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Abstract

We develop a method that identifies the effects of nationwide policy—i.e., implemented
across all regions at the same time. In our method, we put forward the idea of tracking
outcome paths in terms of stages rather than time, where a stage of a regional outcome
at time t is defined as its location on the support of a reference outcome path. Through
a normalization that maps the time-paths of regional outcomes onto a reference path—
using only pre-policy data, we uncover cross-regional heterogeneity in the stage at which
policy is implemented, even if policy is implemented at the same time in all regions. This
stage variation serves to identify the policy effects: a stage-leading region provides the
counterfactual path inside a window of stages in which non-leading regions are subject to
the policy whereas the leading region is not. We assess the performance of our method with
Monte-Carlo experiments, and illustrate it in several empirical applications. Furthermore,
we show that our method is able to capture not only heterogeneous policy effects across
stages but also the aggregate effects of policy. Additionally, we show how our method can
be used for the assessment of non-nationwide policy.
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knowledges financial support from the AGAUR 2020PANDE00036 ”Pandemies” Grant 2020-2022, from the Span-
ish Ministry of Economy and Competitiveness, through the Proyectos I+D+i 2019 Retos Investigacion PID2019-
110684RB-I00 Grant, Europa Excelencia EUR2021-122011 and the Severo Ochoa Programme for Centres of
Excellence in R&D (CEX2019-000915-S).
Alemán: christian.c.aleman@gmail.com; Busch: chris.busch.econ@gmail.com; Ludwig: mail@alexander-
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1 Introduction

Motivation. The empirical assessment of a policy requires a credible counterfactual. Standard
empirical strategies critically rely on cross-regional heterogeneity in the time of policy implemen-
tation as source of identification—e.g., the existence of one untreated region or a staggered
rollout.1 Further, the credibility of the counterfactual requires the pre-policy paths of the out-
come of interest to be similar across regions with differences not exceeding a constant gap over
time—the so-called parallel trends assumption.2 However, many relevant policy contexts violate
these conditions. First, many policies are implemented nationwide, carried out in all regions at
the same time, which eliminates the source of identification for standard empirical strategies.
Second, the pre-policy outcome paths can be non-linear and differ across regions—e.g., in their
starting date, speed, or magnitude—in a way that violates the parallel trends assumption. In
panel (a) of Figure 1, we illustrate one such scenario. Our goal in this paper is to provide an
identification strategy for such policy contexts.

Idea. Our idea is to track outcome paths in terms of stages rather than time. Specifically,
we define a stage of a regional outcome at time t as its location on the support of a reference
outcome path. Panel (b) of Figure 1 illustrates this concept by showing a reference outcome
path evolving through stages. At any given time, the outcome path of one region may be at
a different stage compared to another region. For example, as shown in the figure, at time t
region C has progressed to a more advanced stage than region T . This implies that cross-regional
heterogeneity in stages may be present at the time of policy implementation, tp. The core of our
method is tracing out and exploiting this heterogeneity in stages for the identification of policy
effects, hence, the label, Stage-Based Identification (SBI).

The Method. Our method is comprised of two steps: normalization and identification. First,
we normalize the pre-policy outcome time paths of non-reference regions to that of a reference
region. This entails normalizing the coordinates of outcome time paths to transform time into
stages (i.e., normalized time) and the outcome level into a normalized level.3 To conduct these
transformations, we use low degree polynomials with a set of associated coefficients—the nor-
malization coefficients. These coefficients are determined as the ones that minimize the distance

1See, among others, Angrist and Krueger (1999), Blundell and Macurdy (1999) and Imbens and Rubin (2015).
See also the more recent discussions in Athey and Imbens (2017) and Card (2022).

2The assumption of parallel trends is relaxed in Abadie (2005). Indeed, there is a growing and exciting body
of research work regarding more flexible forms of parallel trend assumptions (e.g. Callaway and Sant’Anna, 2021;
Rambachan and Roth, 2021). As we discuss later, our methodology mainly differs from previous work in that it
does not require heterogeneity in the time of policy implementation for the identification of policy effects.

3This normalization of coordinates relates to earlier work in Iorio and Santaeulàlia-Llopis (2010, 2016).

1



Figure 1: A Stage-Based Identification of the Effects of Nationwide Policy: An Illustration

(a) Two Regions (b) A Reference Path (c) Two Regions, Normalized

Notes: Panel (a) shows the time paths of an outcome variable for two regions, C and T ; policy is implemented in
both regions at the same time tp; dashed sections indicate post-policy paths. Panel (b) shows a reference path,
where at some t, region C is at a more advanced stage thatn region T . Panel (c) shows the result of mapping
yT onto yC , resulting in the normalized path ỹT ; the pink shaded area indicates the identification window.

between the pre-policy outcome path of the reference region and the normalized pre-policy out-
come path of the non-reference region. As a result, the pre-policy regional paths are identical—up
to a minimization error—in the stage domain before the stage at which policy is implemented
first across regions; see panel (c) of Figure 1 in which we use the outcome time path of region C
as reference and normalize the path of region T to the reference.4

Second, our identification is based on the cross-regional heterogeneity in the stages at which
the policy is implemented across regions, which we uncover through our normalization using pre-
policy data. For example, in the illustration, policy is implemented at an earlier stage in region
T than in region C. Then, applying the normalization coefficients—resulting from pre-policy
data—on post-policy data opens a window of stages in which a stage-leading region (in the
example, region C) is not subject to policy whereas the other region (in the example, region T )
is subject to policy, see pink shaded area in panel (c) of Figure 1. Our identification assumption
is that the normalization coefficients that minimize the distance between the pre-policy outcome
paths across regions in the stage domain are unaffected by policy. That is, we assume that our
normalization would make the post-policy paths line up as well in the absence of policy. Thus,
under our identification assumption, the stage-leading region serves as control region for the other
region, which is considered treatment.5 The difference between the control region and treatment
region inside the identification window captures the effects of policy.

4We show examples in which the normalization coefficients can be solved analytically. Our closed-form solutions
show that the normalization coefficients reshape the structural parameters that determine the outcome path of
the non-reference region into those of the reference region before policy is implemented; see Section 2.3.

5Note that since the stage at which each region receives the policy is a result of our normalization, SBI does not
require an ex-ante assignment of control or treatment across regions—this assignment is determined endogenously
by the normalization coefficients in our approach, see Section 2.2.
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Method Performance. We apply SBI to model-generated data in order to assess whether the
identified policy effects recover the true policy effects. We focus on three nationwide policies that
resemble our empirical applications: a stay-home policy against a pandemic using a model where
economic activity shapes and is shaped by the pandemic; the approval of oral contraceptives in
a model with women fertility and education choices; and the removal of an institutional barrier
to economic growth in a model of structural transformation. Within the model framework, we
know the true counterfactual path that would occur if policy were absent throughout. Using the
data that would be available to a policy evaluator, we find that SBI can successfully identify the
true effects of nationwide policy generated by the model.

We further assess whether and when our normalization procedure comes to its limits and
plausible identification is not feasible using SBI. Precisely, we perform a Monte Carlo study
that numerically characterizes the bounds within which SBI is able to recover the true (model-
generated) effects of policy. We consider one benchmark region which we pair up with a large
set of regions (drawing from a large set of structural parameters) one-by-one. Applying SBI to
these pairs, we find that the error by which SBI captures the true policy effects systematically
increases when moving farther away from the benchmark region in the space of the normalization
coefficients. Under the interpretation that the normalization reshapes the structural parameters
that determine the outcome paths, SBI requires—for successful identification of policy effects—
the structural parameters to not be too dissimilar across regions before policy implementation.

In addition, we assess how SBI fares in contexts where there are potential confounding factors
such as time-varying latent heterogeneity, confounding policy and endogenous policy. Using
model-generated data, we find that SBI is able to identify the true policy effects in these contexts
as long as the confounding factors keep the regional outcome paths sufficiently close in the space
of the normalization coefficients. We further establish in a set of Placebo diagnoses that SBI
successfully estimates a zero policy effect when there is none. We also show how to conduct
inference on our identified policy effects with data that incorporates a stochastic component.

Three Applications. We apply SBI to study the effects of nationwide policy in three empirical
applications. First, we assess the effectiveness of the stay-home policy implemented nationwide
in response to the first wave of the Covid-19 pandemic in Spain. SBI assigns Madrid as the stage-
leading (control) region at the time of policy implementation. We find that the stay-home policy
significantly reduces the amount of deaths by 24.7% in the rest of Spain inside an identification
window of seven days. In other words, had the stay-home policy not been implemented, there
would have been 1,734 more deaths over the course of one week. Second, we assess the effects
of the Food and Drugs Administration (FDA) approval of oral contraceptives (the pill) in the
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United States (U.S.) in 1960. We find that the pill reduced the crude fertility rate (number of
births per 10,000) by 8.36%; where the stage-leading region is West Virginia and the effects are
measured for the rest of the U.S. We also find that the pill increased the proportion of college
women by 24.9% during the decade that followed the FDA approval; where the stage-leading
region is Washington DC and the effects are measured for the rest of the U.S. Third, we study
the effects of the German reunification in 1990 on income per capita in West Germany where
SBI assigns Hessen as the stage-leading region. Using the path of GDP per capita of Hessen as
no-policy counterfactual, we find that the German Reunification significantly reduces income per
capita of the rest of West Germany by 3.29% in a window of approximately seven years.

Heterogeneous Effects. To assess how the policy effects potentially differ by stage, we map
the outcome paths of the non-leading regions one-by-one onto the path of the leading region.
Focusing on the Covid-19 application, we find that the policy effects systematically vary across
stages. The earlier (in stages) the policy is implemented, the larger are the effects: the amount
of prevented deaths is 65% in Murcia where the policy is implemented two weeks earlier in the
stage domain than Madrid and 12% in the Basque Country where policy arrives two days earlier
in the stage domain than Madrid. Both the size of the identification window (policy implemented
at earlier stages has a larger window) and the interim policy effects (i.e. effects under the same
horizon inside the identification window) contribute to generate the heterogeneous effects by
stage. We reach similar insights using a set of artificial regions from the power set of regions.

Aggregate Effects. By requiring heterogeneity in the time of policy implementation for iden-
tification, standard empirical strategies cannot assess the aggregate effects of policy—because
the control region needs to be untreated at the time other regions are treated (i.e. contempora-
neously in the time domain). Instead, our methodology is based on heterogeneity across stages
at the time of policy implementation which allows for the aggregate (i.e. the complete set of
all regions) to be treated. Precisely, the outcome path of the aggregate is typically at an earlier
stage than the stage-leading region at the time of policy implementation. We use this variation
in stages between the aggregate and the stage-leading region in order to assess the aggregate
effects of policy. For example, applying SBI to assess the stay-home policy against Covid-19 in
Spain, we find that the stay-home policy significantly reduced the amount of deaths for aggregate
Spain by 20.37% in an identification window of 5.5 days.

Related literature. Our method is directly related to the standard empirical strategies designed
for settings that resemble natural experiments. These strategies rely on a difference-in-differences
methodology in order to generate the counterfactual path (or potential outcome as in Imbens and
Rubin, 2015) that serves as control for a treated region—i.e., the region subject to policy. We
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emphasize two main differences of SBI. First, a critical common factor in previous strategies is
that the source of identification relies on the heterogeneity in the time of policy implementation
across regions either with the existence of one untreated region (e.g., Card, 1990; Card and
Krueger, 2000) or a staggered policy adoption (e.g., Athey and Imbens, 2021; Borusyak et al.,
2021).6 This is not the case in our method. Precisely, our main point of departure with respect
to previous work is that SBI is able to deliver identification of policy effects for contexts in which
the cross-regional heterogeneity in the time of policy implementation is absent. In this paper,
we provide a new identification that uncovers cross-regional heterogeneity in the stage of the
outcome of interest. Then, we use this cross-regional heterogeneity in stages at the time of
policy implementation to identify the effects of policy, including nationwide policy.

Second, a relevant concern is that there might be cross-regional differences in the pre-policy
determinants of the outcome of interest that also determine the outcome paths after policy. In
standard empirical strategies, the policy effects are only credibly identified after controlling for
these determinants, an idea that is typically conveyed through the parallel trends assumption (e.g.
Bertrand et al., 2004, among many others).7 Our approach to this question is rather different and
does not rely on a parallel trends assumption for identification. Instead, we normalize pre-policy
paths in a stage domain in a way that aims to minimize the cross-regional differences in the
pre-policy determinants of outcomes, whether observable or not. Our identification assumption
is that, absent policy, the normalization coefficients—obtained using pre-policy data only—would
also map the post-policy path of the non-reference region onto the post-policy reference path.
Thus, we apply the pre-policy normalization coefficients onto post-policy data in order to find a
counterfactual path and identify the policy effects.

Our work also relates to other policy evaluation approaches like synthetic control methods
(SCM) (Abadie and Gardeazabal, 2003; Abadie et al., 2010). The SCM approach essentially
constructs a counterfactual time path based on a carefully weighted average across untreated
(control) regions.8 Two main differences stand out. First, analogous to other empirical strategies,
SCM requires the existence of a set of untreated regions to construct the synthetic control group
for identification. In contrast, SBI relies on cross-regional heterogeneity in the stage—not time—
at which the policy is implemented. For this reason, we can apply SBI to a nationwide policy
occurring at the same time across all regions, unlike with SCM—or other methods for that matter.

6See also the recent discussion in Goodman-Bacon (2021).
7In this context, there is a growing discussion on how to identify effects when parallel trends do not exactly

hold. Abadie (2005) conditions the parallel trends to a set of observables using propensity scores (Heckman et al.,
1998). This idea is extended to staggered rollout policy in Callaway and Sant’Anna (2021). Recently, Rambachan
and Roth (2021) discuss how much the trends before policy implementation can differ from the trends after policy
while still being able to identify causal effects.

8Doudchenko and Imbens (2017) use a joint framework for difference-in-differences and SCMs.
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Second, our method does not require the use of observable determinants of cross-regional outcome
differences in order to generate the counterfactual. Instead, the counterfactual in our method
is constructed using solely the time paths of the outcome of interest. Also, similar to SBI, the
changes-in-changes method in Athey and Imbens (2006) features a mapping outcomes across
regions. Their focus lies on capturing heterogeneity of the policy effect over the cross-sectional
distribution of an individual level outcome. To this end, they map pre-policy cumulative cross-
sectional distributions across regions and use this to construct the counterfactual distribution in
the treated region.9 Instead of cross-sectional distributions, we map pre-policy time paths of
region-level outcomes. At the same time, the main difference described above remains, namely
that the identification in changes-in-changes is also based on regional heterogeneity in the time
of policy implementation, whereas SBI does not require that heterogeneity.

Finally, alternative definitions of stages are some times used in economics and other disciplines.
For example, in the analysis of structural transformation (e.g., Galor and Weil, 2000; Herrendorf
et al., 2014; Cervellati and Sunde, 2015) or, similarly, in the analysis of the demographic transition
(e.g., Greenwood et al., 2005), the level of income per capita typically summarizes the “stage”
of development for an outcome of interest (e.g. agricultural share of output, urbanization rates,
population growth rates, etc.) in cross-country comparisons. In contrast, rather than replacing
time for an observable such as income per capita, SBI provides a normalization of the time path
of the outcome of interest (possibly income per capita itself: see our evaluation of the effect of
the German reunification on income per capita in West Germany). This also implies that the
level of the outcome of interest (e.g., income per capita) is not a sufficient statistic to define the
stage of a region in our approach. This same argument is discussed in the earlier work of Iorio
and Santaeulàlia-Llopis (2010, 2016) that also conducts a normalization mapping country-specific
time paths of HIV prevalence onto a reference path in order to define stages of the epidemic. We
depart from that work in that we use our normalization to a reference path as base for identifying
the effects of policies that aim to alter the path of the outcome of interest. For this reason, our
normalization coefficients are obtained by strictly using pre-policy outcome paths.

The rest of the paper is structured as follows. We discuss our identification strategy in
Section 2. We assess the performance of our method using model-generated data for several policy
contexts in Section 3. Our empirical applications are in Section 4. We discuss heterogeneous
effects, aggregate policy effects and non-nationwide policy in Section 5. Section 6 concludes.

9Their analysis is closely linked to Altonji and Blank (1999), who consider a decomposition of relative wage
changes across groups into changes of the distribution of skills and the payoff for those skills.
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2 A Stage-Based Method to Identify Policy Effects

To contextualize our contribution, we first briefly discuss how standard empirical strategies iden-
tify policy effects.10 Consider a scenario in which, absent any policy intervention, the time path
of an outcome yr(t) is identical across two regions r ∈ {C, T }.11 Now assume that a policy is
implemented only in region T at some date tp which affects the outcome path in that region
thereafter. Illustratively, we plot an outcome path of a treated region yT (t) before policy imple-
mentation (solid red) and after policy implementation (dashed red) in panel (a) of Figure 2. We
also show an outcome path for a region where the policy is not implemented, yC(t) (solid blue).
This scenario is ideal for the estimation of policy effects because the pre-policy outcome paths
are identical across regions warranting the use of region C as control for region T . That is, the
outcome path yC(t) provides a useful no-policy counterfactual to assess the effects of policy on
yT (t) after tp. The effects of policy are captured by the difference between yC(t) and yT (t) in
the interval (tp,∞). We can further add the implementation of the same policy to region C at
some later date tp +∆ with ∆ > 0; see panel (b) of Figure 2. Under this staggered rollout of the
policy, the effects of policy on region T are identified using region C as counterfactual within the
interval (tp, tp + ∆]. In that interval, region T is subject to the policy whereas region C is not.

The standard identification strategies of policy effects just described fundamentally rely on
two principles. First, the behavior of the outcome path before policy implementation must be
credibly similar (the so-called parallel trends) across regions. Second, there must be variation
in the time of policy implementation across regions which serves as source of identification.
However, many policy contexts violate these conditions: First, the regional paths of the outcome
variable before policy is implemented often differ across regions. In particular, outcome paths
can differ by starting date, evolve at different speed and have different magnitude. Second, a
large set of policies are implemented nationwide—i.e., carried out to all regions at the same
time, which eliminates the source of identification used in standard strategies. We illustrate these
two challenges in panel (a) of Figure 3 where a nationwide policy is implemented in a context
where the outcome path in region C starts earlier, evolves at a faster speed and reaches a larger
magnitude than in region T .

Our strategy addresses these challenges in two steps. First, a normalization of regional
outcome paths, and second, an identification based on the normalized paths.

10See comprehensive dicussions in, for example, Imbens and Rubin (2015) and Card (2022).
11We use regions in the description of the method due to the applications presented below. Region can be used

interchangeably with group or unit throughout.
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Figure 2: Ideal Policy Scenarios with Two Regions: Standard Identification Strategies

(a) One Treatment (b) Staggered Rollout

Notes: Denote with yC(t) and yT (t) the outcome paths of, respectively, region C and T . Solid lines depict paths

before policy implementation and dashed lines after policy. The identified policy effects are
∫ h

→tp
(yC(t)−yT (t))dt∫ h

→tp
yT (t)dt

with h = ∞ in the one-treatment case and h = tp + ∆ in the staggered rollout.

2.1 Normalization Procedure

Again, consider two regional outcome paths yr(t) with r ∈ {C, T }. We define the stage of a
non-reference region as its location on the support of a reference path, which is the outcome
path of a reference region. For this reference region, the stage is defined as time. For the non-
reference region, the stage is the result of a normalization that maps its outcome time path onto
the reference time path using only pre-policy data and uncovers stage variation at the time of
policy implementation. We now describe our normalization—of the time and level of an outcome
of interest—and provide a formal definition of stages afterwards.

