility is that eligibility may only be taken as exogenous

after conditioning on income. Both Abadie (2003) and Chernozhukov and Hansen (2004) adopt this

argument but control only for a small number of terms. One might wonder whether the small num-

ber of terms considered is sufficient to adequately control for income and other related confounds.

At the same time, the power to learn anything about the effect of 401(k) participation decreases as

one controls more flexibly for confounds. The methods developed in this paper offer one resolution

to this tension by allowing us to consider a very broad set of controls and functional forms under

the assumption that among the set of variables we consider there is a relatively low-dimensional set

that adequately captures the effect of confounds. This approach is more general than that pursued

19Poterba, Venti, and Wise (1994; 1995; 1996; 2001) and Benjamin (2003) all focus on estimating the effect of

401(k) eligibility, the intention to treat parameter. Also note that there are arguments that eligibility should not be

taken as exogenous given income; see, for example, Engen et al. (1996) and Engen and Gale (2000).
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in previous research which implicitly assumes that confounding effects can adequately be controlled

for by a small number of variables chosen ex ante by the researcher.

We use the same data as Chernozhukov and Hansen (2004). The data consist of 9,915 observa-

tions at the household level drawn from the 1991 SIPP. We use net financial assets as the outcome

variable, Y , in our analysis. Our treatment variable, D, is an indicator for having positive 401(k)

balances; and our instrument, Z, is an indicator for being eligible to enroll in a 401(k) plan. The

vector of raw covariates, X, consists of age, income, family size, years of education, a married

indicator, a two-earner status indicator, a defined benefit pension status indicator, an IRA partic-

ipation indicator, and a home ownership indicator. Further details can be found in Chernozhukov

and Hansen (2004).

We present detailed results for three different sets of controls f(X). The first specification uses

indicators of marital status, two-earner status, defined benefit pension status, IRA participation

status, and home ownership status, second order polynomials in family size and education, a third

order polynomial in age, and a quadratic spline in income with six break points20 (Quadratic

Spline specification). The second specification augments the Quadratic Spline specification by

interacting all the non-income variables with each term in the income spline (Quadratic Spline

Plus Interactions specification). The final specification forms a larger set of potential controls by

starting with all of the variables from the Quadratic Spline specification and forming all two-way

interactions between all of the non-income variables. The set of main effects and interactions of

all non-income variables is then fully interacted with all of the income terms (Quadratic Spline

Plus Many Interactions specification).21 The dimensions of the set of controls are thus 35, 311,

and 1756 for the Quadratic Spline, Quadratic Spline Plus Interactions, and Quadratic Spline Plus

Many Interactions specification, respectively. For methods that do not use variable selection, we

use 32, 272, and 1526 variables resulting from removing terms that are perfectly collinear. We refer

to the specification without interactions as low-p, to the specification with only income interactions

as high-p, and to the specification with all two-way interactions further interacted with income as

very-high-p.

We report a variety of results for each specification. Under the maintained assumption that

401(k) eligibility may be taken as exogenous after controlling for the variables defined in the pre-

ceding paragraph, we can estimate intention to treat effects of 401(k) eligibility using the methods

of this paper using 401(k) eligibility as D = Z. We report the estimated average intention to treat

and average intention to treat on the treated as the ATE and ATE-T, and we report estimates of

quantile intention to treat and quantile intention to treat on the treated effects as QTE and QTE-T.

We also directly apply the results of this paper to estimate effects of 401(k) participation, reporting

20Specifically, we allow for income, income-squared, and then interact these two variables with seven dummies for

the categories formed by the cut points.
21The specifications are motivated by the original specification used in Abadie (2003), Benjamin (2003), and

Chernozhukov and Hansen (2004) allowing for data-dependent accommodation of nonlinearity. We report results

based on the exact specification used in previous papers in the Supplementary Appendix.
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estimates of the LATE, LATE-T, LQTE, and LQTE-T for each specification.22 For comparison,

we also report estimates of the eligibility effect from the linear model without selection and with

selection using the approach of Belloni et al. (2014a) and estimates of the participation effect from

linear instrumental variables estimation without selection and with selection as in Chernozhukov

et al. (2015).

Estimation of all these treatment effects depends on first-stage estimates of reduced form func-

tions as detailed in Section 3. We estimate reduced form functions where the outcome is continuous

using ordinary least squares when no model selection is used or Post-Lasso when selection is used.

We estimate reduced form functions where the outcome is binary by logistic regression when no

model selection is used or Post-`1-penalized logistic regression when selection is used. We only

report selection-based estimates in the very-high-p setting.23 We refer to Appendix F for detailed

discussion of implementing our approach in this example.

Estimates of the ATE, ATE-T, LATE and LATE-T as well as the coefficient on 401(k) eligibility

from the linear model and coefficient on 401(k) participation in the linear IV model are given

in Table 1. In this table, we provide point estimates for each of the three sets of controls with

and without variable selection. We report conventional heteroscedasticity consistent standard error

estimates for the linear model and linear IV coefficient. For the ATE, ATE-T, LATE, and LATE-T,

we report both analytic and multiplier bootstrap standard errors. The bootstrap standard errors

are based on 500 bootstrap replications with Mammen (1993) weights as multipliers.

Looking first at the two sets of standard error estimates for the average treatment effect estimates,

we see that the bootstrap and analytic standard are quite similar and that one would not draw

substantively different conclusions from using one versus the other. We also see that estimates of the

effect of 401(k) eligibility using the linear model and estimates of the effect of 401(k) participation

using the linear IV model are broadly consistent with each other across all specifications and

regardless of whether or not variable selection is done. We also have that the estimates of the

ATE, ATE-T, LATE, and LATE-T are very similar regardless of whether selection is used in the

low-p Quadratic Spline specification. The ATE and ATE-T both indicate a positive and significant

average effect of 401(k) eligibility; and the LATE and LATE-T suggest positive and significant

effects of 401(k) participation for compliers. The similarity in the low-p case is reassuring as it

illustrates that there is little impact of variable selection relative to simply including everything in

a low-dimensional setting.24

22We note that because of one-sided compliance the local effects for the treated actually coincide with population

effects for the treated; see Frölich and Melly (2013).
23The estimated propensity score shows up in the denominator of the efficient moment conditions. As is conven-

tional, we use trimming to keep the denominator bounded away from zero with trimming set to 10−12. Trimming

occurs in the Quadratic Spline Plus Interactions (12 observations trimmed) and Quadratic Spline Plus Many In-

teractions specifications (9915 observations trimmed) when selection is not done. Trimming never occurs in the

selection-based estimates in this example. We choose not to report unregularized estimates in the very-high-p speci-

fication since all observations are trimmed and, in fact, have estimated propensity scores of either 0 or 1.
24In the low-dimensional setting, using all available controls is semi-parametrically efficient and allows uniformly

valid inference. Thus, the similarity between the results in this case is an important feature of our method which results



33

We observe somewhat different results in the Quadratic Spline Plus Interactions specification. For

both the ATE and the LATE in the Quadratic Spline Plus Interactions case, we see a substantially

larger point estimate without selection than with selection, with the selection results being similar

to those obtained in the low-p case. Along with the larger point estimate, we also see that the

estimated standard errors in the no selection case for the ATE and LATE are roughly three times

larger than the standard errors in the selection case. For the ATE-T and LATE-T in the Quadratic

Spline Plus Interactions case, point estimates following selection are notably smaller than without

selection but estimated standard errors after selection are somewhat larger. We note that one might

suspect estimated standard errors for all of the estimators without selection to be substantially

downward biased in this case similar to estimated standard errors in the model with many controls

as demonstrated in Cattaneo et al. (2010) though this issue has not been explored for the treatment

effects estimators we employ. Finally, we see a large difference in the Orthogonal Polynomials Plus

Many Interactions Specifications as estimates cannot even be computed reliably without selection

due to severe overfitting: The estimated propensity score is either 0 or 1 for every observation.

We provide estimates of the QTE and QTE-T in Figure 1 and estimates of the LQTE and

LQTE-T in Figure 2. The left column Figure 1 gives results for the QTE, and the right column

displays the results for the QTE-T. Similarly, the left and right columns of Figure 2 provide the

LQTE and LQTE-T respectively. We give the results for the Quadratic Spline, Quadratic Spline

Plus Interactions, and Quadratic Spline Plus Many Interactions specification in the top row, middle

row, and bottom row respectively. In each graphic, we use solid lines for point estimates and report

uniform 95% confidence intervals with dashed lines.

Looking across the figures, we see a similar pattern to that seen for the estimates of the average

effects in that the selection-based estimates are stable across all specifications and are very similar

to the estimates obtained without selection from the baseline low-p Quadratic Spline specification.

In the more flexible Quadratic Spline plus Interactions specification, the estimates that do not

make use of selection behave somewhat erratically. This erratic behavior is especially apparent in

the estimated LQTE of 401(k) participation where we observe that small changes in the quantile

index may result in large swings in the point estimate of the LQTE and estimated standard errors

are quite large. Again, this erratic behavior is likely due to overfitting due to the large set of

variables considered. As with the average effects, estimated quantile effects without selection in the

Quadratic Spline Plus Many Interactions specification are not reported as the estimated propensity

score is always 0 or 1.

If we focus on the LQTE and LQTE-T estimated from variable selection methods, we find that

401(k) participation has a small impact on accumulated net total financial assets at low quantiles

while appearing to have a larger impact at high quantiles. Looking at the uniform confidence

intervals, we can see that this pattern is statistically significant at the 5% level and that we would

reject the hypothesis that 401(k) participation has no effect and reject the hypothesis of a constant

treatment effect more generally.

from our reliance on low-bias moment functions and sensible variable selection devices to produce semi-parametrically

efficient estimators and uniformly valid inference statements following model selection.
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It is also worth discussing the results of the variable selection briefly as well. Due to the number of

models and variable selection steps taken, especially in computing quantile effects, it is not practical

to give a complete accounting of the selected variables here. Rather, we note that for the linear

model, linear IV, ATE, and LATE results, we select between two and 22 variables depending on

the specification of controls and left-hand-side variable. The median number of variables selected

for the QTE and LQTE results, where the median is taken across index values u, across the

different specifications of controls and left-hand-side variables varies between one and 11. There

is considerable variability in the number of variables selected across u though, ranging from a

minimum of no variables selected to a maximum of 237 selected variables.25 The selected variables

themselves mostly correspond to capturing the effect of income. For example, the union of the

variables selected in forming each of the reduced form quantities used for estimating the LATE

in the Quadratic Spline Plus Many Interactions specification consists of 36 variables, only four of

which do not include income.26 This pattern of largely selecting terms that are direct income effects

or interactions of income with other variables holds up across the specifications considered.

It is interesting that our results are similar to those in Chernozhukov and Hansen (2004) despite

allowing for a much richer set of controls. The fact that we allow for a rich set of controls but

produce similar results to those previously available lends further credibility to the claim that

previous work controlled adequately for the available observables.27 Finally, it is worth noting that

this similarity is not mechanical or otherwise built in to the procedure. For example, applications

in Belloni et al. (2012) and Belloni et al. (2014a) use high-dimensional variable selection methods

and produce sets of variables that differ substantially from intuitive baselines.

