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Abstract

This paper studies the effect of spatial sorting on inequality through two channels: spatial differ-

ences in technology and the endogenous organization of production. First, I document a new fact

on the spatial differences in the organization of production. The number of workers per manager is

decreasing in city size, overall and within industries. I develop and quantify a model of a system of

cities where workers with different skills organize in production teams. The model yields continuous

wage distributions in cities of different sizes that resemble the data. I find that technology differs

across cities in its productivity but also in its complexity, so there are no incentives for it to diffuse

across cities. I then use the model to evaluate two local policies that are designed to address income

inequality: a minimum wage and a housing subsidy. I find that a revenue-neutral housing subsidy is

more effective than a minimum wage at reducing inequality, as measured by the variance of log wages.
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1 Introduction

The organization of production differs systematically across cities of different sizes. Even

within an industry, New York has on average 36% fewer workers per manager than cities with a

quarter of New York’s population, such as Detroit or Atlanta. Larger cities not only have fewer

workers per manager but are also more productive and more unequal.1 The goal of this paper

is to understand how the sorting of individuals across cities and the organization of production

within cities interact with technology to shape income inequality. To do this, I propose and

quantify a spatial equilibrium model of team production that can reproduce key stylized facts

on the organization of production and income inequality.

Understanding the forces that shape income inequality is an important and long-standing

objective in economics. Following Katz and Murphy (1992), skill-biased technology has long

been understood to be an important driver of income inequality.2 More recently, sorting has

received growing attention as an additional factor.3 In particular, the well-documented differ-

ences in income distribution across cities suggest that spatial sorting may be a driving factor

of inequality.4 Spatial sorting affects overall income inequality through two channels: spatial

differences in technology and the organization of production. First, if technology varies across

space, the place where people live will determine the technology that they have access to. Tech-

nology affects people’s marginal productivity and, as a result, overall inequality. Second, the

place where people live also determines who lives close to them and with whom they can work.

Living in New York not only gives people access to different technology — it also gives them

access to a different set of potential coworkers. The characteristics of a person’s coworkers affect

their marginal productivity through the skill complementarities that arise when people work

together. These complementarities, in turn, depend on the way production is organized in the

1The evidence on the productivity advantage associated with city size is reviewed by Rosenthal and Strange (2004). Moreover,
Baum-Snow and Pavan (2013) document the correlation of city size and different measures of inequality, such as the variance of log
wages and percentile ratios of the wage distribution.

2A well-developed body of literature studies skill-biased technical change as the main force behind the increase in income inequality
in the US over the last few decades (Levy and Murnane (1992); Bound and Johnson (1992); Card and DiNardo (2002); Autor and
Dorn (2013)).

3Notably, Combes et al. (2008) find sorting in skills to be an important factor to explain wage disparities for French workers.
4Differences in the income distribution across cities have been well established; see Rosenthal and Strange (2004); Glaeser et al.

(2009); Baum-Snow and Pavan (2013).
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city.

As mentioned above, the distribution of income in a city varies systematically with population

size. Larger cities tend to have a higher average income, even after adjusting for housing costs

(Rosenthal and Strange (2004)). Larger cities also have higher income inequality as measured

by the variance of log wages. Higher income inequality appears not only in the upper tail, but

dispersion is higher throughout the entire distribution. In particular, both the ratio of the 90th

to the 50th percentile and the ratio of the 50th to the 10th percentile are increasing in city size

(Baum-Snow and Pavan (2013)). Moreover, the dispersion in the income distribution is large

enough so that the density both at the top and bottom tails of the real income distribution is

higher in larger cities (Eeckhout et al. (2014)).

I start my analysis by providing novel evidence for how the organization of production changes

with city size. In particular, I find that larger cities tend to have fewer workers per manager.

In the spirit of Lucas (1978), I refer to the number of workers per manager as the span of

control. This fact is robust to using alternative definitions of managers, such as using different

occupational classifications or restricting attention to only heads of large companies. Moreover,

the variation in the number of workers per manager across cities is not driven by the variation in

industrial composition, but rather, is due to the span of control decreasing with city size within

industries.5,6 While this difference in span of control across cities within industries could reflect

differences in production processes for the same good or service, it could also reflect differences in

the type or quality of good or service being produced. I present evidence from the legal services

and pharmaceutical industry to suggest that the latter possibility seems likely.

The basic Lucas setup with constant technology across cities cannot explain why larger cities

have a smaller spans of control. In the Lucas framework, better managers benefit more from

managing more workers. Since more skilled agents tend to reside in larger cities, we would

expect larger cities to have larger spans of control — the opposite of what is seen in the data.7

5Large cities could have more managers per worker simply because they have more headquarter establishments. The within-
industry analysis helps to address this possibility since headquarters are classified into a unique sector (NAICS 55). To investigate
this further, I also control for the fraction of employment in the “Management of Firms” industry and find that the correlation
between the fraction of managers and city size is still positive and significant.

6This finding complements the work of Duranton and Puga (2005), who document a positive correlation between the fraction of
managers and city size within manufacturing. I find that this correlation holds within industries for a wide variety of sectors beyond
manufacturing, and it is robust to various definitions of management.

7This logic assumes an elastic supply of workers. Otherwise, an abundance of high-skilled agents would increase competition for
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In order to understand why larger cities have smaller spans of control, it is necessary to think

about differences in technology across cities in a more nuanced way than simply a Hicks-neutral

productivity shifter. This paper incorporates differences in the complexity of production and

the need to communicate between managers and workers.

In order to study the variation in the organization of production across cities of different sizes,

I develop a spatial equilibrium model of knowledge-based hierarchies, as in Garicano and Rossi-

Hansberg (2006). In this framework, hiring workers with more skills allows a manager to hire

more of them. This structure introduces complementarities between the skill of managers and

the skill of workers. The resulting matching problem between managers and workers determines

the optimal organization of production and depends critically on the skill distribution. Thus, the

sorting of skills affects the mapping of skills into wages through the organization of production.

The model consists of a set of cities that are heterogeneous in production technology, amenities,

and housing stock, as well as a mass of agents who are heterogeneous in skill, labor supply,

and preferences for cities. Agents have preferences for consumption, housing, and their location.

They choose what city to live in and their occupation, that is, whether to become workers or

managers.

I estimate the model through Simulated Method of Moments using data from the Ameri-

can Community Survey 5% IPUMS 2010–2014.8 In the estimation, I recover the technology

parameters for a representative large and small city in the US.9 I find that cities use different

technologies. However, I do not find the technology used in the large city to be a better tech-

nology than the one used in the small city. The large city uses a more complex technology that

is more productive but addresses harder problems and requires more management time. This

complex technology is better than the simple technology for some agents, but it is worse for

others. In fact, if a social planner for the small city were given the opportunity of adopting the

complex technology, the planner would not do so since it would decrease the average utility of

workers, drive wages, and make it less profitable to expand the span of control. Behrens et al. (2014) explore a Lucas setting in
a system of cities and explore the interactions of sorting, agglomeration, and selection into entrepreneurship. Their setup predicts
a constant fraction of entrepreneurs across cities. As the authors observe, this is consistent with the roughly constant fraction of
self-employed in the data. However, it is not consistent with the increasing fraction of managers that this paper documents.

8In the estimation, I match three moments city by city: the median income of workers and managers and the number of workers
per manager. In addition, I match two overall moments: the relative city size, and the overall variance of income.

9I also estimate the model for four particular cities in the US: New York, Chicago, Pittsburgh, and Springfield, MA. The results
from this estimation, which are included in Section C.2 of the Appendix, are consistent with the results from the two city estimation.
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the small city residents. This finding can rationalize technology differences across cities since the

small city uses a simpler technology that is the preferred choice for its residents. Although my

model has a single final good, one can also interpret the two cities as producing different types

of this good that aggregate linearly, so that output is measuring the production of effective units

of the good.

The equilibrium of the estimated model matches the entire distribution of income across cities

well. In particular, it generates two features of the data that are not targeted in the estimation:

first, larger cities are more unequal, and second, larger cities have fatter tails in the real income

distribution.10 The key for generating these stylized facts is that the slope of the wage schedule

varies across cities. I refer to the slope of the wage schedule as the skill premium. Since the

slope is not constant, the skill premium will vary across different skills. The main force that

leads to more inequality in the large city is the higher skill premium that results from problems

being both harder and more costly to communicate. This makes skills generally more useful in

the large city.

According to this logic, it is surprising that there is a higher density at the very bottom of the

real income and skill distribution in the large city. There are two main forces that generate this

stylized fact in the model. First, the very lowest-skilled workers produce zero output on their

own in either city, but they are more useful in the large city where they form a team with a more

skilled manager. This happens because selection into management is tougher in the large city

because high-skilled agents are more abundant there. Therefore the worst manager in the large

city is better than the worst manager in the small city. Second, because there is a higher density

of easy problems in the small city, workers with skills immediately above the lowest skill are

more useful in the small city where they can solve more problems. Therefore, the lowest-skilled

workers will be attracted to the large city and the middle-low skilled workers will be attracted

to the small city.

I use the estimated technology parameters to perform policy counterfactuals in which both the

sorting of individuals and the organization of production react endogenously to the policy change.

10In Eeckhout et al. (2014) the authors also present evidence of thick tails in the distributions of educational attainments as a
proxy for skill.
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I study the implementation of two policies in the large city designed to decrease inequality: a

minimum wage and a revenue-neutral housing subsidy for low-income agents. These are two

examples of some of the policies that are part of the debate on how to address income inequality

in cities. I quantify how these policies affect agents throughout the skill distribution and find

that the two policies have very different implications, as described below.

A minimum wage distorts the optimal organization of production by forcing the lowest-skilled

managers into hiring higher-skilled workers and the lowest skilled workers into becoming self-

employed. Moreover, the minimum wage causes low-skilled workers to relocate to the small

city, driving down the wage of low-skilled workers in the small city. This, in turn, changes the

organization of production in the small city by lowering the threshold skill at which workers prefer

to become managers. As a result, the model shows that a minimum wage policy implemented in

a large city can have spillover effects, raising inequality in smaller cities which are not targeted

directly by the policy.

In contrast, the housing subsidy for low-income earners does not significantly distort the

organization of production in the large city. Inequality in the large city decreases because the

revenue-neutral subsidy redistributes income toward the lowest skilled. Additionally, the supply

of low-skilled agents in the small city decreases since more low-skilled agents are attracted to the

large city. This sorting effect drives up the wage of low-skilled workers in the small city, which

toughens selection into management, increases team size, and lowers inequality.

Overall, both the minimum wage and the housing subsidy have small negative effects on the

average utility of 1.6% and 0.6% respectively. This overall negative effect is expected since the

original equilibrium allocation is efficient. More interesting, the minimum wage increases the

variance of log utility by 44% while the affordable housing policy decreases the variance of log

utility by 8%, indicating that the choice of policy matters for effectively reducing inequality.

My work contributes to several strands of the literature. First, I provide a framework to study

sorting across cities and the organization of production within cities that matches well the entire

distribution of income within cities and overall. Early work on the sorting of heterogeneous agents

across cities by Abdel-Rahman and Wang (1997) featured two skill types in a core-periphery
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model to study income disparities within and across regions. More recently, the sorting of

heterogeneous agents has been studied to understand the positive correlation of income inequality

with city size in Behrens et al. (2014), Davis and Dingel (2016), Davis and Dingel (2017), and

Baum-Snow et al. (2017), and the fat tails in the real income distribution, which was documented

in Eeckhout et al. (2014). This literature has proposed mechanisms through which sorting across

ex-ante identical cities generates spatial differences in the income distribution. Instead, I measure

technology differences across cities and allow for endogenous sorting and production organization.

The measurement of technology by city provides new insights on the ways in which large cities

differ from small cities. Eeckhout et al. (2014) document the presence of fat tails in the real

income distribution of large cities. The authors propose a production function with extreme-skill

complementarities that leads to the sorting of high- and low-skilled workers to large cities and

middle-skilled workers to small cities. By modeling the endogenous organization of production,

my framework provides a microfoundation for extreme-skill complementarities with a continuum

of skills and generates sorting patterns where extreme skills sort disproportionately into larger

cities.

Second, the literature on the organization of production pioneered by Lucas (1978) studies

the way in which heterogeneous agents form teams and take on different roles in order to produce

together. In a similar spirit, Calvo and Wellisz (1978) studies the role of managers monitoring

workers. Early work on team production by Radner (1993) studied the role of teams to process

information. More recently Garicano (2000) and Garicano and Rossi-Hansberg (2006) study the

organization of knowledge in production hierarchies. In Garicano and Rossi-Hansberg (2015) the

authors review the recent literature on the organization of knowledge. In this work, I build on

these ideas by introducing spatial frictions so that production is organized within a city. I then

endogenize the skill distribution within cities through sorting. By studying the organization of

production in a spatial equilibrium framework, I can measure technology differences while taking

into account endogenous differences in the skill distribution across cities.

Third, in this framework, agents with different skills face different incentives to locate in

larger cities compared to smaller cities. This result speaks to the literature studying the pattern
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of the sorting of skills across cities in the US. The sorting choices of different skills have been

studied by Moretti (2012), who coined the term the “Great Divergence” to refer to the trend of

increasingly differential sorting patterns for high-skilled relative to low-skilled agents. In recent

work, Diamond (2016) estimates the welfare effects of this differential sorting. Additionally,

Giannone (2018) quantifies the role of migration patterns of workers with different skills in

response to a skill-biased technological change to explain regional wage dispersion in the US.

In this paper, differential sorting patterns arise from differences in the complexity of technology

across cities of different sizes.

Fourth, the finding that larger cities host smaller teams who use a more complex technology

is related to the finding of Holmes and Stevens (2010) who find that small plants tend to produce

specialty or customized goods. Similarly, Tian (2018) using data from Brazil, finds that firms in

larger cities tend to have greater division of labor, and links it to the complexity of the products

that these firms produce. It is also related to the work of Glaeser et al. (2010) who link smaller

establishments with higher growth and an abundance of entrepreneurship.

Finally, the finding that larger cities have fewer workers per manager complements the work of

Duranton and Puga (2005), and more recently Tian (2018). In their work, the authors document

an increasing specialization of larger cities in management tasks, which they attribute to the

geographical separation of headquarters from production plants. In contrast, this model does

not allow for cross-city production teams. Instead, it focuses on the formation of local teams

both inside headquarter establishments and production plants. To the extent that the industry

classification is able to separate headquarter from production establishments, I do not find that

location of headquarters can fully account for the smaller production teams found in larger cities.

Moreover, by limiting production teams to be formed within a city, I am able to solve for a richer

model of production hierarchies, where the span of control depends on the skill of the production

workers. This assumption allows the model to generate smooth income distributions both within

and across cities which resemble those observed in the data.

The rest of the paper proceeds as follows. Section 2 presents the stylized facts in the data,

including new robust evidence on the negative correlation between the number of workers per
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manager and city size. Section 3 introduces a spatial model of production organization. Section

4 details the estimation strategy for a version with two cities of different sizes. Section 5 analyzes

the estimated technology differences in space. Section 6 interprets the model’s implications for

sorting on inequality. Section 7 evaluates the effectiveness of a housing subsidy or a minimum

wage in reducing inequality. Finally, Section 8 provides concluding remarks.

2 Data and Empirical Regularities

In this section, I present a set of stylized facts regarding the cross-section of cities. In par-

ticular, I show that both the average income and the dispersion of log income are increasing in

city population. These facts have already been documented in the literature and are suggestive

of the importance of spatial sorting for the overall distribution of income.11 I include them here

for completeness since they will be used in the subsequent analysis. I then present evidence on

differences in the organization of production across cities. Specifically, I show that the number

of workers per manager is decreasing in city size. In the following section, I build a model that

addresses both differences in the organization of production and the distribution of income across

cities.

2.1 Data and Definitions

I use data from the American Community Survey (ACS) Public Use Microdata Sample

(PUMS) 5-year sample covering the period from 2010 to 2014. The ACS samples 1 in every

40 addresses in the US every year. The 5-year sample is a combination of 1-year samples. I

aggregate Public Use Microdata Areas (PUMAS) into Combined Statistical Areas (CSA) for the

main analysis and use Metropolitan Statistical Areas (MSA) for robustness. The final sample

contains 162 CSAs and 2.2 million observations.