The normalization starts with postulating the existence of the composite function,

ỹr(s) = (fr ◦ yr ◦ tr) (s) = fr (yr (tr (s))) , (1)

where tr(s) : S → T is a stage-to-time transformation mapping stages s ∈ S = R into time
t ∈ T = R; yr(t) : T → Y maps time into outcomes y ∈ Y = R; and fr(y) : Y → Ỹ maps
outcomes into normalized outcomes ỹr ∈ Ỹ = R. Thus, the composite function ỹr(s) : S → Ỹ

defined in (1) maps stages s—i.e. normalized time—into normalized outcomes ỹ for region r.
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Without loss of generality, we treat the outcome path of region T as the reference path
and that of region C as the non-reference path.12 For the reference region, we set s to be a
fixed point of tT (.) for all s (i.e. t = tT (s) = s) and y to be a fixed point of fT (.) for all
y (i.e. ỹ = fT (y) = y) which implies that ỹT (s) = yT (s) = yT (t) always. Instead, for the
non-reference region, we approximate tC(.) and fC(.) with tC(.) ≈ t(.;ψ) = ∑K

k=0 ψkB
t
k(.) and

fC(.) ≈ f (.;ω) = ∑M
m=0 ωmB

f
m(.), respectively. {Bf (.), Bt(.)} ∈ B2 are known basis functions

in the space of continuous and differentiable functions. We denote the set of M + K + 2
unknown normalization coefficients by ϕ = {ψ,ω}. This gives the composite function ỹC(s;ϕ) =
(fC(.;ω) ◦ yC ◦ tC(.;ψ)) (s) = fC (yC (tC (s;ψ)) ;ω) by which we approximate ỹC(s):

ỹC(s) ≈ ỹC(s;ϕ) =
M∑

m=0
ωmB

f
m

((
yC

(
K∑

k=0
ψkB

t
k(s)

)))
. (2)

Then, conversely to the stage-to-time transformation, the stages in each region are defined as,

s = sr(t;ψ) =

 t if r = T
t−1
C (s;ψ) if r = C,

(3)

where for the reference region (here, r = T ), the stage at time t is the time itself (i.e. sT (t;ψ∗) =
t = s), whereas for the non-reference region (here, r = C) the stage is the time in which region C is
at the same stage than region r = T at time t (i.e. sC(t;ψ∗) = t−1

C (sT (t;ψ∗);ψ∗) = t−1
C (s;ψ∗)).

We choose monomials as benchmark for the basis functions Bf (.) and Bt(.) in (2). Then,
the approximated normalized path of the non-reference region is,

ỹC(s;ϕ) =
M∑

m=0
ωm

(
yC

(
K∑

k=0
ψks

k

))m

. (4)

A nice feature of the monomial basis is that it delivers a straightforward interpretation of the
coefficients behind the stage-to-time transformation, tC(s;ψ) = ∑K

k=0 ψks
k. The parameter ψ0

shifts the entire outcome path of region C forward (with ψ0 > 0) or backwards (with ψ0 < 0) in
time, adjusting for different start dates. The parameter ψ1 adjusts the speed in a constant way
across periods. If ψ1 < 1, then the outcome time-path of region C (in time) expands, whereas with
ψ1 > 1 it contracts. That is, if ψ1 < 1, then region C is permanently faster (in time) than region
T —in one time-period region C advances by more than one stage, and vice versa for ψ1 > 1.
Further, allowing for the stage-to-time transformation to be quadratic (i.e. ψ2 ̸= 0) captures the
notion that the relative speed across the regions can change over time: for example, the outcome
path of region C might initially be slower than region T , then catch up, and eventually move

12The choice of the reference region is innocuous, see our discussion in Section 2.2.
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Figure 3: Stage-Based Identification of Policy Effects: A Nationwide Policy

(a) Before Normalization (b) After Normalization

(c) Identification Window (Zoom) (d) Policy Effects (%)

Notes: In panel (d), we report the policy effects γ together with the interim cumulative effects of policy, γ(s), as
defined in Section 2.2.

faster. Throughout our analysis and applications, we typically set K = 1 and M = 1 in (4) and,
hence, the normalized path of the non-reference region is ỹC(s;ϕ) = ω0 + ω1yC(ψ0 + ψ1s).

Given observed time paths for all regions, i.e., yr(t) for r ∈ {C, T }, we determine the unknown
coefficients ϕ = {ψ,ω} by minimizing the difference between the normalized path of the non-
reference region, ỹC(s;ϕ), and the outcome path of the reference region, yT (s), that is:

min
{ϕ}

∥ỹC(s;ϕ) − yT (s)∥C(s) , (5)

where ∥ · ∥ is the squared Euclidean distance defined on the interval of stages,

C(s) =
[
sr(t0;ψ), sr(tp;ψ)

]
(6)
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where sr(t0;ψ) = max {sr(t0;ψ)} and sr(tp;ψ) = min {sr(tp;ψ)} for r ∈ {C, T }. That is, the
interval C(s) ensures that the minimization (5) only uses the outcome paths up to the stage s in
which the policy is implemented first across regions, i.e. sr(tp;ψ). Note that the interval C(s)
is determined endogenously during the minimization procedure. Now, we can define the stages
of an outcome yr(t).

Definition 1. The stage of an outcome yr(t) of region r at time t is sr(t;ψ∗) where ϕ∗ ⊃ ψ∗

is the solution to the minimization of (5) subject to (4) and (6).

In this way, the stages formally emerge as the result of our normalization procedure that maps
the outcome path of a non-reference region onto the outcome path of the reference region before
policy is implemented. To gain some intuition, we exemplify our method using a nationwide
policy that affects the outcome paths of two regions, yC(t) and yT (t), in Figure 3. Before policy
implementation at time tp, the outcome path of region C (solid red) differs from region T (solid
blue) in that it starts earlier, grows faster and is larger; see panel (a), which also shows the
outcome paths after policy implementation for the two regions (dashed lines).

The normalization procedure—i.e., the minimization of (5) subject to (4) and (6)—achieves
two goals. First, it generates a normalized outcome path for the non-reference region in the
stage domain, ỹC(s;ϕ∗) (cross-dashed blue), that maps—up to minimization error—onto the
outcome path of the reference region before the earliest stage in which policy is implemented
across regions, sr(tp;ψ∗); see panel (b) of Figure 3.13 Second, since sr(tp;ψ∗) is endogenous
to ψ∗, the normalization uncovers heterogeneity in the stage of policy implementation across
regions.14 For example, in our illustration, policy is implemented earlier—in stages—in region T
than in region C, i.e. sr(tp;ψ) = sT (tp;ψ) < sC(tp;ψ) = s−r(tp;ψ∗) with r = T . Also, since
we picked T to be the reference region, we obtain sr(tp;ψ) = tp.

We further decompose the effects of each of the normalization coefficients {ϕi} ∈ ϕ∗ on
the path of the non-reference region in Figure 4. Since these coefficients are jointly determined
in our minimization, we provide a non-orthogonal decomposition where we sequentially add the
effects of each parameter. Note that in our illustration yC(t0) = yT (t0) = 0 and limt→∞ yC(t) =
limt→∞ yT (t) = 0 and thus we focus on the role of the proportional level shifter ω1 together
with the stage-to-time transformation parameters ψ0 and ψ1—setting the constant level shifter
to zero, ω0 = 0. In panel (a), we show that the coefficient ω∗

1 < 1 proportionally shifts down
13Note that outcome variables are typically observed on discrete dates. This is the case in all our applications.

In these instances, since the mapping can generate dates tC(s;ψ∗) that are non-integer values—i.e., non-discrete
dates—we interpolate between yC(fl(tC(s;ψ∗);ω∗) and yC(cl(tC(s;ψ∗);ω∗), where fl(·) and cl(·) denote the
integer floor or integer ceiling, respectively.

14More generally, with more than two regions, −r refers to the complement set of r, i.e. −r = rC
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Figure 4: Decomposition by Normalization Coefficient

(a) Proportional Scaling (b) + Time Shift (c) + Speed Adjustment
{ω∗

1} {ω∗
1, ψ

∗
0} {ω∗

1, ψ
∗
0, ψ

∗
1}

Notes: We sequentially add the normalization parameters {ϕ} to the non-reference path yC(t) one-by-one.

the entire outcome path of the non-reference region C throughout its support. In panel (b), the
additional time shifter, ψ∗

0 > 0, moves the outcome path to the right delaying the outcome’s take
off. In panel (c), adding the speed adjustment, ψ∗

1 < 1, decreases the pace of the normalized
outcome.15,16

2.2 Identifying the Policy Effects

In order to identify the policy effects, we exploit the fact that our normalization uncovers het-
erogeneity of the stage at the time of policy implementation, i.e. sr(tp;ψ∗) < s−r(tp;ψ∗). In
particular, we use the fact that inside a window (interval) of stages,

W(s;ψ∗) =
[
sr(tp;ψ∗), s−r(tp;ψ∗)

]
, (7)

region r, i.e., the region where the policy is implemented first in stages, is subject to policy
whereas region −r is not. In this context, we propose the following identification strategy:

Identification Assumption 1. The normalization parameters ϕ∗ that solve the minimization of
(5) subject to (4) and (6) are unaffected by policy.

15We show further illustrations in which additional normalization coefficients provide further help in Appendix A.
For example, in cases in which the policy arrives after the outcome path reaches its peak and there is asymmetric
behavior in the outcome path—i.e. the growth rate at which the outcome reaches the peak is not the growth
rate at which it moves away from the peak—that differs across regions, the normalization coefficient ψ2 in the
quadratic term of tC captures the differences in asymmetric behavior across regions.

16Note that in the realm of standard empirical strategies one can partly address the time shift, ψ0. This requires
a choice by the researcher to fix the region-specific start dates of the outcome path of interest. For example,
for the analysis of a Covid-19 containment policy this has been suggested in an event study design by Liu et al.
(2021) and Glogowsky et al. (2021). In contrast, our method endogenously finds the appropriate time shifter (ψ0)
together with a potential speed adjustment (ψ1), potential asymmetric behavior (ψ2), etc.
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That is, our identification assumes that, absent policy in region r, the normalized path of the
non-reference region obtained using ϕ∗ and evaluated on stages s > sr(tp;ψ∗) would yield a path
identical to that of the reference region for all s ∈ W(s;ψ∗).

Here, note that there is no ex-ante assignment to treatment or control for either reference or
non-reference regions. Instead, the assignment of regions to treatment or control is determined
endogenously (with ψ∗) by the fact that policy arrives to the regions at different stages. We refer
to the region that is at a more advanced (later) stage at the policy date as the stage-leading
region. This region is then endogenously assigned to be the control region.17 In the illustration,
the stage-leading (control) region is −r = C, which is untreated inside W(s;ψ∗) = [tp, sC(tp;ψ∗)]
and, hence, serves as no-policy counterfactual for the stage-lagging (treated) region r = T inside
that window; see panel (b) in Figure 4. The opposite roles (of reference and non-reference
regions) would emerge if we picked r = C.18

Policy effect. Following our illustration, where the control region is −r = C and the treated
region is r = T , we measure the policy effect for the treated region as,

γ =
∫
W(s;ψ∗) (yT (s) − ỹC(s;ϕ∗)) ds∫

W(s;ψ∗) ỹC(s;ϕ∗)ds , (8)

which measures the cumulative effect of policy relative to the scenario without policy in the
treated region inside W(s;ψ∗); see panel (c), Figure 3. The numerator is the area between the
actual outcome path subject to policy of the treated region, i.e. yT (s) (dashed red), and the
no-policy counterfactual path for the treated region, i.e. ỹC(s;ϕ∗) (cross-dashed blue). The
denominator captures the entire area below the no-policy counterfactual path for the treated
region. In panel (d) of Figure 3, we zoom in on the identification window to show the policy
effect γ together with the interim cumulative effects, γ(s). Precisely, ∀s ∈ W(s;ψ∗), we define

γ(s) =
∫ s

sr(tp;ψ∗)(yT (s)−ỹC(s;ϕ∗))ds∫ s

sr(tp;ψ∗) ỹC(s;ϕ∗)ds for s ∈ [sr(tp;ψ∗), s] where if s = s−r(tp;ψ∗), then γ(s) = γ.

So far, we have used region T as reference. Since—as the normalization reveals—, yr(s) =
yT (s) is the treated path for all s ∈ W(s;ψ∗) = [tp, sC(tp;ψ∗)], the policy effect (8) measures
the impact of policy on region T using as no-policy counterfactual the normalized path of region
C. Instead, reversing the reference region to C—i.e., mapping the outcome path yT (t) onto yC(t)
using pre-policy data and, consequently, redefining the stages for region C as s = tC(s) = t

17We rule out the case of sr(tp;ψ∗) = s−r(tp;ψ∗), where the identification window is empty and thus no
identification is possible. Note that this is the case where the pre-policy time paths of the reference and non-
reference regions are identical before normalization.

18We assess our identification assumption in the context of an analytical examples with exact identification in
Section 2.3 and also through a placebo test with model-generated data without exact identification in Section 3.3.1.
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Figure 5: Policy Effects with Alternative Reference Region

(a) After Normalization (b) Policy Effects (%)

Notes: In panel (b), we report the policy effects γ together with the interim cumulative effects of policy, γ(s), as
defined in Section 2.2.

together with ỹC(s) = yC(t = s) (and analogously for region T using (2) and (3))—implies that
the normalized path of T , ỹT (s), is the treated path for all s ∈ W(s;ψψψ∗) = [sT (tp;ψψψ∗), tp],
where ψψψ∗ (̸= ψ∗) is the coefficient vector that is obtained when choosing C as reference region.
The associated policy effect measures the impact that the policy would have had on region C
had it been treated at an earlier stage sT (tp;ψψψ∗), where we now compare the observed path of
region C (which is untreated) to the normalized path ỹT (s,ψψψ∗) (which is treated). Further, note
that the two mappings are explicitly linked because s−1

C (t;ψ∗) = sT (t;ψψψ∗) for any t ∈ T (e.g.
t = tp)—that is, the mapping T to C undoes the mapping C to T , and vice versa.19

Going back to our example, we show the relationship between mappings in panel (a) of Figure 5
where using region T as reference implies that the normalization yields the identification window
W(s;ψ∗) = [tp, sC(tp;ψ∗)] (pink shaded area) whereas, when using region C as reference, the
normalization yields the identification window W(s;ψψψ∗) = [sT (tp;ψψψ∗), tp], which corresponds to[
s−1

C (tp;ψ∗), tp
]

(purple shaded area). In panel (b) of Figure 5, we show the policy effects for
both mappings. In the context of our illustrative example, the policy effects are identical across
mappings because there are no level differences across regions, i.e., ω0 = 0. More generally,
in instances where the reference region determines the units of the policy effect (i.e. ω0 ̸= 0),
a slight modification of the policy effects defined in (8) that explicitly takes into account the

19To see this, note that for any t ∈ T (e.g. t = tp), the stage function in the mapping C to T , sC(t;ψ∗) = s = t,
injects t into t whereas in the mapping T to C the function sT (t;ψψψ∗) = s = t injects t into t.
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reference units makes irrelevant the choice of the reference region.20 Nevertheless, our preferred
measure of policy effects is (8) in which, as discussed above, the effects are interpreted differently
across mappings.

2.3 Exact Identification of Policy Effects: Some Analytical Examples

We now discuss a setting in which we can explicitly express the normalization of the non-reference
region in terms of the structural parameters of the data generating process. Note that this serves
to illustrate the method, and to provide some guidance for interpretation of the normalization
step. Indeed, if the data generating process were actually known, there would be no need to
apply SBI; or any other identification method for that matter. Our method operates under the
proposition that if there exists a composite function (1) such that

ỹC(s) = yT (s), (10)

then our normalization procedure—the minimization of (5) subject to (2) and (6)—recovers the
coefficients ϕ = {ψ,ω} up to a minimization error by approximating the functions tC(.) ≈
tC(.;ψ), fC(.) ≈ fC(.;ω) and, hence, ỹC(.) ≈ ỹC(.;ϕ) for all s ∈ C(s). Thus, under our
identification assumption, we can identify the policy effects for all s ∈ W(s;ψ∗).

In this context, here, we are interested in cases where (10) holds and (2) holds with equality
and, hence, analytical solutions for the normalization coefficients ϕ potentially exist for all s ∈
C(s). In that pursuit, consider a scenario in which the outcome path of a region r is,

yr(t) =
(
1 − γr,t1t≥tp

)
g(t; Θr), for t ∈ {0, . . . , tp, . . . , T} (11)

where Θr is a set of region-specific structural parameters that determine the behavior of the
outcome path in that region and γr,t captures the effect of policy that emerges after its nationwide
implementation at tp in regions r = {C, T }.

To identify the effects of the implemented policy, we apply SBI. We pick a region (e.g. T )
for the reference outcome path, yT (t), and postulate a composite function (1) for the outcome

20Precisely, for a reference unit y(s), the adjusted policy effects are:

γ (y(s̄)) =

∫
W(s;ψ∗) (yT (s) − ỹC(s;ϕ∗)) ds∫
W(s;ψ∗) (ỹC(s;ϕ∗) − y(s)) ds

. (9)

E.g., if y(s) = yr(sr(tp;ψ∗))—where yC(sr(tp;ψ∗)) = yT (tp), then the adjusted policy effects (9) are measured
with respect to the outcome of the reference region at the time of policy implementation. Note that although
these adjusted policy effects are identical across mappings, now they depend on the choice of units, y(s).
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path of the non-reference region, ỹC(s;ϕ). Here, we are interested in cases where (10) holds and
(2) holds with equality because then ỹC(s;ϕ) and yT (s) share exactly the same functional form
before policy is implemented first in the stage domain, i.e., for all s ∈ C(s) and, hence, we can
recover—by the method of undetermined coefficients—the set of normalization coefficients by
solving for ϕ in,

ΘT = Θ̃C (ϕ; ΘC) ∀s ∈ C(s), (12)

which is a (potentially nonlinear) system with n equations—where n is the number of structural
parameters—and with p unknowns—where p = M +K + 2 is the number of normalization coef-
ficients in ϕ.21 An interpretation of system (12)—and, hence, of our normalization procedure—is
that the normalization coefficients ϕ reshape the structural parameters of the non-reference, ΘC,
region into those of the reference region, i.e. ΘT = Θ̃C before policy implementation.

Theorem 1 If there exists a composite function (1) such that (10) holds and (2) holds with
equality for the regional outcome paths, yr(t), in (11)—i.e., if there exists a solution ϕ∗ for the
system (12)—then stage-based identification (SBI) exactly and uniquely identifies the true policy
effects for all s ∈ W(s;ψ∗).

Proof. If the system (12) holds—i.e., there is an exact solution for ϕ∗—then the normalized out-
come path of the non-reference region, ỹC(s;ϕ∗), is exactly identical to the reference path, yT (s)
for all s ∈ C(s) = [sr(t0,ψ∗), sr(t;ψ∗)]. Since the outcome paths follow (11)—i.e., policy affects
the path yr(t ≥ tp) but not the shape of g(t; Θr), then ϕ∗ is also a solution for the complement
stage domain, i.e., for all s /∈ C(s), in particular for W(s;ψ∗) = [sr(tp;ψ∗), s−r(tp;ψ∗)]. This
implies that ỹC(s;ϕ∗) is exactly identical to g(s; ΘT ), that is, the true no-policy counterfactual of
the reference region for all s ∈ W(s). Hence, SBI exactly and uniquely identifies the true policy
effects, γ(s), for all s ∈ W(s;ψ∗).

Remark 1. Note that uniqueness of the normalization coefficients ϕ∗ is not necessary to recover
unique policy effects.22 To see this, note that although the presence of multiple solutions of ϕ
implies that there are multiple shapes for f(.;ω) and t(.;ψ) that satisfy (10), the implied solution
ỹC(s;ϕ) for (10) is unique and, hence, so is the identified policy effect, γ(s). At the same time,

21That is, here, the minimization step in the normalization (in Section 2.1) is the solution to the system (12)
emerging from the undetermined coefficients approach.

22Note that if (10) holds, (2) holds with equality and the inverse function ϕ = Θ̃−1
C (ΘT ; ΘC) exists, then there

exists a unique solution ϕ∗ for the system (12). This sufficiency for existence and uniqueness of ϕ∗ coincides
with the Rouché–Frobenius Theorem in the cases where the system (12) is linear.
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Figure 6: Stage-Based Identification of Policy Effects: Three Examples with Exact Identification

(a) Logistic Function (b) Trigonometric Function (b) Cubic Polynomial

Notes: These panels show the SBI effects in examples with closed-form solutions for ϕ∗ when the data gen-
erating process is assumed to be known. In each panel, we assume that the outcome time path g(t; Θr) in (11)
follows: (a) the logistic function in (13); (b) a trigonometric function θ0,r + θ1,rsin(θ2,r + θ3,rt); and (c) a cubic
polynomial

∑3
j=0 θj,rt

j , respectively. The analytical derivations are in Appendix B.

the overall policy effect, γ, is determined by the interim policy effects, γ(s), and the size of the
identification window, W (s;ψ∗), which can differ by ϕ∗; see our discussion in Appendix B.2.2.23

We now discuss some functional forms for the outcome paths, yr(t), for which SBI yields
analytical solutions for ϕ using the approach just described. We start with logistic functions.
Assume that the regional outcome paths yr(t) are determined by (11) and that, absent policy,
these paths are determined by,

g(t; Θr) = θ1,r − θ0,r

1 + exp (−θ3t+ θ2,r)
+ θ0,r (13)

where Θr = {θ0,r, θ1,r, θ2,r, θ3,r} is a set of region-specific structural parameters that determine
the behavior of the outcome paths for regions r = {C, T }. We show an illustration of these paths
for region C and T in panel (a) of Figure 6.24 To identify the policy effects, we apply SBI picking
a region (e.g. T ) for the reference path and postulating a composite for the non-reference
region, ỹC(s;ϕ) = ω1yC(ψ0 + ψ1s) + ω0. Then, we solve for the normalization coefficients

23If policy is applied non-nationwide (see Section 5.3), then the overall policy effect γ is also identical across
potential multiple solutions of ϕ∗ because the identification window is open, i.e. W(s;ψ∗) = [sr(tp;ψ∗),∞).