Appendix A. Notation

A.1. Overall Notation. We consider a random element W = WP taking values in the measure

space (W,AW), with probability law P ∈ P. Note that it is most convenient to think about P

as a parameter in a parameter set P. We shall also work with a bootstrap multiplier variable

ξ taking values in (R,AR) that is independent of WP , having probability law Pξ, which is fixed

throughout. We consider (Wi)
∞
i=1 = (Wi,P )∞i=1 and (ξi)

∞
i=1 to be i.i.d. copies of W and ξ, which are

25Having more than 100 variables selected occurs in the very high dimensional setting when the outcome in the

penalized regression is 10(D)Yu for the six lowest values of u among the subset of households eligible for 401(k)’s and

for the six highest values of u among the subset of households that are not eligible for 401(k)’s.
26Let i1 be the indicator for income in the first income category, and define i2− i7 similarly. Let db be the defined

benefit dummy, ira be the IRA dummy, hown be the home ownership dummy, mar be the married dummy, te be

the two-earner household dummy, ed be years of schooling, and fsize be family size. The exact identities of the

variables selected for modeling any reduced form quantity used in estimating the LATE in the very-high-dimensional

case are i1, i2, i3, income ∗ i3, income2 ∗ i6, db, ira ∗ hown, age ∗ ira, ed ∗ ira, i1 ∗ fsize, i1 ∗ fsize2 ∗ db, i2 ∗ fsize,
i2 ∗fsize2 ∗db, i3 ∗age3, i3 ∗fsize, i3 ∗mar, i3 ∗fsize∗ te, i3 ∗fsize∗mar, i4 ∗fsize, i4 ∗ te, i4 ∗fsize∗ te, i4 ∗mar∗ te,
i4 ∗ ed ∗ fsize, i5 ∗ ed2 ∗ te, i5 ∗ fsize ∗ te, income ∗ ira, income ∗ hown, income ∗mar ∗ hown, income ∗ te ∗ hown,

income∗fsize∗ira, income∗fsize2∗ira, income∗i1∗fsize, income2∗ira∗hown, income2∗ed2∗te, income2∗i3∗fsize,
and income2 ∗ i6 ∗ hown.

27Of course, the estimates are still not valid causal estimates if one does not believe that 401(k) eligibility can be

taken as exogenous after controlling for income and the other included variables.
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also independent of each other. The data will be defined as some measurable function of Wi for

i = 1, ..., n, where n denotes the sample size.

We require the sequences (Wi)
∞
i=1 and (ξi)

∞
i=1 to live on a probability space (Ω,AΩ,PP ) for all

P ∈ P; note that other variables arising in the proofs do not need to live on the same space. It is

important to keep track of the dependence on P in the analysis since we want the results to hold

uniformly in P in some set Pn which may be dependent on n. Typically, this set will increase with

n; i.e. Pn ⊆ Pn+1.

Throughout the paper we signify the dependence on P by mostly using P as a subscript in PP ,

but in the proofs we sometimes use it as a subscript for variables as in WP . The operator E denotes

a generic expectation operator with respect to a generic probability measure P, while EP denotes

the expectation with respect to PP . Note also that we use capital letters such as W to denote

random elements and use the corresponding lower case letters such as w to denote fixed values that

these random elements can take.

We denote by Pn the (random) empirical probability measure that assigns probability n−1 to

each Wi ∈ (Wi)
n
i=1. En denotes the expectation with respect to the empirical measure, and Gn,P

denotes the empirical process
√
n(En − P ), i.e.

Gn,P (f) = Gn,P (f(W )) = n−1/2
n∑
i=1

{f(Wi)− P [f(W )]}, P [f(W )] :=

∫
f(w)dP (w),

indexed by a measurable class of functions F : W 7−→ R; see van der Vaart and Wellner (1996,

chap. 2.3). We shall often omit the index P from Gn,P and simply write Gn. In what follows, we

use ‖ · ‖P,q to denote the Lq(P) norm; for example, we use ‖f(W )‖P,q = (
∫
|f(w)|qdP (w))1/q and

‖f(W )‖Pn,q = (n−1
∑n

i=1 |f(Wi)|q)1/q. For a vector v = (v1, . . . , vp)
′ ∈ Rp, ‖v‖1 = |v1| + · · · + |vp|

denotes the `1-norm of v, ‖v‖ =
√
v′v denotes the Euclidean norm of v, and ‖v‖0 denotes the

`0-“norm” of v which equals the number of non-zero components of v. For a positive integer k, [k]

denotes the set {1, . . . , k}. For xn, yn denoting sequences in R, the statement xn . yn means that

xn 6 Ayn for some constant A that does not depend on n.

We say that a collection of random variables F = {f(W, t), t ∈ T}, where f : W × T → R,

indexed by a set T and viewed as functions of W ∈ W, is suitably measurable with respect to W if

it is image admissible Suslin class, as defined in Dudley (1999, p 186). In particular, F is suitably

measurable if f :W × T → R is measurable and T is a Polish space equipped with its Borel sigma

algebra, see Dudley (1999, p 186). This condition is a mild assumption satisfied in practical cases.

A.2. Notation for Stochastic Convergence Uniformly in P . All parameters, such as the law

of the data, are indexed by P . This dependency is sometimes kept implicit. We shall allow for the

possibility that the probability measure P = Pn can depend on n. We shall conduct our stochastic

convergence analysis uniformly in P , where P can vary within some set Pn, which itself may vary

with n.

The convergence analysis, namely the stochastic order relations and convergence in distribution,

uniformly in P ∈ Pn and the analysis under all sequences Pn ∈ Pn are equivalent. Specifically,

consider a sequence of stochastic processes Xn,P and a random element YP , taking values in the
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normed space D, defined on the probability space (Ω,AΩ,PP ). Through most of the Appendix

D = `∞(U), the space of uniformly bounded functions mapping an arbitrary index set U to the real

line, or D = UC(U), the space of uniformly continuous functions mapping an arbitrary index set U
to the real line. Consider also a sequence of deterministic positive constants an. We shall say that

(i) Xn,P = OP (an) uniformly in P ∈ Pn, if limK→∞ limn→∞ supP∈Pn P∗P (|Xn,P | > Kan) = 0,

(ii) Xn,P = oP (an) uniformly in P ∈ Pn, if supK>0 limn→∞ supP∈Pn P∗P (|Xn,P | > Kan) = 0,

(iii) Xn,P  YP uniformly in P ∈ Pn, if supP∈Pn suph∈BL1(D) |E∗Ph(Xn,P )− EPh(YP )| → 0.

Here the symbol  denotes weak convergence, i.e. convergence in distribution or law, BL1(D)

denotes the space of functions mapping D to [0, 1] with Lipschitz norm at most 1, and the outer

probability and expectation, P∗P and E∗P, are invoked whenever (non)-measurability arises.

Lemma A.1. The above notions (i), (ii) and (iii) are equivalent to the following notions (a), (b),

and (c), each holding for every sequence Pn ∈ Pn:

(a) Xn,Pn = OPn(an), i.e. limK→∞ limn→∞ P∗Pn(|Xn,Pn | > Kan) = 0;

(b) Xn,Pn = oPn(an), i.e. supK>0 limn→∞ P∗Pn(|Xn,Pn | > Kan) = 0;

(c) Xn,Pn  YPn, i.e. suph∈BL1(D) |E∗Pnh(Xn,Pn)− EPnh(YPn)| → 0.

The claims follow straightforwardly from the definitions, so the proof is omitted. We shall use

this equivalence extensively in the proofs of the main results without explicit reference.

Appendix B. Key Tools I: Uniform in P Donsker Theorem, Multiplier Bootstrap,

and Functional Delta Method

B.1. Uniform in P Donsker Property. Let (Wi)
∞
i=1 be a sequence of i.i.d. copies of the random

element W taking values in the measure space (W,AW) according to the probability law P on that

space. Let FP = {ft,P : t ∈ T} be a set of suitably measurable functions w 7−→ ft,P (w) mapping

W to R, equipped with a measurable envelope FP : W 7−→ R. The class is indexed by P ∈ P
and t ∈ T , where T is a fixed, totally bounded semi-metric space equipped with a semi-metric dT .

Let N(ε,FP , ‖ · ‖Q,2) denote the ε-covering number of the class of functions FP with respect to the

L2(Q) seminorm ‖ · ‖Q,2 for Q a finitely-discrete measure on (W,AW). We shall use the following

result.

Theorem B.1 (Uniform in P Donsker Property). Work with the set-up above. Suppose that

for q > 2

sup
P∈P
‖FP ‖P,q 6 C and lim

δ↘0
sup
P∈P

sup
dT (t,t̄)6δ

‖ft,P − ft̄,P ‖P,2 = 0. (B.1)

Furthermore, suppose that

lim
δ↘0

sup
P∈P

∫ δ

0
sup
Q

√
logN(ε‖FP ‖Q,2,FP , ‖ · ‖Q,2)dε = 0. (B.2)

Let GP denote the P-Brownian Bridge, and consider

Zn,P := (Zn,P (t))t∈T := (Gn(ft,P ))t∈T , ZP := (ZP (t))t∈T := (GP (ft,P ))t∈T .
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(a) Then, Zn,P  ZP in `∞(T ) uniformly in P ∈ P, namely

sup
P∈P

sup
h∈BL1(`∞(T ))

|E∗Ph(Zn,P )− EPh(ZP )| → 0.

(b) The process Zn,P is stochastically equicontinuous uniformly in P ∈ P, i.e., for every ε > 0,

lim
δ↘0

lim sup
n→∞

sup
P∈P

P∗P

(
sup

dT (t,t̄)6δ
|Zn,P (t)− Zn,P (t̄)| > ε

)
= 0.

(c) The limit process ZP has the following continuity properties:

sup
P∈P

EP sup
t∈T
|ZP (t)| <∞, lim

δ↘0
sup
P∈P

EP sup
dT (t,t̄)6δ

|ZP (t)− ZP (t̄)| = 0.

(d) The paths t 7−→ ZP (t) are a.s. uniformly continuous on (T, dT ) under each P ∈ P.

Comment B.1. [Important Feature of the Theorem] This is an extension of the uniform

Donsker theorem stated in Theorem 2.8.2 in van der Vaart and Wellner (1996), which allows for

the function classes F to be dependent on P themselves. This generalization is crucial and is

required in all of our problems.

B.2. Uniform in P Validity of Multiplier Bootstrap. Consider the setting of the preceding

subsection. Let (ξ)ni=1 be i.i.d multipliers whose distribution does not depend on P , such that

Eξ = 0, Eξ2 = 1, and E|ξ|q 6 C for q > 2. Consider the multiplier empirical process:

Z∗n,P := (Z∗n,P (t))t∈T := (Gn(ξft,P ))t∈T :=

(
1√
n

n∑
i=1

ξift,P (Wi)

)
t∈T

.

Here Gn is taken to be an extended empirical processes defined by the empirical measure that

assigns mass 1/n to each point (Wi, ξi) for i = 1, ..., n. Let ZP = (ZP (t))t∈T = (GP (ft,P ))t∈T as

defined in Theorem B.1.