11The empirical evidence on the correlation between average income and city size was reviewed by Rosenthal and Strange (2004).
The correlation between city size and variance of income was documented by Baum-Snow et al. (2017), and the fat tails in the real
income and skills were studied by Eeckhout et al. (2014).
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CSA. Combined Statistical Areas are comprised of one or more adjacent Metropolitan and

Micropolitan Statistical Areas (MSAs and µSAs) that have an employment exchange of at least

15% with the central county or counties of the parent MSA or µSA. MSAs and µ SAs are

themselves comprised of adjacent counties that include a core urban area and outlying counties

with an employment interchange of at least 25%.

Wages. The measure of wages includes pre-tax wages, salaries, commissions, cash bonuses,

tips, and other money income received from an employer in the past 12 months. The top one-

half percent of wages in each state are top-coded and assigned the average value of all top-coded

wages in the state.12 I include only individuals who worked for the last 12 months and who

report having worked at least 35 weekly hours. In order to exclude outliers, I drop the bottom

one-half percent of wages, which corresponds to annual wages below $6,250. I also exclude some

sectors that are outside the scope of my analysis, such as the primary sectors (agriculture, fishing,

forestry, and extraction) and the military. These sectors are not primarily urban. The average

wage in the final sample is $60,756 with a standard deviation of $61,595.

I also use data from the Housing Survey of the ACS for the same period 2010-2014 in order

to compute hedonic prices by city that allow me to construct real wages. I exclude individuals

who live in group quarters, mobile homes, trailers, boats, tents, or farmhouses. Moreover, I

only include individuals who are renting in order to avoid imputing rents on owned houses. The

final sample from the Housing Survey contains 1.2 million observations of households who rent

a building and pay on average $900/month with a standard deviation of $555/month for an

apartment that on average has 2.8 rooms and was built about 5 years ago. I include the results

from the hedonic regression in Section A.2 of the Appendix.

2.2 Income Distribution and City Size

In this section, I present two key stylized facts on the distribution of income across cities: first

the positive correlation between city population and average income, and, second, the positive

12A list of the top codes for each state is included in Section A.1 of the Appendix.
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correlation between city population and the variance of log income. Figure 2.1 presents both

stylized facts. Panel (a) plots average income against city size and Panel (b) plots the variance

of log income against city size where a city is defined as a Combined Statistical Area.13

Larger cities have a higher average income. A 100% increase in population is related to

an increase in average annual income of almost $4,500 on average. The positive correlation

between city population and the nominal income indicates higher productivity in larger cities

to the extent that individuals are paid wages according to their productivity. However, these

differences in nominal income may not translate into differences in purchasing power since living

costs are higher in larger cities. In order to explore this further, I compute real income by dividing

income by the price index implied by a Cobb-Douglas utility function with a housing share of

0.24 and where housing prices are the result of a hedonic regression.14,15 Average real income is

also positively correlated with city population, implying that at least part of the differences in

nominal income translates into higher utility for the residents. A 100% increase in population

is related to an increase in average real income of almost $3,000. The regression for real income

on population is included in Section A.3 of the Appendix.

The positive correlation between city population and higher variance of log income indicates

that large cities are more unequal. The higher inequality is due to higher inequality both at the

top and at the bottom of the income distribution. For instance, both the ratio of the 90th to

the 50th percentile and the ratio of the 50th percentile to the 10th percentile are increasing in

city size. The regressions of percentile ratios on populations are included in Section A.3 of the

Appendix.

These stylized facts summarize the way in which income distributions vary across cities.

These differences in the income distribution come in part from differences in the composition

of the people who live in different cities. For instance, if the most talented individuals live

in the largest cities, we would expect the positive correlation between income and city size.

But the distribution of income also differs because characteristics are compensated differently

13In Section A.3 of the Appendix, I present the stylized facts for Metropolitan Statistical Areas.
14Davis and Ortalo-Magné (2011) find that the share of expenditures on housing is remarkably constant across cities.
15The hedonic regression includes the number of rooms, the year the house was built, and the type of building. The results from

these regressions are included in Section A.2 of the Appendix.
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Figure 2.1: Income Distribution and City Size

(a) Average Wage

(b) Variance of Log Wage

Note: Panel (a) plots the average annual wage against logged population, and Panel (b) plots the variance of
log wage against logged population. Each observation corresponds to a CSA. The source for the data is the
American Community Survey, 5% IPUMS 2010–2014. The sample includes individuals who worked for the last
12 months for at least 35 hours per week. It excludes the military and primary sectors. The line represents a
linear regression, and the grey region corresponds to the 95% confidence interval.
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across cities. To illustrate this point, I first regress income on observable characteristics such as

education, years of potential experience, gender, or race. Then I regress the average of residual

income and the variance of log residual income on population and I find a positive correlation for

both moments. A 100% increase in population is related to an increase in the average residual

income of about $3,800. The results from these regressions are included in Section A.3 of the

Appendix. The differences in compensation are potentially due to either differences in technology

or labor complementarities that arise when people organize to produce together. In the next

section, I present new evidence on the differences in the organization of production across cities.

2.3 Production Organization and City Size

In this section, I present new evidence on spatial differences in the organization of production.

I focus on the number of workers per manager (span of control) as a key aspect of the organization

of production. I first discuss the measurement of the span of control and then present the evidence

on the negative correlation between the span of control and the population of a city.

2.3.1 Measuring the Span of Control

I define the span of control in a city as the number of workers per manager. This definition

is based on the Lucas idea of management, where a manager is an expert whose talent gets

leveraged by working with a team of workers. Managers will be identified in the data using self-

reported occupations. The occupational classification system in the ACS includes“Management”

as a category. However, this category corresponds to a more traditional view of management

that has to do with particular tasks in a company such as hiring decisions or investment strate-

gies. This is a narrower conception of management than that of an expert in a production

team. In order to widen the definition of management, I follow Caliendo et al. (2015) and use

the French occupational coding system, “Professions et Catégories Socioprofessionelles” (PCS).

The ACS system groups occupations using similarity in tasks performed, while the French sys-

tem incorporates information on the socioeconomic status of the job. As a result, the French
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codings are naturally hierarchical and thus closer to the Lucas concept of a manager and will

be my preferred definition. The PCS identifies five main categories: head of companies, upper

management and professionals, intermediate professionals, white collar, and blue collar workers.

The baseline definition I classify head of companies, upper management and professionals as

“managers” and the remaining as “workers”.

Although this grouping of PCS codes will be used as my preferred classification of managers, I

will show that the stylized facts are robust to alternative definitions of managers. In particular, I

will present the stylized facts using the management definition in the occupational classification

used in the ACS. Moreover, I will use a more strict definition of manager that includes only

heads of companies with more than 10 employees. This last definition will be based on the

PCS classification that identifies the heads of companies and it is closer to the idea of a firm

or an entrepreneur. I discuss the details of the French occupational classification as well as its

correspondence with the classification used in the ACS in Section A.4.1 of the Appendix. In

section A.4.2 of the Appendix, I look at changes in the organization of production in a more

disaggregated way by using all of the PCS groupings and the main picture does not change.

2.3.2 Span of Control and City Size

In this section, I document the negative correlation between city size and span of control,

that is, the number of workers per manager. Panel (a) in Figure 2 plots the span of control

against the log population for Combined Statistical Areas. Note that I plot the level of the

span of control for readability but the tables include regressions for the logged span of control

so that the regression coefficients are less sensitive to level effects. The number of managers is

identified using the PCS classification as described above. Larger cities tend to have lower spans

of control. The difference goes from 2 workers per manager in some of the largest cities to 5 or

6 workers per manager is some of the smallest cities. An increase in the population of a city of

100% is related to 0.43 more workers per manager on average.

Some of this variation may be the result of variation in the industry composition. In particular,

if larger cities specialize in industries with smaller spans of control then the span of control would

14



Figure 2.2: Decreasing Span of Control on City Size

(a) Unconditional

(b) Constant Industry Composition

Note: Panel (a) plots the number of workers per manager against logged population. Panel (b) plots the number
of workers per manager, where the number of workers per manager is a weighted average of the number of
workers per manager within an industry and the weights are given by the national industrial composition. Each
observation corresponds to a CSA. The source for the data is the American Community Survey, 5% IPUMS
2010–2014. The sample includes individuals who worked for the last 12 months for at least 35 hours per week. It
excludes the military and primary sectors. The line represents a linear regression and the grey region corresponds
to the 95th confidence interval.
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be decreasing in city size even if constant within an industry. To investigate the importance of

industry composition in generating the negative correlation between the span of control and city

size, I calculate the span of control in each city as a weighted average of the span of control in

each industry, where the weights are fixed at the national industry composition. The resulting

span of control is plotted in Panel (b) of Figure 2.2. The slope would be even steeper for a

constant industry composition across cities. This implies that the span of control is decreasing

within industries across city sizes and industry composition is changing in a way that makes the

decrease in the span of control milder.

Table 2.1: Robustness to Management Definition

Log Span of Control

French PCS ACS Head of
Occupations Occupations Companies

Log Population -0.13** -0.11** -0.12**

Constant 2.95** 3.6** 7.03**

R2 0.39 0.4 0.33

N 162 162 162

* p<0.05; ** p<0.01

Note: This table reports the results from regressing the logged span of control, or number of workers per manager,
against logged population. Each observation corresponds to a CSA. It uses data from the American Community
Survey, 5% IPUMS 2010–2014. The sample includes individuals who worked for the last 12 months for at least
35 hours per week. It excludes the military and primary sectors. The first column uses the French occupational
classification system, Professions et Catégories Socioprofessionelles (PCS), to classify individuals into managers
and workers. A more detailed overview of the PCS system is provided in Section A.4.1 of the Appendix. The
second column uses the occupational classification system in the ACS. The third column uses the PCS and
includes only heads of businesses with ten or more employees.

In order to test for robustness with respect to the definition of manager, Table 2.1 summarizes

the results from regressing the log of the span of control on the log population for three definitions

of a manager: 1) the PCS, or French classification system, 2) the OCC, or classification system

used in the ACS, and, 3) an even stricter definition of manager that includes only heads of
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Table 2.2: Robustness to Industry Composition

Log Span of Control

(1) (2) (3) (4) (5) (6)

Log Population -0.13** -0.08** -0.12** -0.1** -0.12** -0.09**

Constant 2.95** 2.49** 2.1* 6.54** 3.36** 3.17**

Industry Fixed Effect No No Yes Yes Yes Yes

Including “Manufacturing” Yes Yes Yes No Yes Yes

Including “Management of Firms” Yes Yes Yes Yes No Yes

Fraction of Employment
- - - - - -0.1**in “Management of Firms”

R2 0.37 0.01 0.77 0.8 0.76 0.77

N 162 9,773 9,773 7,240 9,745 9,611

* p<0.05; ** p<0.01

Note: This table reports the results from regressing the logged span of control, or number of workers per
manager, against logged population. Observations in the first column correspond to a CSA. In Columns 2 to
6, an observation corresponds to an industry-CSA pair. It includes only industry-city pairs with more than 30
observations. Standard errors are clustered at the CSA. I use data from the American Community Survey, 5%
IPUMS 2010–2014.

companies with 10 or more employees, classified using the PCS. I regress log on log in order

to abstract from level effects by comparing elasticities. The main difference between those

definitions is captured by the level effect, which, as expected, is higher for the OCC than the

PCS and even higher for heads of companies. However, the elasticity of the span of control

with respect to city size remains remarkably similar across these definitions. A 100% increase in

population is related to between an 11% and a 13% increase in the span of control depending

on the definition of a manager.

This result may simply reflect that the span of control differs among industries and industry

composition may differ systematically with city size. In order to address this further, I include

industry fixed effects in a regression of span of control against city size. The second column in

17



Table 2.2 reflects the results from this regression. Interestingly, the magnitude of the coefficient

on city size increases when industry fixed effects are included from 0.08 to 0.12, meaning that

the correlation between the span of control and city size is even stronger within industries.

This measure of the span of control could also be capturing the location of headquarters

in larger cities. This possibility is partially addressed by including industry fixed effects since

the administration of companies and headquarters have their own industry classification, which

corresponds to NAICS 551114 “Corporate, subsidiary, and regional managing offices.” Respon-

dents are asked to report the main activity of the place where they work; if they work at the

headquarters of a manufacturing company and manufacturing is not the main activity of the

establishment, they should respond with “Corporate, subsidiary, and regional managing offices.”

However, it is possible that some of them misreport their industry. This misreporting is most

concerning in the manufacturing sector since in this sector it is more common for production

plants to be separated from the headquarters.

In order to further investigate this, Table 2.2 presents evidence of the robustness of the

coefficient on log population to excluding manufacturing, excluding management of firms, and

finally adding the fraction of employment in“Management of Firms”as a regressor. “Management

of Firms” is the NAICS 55 sector that includes “Corporate, subsidiary, and regional managing

offices.” Unfortunately, the ACS does not identify more refined industries for this sector. The idea

behind including the fraction of employment in Management of Firms is to pick up the correlation

between population and the presence of headquarters in cities so that we can compare cities with

varying population but a similar presence of headquarters. The coefficient only changes slightly;

between -0.09 to -0.12. The result is robust to excluding manufacturing or management of firms

as well as including the fraction of employment in the management.

2.4 A Closer Look at Two Industries

As shown in the previous section, even within the same industry, production is organized

differently in larger cities. In order to make this fact more concrete, I look at a couple of examples
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Figure 2.3: NAICS 3254: Manufacturing of Pharmaceuticals and Medicines
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Sorters, Samplers, etc. 
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Production Workers 
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(a) Managers (b) Workers

Note: This table compares the occupational composition of the “Manufacturing of Pharmaceuticals and
Medicines” industry between large and small cities. Large cities include all CSAs with more than 2.5 mil-
lion inhabitants, and small cities include those with less than 2.5 million inhabitants. It uses data from the
American Community Survey, 5% IPUMS 2010–2014. This comparison includes only the 10 occupations with
the highest share of employment in the industry at the national level. Panel (a) captures the composition for
those occupations classified as“Managers”and Panel (b) captures the composition for those occupations classified
as “Workers.”

from two specific four-digit industries: NAICS 3254 — “Manufacturing of Pharmaceutical and

Medicines”— and NAICS 5411 — “Legal Services.”16 I compare the fraction employment in each

of the top 10 occupations for these two industries between cities of over 2.5 million inhabitants

and in cities with fewer than 2.5 million.

The first example is illustrated in Figure 2.3 where I summarize the composition of the 10 most

common occupations for“Manufacturing of Pharmaceutical and Medicines.” In large cities, there

is a larger fraction of not only managers but also of medical, life, chemical, and material scientists

that perform the role a manager from the perspective of team leaders or problem solvers, while

in smaller cities, there is a larger fraction of production workers and sales representatives. This

difference in the occupational composition suggests that larger cities may be producing more

innovative pharmaceuticals and medicines, and this requires the presence of a higher fraction

of scientists, while smaller cities are producing more standard products that do not require as

16Examples for other industries can be found in Section A.4.4 of the Appendix.
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Figure 2.4: NAICS 5411: Legal Services
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Note: This table compares the occupational composition of the “Legal Services” industry between large and small
cities. Large cities include all CSAs with more than 2.5 million inhabitants and small cities include those with
less than 2.5 million inhabitants. It uses data from the American Community Survey, 5% IPUMS 2010–2014.
This comparison includes only the 10 occupations with the highest share of employment in the industry at the
national level. Panel (a) captures the composition for those occupations classified as “Managers” and Panel (b)
captures the composition for those occupations classified as “Workers.”

many experts.

The second example presented in Figure 2.4 focuses on Legal Services and paints a similar

picture.17 In larger cities, we find a larger share of lawyers, while in the smaller cities, we

find a larger fraction of paralegals and legal assistants. This difference suggests that in large

cities, lawyers may deal with more complicated cases that require the work of many specialized

lawyers, while in small cities, lawyers may handle more common, standard cases that can be

handled mostly by paralegals and legal assistants supervised by only a few lawyers. For example,

New York hosts some of the best law firms in the country, which specialize in a wide range of

legal services from patent and copyright law to international corporate law.

Production is organized differently in larger cities even within the same industry. In particular,

there is a larger fraction of managers in larger cities for a wide variety of industries. Differences

in the organization of production might be reflecting the production of different quality levels of

17Garicano and Hubbard (2009) study the hierarchical organization of production in the legal services industry in the US and
find that hierarchical production leads to a 30% increase in productivity.
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the same product. It may be higher quality, more innovative, or more specialized commodities

and services. Berkes and Gaetani (2017) find evidence of the concentration of knowledge-based

activities in larger cities. It can also be a more complex set of tasks in the same production

process. The production of these requires a higher fraction of managers or experts. The higher

fraction of managers will result in differences in income inequality through two channels: first,

if a higher fraction of managers is needed for production, managers will extract an income

premium, and second, if only a few workers can work with each manager, that will generate

higher inequality within workers. Better workers, as opposed to worse workers, will be able to

match with better managers and be even more productive. In the next section, I present a model

that speaks to these differences and links them to differences in the income distribution across

cities.