24We assume that the outcome path for region C takes off earlier, so that − θ2,C
θ3,C

< − θ2,T
θ3,T

, grows faster with
θ3,C > θ3,T , starts at level θ0,C = θ0,T = 0 (left asymptote) and shows a larger magnitude with θ1,C > θ1,T
(right asymptote) than the outcome path in region T .
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ϕ = {ψ0, ψ1, ω0, ω1} in (10) holding (2) with equality for all s ∈ C(s), that is,

ỹC(s;ϕ) = ω1yC(ψ0 + ψ1s) + ω0 =

θ1,T −θ0,T︷ ︸︸ ︷
ω1 (θ1,C − θ0,C)

1 + exp(− θ3,Cψ1︸ ︷︷ ︸
θ3,T

s+ (θ2,C − θ3,Cψ0))︸ ︷︷ ︸
θ2,T

+ ω1θ0,C + ω0︸ ︷︷ ︸
θ0,T

= yT (s)

and, thus, by the method of undetermined coefficients we find ϕ = {ψ0, ψ1, ω0, ω1} solving,

θ0,T

θ1,T

θ2,T

θ3,T


︸ ︷︷ ︸

ΘT

=


ω1θ0,C + ω0

ω1θ1,C + ω0

θ2,C − ψ0θ3,C

ψ1θ3,C


︸ ︷︷ ︸

Θ̃C(ϕ,ΘC)

∀s ∈ C(s), (14)

which is a linear system of four equations and four unknown normalization coefficients ϕ∗ =
{ψ∗

0, ψ
∗
1, ω

∗
0, ω

∗
1}. It is straightforward to see that the inverse ϕ = Θ̃−1

C (ΘT ; ΘC) exists and,
hence, there exists a unique analytical solution for ϕ∗,

ω∗
1 = θ0,T − θ1,T

θ0,C − θ0,C
, ω∗

0 = θ0,T − θ0,C

(
θ0,T − θ1,T

θ0,C − θ0,C

)

ψ∗
1 = θ3,T

θ3,C
, ψ∗

0 = θ2,C − θ2,T

θ3,C
.

The normalization uncovers cross-regional stage heterogeneity at the time of policy implementa-
tion: in our illustration, the non-reference region is at a more advanced stage than the reference
region at tp, i.e. sr(tp;ψ∗) = tp. This opens a window in the stage domain in which region T
is subject to policy whereas region C is not, i.e., W(s;ψ∗) =

[
tp, sC(tp,ψ∗) = θ2T −θ2C

θ3T
+ θ3,C

θ3,T
tp
]
.

Then, under our identification assumption, the normalized outcome path of the non-reference
region, ỹC(s;ϕ∗), serves as no-policy counterfactual for the reference region for all s ∈ W(s;ψ∗).
Indeed, since the outcome paths follow (11), ϕ∗ is also an analytical solution for the complement
stage domain, i.e., for all s /∈ C(s). That is, for all s ∈ W(s;ψ∗), the normalized outcome
path of the non-reference region, i.e. ỹC(s;ϕ∗), is identical to the reference path in the no-policy
scenario, i.e. g (t; ΘT ) (solid magenta line); see panel (a), Figure 6. Thus, the identified policy
effect is unique and identical to the true policy effect.

We repeat this analysis for outcome paths that follow trigonometric functions, polynomial
functions and generalized logistic functions. In panel (b) of Figure 6, we show the results of
applying SBI for the case where g(t; Θr) = θ1,t sin (θ3,rt+ θ2,t) + θ0,t. In panel (c) of Figure 6,
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we show the results of applying SBI for the case where g(t; Θr) = ∑I
i=0 θit

i=1 with I = 3. We
further show the case for time paths that follow a generalized logistic function in Appendix B.3.
In all these cases, we find a unique closed-form solution for ϕ∗ (see our derivations in Appendix
B) and the identified policy effect is unique and identical to the true policy effect.

3 Method Performance

More generally, we are interested in assessing policy in contexts where the data generating process
is unknown. Here, we first implement SBI on model-generated data (without using any knowledge
about the theoretical model) and compare the identified effects with the true effects; Section 3.1.
Second, we conduct a Monte Carlo analysis that provides bounds to the performance of our
method; Section 3.2. There, we further assess how our method fares with time-varying hetero-
geneity, confounding policy, and endogenous policy. Third, we conduct inference; Section 3.3.

3.1 Does SBI Identify the True Policy Effects?

To address this question, we use three alternative policy contexts: a public health policy against
a pandemic using a model where economic activity in the form of hours worked shapes and is
shaped by a pandemic; the effects of the approval of the pill in a model of women career and
fertility choices; and an economic growth policy using a model of structural transformation.

3.1.1 Public Health Policy Against a Pandemic

Here, we pose an economic model in the context of an epidemic where labor supply generates
infections (and deaths). Then, we assess whether SBI recovers the model-generated effects of a
nationwide lockdown that restricts labor supply after some period tp.

At the beginning of each period t ∈ {0, 1, . . .}, total population Nt is composed of a stock
of susceptible population St, infected individuals It and recovered individuals Rt, with Nt =
St + It + Rt and the normalization N0 = 1. An epidemic starts with an initial number of
infected I1 > 0 in period t = 1. For pre-pandemic periods t < 1, the population is constant
with N0 = S0 and I0 = R0 = 0. The probability that a susceptible individual meets an infected
individual is given by β It

Nt
, for β ∈ (0, 1).25 We assume that conditional on meeting there exists

an objective probability λO(ht) of getting infected which depends on economic activity here
reflected by the average hours worked ht. Further, with probability µ infected individuals in a
given period t recover or die from the disease where the conditional probability of death in turn

25Parameter β captures features like density, health or pollution (among others) which can differ across regions.
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is denoted by ζ. New infections transit to death in the same period t, i.e. ht has an immediate
effect on the survival rate between t and t+ 1.26

In this context, we consider the problem of a social planner that is constrained in that she
has imperfect knowledge about the infection process. In particular, the planner’s beliefs of the
infection probability are λP(ht), which may differ from the objective probability. Specifically,
let λb(ht) = ξbh

α
t , ξb > 0 and α ∈ (0, 1), for beliefs b ∈ {O,P}, where O stands for objective

and P for perceived. Thus, if ξP < ξO then the constrained planner underestimates the actual
effects of average hours worked ht on infections and vice versa if ξP > ξO.

At every period t, before making plans for all future periods z ≥ t, the planner receives
an unanticipated knowledge shock that reveals the actual state of the economy GO,t for G =
(S, I, R,D), which potentially differs from the perceived state GP,t. We assume that the planner
updates the perceived survival probability accordingly and before choosing labor supply. Precisely,
lettingXG,b,t = Gb,t+1−Gb,t, the planner’s perceived survival probability is revised at the beginning
of every period t to ϕP(ht) = 1 − XD,P,t

Ñb,t
with Ñb,t = NO,t for t = z and Ñb,t = NP,t if t > z.27

Note that although the knowledge shock allows the planner to update the state of the economy
at the beginning of every period t, however, since these shocks are unanticipated, the planner is
unable to correct future forecast errors, i.e. GO,z −GP,z |t for periods z > t.28

After updating the perceived survival probability, the planner maximizes the present-discounted
stream of per period utilities for all periods z ≥ t with discount factor δ times the perceived
unconditional probability to survive from any period t to the future, ∏z

j=t+1 ϕP(hj−1). Importantly,
since the perceived survival probability is revised at the beginning of every period t, the nature of
the discounting process changes each period t and, hence, the planner needs to re-optimize—at
each period t—the decision plans for all periods z ≥ t. The per period utility, u(cz, hz;χ) is
assumed strictly concave in consumption cz ≥ 0 and leisure 1 − hz ∈ [0, 1] for a value of life
parameter χ. Collecting elements, at each period t the constrained social planner solves,

max
{cz≥0,hz∈[0,1]}∞

z=t

∞∑
z=t

δz−t
z∏

j=t+1
ϕP(hj−1)u(cz, hz;χ), (15)

subject to an aggregate resource constraint NP,zcz = whzNP,z where w is the implicit price
(marginal product) of labor using technology Yz = ahzNP,z.

26This innocuous assumption eases the exposition of the trade-off between economic activity and public health.
27Note that without subjective beliefs, the population evolves essentially as in, for example, Atkeson (2020).
28The forecast errors εG,z = (GO,z −GP,z |t ) can be reduced asymptotically with learning (Adam et al., 2017).

For example, there could be learning about the odds of infection as in Aleman et al. (2022).
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Figure 7: Stage-Based Identification of Model-Generated Policy Effects: A Nationwide Public
Health Policy Against a Pandemic

(a) Hours Worked (b) True Policy Effects on XD

(c) Identified Policy Effects (d) Identified vs.True Policy Effects

Notes: We assume that u(cz, hz) = ln(cz) − κh
1+ 1

ν
z

1+ 1
ν

+ χ for value of life parameter χ. Some parameters
differ across regions: ΘC = {β = 0.509, ζ = 0.0010, κ = 1.05, ξ = 0.20, I0 = 1} and ΘT = {β = 0.501, ζ =
0.0008, κ = 1.07, ξ = 0.19, I0 = 6}. The rest of the model parameters are identical across regions, {δ = 0.95, χ =
560400, z = 64, β = 0.501, α = 0.65}. The parameters associated to the policy are h̄ = 0.4, tp = 38, tf = 250.

Then, given t, the amount of economic activity hz is determined by the following condition,

∂u(cz, hz;χ)
∂cz

w︸ ︷︷ ︸
Marginal Benefit of Working:

Consumption Gain

− ∂u(cz, hz;χ)
∂hz︸ ︷︷ ︸

Marginal Cost of Working:
Loss of Leisure

= δ
∂ϕP(hz)
∂hz

u(cz+1, hz+1;χ)︸ ︷︷ ︸
Marginal Cost of Working:

Loss of Lives

∀z ≥ t, (16)

stating that the marginal benefit of working (more consumption) equates its marginal costs con-
sisting of an intratemporal component (disutility from working) and an intertemporal component
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(loss of lives). Since the Euler equation (16) is a first-order difference equation in hz, we can
easily solve for the optimal labor path during the epidemic using standard techniques.29

True (model-generated) policy effects. We solve the model for two regions that differ in
the underlying parameter values for Θ = {δ, χ, a, β, µ, ζ, κ, ν, {ξi}i∈{O,P}, α, I1}. In particular,
we assume that the planner in region C underestimates the effect that economic activity has on
infections by less than the planner in region T . Consequently, hours are reduced earlier and also by
a larger amount in region C than region T in response to the epidemic. The equilibrium response
of hours without policy intervention for region C (solid blue) and region T (solid red) are shown
in panel (a) of Figure 7. The earlier and stronger response in terms of hours of region C affects
our outcome of interest, i.e., the epidemic path of deaths, by reducing the peak of deaths and
flattening the curve in region C relative to region T ; see panel (b) in Figure 7. We also assume
that region C has higher odds of encountering infected individuals at work (i.e., higher β) which
advances and increases the peak of deaths for region C relative to region T . Further, we assume
that region C has a lower disutility of work κ which implies a larger pre- and post-pandemic level
of hours worked for region C than region T .

In this scenario, we now introduce a nationwide public health policy that imposes an upper
bound on hours worked, h < h = 0.5, from tp = 38 to tf = 250. Since, without policy,
households in both regions would work more hours than h, the policy is binding in both C and
T —see the respective dashed lines that emerge after tp in panel (a) of Figure 7. The lower
economic activity imposed by the policy has consequences for the flow of deaths. With policy,
the flow of deaths peaks earlier and by a lower magnitude in both C and T —see the respective
dashed lines that emerge after tp in panel (b) of Figure 7. The difference between the flow
of deaths with policy (dashed lines) and the flow of deaths without policy (solid lines) after tp
captures the true effects of policy generated from the model. However, the counterfactual paths
of the flow of deaths without policy after policy implementation (i.e. the solid lines after tp)
are not available outside of the model. That is, from the perspective of an evaluator that wants
to assess the policy effects, the data available for policy evaluation consists of the path without
policy (solid lines) for all periods up to tp along with the path with policy (dashed lines) for all
periods after tp. We now apply SBI on this data.

Stage-Based identified policy effects. The policy effects identified in this manner are shown
in panel (c) of Figure 7. In particular, we map the path of the flow of deaths in region C (solid
blue line) onto the path of region T (solid red line) using only pre-policy data; as described in
Section 2. The result of SBI is a candidate no-policy counterfactual ỹC(s;ϕ∗) (blue line with cross

29We provide the algorithms that we use to solve this (and the other models) of this paper in Appendix C.
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markers) for region T in the identification window W(s;ψ∗) = [tp, sC(tp;ψ∗)] (shaded pink area).
In order to assess whether the identified policy effects recover the true policy effects generated
by the model, we zoom in on the identification window in panel (d) of Figure 7 and compare
our candidate counterfactual ỹC(s;ϕ∗) with the true counterfactual (solid red line). The main
result is that the identified policy effects are not significantly different from the true effects. The
identified total number of lives saved is

∫
W(s;ψ∗) (ỹC(s,ϕ∗) − yT (s)) ds = 248.545 in a window of

sC(tp;ψ∗) − tp = 8.601 days, whereas the true policy effects are 250.728 lives saved. Therefore,
the policy prevented γ = − 21.496% of the total deaths that would have occurred had the policy
not been implemented, whereas the true effect is γtrue = − 21.644%. This implies that the
margin of error is ε(γ) =

∣∣∣( γ
γtrue

− 1
)

× 100
∣∣∣ = 0.683%.

3.1.2 Oral Contraceptives and Women’s Choices

We now pose a model in which the introduction of oral contraceptives (the pill) has effects on
women’s human capital, sexual and fertility choices. The pill provides access to a technology that
reduces unwanted pregnancies at the time (age) where human capital decisions are taken. We
use this framework to assess whether SBI recovers the model-generated effects of the pill.

We assume that each cohort t of women derives utility from their choices on consumption c ≥
0, children n ≥ 0 and sexual intercourse x ≥ 0 and experiences disutility from pill usage o—e.g.
a social norm. In addition, a woman chooses human capital investment paying q (tuition fees or
job training) per unit of human capital. Earnings feature two components, a wage level w, and
an endogenous human capital wage premium zte(h) with the two components technology level zt

and a complementarity factor e(h) ∈ [0, 1]30 with eh(h) > 0, ehh(h) < 0 so that earnings per
unit of time are w(1 + zte(h). We model skill-biased technical change (SBTC) with a cohort-t
specific growth factor γt so that zt = z0

∏τ=t
τ=1(1 + λτ ), where z0 > 0 and λt > 0. We further

assume that raising children bears a time cost of τ(n) ∈ [0, 1] with τn(n) > 0, τnn(n) < 0
so that earnings are (1 − τ(n))w(1 + zte(h)). Sexual intercourse increases the probability of
pregnancy ϕ(x) ∈ [0, 1] where ϕx(x) > 0, ϕxx(x) < 0 and we assume that successful pregnancies
result in children. If women have access to the pill—which we model through policy dummy 1tp

that is equal to zero if a cohort t does not have access to the pill, and equal to one otherwise—,
then the probability of pregnancy is adjusted downward by the pill effectiveness in preventing
pregnancy, g(o) ∈ [0, 1]. We assume that larger use of the pill—e.g., better adherence to follow
protocol—increases the effectiveness of the pill. That is, go(o) > 0 with goo(o) < 0.31

30The mapping of the outcome variable from h to e(h) is innocuous. In particular, since we model e(h) as a
rate we can interpret it as the fraction of educated women (e.g. college degree completion) in the population.

31Lawful access to the pill does not suffice to determine use which is also likely affected by social norms Goldin
and Katz (2002). Further, the pill can—at the same time—shape social norms (Fernández-Villaverde et al., 2014).
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Collecting elements, a woman solves

max
{h,o,x}

c+ κn+ ζx− ιo (17)

subject to the budget constraint (18) and the children production technology (19):

c+ qh = (1 − τ(n))w(1 + zte(h)), (18)

n = ϕ(x)[1 − 1tpg(o)] (19)

Plugging (18) and (19) into (17), the first order condition (FOC) of h is,

FOC(h) : q︸︷︷︸
Marginal Cost of Human Capital

= (1 − τ(n))wzteh(h)︸ ︷︷ ︸
Marginal Benefit of Human Capital

, (20)

where the price of human capital equates the marginal benefit consisting of a wage premium net
of the costs of children. Since q is constant, the marginal benefit trades off n and h, i.e. a
technology that reduces n enhances human capital. The FOC for sexual intercourse x is:

FOC(x) : τn(n)ϕx(x)(1 − 1tpg(o))w(1 + zte(h))︸ ︷︷ ︸
Marginal Cost of Intercourse

= ζ + κtϕx(x)(1 − 1tpg(o))︸ ︷︷ ︸
Marginal Benefit of Intercourse

, (21)

where the marginal benefit considers the additional utility from sex and children. The marginal
cost reflects the cost of children in terms of human capital. The FOC for pill use o is:

FOC(o) : τn(n)ϕ(x)1tpg(o)w(1 + zte(h))︸ ︷︷ ︸
Marginal Benefit of Pill

= κtϕ(x)1tpgo(o) + ι︸ ︷︷ ︸
Marginal Cost of Pill

(22)

where the marginal cost of the pill is a reduction of utility derived from children and the marginal
benefit of the pill is a reduction in the price of human capital.

True (model-generated) policy effects. In Figure 8, we show the equilibrium path for
women’s schooling choices in panel (a) and fertility choices in panel (b). We show the model-
generated paths in a scenario without the pill (solid lines) and in a scenario in which the gov-
ernment grants women legal access to the pill technology (dashed lines). We do this sepa-
rately for region C (blue) and region T (red). Regions differ in the model parameters Θ =
{κ, ξ, q, w, z, {λt}T

t=1, θx, θh, θo}. In particular, we allow for the returns to human capital to be
larger and grow faster in region C than in region T which explains the higher human capital in
region C than in region T . This also explains the lower fertility in region C than in region T .
Further, we exogenously shape the SBTC parameter γ such that the endogenous human capital
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Figure 8: Stage-Based Identification of Model-Generated Policy Effects: Introduction of the Pill

(a) True Policy Effects on e(h) (c) Identified Policy Effects e(h) (e) Identified vs. True Effects e(h)

(b) True Policy Effects on n (d) Identified Effects n (f) Identified vs. True Effects n

Notes: We plot outcomes for region C (red) and T (blue) without policy (solid lines) and with policy (dashed
lines). The policy is the introduction of the pill for all periods tp ≥ 25. The parameter values that we choose for
region C are ΘC = {ξ = 8, q = 3.2, w = 64, z0 = 1, λ = 0.1%, θx = 0.5, θh = 0.4, θo = 0.43, ιt,C , κt,C} and for
region T are ΘT = {ξ = 8, q = 3.3, w = 63, z0 = 1, λ = 0.1%, θx = 0.5, θh = 0.4, θo = 0.43, ιt,T , κt,T }.

path is S-shaped for both regions. We also choose an exogenous path for the relative utility
derived from children, κ, in order for endogenous fertility to display a boom and bust.

Here, we assess the efffects of legalizing the pill permanently with 1tp = 1 for all cohorts of
women tp ≥ 25. The policy endogenously reduces births (n) in both regions (dashed lines panel
(b), Figure 8).32 By reducing fertility, the pill reduces the cost of acquiring human capital which
increases the share of women entering college (e(h)) (dashed lines in panel (a), Figure 8).