Theorem B.2 (Uniform in P Validity of Multiplier Bootstrap). Assume the conditions of

Theorem B.1 hold. Then (a) the following unconditional convergence takes place, Z∗n,P  ZP in

`∞(T ) uniformly in P ∈ P, namely

sup
P∈P

sup
h∈BL1(`∞(T ))

|E∗Ph(Z∗n,P )− EPh(ZP )| → 0,

and (b) the following conditional convergence takes place, Z∗n,P  B ZP in `∞(T ) uniformly in

P ∈ P, namely uniformly in P ∈ P

sup
h∈BL1(`∞(T ))

|EBnh(Z∗n,P )− EPh(ZP )| = o∗P (1),

where EBn denotes the expectation over the multiplier weights (ξi)
n
i=1 holding the data (Wi)

n
i=1 fixed.
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B.3. Uniform in P Functional Delta Method and Bootstrap. We shall use the functional

delta method, as formulated in van der Vaart and Wellner (1996, Chap. 3.9). Let D0, D, and E be

normed spaces, with D0 ⊂ D. A map φ : Dφ ⊂ D 7−→ E is called Hadamard-differentiable at ρ ∈ Dφ
tangentially to D0 if there is a continuous linear map φ′ρ : D0 7−→ E such that

φ(ρ+ tnhn)− φ(ρ)

tn
→ φ′ρ(h), n→∞,

for all sequences tn → 0 in R and hn → h ∈ D0 in D such that ρ+ tnhn ∈ Dφ for every n.

We now define the following notion of the uniform Hadamard differentiability:

Definition B.1 (Uniform Hadamard Tangential Differentiability). Consider a map φ :

Dφ 7−→ E, where the domain of the map Dφ is a subset of a normed space D and the range is a

subset of the normed space E. Let D0 be a normed space, with D0 ⊂ D, and Dρ be a compact metric

space, a subset of Dφ. The map φ : Dφ 7−→ E is called Hadamard-differentiable uniformly in ρ ∈ Dρ
tangentially to D0 with derivative map h 7−→ φ′ρ(h), if∣∣∣φ(ρn + tnhn)− φ(ρn)

tn
− φ′ρ(h)

∣∣∣→ 0,
∣∣∣φ′ρn(hn)− φ′ρ(h)

∣∣∣→ 0, n→∞,

for all convergent sequences ρn → ρ in Dρ, tn → 0 in R, and hn → h ∈ D0 in D such that

ρn + tnhn ∈ Dφ for every n. As a part of the definition, we require that the derivative map

h 7−→ φ′ρ(h) from D0 to E is linear for each ρ ∈ Dρ. �

Comment B.2. Note that the definition requires that the derivative map (ρ, h) 7−→ φ′ρ(h), map-

ping Dρ × D0 to E, is continuous at each (ρ, h) ∈ Dρ × D0. �

Comment B.3 (Important Details of the Definition). Definition B.1 is different from the

definition of uniform differentiability given in van der Vaart and Wellner (1996, p. 379, eq. (3.9.12)),

since our definition allows Dρ to be much smaller than Dφ and allows Dρ to be endowed with a

much stronger metric than the metric induced by the norm of D. These differences are essential for

infinite-dimensional applications. For example, the quantile/inverse map is uniformly Hadamard

differentiable in the sense of Definition B.1 for a suitable choice of Dρ: Let T = [ε, 1−ε], D = `∞(T ),

Dφ= set of cadlag functions on T , D0 = UC(T ), and Dρ be a compact subset of C1(T ) such that

each ρ ∈ Dρ obeys ∂ρ(t)/∂t > c > 0 on t ∈ T , where c is a positive constant. However, the

quantile/inverse map is not Hadamard differentiable uniformly on Dρ if we set Dρ = Dφ and hence

is not uniformly differentiable in the sense of the definition given in van der Vaart and Wellner

(1996) which requires Dρ = Dφ. It is important and practical to keep the distinction between Dρ
and Dφ since the estimated values ρ̂ may well be outside Dρ unless explicitly imposed in estimation

even though the population values of ρ are in Dρ by assumption. For example, the empirical cdf is

in Dφ, but is outside Dρ. �

Theorem B.3 (Functional delta-method uniformly in P ∈ P). Let φ : Dφ ⊂ D 7−→ E
be Hadamard-differentiable uniformly in ρ ∈ Dρ ⊂ Dφ tangentially to D0 with derivative map

φ′ρ. Let ρ̂n,P be a sequence of stochastic processes taking values in Dφ, where each ρ̂n,P is an

estimator of the parameter ρP ∈ Dρ. Suppose there exists a sequence of constants rn → ∞ such
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that Zn,P = rn(ρ̂n,P − ρP )  ZP in D uniformly in P ∈ Pn. The limit process ZP is separable

and takes its values in D0 for all P ∈ P = ∪n>n0Pn, where n0 is fixed. Moreover, the set of

stochastic processes {ZP : P ∈ P} is relatively compact in the topology of weak convergence in

D0, that is, every sequence in this set can be split into weakly convergent subsequences. Then,

rn (φ(ρ̂n,P )− φ(ρP ))  φ′ρP (ZP ) in E uniformly in P ∈ Pn. If (ρ, h) 7−→ φ
′
ρ(h) is defined and

continuous on the whole of Dρ × D, then the sequence rn (φ(ρ̂n,P )− φ(ρP )) − φ′ρP (rn(ρ̂n,P − ρP ))

converges to zero in outer probability uniformly in P ∈ Pn. Moreover, the set of stochastic processes

{φ′ρP (ZP ) : P ∈ P} is relatively compact in the topology of weak convergence in E.

The following result on the functional delta method applies to any bootstrap or other simulation

method obeying certain conditions. This includes the multiplier bootstrap as a special case. Let

Dn,P = (Wi,P )ni=1 denote the data vector and Bn = (ξi)
n
i=1 be a vector of random variables, used

to generate bootstrap or simulation draws (this may depend on the particular method). Consider

sequences of stochastic processes ρ̂n,P = ρ̂n,P (Dn,P ) , where Zn,P = rn(ρ̂n,P − ρP )  ZP in the

normed space D uniformly in P ∈ Pn. Also consider the bootstrap stochastic process Z∗n,P =

Zn,P (Dn,P , Bn) in D, where Zn,P is a measurable function of Bn for each value of Dn. Suppose

that Z∗n,P converges conditionally given Dn in distribution to ZP uniformly in P ∈ Pn, namely that

sup
h∈BL1(D)

|EBn [h(Z∗n,P )]− EPh(ZP )| = o∗P (1),

uniformly in P ∈ Pn, where EBn denotes the expectation computed with respect to the law of Bn

holding the data Dn,P fixed. This is denoted as “Z∗n,P  B ZP uniformly in P ∈ Pn.” Finally, let

ρ̂∗n,P = ρ̂n,P + Z∗n,P /rn denote the bootstrap or simulation draw of ρ̂n,P .

Theorem B.4 (Uniform in P functional delta-method for bootstrap and other simu-

lation methods). Assume the conditions of Theorem B.3 hold. Let ρ̂n,P and ρ̂∗n,P be maps as

indicated previously taking values in Dφ such that rn(ρ̂n,P − ρP ) ZP and rn(ρ̂∗n,P − ρ̂n,P ) B ZP

in D uniformly in P ∈ Pn. Then, X∗n,P = rn(φ(ρ̂∗n,P ) − φ(ρ̂n,P ))  B XP = φ′ρP (ZP ) uniformly in

P ∈ Pn.

B.4. Proof of Theorem B.1. Part (a) and (b) are a direct consequence of Lemma B.2. In par-

ticular, Lemma B.2(a) implies stochastic equicontinuity under arbitrary subsequences Pn ∈ P,

which implies part (b). Part (a) follows from Lemma B.2(b) by splitting an arbitrary sequence

n ∈ N into subsequences n ∈ N′ along each of which the covariance function (t, s) 7−→ cPn(t, s) :=

Pnfs,Pnft,Pn −Pnfs,PnPnft,Pn converges uniformly and therefore also pointwise to a uniformly con-

tinuous function on (T, dT ). This is possible because {(t, s) 7−→ cP (t, s) : P ∈ P} is a relatively

compact set in `∞(T ×T ) in view of the Arzela-Ascoli Theorem, the assumptions in equation (B.1),

and total boundedness of (T, dT ). By Lemma B.2(b) pointwise convergence of the covariance func-

tion implies weak convergence to a tight Gaussian process which may depend on the identity N′

of the subsequence. Since this argument applies to each such subsequence that split the overall

sequence, part (b) follows.

Part (c) is immediate from the imposed uniform covering entropy condition and Dudley’s metric

entropy inequality for expectations of suprema of Gaussian processes (Corollary 2.2.8 in van der
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Vaart and Wellner (1996)). Claim (d) follows from claim (c) and a standard argument, based

on the application of the Borel-Cantelli lemma. Indeed, let m ∈ N be a sequence and δm :=

2−m∧ sup
{
δ > 0 : supP∈P EP supdT (t,t̄)6δ |ZP (t)− ZP (t̄)| < 2−2m

}
, then by the Markov inequality

PP

(
supdT (t,t̄)6δm |ZP (t)− ZP (t̄)| > 2−m

)
6 2−2m+m = 2−m. This sums to a finite number over

m ∈ N. Hence, by the Borel-Cantelli lemma, for almost all states ω ∈ Ω, |ZP (t)(ω)− ZP (t̄)(ω)| 6
2−m for all dT (t, t̄) 6 δm 6 2−m and all m sufficiently large. Hence claim (d) follows. �

B.5. Proof of Theorem B.2. Claim (a) is verified by invoking Theorem B.1. We begin by

showing that Z∗P = (GP ξft,P )t∈T is equal in distribution to ZP = (GP ft,P )t∈T , in particular, Z∗P
and ZP share identical mean and covariance function, and thus they share the continuity properties

established in Theorem B.1. This claim is immediate from the fact that multiplication by ξ of each

f ∈ FP = {ft,P : t ∈ T} yields a set ξFP of measurable functions ξf : (w, ξ) 7−→ ξf(w), mapping

W × R to R. Each such function has mean zero under P × Pξ, i.e.
∫
sf(w)dPξ(s)dP (w) = 0, and

the covariance function (ξf, ξf̃) 7−→ Pff̃ − PfP f̃ . Hence the Gaussian process (GP (ξf))ξf∈ξFP
shares the zero mean and the covariance function of (GP (f))f∈FP .

We are claiming that Z∗n,P  Z∗P in `∞(T ) uniformly in P ∈ P, where Z∗n,P := (Gnξft,P )t∈T .

We note that the function class FP and the corresponding envelope FP satisfy the conditions of

Theorem B.1. The same is also true for the function class ξFP defined by (w, ξ) 7−→ ξfP (w), which

maps W×R to R and its envelope |ξ|FP , since ξ is independent of W . Let Q now denote a finitely

discrete measure over W×R. By Lemma L.1 multiplication by ξ does not change qualitatively the

uniform covering entropy bound:

log sup
Q
N(ε‖|ξ|FP ‖Q,2, ξFP , ‖ · ‖Q,2) 6 log sup

Q
N(2−1ε‖FP ‖Q,2,FP , ‖ · ‖Q,2).

Moreover, multiplication by ξ does not affect the norms, ‖ξfP (W )‖P×Pξ,2 = ‖fP (W )‖P,2, since ξ

is independent of W by construction and Eξ2 = 1. The claim then follows.

Claim (b). For each δ > 0 and t ∈ T , let πδ(t) denote a closest element in a given, finite δ-net

over T . We begin by noting that

∆P := sup
h∈BL1

|EBnh(Z∗n,P )− EPh(ZP )|

6 IP + IIP + IIIP := sup
h∈BL1

|EPh(ZP ◦ πδ)− EPh(ZP )|

+ sup
h∈BL1

|EBnh(Z∗n,P ◦ πδ)− EPh(ZP ◦ πδ)|+ sup
h∈BL1

|EBnh(Z∗n,P ◦ πδ)− EBnh(Z∗n,P )|,

where here and below BL1 abbreviates BL1(`∞(T )).