3 A Spatial Model of Production Organization

The model embeds production in hierarchies as in Garicano and Rossi-Hansberg (2006) into

a spatial equilibrium setting in the spirit of McFadden (1977).18 There is a set of cities C =

{1, ...,C} indexed by c that differ in their production technology, amenities, and housing stock.

The economy is populated by a unit mass of agents indexed by i that are heterogeneous in skill

z, labor supply l and preferences for cities ϵ . Agents choose where to live and, conditional on

their location, they choose whether to be a worker or a manager. In what follows, I describe in

more detail the production technology as well as the choice of location and occupation.

3.1 Production

In this section, I describe how production takes place in a city taking as given the distribution

of skills. The subscript c will indicate parameters that are specific to a city. In the following

section, I describe the agent’s location choice.

18There are abundant examples of spatial models in the same spirit. Some examples include Rosen (1979), Roback (1982),
Eeckhout et al. (2014), Behrens et al. (2014), Diamond (2016), and Davis and Dingel (2016).
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3.1.1 Hierarchical Team Production

Agents are heterogeneous in their skill z and their labor supply l . In a city, labor supply is dis-

tributed according to a lognormal distribution with mean 1 and variance
(
exp

(
σ2

)
− 1

)
exp

(
2 + σ2

)
,

so that the variance of the log of labor supply is σ . Labor supply is independent of the distri-

bution of skill and city preferences.19 The unit of production is a team organized hierarchically

in two layers. The top layer of a team is a single agent that I call a manager and the bottom

layer consists of a mass of agents that I call workers.20 Subscript w will denote the variables

associated with the workers, and m will denote those associated with the manager. Individuals

can also choose to produce on their own. However, in equilibrium, agents will optimally choose

to produce as a part of a team and so I will abstract from this choice in what follows.

Production requires time and skill. Workers in a production team spend their working time

encountering problems that need to be solved for production to happen. Skill is needed to

solve the problems. For each unit of time that a worker spends working, they face a mass 1 of

problems. The problems are heterogeneous in difficulty. The distribution of problem difficulties

is given by Fc (d) = dαc . I will refer to αc as the problem difficulty . For each problem solved, a

worker produces Ac units of output. I refer to Ac as the productivity of technology. A worker

can only solve the fraction problems with difficulty lower than their skill. Therefore, a worker

with skill zw and labor supply lw will solve a mass Fc (zw ) lw = zαcw lw of problems, produce Acz
αc
w lw

units of output, and will be left with a mass
(
1 − zαcw

)
lw of unsolved problems. If the worker

chooses to work on their own, their output will simply be Acz
αc
w lw and the unsolved problems

will be discarded. The worker is not able to assess the difficulty of the unsolved problems.

A manager of a team spends lm units of time attempting to solve the unsolved problems that

were encountered by the workers at the lower layer. A manager has to spend hc units of time

19The variance of log working time, σ , is introduced in order to match residual income inequality. The distribution of labor supply
will be independent from other characteristics of the agents within a city because of the assumption that the labor supply shock is
realized after the choice of the city has been made.

20Although I abstract from the choice in the number of layers, I check for the restrictiveness of this assumption by allowing
for the formation of a third layer in an extension of the model. Given the estimated parameters, a third layer is not optimal and
therefore the two-layer assumption is not binding. For more details on how to endogenize the number of layers, refer to Garicano
and Rossi-Hansberg (2006).
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per unsolved problem to familiarize themselves with the problem. I refer to the time cost hc as

the communication cost since it controls how costly it is for workers to communicate unsolved

problems to managers. A manager that supplies lm units of time will be able to address lm/hc

unsolved problems.

If a manager hires workers of skill zw , these workers will solve a fraction zαcw of the problems

they encounter and pass on to the manager the remaining fraction
(
1 − zαw

)
. Therefore, given

their labor supply, lm, the manager will be able to hire Lw (zw ) units of the time of workers of

skill zw , where

L (zw )
(
1 − zαw

)
hc = lm . (3.1)

The manager will then solve the problems of difficulty lower than his skill zm so that a fraction

zαcm of the mass Lw (zw ) of problems encountered by the workers in the lower level of the hierarchy

are solved either by the manager or the workers. As a result, the output per unit of a manager’s

time of a hierarchy formed by workers of skill zw and a manager of skill zm is given by Y (zm, zw ) =

Acz
αc
m

hc(1−z
αc
w )

. Note that the output function Y (zm, zw ) is supermodular in the skill of the manager

and the skill of the workers. Therefore the matching function will be increasing in equilibrium, so

better managers will hire better workers. The proof for positive assortative matching is included

in Section B.1 of the Appendix.

The production technology is thus fully characterized by three parameters: the productivity

Ac , the problem difficulty αc , and the communication cost hc . In the next section, the matching

problem is decentralized by letting managers hire workers and pay out wages.

3.1.2 Manager’s problem

Consider the problem of an agent with skill zm and labor supply lm who chooses to be a

manager. The manager takes as given the wage per unit of time for each worker’s skill, wc (z)

and chooses the skill of the workers they want to hire zw . The earnings of a manager are given by

the residual team output after paying out wages. Therefore, a manager of skill zm that supplies
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lm units of time solves the following optimization problem,21

maxzw
(
Acz

αc
m −wc (zw )

)
Lw (zw ) , (3.2)

subject to

Lw (zw )
(
1 − zαcw

)
=
lm
hc
. (3.3)

Let the matching function mc (zw ) be defined as the skill of the manager that finds it optimal

to hire workers of skill zw . The solution to the manager’s problem will be given by the inverse

of the matching function. By plugging in the time constraint, we can get an implicit expression

for the matching function, namely,

m−1
c (zm) = arдmaxzw

(
Acz

αc
m −wc (zw )

)
lm

hc
(
1 − zαcw

) = arдmaxzw
Acz

αc
m −wc (zw )

1 − zαcw
. (3.4)

Importantly, notice that the matching function does not depend on the time supplied by the

manager, which simplifies the labor market clearing condition. Now we can write the manager’s

optimal payoff per unit of time as a function solely of the manager’s skill,

Rc (zm) =
Acz

αc
m −w

(
m−1

c (zm)
)

hc
(
1 −m−1

c (zm)
αc

) . (3.5)

Finally, the income earned by a manager with skill zm that supplies working time lm is given

by Rc (zm) lm and the income earned by a worker of skill zw that supplies lw units of time is given

by wc (zw ) lw .

3.2 Agents

In this section, I describe the agents in the model, their preferences, and the choice of city

given an income function per unit of time Ic (z) in each city that is the result of the production

problem described in the previous section.

21Note that I have assumed that a manager with ability zm hires workers of homogenous skill zw . This assumption is without
loss of generality as proven in Antràs et al. (2006).
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3.2.1 Preferences

There is a mass 1 of agents with skill z ∈ (0, 1) distributed uniformly in the population.22 Let

us denote the overall distribution of skill by Q (z). Agents’ supply of working time l is distributed

as a log-normal with variance
(
exp

(
σ2

)
− 1

)
exp

(
2 + σ2

)
and mean of 1 and is independent from

their skill and city preferences. The supply of working time is realized after a city has been

chosen. This shock can be interpreted either as a shock to the available time of the agent or

as a shock to the preferred supply of working time. Both interpretations are equivalent for the

purpose of the model. Importantly, the shock is realized after the city choice is made, so it

will not affect the relative inequality of cities and will be independent from the skill distribution

within cities.

Agents derive utility from consumption of the numeraire, x , housing, h, city amenities that are

enjoyed by all the residents, ac , and an idiosyncratic amenity that is independently distributed

across both agents and cities, ϵic .
23

Conditional on choosing city c, agents solve the following optimization problem given their

skill z and labor supply l ,

maxx,hU
i (x,h, c) =maxx,h

{
hγx1−γ + ac + ϵ

i
c

}
. (3.6)

subject to : Ic (z) l ≥ pch + x, (3.7)

where pc denotes the housing price, Ic (z) refers to the income per unit of time in city c as

a function of skill, and ϵic is an idiosyncratic amenity that is independently distributed as an

Extreme Value Type I distribution with variance β . Namely, H (ϵ) = exp {−exp {− (ϵ) /β}}. The

22Notice that the choice of distribution for the skill distribution cannot be separated from the distribution of problem difficulty,
and therefore the choice of a uniform distribution of skill is a normalization. In order to illustrate this, let z be the skill that solves
y problems z̄ = F−1

( y
A

)
. Then we must look for the mass of people with skill at least z̄, that is G

(
F−1

( y
A

) )
. The answer, therefore,

depends on G ◦ F−1. If we allow for enough flexibility on both distributions, F can always undo the effect of G . Therefore, I normalize
G to a uniform distribution to emphasize that skill is a mere ranking and that the way it translates into productivity and payoffs
will depend on the production technology.

23The common amenity ac can be interpreted as the mean of the idiosyncratic amenity ϵ ic . City amenities enter additively in the
utility of agents. This assumption allows for a simple expression for the probability of allocating to a particular city. Alternatively,
I could rewrite amenities multiplicatively and assume a Fréchet distribution for the idiosyncratic amenities.
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variance of idiosyncratic amenities β controls the strength of mobility frictions. The variance

is inversely related to mobility. Intuitively, when the variance of the idiosyncratic amenity is

higher, the two cities are worse substitutes and differences in incomes across cities result in lower

mobility.

3.2.2 Occupational choice

Agents choose whether to become managers or workers in order to maximize income and since

the time endowment does not affect this choice, income per unit of time Ic (z) =max{wc (z) ,Rc (z)}.

Let the equilibrium occupational choice be characterized by a threshold skill z∗c such that agents

with lower skill than the threshold will become workers, and agents with higher skill will become

managers. It turns out this assumption is without loss of generality as shown in Antràs et al.

(2006). The required condition required is that at the threshold, the derivative of the wage

function must be lower than the derivative of the managerial rent,

w
′

c

(
z∗c

)
< R

′

c

(
z∗c

)
. (3.8)

Intuitively, this extra condition guarantees that at the threshold skill, where wc
(
z∗c

)
= Rc

(
z∗c

)
, a

small decrease in skill will decrease wages by less than managerial income, so the agent will prefer

to become a worker, while a small increase in skill will increase managerial income more than the

wage so that the agent will prefer to be a manager. This condition also guarantees that workers

do not want to be self-employed. For the set of parameters for which this condition holds, the

threshold equilibrium exists and it is always unique. The proof of the existence and uniqueness

of a threshold equilibrium in this setting is presented in Garicano and Rossi-Hansberg (2006).

During the estimation, I check that the estimated parameters fall in this region.
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3.2.3 Sorting into locations

Agents sort into locations in order to maximize their expected indirect utility. The expected

utility from living in a particular city c for an agent of skill z is given by:

E [Vc (z)] = Γ
Ic (z)

p
γ
c

+ ac + εc = Ṽc (z) + εc, (3.9)

where Γ = γγ (1 − γ )γ and γ is the Cobb-Douglas weight on housing. The density of skills in a

city дc (z) in equilibrium, with CDF Gc (.), is obtained by multiplying the overall density of skills

q (z) by the fraction of those skills that live in each city π (c, z). Under the Extreme Value Type

I distributional assumption, the density of agents of skill z that optimally choose to live in city

c is given by,24

дc (z) = π (c, z)q (z) =
exp

{
Ṽc (z) /β

}(∑C
j=1 exp

{
Ṽj (z) /β

})q (z) . (3.10)

Recall that the global distribution of skills was normalized to a uniform [0,1]. So for all z,∑
c∈C дc (z) = 1.

3.3 Housing Market

Each city has a fixed supply of land Hc , which is owned by absentee landlords. The expenditure

on housing is therefore not part of the income received by agents. This is a simplifying assumption

that allows me to abstract from the choice of acquiring land in a city. Cobb-Douglas preferences

imply that agents spend a fixed fraction γ of their income on housing. The housing price clears

the market,

∫ 1

0
γ
Ic (z)

pc
дc (z)dz = Hc . (3.11)

24 For the derivation of this result and a discussion of the multinomial logit limitations, the reader can refer to McFadden (1977).
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3.4 Labor Market

The equilibrium matching function clears the labor market in each city. For each skill zw the

amount of time supplied by workers of skill lower or equal than zw must be equal to the amount

of time demanded by the managers who will hire those workers. Namely,

∫ zw

0

∫ ∞

0
lдc (s)дc (l)dlds =

∫ mc (zw )

z∗c

∫ ∞

0

lдc (s)

hc
(
1 −m−1

c (s)
αc

)дc (l)dlds, ∀zw ∈ [
0, z∗c

]
. (3.12)

Because the supply of labor is independent from the distribution of skills within cities, it

integrates to 1 in the labor market clearing condition, which can be written as

∫ zw

0
дc (s)ds =

∫ mc (zw )

z∗c

дc (s)

hc
(
1 −m−1

c (s)
αc

)ds, ∀zw ∈ [
0, z∗c

]
. (3.13)

Differentiating both sides with respect to zw results in the following differential equation

involving the matching function,

дc (mc (zw ))m
′

c (zw ) = дc (zw )hc
(
1 − zαw

)
. (3.14)

The initial and terminal conditions for this differential equation follow from market clear-

ing and positive assortative matching. The lowest-skilled worker is hired by the lowest-skilled

manager, mc (0) = z∗c and the highest-skilled worker is hired by the highest-skilled manager

mc
(
z∗c

)
= 1. The solution to that differential equation, together with the initial condition,

mc (0) = z∗c results in an expression for the matching function,

mc (z) = G
−1
c

(
Gc

(
z∗c

)
+

∫ z

0
дc (s)hc (1 − s

αc )ds

)
. (3.15)

The terminal condition for the matching function mc
(
z∗c

)
= 1 provides an expression for the

threshold skill that depends exclusively on parameters and the skill distribution,
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Gc (1) = Gc
(
z∗c

)
+

∫ z∗c

0
дc (s)hc (1 − s

αc )ds . (3.16)

Notice that the matching function depends solely on the skill distribution, the communication

cost, and the problem difficulty so that shifts in the Hicks neutral productivity Ac will only affect

the matching through the skill distribution. More importantly, the matching function does not

depend on the wage schedule. Otherwise, solving for the equilibrium would require finding

a solution to a system of differential equations on both the matching function and the wage

function.

3.5 Equilibrium

In this section, I describe the equilibrium for this economy. I start by defining a threshold

equilibrium and then I will proceed to characterize the equilibrium.

Definition 1. Spatial threshold equilibrium

An equilibrium for this economy is a set of thresholds
{
z∗c

}C
c=1

, matching functions {mc (z)}
C
c=1,

wages {wc (z)}
C
c=1, housing prices {pc}

C
c=1, and density functions {дc (z)}

C
c=1 such that:

1. Managers optimally choose the skill of the workers they want to hire m−1
c (z) taking the

wage function wc (z) as given (Eq. 3.4).

2. The threshold skill summarizes the optimal occupational choice. Agents of skill z < z∗c

optimally choose to become workers and those of skill z > z∗c optimally choose to become

managers, and wc
(
z∗c

)
= Rc

(
z∗c

)
.

3. The skill distribution is the result of optimal city choice. The density functions дc (z) are

the result of the optimal choice of city (Eq. 3.10).

4. Housing market: housing prices phc are such that all local housing markets clear (Eq. 3.11).

5. Labor market: wage functions wc (z) are such that all local labor markets clear (Eq. 3.13).
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3.5.1 Characterization of Wage Function

The wage schedule is such that the matching function solves the manager’s problem. The

first order condition from the manager’s problem results in the following differential equation for

the wage function, conditional on the matching function,

wc (z)
αcz

αc−1

1 − zαc
−w

′

c (z) = Ac
αcz

αc−1m (z)αc

1 − zαc
. (3.17)

The solution for this differential equation together with the initial condition on the wage function

wc (0) deliver the following expression for the wage function,

wc (z) = (1 − z
αc )

(
wc (0) +

∫ z

0

αcs
αc−1

(1 − sαc )2
Acmc (s)

αc ds

)
, (3.18)

where the initial condition wc (0) needs to be found. Agents at the threshold skill must be

indifferent between being a manager or a worker, wc
(
z∗c

)
= Rc

(
z∗c

)
. This provides the condition

that determines the initial wage. Namely,

wc (0) =
(
hc

(
1 − z∗αcc

)
+ 1

)−1
(
Acz
∗αc
c − hc

(
1 − z∗αcc

) ∫ z∗c

0

αcs
αc−1

(1 − sαc )2
Acmc (s)

αc ds

)
, (3.19)

where Rc (z) denotes the managerial income given the optimal choice of workers’ skill.