Stage-Based Identified policy effects. We apply SBI using region T as reference, hence,
mapping the outcome path of region C (solid blue) onto that of region T (solid red) using only
pre-policy data as in Section 2. Again, SBI delivers a candidate counterfactual ỹC(s;ϕ∗) (blue
line with cross markers) for an identification window W(s;ψ∗) = [tp, sC(tp;ψ∗)] (shaded pink
area); see panels (c) and (d) of Figure 8 for human capital and children, respectively. We zoom
in the comparison between the identified and the true effects in panel (e) and (f) of Figure 8 for

32The reduction in fertility follows an increase in the use of the new technology. The pill sustains a higher
amount of sex with a lower amount of children and, hence, higher human capital.
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human capital and children, respectively. We find that the SBI policy effects capture well the true
effects. The identified effect on human capital is an increase in the proportion of women going to
college e(h) by γ = 0.122%, whereas the true policy effects are γtrue = 0.123%. The identified
effect on fertility is a reduction by γ = 0.830%, whereas the true effect is γtrue = 0.828%. The
error ε(γ) of the identified policy effects relative to the true policy effects is 0.182% for human
capital and of 0.232% for fertility.

3.1.3 Growth Policy and Structural Transformation

We pose a structural transformation model assuming the presence of inefficient institutions in one
economic sector (e.g. agriculture). Then, we assess whether SBI captures the model-generated
effects on per capita income of a nationwide policy reform that reduces this inefficiency.

There are two sectors in the model denoted by i ∈ {a,m}, for agriculture and manufacturing,
respectively. A representative firm per sector faces competitive markets. The agricultural firm
produces output ya at relative price pa (manufacturing is the numeraire good) employing labor
na at wage rate wa and land ℓ. We assume inefficient institutions in agriculture captured by a
parameter τ that taxes revenue. Agricultural firms thus solve the problem,

max
nat

πt(ℓ) = (1 − τ)patyat − watnat s.t yat = zatn
ϕ
atℓ

1−ϕ,

where ϕ is the labor share in agriculture. Since land is fixed, the agricultural technology exhibits
decreasing returns to scale.33 Manufacturing firms produce output ymt with labor nmt—hired at
wage wmt—and capital kt—rented at rate rt—and solve the problem,

max
nmt,kt+1

ymt − wmtnmt − rtkt s.t ymt = zmtn
α
mtk

1−α
t ,

where α is the labor share in manufacturing. Further, we assume that total factor productivity
(TFP) differs by sector according to zit = zi,0(1 + λi)t for i = {a,m} with γa < γm.

An infinitely-lived representative agent discounts the future at factor β ∈ (0, 1) and chooses
sectoral allocations of consumption {cat, cmt}∞

t=0, labor {nat, nmt}∞
t=0, and next period capital

{kt+1}∞
t=0. The per period utility function from agricultural goods, u(cat − c̄a), features a non-

homotheticity through a subsistence level, c̄a. Utility from manufacturing goods, v(cm), is ad-
ditively separable. Both u(·) and v(·) are strictly concave. The household is endowed with one
unit of time in each period, i.e. nat + nmt = 1 ∀t, that is allocated to either agriculture or

33The structural change—from a decreasing returns to scale technology (Malthus) to a constant returns to
scale (Solow) is studied in Hansen and Prescott (2002) in the context of a one-good economy. Below, we also
introduce non-homothetic preferences as an additional mechanism for structural change (e.g. Gollin et al., 2002).
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manufacturing and receives wage rates {wat, wmt}. The household receives the rents π(ℓ) from
inelastically supplying (renting) land to agricultural firms. Thus, the household maximizes,

max
{cat,cmt,nat,nmt,kt+1}∞

t=0

∞∑
t=0

βt (u(cat − c̄a) + κv(cmt)) (23)

where κ > 0 is a relative utility parameter, subject to the budget constraint

patcat + cmt + kt+1 =
∑

i∈{a,m}
witnit + rtkt + (1 − δ)kt + πt(ℓ). (24)

There are three first order conditions for the household problem.34 First, an intratemporal con-
dition governing the substitution across consumption goods:

FOC(cat) : ucat(cat)
1
pat

= κvcmt(cmt) (25)

Second, an intertemporal Euler condition for kt+1 governing the trade off between one additional
unit of consumption today versus tomorrow’s consumption,

FOC(kt+1) : uca(cat)
1
pat

= βuca(cat+1)
1

pat+1
(1 + rt+1 − δ) , (26)

and note that we can rewrite this intertemporal condition in terms of cm using (25). Third, an
intratemporal condition for na equates wages across sectors,

FOC(nat) : uca(cat)(wat − wmt) = 0 (27)

These allocations need to satisfy the marginal product conditions arising from the firms’ problems
in competitive markets, that is, wat = ϕpatyat

nat
, wmt = α ymt

nmt
and rt = (1 − α)ymt

kt
.

True (model-generated) policy effects. We consider two regions that potentially differ in
model parameters Θ = {β, c̄a, κ, δ, za,0, λa, zm,0, λm, ϕ, α, τ}. In particular, we allow for the total
factor productivity in the manufacturing sector to be larger in region C than in region T . The
larger productivity of manufacturing in region C generates a larger amount of investment, lower
agricultural share of labor and, ultimately, higher income per capita in region C than in region
T at any point in time; see panel (a) in Figure 9.The model is able to generate an agricultural
share that declines over time whereas, at the same time, capital and income per capita increase
asymptotically reaching a balanced growth path with a trifling agricultural share. In this context,

34Note that we can isolate cm from (24) and plug it into (23) plus use nmt = 1 − nat. This implies that we
can maximize the objective function in terms of the sequences of three unknowns {cat, nat, kt+1}∞

t=0.
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Figure 9: Stage-Based Identification of Model-Generated Policy Effects: Growth Policy

(a) True Policy Effects (b) Identified Policy Effects (c) Identified vs. True Effects

Notes: For region T , we choose, na,0 = 0.45, za,0 = 0.15, zm,0 = 0.17, γa = 0.007, γm = 0.0073. For region C,
we choose, na,0 = 0.65, za,0 = 0.145, zm,0 = 0.145, λa = 0.007, λm = 0.0072. Common parameters between
both regions are β = 0.98, α = 0.6, ϕ = 0.8, κ = 2, δ = 0.02. Further, we assume that the felicity functions are
logs, that is, u(ca − c̄a) = ln(ca − c̄a) and v(cm) = ln cm.

we introduce an unexpected nationwide growth policy that removes the institutional constraint
τ in the agricultural sector in both regions; setting τ = 0 after tp in both regions. Removing
the constraint in the agricultural sector accelerates investment (and capital) and the decline in
agricultural sector. The reallocation to the non-agricultural sector increases income per capita in
the eocnomy, see (dashed lines) in panel (a) of Figure 9.

Stage-Based Identified policy effects. The policy evaluator is not provided with the true
counterfactual path without policy (solid lines for the periods after tp). Under these same data
constraints, we implement SBI mapping the outcome path in region C (solid blue line) onto
the outcome path in region T (solid red line) using only pre-policy data. We plot the resulting
counterfactual candidate ỹC(s;ϕ∗) (blue line with cross markers) for the identification window
between tp and sC(tp;ψ∗) (shaded pink area); see panel (b), Figure 9. We zoom in on the
identified counterfactual ỹC(s;ϕ∗) and the true effects of policy in panel (c) of Figure 9. According
to SBI, the growth policy increases income per capita by γ = 13.781% in the identification window
whereas the true policy effect is γtrue = 13.537%. That is, the identified policy effects catch the
true policy effects with an error of ε(γ) = 1.797%.

3.2 Bounds to Method Performance

The performance analysis in Section 3.1 shows that our identification strategy can recover the true
policy effects. However, it is intuitive to assume that our strategy faces some boundaries. Here,
we numerically characterize the bounds within which our method is able to recover the true effects
of policy with a Monte Carlo experiment in Section 3.2.1. We further assess how our method
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fares in the presence of time-varying latent heterogeneity; confounding policy interventions; and
endogenous policy in Section 3.2.2.

3.2.1 A Monte Carlo Analysis

We focus this analysis on the benchmark economic model with an endogenous pandemic described
in Section 3.1.1. Specifically, we hold fixed the parameters of the non-reference region C and
randomize a subset—(β, ζ, κ, to)—of the structural parameters in that region in order to generate
a large number of reference outcome paths yT (m) for regions m ∈ M = {1, ...,m, ...,M}.35

In panel (a) of Figure 10, we show the epidemic path of our benchmark regions C and T as
described in Section 3.1.1, together with one of the simulated reference regions that starts later,
grows slower and reaches a lower magnitude than the benchmark reference region, yT (t), and,
therefore, is further away from the non-reference region, yC(t).36

In this context, in order to assess the ability of SBI to identify the true policy effect we study the
policy error across all simulations. For each simulationm, we apply SBI mapping the non-reference
region, yC(t), onto the simulated reference path, yT (m)(t). This implies that we find a set of
normalization coefficients ϕ∗(m) = {ψ∗

0(m),ψ∗
1(m),ω∗

1(m)} per simulation m ∈ M. Then, for
each simulation, we measure the policy error as the (absolute) value of the policy effect identified
by SBI relative to the (model-generated) policy effect; i.e. ε(γ)(m) =

∣∣∣( γ(m)
γtrue(m) − 1

)
× 100

∣∣∣. In
panel (b) of Figure 10, we plot the policy errors of each of our simulations ϕ∗(m) that belong
to the vector space Φq = Ψq

0 × Ψq
1 × Ωq

1 = {ψ0(m) > 0.0} × {ψ1(m) > 1.0} × {ω1(m) <
1.0} ⊂ Φ = R3. We restrict the plot to the vector space {ψ0(m) ∈ (0.000, 10.000)}×{ψ1(m) ∈
(1.000, 1.500)} × {ω1(m) ∈ (0.350, 1.000)} ⊂ Φq, which suffices to capture the policy error
associated with the benchmark reference region yT (t).37

Our main result is that the success of our method in identifying the true policy effects
is bounded. To see this, first, note that the centroid in the vector space Φ, i.e. ϕ∗

c =
(0.000, 1.000, 1.000), implies that the outcome path of the simulated reference region, yT (m)(t),
and that of the non-reference region, yC(t), are identical.38 Second, note that if the outcome path
of a simulated reference region, yT (m)(t), and the outcome path of the non-reference region, yC(t),
are similar—in that our identification strategy delivers a set of normalization coefficients that is

35We assume that the randomized parameters—β, ζ, κ and to—are uniformly and independently distributed.
Then, we draw a total of M = 381, 000 simulations (quadruplets).

36Note that there can be cases where the simulated reference region flips control versus treatment assignment.
37Our insights do not change with alternative choices of the vector space.
38Indeed, exactly at the centroid the policy effects are not identified because yC(t) = yT (m)(t) and there is no

heterogeneity in stages at the time of policy implementation.
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Figure 10: Bounds to Method Performance: A Monte Carlo Analysis

(a) A Simulation Example (b) Policy Error: |ϵ(γ)| (c) Policy Error: |γtrue − γ|

Notes: When constructing the set {yT (m)(t)}m, we assume that {β, ζ, κ, t0} are uniformily and independnetly
distributed. The simulations are drawn from the intervals

[
βlb, βub

]
×
[
ζlb, ζub

]
×
[
κlb, κub

]
×
[
tlbo , t

ub
o

]
=

[0.5, 0.9] × [0.001, 0.008] × [1.05, 1.89] × [−10, 10] where the superindices lb and ub denote, respectively, the
lower and upper bounds of each parameter space. We pick the bounds of the uniform distribution in a manner
that our simulations generate sufficiently different outcome paths of the reference region in order to assess the
performance of our method. We constructed a total of M = 381,000 simulations though not all the simulations
fall in the vector space ψ∗ in panel (b). Precisely, the hyperplane (ψ0, ω1) has 3,698 simulations, the hyperplane
(ψ1, ω1) has 17,504 simulations and the hyperplane (ψ0, ψ1) has 3,698 simulations. Panels (b) and (c) show
values from an evenly spaced 200 × 200 grid on each hyperplane. We approximate the values on the grid through
linear interpolation of the simulated data.

in a neighborhood of the centroid N (ϕ∗
c) ⊂ Φq—then the policy error is small; see panel (b) of

Figure 10. To see this, note that policy errors with values of ε(γ) ≤ 5% emerge in a bounded
neighborhood (approximately) N (ϕ∗

c) = {0.000, 6.776}×{1.000, 1.210}×{0.764, 1.000} which
we depict (yellow area) around the centroid. Here, note that our benchmark reference out-
come path yT (t) falls in that neighborbood with a set of normalization coefficients ϕ∗ =
{6.592, 1.041, 0.803} and a policy error ε(γ) = 0.68% (red marker). Third, moving away from the
centroid increases the policy error. For example, the simulated reference outcome path yT (m)(t)
in panel (a) of Figure 10 implies a set of normalization coefficients ϕ∗(m) = {5.083, 1.200, 0.436}
that falls outside of the neighborhood N (ϕ∗

c) and delivers a larger policy error of 36.04%. We
further reconduct our exercise using an alternative measure of the policy error defined as |γ−γtrue|
in panel (c) of Figure 10 reaching similar insights. Thus, as long as the regional outcome paths
are similar enough, the method can successfully identify the policy effect.

3.2.2 Confounding Factors

We assess how the presence of time-varying latent heterogeneity, confounding policy and endoge-
nous policy affects the ability of SBI to recover the true effects of policy. Here, we would like
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Figure 11: Stage-Based Identification of Policy Effects: Time-Varying Latent Heterogeneity

(a) Response of Hours (b) True Policy Effects on XD

(c) Identified Policy Effects (d) Identified vs.True Policy Effects

Notes: Where h̄ = 0.4, tp = 38, tf = 250, γ = −12.242%, ϵ(γ) = −3.318%.

to emphasize that the goal of our method is not to answer what would have been the effect
of the policy under evaluation had the time-varying latent heterogeneity, confounding policy or
endogenous policy (or other confounding factors for that matter) not been present. That is, we
do not pursue the identification of a “pure” policy effect that nets out (controls for) the presence
of confounding factors.39

Instead, we acknowledge that the effect of the same policy can naturally be different when it
is applied in a different context—e.g., due to the presence of different confounding factors. SBI
is designed to measure these conditional policy effects. Thus, we are interested in assessing how

39Therefore, from the perspective of SBI, the presence of confounding factors does not change neither the aim of
the normalization step, which is to reduce the cross-regional differences in the pre-policy determinants—including
potentially unobserved structural parameters—of the path of the outcome of interest, nor the identification step
that assumes the normalization parameters are unaffected by the policy that is evaluated.
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well SBI can recover the true policy effects that emerge given different confounding factors. To
do so, we use as benchmark the econ-epi model described in Section 3.1.1 in which there were
no confounding factors. Then, we introduce confounding factors (one by one) into the model
in order to show how the true policy effects, which now explicitly depend on the specific set
of confounding factors that are present, change and assess whether SBI can recover these true
policy effects.

Time-Varying Latent Heterogeneity Using the econ-epi model in Section 3.1.1, we formalize
the time-varying latent heterogeneity across two regions as an underlying time-varying structural
parameter present in one region but not the other. In particular, we consider a scenario in which
one region, T , learns about the process of infection before policy implementation. That is, we
allow for the beliefs on the infection process, ξP , to exogenously and gradually move closer to
the actual ξ in region T but not in region C; see Figure 31 in the Appendix D. This path of
beliefs induces pre-policy behavioral change relative to the scenario with a fixed ξP . In region T ,
there is now a larger behavioral response (reduction of hours) to the pandemic, see panel (a) in
Figure 11, which also plots the path under fixed beliefs in gray. Note that in our illustration the
pre-policy behavioral change is rather large, in the sense that now the drop in hours worked before
policy implementation in region T becomes larger than that in region C. We show the implied
true policy effects on the flow of deaths in panel (b), the identified policy effects in panel (c) and
a comparison between true and identified effects in panel (d) of Figure 11. The main finding is
that our method can recover the true policy effects under time-varying unobserved heterogeneity.
The estimated percentage of lives saved is γ = 12.242% which is close to the true effects, γtrue =
12.663%. Hence, SBI can recover the policy effects in contexts where there is time-varying latent
heterogeneity. However, analogously to our discussion in Section 3.2.1, the robustness of our
method to time-varying heterogeneity is bounded by how far the time-varying component drives
the outcome paths across regions away from each other.

Confounding (Exogenous) Policy We now consider a scenario in which an additional con-
founding policy is introduced in region T right before the actual nationwide stay-home policy
under evaluation is implemented in period tp. In particular, we assume the existence of an unan-
ticipated policy that imposes an additional (and weaker) constraint on hours worked, h̄ = 0.71,
one period before the nationwide stay-home policy is put in place; see panel (a) of Figure 13.
Then, we apply SBI to assess the nationwide stay-home policy introduced at tp, while purposefully
ignoring the presence of the additional policy introduced before tp in region T . Our method iden-
tifies the effects of policy to be a 14.708% of lives saved in the identification window which is close
to the true effects in that window, 15.588%. This implies a policy error of 5.644%. We further
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Figure 12: Stage-Based Identification of Policy Effects: With Confounding Policy in T

(a) Response of Hours (b) True Policy Effects on XD

(c) Identified Policy Effects (d) Identified vs.True Policy Effects

Notes: Where h̄1 = 0.71 at t = 37 in T , this policy is unobserved, h̄2 = 0.4 (lockdown) at tp = 38, tf = 250,
γ = −14.708%, ϵ(γ) = −5.644%.

re-conduct the exercise imposing less strict confounding policies in region T one period before
tp with similar insights. That is, SBI can recover the true policy effects in a context where there
exists a confounding policy. At the same time, analogously to our discussion in Section 3.2.1, it
is straightforward to show that the error by which SBI captures the true policy effect increases
if the effect of the additional confounding policy makes the cross-regional outcome paths suffi-
ciently dissimilar before tp. That is, how much our identification strategy recovers of the true
policy effects in a context where confounding policy is present is bounded by the strength of the
confounding policy in making the cross-regional outcome paths differ from each other.40

40We do not find additional insights when the confounding policy arrives first to region C; see Appendix D.
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Endogenous Policy Consider now a scenario in which the date at which the policy is imple-
mented across all regions, tp, is endogenously determined by the stock of deaths of solely one
region (here: region T ). Precisely, the nationwide policy (a lockdown that restricts hours worked
to h̄ = 0.40 in all regions) is implemented when the stock of deaths in region T , DT ,t, surpasses
a threshold D̄. We assume that only the agents in region T are aware of this constraint and
chooses h accordingly. The agents in region C remain unaware, therefore they do not adjust
hours and the policy arrives unexpectedly to their eyes. Further, note that the date at which
the policy arrives remains the same across regions. Taking into account the endogenous policy,
hours in region T (solid red line) react more strongly than in their corresponding response in
the benchmark case where policy was exogenous (gray line) (see panel (a), Figure 13). Pre-
cisely, using the same parameterization as in our benchmark econ-epi model in Section 3.1.1,
the endogenous policy takes place one day later (tp = 39) than in the benchmark model (tp =
38). This larger reaction translates into less deaths for region T than their counterpart in the
benchmark model (panel (b), Figure 13). We apply SBI to this scenario (panel (c), Figure 13).
Our proposed no policy counterfactual, when mapping region C on to region T , delivers the path
of deaths had the policy not been implemented endogenously and letting the agents in T choose
ht freely for t ≤ tp. Accordingly, we compute the corresponding no policy counterfactual path
yT ,t t ≤ tp (solid red line after tp). We find the effects of policy to be a 8.332% of lives saved
in the identification window which are, due to the behavior response to endogenous policy, lower
than those attained with the benchmark model where the policy was exogenous. The identified
policy effects are close to the true effects in that window, 11.268% (panel (d), Figure 13). This
implies a policy error of 21.616%.

3.3 Inference

We conduct inference in two ways. First, we conduct a placebo diagnosis in order to assess how
our method evaluates inexistent policy effects. Second, we assess our method when the outcome
path of interest is subject to a stochastic component.

3.3.1 Placebo Diagnosis

Here, we assess whether SBI identifies policy effects when the policy effects are non-existent. In
such scenario, a successful diagnosis is one in which our method identifies the effects of policy to
be nil, as they truly are. To conduct this assessment, we apply our method to model-generated
data from models that are not subject to policy. We use as benchmark the econ-epi model from
Section 3.1.1 with the relevant difference that we do not impose a policy at time tp. Under such
scenario, the paths for the flow of deaths in region C (solid blue) and region T (solid red) are as
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Figure 13: Stage-Based Identification of Policy Effects: With Endogenous Policy in T

(a) Response of Hours (b) True Policy Effects on XD

(c) Identified Policy Effects (d) Identified vs.True Policy Effects

Notes: We assume h̄ = 0.40 and D̄ = 460 are identical to the corresponding policy restriction on hours worked and
the stock of deaths attained at the time policy implementation (tp = 38) in the benchmark model with exogenous
policy. We find that the policy is endogenously implemented at t = 39. γ = −8.332% and ϵ(γ) = −21.616%.

depicted in panel (a) of Figure 14. For reference, we also plot the path for deaths that would have
occurred (dashed light gray) had the policy been implemented at tp as we did in Section 3.1.1.