First, we note that IP 6 EP

(
supdT (t,t̄)6δ |ZP (t)− ZP (t̄)| ∧ 2

)
=: µP (δ) and limδ↘0 supP∈P µP (δ) =

0. The first assertion follows from

IP 6 sup
h∈BL1

EP |h(Z∗n,P ◦ πδ)− h(Z∗n,P )| 6 EP

(
sup
t∈T
|ZP ◦ πδ(t)− ZP (t)| ∧ 2

)
6 µP (δ),

and the second assertion holds by Theorem B.1 (c).
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Second, E∗P IIIP 6 E∗P

(
supdT (t,t̄)6δ |Z∗n,P (t)− Z∗n,P (t̄)| ∧ 2

)
=: µ∗P (δ) and limn→∞ supP∈P |µ∗P (δ)−

µP (δ)| = 0. The first assertion follows because E∗P IIIP is bounded by

E∗P sup
h∈BL1

EBn |h(Z∗n,P ◦ πδ)− h(Z∗n,P )| 6 E∗PEBn

(
sup
t∈T
|Z∗n,P ◦ πδ(t)− Z∗n,P (t)| ∧ 2

)
6 µ∗P (δ).

The second assertion holds by part (a) of the present theorem.

Define ε(δ) := δ ∨ supP∈P µP (δ). Then, by Markov’s inequality, followed by n→∞,

lim sup
n→∞

sup
P∈P

P∗P

(
IIIP >

√
ε(δ)

)
6 lim sup

n→∞

supP∈P µ
∗
P (δ)√

ε(δ)
6

supP∈P µP (δ)√
ε(δ)

6
√
ε(δ).

Finally, by Lemma B.1, for each ε > 0, lim supn→∞ supP∈P P∗P (IIP > ε) = 0.

We can now conclude. Note that ε(δ)↘ 0 if δ ↘ 0, which holds by the definition of ε(δ) and the

property supP∈P µP (δ) ↘ 0 if δ ↘ 0 noted above. Hence for each ε > 0 and all 0 < δ < δε such

that 3
√
ε(δ) < ε,

lim sup
n→∞

sup
P∈P

P∗P (∆P > ε) 6 lim sup
n→∞

sup
P∈P

P∗P

(
IP + IIP + IIIP > 3

√
ε(δ)

)
6
√
ε(δ).

Sending δ ↘ 0 gives the result. �

B.6. Auxiliary Result: Conditional Multiplier CLT in Rd uniformly in P ∈ P. We rely

on the following lemma, which is apparently new. (An analogous result can be derived for almost

sure convergence from well-known non-uniform multiplier central limit theorems, but this strategy

requires us to put all the variables indexed by P on the single underlying probability space, which

is much less convenient in applications.)

Lemma B.1 (Conditional Multiplier Central Limit Theorem in Rd uniformly in P ∈ P). Let

(Zi,P )∞i=1 be i.i.d. random vectors on Rd, indexed by a parameter P ∈ P. The parameter P

represents probability laws on Rd. For each P ∈ P, these vectors are assumed to be independent

of the i.i.d. sequence (ξi)
∞
i=1 with Eξ1 = 0 and Eξ2

1 = 1. There exist constants 2 < q < ∞ and

0 < M < ∞, such that EPZ1,P = 0 and (EP ‖Z1,P ‖q)1/q 6 M uniformly for all P ∈ P. Then, for

every ε > 0

lim
n→∞

sup
P∈P

P∗P

(
sup

h∈BL1(Rd)

∣∣∣EBnh(n−1/2
n∑
i=1

ξiZi,P

)
− EPh

(
N(0,EPZ1,PZ

′
1,P )

)∣∣∣ > ε

)
= 0,

where EBn denotes the expectation over (ξi)
n
i=1 holding (Zi,P )ni=1 fixed.

Proof of Lemma B.1. Let X and Y be random variables in Rd, then define dBL(X,Y ) :=

suph∈BL1(Rd) |Eh(X) − Eh(Y )|. It suffices to show that for any sequence Pn ∈ P and N∗ ∼
n−1/2

∑n
i=1 ξiZi,Pn | (Zi,Pn)ni=1, dBL

(
N∗, N(0,EPnZ1,PnZ

′
1,Pn

)
)
→ 0 in probability (under PPn).

Following Bickel and Freedman (1981), we shall rely on the Mallow’s metric, written mr, which is

a metric on the space of distribution functions on Rd. For our purposes it suffices to recall that given

a sequence of distribution functions {Fk} and a distribution function F , mr(Fk, F )→ 0 if and only



42

if
∫
gdFk →

∫
gdF for each continuous and bounded g : Rd → R, and

∫
‖z‖rdFk(z)→

∫
‖z‖rdF (z).

See Bickel and Freedman (1981) for the definition of mr.

Under the assumptions of the lemma, we can split the sequence n ∈ N into subsequences

n ∈ N′, along each of which the distribution function of Z1,Pn converges to some distribution

function F ′ with respect to the Mallow’s metric mr, for some 2 < r < q. This also implies that

N(0,EPnZ1,PnZ
′
1,Pn

) converges weakly to a normal limit N(0, Q′) with Q′ =
∫
zz′dF ′(z) such that

‖Q′‖ 6M . Both Q′ and F ′ can depend on the subsequence N′.
Let Fk be the empirical distribution function of a sequence (zi)

k
i=1 of constant vectors in Rd,

where k ∈ N. The law of N∗Fk = k−1/2
∑k

i=1 ξizi is completely determined by Fk and the law of ξ

(the latter is fixed, so it does not enter as the subscript in the definition of N∗Fk). If mr(Fk, F
′)→ 0

as k →∞, then dBL(N∗Fk , N(0, Q′))→ 0 by Lindeberg’s central limit theorem.

Let Fn denote the empirical distribution function of (Zi,Pn)ni=1. Note that N∗ = N∗Fn ∼
n−1/2

∑n
i=1 ξiZi,Pn | (Zi,Pn)ni=1. By the law of large numbers for arrays,

∫
gdFn →

∫
gdF ′ and∫

‖z‖rdFn(z)→
∫
‖z‖rdF ′(z) in probability along the subsequence n ∈ N′. Hence mr(Fn, F ′)→ 0

in probability along the same subsequence. We can conclude that dBL(N∗Fn , N(0, Q′))→ 0 in prob-

ability along the same subsequence by the extended continuous mapping theorem (van der Vaart

and Wellner, 1996, Theorem 1.11.1).

The argument applies to every subsequence N′ of the stated form. The claim in the first paragraph

of the proof thus follows. �

B.7. Donsker Theorems for Function Classes that depend on n. Let (Wi)
∞
i=1 be a sequence

of i.i.d. copies of the random element W taking values in the measure space (W,AW), whose

law is determined by the probability measure P , and let w 7−→ fn,t(w) be measurable functions

fn,t : W → R indexed by n ∈ N and a fixed, totally bounded semi-metric space (T, dT ). Consider

the stochastic process

(Gnfn,t)t∈T :=

{
n−1/2

n∑
i=1

(fn,t(Wi)− Pfn,t)

}
t∈T

.

This empirical process is indexed by a class of functions Fn = {fn,t : t ∈ T} with a measurable

envelope function Fn. It is important to note here that the dependence on n allows us to have the

class itself be possibly dependent on the law Pn.

Lemma B.2 (Donsker Theorem for Classes Changing with n). Work with the set-up above.

Suppose that for some fixed constant q > 2 and every sequence δn ↘ 0:

‖Fn‖Pn,q = O(1), sup
dT (s,t)6δn

‖fn,s − fn,t‖Pn,2 → 0,

∫ δn

0
sup
Q

√
logN(ε‖Fn‖Q,2,Fn, ‖ · ‖Q,2)dε→ 0.

(a) Then the empirical process (Gnfn,t)t∈T is asymptotically tight in `∞(T ) i.e. stochastically

equicontinuous. (b) For any subsequence such that the covariance function Pnfn,sfn,t−Pnfn,sPnfn,t
converges pointwise on T×T , (Gnfn,t)t∈T converges in `∞(T ) to a Gaussian process with covariance

function given by the limit of the covariance function along that subsequence.
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Proof. The use of Theorem 2.11.1 in van der Vaart and Wellner (1996), which does allow for

the probability space to depend on n, allows us to establish claim (a), by repeating the proof

(verbatim) of Theorem 2.11.22 in van der Vaart and Wellner (1996, p. 220-221), except that the

probability law is allowed to depend on n. (For the sake of completeness, the Supplementary

Appendix, provides the complete proof). The proof of claim (b) follows by a standard argument

from the stochastic equicontinuity established in claim (a) and finite-dimensional convergence along

the indicated subsequences. �

B.8. Proof of Theorems B.3 and B.4. The proof consists of two parts, each proving the corre-

sponding theorem.

Part 1. We can split N into subsequences {N′} along each of which Zn,Pn  Z ′ ∈ D0 in D, ρPn →
ρ′ in Dρ (n ∈ N′), where Z ′ and ρ′ can possibly depend on N′. It suffices to verify that for each N′:

rn(φ(ρ̂n,Pn)− φ(ρPn)) φ′ρ′(Z
′) (n ∈ N′) (B.3)

rn(φ(ρ̂n,Pn)− φ(ρPn))− φ′ρPn (rn(ρ̂n,Pn − ρPn)) 0 (n ∈ N′), (B.4)

rn(φ(ρ̂n,Pn)− φ(ρPn))− φ′ρ′(rn(ρ̂n,Pn − ρPn)) 0 (n ∈ N′), (B.5)

where the last two claims hold provided that (ρ, h) 7−→ φ
′
ρ(h) is defined and continuous on the

whole of Dρ × D. The claim (B.5) is not needed in Part 1, but we need it for the Part 2.

The map gn(h) = rn(φ(ρPn + r−1
n h) − φ(ρPn)), from Dn = {h ∈ D : ρPn + r−1

n h ∈ Dφ} to E,

satisfies gn(hn) → φ′ρ′(h) for every subsequence hn → h ∈ D0 (with n ∈ N′). Application of the

extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1) yields

(B.3).

Similarly, the map mn(h) = rn(φ(ρPn + r−1
n h) − φ(ρPn)) − φ′ρPn (h), from Dn = {h ∈ D : ρPn +

r−1
n h ∈ Dφ} to E, satisfies mn(hn)→ φ′ρ′(h)− φ′ρ′(h) = 0 for every subsequence hn → h ∈ D0 (with

n ∈ N′). Application of the extended continuous mapping theorem (van der Vaart and Wellner,

1996, Theorem 1.11.1) yields (B.4). The proof of (B.5) is completely analogous and is omitted.

To establish relative compactness, work with each N′. Then φ′ρPn (h) mapping D0 to E satis-

fies φ′ρPn (hn) → φ′ρ′(h) for every subsequence hn → h ∈ D0 (with n ∈ N′). Application of the

extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1) yields

that φ′ρPn (ZP ) φ′ρ′(Z
′).