3.5.2 Existence of Equilibrium

Recall that the density of skills and cities is the result of the optimal choice of individuals

and is given by the following expression:

дc (z) =
exp

{(
Γ
Ic (z;дc (.))

p
γ
c
+ ac

)
/β

}(∑C
j=1 exp

{(
Γ
Ij(z;дj (.))

p
γ
j
+ aj

)
/β

}) . (3.20)
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Notice that I have made explicit the fact that the income function depends on the whole skill

distribution through the matching function and the wage schedule. This equilibrium condition

defines a mapping of skill distributions on skill distributions д̂ (z) = 〈д1 (z) , ...,дc (z) , ...,дC (z)〉.

Proposition 1 formally states the existence of an equilibrium as the existence of a fixed point for

this mapping.

Proposition 1. Existence of Equilibrium

Let −→д (z) = 〈д1 (z) , ...,дC (z)〉 be a vector valued function mapping [0, 1] → RC , such that∑C
n=1 дn (z) = 1 and дn (z) > 0. Let T be the mapping defined by:

T
(
−→д (.)

)
=

〈
exp

{
1
β (I1 (z;д1 (.)}) + a1)

}
∑C

j=1 exp
{

1
β

(
Ij

(
z;дj (.)

)
+ aj

)} , ..., exp
{

1
β (IC (z;дC (.)}) + a1)

}
∑C

j=1 exp
{

1
β

(
Ij

(
z;дj (.)

)
+ aj

)} 〉
.

There exists a vector valued function, −→д (z)∗, such that it is a fixed point of the mapping T ,

T
(
−→д (z)∗

)
= −→д (z)∗.

The proof of Proposition 1 is an application of Schauder’s fixed point and is included in

Section B.2 of the Appendix. Unfortunately, there is no proof of uniqueness, so when taking the

model to the data I will try different starting points for the distribution of skills and check that

the solution converges to the same distribution.

4 Quantification

I quantify the model to match two representative cities: a large city that includes all the CSAs

with a population larger than 2.5 million inhabitants, and a small city that includes CSAs with a

population between 100,000 and 2.5 million inhabitants. For reference, Denver is the city closest

to the threshold of 2.5 million inhabitants. Two parameters are taken from the literature. The

first of these parameters is the Cobb-Douglas weight on housing, γ , which is set to 0.24 to match

the average expenditure on housing in the US. This expenditure share is found to be remarkably
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constant across cities in Eeckhout et al. (2014). The second is the variance of the Extreme Value

Type I distribution, β , which controls the mobility. This value captures the elasticity of city size

with respect to income. In order to estimate this elasticity directly from the data, it is crucial

to correctly instrument for income since it is correlated with many confounding factors affecting

city size. I will take this elasticity from the estimation in Diamond (2016). The author estimates

two elasticities in this paper, one for college educated and the other for non-college educated. I

will use an elasticity of 0.3, which is roughly in between the two elasticities. Table 3 summarizes

the parameters borrowed from the literature.

The rest of the parameters are estimated in three stages. In a first stage, I estimate the

housing prices, pc from hedonic regressions and use them directly in the model to retrieve the

housing stock, Hc . In a second stage, given the housing prices, and the parameters borrowed

from the literature, I set up a Simulated Method of Moments to jointly estimate amenities ac

and the technology parameters (Ac, hc, αc). In a third stage, I obtain the variance of the log

labor supply shock, σ , to match the residual overall variance of log wages. In what follows, I

explain each of the stages in more detail.

Housing prices are the result of a hedonic housing price regression estimated using the hous-

ing section of the American Community Survey, Public Use Microdata Sample for the years

2010–2014. The hedonic regression includes the number of rooms, the year the unit was built,

and the type of apartment, in order to control for differences in the characteristics of the housing

stock. The estimated housing prices are 1.2 for the large city and 0.9 for the small city, and the

corresponding housing stocks are 0.96 for the large city and 0.08 for the small city. The complete

results from these regressions are presented in section A.2 of the Appendix. Recall that even

though there is a unit mass of agents in the economy, they do not consume a unit of housing, but

they can choose the optimal level of housing, given housing prices. Because the housing stock

does not have natural units, I normalize the housing prices so that the average price is 1. As

expected, the large city is bigger in terms of housing stock and also has a more expensive price

per unit of housing.

In the second stage, I estimate amenities and production technology in an exactly identified
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Table 4.1: Calibrated Parameters

Description Value Target

γ Cobb-Douglas Housing Weight 0.24 Fraction of Housing Expenditure
Davis and Ortalo-Magné (2011)

H s
c Housing Stock [0.9642, 0.0775] Hedonic Price Regressions

(pc = [1.2080, 0.9111])

β Mobility 0.3 Income Elasticity of City Size
Diamond (2016)

Note: This table reports the parameters in the model that are quantified before the Simulated Method of
Moments.

Simulated Method of Moments. There are four parameters to be estimated — three from the

production function for each city, specifically, the communication cost (h), the problem difficulty

(α), and the productivity (A) — and a fourth from the amenity for the large city (a) (since the

amenity for the small city is normalized to zero). Although there is not a one-to-one relationship

between the parameters and the moments: 1) changing the communication cost controls the

span of control, 2) the problem difficulty controls the difference between the median income

of managers and workers, 3) the productivity controls the level of both the median income of

managers and workers, 4) the amenity level governs the relative city size, and 5) the variance of

log time supply affects the overall variance of income in the economy. The estimated parameters

are reported in Table 4.2. The fit of the estimation is reported in Section C.1 of the Appendix.

Finally, in a third stage, I calculate the variance of the log supplied working time (σ ) that

matched the residual variance of log wages. It is possible to calculate this variance after the

Simulated Method of Moments since it does not interact with the targeted moments. The

independence of the distribution of the labor supply and the distribution of skill follows from

the assumption that the labor supply shock is realized after the choice of city. Otherwise, the

choice of city will depend on the labor supply in a manner that interacts with skill. Given the

independence of the distribution of labor supply and skill, the total variance of income is the

33



sum of the variance of log income per unit of time and variance of log labor supply, which is

Var (loд (Observed Income)) = Var [E (loд (Ic (z) l))] + E [Var (loд (Ic (z) l))] (4.1)

= Var [E (loд (Ic (z)))] + E [Var (loд (Ic (z)))] + σ . (4.2)

Therefore, the variance of log labor supply, σ , is the difference between the observed variance

of log income and the model-generated variance of log income. The variance of the log labor

supply shock is 40% of the total variance of log income, implying that the model can explain

the remaining 60%. For reference, the classical Mincer equation can explain around a third of

total variance, Mincer (1975).

Table 4.2: Estimated Parameters

Large City Small City

A Productivity 8.4139 6.7370

h Communication cost 0.7367 0.6776

α Problem Difficulty 0.8725 0.5011

a Amenity 1.0471 0

σ Variance of Log Working Time 0.337

Note: This table contains the parameters that result from the Simulated Method of Moments, plus the variance
of log working time. The variance of log working time is calculated as a residual after the estimation procedure.

The production function parameters that come out of the estimation are consistent with

the idea that production in larger cities is organized differently in part because larger cities

use a technology that embeds harder problems that are harder to communicate. Larger cities

may be producing higher quality, more innovative, or more customized products that require

more management time as well as higher skill. The large city is characterized by a higher

communication cost and a higher problem difficulty that is compensated by a higher productivity.

I will refer to the production technology in the large city as the complex technology since the

higher productivity comes at the cost of more skill and management intensity as compared to
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the small city’s technology, which I will refer to as the simple technology.

Interestingly, the complex technology used by the large city does not dominate the simple

technology. The complex technology is better than the simple one in terms of productivity, but

it is worse both in terms of the higher communication cost and in terms of the higher problem

difficulty. This can potentially explain the persistent technology differences across cities of

different sizes. I explore below whether agents in the small city would benefit from adopting the

complex technology in the following section.

Table 4.3: Non-Targeted Moments

Large City Small City Ratio Large to Small

Model Data Model Data Model Data

Average Income $51,536 $66,971 $44,504 $55,606 1.16 1.2

Variance of Log Income 0.5798 0.5758 0.4678 0.4744 1.24 1.21

90th to 50th Percentile Ratio $26,241 $26,650 $24,341 $24,788 1.08 1.07

50th to 10th Percentile Ratio $27,338 $25,236 $23,831 $22,548 1.15 1.12

Note: This table includes the fit of the model with respect to moments that were not targeted in the estimation.

The estimated model is able to replicate a series of patterns in the data that were not targeted

in the estimation. In Table 4.3 I report the average income and the variance of log income in

both the large and the small city, as well as the 90th to 50th and the 50th to 10th percentile

ratios. The average income in the model is a bit lower than in the data because of the long

upper tail in the income distribution in the data that is not matched in the model. However,

the ratio of average income of the large city to the small city is close to the one in the data.

Recall that the observed income from the American Community Survey is top-coded at the top

one-half percent of incomes in each state and replaced by the average income of all top-coded

incomes in the state. Average incomes will be particularly sensitive to this top coding and for

that reason, I chose to target median incomes instead.

The model matches well the ratio of the variance of log income in the large city to the
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Figure 4.1: Density of Log Income and Real Log Income

(b) Log Income Density

(b) Log Real Income Density

Note: This figure plots the density of log income and real log income in the data and in the estimated model
using a normal kernel smoothing with bandwidth 0.1. The real income is calculated by dividing income by the
price index implied by the model, i.e, the housing price raised to the Cobb-Douglas weight on housing pγ . The
large city is formed by CSAs with a population larger than 2.5 million inhabitants, and the small city is formed
by all the CSAs with a population smaller than 2.5 million in habitants.
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variance of log income in the small city. As shown in Table 4.3, larger cities have a higher

income inequality compared to small cities. The model also does well in terms of the 90th to

50th and the 50th to 10th percentile ratios. The model does generate slightly higher 90th to

50th percentile ratios and slightly lower 50-10 percentile ratios compared to the data, but the

ratio of large to small for both ratios is remarkably close to the data.

Next, I compare the real income distribution to the one in the data. The model-based real

income is calculated by dividing income by the price index. Namely, IRealc (z) = Ic (z)

p
γ
c

. As usual,

the price index is given by pγ as a result of Cobb Douglass preferences (given the price of the

consumption good is normalized to 1). Both the nominal and real income distributions are

plotted in Figure 4.1. The model does well in matching the fact that the income distribution

in the large city is shifted to the right and is more dispersed than the income distribution in

the small city. Moreover, the model is able to generate a fat tail at the bottom of the income

distribution, which was documented to be a robust feature of the data in Eeckhout et al. (2014).

Not surprisingly, the model does not generate the bump at the top of the income distribution

which is the result of the top-coding of income in the ACS. Recall that income above the 95.5th

percentile in each state is top-coded and replaced by the mean income of all top-coded values in

the state.

Finally, the bottom fat tail is not only present in the real income distribution but also in

the distribution of skills. This is consistent with the fat tail in large cities in the distribution of

measures of skill, such as educational attainment, documented by Eeckhout et al. (2014). Figure

4.2 plots the fraction of each skill type that locates in the large city. Recall that the overall

skill distribution is uniform, so skills can be interpreted as percentiles of the population. For

example, a skill of 0.1 corresponds to a productivity level such that 10% of the population is

below that level. This figure captures the fact that a higher fraction of the very low skill types

sorts to the large city as compared to the immediately higher skilled workers. The kinks in this

fraction are due to kinks in the income functions at the threshold skills. For reference, the large

city attracts 93% of all the agents in the economy but relatively more of the lowest and highest

skilled.
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Figure 4.2: Fraction Located in the Large City

Note: This figure plots the fraction of each skill type that chooses to locate to the large city in the estimated
model. The dotted lines represent the threshold skill in each city such that agents of skill lower than the threshold
optimally choose to become workers and those with skill higher than the threshold optimally choose to become
managers.

In order to gain intuition for why the large city is more unequal and has fatter tails in the

real income distribution, it is helpful to first look at the income schedule, which is plotted in

Figure 4.4. The income schedule is steeper in the large city for most skills, which generates

higher inequality in the large city. The difference in the slope of the income functions in the

large and small city determines the slope of the skill distribution. The fraction of skills in the

large city is decreasing when the slope of the income function in the small city is steeper than in

the large city. This is because the small city becomes increasingly attractive when the income

function is steeper. The income schedule in the small city is steeper for the lowest-skilled workers

compared to the larger city. The higher skill premium at the bottom implies that the small city

becomes more attractive as we move up the skill distribution for the lowest skills, and so the

large city attracts more of the lowest-skilled workers compared to the middle-skilled workers.

This explains that the fraction of agents that locate in the large city is decreasing for the lowest

skills. At some point, the income function in the large city becomes steeper than in the small

city, and the fraction of skills in the large city becomes increasing again. The middle downward
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Figure 4.3: Income Schedule

Note: This figure plots the income function of the large city and the small city in equilibrium. The vertical lines
correspond to the threshold skill in the large and the small city so that agents with skills below the threshold are
workers and those above are managers.

sloping interval corresponds to skills that choose to be managers in the small city but workers

in the large city. For these skills, the income function in the small city is steeper than in the

large city.

In order to understand the shape of the income schedule, it is useful to think about the

productivity of the hierarchy. In what follows, I refer to the workers plus manager as a hierarchy

and to the workers as a team. The total output of a hierarchy formed by a unit of time from

a manager of skill zm and workers of skill zw is given by the product of two terms. First, the

output per unit of worker’s time, Acz
α
m; which depends on the skill of the manager, to which I

will refer as the manger’s productivity . Second, the units of workers time 1
hc (1−z

α
w )

, which I will

refer to as team size. The productivity of the hierarchy is given by the total output divided by

the sum of the time from the workers and the manager. Therefore, the hierarchy productivity is

increasing both in the manger’s productivity and in the team size. In equilibrium, higher-skilled

workers match with higher-skilled managers so that the productivity of a hierarchy formed by

higher-skilled agents is higher both through the manager’s productivity and the team size.
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Figure 4.4: Matching
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(a) Matching to Manager’s Productivity
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(b) Team Size

Note: This figure plots the matching to manager’s productivity in panel (a) and the size of the team, or number
of workers in panel (b) for the estimated equilibrium.
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In order to see how these two effects vary differently with the skill of the worker in the large

and the small city, Figure 4.4 plots the matching of worker’s skill to manager’s skill, to manager’s

productivity and to team size in each city. The advantage of the simple technology used in the

small city comes from larger teams, while the advantage from the complex technology comes

from higher manager’s productivity. The team size effect is especially strong for the lowest

skills because an increase in team size has a larger effect on the hierarchy’s productivity for a

smaller hierarchy than for a large one. The steep increase in team size translates in the steeper

income function in the small city for the lower-skilled workers. The manger’s productivity effect

dominates for the rest of the skills, generating more inequality in the large city.

5 Spatial Differences in Technology

In the previous section, I estimated production technologies in both representative cities.

Differences in technology may come from long-term differences in characteristics across cities such

as access to natural resources, geographical location, infrastructure, or institutions. New York is

not only different because of the people who live there, but also because of infrastructure, such

as access to international airports, or institutions, such as the stock exchange. These persistent

characteristics may give New York a comparative advantage using a more complex technology

to solve harder and more costly to communicate problems. To the extent that the technology

differences measured in the estimation are tied to exogenous or long-term differences across cities,

taking technology differences as exogenous is a reasonable assumption when evaluating policy

changes.

In this section, I investigate to what extent the differences in technology that were estimated

are desirable. Since technology is three dimensional, the ranking of technologies will be more

subtle than with the usual one-dimensional technology. In particular, the simple technology of

the small city is not dominated in every dimension by the complex technology of the large city.

Even though it has lower productivity, it is also characterized by easier problems that are less

costly to communicate, which makes the technology a better fit for some low-skilled individuals.
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For this exercise, I consider two available technologies: the complex technology used by the

large city with high productivity (high A) but hard problems (high α) that are costly to com-

municate (high h), and the simple technology with low productivity (low A) but easy problems

(low α) that are cheap to communicate (low h).25

I define the social welfare function in a city as the utility per capita. This social welfare

function deviates slightly from aggregate utility as in the classical utilitarian function at the city

level. If aggregate utility is used as the social welfare in a city, then social welfare would increase

by adding new people to the city even if the average utility went down.26 I will first determine

whether the technological differences are desirable for the small city and the large city, and then

I will determine whether they are desirable from an aggregate perspective.