We now apply SBI as if there was a policy at some period tp—when there is actually none.
Given that the normalization uses only pre-policy data, we obtain the same identification window
over stages as if there was an actual policy. We show the outcome paths for the two regions, yT (t)
and yC(t), along with the obtained normalized path ỹC(s,ϕ∗) in panel (b) of Figure 14; panel
(c) zooms in on the identification window. Note that the normalized outcome path ỹC(s,ϕ∗)
is practically identical to the outcome path yT (t) on the identification interval: the identified
counterfactual matches the actual outcome path—which here is also the outcome path without
policy. That is, SBI correctly identifies that in this scenario without policy the policy effects
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Figure 14: Stage-Based Identification of Policy Effects: A Placebo Test

(a) True Policy Effects (b) Identified Policy Effects (b) Identified vs.True Effects

Notes: Where h̄ = 0.4, tp = 38, tf = 250, γ = 0.188%.

are non-existent—or quantitatively negligible, γ = 0.188%. We find similar insights after re-
conducting this exercise for different values of tp.

3.3.2 Stochastic Component

In empirical applications, the outcome path of interest often is subject to fluctuations due to the
presence of a stochastic component, which can capture measurement error.41 When facing such
noisy data, we add a smoothing—or trend-extraction—step that precedes the normalization step
of the SBI method. The goal of this smoothing step is to purge the observed pre-policy outcome
paths of the stochastic fluctuations—of higher frequency than the object of interest—defined as
deviations from some estimand. We then apply the normalization step of the SBI method on the
smoothed pre-policy data. Furthermore, given that the available data does not exactly capture
the true path, it is important to conduct statistical inference, for which we propose a bootstrap
procedure that builds on the stochastic component around an extracted fitted value.

Consider first the presence of classical measurement error, and let the outcome paths be

ŷr(t) = yr(t) + ur(t) with ur(t) ∼ N(0, σ2
u,r), (28)

for each region r = {C, T }, where ŷr(t) is the outcome path observable to the policy evaluator,
yr(t) is the unobservable true outcome path and the innovations ur(t) capture measurement
error that follows a Normal distribution with zero mean and variance σ2

r . In the case where the
stochastic component is autocorrelated, we replace the innovations in specification (28) with
ur(t) = ρur(t − 1) + υr(t) where υr(t) ∼ N(0, σ2

υ,r). In panel (a.1) of Figure 15, we show
41Alternatively, the stochastic fluctuations might be genuine but yet of higher frequency than the outcome

path of interest—e.g., autocorrolated business cycles when the object of interest is the growth path. Also in this
scenario it is important to extract the lower-frequency component, in order to then use SBI on it.
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Figure 15: Stage-Based Identification of Model-Generated Policy Effects: Inference

(a) Classical Error:

(a1) Model (a2) Policy Effects (%) (a3) Policy Effects, Pooled

(b) Autocorrelated Error:

(b1) Model (b2) Policy Effects (%) (b3) Policy Effects, Pooled

Notes: We use the benchmark parameterization of Section 3.1.1. The top panels (a) add classical error in
our model with {σ2

C , σ
2
T } = {0.008, 0.008}. The bottom panels (b) add autocorrelated error with {ρC , ρT } =

{0.13, 0.13} and {σ2
C , σ

2
T } = {0.008, 0.008}.

the (unobserved) true outcome paths yr(t) for the two regions as light blue and light red lines,
together with the observed outcome paths ŷr(t) for one simulation of the errors in (28), which are
indicated by the circle and triangle markers. Further, in what follows we denote by ̂̂yr(t < tp) the
estimand of yr(t < tp). To obtain this estimand, we fit Chebyshev polynomials to the observed
data ŷr(t < tp) and, hence, also recover the time-series of regional errors ur(t < tp) as the
deviations from the fitted values. Then, for each region, we construct B = 1, 000 bootstrap
draws, ŷr,b(t) with b ∈ B. For each bootstrap draw, we randomly draw a sequence of errors
from the region-specific set of errors with replacement, which we add to the fitted values of the
pre-policy path, ̂̂yr(t < tp). In panel (a1) of Figure 15, we show the median (solid lines) and
90% confidence intervals (dashed lines) of the bootstrap pre-policy paths ŷr,b(t < tp).

Now, we apply SBI to each bootstrap sample using the recovered estimands ̂̂yr,b(t < tp)
to perform the normalization, i.e., the mapping of the non-referece region C onto the reference
region T . Then, on the obtained identification window, we use the data of region T and the
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normalized path for region C to measure the effect of policy effect for each bootstrap draw, γb.
Importantly, the heterogeneity in γb across bootstrap draws arises from both, differences in the
policy effect per stage during the identification window, and differences in the size of the identifi-
cation window itself, stemming from the bootstrap-draw-specific stage of policy implementation
in the non-reference region, sC(tp;ψ∗

b ). We thus split the reporting into two steps. First, we
report confidence bands over the window of the observed original data, for which we focus on
those bootstrap simulations that deliver roughly the same window length. Second, we report
overall confidence bands of the policy effect, based on all bootstrap draws. In panel (a2) of
Figure 15 we plot again the true cumulative policy effects γb(s) from Figure 7. We then add to
the figure the mean, median, and the 5th and 95th percentiles of the bootstrap draws that give
a window of about the same length—we select those bootstrap draws that fall into plus/minus
10% of the length of the average bootstrap draw. Two results emerge. First, the normalization
generates outcome paths that are not significantly different before policy implementation; see the
non-shaded area in panel (a2). Second, the identified policy effects—using data with measure-
ment error—are not significantly different from the true (model-generated) policy effects without
measurement error (purple line with crossed markers): the identified mean policy effect (dashed
magenta line) is 22.58%—within a 90 percent confidence interval of [11.71,31.58]—which is not
significantly different from the true (model-generated) policy effect without measurement error,
i.e., 21.50%. The median policy effect (solid magenta line) is of similar size, 23.1%. However,
unsurprisingly, the significance of the identified policy effect can be affected by the size of the
measurement error. Further, we find that the identified mean policy effect is similar (23.89%)
when we do not restrict our analysis to bootstrap draws of the same window size; see panel (a3)
of Figure 15, which shows the distribution of the overall policy effects across all bootstrap draws.
Naturally, the distribution is somewhat wider than within the restricted bootstrap subsample—
however, the 90% confidence band is only mildly larger. We also conduct robustness of our
methodology using a wider set of smoothers and find similar insights—our alternative smoothers
include B-splines, cubic splines, moving averages and the Hodrick-Prescott filter.42

We re-conduct our analysis assuming that the stochastic component is autocorrelated, see
panel (b1) of Figure 15. In this case, to keep the empirical autocorrelation structure of the
error terms—including potentially temporal differences in the cross-sectional variance—we use a
block bootstrap procedure that increses the sampling weight of preceding error terms in a pre-

42An altogether alternative way to conduct inference with the recovered estimates for the error terms ur(t) is
to estimate the sample variance of the errors, i.e. σ̂r. Then, under a normality assumption on the error term in
(28), we simulate Q = 1, 000 paths of errors (instead of drawing from the empirical distribution). The results
under this different inference are in Appendix E. Overall, we find similar insights with an identified mean policy
effect of 21.12% [14.41,28.23] that is not significantly different from the true (model-generated) policy effect.

38



specified window (Carlstein, 1986).43 With autocorrelated measurement error, we also find that
our identification strategy is able to recover policy effects that are not significantly different from
the true (model-generated) policy effects, see panel (b2) and (b3) of Figure 15.

Finally, in order to assess the role of the smoother on the identification of the true policy
effects, we perform SBI directly on the observed data ŷr(t < tp)—i.e., the markers in panel
(a1) of Figure 15. That is, we conduct the normalization by mapping directly the outcome path
ŷC(t) onto ŷT (t) without the smoothing step.44 There is a unique identified policy effect (purple
markers) that we show in panel (a2) of Figure 15. The policy effect identified using the observed
data ŷr(t) also replicates the true policy effect, which suggests that the smoothing step (which
is necessary to conduct inference in the way described here) does not substantially affect the
identified policy effect itself.

4 Applications

We use SBI to identify the policy effects in a set of empirical applications associated with nation-
wide policies. First, we assess the effects of stay-home policies on the flow of Covid-19 deaths
in Spain in Section 4.1.45 Second, we assess the effects of the approval of oral contraceptivies
on fertility rates and women’s college education in the United States in Section 4.2. Third, we
study the effects of the German reunification on income per capita Section 4.3.46

4.1 The Spanish Confinamiento Against Covid-19

In response to the Covid-19 pandemic, on March 14, 2020, the Spanish government announced a
nationwide stay-at-home policy—enacted the following day—which locked down all non-essential
workers in all regions of Spain. Indicative of its strictness, the public debate referred to the policy
as confinement. The strictest measures were lifted on May 2 when the first wave of the epidemic
flattened out. Here, we apply SBI to assess the effects of this policy intervention on the course of
the pandemic. As outcome of interest, we focus on the daily flow of deaths attributed to Covid-
19.47 We use two Spanish regions to assess the nationwide policy: Madrid and an artificially

43We select a block window of size 5
44To measure the distance between the normalized data of the non-reference region and the actual data of the

reference region, we apply linear interpolation.
45The Covid-19 has generated lots of empirical work assessing public health policies against the pandemic; see,

for example, Fang et al. (2020) for a careful study of the early mobility restrictions in China and Liu et al. (2021)
for the provision of density forecasts with Bayesian techniques for a panel of countries and regions.

46We discuss data sources and data construction used for each of our applications in Appendix F.
47Although daily deaths are potentially imperfectly measured, we regard these data as less prone to measurement

error than infections data, especially during the onset of the pandemic, when testing was largely unavailable.
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created region Rest of Spain (RoSPA) which is composed of all Spanish regions without Madrid.
We label Madrid as region C and RoSPA as region T .48

We show the daily flow of Covid-19 deaths (per million inhabitants) for Madrid (blue circles)
and the RoSPA (red triangles) in panel (a) of Figure 16; Instituto de Salud Carlos III. In order
to mitigate potential measurement error on the reported deaths, we smooth the pre-policy data
using as benchmark Chebyshev polynomials separately by region as described in Section 3.3.49

Note that we add a lag parameter to the policy date, reflecting that a policy that aims at reducing
infections will show an effect on the flow of deaths with a delay. We choose a lag of 12 days, which
implies that the policy is (effectively) implemented on March 27; The resulting smoothed daily
flow of deaths for Madrid (solid blue) and RoSPA (solid red) are also in panel (a) of Figure 16.

There are clear differences in the path of the flow of deaths between Madrid and the RoSPA.
First, one death (per million inhabitants) is reached in March 08 for Madrid and March 14 for
the RoSPA. Second, by March 14 the daily flow of deaths in Madrid is 9.3 deaths (per million
inhabitants) whereas this figure is 1.2 for the RoSPA. Furthermore, at the (effective) time of
policy implementation, the flow of deaths is reaching a peak in Madrid at 50 deaths (per million
inhabitants), whereas the peak in the RoSPA is smaller at 16 deaths (per million inhabitants)
and occurs about a week after that in Madrid. That is, the flow of deaths starts at an earlier
date, it raises more rapidly and reaches a larger peak in Madrid than in the RoSPA.

Normalization. We now apply SBI following the normalization described in Section 2. Picking
the RoSPA as reference region T , we map the flow of deaths of the region Madrid (yC(t), solid
blue circles) onto the flow of deaths of RoSPA (yT (t), solid red circles) using only pre-policy data.
The normalization step delivers a normalized path for Madrid ỹC(s;ϕ∗) that is not different—up
to a minimization error—from that of RoSPA, yT (t); see panel (b) of Figure 16. We find ψ0 =-
0.14 [-0.24,-0.04], ψ1 =1.21 [1.16,1.24] and ω1 =0.47 [0.39,0.53] which, respectively, delays the
start, slows down the growth and lowers the peak of daily deaths in Madrid. A result of our
normalization is that Madrid leads the epidemic in Spain. Precisely, the policy is implemented
in Madrid at a later stage than in RoSPA, i.e. sT (tp;ψ∗) = tp < sC(tp;ψ∗). Hence, the
normalization unveils a window in stages W(s;ψ∗) = [tp, sC(tp;ψ∗)] (shaded pink area) running
from March 27 to April 03 in which the stage-leading region, Madrid, is not yet subject to policy

48Note that SBI can be conducted for all pairs of regions; see Section 5.1 for an analysis of the stay-home policy
using the power set of all Spanish regions. However, in order to ease the exposition, we focus here on two regions
(or groups of regions). To select these regional groups, we conduct the normalization in Section 2.1 by mapping
the path of Covid-19 deaths of each Spanish region onto the aggregate path for Spain. This normalization
uncovers that, at the time of policy implementation, Madrid is at the most advanced stage, i.e. Madrid =
arg maxr sr(tp;ψ∗). For this reason, we focus on Madrid and RoSPA for our analysis.

49We use a Chebyshev polynomial of degree 6 and perform robustness on the choice of the smoother.
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Figure 16: The Effects of the Spanish Confinamiento Against Covid-19

(a) Before Normalization (b) After Normalization

(c) Identification Window (Zoomed) (d) Policy Effects (%)

Notes: Panel (a) shows the daily Covid-19 deaths for Madrid, region C, and for an artificial region T that
aggregates the rest of Spain (RoSPA). We use a Chebyshev smoother (solid lines) of degree 6. Panel (b) shows
the results of our normalization using region T as reference and mapping the pre-policy outcome paths of region
C onto region T . Panel (c) zooms the identification window. Panel (d) shows the policy effect where γ is defined
in equation (8). We show the mean, median and 90% confidence interval bands from bootstrapped simulations
constructed as described in Section 3.3. We estimate a significant auto-correlation coefficient for the residuals
(ρC = 0.48 ρT = 0.55, respectively) and thus perform block-bootstrap with a block window of 5 days.

whereas RoSPA is.50 Therefore, under our identification assumption, the normalized path of the
Madrid serves as no-policy counterfactual for RoSPA inside W(s;ψ∗).

Policy Effect. The implied policy effects are in panel (d), where we restrict the attention to the
(B = 656) bootstrap simulations within the neighborhood of the median window size (plus/minus
10%). Across these bootstrap draws the (mean) identified total number of lives saved (per million

50Precisely, the window W(s;ψ∗) runs from the effective policy date in RoSPA (tp = March 27) to the effective
policy date in the stage domain for Madrid, sC(tp;ψ∗) = tp + 7.7 days—exactly, at 6.18pm on April 03.
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inhabitants) is
∫
W(s;ψ∗) (ỹC(s;ϕ∗) − yT (s)) ds = 36.92 within approximately one week after policy

implementation, which corresponds to a total amount of lives saved by the policy in RoSPA of
1,734 during that week. That is, the stay-home policy prevented γ = −24.71% of the total
deaths that would have occurred in the RoSPA had the policy not been implemented. These
effects are significant with a 90% confidence interval of [-29.71,-19.30]. The median effect is
similar, -26.45%. Further, considering the policy effect across all bootstrap draws (i.e., without
restricting the window size) we find similar significant policy effects with mean -22.11% and
median -22.95%. Last, redoing our assessment without the smoothing step implies that the
policy prevented 25.61% of the deaths in RoSPA during approximately the first week. Last, we
conduct a placebo diagnosis—implementing the policy days earlier than when it was actually
implemented—to find that the identified policy effects that emerge from our method are not
significantly different from zero; see Appendix G.51

4.2 The 1960 FDA Approval of Oral Contraceptives in the U.S.

In 1960, the first hormonal birth control pill (oral contraceptive) was approved in the U.S. by the
Food and Drug Administration (FDA). The use of pill was approved for use by women above the
age of majority. In a seminal paper, Goldin and Katz (2002) use state-level variation in the age of
majority in order to assess how women in that threshold change schooling and career choices.52

Since SBI does not require non-nationwide policy for identification (e.g. state-time variation of
the policy that determines the age of majority), we assess the effects of the nationwide (federal)
approval of the pill on the entire population of adult women. We focus on two outcome variables.
First, we study the effects of the pill on women’s fertility choices—crude birth rates, using as
regions the state of West Virginia (ext.) and the rest of the United States (RoUSA), where we
label West Virginia (ext.) as region C and RoUSA as region T .53 Second, we study the effects
of the pill on women’s college choices—the share of women with completed college by age 25,

51We further conduct a robustness exercise regarding the trend-extraction step in Appendix H. We do not find
significant differences in the identified policy effects when we remove the trend-extraction step.

52Further, Bailey (2006) uses state-level variation in the age of majority to assess the effects of the pill on the
timing of first births and women’s labor force participation. Greenwood and Guner (2010) use an equilibrium
matching model to assess the effects of oral contraceptives on premarital sex and how it is perceived in society.

53Analogously to what we did in Section 4.1, we normalize the each U.S. state’s time path of crude birth rates
to the aggregate path of the United States. This normalization uncovers that West Virginia leads the rest of the
United States (RoUSA) in that it shows the largest cross-regional stage at the time of policy implementation.
In order to increase the sample size, we further add the next three leading states (Idaho, Nevada and Arkansas)
to construct an artificial region as the population weighted average of these four regions, which we label West
Virginia (ext.). Then, we also construct an artificial region that consists of the RoUSA. For the case of the
share of women that at age 25 have completed college, the leading state is Washington D.C. Since this state
has a relatively small population size, we construct an artificial region as the population weighted average that
additionally includes the next three leading states in terms of women college completion (Massachusetts, Colorado
and Connecticut). We name this artificial region as Washington D.C. (ext.).
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using as regions the state of Washington D.C (ext.) and RoUSA, where we label Washington
D.C. (ext.) as region C and RoUSA as region T .

Figure 17: The Effects of the 1960 FDA Approval of Oral Contraceptives: Crude Birth Rate

(a) Before Normalization (b) After Normalization

(c) Identification Window (Zoomed) (d) Policy Effects

Notes: Panel (a) shows the crude birth rate for a region C which consists of a set of states leading the fertility
bust (West Virginia, Idaho, Nevada and Arkansas) and a region T that aggregates the rest of the United States.
We use a Chebyshev smoother (solid lines) of degree 5. Panel (b) shows the results of our normalization using
region T as reference and mapping the pre-policy outcome paths of region C onto region T . Panel (c) zooms
the identification window. Panel (d) shows the policy effect γ(s) as defined in equation (8). We show the mean,
median and 90% confidence interval bands from bootstrapped simulations constructed as described in Section 3.3.
We find a non-significant auto-correlation coefficient for the residuals, ρC = 0.31 ρT = 0.18, respectively.

The crude birth rates shows a inverted-U shape pattern typically labeled as the baby boom and
baby bust; see panel (a) in Figure 17. We find differential patterns across states. In particular,
the birth rate in the region of West Virginia (ext.) peaks in the second half of the 1940s and in
1960 is already busting and close the 1940 levels. Instead, the birth rate in the RoUSA peaks
in the second half of the 1950s at somewhat lower level and, on average, has barely started to
decline by year 1960. In terms of women’s college completion, the proportion of women of age
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25 with completed college attainment has more than tripled over a span of twenty years raising
from 8% in 1950 to 26% in 1970 in the leading states; see panel (a) of Figure 18. In the RoUSA,
the proportion of women of age 25 with completed college attainment shows a larger relative
increase from 2% in 1950 to 15% in 1970.

Figure 18: The Effects of the 1960 FDA Approval of Oral Contraceptives: Women College

(a) Before Normalization (b) After Normalization

(c) Identification Window (Zoomed) (d) Policy Effects

Notes: Panel (a) shows the proportion of women of age 25 that completed college for a region C which consists of
a set of states leading women’s college completion (Washington D.C., Massachusetts, Colorado and Connecticut)
and a region T that aggregates the rest of the United States. We use a Chebyshev smoother (solid lines) of
degree 4. Panel (b) shows the results of our normalization using region T as reference and mapping the pre-policy
outcome paths of region C onto region T . Panel (c) zooms the identification window. Panel (d) shows the
policy effect γ(s) as defined in equation (8). We show the mean, median and 90% confidence interval bands
from bootstrapped simulations constructed as described in Section 3.3. We find a non-significant auto-correlation
coefficient for the residuals, ρC = 0.21 and ρT = 0.64, respectively.