Part 2. We can split N into subsequences {N′} as above. Along each N′,

rn(ρ̂∗n,Pn − ρPn) Z ′′ ∈ D0 in D, rn(ρ̂n,Pn − ρPn) Z ′ ∈ D0 in D, ρPn → ρ′ in Dρ (n ∈ N′),

where Z ′′ is a separable process in D0 (which is given by Z ′ plus its independent copy Z̄ ′). Indeed,

note that rn(ρ̂∗ρn,Pn − ρPn) = Z∗n,Pn + Zn,Pn , and (Z∗n,Pn , Zn,Pn) converge weakly unconditionally to

(Z̄ ′, Z ′) by a standard argument.

Given each N′ the proof is similar to the proof of Theorem 3.9.15 of van der Vaart and Wellner

(1996). We can assume without loss of generality that the derivative φ′ρ′ : D → E is defined and

continuous on the whole of D. Otherwise, if φ′ρ′ is defined and continuous only on D0, we can extend

it to D by a Hahn-Banach extension such that C = ‖φ′ρ′‖D0→E = ‖φ′ρ′‖D→E <∞; see van der Vaart
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and Wellner (1996, p. 380) for details. For each N′, by claim (B.5), applied to ρ̂n,Pn and to ρ̂∗n,Pn
replacing ρ̂n,Pn ,

rn(φ(ρ̂n,Pn)− φ(ρPn)) = φ′ρ′(rn(ρ̂n,Pn − ρPn)) + o∗Pn(1),

rn(φ(ρ̂∗n,Pn)− φ(ρPn)) = φ′ρ′(rn(ρ̂∗n,Pn − ρPn)) + o∗Pn(1).

Subtracting these equations conclude that for each ε > 0

EPn1
(∥∥∥rn(φ(ρ̂∗n,Pn)− φ(ρ̂n,Pn))− φ′ρ′(rn(ρ̂∗n,Pn − ρ̂n,Pn))

∥∥∥∗
E
> ε
)
→ 0 (n ∈ N′). (B.6)

For every h ∈ BL1(E), the function h◦φ′ρ′ is contained in BLC(D). Moreover, rn(ρ̂∗n,P−ρ̂n,P ) B ZP

in D uniformly in P ∈ Pn implies rn(ρ̂∗n,P − ρ̂n,P ) B Z ′ along the subsequence n ∈ N′. These two

facts imply that

sup
h∈BL1(E)

∣∣∣EBnh(φ′ρ′(rn(ρ̂∗n,Pn − ρ̂n,Pn))
)
− Eh(φρ′(Z

′))
∣∣∣ = o∗Pn(1) (n ∈ N′).

Next for each ε > 0 and along n ∈ N′

sup
h∈BL1(E)

∣∣∣EBnh(rn(φ(ρ̂∗n,Pn)− φ(ρ̂n,Pn))
)
− EBnh

(
φ′ρ′(rn(ρ̂∗n,Pn − ρ̂n,Pn))

)∣∣∣
6 ε+ 2EBn1

(∥∥∥rn(φ(ρ̂∗n,Pn)− φ(ρ̂n,Pn))− φ′ρ′(rn(ρ̂∗n,Pn − ρ̂n,Pn))
∥∥∥∗
E
> ε
)

= oPn(1),

where the oPn(1) conclusion follows by the Markov inequality and by (B.6). Conclude that

sup
h∈BL1(E)

∣∣∣EBnh(rn(φ(ρ̂∗n,Pn)− φ(ρ̂n,Pn))
)
− Eh(φρ′(Z

′))
∣∣∣ = o∗Pn(1) (n ∈ N′).�

Appendix C. Key Tools II: Probabilistic Inequalities

Let (Wi)
n
i=1 be a sequence of i.i.d. copies of random element W taking values in the measure

space (W,AW) according to probability law P . Let F be a set of suitably measurable functions

f :W 7−→ R, equipped with a measurable envelope F :W 7−→ R.

The following maximal inequality is due to Chernozhukov et al. (2012).

Lemma C.1 (A Maximal Inequality). Work with the setup above. Suppose that F > supf∈F |f |
is a measurable envelope with ‖F‖P,q <∞ for some q > 2. Let M = maxi6n F (Wi) and σ2 > 0 be

any positive constant such that supf∈F ‖f‖2P,2 6 σ2 6 ‖F‖2P,2. Suppose that there exist constants

a > e and v > 1 such that log supQN(ε‖F‖Q,2,F , ‖ · ‖Q,2) 6 v(log a+ log(1/ε)), 0 < ε 6 1. Then

EP [‖Gn‖F ] 6 K

(√
vσ2 log

(
a‖F‖P,2

σ

)
+
v‖M‖PP ,2√

n
log

(
a‖F‖P,2

σ

))
,

where K is an absolute constant. Moreover, for every t > 1, with probability > 1− t−q/2,

‖Gn‖F 6 (1 + α)EP [‖Gn‖F ] + K(q)
[
(σ + n−1/2‖M‖PP ,q)

√
t + α−1n−1/2‖M‖PP ,2t

]
, ∀α > 0,
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where K(q) > 0 is a constant depending only on q. In particular, setting a > n and t = log n, with

probability > 1− c(log n)−1,

‖Gn‖F 6 K(q, c)

(
σ

√
v log

(
a‖F‖P,2

σ

)
+
v‖M‖PP ,q√

n
log

(
a‖F‖P,2

σ

))
, (C.1)

where ‖M‖PP ,q 6 n1/q‖F‖P,q and K(q, c) > 0 is a constant depending only on q and c.

Appendix D. Proof for Section 4

These results follow from the application of results given in Section 5. The details are given in

the Supplementary Appendix.

Appendix E. Proofs for Section 5

E.1. Proof of Theorem 5.1. In the proof a . b means that a 6 Ab, where the constant A

depends on the constants in Assumptions 5.1–5.3, but not on n once n > n0, and not on P ∈ Pn.

Since the argument is asymptotic, we can assume that n > n0 in what follows. In order to establish

the result uniformly in P ∈ Pn, it suffices to establish the result under the probability measure

induced by any sequence P = Pn ∈ Pn. In the proof we shall use P , suppressing the dependency

of Pn on the sample size n. Also, let

B(W ) := max
j∈[dθ],k∈[dθ+dt]

sup
ν∈Θu×Tu(Zu),u∈U

∣∣∣∂νkEP [ψuj(Wu, ν) | Zu]
∣∣∣, (E.1)

Step 1. (A Preliminary Rate Result). In this step we claim that wp 1−o(1), supu∈U ‖θ̂u−θu‖ . τn.
By definition

‖Enψu(Wu, θ̂u, ĥu(Zu))‖ 6 inf
θ∈Θu

‖Enψu(Wu, θ, ĥu(Zu))‖+ εn for each u ∈ U ,

which implies via triangle inequality that uniformly in u ∈ U with probability 1− o(1)∥∥∥P [ψu(Wu, θ̂u, hu(Zu))]
∥∥∥ 6 εn + 2I1 + 2I2 . τn, (E.2)

for I1 and I2 defined in Step 2 below. The . bound in (E.2) follows from Step 2 and from the

assumption εn = o(n−1/2). Since by Assumption 5.1(iv), 2−1(‖Ju(θ̂u−θu)‖∧c0) does not exceed the

left side of (E.2) and infu∈U mineig(J ′uJu) is bounded away from zero uniformly in n, we conclude

that supu∈U ‖θ̂u − θu‖ . (infu∈U mineig(J ′uJu))−1/2τn . τn.

Step 2. (Define and bound I1 and I2) We claim that with probability 1− o(1):

I1 := sup
θ∈Θu,u∈U

∥∥∥Enψu(Wu, θ, ĥu(Zu))− Enψu(Wu, θ, hu(Zu))
∥∥∥ . τn,

I2 := sup
θ∈Θu,u∈U

∥∥∥Enψu(Wu, θ, hu(Zu))− Pψu(Wu, θ, hu(Zu))
∥∥∥ . τn.
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To establish this, we can bound I1 6 2I1a + I1b and I2 6 I1a, where with probability 1− o(1),

I1a := sup
θ∈Θu,u∈U ,h∈Hun∪{hu}

∥∥∥Enψu(Wu, θ, h(Zu))− Pψu(Wu, θ, h(Zu))
∥∥∥ . τn,

I1b := sup
θ∈Θu,u∈U ,h∈Hun∪{hu}

∥∥∥Pψu(Wu, θ, h(Zu))− Pψu(Wu, θ, hu(Zu))
∥∥∥ . τn.

These bounds in turn hold by the following arguments. In order to bound I1b we employ Taylor’s

expansion and the triangle inequality. For h̄(Z, u, j, θ) denoting a point on a line connecting vectors

h(Zu) and hu(Zu), and tm denoting the mth element of the vector t,

I1b 6
dθ∑
j=1

dt∑
m=1

sup
θ∈Θu,u∈U ,h∈Hun

∣∣∣P [∂tmP [ψuj(Wu, θ, h̄(Z, u, j, θ))|Zu
]

(hm(Zu)− hum(Zu))
] ∣∣∣

6 dθdt‖B‖P,2 max
u∈U ,h∈Hun,m∈[dt]

‖hm − hum‖P,2,

where the last inequality holds by the definition of B(W ) given earlier and Hölder’s inequality. By

Assumption 5.2(ii)(c), ‖B‖P,2 6 C, and by Assumption 5.3, supu∈U ,h∈Hun,m∈[dt] ‖hm−hum‖P,2 . τn,

hence we conclude that I1b . τn since dθ and dt are fixed.

In order to bound I1a we employ the maximal inequality of Lemma C.1 to the class

F1 = {ψuj(Wu, θ, h(Zu)) : j ∈ [dθ], u ∈ U , θ ∈ Θu, h ∈ Hun ∪ {hu}},

defined in Assumption 5.3 and equipped with an envelope F1 6 F0, to conclude that with probability

1− o(1),

I1a . n−1/2
(√

sn log(an) + n−1/2snn
1
q log(an)

)
. τn.

Here we use that log supQN(ε‖F1‖Q,2,F1, ‖·‖Q,2) 6 sn log(an/ε)∨0 by Assumption 5.3; ‖F0‖P,q 6 C
and supf∈F1

‖f‖2P,2 6 σ2 6 ‖F0‖2P,2 for c 6 σ 6 C by Assumption 5.2(i); an > n and sn > 1 by

Assumption 5.3.

Step 3. (Linearization) By definition

√
n‖Enψu(Wu, θ̂u, ĥu(Zu))‖ 6 inf

θ∈Θu

√
n‖Enψu(Wu, θ, ĥu(Zu))‖+ εnn

1/2.

Application of Taylor’s theorem give that for all u ∈ U
√
nEnψu(Wu, θ̂u, ĥu(Zu)) =

√
nEnψu(Wu, θu, hu(Zu))

+ Ju
√
n(θ̂u − θu) + Du,0(ĥu − hu) + II1(U) + II2(u),

where the terms II1 and II2 are defined in Step 4. Then by the triangle inequality for all u ∈ U
and Steps 4 and 5 we have∥∥∥√nEnψu(Wu, θu, hu(Zu)) + Ju

√
n(θ̂u − θu) + Du,0(ĥu − hu)

∥∥∥
6 εn
√
n+ sup

u∈U

(
inf
θ∈Θu

√
n‖Enψu(Wu, θ, ĥu(Zu))‖+ ‖II1(u)‖+ ‖II2(u)‖

)
= oP (1),

where the oP (1) bound follows from Step 4, εn
√
n = o(1) by assumption, and Step 5.
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Moreover, by the orthogonality condition:

Du,0(ĥu − hu) :=

(
dt∑
m=1

√
nP
[
∂tmP [ψuj(Wu, θu, hu(Zu))|Zu](ĥm(Zu)− hum(Zu))

])dθ
j=1

= 0.