I consider two criteria to determine whether the technological differences are desirable for a

city. According to the first criterion, the welfare function of city c is defined as the utility per

capita for residents of city c, regardless of whether the increase in utility is due to composition

changes in the residents of the city. According to the second criterion, the welfare function for

city c is calculated as the utility per capita of the current residents of the city c, regardless of

whether these residents move out of the city as a result of changing technology.27 When reporting

the results, I refer to the first criterion as “City Welfare” and the second criterion as “Residents

Welfare.” Table 5.1 reports the percentage change in welfare that would result first from the

large city adopting the simple technology and then from the small city adopting the complex

technology. I report both welfare criteria and the change for the large and the small city.

On the one hand, the large city only loses slightly, about 2%, from adopting the small city’s

technology in terms of utility. The reason is precisely that even though the simple technology

25I also a quantify the production technology for four cities in the US: New York, Chicago, Pittsburgh, and Springfield, MA.
The results are included in Section C.2 of the Appendix. In the four-cities estimation, I find a similar pattern where productivity
is monotonically increasing in city size. However, the lower-productivity technologies have either easier problems or lower cost
communication so that the technologies of the smaller cities like Pittsburgh or Springfield are not dominated by the technology of
New York or Chicago.

26The average utility has been used as the standard measure of social welfare in the optimal growth literature following Samuelson
(1975).

27In order to calculate the change in “Residents Welfare,” I simulate the economy with each individual being characterized by
a draw of idiosyncratic preferences for the large city from an Extreme Value Type I distribution with variance β . I calculate the
optimal city choice for everyone in the initial equilibrium and the optimal city in equilibrium after the policy is implemented. The
change in the “Residents Welfare” in the large city is then calculated as the change in average utility for those agents who chose the
large city in the initial equilibrium regardless of whether they choose the large or the small city after the policy implementation. The
change in “City Welfare” for the large city is the change of average welfare between those who chose the large city before the policy
and those who chose the large city after the policy. I draw a new working-time shock for each individual following the new choice of
a city after the policy implementation.
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Table 5.1: Welfare Effect from Changes in Technology

Large City Adopting Small City Adopting
Simple Tech. Complex Tech.

Large City Small City Large City Small City

City Welfare -2.12% 16.82% -1.24% 20.65%

Residents Welfare -1.33% 4.13% 0.08% -2.75%

Note: This table contains the welfare effect of a change in technology. The first row calculates welfare as the
change in average utility of the people who were living in each city before and after the technological change.
In particular, it includes changes in the average utility coming from changes in the composition of who decides
to live in each city. The second row calculates welfare as the change in average utility of those who were living
in each city before the technological change. In particular, it includes the utility of those who move out of the
city but not of those who move into the city. The first two columns correspond to the large city adopting the
simple technology while the small city maintains the simple technology and the next two columns correspond to
the small city adopting the complex technology while the large city maintains the complex technology.

is worse for the top skills, it is better for the bottom skills. Because the large city is so much

larger than the small city, its skill distribution is close to uniform and the utility loss for the

high-skilled agents is compensated by the utility gain for the low-skilled agents so that there is

only a small aggregate effect. The small city would benefit from a 17% increase in welfare if the

large city adopted the simple technology. This large effect is mostly for the small city attracting

more of the highest-skilled agents. In terms of the small city residents, they would experience a

4% increase in per capita utility due to the increase in demand for low-skilled workers generated

by the incoming high skill.

On the other hand, the small city experiences a large effect from adopting the large city’s

technology. The average utility would increase by 20% comparing the original residents to the

new residents. A large part of this effect is due to the small city’s becoming a more attractive

place for high-skilled agents. The increase in the abundance of high-skill agents increases income

and utility through a composition effect. However, this increase is naturally at the expense of

the large city, which loses about 1% in average utility.

However, if the criterion is to maximize the utility of the original residents, adopting the

complex technology would decrease average utility by 2.75%. Therefore, in terms of the welfare
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Table 5.2: Percentage Change in Average Utility and Total Output

Both Cities Using Both Cities Using Large City Using Simple Tech. &
Simple Tech. Complex Tech. Small City Using Complex Tech.

Average Utility -1.07% -0.05% -0.8%

Total Output -1.99% -0.27% -1.34%

Note: This table contains the effect of a change in technology for the aggregate economy. The first row contains
the effect on average utility and the second row contains the effect on aggregate output.

function of the residents of the small city, it is not desirable to switch technologies. In that

sense, the fact that the small city uses a simpler technology is perpetuated by the behavior of

the small city residents, a least conditional on the initial equilibrium.

In order to understand the optimal choice of technology for the economy as a whole, I consider

the problem of a social planner who chooses the technology of each city, allowing for the optimal

allocation of agents across cities. In Table 5.2, I plot the percentage change in the aggregate

output and aggregate utility from changing technologies first so that both cities use the complex

technology, second so that both cities use the simple technology, and third so that the large city

uses the simple technology and the small city uses the complex technology. Interestingly, I find

that the current allocation of technologies is optimal both in terms of utility and output. It is

only slightly better than both cities using the complex technology.

This exercise illustrates that the idea that small cities have worse technology is an oversimpli-

fication. In reality, the diffusion of the complex technology to the small cities is not necessarily a

good thing, which is consistent with the fact that we do not see it happening. This result speaks

to the literature on place-based policies as in Kline and Moretti (2014) and Chetty et al. (2014),

in which the authors study the circumstances under which placed-based policies are preferred

to people-based policies. This framework does not feature any of the market imperfections that

can potentially justify placed-based policies. However, since the transfer of technology is not

modeled, the framework allows for the small city to have a worse technology than the large city,

in which case it would be beneficial for the small city to adopt the big city’s technology. The
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Table 6.1: Percentage Change in the Variance of Log Income

Ratio of
Large City Small City Large to Small Overall

Complex Tech. in Both Cities 1.62% 19.07% -14.52% 2.49%

Simple Tech. in Both Cities -26.54% -11.45% -16.93% -25.81%

Uniform Skills in Both Cities 0.98% -9.31% 11.29% 0.19%

Note: This table contains the change in the variance of log income that results from three exercises. The columns
respectively contain the change in the variance of log income for the large city, the small city, the ratio of the
variance in the large city to the variance in the small, and the variance in the overall economy. The first and
second rows correspond to a change in the production technology allowing for agents to reallocate across cities and
occupations (manager and worker) optimally. The first row considers a change in technology so that both cities
use the complex technology. The second row considers a change in technology so that both cities use the simple
technology. The third row contains the change in the variance of log income that would result from reallocating
agents across cities so that both cities display a uniform distribution of skills, maintaining the relative population
size of the cities, and allowing agents to re-optimize the choice of occupation (manager and worker).

fact that this is not the case is a result that comes out of the estimation.

6 Income Inequality: Technology, and Sorting

Differences in the income distribution across cities are only partially due to differences in

technology. Spatial sorting is also crucial in determining the income distribution both through

the organization of production and its effect on the income schedule. In this section, I will

discuss the effect of both technology and spatial sorting on overall income inequality and income

inequality across cities.

To better understand these forces, I look first at the effect of equalizing technology across

cities. I then look at the effect of imposing a uniform sorting that results in the distribution of

skills being uniform in both cities while maintaining the relative size of the large and the small

city. Table 5.2 summarizes the results from these exercises.

Eliminating differences in technology reduces the ratio of income inequality between large

cities and small cities by about 15% if both cities adopt the complex technology and about 17%
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if both cities adopt the small cities technology. For comparison, a 19% decrease in the ratio

would equate income inequality across cities.

Equalizing the technology also has an important effect on overall inequality. Diffusing the

complex technology to both cities increases overall inequality by 2.5% while diffusing the simple

technology to both cities decreases inequality by about 26%. The increase in inequality from

the small city adopting the large city technology is yet another argument for why it may not

be beneficial to incentivize the diffusion of the complex technology everywhere. Moreover, this

increase in inequality as a result of the diffusion of the complex technology is consistent with

the idea in Caicedo et al. (2017) that the increasing income inequality in the US over the last

several decades may be coming from increasing complexity of the technology.

A uniform spatial sorting has the opposite effect on the ratio of income inequality across

cities. It increases differences in income inequality, making the large city more unequal and

the small city less unequal. Moreover, a uniform spatial sorting would decrease overall income

inequality. Spatial sorting affects the income distribution across cities by dampening the effects

of differences in technology and bringing the income functions closer together. This happens as

the higher-skilled agents move to the large city where the skill premium is higher, bringing the

skill premium down and closer to the one in the small city.

The adjustment of the skill premium occurs through changes in the organization of production.

To illustrate this, consider the effect for the small city of allowing for spatial sorting. Figure 6.1

plots the income schedule for the estimated skill distribution and the uniform skill distribution.

The small city starts with a simple technology that is not very productive but which faces many

easy problems that are cheap to communication. Management is only profitable for the very

high-skilled agents and the few managers hire large teams of workers. For the lowest-skilled

agents, the skill premium is very high because of easy problems and communication allow teams

to get larger quickly as skill increases even by just a little bit. If we then allow agents to

reallocate, the small city will attract the low skilled and in particular the middle-low skilled,

while the high-skilled agents will like to move to the large city where the technology is complex

but more productive. As the supply of high-skilled managers decreases, the wage for the workers
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Figure 6.1: Income Schedule

Note: This figure plots the change in the income function from a change in the sorting of agents so that both
cities display a uniform distribution of skills but maintain their relative size. The solid lines correspond to the
income functions in equilibrium, while the dashed line corresponds to the income function under symmetric
sorting (uniform distribution in both cities). The vertical lines correspond to the threshold skill in the small city
so that agents with skill below the threshold optimally choose to become workers and those with skill above the
threshold optimally choose to become managers.

will decrease and the profitability of management will increase, and the better workers will switch

into management. As a result of these adjustments, the income schedule will become closer to

the one in the large city.

This effect has interesting consequences for policy evaluation. If we observe the income

function across cities, we may conclude that differences across cities are not very large, and we

may be tempted to implement policies that attract talent to the smaller cities hoping to take

advantage of possible human capital externalities. However, a uniform sorting will result in

larger differences in the income distribution than those in equilibrium. Not taking this effect

into account will result in a miscalculation of the consequences of policies that distorts sorting.
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7 Policy counterfactuals

In this section, I look at the effect of city-level policies taking into account the endogenous

response of sorting and production organization. I take the differences in technology as ex-

ogenous. While it is possible that part of the difference in technology is due to agglomeration

economies, to the extent that the policy exercises do not have a large effect on the size of the

city, agglomeration forces should remain reasonably invariant to these policies.

7.1 Minimum Wage

In recent years, there has been a rise in the number of cities implementing minimum wage

increases beyond the state or federal level in an attempt to address the growing levels of in-

equality. In August 2014, the U.S. Conference of Mayors “Cities of Opportunity Task Force”

issued a list of strategies to fight income inequality. The strategies included efforts to increase

the minimum wage. The National Employment Law Project report “City Minimum Wage Laws:

Recent Trends and Economic Evidence” includes a list of all the local minimum wage ordinances

passed since 2003. Table 7.1 reports the most recent minimum wage ordinances for some of the

major cities in the US. In brackets, I include the year by which the minimum wage targets will

be implemented. For comparison, Table 7.1 also includes the state minimum wage, which is in

all cases above the federal minimum wage of $7.25 an hour.

In this section, I evaluate the impact of imposing a minimum wage that is 50% higher than

the current lowest wage in the large city. I relegate the analysis of imposing a minimum wage in

the small city to Section D.1 of the Appendix. The lowest income in the large city implied by

the model is $16,084 per year which is equivalent to $8.36 per hour if we assume a 40-hour week.

This is slightly above the federal minimum wage of $7.25 per hour but lower than many state

levels. I will impose a minimum wage of $12.56 per hour. This is comparable to the increase

implemented by the city of Seattle, which increased its minimum wage from $9.47 per hour to

$13 per hour between 2015 and 2016. In a recent paper, Jardim et al. (2017) study the effect of
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Table 7.1: City Minimum Wage Ordinances

Year Passed Minimum Wage Target State Minimum Wage

Washington, DC 2013 $15 (by 2020) $12.50

Chicago, IL 2014 $13 (by 2018) $8.25

San Francisco, CA 2014 $15 (by 2018) $10.50

Seattle, WA 2014 $15 (by 2018-21) $11

Los Angeles, CA 2015 $15 (by 2020) $10.50

Sources: National Employment Law Project, City Minimum Wage Laws, 2016; National
Conference on State Legislatures, 2017

the minimum wage increase in Seattle. I will use their estimated effects on hours and wages as a

benchmark. Another study, by the University of California at Berkeley’s Institute for Research

on Labor and Employment, found no employment effects for the restaurant industry.

In order to implement the minimum wage, I impose that managers are not able to pay wages

per unit of time below the minimum wage, and I relax the labor market clearing condition. The

new equilibrium is now characterized by two threshold skills: a lower bound threshold z such

that agents below that skill are unemployed and the management threshold z∗ such that agents

above that threshold become managers. Agents who are not hired by any managers have access

to a self-employment production technology so their earnings will be positive and increasing in

skill. I assume that agents know about the minimum wage regulation and its impact on the

income schedule, so they choose the optimal city taking this into account. As a result, many of

the low-skill agents will prefer to live in the small city, but those with a high enough idiosyncratic

preference will remain in the large city and use the self-employment technology.

I start by considering the effect of this minimum wage on the decrease in employment and

the effect on average wages and compare it to the magnitudes found in the Jardim et al. (2017)

study on Seattle. The authors focus on the effect on low-skill workers, which they identify as

workers earning below $19 an hour. They find that for these workers employment fell by 9% and
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Table 7.2: Welfare Effect of a Minimum Wage

Large City Small City Overall

All Residents

Average Utility 0.21% -15.91% -1.45%

Var Log Utility 25.62% 102.31% 44.02%

Original Residents

Average Utility -1.43% -1.84% -1.45%

Variance Log Utility 48.09% 22.91% 44.02%

Employed Agents

Average Utility 5.2% -15.91% 2.9%

Variance Log Utility -25.45% 102.31% 7.08%

Note: This table contains the effect on average utility and variance of log utility that result from the large
city implementing a minimum wage 50% higher than the current lowest wage of the large city. The columns
respectively contain the effect for the large city, the small city, and the overall economy. The first two rows
contain the effect from comparing the utility of agents who were living in the corresponding city in each column
before and after the minimum wage. The next two rows contain the effect on the utility of agents who were living
in the city corresponding to the column before the minimum wage policy. Notice that this consideration does
not affect the calculation for the overall economy. The final two rows compare the effect on utility for agents who
were living in the city corresponding to the column before and after, and who are either a manager or a worker
hired by a manager. Notice that this consideration does not change the calculation for the small city, so that the
effect on the first two rows and the last two rows for the small city are unchanged.
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wages increased by 3% resulting in a total decrease in payroll of $125 per month. I will follow

the same specification as in the Jardim et al. (2017) study and consider the effect on workers

making below $36,480 annually, which is equivalent to $19 an hour for a 40-hour week and full

year. I do not take into account the self-employed in this calculation. I find that the average

wage increases by 15% and employment decreases by 33% so that an average worker loses $506

per month assuming that the self-employed earn zero dollars. The average cost is within the

same order of magnitude. However, recall that the change in the minimum wage studied here is

larger than the one experienced in Seattle. These numbers are simply for comparison, and they

do not pretend to be a quantification of the effect in Seattle.

Next, I quantify the impact of this policy on welfare, measured by average utility, and on

inequality measured by the variance of log utility. In order to better understand the conse-

quences of implementing an increase in the minimum wage, I consider the effect of the policy

for the original residents, comparing the new residents to the old residents, and considering only

employed agents. Table 7.2 summarizes the results from the three scenarios for the large city,

the small city, and the overall effect.

I find that a minimum wage does slightly increase average utility by 0.2% in the large city,

where it is implemented. This is, however, due to a composition effect as low-skilled agents who

cannot get hired in the large city move out. Indeed the large city loses 2.34% of its population

as a result of the policy and low skill agents move out at larger rates. Restricting attention to

the original residents of the large city, I find that the minimum wage decreases average utility

by 1.43%.