Normalization. In terms of crude birth rates, picking RoUSA as reference region T , we apply
our normalization by mapping the pre-policy birth rates of West Virginia (ext.) (yC(t), solid
blue circles) onto the pre-policy crude births rates of the RoUSA (yT (t), solid red circles). This
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results in a normalized path for West Virginia (ext.) ỹC(s;ϕ∗); see panel (b), Figure 17. The
estimates are ψ0 =1.85 [-0.53,9.96], ψ1 =1.21 [0.41,1.58] and ω1 =0.91 [0.89,0.94] which,
respectively, delays the start, slows down the growth, and lowers the peak of the baby boom
for the leading region in stages.54 A result of the normalization, West Virginia (ext.) leads the
crude births rate path in that it is in a more advanced stage than RoUSA at the time of policy
implementation, i.e. sT (tp;ψ∗) = tp < sC(tp;ψ∗). Hence, the normalization unveils a window
of stages W(s;ψ∗) = [tp, sC(tp;ψ∗)] (shaded pink area) in which West Virginia (ext.) is not
subject to policy whereas RoUSA is. For the case of women’s college completion, we choose
RoUSA as reference region T and map the pre-policy path of Washington DC (ext.) (yC(t),
solid blue circles) onto that of RoUSA (yT (t), solid red circles), which generates a normalized
path for Washington DC (ext.) yC(s;ϕ∗); see panel (b), Figure 18. The normalizing parameters
are ψ0 =-5.65 [-11.17,1.84], ψ1 =1.62 [1.07,1.73] and ω1 =0.85 [0.76,0.92] which results in
Washington D.C. (ext.) as stage-leading region at tp.

Policy Effect. Following our identification assumption, the stage-leading region in birth rates
at the time policy implementation, West Virginia (ext.), serves as no-policy counterfactual for
RoUSA inside W(s;ψ∗); see the outcome paths yC(s;ϕ∗) (normalized West Virginia (ext.)) and
yT (t) (RoUSA) inside the identification window in panel (c), Figure 17. The policy significantly
reduced by γ = -8.36% the number of births (per 10,000 inhabitants) that would have otherwise
occurred without the pill; panel (d), Figure 17. The median effects are similar: a -6.94% reduction.
In the previous effects, the window size is restricted to be in the neighborhood of the median
window size (plus/minus 10%). Not restricting the window size, we also find significant effects,
γ = -7.53%. Analogously, for the the share of women that completed college education at age
25, the stage-leading region at the time policy implementation, Washington D.C. (ext.), serves
as no-policy counterfactual for RoUSA. The FDA approval of oral contraceptives significantly
increased the share of women with completed college at age 25 by γ = 24.69% during the decade
that followed the policy compared to what would have occurred without the pill; panel (c) and
(d), Figure 18. The median effects are almost identical, γ = 24.00%. Not restricting the window
size also yields significant effects of γ = 19.19%.55,56

54The fact that the policy happens after peak of the crude birth rate can provide a role for an asymmetry
parameter in the stage-to-time transformation, i.e. adding the monomial basis ψ2s

2. However, at the time of
policy implementation the decline in the crude birth rate for the non-leading region has barely started and when
we introduce an asymmetry parameter ψ2 we find that is not significantly different from zero.

55We provide an additional Placebo diagnosis for these policy effects in Appendix G.
56Without the smoothing step, the FDA approval of oral contraceptives implies a reduction of -14.81% in the

number of births and an increase in the share of women of age 25 that complete college education by 18.25%.
These effects are not significantly different from the mean bootstrapped effects; see Appendix H.
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4.3 The German Reunification

In 1990, after the fall of the Berlin wall in 1989, the German Democratic Republic was abolished
and integrated fully into the Federal Republic of Germany. Given large differences between the
West German states and the East German states, the political and economic integration came at
some cost—the size of which is subject to debate. Abadie et al. (2014) study the consequences
of the German reunification for West Germany and forming a counterfactual path for GDP per
capita using a Synthetic Control Group (SCG) approach. Here, we apply SBI to the same context,
and construct a counterfactual for the evolution of GDP per capita in West Germany had it not
been for the reunification. In contrast with Abadie et al. (2014), our counterfactual is constructed
using the GDP per capita paths of West German regions only.57 To conduct our analysis, we focus
Hessen and an artificially created region for Rest of West Germany (RoGER) which is composed
of all West Germany regions excluding Hessen.58 We label Hessen as region C and RoGER as
region T ; see panel (a) of Figure 19.

Normalization. Picking RoGER as reference region, we apply our normalization by mapping
the pre-policy GDP per capita of Hessen (yC(t), solid blue circles) onto that of RoGER (yT (t),
solid red circles). This results in a normalized path for Hessen ỹC(s;ϕ∗); see panel (b) of
Figure 17. The normalizing parameters are ψ0 =1.98 [1.51,6.69], ψ1 =1.24 [1.13,1.48] and
ω1 =1.00 [1.00,1.01]. A result of the normalization is that Hessen leads RoGER in stages at the
time of policy implementation. Precisely, our normalization opens a window in stages, W(s;ψ∗) =
[tp, sC(tp;ψ∗)] (shaded pink area), running from approximately seven years in which Hessen is not
subject to the German reunification but RoGER is. Therefore, under our identification assumption,
the normalized path for Hessen provices a no-policy counterfactual for RoGER inside that window.

Policy Effect. We zoom in on the identification window for the GDP per capita in panel (c)
and the associated policy effects in panel (d) of Figure 17. We find that the German Reunification
significantly reduced the GDP per capita of RoGER by γ = 3.39% compared to the GDP that it
would have otherwise attained without the Reunification. The median policy effects are similar,
γ = 2.82%. In the previous effects, the window size is restricted to be in the neighborhood of the
median window size (plus/minus 10%, comprising a total of 541 bootstrap samples). Again, not
restricting the window size, we also find significant effects of similar size γ = 3.27%. Further,

57In Section ??, we compare the two approaches SBI and SCG in more detail.
58Analogously to Section 4.1, we normalize the path of GDP per capita of West Germany states to the aggregate

GDP per capita path of West Germany. This normalization uncovers that the stage at which Hessen is at the
time of the German reuinification is the most advanced across regions. That is, Hessen leads the rest of Germany
(RoGER) at the time of policy implementation. For this reason, we focus on Hessen and RoGER for our analysis.
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Figure 19: The Effects of the German Reunification on GDP per capita

(a) Before Normalization (b) After Normalization

(c) Identification Window (Zoomed) (d) Policy Effects

Notes: Panel (a) shows the GDP per capita of region C, Hessen, that leads West Germany and a region T
that aggregates the rest of West Germany. We use a Chebyshev smoother (solid lines) of degree 3. Panel (b)
shows the results of our normalization using region T as reference and mapping the pre-policy outcome paths
of region C onto region T . Panel (c) zooms the identification window. Panel (d) shows the policy effect γ(s)
as defined in equation (8). We show the mean, median and 90% confidence interval bands from bootstrapped
simulations constructed as described in Section 3.3. We find a significant auto-correlation coefficient for the
residuals (ρC = 0.78 and ρT = 0.74, respectively) and thus perform block-bootstrap. We use a block window of
3 years.

without the smoothing step, the German reunification generates a reduction of 4.82% in the GDP
per capita of RoGER, which is not significantly different from our mean bootstrapped effects.59

59We provide an additional Placebo diagnosis for these policy effects in Appendix G and assess the robustness
of the trend-extraction step for this application in Appendix H.
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5 Further Discussion

We first discuss the heterogeneity of policy effects across stages in Section 5.1. Second, we
discuss the identification of the aggregate effects of policy in Section 5.2. Third, we show how
our method can be applied to non-nationwide policy in section 5.3.

5.1 Heterogeneous Policy Effects

To conduct this analysis, we focus on the stay-home nationwide policy implemented in the first
wave of Covid-19 in Spain across all regions at the same time; see Section 4.1. The idea is to use
the available paths of Covid-19 deaths of multiple regions—which might differ by stage at the
time of policy implementation—in order to measure policy effects by stage. Since Madrid leads
all other regions we pick Madrid as reference and apply SBI to the each of the other regions—
which we separately map onto Madrid. Hence, the stage domain is the same or all regions;
i.e. the calendar time for Madrid. The result of this mapping is in panel (a) of Figure 20. For
example, for the region of Murcia (MUR) policy implementation occurs at a stage corresponding
to approximately twelve days earlier than the stage at which Madrid received the policy. The
closest to Madrid is the Basque Country (PVC) that lags Madrid for approximately two days.

Our main result is that there are heterogeneous effects by region that we plot (yellow markers)
in panel (b) of Figure 20. Clearly, the policy effects are larger for regions that are at less advanced
stages at the time of policy implementation. For example, in the region of Murcia, the policy
prevented 65% of the deaths that would have otherwise occurred in Murcia in a scenario without
policy. In contrast, in the Basque Country, which is closest to Madrid in terms of stages at
the time of policy implementation, the policy prevented 12% of the deaths that would have
otherwise occurred in the Basque Country in a scenario without policy. To further complete our
exploration, we construct hybrid regions from the power set of the treated regions, i.e. a total
of 216 − 1 = 131, 072 hybrid regions, that we separately map using SBI to Madrid.60 We report
the policy effects (tiny purple markers) associated with each of these hybrid regions (with 90%
confidence intervals) in panel (b) of Figure 20. We reach similar insights as the policy effects
are largest in instances where the the stage at the time of policy implementation is farthest away
from the stage at which Madrid implemented the policy.

What drives the differences in policy effects by stage? An obvious candidate to determine
these differences is the size of the identification window—i.e. the closest a region is to Madrid
in terms of stages at the time of policy implementation, the smaller is the identification window.

60Precisely, a hybrid path between region A and region B is constructed as the weighted sum of the flow of
deaths per capita in each region.
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Figure 20: Heterogeneous Policy Effects by Stage, Spanish Confinamiento against Covid-19

(a) After Normalization (b) γ By Region (c) γ(s) By Day After tp

Notes: We have a total of 17 region (comunidad autonoma) names: Andalucia (AND), Aragon (ARA), Asturias
(AST), Baleares (BAL),Canarias (CAN), Cantabria (CNT), Castilla-La Mancha (CLM), Castilla y Leon (CLL),
Catalunya (CAT), Ceuta(CEU), Valencia (VAL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Melilla
(MEL), Murcia (MUR),Navarra (NAV), Pais Vasco (PVC), La Rioja (RIO). We exclude GAL from the analysis
due to the fact that we find positive (yet, non-significant) effects of the policy on the flow of deaths. The size
of the yellow is the stock of deaths per thousand inhabitants accumulated during the identification window. In
panel (b), we report the policy effects γ (see Section 2.2) by region where the (yellow) marker size is the flow of
deaths at the time of policy implementation. In addition to the policy effects by region, we also report the policy
effects for each hybrid region constructed for each element in the the power set 216 − 1 of regions (tiny markers)
in panel (b). In panel (b), the 90% CI’s exclude the top 5% and bottom 5% of policy effects by stage in rolling
windows of 2 stages/days. In panel (c) we show the interim effect γ(s) (see Section 2.2) by stage for day 1, day
5 and day 10 after policy implementation.

At the same time, differences in policy effects can emerge within the same horizon into the policy
within the identification window. To assess this question, we isolate the effects of policy by the
number of stages within the identification window. Here, note that since we picked Madrid as
reference, the stage for Madrid is the actual calendar time (i.e. days). In those terms, we find
substantial heterogeneity across identification windows by stage. For example, one day into the
policy (i.e inside the identification window) at a stage of approximately 10 days before Madrid
enters policy (e.g. March 18) the policy effect is below 10%, whereas one day into the policy at
a stage of approximately 7 days before Madrid enters policy (e.g. March 12) the policy effect
is above 10%, and one day into the policy at a stage of approximately 3 days before Madrid
enters policy (e.g. March 24) is again below 10%; see the magenta markers in panel (c) of
Figure 20. We also show differences across stages in the policy effects for the cases of five days
(blue markers) and ten days (yellow markers) into the policy. That is, not only the size of the
identification window matters (i.e. how close in stages a given region is to Madrid at the time
of policy implementation) but there are also differences in policy effects driven by the differential
within-window policy effects across identification windows.
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Figure 21: Aggregate Policy Effects, Spanish Confinamiento against Covid-19

(a) Before Normalization (b) After Normalization (c) Policy Effects (%)

Notes: Panel (a) shows the daily Covid-19 deaths for Madrid, region C, and for two artificial regions T =
{SPA, RoSPA} where SPA is aggregate Spain (i.e. the complete set of all regions in Spain) and RoSPA is an
alternative aggregate that excludes Madrid (as constructed in Section 4.1). We use a Chebyshev smoother (solid
lines) of degree 6. Panel (b) shows the results of mapping the pre-policy outcome paths of region C (Madrid)
onto the reference region T : SPA. Panel (c) shows the median effects of the policy on aggregate Spain (black
square makerts) and, for comparison, on RoSPA (magenta solid line, as computed in Section 4.1) with 90%
confidence interval bands from bootstrapped simulations constructed as described in Section 3.3. We estimate
a significant auto-correlation coefficient for the residuals (ρC = 0.48 ρT = 0.54, respectively) and thus perform
block-bootstrap with a block window of 5 days.

5.2 Aggregate Policy Effects

Standard empirical strategies that rely on heterogeneity in the time of policy implementation for
identification are typically silent about the aggregate effects of policy. The reason is that, under
those strategies, the region that serves as control (for all other treated regions) needs to be
contemporaneously untreated in the time domain which is never the case with nationwide policy;
see panel (a) in Figure 21.61 In contrast, our methodology uses heterogeneity across stages at the
time of policy implementation for identification; that is, SBI does not need a contemporaneously
untreated region in the time domain. For this reason, SBI allows for the aggregate (i.e. a unit
consisting of the complete set of all regions) to be treated and, therefore, the assessment of
aggregate policy effects is potentially feasible with our method. In particular, as long as the
regions display heterogeneity in terms of the outcome paths, it will typically be the case that the
aggregate path lags the path of the stage-leading region, and thus is at an earlier stage at the
time of policy implementation. Again, this stage-variation can be used for the identification of
aggregate policy effects. Note that the chance of a successful normalization will tend to increase
relative to the implementation that uses an aggregate path without the stage-leading region (as

61In staggered rollouts, untreated regions can serve as controls in time-bounded windows. See the recent
analysis in Goodman-Bacon (2021) for a careful assessment of difference-in-differences strategies that can be
used under different timings and scenarios of staggered rollout policies.
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in our benchmark applications): the outcome paths are closer when the aggregate includes the
stage-leading region. By the same token, the identification window will tend to be smaller.

We focus on our application about the confinamiento against Covid-19 in Spain. Using
aggregate Spain as reference region, we normalize Madrid to aggregate Spain in order to assess
the aggregate effects of policy. After normalization, we find that Spain lags the stage-leading
region of Madrid opening an identification window of 5.5 days; see panel (b) in Figure 21.62

The stay-home policy significantly reduced the amount of deaths for aggregate Spain by γ =
-20.37% [-24.28,-14.81] inside the identification window; see panel (c) in Figure 21. Interestingly
the aggregate policy effects for Spain are not significantly different from the policy effects of an
alternative aggregate (RoSPA) that excludes the stage-leading region of Madrid—as computed
in Section 4.1. In particular, the interim policy effects of both aggregate Spain and RoSPA
are similar for the periods in which the identification windows of aggregate Spain and RoSPA
overlap,63 which indicates that the effects of the stay-home policy on Madrid are not significant.64

5.3 Non-Nationwide Policy

Here, we show that SBI works in scenarios where there are regions that never receive the policy
intervention. Consider a scenario with two regions where one region, e.g. T , receives the policy
intervention at period tp and the other region, e.g. C, is never treated. To illustrate this scenario
we use our benchmark model with endogenous pandemics as described in Section 3.1.1. In that
context, we introduce the stay-home policy that puts an upper bound on hours worked in region
T , but not in region C; see panel (a) of Figure 22. The implications for the outcome of interest,
the flow of deaths, is displayed in panel (b) of Figure 22. The policy has an impact on region T ,
but not on region C.

In order to identify the policy effects, we need to modify the set on which the normalization
is conducted. In particular, picking region T as reference, the normalization parameters are the

62Precisely, the window W(s;ψ∗) runs from the effective policy date in SPA (tp = March 27) to the effective
policy date in the stage domain for Madrid, sC(tp;ψ∗) = tp + 5.5 days—exactly, at 11.38am on March 31.

63The area in which the identification windows of aggregate Spain and RoSPA overlap is the identification
window of aggregate Spain which, by incorporating the stage-leading region, is closer in stages to Madrid at
the time of policy implementation—i.e. aggregate Spain has a shorter identification window. Note that since
both aggregate Spain and RoSPA are chosen as reference in their respective applications of SBI (we map the
stage-leading region, Madrid, separately onto each of the reference regions, aggregate Spain and RoSPA), the
identification windows are defined in the same domain—i.e. time, because the stage is time in both cases.

64As alternative strategy to measure the aggregate effects, one may be tempted to extrapolate the heterogeneous
policy effects documented in Section 5.1 in order to find the policy effects of the control region and, hence, the
aggregate effects. In Appendix I, we show that these extrapolations are not a good idea in that the extrapolated
effects can fall far from the true (model-generated) effects.
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Figure 22: Stage-Based Identification of Non-Nationwide Policy Effects

(a) Response of Hours (b) True Policy Effects on XD

(c) Identified Policy Effects (d) Identified vs.True Policy Effects

Notes: Where h̄ = 0.4, tp = 38, tf = 250, γ = 17.66% and ϵ(γ) = 58.19%

solution to the minimization of (5) subject to (3) and

C(s) =

 [t0, tp] if r = T
[sC(t0;ψ∗), sC(tf ;ψ∗)] if r = C

(29)

for r = {C, T } where t0 denotes the first period of observed data and tf the last.

The results of the normalization are shown in panel (c) of Figure 22. Note that since only
region T is treated, the identification window is,

W(s;ψ∗) =

 [tp, sC(tf ;ψ∗)] if sC(tf ;ψ∗) > tp

∅ if sC(tf ;ψ∗) < tp
(30)
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Figure 23: The Effects of the German Reunification: Stage-Based Identification (SBI) and Syn-
thetic Control Methods (SCM)

(a) Cumulative Effect γ(s) (b) Instantaneous Effect γ′(s)

Notes: The outcome variable is real GDP per capita in USD of 2002. The plotted 90% confidence intervals
correspond to the United States.

Hence, there is a policy effect if and only if the stage of normalized series evaluated at the
last period of observed data yC(s;ϕ∗) with s = sC(tf ;ψ∗) falls beyond the period of policy
implementation tp. Otherwise, the identification window is the empty set because the treated
region leads throughout the entire sample. In our model-generated example, the normalization
shows that region C covers stages beyond that of region T at the time of policy implementation
which implies that W(s;ψ∗) = [tp, sC(tf ;ψ∗)] and we can assess policy effects. We show the
identified policy effects in panel (d) of Figure 22, for which we find that overlap with the true
(model-generated) policy effects.

We further exemplify how to use stage-based identification in cases in which not all regions
are treated by re-conducting our assessment of the German Reunification. Here, we take West
Germany as the treated region and use as potential controls the United States and an aggregate
consisting of the same sample of OECD countries (that excludes Germany) studied in Abadie
et al. (2014). Hence, this exercise also serves as means for comparison between SBI and SCM
(Abadie and Gardeazabal, 2003). In order to apply SBI, we pick West Germany as reference
region. Then we conduct the normalization by mapping the GDP per capita path of the U.S.
and the OECD aggregate onto the GDP per capita path of West Germany. We show the policy
effects that emerge from SBI in panel (a) of Figure 23. To ease the comparison with Abadie
et al. (2014), we also show in panel (b) of Figure 23 the instantaneous policy effects by stage
defined as (abusing some notation), γ′(s) = yT (s)−ỹC(s)

ỹC(s) . That is, γ′(s) measures the change in
GDP per capita of region T (West Germany) relative to the counterfactual region C (e.g. the
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U.S. or the rest of the OECD) at any given stage s due to policy. We further show the results
from using Hessen as leading region in the context of nationwide policy within Western Germany
reported in Section 4.3. For inference, we show the 90% confidence intervals associated to the
USA constructed as described in Section 3.3.