Conclude using Assumption 5.1(iv) that

sup
u∈U

∥∥∥J−1
u

√
nEnψu(Wu, θu, hu(Zu)) +

√
n(θ̂u − θu)

∥∥∥ 6 oP (1) sup
u∈U

(mineg(J ′uJu)−1/2) = oP (1).

Furthermore, the empirical process (−
√
nEnJ−1

u ψu(Wu, θu, hu(Zu)))u∈U is equivalent to an em-

pirical process Gn indexed by FP :=
{
ψ̄uj : j ∈ [dθ], u ∈ U

}
, where ψ̄uj is the j-th element of

−J−1
u ψu(Wu, θu, hu(Zu)) and we make explicit the dependence of FP on P . Let M = {Mujk :

j, k ∈ [dθ], u ∈ U}, where Mujk is the (j, k) element of the matrix J−1
u . M is a class of uniformly

Hölder continuous functions on (U , dU ) with a uniform covering entropy bounded by C log(e/ε)∨ 0

and equipped with a constant envelope C, given the stated assumptions. This result follows from

the fact that by Assumption 5.2(ii)(b)

max
j,k∈[dθ]

|Mujk −Mūjk| 6 ‖J−1
u − J−1

ū ‖ = ‖J−1
u (Ju − Jū)J−1

ū ‖

6 ‖Ju − Jū‖ sup
ũ∈U
‖J−1

ũ ‖
2 . ‖u− ū‖α2 , (E.3)

and the constant envelope follows by Assumption 5.1(iv). Since FP is generated as a finite sum

of products of the elements of M and the class F0 defined in Assumption 5.2, the properties of

M and the conditions on F0 in Assumption 5.2(ii) imply that FP has a uniformly well-behaved

uniform covering entropy by Lemma L.1, namely

sup
P∈P=∪n>n0Pn

log sup
Q
N(ε‖CF0‖Q,2,FP , ‖ · ‖Q,2) . log(e/ε) ∨ 0,

where FP = CF0 is an envelope for FP since supf∈FP |f | . supu∈U ‖J−1
u ‖ supf∈F0

|f | 6 CF0 by

Assumption 5.2(i). The class FP is therefore Donsker uniformly in P because supP∈P ‖FP ‖P,q 6
C supP∈P ‖F0‖P,q is bounded by Assumption 5.2(ii), and supP∈P ‖ψ̄u− ψ̄ū‖P,2 → 0 as dU (u, ū)→ 0

by Assumption 5.2(b) and (E.3). Application of Theorem B.1 gives the results of the theorem.

Step 4. (Define and Bound II1 and II2). Let II1(u) := (II1j(u))dθj=1 and II2(u) = (II2j(u))dθj=1,

where

II1j(u) :=

dν∑
r,k=1

√
nP [∂νk∂νrP [ψuj(Wu, ν̄u(Zu, j))|Zu]{ν̂ur(Zu)− νur(Zu)}{ν̂uk(Zu)− νuk(Zu)}] ,

II2j(u) := Gn(ψuj(Wu, θ̂u, ĥu(Zu))− ψuj(Wu, θu, hu(Zu))),

where νu(Zu) := (νuk(Zu))dνk=1 := (θ′u, hu(Zu)′)′, ν̂u(Zu) := (ν̂uk(Zu))dνk=1 := (θ̂′u, ĥu(Zu)′)′, dν =

dθ + dt, and ν̄u(Zu, j) is a vector on the line connecting νu(Zu) and ν̂u(Zu).
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First, by Assumptions 5.2(ii)(d) and 5.3, the claim of Step 1, and the Hölder inequality,

max
j∈[dθ]

sup
u∈U
|II1j(u)| 6 sup

u∈U

dν∑
r,k=1

√
nP [C|ν̂ur(Zu)− νur(Zu)||ν̂uk(Zu)− νuk(Zu)|]

6 C
√
nd2

ν max
k∈[dν ]

sup
u∈U
‖ν̂uk − νuk‖2P,2 .P

√
nτ2

n = o(1).

Second, we have that with probability 1 − o(1), maxj∈[dθ] supu∈U |II2j(u)| . supf∈F2
|Gn(f)|,

where, for Θun := {θ ∈ Θu : ‖θ − θu‖ 6 Cτn},

F2 =
{
ψuj(Wu, θ, h(Zu))− ψuj(Wu, θu, hu(Zu)) : j ∈ [dθ], u ∈ U , h ∈ Hun, θ ∈ Θun

}
.

Application of Lemma C.1 with an envelope F2 . F0 gives that with probability 1− o(1)

sup
f∈F2

|Gn(f)| . τα/2n

√
sn log(an) + n−1/2snn

1
q log(an), (E.4)

since supf∈F2
|f | 6 2 supf∈F1

|f | 6 2F0 by Assumption 5.3; ‖F0‖P,q 6 C by Assumption 5.2(i);

log supQN(ε‖F2‖Q,2,F2, ‖ · ‖Q,2) . (sn log an + sn log(an/ε)) ∨ 0 by Lemma L.1 because F2 =

F1 − F0 for the F0 and F1 defined in Assumptions 5.2(i) and 5.3; and σ can be chosen so that

supf∈F2
‖f‖P,2 6 σ . τα/2n . Indeed,

sup
f∈F2

‖f‖2P,2 6 sup
j∈[dθ],u∈U ,ν∈Θun×Hun

P
(
P [(ψuj(Wu, ν(Zu))− ψuj(Wu, νu(Zu)))2|Zu]

)
6 sup

u∈U ,ν∈Θun×Hun
P (C‖ν(Zu)− νu(Zu)‖α)

= sup
u∈U ,ν∈Θun×Hun

C‖ν − νu‖αP,α 6 sup
u∈U ,ν∈Θun×Hun

C‖ν − νu‖αP,2 . ταn ,

where the first inequality follows by the law of iterated expectations; the second inequality follows

by Assumption 5.2(ii)(a); and the last inequality follows from α ∈ [1, 2] by Assumption 5.2, the

monotonicity of the norm ‖ · ‖P,α in α ∈ [1,∞], and Assumption 5.3.

Conclude using the growth conditions of Assumption 5.3 that with probability 1− o(1)

max
j∈[dθ]

sup
u∈U
|II2j(u)| . τα/2n

√
sn log(an) + n−1/2snn

1
q log(an) = o(1). (E.5)

Step 5. In this step we show that supu∈U infθ∈Θu

√
n‖Enψu(Wu, θ, ĥu(Zu))‖ = oP (1). We have

that with probability 1− o(1)

inf
θ∈Θu

√
n‖Enψu(Wu, θ, ĥu(Zu))‖ 6

√
n‖Enψu(Wu, θ̄u, ĥu(Zu))‖,

where θ̄u = θu − J−1
u Enψu(Wu, θu, hu(Zu)), since θ̄u ∈ Θu for all u ∈ U with probability 1 − o(1),

and, in fact, supu∈U ‖θ̄u − θu‖ = OP (1/
√
n) by the last paragraph of Step 3.

Then, arguing similarly to Step 3 and 4, we can conclude that uniformly in u ∈ U :

√
n‖Enψu(Wu, θ̄u, ĥu(Zu))‖ 6

√
n‖Enψu(Wu, θu, hu(Zu)) + Ju(θ̄u − θu) + Du,0(ĥu − hu)‖+ oP (1)

where the first term on the right side is zero by definition of θ̄u and Du,0(ĥu − hu) = 0. �
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E.2. Proof of Theorem 5.2. Step 0. In the proof a . b means that a 6 Ab, where the constant

A depends on the constants in Assumptions 5.1– 5.3, but not on n once n > n0, and not on P ∈ Pn.

In Step 1, we consider a sequence Pn in Pn, but for simplicity, we write P = Pn throughout the

proof, suppressing the index n. Since the argument is asymptotic, we can assume that n > n0 in

what follows.

Let Pn denote the measure that puts mass n−1 at the points (ξi,Wi) for i = 1, ..., n. Let En
denote the expectation with respect to this measure, so that Enf = n−1

∑n
i=1 f(ξi,Wi), and Gn

denote the corresponding empirical process
√
n(En − P ), i.e.

Gnf =
√
n(Enf − Pf) = n−1/2

n∑
i=1

(
f(ξi,Wi)−

∫
f(s, w)dPξ(s)dP (w)

)
.

Recall that we define the bootstrap draw as:

Z∗n,P :=
√
n(θ̂∗ − θ̂) =

(
1√
n

n∑
i=1

ξiψ̂u(Wi)

)
u∈U

=
(
Gnξψ̂u

)
u∈U

,

where ψ̂u(W ) = −Ĵ−1
u ψu(Wu, θ̂u, ĥu(Zu)).

Step 1.(Linearization) In this step we establish that

ζ∗n,P := Z∗n,P −G∗n,P = oP (1) in D = `∞(U)dθ , (E.6)

where G∗n,P := (Gnξψ̄u)u∈U , and ψ̄u(W ) = −J−1
u ψu(Wu, θu, hu(Zu)).

With probability 1− δn, ĥu ∈ Hun, θ̂u ∈ Θun = {θ ∈ Θu : ‖θ− θu‖ 6 Cτn}, and Ju ∈ Jn, so that

‖ζ∗n,P ‖D . supf∈F3
|Gn[ξf ]|, where

F3 =
{
ψ̃uj(θ̄u, h̄u, J̄u)− ψ̄uj : j ∈ [dθ], u ∈ U , θ̄u ∈ Θun, h̄u ∈ Hun, J̄u ∈ Jn

}
,

where ψ̃uj(θ̄u, h̄u, J̄u) is the j-th element of −J̄−1
u ψu(Wu, θ̄u, h̄u(Zu)), and ψ̄uj is the j-th element of

−J−1
u ψu(Wu, θu, hu(Zu)). By the arguments similar to those employed in the proof of the previous

theorem, under Assumption 5.3 and the additional conditions stated in the theorem, F3 obeys

log sup
Q
N(ε‖F3‖Q,2,F3, ‖ · ‖Q,2) . (sn log an + sn log(an/ε)) ∨ 0,

for an envelope F3 . F0. By Lemma L.1, multiplication of this class by ξ does not change the

entropy bound modulo an absolute constant, namely

log sup
Q
N(ε‖|ξ|F3‖Q,2, ξF3, ‖ · ‖Q,2) . (sn log an + sn log(an/ε)) ∨ 0.

Also E[exp(|ξ|)] < ∞ implies (E[maxi6n |ξi|2])1/2 . log n, so that, using independence of (ξi)
n
i=1

from (Wi)
n
i=1 and Assumption 5.2(i),

‖max
i6n

ξiF0(Wi)‖PP ,2 6 ‖max
i6n

ξi‖PP ,2‖max
i6n

F0(Wi)‖PP ,2 . n
1/q log n.