The effect on the small city is large and negative. If we compare residents before and after,

they experience a 16% drop in average utility. In part, this effect is due to the inflow of low-skill

agents. The original residents experience a smaller decrease of almost 2% in average utility and

an increase in the variance of 23%. The minimum wage hurts the small city both in terms of

average utility but also by increasing inequality.

Overall, there is a small decrease in the average utility of 1.45% but a large increase in the

variance of 44%. However, if we only consider employed agents, I find an increase in average
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utility of 3% and an increase in the variance of log utility of 7%.

The negative effect on overall utility comes mostly from low-skill agents losing their job.

Looking only at those who remain employed, I do find a positive impact with a 5% higher average

utility and 25% lower inequality. It is important to keep in mind that the equilibrium in this

model is efficient and has none of the usual mechanisms that will generate positive effects from an

increase in the minimum wage, such as monopsony power (Bhaskar and To (1999)), job search

(Flinn (2006)), endogenous productivity(Rebitzer and Taylor (1995)), or subsistence income

(Dessing (2002)). Therefore, it is not surprising that the minimum wage has an overall negative

impact. The richness of the model in the matching of heterogeneous workers is particularly well

suited to understanding the effect of the policy on inequality and identifying the winners and

losers of the policy throughout the income distribution.

Implementing a minimum wage has differential effects throughout the income distribution

due to changes in the organization of production. Figure 7.1 plots the percentage change in

utility by skill in the large city and small city. Let us first consider the effect in the large city.

The lowest-skilled agents who were earning below the minimum wage cannot find a manager to

pay the high wages and are forced to produce on their own or move to the small city. These are

the main losers from the policy. As a result of the lowest-skilled workers moving out of the labor

market, two things happen: first, the demand for the remaining workers goes up, driving wages

up for most workers, and second, the lowest-skilled managers switch into becoming workers. The

higher wages imply increases in utility for workers and decreases in utility for most managers.

Finally, since the threshold for being a manager increases, the very top managers who hire the

best workers can now hire better workers than before, so they also experience an increase in

utility.

Next, let us consider the effect of this policy on the small city. The small city now receives

a large mass of low-skill workers who moved out of the large city because they could not find a

manager to hire them. The inflow of low-skill workers drives wages down in order for the labor

market to clear. This decrease in wages translates into lower utility for most workers. As a

result of the lower wages, the highest-skilled workers are now able to hire workers and become

52



Figure 7.1: Change in the Utility of the Original Residents

Note: This figure contains the effect on utility that result from the large city implementing a minimum wage
50% higher than the current lowest wage of the large city. There is a distribution of utilities within a skill type
that reflect the distribution in idiosyncratic amenities and working-time supply. The figure plots the percentage
change in average utility for skill bins, where each bin corresponds to 1% of the population in the economy. That
is, the first bin includes skills from 0 to 0.01, the second bin includes skills from 0.01 to 0.02, etc. The vertical line
on the left corresponds to the lowest skilled that is hired by a manager in the large city. Agents with skills below
this threshold work on their own using the production technology without a manager. The following vertical
lines correspond to the threshold skill in the large and small city before and after the minimum wage, such that
agents below the threshold skill optimally choose to become workers and those with skill above the threshold
optimally choose to become managers.
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managers. These top workers that switch into management, along with most managers that

benefit from the decreasing wages, are the main winners of the policy. Finally, due to the lower

threshold to become a manager, the top manager who used to hire the top workers now has to

hire worse workers than before, so these top managers will suffer losses in utility.

To sum up, the minimum wage decreases overall utility mostly from forcing the lowest-skilled

agents into unemployment. On top of that, it has a negative impact on the managers that used to

hire those low-skilled workers. However, it increases the average utility within employed agents,

in part due to a composition effect. Remarkably, the minimum wage policy fails to decrease

overall inequality even within people who do not lose their jobs due to the large increase in

inequality in the small city that outweighs the decrease in inequality within employed workers in

the large city. The supply of low-skilled workers in the small city depresses wages, thus hurting

workers and benefiting middle managers. Interestingly, top managers also lose in the small city

due to the change in the organization of production that moves the workers they used to hire

into management and forces them to hire worse workers than before.

Table 7.3: Subsidized Housing Summary Statistics

US New York City

Annual rent $3, 984 5,496

Household Income $13,726 $19,306

% Household income spent on rent 29% 28%

% Below 50% of Median 94% 90%

% Below 30% of Median 73% 74%

Source: HUD, A Picture of Subsidized Housing 2016
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7.2 Affordable Housing

The US government devotes about $40 billion each year to means-tested housing programs

Collison et al. (2016). Access to affordable housing is a pressing concern in some of the larger

cities where housing costs keep rising. In New York City, more than 735,000 people currently

reside in public housing or receive subsidized assistance through the New York City Housing

Authority.28 For context, Table 7.3 presents some statistics on the characteristics of individuals

receiving subsidized housing in the US and in New York City as New York City is not only the

largest city in the US but also has the largest housing authority.

Table 7.4: Welfare Effect of Housing Subsidy

Large City Small City Overall

Current Residents

Average Utility -0.72% 2.08% -0.59%

Var Log Utility -7.24% -12.5% -8.09%

Original Residents

Average Utility -0.61% -0.18% -0.59%

Variance Log Utility -8.55% -6.24% -8.09%

Note: This table contains the effect on average utility and variance of log utility that result from the large city
implementing a 50% housing subsidy for agents earning below half of the median income in the large city. The
columns respectively contain the effect for the large city, the small city, and the overall economy. The first two
rows contain the effect from comparing the utility of agents who were living in the corresponding city in each
column before and after the minimum wage. The next two rows contain the effect on the utility of agents who were
living in the city corresponding to the column before the minimum wage policy. Notice that this consideration
does not affect the calculation for the overall economy.

In this section, I quantify the impact of a housing subsidy that resembles Section 8 Voucher

programs. Typically, housing vouchers are granted to individuals earning below half of the

28Statistics from the New York City Housing Authority Website: www1.nyc.gov/site/nycha/about
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median income. The voucher covers housing costs that exceed 30% of the recipients’ income,

that is, recipients are guaranteed to spend no more than 30% of their income on housing. In

a comprehensive review of recent literature on housing policy in the US, Olsen (2003) includes

details on Section 8 and other low-income housing programs. Given the assumption of Cobb-

Douglas preferences for housing and consumption goods, the share of housing expenditure is

constant and given by the Cobb-Douglas share on housing γ . This share γ is calibrated to match

average overall expenditure of 24% following the empirical finding in Davis and Ortalo-Magné

(2011). As a result, everyone spends 24% of their income on housing. In reality, the expenditure

share varies with income, Eeckhout et al. (2014) find the expenditure share of housing varies

from 35% for low-income agents to 22% for high-income agents.

In order to quantify the effect of the subsidy, I need to know the reduction in housing costs

that result from receiving a voucher. This number is not observed in the data. There are also

no current estimates for this number in the literature. One of the most exhaustive studies is

Olsen (2003), in which he compares the effect from eight previous studies on different programs

using data from the 1970s and 1980s. The estimates for the percentage increase in housing

consumption range widely from 22% to 82% for public housing programs, from 26% to 58%

for subsidized projects, and from 16% to 63% for voucher programs. Given the wide range of

estimates, I choose a roughly reasonable subsidy of 50% for housing costs.

The affordable housing implemented will consist of a 50% subsidy to the cost of housing

for people earning below half of the median income in the large city. In order to make the

policy revenue-neutral, a lump sum tax is collected equally from everyone in the city. Table 7.4

summarizes the effect of this subsidy. The subsidy impacts both the large city, where the policy

is implemented, and the small city, through sorting decisions of agents. The average utility

of the original residents of the large city goes slightly down by 0.61%; however, it does have a

positive effect on inequality by decreasing the variance of log utility by 8.55%. The effects for the

original residents in the small city are similar but smaller, with a decrease in the average utility

of 0.18% and a decrease of the variance of log utility of 6.24%. Overall inequality measured by

the variance of log utility goes down by 8%, while the average utility also decreases slightly, by
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0.59%. It is also worth noting that the average utility in the small city comparing old versus

new residents will go up by 2% due to a composition effect caused by low-skill agents moving

into the large city attracted by the housing subsidy.

There are naturally winners and losers from this policy. In Figure 7.2, I plot the percentage

change in utility for each skill level of the original residents in both the large and the small city.

As expected, agents who earned below half of the median income in the large city are the big

winners of this policy; in the large city, utility at the lowest skills increases around 8%. More

interesting are the spillover effects that also drive utility up in the small city for the bottom

skills by around 3%. This increase in the small city is the result of a stronger incentive for

low-skill individuals to move to the large city. This incentive decreases the number of low-skill

workers in the small city, pushing wages up. Interestingly, in the small city, the losers of the

policy are middle-skilled agents who were the lowest-skilled managers hiring the lowest skilled

workers. Now, these managers have to pay their workers higher wages due to the scarcity of

low-skill workers who are now more likely to move to the large city.

The two policies considered here, minimum wage and housing subsidy, have opposite effects

on the small city. While the minimum wage increases the supply of low-skill workers in the small

city, hurting the bottom skill residents of the small city, affordable housing has the opposite

effect. Affordable housing in the large city decreases the supply of low-skill workers in the small

city and drives their income up. As a result, inequality in the small city increases with the

minimum wage and decreases with affordable housing.

Summing up, both the minimum wage and the housing subsidy policies have small negative

overall effects on the average utility of 1.45% and 0.59% respectively. The negative effect is

not surprising since there are no inefficiencies in the decentralized equilibrium. However, the

minimum wage increases the variance of log utility by 44%, while the housing subsidy decreases

the variance of log utility by 8%. This leads us to conclude that housing subsidies are more

effective at reducing inequality than minimum wage policies.
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Figure 7.2: Change in the Utility of the Original Residents
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Note: This figure contains the effect on utility that result from the large city implementing a 50% housing subsidy
for agents earning below half of the median income in the large city. There is a distribution of utilities within a
skill type that reflects the distribution in idiosyncratic amenities and working-time supply. The figure plots the
percentage change in average utility for skill bins, where each bin corresponds to 1% of the population in the
economy. That is, the first bin includes skills from 0 to 0.01, the second bin includes skills from 0.01 to 0.02,
etc. The vertical line on the left corresponds to the skill of the agents that earn half of the median income in the
large city. Agents with skill below this level will receive a housing subsidy in the large city.
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8 Conclusion

In recent years there has been rising concern about extreme income inequality and its con-

sequences. This concern is leading to a series of policies implemented at the city level designed

to address inequality. The most common policies involve affordable housing and increases in

the minimum wage. Understanding the way in which spatial sorting interacts with technological

differences across cities is key in order to evaluate the effect of these city policies as these policies

typically distort the incentives to sort across cities.

The spatial sorting with heterogeneous agents literature has focused on explaining differences

across ex-ante identical locations. While this question is extremely interesting and helps us

understand the emergence of heterogeneous cities, it is not the best set-up to evaluate the effect

of policies in the short and medium run. Moreover, by allowing for exogenous differences in

technology, I am able to match the empirical differences across cities even while allowing for

sorting to have an equalizing effect that follows from the basic economic intuition of supply and

demand.

This paper contributes to the literature by measuring these differences in technology across

cities and separating the effect of technology and sorting. I find that technology is the main

driver of inequality differences across cities, while sorting works to dampen those differences.

Interestingly, I find that these technology differences may be optimal since the small city uses

a simpler technology that is not Pareto-dominated by the large city technology. Recovering the

structural parameters of production, I am able to evaluate the effect of policies with endogenous

reallocation of individuals across space as well as the endogenous reorganization of production.

I find that a subsidy to housing is more effective at reducing inequality than a minimum wage.

Understanding the initial source of technological differences across cities is left for future work.

This paper treats technology as exogenous and measures two technologies, one for the large

city and one for the small city. In reality, there are many different technologies of varying

complexity being used in both cities. This paper measures some composite of those underly-

ing technologies. It is outside the scope of this paper to endogenize the technology differences.
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However, the fact that the skill distribution in the small city is better suited to use the sim-

ple technology and the skill distribution in the large city is better suited to use the complex

technology suggests a way to endogenize technology differences in future work. If new tech-

nologies are being invented and they could choose the optimal city, the complex technologies

would select into the skill-abundant city. Furthermore, if large cities attract higher-skilled agents

disproportionately, we would also expect the complex technologies to select into the large city.
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A Data Appendix

In this section, I expand on some details of the American Community Survey data, and

present the results from the hedonic price regressions. I also expend on the main stylized facts

on the distribution of income and perform some additional robustness checks.

A.1 American Community Survey: Top-coded income levels

Income reported in the American Community Survey is top-coded at the 95.5 percentile level

for each state in order to preserve confidentiality. The top-coded incomes are replaced by the

average of the top-coded incomes within the State. Table A.1 reports the level of top-coding for

incomes in each state.

A.2 Hedonic Price Regression

In this subsection, I present the results from hedonic price regressions where rent paid is

regressed on a constant, the number of rooms, the number of units in a building, the year the

building was built in and an indicator for geography. I use two types of indicators, the CSA in

order to report stylized facts on the distribution of real income across cities, and an indicator

for “large city” and “small city” in order to estimate the model in a two city setting. The

representative large city includes all CSAs with a population larger than 2.5 million inhabitants,

while the small city includes all CSAs with a population below 2.5 million.

The regression equations for each geographic indicator are:

lrenti = β0 + β1NumRoomsi + β2NumUnitsi + β3YearBuilti + β4CSAi + ϵi, (A.1)

lrenti = β0 + β1NumRoomsi + β2NumUnitsi + β3YearBuilti + β4SizeCateдory + ϵi . (A.2)
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Table A.1: Income Top Codes, ACS 5% PUMS 2010–2014

State Income Top code State Income Top Code

Alabama $311,000 Montana $267,000
Alaska $366,000 Nebraska $320,000
Arizona $309,000 Nevada $315,000
Arkansas $325,000 New Hampshire $431,000
California $455,000 New Jersey $539,000
Colorado $419,000 New Mexico $281,000
Connecticut $642,000 New York $587,000
Delaware $343,000 North Carolina $379,000
District of Columbia $582,000 North Dakota $450,000
Florida $393,000 Ohio $360,000
Georgia $392,000 Oklahoma $327,000
Hawaii $325,000 Oregon $344,000
Idaho $313,000 Pennsylvania $410,000
Illinois $456,000 Rhode Island $384,000
Indiana $340,000 South Carolina $323,000
Iowa $359,000 South Dakota $338,000
Kansas $392,000 Tennessee $385,000
Kentucky $305,000 Texas $410,000
Louisiana $314,000 Utah $341,000
Maine $330,000 Vermont $330,000
Maryland $467,000 Virginia $426,000
Massachusetts $538,000 Washington $413,000
Michigan $331,000 West Virginia $237,000
Minnesota $459,000 Wisconsin $366,000
Mississippi $291,000 Wyoming $354,000
Missouri $344,000
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Table A.2 reports the results from these regressions. For conciseness, I report only the coef-

ficient on the number of rooms and number of units in a building. The coefficients on the year

built and the CSA are as expected. Older buildings are associated with lower rent. For example,

with respect to 2005, buildings built before 1939 are associated with 0.29 log points lower rent

and buildings built in 2013 are associated with 0.19 log points higher rent. The intuition on

the coefficients on CSAs is more subtle but it does follow common knowledge on expensive and

inexpensive cities. For example, relative to Albany, living in San Francisco is related to 0.55 log

points higher rent, while living in Pittsburgh is related to 0.25 log points lower rent.

A.3 Distribution of Income and City Size

In this subsection, I include additional details and robustness to the main stylized facts

presented in the main text. First, I begin by presenting the two main stylized facts at the

Metropolitan Statistical Area level in order to compare them to the Combined Statistical Areas

level used for the main analysis. Panel (a) in Figure A.1 plots the average annual wage against

the log population for all MSAs in the United States and Panel (b) plots the variance of log wage

on log population. Larger cities tend to have a higher average income and a higher variance of log

income. Notice that the outliers are often part of a larger Combined Statistical Area. Bridgeport

and Trenton belong to New York’s CSA, Boulder belongs to Denver’s CSA, and San Jose belongs

to San Francisco’s CSA.