Our main finding is that the policy effects that emerge from using SBI either for the U.S.—or
the OECD aggregate that excludes Germany—are not significantly different from those obtained
using SCM in Abadie et al. (2014). In particular, the instantaneous policy effects imply a loss of
income per capita for West Germany due to the Reunification of 12.73% when compared to the
United States and of 15.44% when compared to the rest of the OECD in 2007. These figures are,
respectively, 10.51% and 14.13% in 2003 which are not significantly different from the effects
of reunification of 10.04% obtained in Abadie et al. (2014). Further, we also find that within
the shorter window that emerges when the counterfactual from the SBI strategy is Hessen as in
Section 4.3, the results under the alternative counterfactuals are not significantly different from
the results obtained with Hessen.65

6 Conclusion

We provide a new method for policy analysis, SBI. By uncovering heterogeneity in the stage at
which policy is implemented across regions, our method allows for the analysis of nationwide
policy, which expands the range of policies that can be empirically evaluated. We show the
ability of our method to accurately identify policy effects in various model simulations where
the true effect is known, while also acknowledging limitations to our method’s performance.
Furthermore, we show that our method can not only recover the heterogeneous effects of policy
across stages but also the aggregate effects of policy—something that is an enduring challenge
for other empirical strategies that rely on heterogeneity in the time of policy implementation. In
addition, we discuss how our method can be applied to non-nationwide policy with untreated
regions.
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Appendix

A Further Illustrations: Policy After the Peak

Here, within the context of our benchmark illustration in Section 2, we assess additional examples in which the
policy is implemented when regional outcome paths have surpassed their peak in one region in Section A.1 and
in two regions in Section A.1.

A.1 Policy after the peak: One region

Consider a scenario in which the nationwide policy is implemented nationwide at the same time in two regions
r = {C, T }. Assume the policy arrives before the outcome path of region T reaches its peak and, at the same
time, after the outcome path of region C as surpassed its peak; see panel (a) of Figure 24. Since the policy is
implemented at the same time across regions, standard empirical strategies that rely on time variation at the time
of policy implementation are unworkable in this scenario. We pick region T as reference and apply SBI. That is,
we map region C onto region T using pre-policy data only. This mapping generates the normalized outcome path
ỹC(s;ϕ∗); see panel (b) in Figure 24. Our normalization opens a window in stages between tp and sC(tp;ψ∗)
in which we identify the effects of policy. Since region C is at a more advanced stage at the time of policy
implementation, i.e. tp < sC(tp;ψ∗), it serves as no-policy counterfactual for region T inside the identification
window. We zoom the identification window in panel (c) of Figure 24 and the associated policy effects in panel
(d) of Figure 24.

Figure 24: Stage-Based Identification of Policy Effects: Further Illustrations: One Region After the
Peak

(a) Before Normalization (b) After Normalization (c) Window (Zoomed) (d) Policy Effects (%)

Notes: See the notes in Figure 3.

A.2 Policy after the peak: Two regions

Here we discuss a scenario analogous to that of the previous Section with the variant that the nationwide policy
arrives to both regions after their outcome paths has surpassed their respective peaks; see panel (a) of Figure 32.
Picking again region T as reference, we map region C onto region T using pre-policy data only, which generates
the normalized outcome path ỹC(t;ϕ∗); see panel (b) in Figure 32. Hence, SBI opens a window in stages
between tp and sC(t;ψ∗) in which the effects of policy are identified. We zoom the identification window in
panel (c) of Figure 32 and the associated policy effects in panel (d) of Figure 32. In Figure 26, we further
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Figure 25: Stage-Based Identification of Policy Effects: Further Illustrations: Two Regions After the
Peak

(a) Before Normalization (b) After Normalization (c) Window (Zoomed) (d) Policy Effects (%)

Notes: See the notes in Figure 3.

Figure 26: Decomposing by Normalization Coefficient: Further Illustrations: Two Regions After the
Peak

(a) Proportional Level Shift (b) + Time Shift (c) + Speed Adjustment (d) + Asymmetry Adjustment
{ω∗

1} {ω∗
1 , ψ

∗
0} {ω∗

1 , ψ
∗
0 , ψ

∗
1} {ω∗

1 , ψ
∗
0 , ψ

∗
1 , ψ

∗
2}

Notes: See the notes in Figure 4.

unpack the contribution of each normalization coefficient in generating the normalized path. Note that in this
scenario, since the outcome paths of the two regions is already affected by the potential asymmetry in which the
outcome paths increase before their respective peaks and decrease after the peaks, the additional parameter ψ2

that asymmetrically shapes stages into time, i.e. tC = ψ0 + ψs+ ψ2s
2 plays a role.

B Some Analytical Derivations

Here, we follow our discussion in Section 2.3 and provide analytical derivations for some cases in which we
can explicitly express the normalization coefficients as functions of the structural parameters of a known data
generating process. As emphasized in our main text, note, again, that this exercise merely serves to illustrate our
method and provide an interpretation of the normalization coefficients as those that aim to reshape the structural
parameters of the non-reference regions into those of the reference region. Indeed, if the data generating process
were actually known, there would be no need to apply SBI; or any other identification method for that matter.

Our method works under the proposition that if there exists a composite function (1) such that (10) holds
with equality, then our normalization procedure—the minimization of (5) subject to (2) and (6)—recovers the
coefficients ϕ = {ψ,ω} up to a minimization error by approximating the functions tC(.) ≈ tC(.;ψ), fC(.) ≈
fC(.;ω) and, hence, ỹC(.) ≈ ỹC(.;ϕ) for all s ∈ C(s). Thus, under our identification assumption, we can identify
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the policy effects for all s ∈ W(s;ψ∗). Here, we are interested in cases where (10) and (2) hold with equality
and, hence, analytical solutions for the normalization coefficients ϕ potentially exist for all s ∈ C(s). For this
discussion, we focus on cases in which tC and fC are linear—tC = ψ0 +ψ1s and fC = ω0 +ω1yC(t), and study time
paths, yr(t), that are described by trigonometric functions (Section B.1), polynomial functions (Section B.2) and
generalized logistic functions (Section B.3) under the assumption that we know these data generating processes.

As in Section 2.3, the outcome time paths throughout this Appendix B follow:

yr(t) =
(
1 − γr,t1t≥tp

)
g(t; Θr)

for regions r = {C, T } and periods t ∈ {0, . . . , tp, . . . , T}. The region-specific policy effects for periods after
tp are captured by γr,t whereas g(t; Θr) captures the outcome time path of region r (determined by region-
specific structural parameters Θr) occurring absent policy—that is, g(t; Θr) is the true region-specific no-policy
counterfactual for t ≥ tp.

B.1 Trigonometric functions

Here, we study a case with trigonometric time paths (see panel (b) of Figure 6). Precisely, we define

g(t; Θr) = θ1,r sin (θ3,rt+ θ2,r) + θ0,r,

for regions r = {C, T } and periods t ∈ {0, . . . , tp, . . . , T}. Then, picking a region (here: T ) as reference, we
apply our normalization procedure. That is, we map the outcome path of the non-reference region C onto that of
the reference region T using pre-policy data only. To do so, we postulate a normalized path for the non-reference
region, ỹC(s;ϕ) = (fC(.;ω) ◦ yC ◦ tC(.;ψ)) (s) with outer composite fC = ω0 + ω1yC(t) and inner composite
tC = ψ0 + ψ1s. That is,

ỹC(s;ϕ) = ω1yC(ψ0 + ψ1s) + ω0

= ω1 (θ1,C sin (θ3,C(ψ0 + ψ1s) + θ2,C) + θ0,C) + ω0

= ω1θ1,C︸ ︷︷ ︸
=θ1,T

sin

θ3,Cψ1︸ ︷︷ ︸
=θ3,T

s+ (θ3,Cψ0 + θ2,C)︸ ︷︷ ︸
=θ2,T

+ ω1θ0,C + ω0︸ ︷︷ ︸
=θ0,T

= yT (s),

where the last equality emerges from holding equation (10) with equality, i.e. ỹC(s;ψ) = yT (s) (note that s = t

for the reference region T ). Then, we find the undetermined normalization coefficients as,

ω0 = θ0,T − θ1,T

θ1,C
θ0,C , ω1 = θ1,T

θ1,C
,

ψ0 = θ2,T − θ2,C

θ3,C
, ψ1 = θ3,T

θ3,C
.

That is, the normalization coefficients have an exact and unique solution. For our illustration in panel (b) of
Figure 6, we set ΘC = {1.0, 5.0, 4.1, 1.00} and ΘT = {1.5, 3.0, 1.1, 1.05}, which implies the following unique
solution for ϕ∗ = {ψ∗

0 , ψ
∗
1 , ω

∗
0 , ω

∗
1} = {−3.0, 1.05,−4.5, 1.5}. We show the role of each of these normalizaiton

coefficients in the non-orthogonal decomposition in Figure 27.
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Figure 27: Decomposition by Normalization Coefficient: Trigonometric Time Paths

(a) Level Shift (b) + Proportional Scaling (c) + Time Shift (d) + Speed Adjustment
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Notes: See the notes in Figure 4.

B.2 Polynomial functions

Here we use a set of polynomial functions to generate outcome time paths. We discuss a case with unique
solutions for ϕ∗ that emerges from cubic time paths and a case with multiple solutions for ϕ∗ that emerges from
quadratic time paths.

B.2.1 Cubic time paths

Here, we assume cubic time paths (see panel (c) of Figure 6):

g(t; Θr) = θ0,r + θ1,rt+ θ2,rt
2 + θ3,rt

3

for regions r = {C, T } and periods t ∈ {0, . . . , tp, . . . , T}. Then, picking a region (here: T ) as reference, we
apply our normalization procedure. That is, we map the outcome path of the non-reference region C onto that of
the reference region T using pre-policy data only. To do so, we postulate a normalized path for the non-reference
region, ỹC(s;ϕ) = (fC(.;ω) ◦ yC ◦ tC(.;ψ)) (s) with outer composite fC = ω0 + ω1yC(t) and inner composite
tC = ψ0 + ψ1s. That is,

ỹC(s;ϕ) = ω1yC(ψ0 + ψ1s) + ω0

= ω1
(
θ0,C + θ1,C(ψ0 + ψ1s) + θ2,C(ψ0 + ψ1s)2 + θ3,C(ψ0 + ψ1s)3)+ ω0

= ω0 + ω1
(
θ0,C + θ1,Cψ0 + θ2,Cψ

2
0 + θ3,Cψ

3
0
)

+ ω1
(
θ1,Cψ1 + 2θ2,Cψ0ψ1 + 3θ3,Cψ

2
0ψ1

)
s

+ ω1
(
θ2,Cψ

2
1 + 3θ3,Cψ0ψ

2
1
)
s2

+ ω1θ3,Cψ
3
1s

3 = yT (s)

where the last equality emerges from holding equation (10) with equality, i.e. ỹC(s;ψ) = yT (s) (note that
s = t for the reference region T ). This implies the following system with four equations and four unknowns,
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ϕ = {ψ,ω} = {ψ0, ψ1, ω0, ω1}:

θ0,T = θ0,T (ω0, ω1, ψ0) = ω0 + ω1
(
θ0,C + θ1,Cψ0 + θ2,Cψ

2
0 + θ3,Cψ

3
0
)

(31)
θ1,T = θ1,T (ω1, ψ0, ψ1) = ω1

(
θ1,Cψ1 + 2θ2,Cψ0ψ1 + 3θ3,Cψ

2
0ψ1

)
(32)

θ2,T = θ2,T (ω1, ψ0, ψ1) = ω1
(
θ2,Cψ

2
1 + 3θ3,Cψ0ψ

2
1
)

(33)
θ3,T = θ3,T (ω1, ψ1) = ω1θ3,Cψ

3
1 (34)

Then, we find the undetermined normalization coefficients (ϕ) that solve the system (31)-(34) using the
following steps:

STEP 1. Isolate ω1 in θ3,T (ω1, ψ1),

ω1 = ω1(ψ1) = θ3,T

θ3,Cψ3
1

STEP 2. Plug ω1(ψ1) in θ3,T (ω1, ψ0, ψ1) and isolate ψ0:

θ2,T = ω1
(
θ2,Cψ

2
1 + 3θ3,Cψ0ψ

2
1
)

= θ3,T

θ3,Cψ3
1

(
θ2,Cψ

2
1 + 3θ3,Cψ0ψ

2
1
)

= θ3,T

θ3,Cψ1
(θ2,C + 3θ3,Cψ0)

hence,

ψ0(ψ1) = 1
3
θ2,T

θ3,T
ψ1 − 1

3
θ2,C

θ3,C

STEP 3. Plug ω1(ψ1) and ψ0(ψ1) in θ1,T (ω1, ψ0, ψ1) and isolate ψ1:

θ1,T = ω1
(
θ1,Cψ1 + 2θ2,Cψ0ψ1 + 3θ3,Cψ

2
0ψ1

)
= θ3,T

θ3,Cψ3
1

(
θ1,Cψ1 + 2θ2,Cψ0ψ1 + 3θ3,Cψ

2
0ψ1

)
= θ3,T

θ3,Cψ2
1

(
θ1,C + 2θ2,Cψ0 + 3θ3,Cψ

2
0
)

= θ3,T

θ3,Cψ2
1

θ2,C + 2θ3,C

1
3
θ3,T

θ3,T
ψ1 − 1

3
θ3,C

θ3,C︸ ︷︷ ︸
ψ0(ψ1)

+ 3θ3,C

1
3
θ3,T

θ3,T
ψ1 − 1

3
θ3,C

θ3,C︸ ︷︷ ︸
ψ0(ψ1)


2

= θ3,T

θ3,Cψ2
1

(
θ1,C + 2θ2,C

(
1
3
θ2,T

θ3,T
ψ1 − 1

3
θ2,C

θ3,C

)
+ 3θ3,C

(
1
9

(
θ2,T

θ3,T

)2
ψ2

1 + 1
9

(
θ2,C

θ3,C

)2
−21

9
θ2,T

θ3,T

θ2,C

θ3,C
ψ1

))

= 1
3
θ2

2,T

θ3,T
+ 2

3

(
θ2,C

θ3,T
θ2,T − θ2,T

θ3,T
θ2,C

)
1
ψ1

+ θ3,T

θ3,C

(
θ1,C − 1

3
θ2

2,C

θ3,C

)
1
ψ2

1
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Figure 28: Decomposition by Normalization Coefficient: Cubic Time Paths

(a) Level Shift (b) + Proportional Scaling (c) + Time Shift (d) + Speed Adjustment
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Notes: See the notes in Figure 4.

That is,

θ3,T

θ3,C

(
θ1,C − 1

3
θ2

2,C

θ3,C

)
︸ ︷︷ ︸

a

1
ψ2

1
+ 2

3

(
θ2,C

θ3,T
θ2,T − θ2,T

θ3,T
θ2,C

)
︸ ︷︷ ︸

b=0

1
ψ1

+ 1
3
θ2

2,T

θ3,T
− θ1,T︸ ︷︷ ︸
c

= 0

where note that b = 0. Thus, we can isolate ψ1 =
√

a
−c which delivers a unique solution for ψ1 if a

−c > 0 (and
no solution otherwise).66

STEP 4. Plug ψ1 into ω1(ψ1) and ψ0(ψ1) in order to recover ω1 and ψ0.

STEP 5. Plug ω1, ψ0 and ψ1 into θ0,T (ω0, ω1, ψ0) and isolate (recover) ω0.

That is, the normalization coefficients have an exact and unique solution. For our illustration in panel (c)
of Figure 6, we set ΘC = {12,−4.5, 0.3, 0.2} and ΘT = {7.84,−1.28,−0.17, 0.07}, which implies the following
unique solution for ϕ∗ = {ψ∗

0 , ψ
∗
1 , ω

∗
0 , ω

∗
1} = {−1.350, 1.093, 2.788, 0.278}. We show the role of each of these

normalizaiton coefficients in the non-orthogonal decomposition in Figure 28.

B.2.2 Quadratic time paths

Here, we assume quadratic time paths:

g(t; Θr) = θ0,r + θ1,rt+ θ2,rt
2

for regions r = {C, T } and periods t ∈ {0, . . . , tp, . . . , T}. Then, picking a region (here: T ) as reference, we
apply our normalization procedure. That is, we map the outcome path of the non-reference region C onto that of
the reference region T using pre-policy data only. To do so, we postulate a normalized path for the non-reference
region, ỹC(s;ϕ) = (fC(.;ω) ◦ yC ◦ tC(.;ψ)) (s) with outer composite fC = ω0 + ω1yC(t) and inner composite

66One can further elaborate this to show that a
−c = (3θ1,Cθ3,C−θ2

2,C)/θ2
3,C

(3θ1,T θ3,T −θ2
2,T )/θ2

3,T
and hence the solution to the system

(31)-(34) emerging from the cubic time paths exists as long as the term in the numerator (3θ1,Cθ3,C − θ2
2,C) and

the term in the denominator (3θ1,T θ3,T − θ2
2,T ) have the same sign.
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Figure 29: Quadratic Time Paths

(a) After Normalization (b) Identified Policy Effects(%)

Notes: This is an example with multiple solutions for ϕ∗ (as described in Appendix B.2.2). In panel (a), as
an illustration, we show two mappings of C onto T (reference region) that depend on two alternative solutions
ϕ∗(ω1) which are a function of a choice for ω1. In panel (b), we show the (interim) policy effects γ(s) which are
identical across solutions. We also show the (cumulative) policy effects γ which depend not only on the interim
effects, but also on the size of the window and, hence, on the solution ϕ∗(ω1).

tC = ψ0 + ψ1s. That is,

ỹC(s;ψ) = ω1yC(ψ0 + ψ1s) + ω0

= ω1
(
θ0,C + θ1,C(ψ0 + ψ1s) + θ2,C(ψ0 + ψ1s)2)+ ω0

= ω1θ0,C + ω1 (θ1,Cψ0 + θ1,Cψ1s) + ω1
(
θ2,Cψ

2
0 + θ2,C2ψ0ψ1s+ θ2,Cψ

2
1s

2)+ ω0

= ω1θ0,C + ω1θ1,Cψ0 + ω1θ2,Cψ
2
0 + ω0 + (ω1θ1,Cψ1 + ω1θ2,C2ψ0ψ1) s+ ω1θ2,Cψ

2
1s

2 = yT (s)

where the last equality emerges from holding equation (10) with equality, i.e. ỹC(s;ψ) = yT (s) (note that
s = t for the reference region T ). This implies the following system with three equations and four unknowns,
ϕ = {ψ,ω} = {ψ0, ψ1, ω0, ω1}:

θ0,T = θ0,T (ω0, ω1, ψ0) = ω0 + ω1
(
θ0,C + θ1,Cψ0 + θ2,Cψ

2
0
)

(35)
θ1,T = θ1,T (ω1, ψ0, ψ1) = ω1 (θ1,Cψ1 + θ2,C2ψ0ψ1) (36)
θ2,T = θ2,T (ω1, ψ1) = ω1θ2,Cψ

2
1 (37)

This is an underidentified system with multiple exact solutions. For example, for any value of ω1 (or ψ2) we
obtain a different exact solution of ϕ∗.

As an illustration, let ΘC = {8,−5, 3} and ΘT = {4,−4,−2}. Then, initiating the system at ω1 = 1.0, we
obtain the solution ϕ∗ = {ψ∗

0 , ψ
∗
1 , ω

∗
0 , ω

∗
1} = {0.016, 0.816,−3.916, 1.0}. Alternatively, initiating the system at

ω1 = 2.0, we obtain the alternative solution ϕ∗ = {ψ∗
0 , ψ

∗
1 , ω

∗
0 , ω

∗
1} = {0.256, 0.577,−9.833, 2.0}; see panel (a)

of Figure 29 Then, as our Remark 1 in Section 2.3 states, note that these two (and all for that matter) solutions
(ϕ∗) to the system (35)-(37) deliver a counterfactual path that is exactly identical to the true counterfactual path
without policy, yT (s) = g(s; ΘT ). In panel (a) of Figure 29, we graphically show the identified counterfactual
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path, ỹC(s;ϕ), of two (of the many possible) solutions assuming either ω1 = 1.0 (crossed markers) or ω1 = 2.0
(circle markers). This implies that the (interim) policy effects γ(s) are identical across both (all for that matter)
solutions of the normalization coefficients (ϕ∗); see panel (b) of Figure 29. At the same time, note that the
overall policy effect γ is determined by the behavior of the interim policy effects and the size of the window,
W(s,ψ∗) = [tp, sC(tp;ψ∗(ω1)], which differs by the solution. Further, note that if policy is applied non-nationwide
(e.g. assume that the policy is never implemented in region C), then the overall policy effect γ is also identical
across potential multiple solutions of ϕ∗ because the identification window is open, i.e. W(s;ψ∗) = [tp,∞).