Applying Lemma C.1,

sup
f∈ξF3

|Gn(f)| = OP

(
τα/2n

√
sn log(an) +

snn
1/q log n√
n

log(an)

)
= oP (1),
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for supf∈ξF3
‖f‖P,2 = supf∈F3

‖f‖P,2 . σn . τ
α/2
n , where the details of calculations are similar to

those in the proof of Theorem 5.1. Indeed, with probability 1− o(δn),

sup
f∈F3

‖f‖2P,2 . sup
u∈U
‖J−1

u ‖2 sup
j∈[dθ],u∈U ,ν∈Θun×Hun

P
(
P [(ψuj(Wu, ν(Zu))− ψuj(Wu, νu(Zu)))2|Zu]

)
+ sup

u∈U
‖J̄−1

u − J−1
u ‖2 sup

j∈[dθ],u∈U ,ν∈Θun×Hun
P
(
P [ψuj(Wu, ν(Zu))2|Zu]

)
. sup

u∈U ,ν∈Θun×Hun
‖ν − νu‖αP,α + ταn . sup

u∈U ,ν∈Θun×Hun
‖ν − νu‖αP,2 + ταn . τ

α
n ,

where the first inequality follows from the triangle inequality and the law of iterated expectations;

the second inequality follows by Assumption 5.2(ii)(a), Assumption 5.2(i), and supu∈U ‖J̄−1
u −

J−1
u ‖2 . ταn by the assumptions of the theorem and the continuous mapping theorem; the third

inequality follows from α ∈ [1, 2] by Assumption 5.2, the monotonicity of the norm ‖ · ‖P,α in

α ∈ [1,∞], and Assumption 5.3; and the last inequality follows from ‖ν − νu‖P,2 . τn by the

definition of Θun and Hun. The claim of Step 1 follows.

Step 2. Here we are claiming that Z∗n,P  B ZP in D = `∞(U)dθ , under any sequence P = Pn ∈
Pn, were ZP = (GP ψ̄u)u∈U . By the triangle inequality and Step 1,

sup
h∈BL1(D)

∣∣∣EBnh(Z∗n,P )− EPh(ZP )
∣∣∣ 6 sup

h∈BL1(D)

∣∣∣EBnh(G∗n,P )− EPh(ZP )
∣∣∣+ EBn(‖ζ∗n,P ‖D ∧ 2),

where the first term is o∗P (1), since G∗n,P  B ZP by Theorem B.2, and the second term is oP (1)

because ‖ζ∗n,P ‖D = oP (1) implies that EP (‖ζ∗n,P ‖D ∧ 2) = EPEBn(‖ζ∗n,P ‖D ∧ 2) → 0, which in turn

implies that EBn(‖ζ∗n,P ‖D ∧ 2) = oP (1) by the Markov inequality. �

E.3. Proof of Theorem 5.3. This is an immediate consequence of Theorems 5.1, 5.2, B.3, and

B.4. �

Appendix F. Implementation Details

In this section, we provide details about how we implemented the methodology developed in

the main body of the paper in the empirical example. We first discuss estimation of local average

treatment effects (LATE) and then extend this discussion to estimation of local quantile treatment

effects (LQTE). Estimation of all other quantities proceeds in a similar fashion and so is not

discussed.

F.1. Local Average Treatment Effects. Recall that the LATE of treatment D on outcome Y

is defined as

∆LATE = θY (1)− θY (0) =
α11(D)Y (1)− α11(D)Y (0)

α11(D)(1)− α11(D)(0)
−
α10(D)Y (1)− α10(D)Y (0)

α10(D)(1)− α10(D)(0)

for αV (z) and θY (d) defined in equations (2.1) and (2.3) respectively. It then follows by plugging

in the definition of αV (z) that we can express the LATE as

∆LATE =
αY (1)− αY (0)

α11(D)(1)− α11(D)(0)
.
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To obtain an estimate of the LATE, we thus need estimates of αY (z) and α11(D)(z). Using

the low-bias moment function given in equation (3.13), estimates of these key quantities can be

constructed from estimates of EP [Y |Z = 1, X], EP [Y |Z = 0, X], EP [D|Z = 1, X], EP [D|Z = 0, X],

and EP [Z|X] where Z is the binary instrument (401(k) eligibility); D is the binary treatment (401(k)

participation); X is the set of raw covariates discussed in the empirical section; and Y is net financial

assets. In our application, we have EP [D|Z = 0, X] = 0 since one cannot participate unless one is

eligible. We estimate the remainder of the functions using post-LASSO to estimate EP [Y |Z = 1, X]

and EP [Y |Z = 0, X] and post-`1-penalized logistic regression to estimate EP [D|Z = 1, X] and

EP [Z|X].

To estimate EP [Y |Z = 1, X], we postulate that EP [Y |Z = 1, X] ≈ f(X)′βY (1), where f(X) is

one of the pre-specified sets of controls discussed in the empirical section with dimension p. Let

I1 denote the indices of observations that have zi = 1. To estimate the coefficients βY (1), we

apply the formulation of the post-LASSO estimator given in Belloni et al. (2012) with outcomes

{yi}i∈I1 and covariates {f(xi)}i∈I1 . We set λ = 1.1
√
nΦ−1(1 − (1/ log(n))/(2(2p))) where Φ(·) is

the standard normal distribution function. We calculate penalty loadings according to Algorithm

A.1 of Belloni et al. (2012) using post-LASSO coefficient estimates at each iteration and with

a the maximum number of iterations set to 15.28 Let β̂Y (1) denote the resulting post-LASSO

estimates of the coefficients using λ given above and the final set of penalty loadings. We then

estimate EP [Y |Z = 1, X = xi] as f(xi)
′β̂Y (1) for each i = 1, ..., n. We follow the same procedure

to obtain estimates of EP [Y |Z = 0, X = xi] as f(xi)
′β̂Y (0) for each i = 1, ..., n where β̂Y (0) are the

post-LASSO estimates using only the observations with zi = 0.

Estimation of EP [D|Z = 1, X] and EP [Z|X] proceed similarly replacing post-LASSO estima-

tion with post-`1-penalized logistic regression. Specifically, we assume that EP [D|Z = 1, X] ≈
Λ0(f(X)′βD(1)) where Λ0(·) is the logistic link function. We then obtain estimates of βD(1) by

using the post-`1-penalized estimator defined in equations (3.10) and (3.11) based on the logistic

link function and with outcomes {di}i∈I1 and covariates {f(xi)}i∈I1 for I1 defined as above. We set

λ = 1.1
√
nΦ−1(1−(1/ log(n))/(2(2p))) where Φ(·) is the standard normal distribution function. We

calculate penalty loadings using Algorithm 6.1 of the main text with a maximum of 15 iterations.

Let β̂D(1) denote the resulting post-`1-penalized estimates of the coefficients using λ given above

and the final set of penalty loadings. We estimate EP [D|Z = 1, X = xi] as Λ0(f(xi)
′β̂D(1)) for

each i = 1, ..., n. We follow this procedure to obtain estimates of EP [Z|X = xi] as Λ0(f(xi)
′β̂Z) for

each i = 1, ..., n where β̂Z are the post-`1-penalized coefficient estimates obtained with {zi}ni=1 as

the outcome and {f(xi)}ni=1 as covariates using λ = 1.1
√
nΦ−1(1− (1/ log(n))/(2p)).

28Here and in all following instances, we stop iterating before reaching the maximum number of iterations if the

`2-norm of the difference in penalty loadings calculated across consecutive iterations is less than 10−6.
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Using these baseline quantities, we obtain estimates

α̂Y (1) =
1

n

n∑
i=1

(
zi(yi − f(xi)

′β̂Y (1))

Λ0(f(xi)′β̂Z)
+ f(xi)

′β̂Y (1)

)
=

1

n

n∑
i=1

ψ1,i

α̂Y (0) =
1

n

n∑
i=1

(
(1− zi)(yi − f(xi)

′β̂Y (0))

1− Λ0(f(xi)′β̂Z)
+ f(xi)

′β̂Y (0)

)
=

1

n

n∑
i=1

ψ0,i

α̂11(D)(1) =
1

n

n∑
i=1

(
zi(di − Λ0(f(xi)

′β̂D(1)))

Λ0(f(xi)′β̂Z)
+ Λ0(f(xi)

′β̂D(1))

)
=

1

n

n∑
i=1

υ1,i

α̂11(D)(0) =
1

n

n∑
i=1

(
(1− zi)di

1− Λ0(f(xi)′β̂Z)

)
=

1

n

n∑
i=1

υ0,i = 0.

We then plug these estimates in to obtain

∆̂LATE =
α̂Y (1)− α̂Y (0)

α̂11(D)(1)− α̂11(D)(0)
.

We report both analytic and bootstrap standard error estimates for the LATE. The analytic

standard errors are calculated as√√√√ 1

n− 1

n∑
i=1

(
ψ1,i − ψ0,i

α̂11(D)(1)− α̂11(D)(0)
− ∆̂LATE

)2

/n.

We use wild bootstrap weights for obtaining the multiplier bootstrap estimates of the standard

errors with 500 bootstrap replications. Specifically, for each b = 1, ..., 500, we calculate a bootstrap

estimate of the LATE as

∆̂b
LATE =

1
n

∑n
i=1(ψ1,i − ψ0,i)ξ

b
i

1
n

∑n
i=1(υ1,i − υ0,i)ξbi

where ξbi = 1 + rb1,i/
√

2 + ((rb2,i)
2 − 1)/2 is the bootstrap draw for multiplier weight for observa-

tion i in bootstrap repetition b where rb1,i and rb2,i are random numbers generated as iid draws

from two independent standard normal random variables. The bootstrap standard error estimate

is then the bootstrap interquartile range rescaled with the normal distribution: [qLATE(.75) −
qLATE(.25)]/[qN (.75)− qN (0.25)], where qLATE(p) is the pth quantile of {∆̂b

LATE}500
b=1 and qN (p) is

the pth quantile of the N(0, 1).

F.2. Local Quantile Treatment Effects. Calculation and inference for LQTE is more cumber-

some than for the LATE. We begin by choosing the set over which we would like to look at the

LQTE. In our example, we chose to look at quantiles in the interval [0.1, 0.9].

To calculate the LQTE, we first calculate the local average structural function for outcomes

Yu = 1(Y ≤ u) for a set of u and then invert to obtain estimates of the LQTE. In our exam-

ple, we chose to look at u ∈ [qY (.05), qY (.95)] where qY (.05) and qY (.95) are respectively the

sample 5th and 95th percentiles of the outcome of interest Y . Since looking at the continuum

of values in this interval is infeasible, we discretize the interval and look at Yu = 1(Y ≤ u) for

u ∈ {qY (.05), qY (.06), qY (.07), ..., qY (.93), qY (.94), qY (.95)}. I.e. we set u equal to each percentile
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of Y between the 5th and 95th percentiles for a total of 91 different values of u to be considered.

For each value of u, we need an estimate of the local average structural function defined in (2.3)

for d ∈ {0, 1}:

θ1(Y≤u)(d) =
α1d(D)1(Y≤u)(1)− α1d(D)1(Y≤u)(0)

α1d(D)(1)− α1d(D)(0)
.

As with the LATE, we need estimates of EP [D|Z = 1, X] and EP [Z|X]. We estimate these

quantities as we did for the LATE but change the value of the penalty parameter used to reflect the

fact that we are now interested in a large set, in theory a continuum, of model selection problems.