Larger cities are also typically more expensive places to live. The higher nominal income,

although an indication of a higher productivity, may not reflect a higher utility from living in

larger cities. In order to explore this further, Figure A.2 plots the average real income against

log population. The real income is calculated by dividing income by the price index implied

by a model with Cobb-Douglas preferences on consumption and housing where consumption is

the numeraire. The price index is therefore given by the price of housing to the power of the

Cobb-Douglas weight on housing expenditure. The housing prices are the result of the hedonic

regressions presented in Section A.2 of the Appendix. Larger cities not only have a higher average
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Table A.2: Hedonic Price Regression

Log Rent (CSA) Log Rent (2 Cities)

0 Rooms -0.51** -0.55**

1 Room -0.46** -0.53**

2 Rooms -0.25** -0.33**

3 Rooms -0.14** -0.19**

4 Rooms Omitted Omitted

5 Rooms 0.06** 0.08**

6 Rooms 0.09** 0.06**

7 Rooms 0.05* 0.01

8 Rooms -0.11** -0.12**

9 or More Rooms -0.2** -0.19**

1-family house, detached 0.05** -0.12**

1-family house, attached Omitted Omitted

2-family house, attached -0.07** -0.16**

3-4 family building -0.06** -0.12**

5-9 family building -0.04** -0.1**

10-19 family building 0.01** -0.02**

20-49 family building 0.003 0.03**

50+ family building 0.02** 0.09**

Small City Dummy - -0.2**

Constant 7.05** 7.21**

R2 0.24 0.08

N 1,221,418 1,221,418

*p<0.05, **p<0.01

Note: This table uses data from the ACS IPUMS 5% 2010–2014 Housing Survey. It includes households that
pay rent on their apartments and does not include those living in group quarters, mobile homes, boats, tents, or
farm houses. Some regressors are omitted for space considerations.
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Figure A.1: Distribution of Income at the MSA level

(a) Average Income

(b) Variance of Log Income

Note: This figure plots the average annual wage and the variance of log annual wage against logged population
for Metropolitan Statistical Areas. The data source used is the American Community Survey 5% IPUMS for
2010–2014. The line corresponds to a linear regression and the shaded area corresponds to the 95th confidence
interval.
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Figure A.2: Model-based adjustment for housing prices

Note: This figure plots the average real annual wage against logged population for Combined Statistical Areas.
The data source used is the American Community Survey 5% IPUMS for 2010–2014. The real wage is computed
by dividing wages by the price index implied by the model. Given Cobb-Douglas utility and consumption as the
numeraire, the price index is simply the housing price raised to the Cobb-Douglas housing share. The housing
prices are the result of hedonic regressions reported in Section A.2 of the Appendix. The line corresponds to a
linear regression and the shaded area corresponds to the 95th confidence interval.

nominal income but also a higher average real income. Notice that dividing income by the price

index does not affect the variance of log income and so the regression will be unchanged.

The variance of log income is one possible measure of inequality. In order to further explore

whether income inequality is higher for difference percentiles, Figure A.3 plots the ratio of the

90th to 50th percentiles in Panel (a) and the ratio of the 50th to 10th percentiles in Panel (b).

I find that both ratios are increasing in city size. Larger cities are more unequal both at the top

and at the bottom of the income distribution.

Part of the differences in the income distribution across cities may come from differences in

the composition of who lives in larger cities versus smaller cities. If more productive agents

sort into the larger cities then these will have higher average incomes. In order to explore to

what extent the composition in observable characteristics can explain the differences in income

distribution across cities, I first run the following regressions of income and log income on years
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Figure A.3: Percentile Ratios

(a) 90th to 50th Percentiles Ratio

(b) 90th to 10th Percentiles Ratio

Note: This figure plots the ratio of the 90th to 50th percentiles and the ratio of the 50th to 10th percentiles
against logged population for Combined Statistical Areas. The data source used is the American Community
Survey 5% IPUMS for 2010–2014. The line corresponds to a linear regression and the shaded area corresponds
to the 95th confidence interval.
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Table A.3: Mincer Regressions

Income Log Income

Years of Schooling 9,262** 0.13**

Years of Potential Experience 926** 0.01**

Female Dummy -22,317** -0.3**

White Race Dummy 7,245** 0.12**

Constant -82,369** 8.67**

R2 0.19 0.29

N 2,211,219 2,211,219

*p<0.05, **p<0.01

Note: This table contains the results of regressing income and log income on years of schooling, years of potential
experience, a female dummy, and a white race dummy using data from the ACS 5% IPUMS for 2010–2014. The
formulation for this regression follows Mincer (1975). Years of schooling are assigned as follows: one year of
schooling per grade for grades 1 to 12; 12 years of schooling for grade 12 with no diploma, high school diploma,
GED, or alternative credential; 14 years of schooling for some college with no degree and an Associate’s degree;
16 years of schooling for a Bachelor’s degree; 17 years of schooling for a Professional degree, and 18 years of
schooling for Master’s and Doctorate degrees. Years of potential experience are assigned by subtracting years of
schooling plus six from age.

of schooling, potential experience, gender, and race, following Mincer (1975):

Incomei = β0 + β1Schoolinдi + β2Experiencei + β3Femalei + β4Whitei + ϵi (A.3)

LoдIncomei = β0 + β1Schoolinдi + β2Experiencei + β3Femalei + β4Whitei + ϵi . (A.4)

Results from these regression are included in Table A.3.

I then use the residuals from regression A.3 to calculate the average residual income by city

and the residuals from regression A.4 to calculate the variance of log residual income by city.

Figure A.4 plots the average of the residual income and the variance of the log residual income

against population size. Observable characteristics can only explain part of the pattern but both

the average residual income and the variance of the log residual income are still increasing in
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Table A.4: Average Income and City Size

Avg. Income Avg. Real Income Avg. Residual Income

Log Population 4,472** 2,997** 3,764**

R2 0.52 0.38 0.57

N 162 162 162

* p<0.05; ** p<0.01

Note: this table contains the results from regressing average income, average real income and average residual
income on logged population using data from the American Community Survey 5% IPUMS 2010-14. Each
observation is a Combined Statistical Area. he real wage is computed by dividing wages by the price index
implied by the model. Given Cobb-Douglas utility and consumption as the numeraire, the price index is simply
the housing price raised to the Cobb-Douglas housing share. The housing prices are the result of hedonic
regressions reported in Section A.2 of the Appendix. The residual income is the residual from regressing income
on years of schooling, potential experience, gender and race. The line represents the linear fit and the shaded
area is the 95 percent confidence interval.

city size.

As a summary, Table A.4 includes the result from regressing average income, average real

income, and variance or residual income against log population. The three coefficients are

significantly positive and the R2 from the regressions are high. Interestingly, the R2 is highest for

the residual income meaning that city size has more explanatory power for the residual income.

A.4 Span of Control

A.4.1 Definition of Managers: PCS

There are six major groups in the PCS: (1) agricultural workers, (2) self-employed and business

owners, (3) upper managers and high professionals, (4) intermediate professions: education,

health, administrator, sellers, technicians, (5) white-collar workers, and (6) blue-collar workers.

I exclude agricultural and self-employed workers and classify business owners, upper managers,

and high professionals (classes 2 and 3) as “managers” and intermediate professions, white and
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Figure A.4: Distribution of Residual Income

(a) Average Residual Income

(b) Variance of Log Residual Income

Note: This figure plots the average residual income and the variance of log residual income for Combined
Statistical Areas using data from the American Community Survey 5% IPUMS 2010–2014. The residual income
is the residual from regressing income on years of schooling, potential experience, gender, and race. The line
represents the linear fit and the shaded area is the 95% confidence interval.
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blue-collar workers (classes 4, 5, and 6) as “workers.” The crosswalk between the PCS and ACS

occupational classifications is not one-to-one so each occupation will be assigned a probability

of being a manager given its ACS occupation. The result is that on top of the ACS manager

occupations, all get a probability of one for being a manager, but there are additional occupations

with a positive probability of corresponding to a manager. For example, 41% of most science and

engineering occupations will be classified as mangers. Other occupations are entirely classified

as managers even if they would not fall under the classic definition of manager, such as directors

and producers.

Table A.5: Production Organization with Multiple Layers

Fraction of Employees that are

Blue & White Collar Layer 1 Layer 2 Layer 3
Workers Managers Managers Managers

Log Population -2.22** -0.06 2.07** 0.38**

Constant 77.21** 27.44** -8.48** -0.60

R2 0.34 0.00 0.38 0.35

N 162 162 162 162

* p<0.05; ** p<0.01

Note: This table reports the results from regressing share of employment in each layer of management on to
logged population for Combined Statistical Areas. The data source used is the American Community Survey 5%
IPUMS for 2010–2014.

A.4.2 Multiple Layers using the PCS

In this section, I relax the simplification of describing the organization of production with

two layers. I use the PCS codes to divide occupations into four layers: production workers (in-

cluding both blue and white collar workers), intermediate professionals (layer 1 of management),

professionals and upper management (layer 2 of management), and business owners (layer 3 of
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management). Figure plots how the share of employment in each of this layers changes with city

population. I find that doubling city size is associated with an average decrease of 2.2 percentage

points in the share of production workers, no significant change in the share of intermediate pro-

fessionals, a 2 percentage points increase in the share of upper management and professionals,

and a 0.4 percentage point increase in the share of business owners.

The span of control increases in every layer except at the top layer since the number of

business owners increases by less than upper management and professionals. The lower increase

in business owners could be due to the fact that in small cities there may be more firms with

only one level of management, and that would be the business owner. However, as I show in

section 2 the main finding of decreasing spans of control with city size still holds when classifying

only heads of companies as managers. Since I do not have firm identifiers I am not able to speak

to the number of firms with a given number of layers. However, in recent work on France,

Spanos (2018) finds that the distribution of the number of layers changes slightly with city size.

Doubling population density is associated with 1.5% fewer firms with one layer of management,

and 1.2% more firms with two layers of management.

A.4.3 Robustness

In this subsection, I present some additional details to the evidence on the organization of

production and city size. I start by checking the robustness of the findings with respect to the

definition of city. Figure A.5 plots the number of workers per manager on the log of population

for Metropolitan Statistical Areas. The span of control is decreasing with city size for MSAs.

Notice that the outliers are often part of a larger Combined Statistical Area. Bridgeport and

Trenton belong to New York’s CSA, Boulder belongs to Denver’s CSA and San Jose belongs

to San Francisco’s CSA, and interestingly, they were also outliers in the regressions of average

income and variance of log income.

Next, I check the robustness of the empirical regularity with respect to the definition of

management. Figure A.6 plots the number of workers per manager for two alternative definitions

of manager. In panel (a), the definition of manager is the head of a company with at least 10
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Figure A.5: Span of Control at the MSA Level

Note: This figure plots the number of workers per manager against logged population for Metropolitan Statistical
Areas. The data source used is the American Community Survey 5% IPUMS for 2010–2014. The line corresponds
to a linear regression and the shaded area corresponds to the 95th confidence interval.

employees according to the French occupational classification (PCS). In panel (b), a manager

is defined using the ACS classification for managers. The span of control is decreasing in city

size for both of these definitions although the level of span of control varies greatly with the

definitions. It is between 100 and 500 workers per manager when using head of company, and

between 5 and 15 when using the ACS classification.

Manufacturing is a particular sector where it is common for production plants to be located

outside of cities while headquarters are located within cities. In order to explore whether the

patter is coming from this effect, Figure A.7 plots the number of workers per manager against

log population excluding the manufacturing sector. The span of control is still decreasing in city

size.

City size is correlated with average income, variance of log income, and span of control. In

order to investigate whether the span of control is correlated with the moments of the income

distribution beyond what is captured by population, I first regress average income, variance of

log income, and span of control on population in three separate regressions. Then in Figure A.8,
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Figure A.6: Alternative Management Definitions

(a) Head of Company

(b) ACS Occupational Classification

Note: This figure plots the number of workers per manager against logged population for Combined Statistical
Areas. The data source used is the American Community Survey 5% IPUMS for 2010–2014. The line corresponds
to a linear regression and the shaded area corresponds to the 95th confidence interval. Panel (a) plots the number
of workers per head of company of more than 10 employees classified using the French occupational classification
system (PCS). Panel (b) plots the number of workers per manager, where agents are classified as managers using
the ACS occupational classification system.
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Figure A.7: Span of Control, Excluding Manufacturing

Note: This figure plots the number of workers per manager against logged population for Combined Statistical
Areas excluding the Manufacturing sector. The data used is the American Community Survey 5% IPUMS for
2010–2014. The line corresponds to a linear regression and the shaded area corresponds to the 95th confidence
interval.

I regress the residual average income and the residual variance of log income on the residual

span of control. Cities with smaller spans of control than predicted by their size tend to have a

higher average income and a higher variance of log income than predicted by their size.

A.4.4 Additional Industry Examples

In this section, I present a couple of additional examples of occupational composition of

industries across large and small cities. Figure A.9 includes the composition for the ten largest

occupations of the “Insurance Carriers” industry. I compare a representative large city formed

by all CSAs with population larger than 2.5 million inhabitants and a small city with population

below 2.5 million. The large city has a larger fraction of financial managers and miscellaneous

managers and a larger fraction of accountants and auditors, while the smaller city has a larger

fraction of insurance claims and policy processing clerks as well as claims adjusters, appraisers,

examiners, and investigators. This difference in the occupational composition could be because in
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Figure A.8: Partialling Out Population

(a) Residual Average Wage

(b) Residual Variance of Log Wage

Note: This figure plots the residual average wage and the residual variance of log wage against the residual span
of control (number of workers per manager) where the residuals are the result of three independent regressions
of average wage, variance of log wage, and span of control on population. The data source used is the American
Community Survey 5% IPUMS for 2010–2014. The line corresponds to a linear regression and the shaded area
corresponds to the 95th confidence interval.
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large cities insurance carriers handle more complex cases, or they may carry out a more complex

set of tasks such as the design of insurance contracts, which require a higher fraction of managers

per worker. Meanwhile, in the smaller city, they perform simpler tasks such as processing and

investigating insurance claims, which require a few fraction of managers per worker.

Figure A.9: Insurance Carriers

0 0.02 0.04 0.06 

Accountants and Auditors 

Miscellaneous Managers 

Financial Managers 

Secretaries and Administrative 
Assistants 

Large City Small City 

0 0.05 0.1 0.15 0.2 0.25 0.3 

First-Line Supervisors of Non-
Retail Workers 

First-Line Supervisors of 
Office Workers 

Insurance Underwriters 

Insurance Sales Agents 

Claims Adjusters, Appraisers, 
Examiners, and Investigators 

Insurance Claims and Policy 
Processing Clerks 

Large City Small City 

(a) Managers (b) Workers

Note: This table compares the occupational composition of the “Insurance Carriers” industry between large and
small cities. Large cities include all CSAs with more than 2.5 million inhabitants and small cities include those
with less than 2.5 million inhabitants. It uses data from the American Community Survey, 5% IPUMS 2010-14.
This comparison includes only the 10 occupations with the highest share of employment in the industry at the
national level. Panel (a) captures the composition for those occupations classified as “Managers,” and Panel (b)
captures the composition for those occupations classified as “Workers.”

The next example I present here is from the “Internet Publishing and Broadcast, and Web

Search Portals” industry. Figure A.10 contains the occupational composition for the ten most

common occupations across large and small cities for this industry. Larger cities have a much

larger fraction of software developers than smaller cities. In comparison, smaller cities have

a higher fraction of customer service and sales workers. This suggests that the larger cities

specialize in more complex tasks like the development of new software, which requires a higher

fraction of managers, in this case software and web developers per worker. The smaller cities

specialize in simpler tasks like customer support for the clients using well-tested products, and

these tasks require fewer managers per worker.
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Figure A.10: Internet Publishing and Broadcast, and Web Search Portals
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(a) Managers (b) Workers

Note: This table compares the occupational composition of the “Internet Broadcast, and Web Search Portals”
industry between large and small cities. Large cities include all CSAs with more than 2.5 million inhabitants
and small cities include those with less than 2.5 million inhabitants. It uses data from the American Community
Survey, 5% IPUMS 2010–2014. This comparison includes only the 10 occupations with the highest share of
employment in the industry at the national level. Panel (a) captures the composition for those occupations
classified as “Managers,” and Panel (b) captures the composition for those occupations classified as “Workers.”

B Model Appendix

B.1 Positive Assortative Matching

Let Y (zm, zw ) denote the rents per unit of time of a manager of skill zm that hires workers of

skill zw . We know that Y (m (z) , z) = R (m (z)) if m (.) is the equilibrium matching function.