B.3 Generalized logistic functions

Here, we assume the outcome time paths follow the log of a generalized logistic function,

g(t; Θr) = ln
(

θ1,r

(1 + exp (−θ3,rt+ θ2,r))
1

θ4,r

)
(38)

for regions r = {C, T } and periods t ∈ {0, . . . , tp, . . . , T}. Note that the outcome time path in equation (38)
generalizes the logistic function discussed in Section 2.3. In particular, we introduce an asymmetry parameter,
θ4,r.67 In this case, as we show next, exact solutions for ϕ∗ are achieved taking the log of the generalized logistic
function—as stated in equation (38).

Then, picking a region (here: T ) as reference, we apply our normalization procedure. That is, we map the
outcome path of the non-reference region C onto that of the reference region T using pre-policy data only. To
do so, we postulate a normalized path for the non-reference region, ỹC(s;ϕ) = (fC(.;ω) ◦ yC ◦ tC(.;ψ)) (s) with
outer composite fC = ω0 + ω1yC(t) and inner composite tC = ψ0 + ψ1s. That is,

ỹC = ω0 + ω1yC (ψ0 + ψ1s)

= ω0 + ω1 ln (θ1,C)︸ ︷︷ ︸
=ln(θ1,T )

−ω1
1
θ4,C︸ ︷︷ ︸

= 1
θ4,T

ln

1 + exp

− θ3,Cψ1︸ ︷︷ ︸
=θ3,T

s+ θ2,C − ψ0θ3,C︸ ︷︷ ︸
=θ2,T


 = yT (s)

where the last equality emerges from holding equation (10) with equality, i.e. ỹC(s;ϕ) = yT (s) (note that s = t

for the reference region T ). This implies a system with four equations and four unknowns, ϕ = {ψ,ω} =
{ψ0, ψ1, ω0, ω1}:

θ1,T = θ1,T (ω0, ω1) = exp (ω0 + ω1 ln θ1,C) (39)

θ4,T = θ4,T (ω1) = 1
ω1
θ4,C (40)

θ3,T = θ3,T (ψ1) = ψ1θ3,C (41)
θ2,T = θ2,T (ψ0) = θ2,C − ψ0θ3,C (42)

67In addition, we drop the level parameter θ0,r present in the logistic function in Section 2.3.
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Figure 30: Decomposition by Normalization Coefficient: Generalized Logistic Paths

(a) Level Shift (b) + Proportional Scaling (c) + Time Shift (d) + Speed Adjustment
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Notes: See the notes in Figure 4.

Then, the undetermined normalization coefficients are:

ω∗
1 = θ4,C

θ4,T
, ω∗

0 = ln θ1,T − θ4,C

θ4,T
ln θ1,C ,

ψ∗
1 = θ3,T

θ3,C
, ψ∗

0 = θ2,C − θ2,T

θ3,C
.

That is, the normalization coefficients have an exact and unique solution. For example, let’s set the structural pa-
rameters ΘC = {4.00, 5.25, 0.15, 1.00} and ΘT = {3.50, 7.70, 0.14, 0.85}. This implies ϕ∗ = {ψ∗

0 , ψ
∗
1 , ω

∗
0 , ω

∗
1} =

{−16.33, 0.93,−0.37, 1.17}. We show the role of each of these normalization coefficients in the non-orthogonal
decomposition in Figure 30.

C Solution Algorithms for the Theoretical Frameworks

Here, we provide additional details on the solution algorithms for the three theoretical models that we pose in
Section 3.

C.1 Public health policy against a pandemic

Here we discuss the solution of the model posed in Section 3.1.1. We separately solve for the pre-pandemic
equilibrium at t = 0 (actually, for any t ≤ 0) before the unexpected arrival of the pandemic at t = 1. In this
pre-pandemic era there are no infections and, hence, ϕi(h0) = 1. That is, the equilibrium labor supply sets the
right-hand side of the Euler equation (16) to zero in which case h0 simply solves an intra-temporal trade-off. The
same equilibrium emerges after the pandemic at some large t = T which delivers a terminal condition hT = h0.

Step 1. Solve for hours worked in the pre-pandemic steady state (h̄).

Step 2. Select the number of periods to simulate T. Pick a large number T . Set h0 = hT = h̄.

Step 3. Given parameters Θ, guess a sequence {ht}Tt=0.

Step 4. With {ht}Tt=0, compute sequences for St, It, Rt, Dt, Nt.

Step 5. Use the above sequences to back out a new sequence for {ht}Tt=0 using (16). Solve backwards.
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Step 6. If the new sequence {ht}Tt=0 is different than the guess in Step 3, update the guess and go back
to Step 4.

Step 7. Store the second value of the sequence, namely h1, and set h0 = h1. Go back to Step 3.
Repeat this step T times. Construct a solution sequence {hsol,t}Tt=1 using all values stored. Simulate the
underlying epidemic dynamics associated to the solution sequence.

Step 8. To obtain the series with the effect of policy: set all values of the solution sequence after tp equal
to hpol, and simulate the epidemic dynamics.

Further details on the extended model with endogenous policy (in Section 3.2.2): In this case, the policy
hits when the cumulative number of deaths reaches a certain number D. In Step 5 solve backwards only from the
date in which policy is implemented, continue with the rest of the steps as described above. Further, to obtain
the series without policy, use as initial values those immediately before the policy hits, go to Step 3 and solve for
a new sequence of h assuming the policy constrain is never binding.

C.2 Growth policy and structural transformation

Here we discuss the solution of the model posed in Section 3.1.3. We solve the economy by guessing the sequences
of factor prices {w, r}∞

t=0 with wt = wat = wmt. Given these prices, we find the allocations cat, kt+1 and nat

that solve the set of first order conditions (25)-(27) with pat = wt

ϕzat

(
nat

ℓ

)1−ϕ.68 There is market clearing in
labor and capital, and aggregate consistency. Note that the interemporal Euler condition (26) is a second order
different equation in {kt, kt+1, kt+2} at every period t. We use as initial and terminal conditions the corresponding
stationarized economies at t = 0 and at a large T with negligible agricultural share of labor.

D Further Details on the Analysis of Confounding Factors

In Section 3.2.2, we discuss how SBI performs in the presence of confounding factors. Here, in Appendix D.1,
we show the path of time-varying latent heterogeneity that we assumed for our analysis in the main text. In
Appendix D.2, we further assess the implications of confounding policy for the performance of SBI.

D.1 Time-varying latent heterogeneity

Here, we show the assumed path for the beliefs on the probability of infection conditional on hours work, ξP , in
region T that generates the time-varying latent heterogeneity studied in Section 3.2.2. Precisely, for our analysis
of the performance of SBI in the context where there is time-varying latent heterogeneity, we assume that beliefs
on the probability of infection conditional on hours work ξP are our source of time-varying latent heterogeneity. In
Figure 31, we showed the assume time path for ξP (magenta dashed line) converging from below (from t = 0 ≤ tp)

68Note that without the distortion τ , if ϕ = α and if we had the same factor inputs in the production of both
goods, then the equality of the ratio of factor input prices across sectors would imply that the ratio of factor inputs
must be identical across sectors. In turn, this would imply a standard result for the pricing of agricultural goods,
pat = zmt

zat
, which renders the price of agricultural good as exogenous. The fact that we allow for ϕ to differ from

α and that we have different factor inputs differ across sectors both prevents the standard result. Indeed, in our
case, the price of agricultural goods depends endogenously on nat.
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to the true probability ξ (dashed gray line). Hence, a structural parameter, ξP , that is unobserved to the policy
evaluator evolves over time before and after policy implementation.

Figure 31: Time-Varying Latent Heterogeneity: Assumed Path of Beliefs ξP for region T

D.2 Additional confounding policy

In Section 3.2.2, we show how SBI performs when confounding policy—happening before the stay-home policy
under study is implemented—occurs in region T (and not in region C). Here, we discuss the opposite scenario
in which confounding policy is implemented in region C (and not in region T ) before the stay-home policy under
study takes place. In this case, we find that the policy effect is recovered with an error of 2.34%. Again, we
can make this error larger if the confounding policy drives the outcome path of region C further away from the
outcome path of region T .

Figure 32: Stage-Based Identification of Policy Effects: With Confounding Policy in C

(a) Response of Hours (b) True Effects (c) Identified Effects (d) Identified vs. True Effects

Notes: Where h̄1 = 0.6 at t = 37 in C, his policy is unobserved, h̄2 = 0.4 (lockdown) at tp = 38, tf = 250,
γ = −18.34%, ϵ(γ) = 2.34%.
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E Alternative Inference Procedure

In Section 3.3.2, we discuss how we conduct inference in our applications throughout our applications. In this
Appendix, we discuss an altogether alternative way to conduct inference. This alternative way proceeds by using
the recovered estimates for the error terms ur(t) in order to estimate the sample variance of the errors, i.e.
σ̂r. Then, under a normality assumption on the error term in (28), we simulate Q = 1, 000 paths of errors
and, hence, the same number of pre-policy outcome paths onto which we apply the smoothing step in order
to recover a simulation-specific estimand ̂̂yr,q(t). Since the estimand ̂̂yr,q(t) differs by simulation q ∈ Q, each
simulation delivers an stage-based identified policy effect, γq. We show the results of this different inference in
Figure 33. Overall, we find similar insights with an identified mean policy effect of 21.12% [14.41,28.23] and
19.61% [12.32,29.35] with, respectively, classical measurement error and with auto-correlated measurement error.
The recovered policy effect is not significantly different from the true (model-generated) policy effect. In Figure 34,
we show the policy effects from directly using the Q = 1, 000 simulations of data ŷr,q(t), that is, without applying
the smoothing step. The identified mean policy effect obtained without the smoothing step is 20.92% [7.88,30.32]
and 21.55% [7.51,30.81] with, respectively, classical measurement error and with auto-correlated measurement
error.
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Figure 33: Stage-Based Identification of Model-Generated Policy Effects: Alternative Inference

(a) Classical Measurement Error:
(a1) Model with Error (a2) Policy Effects (%) (a3) Policy Effects, Pooled

(b) Autocorrelated Measurement Error:
(b1) Model with Error (b2) Policy Effects (%) (b3) Policy Effects, Pooled

Notes: We use the benchmark calibration in Section 3.1.1. the top panels (a), we introduce classical measure-
ment error in our model with {σ2

C , σ
2
T } = {0.01, 0.01}. In the bottom panels (b), we introduce non-classical

measurement error with {ρC , ρT } = {0.13, 0.13} and {σ2
C , σ

2
T } = {0.01, 0.01}.
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Figure 34: Stage-Based Identification of Model-Generated Policy Effects: Alternative Inference, No
Smoother

(a) Classical Measurement Error:
(a1) Model with Error (a2) Policy Effects (%) (a3) Policy Effects, Pooled

(b) Autocorrelated Measurement Error:
(b1) Model with Error (b2) Policy Effects (%) (b3) Policy Effects, Pooled

Notes: We use the benchmark calibration in Section 3.1.1. the top panels (a), we introduce classical measure-
ment error in our model with {σ2

C , σ
2
T } = {0.008, 0.008}. In the bottom panels (b), we introduce non-classical

measurement error with {ρC , ρT } = {0.13, 0.13} and {σ2
C , σ

2
T } = {0.008, 0.008}.
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F Data

In Section 4, we apply SBI to three applications. Here, we discuss the data construction and sources used in each
of our applications. Note that only data needed for our identify policy effects through SBI is that of the time
path of the outcomes of interest.

F.1 Covid-19 Application

For the assessment of the national lockdown against the first wave of Covid-19 in Spain in Section 4.1, we use
Covid-19 deaths regional series provided by the Ministerio de Sanidad. Data from the Ministerio de Sanidad can
be found under the following link: www.mscbs.gob.es. All values in figure 16 are expressed per million inhabitants
of each region, with Spain having 47 million inhabitants and Madrid 6.6 million.

F.2 Oral Contraceptives Application

For our assessment of the effects of the 1960 FDA approval of oral contraceptives on fertility and women college
education in Section 4.2, we use state-level data on crude brith rates and the share of women with completed
college of age 25:

• To construct the crude birth rate (by state), we divide total number of births in a given year and diving
it by the respective population. Birth counts by state from 1939 to 2007 are provided by IPUMS NHGIS,
Vital Statistics: Natality and Mortality Data. We use population data provided by the U.S. Census Bureau
annual estimates.

• To measure the share of women of a certain age with college attainment we use decennial CENSUS data
from IPUMS starting in 1940 up to 1980. In the absence of information on the year of graduation, we
construct the historical series by using cohort information by CENSUS year. For example when using
CENSUS data for 1960, the share of college women of age 25 in 1959 will be the share of a woman age
26 who reported (already) having attained college by 1960.69 After computing the historical series per
CENSUS year we compute the average across CENSUS series.

F.3 German Reunification Application

To assess the effects of the German reunification on the income per capita of West Germany in Section 4.3, we
retrieve 1970-2007 GDP data for West Germany from the Statistisches Bundesamt. Likewise, the respective price
index from the Destatis postal. Our current GDP measure of West Germany does not include West Berlin, our
results do not change significantly when including West Berlin.

Finally, GDP data, inflation, PPP deflators and population for the USA and the rest of OECD countries for
1970-2007 is taken from the OECD data portal OECD.STAT. The list of countries that comprises our hybrid Rest
of OECD (RoOECD) is the same as the one chosen in Abadie et al. (2014), namely Australia, Austria, Belgium,

69Later completion and death could hinder the precision of our measure, however after comparing the historical
series from various census years, the measure doesn’t seem to be suffering from these problems
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Denmark, France, Greece, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland, United
Kingdom and United States.

G Placebo Diagnosis for our Applications

Here, we conduct further inference using a placebo diagnosis in each of our applications in Section 4. That is, we
show the policy effects that emerge from our method if we conduct our normalization at a some period before
the actual policy takes place. Precisely, for our placebo, we assume that the stay-home policy was imposed on
March 10 2020, i.e. about two weeks earlier than its actual implementation; the pill was introduced 5 year before
its actual market release; and that German Reunification occurred 5 years before the actual reunification date.
Our method will survive this test if it identify policy effects that are not significantly different from zero. We find
that this is the case for each and all our applications; see Figure 35.
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Figure 35: Stage-Based Identification of Policy Effects: Placebo Diagnosis

(a) Effects of the Spanish Confinamiento on Daily Deaths
(a1) Identification Window (Zoomed) (a2) Policy Effects (%)

(b) Effects of Oral Contraceptives on Crude Birth Rate
(b1) Identification Window (Zoomed) (b2) Policy Effects

(c) Effects of Oral Contraceptives on Share of Women with College
(c1) Identification Window (Zoomed) (c2) Policy Effects

(d) Effects of the German Reunification on GDP
(d1) Identification Window (Zoomed) (d2) Policy Effects

Notes: In our placebo, we assume that the stay-home policy was imposed on March 10 2020; the pill was
introduced 5 year before its actual market release; and that German Reunification occured 5 years before the
actual reunification date.
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Figure 36: Identified Policy Effects Without the Trend-Extraction Step

(a) Spanish Confinamiento (b) Crude Birth Rate (c) Women College Attainment (d) German Reunification

Notes: We show the policy effects identified without the implementation of the smoothing step and around the
neighborhood of the point estimate, as described in Section 4.

H Robustness to the Trend-Extraction

We mainly use the trend-extraction step described in Section 4 in order to conduct inference using as stochastic
component the data deviations from trend. Here, in Figure 36, we compare the policy effects of all our empirical
applications in which we used a trend-extraction step in order to conduct inference described in Section 4 with
a counterpart where we skip the trend-extraction step and minimize the original data points. Our exercise shows
that the trend extraction does not affect the identified effects of the Spanish Confinamiento on daily deaths (see
panel (a) of Figure 36) and the effects of the 1960 FDA approval of oral contraceptives on the crude birth rate
(see panel (b) of Figure 36) and women college attainment (see panel (c) of Figure 36).

However, we find that the identified policy effects without the trend-extraction step differ from those with
the trend-extraction in the context of the German Reunification; see panel (d) in Figure 36. The reason for this
differential result is that in the case of the German Reunification the outcome variable (GDP per capita) shows
fluctuations at a larger frequency (business cycles) than the frequency in which we are ultimately interested in
for the evaluation of the German Reunification. Since all regions share the same aggregate fluctuations, if we do
not purge GDP per capita from the business cycle fluctuations our algorithm that aims to minimizes the distance
between the GDP per capita across regions (to some reference region) will be drawn to map the business cycle
fluctuations of all regions to that of the reference region. For this reason, and since our interest is not the business
cycle but the longer run, we extract the trend from the GDP in order to remove the higher frequency fluctuations
of GDP. Therefore, in addition to be useful to conduct inference, the trend-extraction step can also serve the
purpose of removing fluctuations that are of higher frequency than the ones in which the policy evaluator is
interested in.
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Figure 37: The Effects of the German Reunification on GDP per capita

(a) Before Normalization (b) After Normalization (smoothing) (c) After Normalization (not smoothing)

I Extrapolating to Find Policy Effects on the Control Region: Not a
Good Idea

In Section 5.2, we discuss the identificiation of aggregate policy effects. Alternatively, one may be tempted to
extrapolate the heterogeneous policy effects in Section 5.1 in order to find the policy effects of the control region
and, hence, the aggregate. In particular, given that the policy effects depend on the size of the identification
window one could extrapolate the per-period policy effects forward. That is, one could fit a curve to the well-
identified per-period policy effects (within the identification window) across stages and use the fitted curves to
find the effects for the control region via extrapolation. We do this using a log-linear fit and a quadratic fit using
our benchmark econ-epi model in Section 3.1.1; see, respectively, panel (a1) and panel (b1) of Figure 38. The
policy effect of the control region is constructed using the value of the extrapolated per-period policy effect (after
policy implementation). Precisely, we find where the extrapolated per-period policy effect hits the period when
the policy effectively enters the control region.

Overall, we find that conducting extrapolations in order to pin down the policy effects on the control region
is not a good idea. In this specific example, a extrapolations from a log linear fit recovers the true per-period
policy effect on the control region; see panel (a2) of Figure 38. However, this is not the case with a quadratic
fit; see panel (a2) of Figure 38. One can imagine situations in which the extrapolation works are those in which
the per-period policy effects are well approximated by the fitted curve, at least, locally around the last stages
where the policy effects are available (hence, closer to when the control enters policy). However, there is no
reason to think that is generally the case. In Figure 39, we show the extrapolated policy effects in the control
region, Madrid, emerging from extrapolating the heterogenous effects by stage in our empirical application of the
stay-home policy implemented in Spain during Covid-19.
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Figure 38: Extrapolated Policy Effects of the Control Region: Model

(a) Log-Linear Fit: (b) Quadratic Fit:
(a1) Per-Period Policy Effect (a2) Extrapolated Policy Effect (b1) Per-Period Policy Effect (b2) Extrapolated Policy Effect

(Control Region) (Control Region)

Figure 39: Extrapolated Policy Effects of the Control Region: Data (Madrid, Covid-19 Application)

(a) Log-Linear Fit: (b) Quadratic Fit:
(a1) Per-Period Policy Effect (a2) Extrapolated Policy Effect (b1) Per-Period Policy Effect (b2) Extrapolated Policy Effect

(Control Region) (Control Region)

J Many Control Regions for One Treated Region

In Section 5.3, we show that applying SBI with alternative controls (Hessen, United States, and OECD) on West
Germany income per capita we identify similar policy effects of the German Reunification. This is perhaps not
surprising because by mapping all potential controls onto West Germany, the outcome path of each control is
normalized to be at the same stage when West Germany enters policy.

In this Appendix, we show the stage-based identified policy effects of applying alternative controls for one of
the regions in which the national lockdown in Spain catches at earlier stages of the first Covid-19 wave, the Canary
Islands. We conduct SBI choosing the Canary Islands as reference path and map a set of alternative non-reference
regions (potential controls) onto the outcome path of the Canary Islands. These set of non-reference regions
are, namely: Andalucia, Castilla y Leon, Catalunya, Valencia, Castilla la Mancha, Islas Baleares and Madrid. In
Figure 40, we show that the identified policy effects are independently of the associated control region.
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Figure 40: The Effects of the Spanish Confinamiento in the Canary Islands, with Different Controls

Notes: Reference region: Canary Islands. The rest of regions are non-reference: Andalucia (AND), Castilla y
Leon (CLL), Catalunya (CAT), Valencia (VAL), Castilla La Mancha (CLM), Balearic Islands (BAL) and Madrid
(MAD). Note that all these regions lead the reference region and, hence, serve as control for the reference region.
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