Specifically, we assume that EP [D|Z = 1, X] ≈ Λ0(f(X)′βD(1)) where Λ0(·) is the logistic link

function and f(X) is one of the pre-specified sets of controls discussed in the empirical section with

dimension p. We then obtain estimates of βD(1) by using the post-`1-penalized estimator defined

in equations (3.10) and (3.11) based on the logistic link function and with outcomes {di}i∈I1 and

covariates {f(xi)}i∈I1 for I1 defined as above. We set λ = 1.1
√
nΦ−1(1 − (1/ log(n))/(2n(2p)))

where Φ(·) is the standard normal distribution function. We calculate penalty loadings using

Algorithm 6.1 with a maximum of 15 iterations. Let β̂D(1) denote the resulting post-`1-penalized

estimates of the coefficients using λ given above and the final set of penalty loadings. We estimate

EP [D|Z = 1, X = xi] as Λ0(f(xi)
′β̂D(1)) for each i = 1, ..., n. We follow this procedure to obtain

estimates of EP [Z|X] as Λ0(f(xi)
′β̂Z) for each i = 1, ..., n where β̂Z are the post-`1-penalized

coefficient estimates obtained with {zi}ni=1 as the outcome and {f(xi)}ni=1 as covariates and λ =

1.1
√
nΦ−1(1 − (1/ log(n))/(2np)). We also still have EP [D|Z = 0, X] = 0 in our application since

one cannot participate in a 401(k) unless one is eligible. We then plug-in these estimates to obtain

α̂11(D)(1) =
1

n

n∑
i=1

(
zi(di − Λ0(f(xi)

′β̂D(1)))

Λ0(f(xi)′β̂Z)
+ Λ0(f(xi)

′β̂D(1))

)
=

1

n

n∑
i=1

υ1,1,i

α̂11(D)(0) =
1

n

n∑
i=1

(
(1− zi)di

1− Λ0(f(xi)′β̂Z)

)
=

1

n

n∑
i=1

υ1,0,i = 0

α̂10(D)(1) = 1− α̂11(D)(1), α̂10(D)(0) = 1− α̂11(D)(0).

We also need to obtain estimates of α1d(D)1(Y≤u)(z) for each value of u and for

(z, d) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

These estimates will depend on the propensity score, EP [Z|X], estimated above and quantities of
the form EP [1(D = d)1(Y ≤ u)|Z = z,X]. We again approximate this function with EP [1(D =
d)1(Y ≤ u)|Z = z,X] ≈ Λ0(X ′β1d(D)Yu(z)) and estimate the coefficients β1d(D)Yu(z) for each
combination of d and z and each u using the post-`1-penalized estimator defined in equations (3.10)
and (3.11) based on the logistic link function. We set λ = 1.1

√
nΦ−1(1−(1/ log(n))/(2n(2p))) where

Φ(·) is the standard normal distribution function. We calculate penalty loadings using Algorithm
6.1 of the main text with a maximum of 15 iterations. We follow this procedure for each u with
{1(yi ≤ u)1(di = 1)}i∈I1 as the outcome and covariates {f(xi)}i∈I1 , with {1(yi ≤ u)1(di = 0)}i∈I1
as the outcome and covariates {f(xi)}i∈I1 , and with {1(yi ≤ u)1(di = 0)}i∈I0 as the outcome

and covariates {f(xi)}i∈I0 for I1 and I0 defined as above to obtain point estimates β̂11(D)Yu(1),

β̂10(D)Yu(1), and β̂10(D)Yu(0) respectively. We then estimate EP [1(D = 1)1(Y ≤ u)|Z = 1, X = xi]
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as Λ0(f(xi)
′β̂11(D)Yu(1)) for each i = 1, ..., n and obtain estimates of EP [1(D = 0)1(Y ≤ u)|Z =

1, X = xi], and EP [1(D = 0)1(Y ≤ u)|Z = 0, X = xi] analogously. As before, we have EP [1(D =
1)1(Y ≤ u)|Z = 0, X] = 0 since one cannot participate unless one is eligible. We then plug-in these
estimates to obtain

α̂11(D)1(Y≤u)(1) =
1

n

n∑
i=1

(
zi(di1(yi ≤ u)− Λ0(f(xi)

′β̂11(D)Yu(1)))

Λ0(f(xi)′β̂Z)
+ Λ0(f(xi)

′β̂11(D)Yu(1))

)
=

1

n

n∑
i=1

κu,1,1,i

α̂11(D)1(Y≤u)(0) =
1

n

n∑
i=1

(
(1− zi)(di1(yi ≤ u))

1− Λ0(f(xi)′β̂Z)

)
=

1

n

n∑
i=1

κu,1,0,i = 0

α̂10(D)1(Y≤u)(1) =
1

n

n∑
i=1

(
zi((1− di)1(yi ≤ u)− Λ0(f(xi)

′β̂10(D)Yu(1)))

Λ0(f(xi)′β̂Z)
+ Λ0(f(xi)

′β̂10(D)Yu(1))

)
=

1

n

n∑
i=1

κu,0,1,i

α̂10(D)1(Y≤u)(0) =
1

n

n∑
i=1

(
(1− zi)((1− di)1(yi ≤ u)− Λ0(f(xi)

′β̂10(D)Yu(0)))

1− Λ0(f(xi)′β̂Z)
+ Λ0(f(xi)

′β̂10(D)Yu(0))

)
=

1

n

n∑
i=1

κu,0,0,i.

Estimates of the local average structural (distribution) functions are formed using the estimators

defined in the previous two paragraphs as

θ̂1(Y≤u)(d) =
α̂1d(D)1(Y≤u)(1)− α̂1d(D)1(Y≤u)(0)

α̂1d(D)(1)− α̂1d(D)(0)
.

To obtain LQTE estimates, we then need to invert these local average structural functions. Since

we only have the estimated distribution for each d evaluated on the finite grid of points u ∈
{qY (.05), qY (.06), qY (.07), ..., qY (.93), qY (.94), qY (.95)}, we do this inversion by linearly interpolat-

ing the value of the distribution function between these points to find the value of the outcome as-

sociated with each quantile in the set q ∈ [0.1, 0.11, .0, 12, ..., 0.89, .0.9] which we denote as θ̂←Y (q, d).

The LQTE at point q is then estimated as ∆̂(q) = θ̂←Y (q, 1)− θ̂←Y (q, 0).

For the LQTE, we only report inference based on the multiplier bootstrap using 500 bootstrap

replications. For each b = 1, ..., 500, we generate bootstrap weights as ξbi = 1+rb1,i/
√

2+((rb2,i)
2−1)/2

for observation i in bootstrap repetition b where rb1,i and rb2,i are random numbers generated as

iid draws from two independent standard normal random variables. We then use these weights to

form bootstrap estimates of the local average structural functions

θ̂b1(Y≤u)(d) =
α̂b1d(D)1(Y≤u)(1)− α̂b1d(D)1(Y≤u)(0)

α̂b1d(D)(1)− α̂b1d(D)(0)

where

α̂b11(D)(1) =
1

n

n∑
i=1

ξbiυ1,1,i, α̂
b
11(D)(0) =

1

n

n∑
i=1

ξbiυ1,0,i,

α̂b10(D)(1) = 1− α̂b11(D)(1), α̂b10(D)(0) = 1− α̂b11(D)(0),

α̂b11(D)1(Y≤u)(1) =
1

n

n∑
i=1

ξbiκu,1,1,i, α̂
b
11(D)1(Y≤u)(0) =

1

n

n∑
i=1

ξbiκu,1,0,i = 0,

α̂b10(D)1(Y≤u)(1) =
1

n

n∑
i=1

ξbiκu,0,1,i, α̂
b
10(D)1(Y≤u)(0) =

1

n

n∑
i=1

ξbiκu,0,0,i.
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From these bootstrap estimates of the average structural distribution functions, we obtain bootstrap

LQTE estimates as above through inversion by linearly interpolating the value of the distribution

function between the finite set of points at which we have estimated values to find the value of

the outcome associated with each quantile in the set q ∈ [0.1, 0.11, .0, 12, ..., 0.89, .0.9], denoted

(θ̂←Y (q, d))b. The bootstrap estimate of the LQTE for bootstrap replication b at point q is then

∆̂b(q) = (θ̂←Y (q, 1))b − (θ̂←Y (q, 0))b. We form bootstrap standard error estimates for the LQTE at

each quantile q as

s(q) = [qLQTE(.75)− qLQTE(.25)]/[qN (.75)− qN (.25)],

where qLQTE(p) is the pth quantile of {∆̂b(q)}500
b=1 and qN (p) is the pth quantile of the N(0, 1).

We also use the bootstrap LQTE estimates to obtain the critical values we use when plotting

the uniform confidence bands in our example. We form bootstrap t-statistics for each quantile q as

tb(q) = (∆̂b(q)− ∆̂(q))/s(q). We then take tbmax = maxq{|tb(q)|} and use the 95th percentile of the

bootstrap distribution of tbmax as the critical value in constructing the confidence intervals for our

figures following for example Chernozhukov et al. (2013).
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Series approximation Dimension Selection Linear Model ATE ATE‐T Linear IV LATE LATE‐T

Quadratic Spline 35 (32) N 8997 8093 11250 12926 11579 15969

(1252) (1082) (1513) (1796) (1548) (2148)

{967} {1423} {1413} {2195}

Quadratic Spline 35 (32) Y 8967 7614 10257 12890 10937 14560

(1270) (1224) (1776) (1821) (1758) (2520)

{1234} {1676} {1709} {2576}

Quadratic Spline Plus Interactions 311 (272) N 9019 11775 11740 12973 17529 16664

(1258) (4202) (1779) (1804) (6256) (2526)

{4202} {1757} {6249} {2558}

Quadratic Spline Plus Interactions 311 (272) Y 8307 7077 8830 11784 10168 12533

(1313) (1358) (2133) (1995) (1952) (3027)

{1237} {2105} {1963} {2818}

Quadratic Spline Plus Many Interactions 1756 (1526) N 8860 ‐ ‐ 12827 ‐ ‐

(1358) ‐ ‐ (1960) ‐ ‐

‐ ‐ ‐ ‐

Quadratic Spline Plus Many Interactions 1756 (1526) Y 8536 7848 9602 10671 11267 13629

(1321) (1317) (2047) (2001) (1890) (2906)

{1334} {1894} {1835} {2862}

Table 1: Estimates and standard errors of average effects

Specification

Notes: The sample is drawn from the 1991 SIPP and consists of 9,915 observations.  All the specifications control for age, income, family size, education, marital status, two‐earner 

status, defined benefit pension status, IRA participation status, and home ownership status. Quadratic Spline uses indicators for marital status, two‐earner status, defined benefit 

pension status, IRA participation status, and home ownership status; a third order polynomial in age; second order polynomials in education and family size; and a piecewise 

quadratic polynomial in income with six break points.  The "Quadratic Spline Plus Interactions" specification include all first‐order interactions between the income variables and the 

remaining variables.  The specification denoted "Quadratic Spline Plus Many Interactions" takes all first‐order interactions between all non‐income variables and then fully interacts 

these interactions as well as the main effects with all income variables.  Analytic standard errors are given in parentheses.  Bootstrap standard errors based on 500 repetitions with 

Mammen (1993) multipliers are given in braces.

Exogenous: 401(k) Eligibility Endogenous: 401(k) Participation
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Figure 1. QTE and QTE-T estimates of the effect of 401(k) eligibility on net
financial assets.
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Figure 2. LQTE and LQTE-T estimates of the effect of 401(k) participation on
net financial assets.
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