In equilibrium, since managers choose the skill of the workers optimally: ∂Y (m(z),z)∂z = 0

Totally differentiating this equation:

∂zm
∂zw
= −

∂2Y (zm, zw ) /∂
2zw

∂2Y (zm, zw ) /∂zm∂zw
. (B.1)

The numerator has to be negative because since managers are maximizing rents in equilibrium.
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To show that the denominator is positive, notice that

Y (zm, zw ) =
Acz

αc
m

hc
(
1 − zαcw

) , (B.2)

∂Y (zm, zw )

∂zm
=

αcAcz
αc−1
m

hc
(
1 − zαcw

) , (B.3)

∂Y (zm, zw )

∂zm∂zw
=
α2
c Acz

αc−1
m zαc−1

w

hc
(
1 − zαcw

)2
> 0. (B.4)

Hence,

∂zm
∂zw
> 0.

Since the argument is valid for all workers, an equilibrium matching function m
′

(z) > 0 for

all workers of skill z.

B.2 Schauder’s fixed point theorem

Let V be the Hausdorff topological vector space of −→д (z) = 〈д1 (z) , ...,дC (z)〉 bounded con-

tinuous vector valued functions mapping [0, 1] → RC , with the uniform norm and the topology

defined by all open sets. Note that since
∑C

n=1 дn (z) = 1 and дn (z) > 0, дn (z) ∈ [0, 1]. Let K be

the nonempty convex subset of V consisting of all functions mapping [0, 1] → [0, 1]C . Let T be

the mapping defined by

T
(
−→д (.)

)
=

〈
exp

{
1
β (Y1 (z;д1 (.)}) + a1)

}
∑C

j=1 exp
{

1
β

(
Yj

(
z;дj (.)

)
+ aj

)} , ..., exp
{

1
β (YC (z;дC (.)}) + a1)

}
∑C

j=1 exp
{

1
β

(
Yj

(
z;дj (.)

)
+ aj

)} 〉
.

T is a continuous mapping and the image of this mapping is contained in K . By Schauder’s

fixed point theorem: T has a fixed point.
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B.3 Production with Three-Layer Teams

In this section, I present an extension of the model that allows for the formation of teams with

three layers. A team with three layers is formed by workers, with subscript w, middle managers,

with subscript m, and one top manager, with subscript t . Middle managers will be agents that

both learn about unsolved problems and communicate unsolved problems to another agent. Top

managers will be agents that learn about unsolved problems but do not communicate unsolved

problems. Finally, a worker is an agent who encounters production problems and communicates

unsolved problems.

A worker of skill zw living in city c and with time supply lw , encounters a mass 1 of problems

per unit of time they spend working. The worker then solves the mass of problems with difficulty

lower than their skill, Fc (zw ) = zαcw where Fc is the distribution of problem difficulty in city c. For

each mass 1 of problems solved, the worker produces Ac units of output. Therefore, the total

output produced by this worker is Acz
αc
w lw . A mass of workers of skill zw that supply Lw units of

working time will generate Acz
αc
w Lw units of output and a mass Lw

(
1 − zαcw

)
of unsolved problems.

The workers cannot assess the difficulty of the unsolved problems but they can communicate

them to a middle manager.

A middle manager of skill zm and working time lm has to spend hc units of time per unsolved

problem that they learn from the workers in the lower layer. Let Lm→w denote the amount of

time the middle manager hires from workers. The time constraint faced by a middle manager

who hires workers of skill zw is given by:

Lm→w (1 − Fc (zw ))hc ≤ lm . (B.5)

Let us denote the maximum amount of workers’ time that a middle manager can hire from

workers of skill zw per unit of time by Lm→w (zw ) . This function is given by the binding time

constraint of the middle manager:
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Lm→w (zw ) =
1

(1 − Fc (zw ))hc
. (B.6)

Therefore, the total output produced by a team formed by a mass of middle managers of skill

zm that supply Lm units of time and a mass of workers of skill zw that supply Lm→w (zw )Lm units

of time is AcFc (zm)Lm→w (zw )Lm. The team also generates a mass (1 − Fc (zm))Lm→w (zw )Lm of

unsolved problems. The middle managers are not able to assess the difficulty of the unsolved

problems, but they can communicate them to a top manager.

A top manager of skill zt and working time lt has to spend hc units of time per unsolved

problem that they learn from the middle managers in the lower layer. Therefore, the time

constraint for a top manager who hires a mass Lt→m of middle managers of skill zm who in turn

hire a mass Lt→mLm→w (zw ) workers of skill zw is given by:

(1 − Fc (zm))Lm→w (zw )Lt→mhc ≤ lt . (B.7)

Let us denote the maximum amount of middle managers’ time that a top manager can hire

from middle managers of skill zm per unit of time by Lt→m (zw, zm). This function is given by the

binding time constraint of the middle manager:

Lt→m (zw, zm) =
1 − Fc (zw )

1 − Fc (zm)
. (B.8)

Therefore, the total output produced by a team formed by a top manager of skill zt and

working time lt who hires Lt→m (zw, zm) units of time from middle managers of skill zm who in

turn hire Lm→w (zw ) units of time from workers of skill zw is AcFc (zt )Lt→m (zw, zm)Lm→w (zw ) lt .

In order to decentralize the equilibrium, I assume that the top manager keeps the total output

from the production team and pays out wages. For notational simplicity, wages are paid per

unit of a worker’s time. The top manager pays wages to the middle manager wm
c (zm) per unit of

worker time that the middle manager hires. Then, the middle manager pays wages to workers

ww
c (zw ) per unit of time.

85



B.3.1 Optimization Problem of Top Managers

A top manager of skill zt and working time supply lt chooses the skill of the middle managers

to hire, zm in order to maximize profits.

Rt (zt ) lt =maxzmΠt (zt , zm) =maxzm

(
AcFc (zt ) −w

m
c (zm)

hc (1 − Fc (zm))

)
lt . (B.9)

The solution to this problem will define a matching function between middle managers and top

managers, mmt (zm) :

m−1
mt (zt ) = arдmaxzmΠt (zt , zm) =maxzm

(
AcFc (zt ) −w

m
c (zm)

hc (1 − Fc (zm))

)
lt . (B.10)

B.3.2 Optimization Problem of Middle Managers

A middle manager of skill zm and working time supply lm chooses the skill of the workers to

hire, zw in order to maximize profits.

Rm (zm) lm =maxzwΠm (zm, zw ) =maxzw

(
wm
c (zm) −w

w
c (zw )

hc (1 − Fc (zw ))

)
lm . (B.11)

The solution to this problem will define a matching function between workers and middle man-

agers mwm (zw ) :

m−1
wm (zm) = arдmaxzwΠm (zm, zw ) =maxzm

(
wm
c (zm) −w

w
c (zw )

hc (1 − Fc (zw ))

)
lm . (B.12)

B.3.3 Labor Market Clearing

In order for the labor market to clear, two conditions need to hold. First, the amount of time

supplied by workers with skill lower than zw needs to equal the amount of time demanded of

workers with skill lower than zw by middle managers. Namely,
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∫ zw

0
д (s)ds =

∫ mwm(zw )

z∗wm

д (s)

h
(
1 − F

(
m−1

wm (s)
) )ds . (B.13)

Differentiating both sides with respect to zw , we obtain a differential equation for the matching

function of workers to middle managers:

д (z)h (1 − F (z)) = д (mwm (z))m
′

wm (z) . (B.14)

Integrating both sides from 0 to zw we obtain the solution to the differential equation:

mwm (z) = G
−1

(
G

(
z∗wm

)
+ h

∫ z

0
д (s) (1 − F (s))ds

)
, (B.15)

with initial conditions given by: mwm (0) = z∗wm mwm
(
z∗wm

)
= z∗mt .

Second, the amount of time supplied by middle managers with skill lower than zm has to

be equal to the amount of time demanded of middle managers with skill lower than zm by top

managers.

∫ z

z∗wm

д (s)ds =

∫ mmt (z)

z∗mt

1 − F
(
m−1

wm

(
m−1

mt (z)
) )

1 − F
(
m−1

mt (z)
) д (s)ds . (B.16)

Differentiating both sides with respect to zm, we obtain a differential equation for the matching

function of middle managers to top managers:

д (z)
1 − F (z)

1 − F
(
m−1

wm (z)
) = д (mmt (z))m

′

mt (z) ,

with initial conditions given by: mmt
(
z∗wm

)
= z∗mt and mmt

(
z∗mt

)
= 1.

Finally, integrating both sides from z∗wm to zm, we obtain an expression for the matching

function of middle managers to top managers:
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mmt (z) = G
−1

(
G

(
z∗mt

)
+

∫ z

z∗wm

д (s)
(1 − F (s))

1 − F
(
m−1

wm (s)
)ds) .

The two initial conditions provide a system of two equations and two unknowns on the two

thresholds: z∗wm and z∗mt :

z∗mt = G
−1

(
G

(
z∗wm

)
+ h

∫ z∗wm

0
д (s) (1 − F (s))ds

)
(B.17)

1 = G−1

(
G

(
z∗mt

)
+

∫ z∗mt

z∗wm

д (s)
(1 − F (s))

1 − F
(
m−1

wm (s)
)ds) . (B.18)

B.3.4 Wage Functions

The first order condition for the optimization problem of the top manager in equation (27)

with respect to the skill of the manager results in the following differential equation for the wage

function:

w
′

m (zm) +wm (zm)
F
′

(zm)

1 − F (zm)
= AF (zt )

F
′

(zm)

1 − F (zm)
. (B.19)

The solution for this differential equation is a wage function for middle managers:

wm (zm) = (1 − F (zm))

(
wm

(
z∗wm

)
1 − F (z∗wm)

+

∫ zm

z∗wm

AF (mmt (s))
F
′

(s)

(1 − F (s))2
ds

)
, (B.20)

where wm
(
z∗wm

)
is the initial condition and will de derived below from the indifference condition

at the threshold.

The first order condition for the optimization problem of the middle manager in equation

(29) with respect to the skill of the manager results in the following differential equation for the

wage function:
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w
′

w (zw ) +ww (zw )
F
′

(zw )

1 − F (zw )
= wm (zm)

F
′

(zw )

1 − F (zw )
. (B.21)

The solution for this differential equation is a wage function for workers:

ww (zw ) = (1 − F (zw ))

(
ww (0) +

∫ zw

0
wm (mw (s))

F
′

(s)

(1 − F (s))2
ds

)
, (B.22)

where ww (0) is the initial condition and will be derived below from the indifference condition at

the threshold.

The indifference condition at the threshold skill z∗mt between being the worst top manager or

the best intermediate manager results in an equation for the initial wage of the middle managers:

wm
(
z∗mt

)
−ww

(
z∗wm

)
h (1 − F (zwm))

=
AF

(
z∗mt

)
−wm

(
z∗wm

)
h (1 − F (zwm))

, (B.23)

wm
(
z∗wm

)
=

(
1 − F

(
z∗wm

) ) (
AF

(
z∗mt

)(
1 − F

(
z∗mt

) ) − ∫ z∗mt

z∗wm

AF (mmt (s))
F
′

(s)

(1 − F (s))2
ds

)
. (B.24)

Finally, the indifference condition at the threshold skill z∗wm between being the worst middle

manager or the best worker results in an equation for the initial wage of the middle managers:

ww
(
z∗wm

)
=
wm

(
z∗wm

)
−ww (0)

h
(B.25)

ww (0) =

(
1 + h

(
1 − F

(
z∗wm

) )
h (1 − F (z∗wm))

) (
wm

(
z∗wm

)
h (1 − F (z∗wm))

−

∫ z∗wm

0
wm (mw (s))

F
′

(s)

(1 − F (s))2
ds

)
. (B.26)

C Quantification Appendix
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C.1 Baseline Estimation

Table C.1 contains the target moments and the models simulated in the model.

Table C.1: Target Moments

Large City Small City

Model Data Model Data

Median Income of Managers $80,590 $80,674 $66,398 $66,455

Median Income of Workers $38,208 $38,295 $35,536 $35,586

Span 2.2514 2.2525 2.8162 2.8166

City Size 0.9327 0.9326

Overall Moments

Variance of Log Income 0.5725 0.5725

C.2 Four Cities Quantification

In this section, I quantify the technology for four cities in the US: New York, Chicago,

Pittsburgh, and Springfield, MA. I select these cities because they are distributed throughout

the size distribution of cities and they approximately trace out the linear regression for average

income, variance of log income, and span of control, so they can be taken as representative cities

for their size. Table 19 reports the estimated technology parameters for these four cities and

Table 20 reports the match to the moments in the data.

The main takeaway from this quantification is that for these four cities there is a pattern

similar to the one found with two cities. The largest city has the most productive technology

and the productivity is monotonically increasing in city size. However, the less productive tech-
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Table C.2: Estimated Parameters

New York, NY Chicago, IL Pittsburgh, PA Springfield, MA

A Productivity 9.0256 8.0808 7.0730 4.6055

h Communication cost 0.7293 0.7336 0.8562 0.6206

α Problem Difficulty 0.9306 0.7295 0.4927 0.4858

a Amenity 2.8149 2.3933 1.8451 0

Table C.3: Target Moments

New York, NY Chicago, IL Pittsburgh, PA Springfield, MA

Model Data Model Data Model Data Model Data

Median Income
$86,972 $87,043 $77,756 $77,827 $64,531 $64,554 $48,208 $48,234of Managers

Median Income
$40,198 $40,337 $39,264 $39,389 $37,383 $37,515 $30,287 $30,354of Workers

Span 2.2040 2.2084 2.4036 2.3867 2.5280 2.5254 3.5542 3.5548

City Size 0.6476 0.6412 0.2806 0.2781 0.0705 0.0693 - -
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nologies are not dominated by the more productive ones because they either have easier problems

or lower communication cost. In fact, none of these technologies is completely dominated. The

communication cost is not monotonic and it is particularly high for Pittsburgh; however, it is

compensated by particularly easy problems.

D Counterfactuals Appendix

D.1 Minimum Wage in the Small City

In this section, I repeat the analysis on imposing a minimum wage for the small city. The

lowest earned income in the small city is $17,619 which is equivalent to $9.17 an hour and I will

quantify the impact of imposing a $13.76 an hour.

I start by analyzing the effect on the low skilled, identified by those agents earning below $19

an hour following the strategy of Jardim et al. (2017) on the minimum wage in Seattle. The

authors find that for these low-income workers, employment fell by 9% and wages increased by

3% resulting in a total decrease in payroll of $125 per month. I find that employment for the low

skill workers decreases by 16.36% and their average wage increases by 6.8 percent. On average

they lose $263 per month. The numbers are about twice as high as the effects found for Seattle.

Next, I quantify the impact of this policy on welfare, measured by average utility, and on

inequality measured by variance of log utility. In order to better understand the consequences of

implementing an increase in the minimum wage, I consider the effect of the policy for the original

residents, comparing the new residents to the old residents, and considering only employed

agents. Table D.1 summarizes the results from the three scenarios for the large city, the small

city, and the overall effect.

Overall, the minimum wage has a small negative effect on average utility of 0.04% and a small

effect on the variance of log utility, of 1.03%. The effects for the large city are even smaller. The

effect of this policy on the original residents of the city is slightly negative in terms of average
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Table D.1: Effect of a 50% Increase in the Minimum Wage of the Small City

Large City Small City Overall

All Residents

Average Utility -0.25% 3.1% -0.04%

Var Log Utility 4.4% -6.43% 2.28%

Original Residents

Average Utility -0.02% -0.38% -0.04%

Variance Log Utility 0.23% 26.2% 2.28%

Employed Agents

Average Utility -0.25% 4.03% 0.02%

Variance Log Utility 4.4% -20.52% 1.03%
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Figure D.1: Change in the Utility of the Original Residents

utility, with a 0.38% decrease. Moreover, the inequality among the original residents of the

small city increases by 26.2%. The increase in inequality comes from the losses for the low-skill

workers that become self-employed. If we only look at agents that stay in the labor market, they

experience a 4% increase in average utility and a 20.52% reduction in the variance of log utility.

Finally, I quantify the differential effect of the policy across skill levels. Figure D.1 plots the

percentage change in average utility for the original residents of each skill type both in the small

city and in the large city. On the one hand, the effects in the large city are negligible because the

large city represents such a large fraction of total population, the mobility effect from the policy

almost does not affect the overall distribution of skills in the large city. This effect highlights

that the effect the minimum wage in the large city had on the small city was coming from the

impact on the skill distribution of the small city. On the other hand, the effects on the small city

are similar to the ones in the large city although smaller in magnitude. The main losers from

the policy are the lowest-skilled agents and the middle managers, while the big winners are the

workers above the minimum wage and the very top managers who can now hire better workers.
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